
+BWB4DSJQU
'PS�*NQBUJFOU�1SPHSBNNFST

%S��"YFM�3BVTDINBZFS

&$."4DSJQU������&EJUJPO

2

JavaScript for impatient programmers
(ES2020 edition)
Dr. Axel Rauschmayer

2020

“An exhaustive resource, yet cuts out the fluff that clutters many
programming books – with explanations that are understandable and to
the point, as promised by the title! The quizzes and exercises are a very

useful feature to check and lock in your knowledge. And you can
definitely tear through the book fairly quickly, to get up and running in

JavaScript.”
— Pam Selle, thewebivore.com

“The best introductory book for modern JavaScript.”
— Tejinder Singh, Senior Software Engineer, IBM

“This is JavaScript. No filler. No frameworks. No third-party libraries.
If you want to learn JavaScript, you need this book.”

— Shelley Powers, Software Engineer/Writer

Copyright © 2020 by Dr. Axel Rauschmayer
Cover by Fran Caye
All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher except
for the use of brief quotations in a book review or scholarly journal.
ISBN 978-1-09-121009-7
exploringjs.com

Contents

I Background 9
1 About this book 11

1.1 About the content . 11
1.2 Previewing and buying this book . 12
1.3 What’s new in this book? . 12
1.4 About the author . 13
1.5 Acknowledgements . 13

2 FAQ: Book and supplementary material 15
2.1 How to read this book . 15
2.2 I own a digital edition . 16
2.3 I own the print edition . 17
2.4 Notations and conventions . 17

3 History and evolution of JavaScript 19
3.1 How JavaScript was created . 19
3.2 Standardizing JavaScript . 20
3.3 Timeline of ECMAScript versions . 20
3.4 Ecma Technical Committee 39 (TC39) . 21
3.5 The TC39 process . 21
3.6 FAQ: TC39 process . 23
3.7 Evolving JavaScript: Don’t break the web 23

4 FAQ: JavaScript 25
4.1 What are good references for JavaScript? 25
4.2 How do I find out what JavaScript features are supported where? 25
4.3 Where can I look up what features are planned for JavaScript? 26
4.4 Why does JavaScript fail silently so often? 26
4.5 Why can’t we clean up JavaScript, by removing quirks and outdated fea-

tures? . 26
4.6 How can I quickly try out a piece of JavaScript code? 26

II First steps 27
5 The big picture 29

5.1 What are you learning in this book? . 29

3

4 CONTENTS

5.2 The structure of browsers and Node.js 29
5.3 JavaScript references . 30
5.4 Further reading . 30

6 Syntax 31
6.1 An overview of JavaScript’s syntax . 32
6.2 (Advanced) . 37
6.3 Identifiers . 37
6.4 Statement vs. expression . 38
6.5 Ambiguous syntax . 39
6.6 Semicolons . 40
6.7 Automatic semicolon insertion (ASI) . 41
6.8 Semicolons: best practices . 43
6.9 Strict mode vs. sloppy mode . 43

7 Consoles: interactive JavaScript command lines 47
7.1 Trying out JavaScript code . 47
7.2 The console.* API: printing data and more 49

8 Assertion API 53
8.1 Assertions in software development . 53
8.2 How assertions are used in this book . 53
8.3 Normal comparison vs. deep comparison 54
8.4 Quick reference: module assert . 55

9 Getting started with quizzes and exercises 59
9.1 Quizzes . 59
9.2 Exercises . 59
9.3 Unit tests in JavaScript . 60

III Variables and values 63
10 Variables and assignment 65

10.1 let . 66
10.2 const . 66
10.3 Deciding between const and let . 67
10.4 The scope of a variable . 67
10.5 (Advanced) . 69
10.6 Terminology: static vs. dynamic . 69
10.7 Global variables and the global object . 70
10.8 Declarations: scope and activation . 72
10.9 Closures . 76

11 Values 79
11.1 What’s a type? . 79
11.2 JavaScript’s type hierarchy . 80
11.3 The types of the language specification 80
11.4 Primitive values vs. objects . 81
11.5 The operators typeof and instanceof: what’s the type of a value? 83

CONTENTS 5

11.6 Classes and constructor functions . 85
11.7 Converting between types . 86

12 Operators 89
12.1 Making sense of operators . 89
12.2 The plus operator (+) . 90
12.3 Assignment operators . 91
12.4 Equality: == vs. === . 92
12.5 Ordering operators . 95
12.6 The nullish coalescing operator (??) for default values [ES2020] 95
12.7 Various other operators . 97

IV Primitive values 99
13 The non-values undefined and null 101

13.1 undefined vs. null . 101
13.2 Occurrences of undefined and null . 102
13.3 Checking for undefined or null . 103
13.4 undefined and null don’t have properties 103
13.5 The history of undefined and null . 104

14 Booleans 105
14.1 Converting to boolean . 105
14.2 Falsy and truthy values . 106
14.3 Truthiness-based existence checks . 107
14.4 Conditional operator (? :) . 109
14.5 Binary logical operators: And (x && y), Or (x || y) 110
14.6 Logical Not (!) . 111

15 Numbers 113
15.1 Numbers are used for both floating point numbers and integers 114
15.2 Number literals . 114
15.3 Arithmetic operators . 115
15.4 Converting to number . 118
15.5 Error values . 118
15.6 Error value: NaN . 119
15.7 Error value: Infinity . 120
15.8 The precision of numbers: careful with decimal fractions 121
15.9 (Advanced) . 121
15.10Background: floating point precision . 121
15.11Integer numbers in JavaScript . 123
15.12Bitwise operators . 126
15.13Quick reference: numbers . 128

16 Math 135
16.1 Data properties . 135
16.2 Exponents, roots, logarithms . 136
16.3 Rounding . 137

6 CONTENTS

16.4 Trigonometric Functions . 138
16.5 Various other functions . 140
16.6 Sources . 141

17 Unicode – a brief introduction (advanced) 143
17.1 Code points vs. code units . 143
17.2 Encodings used in web development: UTF-16 and UTF-8 146
17.3 Grapheme clusters – the real characters 146

18 Strings 149
18.1 Plain string literals . 150
18.2 Accessing characters and code points . 150
18.3 String concatenation via + . 151
18.4 Converting to string . 151
18.5 Comparing strings . 153
18.6 Atoms of text: Unicode characters, JavaScript characters, grapheme clusters154
18.7 Quick reference: Strings . 156

19 Using template literals and tagged templates 165
19.1 Disambiguation: “template” . 165
19.2 Template literals . 166
19.3 Tagged templates . 167
19.4 Raw string literals . 169
19.5 (Advanced) . 169
19.6 Multiline template literals and indentation 170
19.7 Simple templating via template literals 171

20 Symbols 175
20.1 Use cases for symbols . 176
20.2 Publicly known symbols . 178
20.3 Converting symbols . 178

V Control flow and data flow 181
21 Control flow statements 183

21.1 Conditions of control flow statements . 184
21.2 Controlling loops: break and continue 184
21.3 if statements . 186
21.4 switch statements . 187
21.5 while loops . 189
21.6 do-while loops . 190
21.7 for loops . 190
21.8 for-of loops . 191
21.9 for-await-of loops . 193
21.10for-in loops (avoid) . 193

22 Exception handling 195
22.1 Motivation: throwing and catching exceptions 195
22.2 throw . 196

CONTENTS 7

22.3 The try statement . 197
22.4 Error classes . 199

23 Callable values 201
23.1 Kinds of functions . 201
23.2 Ordinary functions . 202
23.3 Specialized functions . 204
23.4 More kinds of functions and methods . 207
23.5 Returning values from functions and methods 208
23.6 Parameter handling . 209
23.7 Dynamically evaluating code: eval(), new Function() (advanced) 213

VI Modularity 217

24 Modules 219
24.1 Overview: syntax of ECMAScript modules 220
24.2 JavaScript source code formats . 221
24.3 Before we had modules, we had scripts 221
24.4 Module systems created prior to ES6 . 222
24.5 ECMAScript modules . 224
24.6 Named exports and imports . 225
24.7 Default exports and imports . 227
24.8 More details on exporting and importing 230
24.9 npm packages . 231
24.10Naming modules . 233
24.11Module specifiers . 234
24.12Loading modules dynamically via import() [ES2020] 236
24.13import.meta.url . 238
24.14Polyfills: emulating native web platform features (advanced) 240

25 Single objects 241
25.1 What is an object? . 243
25.2 Objects as records . 243
25.3 Spreading into object literals (...) [ES2018] 246
25.4 Methods . 248
25.5 Optional chaining for property accesses and method calls (advanced)

[ES2020] . 255
25.6 Objects as dictionaries (advanced) . 258
25.7 Standard methods (advanced) . 266
25.8 Advanced topics . 266

26 Prototype chains and classes 269
26.1 Prototype chains . 270
26.2 Classes . 275
26.3 Private data for classes . 279
26.4 Subclassing . 281
26.5 FAQ: objects . 289

8 CONTENTS

27 Where are the remaining chapters? 291

Part I

Background

9

Chapter 1

About this book

Contents
1.1 About the content . 11

1.1.1 What’s in this book? . 11
1.1.2 What is not covered by this book? 12
1.1.3 Isn’t this book too long for impatient people? 12

1.2 Previewing and buying this book 12
1.2.1 How can I preview the book, the exercises, and the quizzes? . 12
1.2.2 How can I buy a digital edition of this book? 12
1.2.3 How can I buy the print edition of this book? 12

1.3 What’s new in this book? . 12
1.4 About the author . 13
1.5 Acknowledgements . 13

1.1 About the content
1.1.1 What’s in this book?
This bookmakes JavaScript less challenging to learn for newcomers by offering amodern
view that is as consistent as possible.

Highlights:

• Get started quickly by initially focusing on modern features.
• Test-driven exercises and quizzes available for most chapters.
• Covers all essential features of JavaScript, up to and including ES2020.
• Optional advanced sections let you dig deeper.

No prior knowledge of JavaScript is required, but you should know how to program.

11

12 1 About this book

1.1.2 What is not covered by this book?
• Some advanced language features are not explained, but references to appropri-

ate material are provided – for example, to my other JavaScript books at Explor-
ingJS.com, which are free to read online.

• This book deliberately focuses on the language. Browser-only features, etc. are
not described.

1.1.3 Isn’t this book too long for impatient people?
There are several ways in which you can read this book. One of them involves skipping
much of the content in order to get started quickly. For details, see §2.1.1 “In which order
should I read the content in this book?”.

1.2 Previewing and buying this book
1.2.1 How can I preview the book, the exercises, and the quizzes?
Go to the homepage of this book:

• All essential chapters of this book can be read online.
• The first half of the test-driven exercises can be downloaded.
• The first half of the quizzes can be tried online.

1.2.2 How can I buy a digital edition of this book?
There are two digital editions of JavaScript for impatient programmers:

• Ebooks: PDF, EPUB, MOBI, HTML (all without DRM)
• Ebooks plus exercises and quizzes

The home page of this book describes how you can buy them.

1.2.3 How can I buy the print edition of this book?
The print edition of JavaScript for impatient programmers is available on Amazon.

1.3 What’s new in this book?
Compared to the ES2019 edition of this book, the following changes were made:

• Chapter “Operators”:
– New section “The nullish coalescing operator (??) for default values”

• New chapter: “Bigints – arbitrary precision integers”
– Bigints are also mentioned throughout the book (primitive values, falsy val-
ues, etc.)

• Chapter “Typed Arrays”:
– New classes: BigInt64Array, BigUint64Array
– New element types (e.g. in DataViews): BigInt64, BigUint64

• Chapter “Modules“:

https://exploringjs.com/
https://exploringjs.com/
https://exploringjs.com/impatient-js/
https://exploringjs.com/impatient-js/#buy

1.4 About the author 13

– Rewritten section on import.meta.url
• Chapter “Single objects”:

– New section “Optional chaining for property accesses and method calls”
• Chapter “Promises for asynchronous programming”:

– Comprehensive new section “Promise combinators: working with Arrays of
Promises”

• Chapter “Regular expressions”:
– New section “The flags /g, /y, and the property .lastIndex”

• Omitted chapter: “Environments: under the hood of variables”
– This chapter didn’t fit into the book anymore. I’ll try to publish it somewhere
else, free online.

1.4 About the author
Dr. Axel Rauschmayer specializes in JavaScript and web development. He has been de-
veloping web applications since 1995. In 1999, he was technical manager at a German
internet startup that later expanded internationally. In 2006, he held his first talk on Ajax.
In 2010, he received a PhD in Informatics from the University of Munich.
Since 2011, he has been blogging about web development at 2ality.com and has written
several books on JavaScript. He has held trainings and talks for companies such as eBay,
Bank of America, and O’Reilly Media.
He lives in Munich, Germany.

1.5 Acknowledgements
• Cover by Fran Caye
• Parts of this book were edited by Adaobi Obi Tulton.
• Thanks for answering questions, discussing language topics, etc.:

– Allen Wirfs-Brock (@awbjs)
– Benedikt Meurer (@bmeurer)
– Brian Terlson (@bterlson)
– Daniel Ehrenberg (@littledan)
– Jordan Harband (@ljharb)
– Maggie Johnson-Pint (@maggiepint)
– Mathias Bynens (@mathias)
– Myles Borins (@MylesBorins)
– Rob Palmer (@robpalmer2)
– Šime Vidas (@simevidas)
– And many others

• Thanks for reviewing:
– Johannes Weber (@jowe)

[Generated: 2020-06-23 21:20]

http://francaye.net
http://www.serendipity23editorial.com
https://twitter.com/awbjs
https://twitter.com/bmeurer
https://twitter.com/bterlson
https://twitter.com/littledan
https://twitter.com/ljharb
https://twitter.com/maggiepint
https://twitter.com/mathias
https://twitter.com/MylesBorins
https://twitter.com/robpalmer2
https://twitter.com/simevidas
https://twitter.com/jowe

14 1 About this book

Chapter 2

FAQ: Book and supplementary
material

Contents
2.1 How to read this book . 15

2.1.1 In which order should I read the content in this book? 15
2.1.2 Why are some chapters and sections marked with “(advanced)”? 16
2.1.3 Why are some chapters marked with “(bonus)”? 16

2.2 I own a digital edition . 16
2.2.1 How do I submit feedback and corrections? 16
2.2.2 How do I get updates for the downloads I bought at Payhip? . 16
2.2.3 Can I upgrade from package “Ebooks” to package “Ebooks +

exercises + quizzes”? . 16
2.3 I own the print edition . 17

2.3.1 Can I get a discount for a digital edition? 17
2.3.2 Can I submit an error or see submitted errors? 17
2.3.3 Is there an online list with the URLs in this book? 17

2.4 Notations and conventions . 17
2.4.1 What is a type signature? Why am I seeing static types in this

book? . 17
2.4.2 What do the notes with icons mean? 17

This chapter answers questions you may have and gives tips for reading this book.

2.1 How to read this book
2.1.1 In which order should I read the content in this book?
This book is three books in one:

• You can use it to get started with JavaScript as quickly as possible. This “mode” is
for impatient people:

15

16 2 FAQ: Book and supplementary material

– Start reading with §5 “The big picture”.
– Skip all chapters and sections marked as “advanced”, and all quick refer-
ences.

• It gives you a comprehensive look at current JavaScript. In this “mode”, you read
everything and don’t skip advanced content and quick references.

• It serves as a reference. If there is a topic that you are interested in, you can find
information on it via the table of contents or via the index. Due to basic and ad-
vanced content being mixed, everything you need is usually in a single location.

The quizzes and exercises play an important part in helping you practice and retain what
you have learned.

2.1.2 Why are some chapters and sections marked with “(advanced)”?
Several chapters and sections are marked with “(advanced)”. The idea is that you can
initially skip them. That is, you can get a quick working knowledge of JavaScript by only
reading the basic (non-advanced) content.

As your knowledge evolves, you can later come back to some or all of the advanced
content.

2.1.3 Why are some chapters marked with “(bonus)”?
The bonus chapters are only available in the paid versions of this book (print and ebook).
They are listed in the full table of contents.

2.2 I own a digital edition
2.2.1 How do I submit feedback and corrections?
The HTML version of this book (online, or ad-free archive in the paid version) has a link
at the end of each chapter that enables you to give feedback.

2.2.2 How do I get updates for the downloads I bought at Payhip?
• The receipt email for the purchase includes a link. You’ll always be able to down-

load the latest version of the files at that location.

• If you opted into emails while buying, you’ll get an email whenever there is new
content. To opt in later, you must contact Payhip (see bottom of payhip.com).

2.2.3 Can I upgrade from package “Ebooks” to package “Ebooks + ex-
ercises + quizzes”?

Yes. The instructions for doing so are on the homepage of this book.

https://exploringjs.com/impatient-js/downloads/complete-toc.html
https://exploringjs.com/impatient-js/#upgrades

2.3 I own the print edition 17

2.3 I own the print edition
2.3.1 Can I get a discount for a digital edition?
If you bought the print edition, you can get a discount for a digital edition. The homepage
of the print edition explains how.

Alas, the reverse is not possible: you cannot get a discount for the print edition if you
bought a digital edition.

2.3.2 Can I submit an error or see submitted errors?
On the homepage of the print edition, you can submit errors and see submitted errors.

2.3.3 Is there an online list with the URLs in this book?
The homepage of the print edition has a listwith all theURLs that you see in the footnotes
of the print edition.

2.4 Notations and conventions
2.4.1 What is a type signature? Why am I seeing static types in this

book?
For example, you may see:

Number.isFinite(num: number): boolean

That is called the type signature of Number.isFinite(). This notation, especially the static
types number of num and boolean of the result, are not real JavaScript. The notation
is borrowed from the compile-to-JavaScript language TypeScript (which is mostly just
JavaScript plus static typing).

Why is this notation being used? It helps give you a quick idea of how a function works.
The notation is explained in detail in “Tackling TypeScript”, but is usually relatively in-
tuitive.

2.4.2 What do the notes with icons mean?

Reading instructions
Explains how to best read the content.

External content
Points to additional, external, content.

https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/tackling-ts/ch_typescript-essentials.html

18 2 FAQ: Book and supplementary material

Tip
Gives a tip related to the current content.

Question
Asks and answers a question pertinent to the current content (think FAQ).

Warning
Warns about pitfalls, etc.

Details
Provides additional details, complementing the current content. It is similar to a
footnote.

Exercise
Mentions the path of a test-driven exercise that you can do at that point.

Quiz
Indicates that there is a quiz for the current (part of a) chapter.

Chapter 3

History and evolution of
JavaScript

Contents
3.1 How JavaScript was created . 19
3.2 Standardizing JavaScript . 20
3.3 Timeline of ECMAScript versions 20
3.4 Ecma Technical Committee 39 (TC39) 21
3.5 The TC39 process . 21

3.5.1 Tip: Think in individual features and stages, not ECMAScript
versions . 21

3.6 FAQ: TC39 process . 23
3.6.1 How is [my favorite proposed feature] doing? 23
3.6.2 Is there an official list of ECMAScript features? 23

3.7 Evolving JavaScript: Don’t break the web 23

3.1 How JavaScript was created
JavaScriptwas created inMay 1995 in 10 days, by Brendan Eich. Eichworked atNetscape
and implemented JavaScript for their web browser, Netscape Navigator.
The idea was that major interactive parts of the client-side web were to be implemented
in Java. JavaScript was supposed to be a glue language for those parts and to also make
HTML slightly more interactive. Given its role of assisting Java, JavaScript had to look
like Java. That ruled out existing solutions such as Perl, Python, TCL, and others.
Initially, JavaScript’s name changed several times:

• Its code name wasMocha.
• In the Netscape Navigator 2.0 betas (September 1995), it was called LiveScript.
• In Netscape Navigator 2.0 beta 3 (December 1995), it got its final name, JavaScript.

19

20 3 History and evolution of JavaScript

3.2 Standardizing JavaScript
There are two standards for JavaScript:

• ECMA-262 is hosted by Ecma International. It is the primary standard.
• ISO/IEC 16262 is hosted by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC). This is a secondary
standard.

The language described by these standards is called ECMAScript, not JavaScript. A differ-
ent namewas chosen because Sun (nowOracle) had a trademark for the latter name. The
“ECMA” in “ECMAScript” comes from the organization that hosts the primary standard.

The original name of that organization was ECMA, an acronym for European Computer
Manufacturers Association. It was later changed to Ecma International (with “Ecma” be-
ing a proper name, not an acronym) because the organization’s activities had expanded
beyond Europe. The initial all-caps acronym explains the spelling of ECMAScript.
In principle, JavaScript and ECMAScript mean the same thing. Sometimes the following
distinction is made:

• The term JavaScript refers to the language and its implementations.
• The term ECMAScript refers to the language standard and language versions.

Therefore, ECMAScript 6 is a version of the language (its 6th edition).

3.3 Timeline of ECMAScript versions
This is a brief timeline of ECMAScript versions:

• ECMAScript 1 (June 1997): First version of the standard.
• ECMAScript 2 (June 1998): Small update to keep ECMA-262 in sync with the ISO

standard.
• ECMAScript 3 (December 1999): Adds many core features – “[…] regular expres-

sions, better string handling, new control statements [do-while, switch], try/catch
exception handling, […]”

• ECMAScript 4 (abandoned in July 2008): Would have been a massive upgrade
(with static typing, modules, namespaces, and more), but ended up being too am-
bitious and dividing the language’s stewards.

• ECMAScript 5 (December 2009): Brought minor improvements – a few standard
library features and strict mode.

• ECMAScript 5.1 (June 2011): Another small update to keep Ecma and ISO stan-
dards in sync.

• ECMAScript 6 (June 2015): A large update that fulfilled many of the promises of
ECMAScript 4. This version is the first onewhose official name – ECMAScript 2015
– is based on the year of publication.

• ECMAScript 2016 (June 2016): First yearly release. The shorter release life cycle
resulted in fewer new features compared to the large ES6.

• ECMAScript 2017 (June 2017). Second yearly release.
• Subsequent ECMAScript versions (ES2018, etc.) are always ratified in June.

3.4 Ecma Technical Committee 39 (TC39) 21

3.4 Ecma Technical Committee 39 (TC39)
TC39 is the committee that evolves JavaScript. Its member are, strictly speaking, compa-
nies: Adobe, Apple, Facebook, Google, Microsoft, Mozilla, Opera, Twitter, and others.
That is, companies that are usually fierce competitors are working together for the good
of the language.

Every two months, TC39 has meetings that member-appointed delegates and invited
experts attend. The minutes of those meetings are public in a GitHub repository.

3.5 The TC39 process
With ECMAScript 6, two issues with the release process used at that time became obvi-
ous:

• If too much time passes between releases then features that are ready early, have
to wait a long time until they can be released. And features that are ready late, risk
being rushed to make the deadline.

• Features were often designed long before they were implemented and used. De-
sign deficiencies related to implementation and use were therefore discovered too
late.

In response to these issues, TC39 instituted the new TC39 process:

• ECMAScript features are designed independently and go through stages, starting
at 0 (“strawman”), ending at 4 (“finished”).

• Especially the later stages require prototype implementations and real-world test-
ing, leading to feedback loops between designs and implementations.

• ECMAScript versions are released once per year and include all features that have
reached stage 4 prior to a release deadline.

The result: smaller, incremental releases, whose features have already been field-tested.
Fig. 3.1 illustrates the TC39 process.

ES2016 was the first ECMAScript version that was designed according to the TC39 pro-
cess.

3.5.1 Tip: Think in individual features and stages, not ECMAScript
versions

Up to and including ES6, it was most common to think about JavaScript in terms of
ECMAScript versions – for example, “Does this browser support ES6 yet?”

Starting with ES2016, it’s better to think in individual features: once a feature reaches
stage 4, you can safely use it (if it’s supported by the JavaScript engines you are targeting).
You don’t have to wait until the next ECMAScript release.

https://github.com/tc39/tc39-notes/

22 3 History and evolution of JavaScript

Stage 0: strawman

Stage 1: proposal

Stage 2: draft

Stage 3: candidate

Stage 4: finished

Pick champions

First spec text, 2 implementations

Spec complete

Test 262 acceptance tests

Review at TC39 meeting

TC39 helps

Likely to be standardized

Done, needs feedback from implementations

Ready for standardization

Sketch

Figure 3.1: Each ECMAScript feature proposal goes through stages that are numbered
from 0 to 4. Champions are TC39 members that support the authors of a feature. Test
262 is a suite of tests that checks JavaScript engines for compliance with the language
specification.

3.6 FAQ: TC39 process 23

3.6 FAQ: TC39 process
3.6.1 How is [my favorite proposed feature] doing?
If you are wondering what stages various proposed features are in, consult the GitHub
repository proposals.

3.6.2 Is there an official list of ECMAScript features?
Yes, the TC39 repo lists finished proposals and mentions in which ECMAScript versions
they were introduced.

3.7 Evolving JavaScript: Don’t break the web
One idea that occasionally comes up is to clean up JavaScript by removing old features
and quirks. While the appeal of that idea is obvious, it has significant downsides.
Let’s assume we create a new version of JavaScript that is not backward compatible and
fix all of its flaws. As a result, we’d encounter the following problems:

• JavaScript engines become bloated: they need to support both the old and the new
version. The same is true for tools such as IDEs and build tools.

• Programmers need to know, and be continually conscious of, the differences be-
tween the versions.

• You can either migrate all of an existing code base to the new version (which can
be a lot of work). Or you canmix versions and refactoring becomes harder because
you can’t move code between versions without changing it.

• You somehow have to specify per piece of code – be it a file or code embedded in
a web page – what version it is written in. Every conceivable solution has pros
and cons. For example, strict mode is a slightly cleaner version of ES5. One of the
reasons why it wasn’t as popular as it should have been: it was a hassle to opt in
via a directive at the beginning of a file or a function.

So what is the solution? Can we have our cake and eat it? The approach that was chosen
for ES6 is called “One JavaScript”:

• New versions are always completely backward compatible (but there may occa-
sionally be minor, hardly noticeable clean-ups).

• Old features aren’t removed or fixed. Instead, better versions of them are intro-
duced. One example is declaring variables via let – which is an improved version
of var.

• If aspects of the language are changed, it is done inside new syntactic constructs.
That is, you opt in implicitly. For example, yield is only a keyword inside gen-
erators (which were introduced in ES6). And all code inside modules and classes
(both introduced in ES6) is implicitly in strict mode.

Quiz
See quiz app.

https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals/blob/master/finished-proposals.md

24 3 History and evolution of JavaScript

Chapter 4

FAQ: JavaScript

Contents
4.1 What are good references for JavaScript? 25
4.2 How do I find out what JavaScript features are supported where? . . 25
4.3 Where can I look up what features are planned for JavaScript? . . . 26
4.4 Why does JavaScript fail silently so often? 26
4.5 Why can’t we clean up JavaScript, by removing quirks and outdated

features? . 26
4.6 How can I quickly try out a piece of JavaScript code? 26

4.1 What are good references for JavaScript?
Please consult §5.3 “JavaScript references”.

4.2 How do I find out what JavaScript features are sup-
ported where?

This book usually mentions if a feature is part of ECMAScript 5 (as required by older
browsers) or a newer version. For more detailed information (including pre-ES5 ver-
sions), there are several good compatibility tables available online:

• ECMAScript compatibility tables for various engines (by kangax, webbedspace,
zloirock)

• Node.js compatibility tables (by William Kapke)
• Mozilla’sMDNwebdocs have tables for each feature that describe relevant ECMA-

Script versions and browser support.
• “Can I use…” documents what features (including JavaScript language features)

are supported by web browsers.

25

http://kangax.github.io/compat-table/es5/
https://twitter.com/kangax
https://twitter.com/webbedspace
https://twitter.com/zloirock
https://node.green
https://twitter.com/williamkapke
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://caniuse.com/

26 4 FAQ: JavaScript

4.3 Where can I look up what features are planned for
JavaScript?

Please consult the following sources:
• §3.5 “The TC39 process” describes how upcoming features are planned.
• §3.6 “FAQ: TC39 process” answers various questions regarding upcoming

features.

4.4 Why does JavaScript fail silently so often?
JavaScript often fails silently. Let’s look at two examples.
First example: If the operands of an operator don’t have the appropriate types, they are
converted as necessary.

> '3' * '5'
15

Second example: If an arithmetic computation fails, you get an error value, not an excep-
tion.

> 1 / 0
Infinity

The reason for the silent failures is historical: JavaScript did not have exceptions until
ECMAScript 3. Since then, its designers have tried to avoid silent failures.

4.5 Why can’t we clean up JavaScript, by removing quirks
and outdated features?

This question is answered in §3.7 “Evolving JavaScript: Don’t break the web”.

4.6 How can I quickly try out a piece of JavaScript code?
§7.1 “Trying out JavaScript code” explains how to do that.

Part II

First steps

27

Chapter 5

The big picture

Contents
5.1 What are you learning in this book? 29
5.2 The structure of browsers and Node.js 29
5.3 JavaScript references . 30
5.4 Further reading . 30

In this chapter, I’d like to paint the big picture: what are you learning in this book, and
how does it fit into the overall landscape of web development?

5.1 What are you learning in this book?
This book teaches the JavaScript language. It focuses on just the language, but offers
occasional glimpses at two platforms where JavaScript can be used:

• Web browser
• Node.js

Node.js is important for web development in three ways:

• You can use it to write server-side software in JavaScript.
• You can also use it to write software for the command line (think Unix shell, Win-

dows PowerShell, etc.). Many JavaScript-related tools are based on (and executed
via) Node.js.

• Node’s software registry, npm, has become the dominant way of installing tools
(such as compilers and build tools) and libraries – even for client-side develop-
ment.

5.2 The structure of browsers and Node.js
The structures of the two JavaScript platformsweb browser andNode.js are similar (fig. 5.1):

29

30 5 The big picture

JavaScript engine Platform core

JS standard
library Platform API

Figure 5.1: The structure of the two JavaScript platforms web browser and Node.js. The
APIs “standard library” and “platform API” are hosted on top of a foundational layer
with a JavaScript engine and a platform-specific “core”.

• The foundational layer consists of the JavaScript engine and platform-specific
“core” functionality.

• Two APIs are hosted on top of this foundation:
– The JavaScript standard library is part of JavaScript proper and runs on top
of the engine.

– The platform API are also available from JavaScript – it provides access to
platform-specific functionality. For example:
* In browsers, you need to use the platform-specific API if you want to do
anything related to the user interface: react tomouse clicks, play sounds,
etc.

* In Node.js, the platform-specific API lets you read andwrite files, down-
load data via HTTP, etc.

5.3 JavaScript references
When you have a question about a JavaScript, a web search usually helps. I can recom-
mend the following online sources:

• MDN web docs: cover various web technologies such as CSS, HTML, JavaScript,
and more. An excellent reference.

• Node.js Docs: document the Node.js API.
• ExploringJS.com: My other books on JavaScript go into greater detail than this

book and are free to read online. You can look up features by ECMAScript version:
– ES1–ES5: Speaking JavaScript
– ES6: Exploring ES6
– ES2016–ES2017: Exploring ES2016 and ES2017
– Etc.

5.4 Further reading
• A bonus chapter provides a more comprehensive look at web development.

https://developer.mozilla.org/en-US/
https://nodejs.org/en/docs/
https://exploringjs.com
http://speakingjs.com/
https://exploringjs.com/es6.html
https://exploringjs.com/es2016-es2017.html

Chapter 6

Syntax

Contents
6.1 An overview of JavaScript’s syntax 32

6.1.1 Basic syntax . 32
6.1.2 Modules . 34
6.1.3 Legal variable and property names 35
6.1.4 Casing styles . 35
6.1.5 Capitalization of names . 35
6.1.6 More naming conventions . 36
6.1.7 Where to put semicolons? . 36

6.2 (Advanced) . 37
6.3 Identifiers . 37

6.3.1 Valid identifiers (variable names, etc.) 37
6.3.2 Reserved words . 37

6.4 Statement vs. expression . 38
6.4.1 Statements . 38
6.4.2 Expressions . 38
6.4.3 What is allowed where? . 39

6.5 Ambiguous syntax . 39
6.5.1 Same syntax: function declaration and function expression . . 39
6.5.2 Same syntax: object literal and block 40
6.5.3 Disambiguation . 40

6.6 Semicolons . 40
6.6.1 Rule of thumb for semicolons 40
6.6.2 Semicolons: control statements 41

6.7 Automatic semicolon insertion (ASI) 41
6.7.1 ASI triggered unexpectedly 42
6.7.2 ASI unexpectedly not triggered 42

6.8 Semicolons: best practices . 43
6.9 Strict mode vs. sloppy mode . 43

31

32 6 Syntax

6.9.1 Switching on strict mode . 44
6.9.2 Improvements in strict mode 44

6.1 An overview of JavaScript’s syntax
6.1.1 Basic syntax
Comments:

// single-line comment

/*
Comment with
multiple lines
*/

Primitive (atomic) values:
// Booleans
true
false

// Numbers (JavaScript only has a single type for numbers)
-123
1.141

// Strings (JavaScript has no type for characters)
'abc'
"abc"

An assertiondescribeswhat the result of a computation is expected to look like and throws
an exception if those expectations aren’t correct. For example, the following assertion
states that the result of the computation 7 plus 1 must be 8:

assert.equal(7 + 1, 8);

assert.equal() is a method call (the object is assert, the method is .equal()) with two
arguments: the actual result and the expected result. It is part of a Node.js assertion API
that is explained later in this book.
Logging to the console of a browser or Node.js:

// Printing a value to standard out (another method call)
console.log('Hello!');

// Printing error information to standard error
console.error('Something went wrong!');

Operators:
// Operators for booleans
assert.equal(true && false, false); // And

6.1 An overview of JavaScript’s syntax 33

assert.equal(true || false, true); // Or

// Operators for numbers
assert.equal(3 + 4, 7);
assert.equal(5 - 1, 4);
assert.equal(3 * 4, 12);
assert.equal(9 / 3, 3);

// Operators for strings
assert.equal('a' + 'b', 'ab');
assert.equal('I see ' + 3 + ' monkeys', 'I see 3 monkeys');

// Comparison operators
assert.equal(3 < 4, true);
assert.equal(3 <= 4, true);
assert.equal('abc' === 'abc', true);
assert.equal('abc' !== 'def', true);

Declaring variables:
let x; // declaring x (mutable)
x = 3 * 5; // assign a value to x

let y = 3 * 5; // declaring and assigning

const z = 8; // declaring z (immutable)

Control flow statements:
// Conditional statement
if (x < 0) { // is x less than zero?

x = -x;
}

Ordinary function declarations:
// add1() has the parameters a and b
function add1(a, b) {

return a + b;
}
// Calling function add1()
assert.equal(add1(5, 2), 7);

Arrow function expressions (used especially as arguments of function calls and method
calls):

const add2 = (a, b) => { return a + b };
// Calling function add2()
assert.equal(add2(5, 2), 7);

// Equivalent to add2:
const add3 = (a, b) => a + b;

34 6 Syntax

The previous code contains the following two arrow functions (the terms expression and
statement are explained later in this chapter):

// An arrow function whose body is a code block
(a, b) => { return a + b }

// An arrow function whose body is an expression
(a, b) => a + b

Objects:

// Creating a plain object via an object literal
const obj = {

first: 'Jane', // property
last: 'Doe', // property
getFullName() { // property (method)

return this.first + ' ' + this.last;
},

};

// Getting a property value
assert.equal(obj.first, 'Jane');
// Setting a property value
obj.first = 'Janey';

// Calling the method
assert.equal(obj.getFullName(), 'Janey Doe');

Arrays (Arrays are also objects):

// Creating an Array via an Array literal
const arr = ['a', 'b', 'c'];

// Getting an Array element
assert.equal(arr[1], 'b');
// Setting an Array element
arr[1] = 'β';

6.1.2 Modules
Eachmodule is a single file. Consider, for example, the following two files with modules
in them:

file-tools.mjs
main.mjs

The module in file-tools.mjs exports its function isTextFilePath():

export function isTextFilePath(filePath) {
return filePath.endsWith('.txt');

}

6.1 An overview of JavaScript’s syntax 35

The module in main.mjs imports the whole module path and the function is-
TextFilePath():

// Import whole module as namespace object `path`
import * as path from 'path';
// Import a single export of module file-tools.mjs
import {isTextFilePath} from './file-tools.mjs';

6.1.3 Legal variable and property names
The grammatical category of variable names and property names is called identifier.
Identifiers are allowed to have the following characters:

• Unicode letters: A–Z, a–z (etc.)
• $, _
• Unicode digits: 0–9 (etc.)

– Variable names can’t start with a digit
Some words have special meaning in JavaScript and are called reserved. Examples in-
clude: if, true, const.
Reserved words can’t be used as variable names:

const if = 123;
// SyntaxError: Unexpected token if

But they are allowed as names of properties:
> const obj = { if: 123 };
> obj.if
123

6.1.4 Casing styles
Common casing styles for concatenating words are:

• Camel case: threeConcatenatedWords
• Underscore case (also called snake case): three_concatenated_words
• Dash case (also called kebab case): three-concatenated-words

6.1.5 Capitalization of names
In general, JavaScript uses camel case, except for constants.
Lowercase:

• Functions, variables: myFunction
• Methods: obj.myMethod
• CSS:

– CSS entity: special-class
– Corresponding JavaScript variable: specialClass

Uppercase:

36 6 Syntax

• Classes: MyClass
• Constants: MY_CONSTANT

– Constants are also often written in camel case: myConstant

6.1.6 More naming conventions
The following naming conventions are popular in JavaScript.

If the name of a parameter starts with an underscore (or is an underscore) it means that
this parameter is not used – for example:

arr.map((_x, i) => i)

If the name of a property of an object starts with an underscore then that property is
considered private:

class ValueWrapper {
constructor(value) {

this._value = value;
}

}

6.1.7 Where to put semicolons?
At the end of a statement:

const x = 123;
func();

But not if that statement ends with a curly brace:

while (false) {
// ···

} // no semicolon

function func() {
// ···

} // no semicolon

However, adding a semicolon after such a statement is not a syntax error – it is interpreted
as an empty statement:

// Function declaration followed by empty statement:
function func() {

// ···
};

Quiz: basic
See quiz app.

6.2 (Advanced) 37

6.2 (Advanced)
All remaining sections of this chapter are advanced.

6.3 Identifiers
6.3.1 Valid identifiers (variable names, etc.)
First character:

• Unicode letter (including accented characters such as é and ü and characters from
non-latin alphabets, such as α)

• $
• _

Subsequent characters:
• Legal first characters
• Unicode digits (including Eastern Arabic numerals)
• Some other Unicode marks and punctuations

Examples:
const ε = 0.0001;
const строка = '';
let _tmp = 0;
const $foo2 = true;

6.3.2 Reserved words
Reserved words can’t be variable names, but they can be property names.
All JavaScript keywords are reserved words:

await break case catch class const continue debugger default delete
do else export extends finally for function if import in instanceof
let new return static super switch this throw try typeof var void while
with yield

The following tokens are also keywords, but currently not used in the language:
enum implements package protected interface private public

The following literals are reserved words:
true false null

Technically, these words are not reserved, but you should avoid them, too, because they
effectively are keywords:

Infinity NaN undefined async

You shouldn’t use the names of global variables (String, Math, etc.) for your own vari-
ables and parameters, either.

38 6 Syntax

6.4 Statement vs. expression
In this section, we explore how JavaScript distinguishes two kinds of syntactic constructs:
statements and expressions. Afterward, we’ll see that that can cause problems because the
same syntax can mean different things, depending on where it is used.

We pretend there are only statements and expressions
For the sake of simplicity, we pretend that there are only statements and expressions
in JavaScript.

6.4.1 Statements
A statement is a piece of code that can be executed and performs some kind of action. For
example, if is a statement:

let myStr;
if (myBool) {

myStr = 'Yes';
} else {

myStr = 'No';
}

One more example of a statement: a function declaration.

function twice(x) {
return x + x;

}

6.4.2 Expressions
An expression is a piece of code that can be evaluated to produce a value. For example, the
code between the parentheses is an expression:

let myStr = (myBool ? 'Yes' : 'No');

The operator _?_:_ used between the parentheses is called the ternary operator. It is the
expression version of the if statement.

Let’s look atmore examples of expressions. We enter expressions and the REPL evaluates
them for us:

> 'ab' + 'cd'
'abcd'
> Number('123')
123
> true || false
true

6.5 Ambiguous syntax 39

6.4.3 What is allowed where?
The current location within JavaScript source code determines which kind of syntactic
constructs you are allowed to use:

• The body of a function must be a sequence of statements:

function max(x, y) {
if (x > y) {
return x;

} else {
return y;

}
}

• The arguments of a function call or a method call must be expressions:

console.log('ab' + 'cd', Number('123'));

However, expressions can be used as statements. Then they are called expression state-
ments. The opposite is not true: when the context requires an expression, you can’t use
a statement.

The following code demonstrates that any expression bar() can be either expression or
statement – it depends on the context:

function f() {
console.log(bar()); // bar() is expression
bar(); // bar(); is (expression) statement

}

6.5 Ambiguous syntax
JavaScript has several programming constructs that are syntactically ambiguous: the
same syntax is interpreted differently, depending on whether it is used in statement con-
text or in expression context. This section explores the phenomenon and the pitfalls it
causes.

6.5.1 Same syntax: function declaration and function expression
A function declaration is a statement:

function id(x) {
return x;

}

A function expression is an expression (right-hand side of =):

const id = function me(x) {
return x;

};

40 6 Syntax

6.5.2 Same syntax: object literal and block
In the following code, {} is an object literal: an expression that creates an empty object.

const obj = {};

This is an empty code block (a statement):

{
}

6.5.3 Disambiguation
The ambiguities are only a problem in statement context: If the JavaScript parser en-
counters ambiguous syntax, it doesn’t know if it’s a plain statement or an expression
statement. For example:

• If a statement starts with function: Is it a function declaration or a function ex-
pression?

• If a statement starts with {: Is it an object literal or a code block?

To resolve the ambiguity, statements starting with function or { are never interpreted as
expressions. If you want an expression statement to start with either one of these tokens,
you must wrap it in parentheses:

(function (x) { console.log(x) })('abc');

// Output:
// 'abc'

In this code:

1. We first create a function via a function expression:

function (x) { console.log(x) }

2. Then we invoke that function: ('abc')

The code fragment shown in (1) is only interpreted as an expression becausewewrap it in
parentheses. If we didn’t, we would get a syntax error because then JavaScript expects a
function declaration and complains about the missing function name. Additionally, you
can’t put a function call immediately after a function declaration.

Later in this book, we’ll see more examples of pitfalls caused by syntactic ambiguity:

• Assigning via object destructuring
• Returning an object literal from an arrow function

6.6 Semicolons
6.6.1 Rule of thumb for semicolons
Each statement is terminated by a semicolon:

6.7 Automatic semicolon insertion (ASI) 41

const x = 3;
someFunction('abc');
i++;

except statements ending with blocks:
function foo() {

// ···
}
if (y > 0) {

// ···
}

The following case is slightly tricky:
const func = () => {}; // semicolon!

The whole const declaration (a statement) ends with a semicolon, but inside it, there is
an arrow function expression. That is, it’s not the statement per se that ends with a curly
brace; it’s the embedded arrow function expression. That’s why there is a semicolon at
the end.

6.6.2 Semicolons: control statements
The body of a control statement is itself a statement. For example, this is the syntax of
the while loop:

while (condition)
statement

The body can be a single statement:
while (a > 0) a--;

But blocks are also statements and therefore legal bodies of control statements:
while (a > 0) {

a--;
}

If youwant a loop to have an empty body, your first option is an empty statement (which
is just a semicolon):

while (processNextItem() > 0);

Your second option is an empty block:
while (processNextItem() > 0) {}

6.7 Automatic semicolon insertion (ASI)
While I recommend to always write semicolons, most of them are optional in JavaScript.
The mechanism that makes this possible is called automatic semicolon insertion (ASI). In a
way, it corrects syntax errors.

42 6 Syntax

ASI works as follows. Parsing of a statement continues until there is either:
• A semicolon
• A line terminator followed by an illegal token

In other words, ASI can be seen as inserting semicolons at line breaks. The next subsec-
tions cover the pitfalls of ASI.

6.7.1 ASI triggered unexpectedly
The good news about ASI is that – if you don’t rely on it and always write semicolons
– there is only one pitfall that you need to be aware of. It is that JavaScript forbids line
breaks after some tokens. If you do insert a line break, a semicolon will be inserted, too.
The token where this is most practically relevant is return. Consider, for example, the
following code:

return
{

first: 'jane'
};

This code is parsed as:
return;
{

first: 'jane';
}
;

That is:
• Return statement without operand: return;
• Start of code block: {
• Expression statement 'jane'; with label first:
• End of code block: }
• Empty statement: ;

Why does JavaScript do this? It protects against accidentally returning a value in a line
after a return.

6.7.2 ASI unexpectedly not triggered
In some cases, ASI is not triggered when you think it should be. That makes life more
complicated for peoplewho don’t like semicolons because they need to be aware of those
cases. The following are three examples. There are more.
Example 1: Unintended function call.

a = b + c
(d + e).print()

Parsed as:
a = b + c(d + e).print();

6.8 Semicolons: best practices 43

Example 2: Unintended division.

a = b
/hi/g.exec(c).map(d)

Parsed as:

a = b / hi / g.exec(c).map(d);

Example 3: Unintended property access.

someFunction()
['ul', 'ol'].map(x => x + x)

Executed as:

const propKey = ('ul','ol'); // comma operator
assert.equal(propKey, 'ol');

someFunction()[propKey].map(x => x + x);

6.8 Semicolons: best practices
I recommend that you always write semicolons:

• I like the visual structure it gives code – you clearly see when a statement ends.
• There are less rules to keep in mind.
• The majority of JavaScript programmers use semicolons.

However, there are also many people who don’t like the added visual clutter of semi-
colons. If you are one of them: Code without them is legal. I recommend that you use
tools to help you avoid mistakes. The following are two examples:

• The automatic code formatter Prettier can be configured to not use semicolons. It
then automatically fixes problems. For example, if it encounters a line that starts
with a square bracket, it prefixes that line with a semicolon.

• The static checker ESLint has a rule that you tell your preferred style (always semi-
colons or as few semicolons as possible) and that warns you about critical issues.

6.9 Strict mode vs. sloppy mode
Starting with ECMAScript 5, JavaScript has two modes in which JavaScript can be exe-
cuted:

• Normal “sloppy” mode is the default in scripts (code fragments that are a precur-
sor to modules and supported by browsers).

• Strict mode is the default in modules and classes, and can be switched on in scripts
(how, is explained later). In thismode, several pitfalls of normalmode are removed
and more exceptions are thrown.

You’ll rarely encounter sloppy mode in modern JavaScript code, which is almost always
located in modules. In this book, I assume that strict mode is always switched on.

https://prettier.io
https://eslint.org
https://eslint.org/docs/rules/semi

44 6 Syntax

6.9.1 Switching on strict mode
In script files and CommonJS modules, you switch on strict mode for a complete file, by
putting the following code in the first line:

'use strict';

The neat thing about this “directive” is that ECMAScript versions before 5 simply ignore
it: it’s an expression statement that does nothing.

You can also switch on strict mode for just a single function:

function functionInStrictMode() {
'use strict';

}

6.9.2 Improvements in strict mode
Let’s look at three things that strict mode does better than sloppy mode. Just in this one
section, all code fragments are executed in sloppy mode.

6.9.2.1 Sloppy mode pitfall: changing an undeclared variable creates a global vari-
able

In non-strict mode, changing an undeclared variable creates a global variable.

function sloppyFunc() {
undeclaredVar1 = 123;

}
sloppyFunc();
// Created global variable `undeclaredVar1`:
assert.equal(undeclaredVar1, 123);

Strict mode does it better and throws a ReferenceError. That makes it easier to detect
typos.

function strictFunc() {
'use strict';
undeclaredVar2 = 123;

}
assert.throws(

() => strictFunc(),
{

name: 'ReferenceError',
message: 'undeclaredVar2 is not defined',

});

The assert.throws() states that its first argument, a function, throws a ReferenceError
when it is called.

6.9 Strict mode vs. sloppy mode 45

6.9.2.2 Function declarations are block-scoped in strict mode, function-scoped in
sloppy mode

In strict mode, a variable created via a function declaration only exists within the inner-
most enclosing block:

function strictFunc() {
'use strict';
{

function foo() { return 123 }
}
return foo(); // ReferenceError

}
assert.throws(

() => strictFunc(),
{

name: 'ReferenceError',
message: 'foo is not defined',

});

In sloppy mode, function declarations are function-scoped:
function sloppyFunc() {

{
function foo() { return 123 }

}
return foo(); // works

}
assert.equal(sloppyFunc(), 123);

6.9.2.3 Sloppy mode doesn’t throw exceptions when changing immutable data
In strict mode, you get an exception if you try to change immutable data:

function strictFunc() {
'use strict';
true.prop = 1; // TypeError

}
assert.throws(

() => strictFunc(),
{

name: 'TypeError',
message: "Cannot create property 'prop' on boolean 'true'",

});

In sloppy mode, the assignment fails silently:
function sloppyFunc() {

true.prop = 1; // fails silently
return true.prop;

}
assert.equal(sloppyFunc(), undefined);

46 6 Syntax

Further reading: sloppy mode
For more information on how sloppy mode differs from strict mode, see MDN.

Quiz: advanced
See quiz app.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 7

Consoles: interactive JavaScript
command lines

Contents
7.1 Trying out JavaScript code . 47

7.1.1 Browser consoles . 47
7.1.2 The Node.js REPL . 49
7.1.3 Other options . 49

7.2 The console.* API: printing data and more 49
7.2.1 Printing values: console.log() (stdout) 50
7.2.2 Printing error information: console.error() (stderr) 51
7.2.3 Printing nested objects via JSON.stringify() 51

7.1 Trying out JavaScript code
You have many options for quickly running pieces of JavaScript code. The following
subsections describe a few of them.

7.1.1 Browser consoles
Web browsers have so-called consoles: interactive command lines to which you can print
text via console.log() and where you can run pieces of code. How to open the console
differs from browser to browser. Fig. 7.1 shows the console of Google Chrome.
To find out how to open the console in your web browser, you can do a web search
for “console «name-of-your-browser»”. These are pages for a few commonly used web
browsers:

• Apple Safari
• Google Chrome
• Microsoft Edge
• Mozilla Firefox

47

https://developer.apple.com/safari/tools/
https://developers.google.com/web/tools/chrome-devtools/console/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console
https://developer.mozilla.org/en-US/docs/Tools/Web_Console/Opening_the_Web_Console

48 7 Consoles: interactive JavaScript command lines

Figure 7.1: The console of the web browser “Google Chrome” is open (in the bottom half
of window) while visiting a web page.

7.2 The console.* API: printing data and more 49

7.1.2 The Node.js REPL
REPL stands for read-eval-print loop and basically means command line. To use it, youmust
first start Node.js from an operating system command line, via the command node. Then
an interaction with it looks as depicted in fig. 7.2: The text after > is input from the user;
everything else is output from Node.js.

Figure 7.2: Starting and using the Node.js REPL (interactive command line).

Reading: REPL interactions
I occasionally demonstrate JavaScript via REPL interactions. Then I also use greater-
than symbols (>) to mark input – for example:

> 3 + 5
8

7.1.3 Other options
Other options include:

• There are manyweb apps that let you experiment with JavaScript in web browsers
– for example, Babel’s REPL.

• There are also native apps and IDE plugins for running JavaScript.

Consoles often run in non-strict mode
In modern JavaScript, most code (e.g., modules) is executed in strict mode. How-
ever, consoles often run in non-strict mode. Therefore, you may occasionally get
slightly different results when using a console to execute code from this book.

7.2 The console.* API: printing data and more
In browsers, the console is something you can bring up that is normally hidden. For
Node.js, the console is the terminal that Node.js is currently running in.

https://babeljs.io/repl

50 7 Consoles: interactive JavaScript command lines

The full console.*API is documented onMDNweb docs and on the Node.js website. It
is not part of the JavaScript language standard, but much functionality is supported by
both browsers and Node.js.
In this chapter, we only look at the following two methods for printing data (“printing”
means displaying in the console):

• console.log()
• console.error()

7.2.1 Printing values: console.log() (stdout)
There are two variants of this operation:

console.log(...values: any[]): void
console.log(pattern: string, ...values: any[]): void

7.2.1.1 Printing multiple values
The first variant prints (text representations of) values on the console:

console.log('abc', 123, true);
// Output:
// abc 123 true

At the end, console.log() always prints a newline. Therefore, if you call it with zero
arguments, it just prints a newline.

7.2.1.2 Printing a string with substitutions
The second variant performs string substitution:

console.log('Test: %s %j', 123, 'abc');
// Output:
// Test: 123 "abc"

These are some of the directives you can use for substitutions:
• %s converts the corresponding value to a string and inserts it.

console.log('%s %s', 'abc', 123);
// Output:
// abc 123

• %o inserts a string representation of an object.
console.log('%o', {foo: 123, bar: 'abc'});
// Output:
// { foo: 123, bar: 'abc' }

• %j converts a value to a JSON string and inserts it.
console.log('%j', {foo: 123, bar: 'abc'});
// Output:
// {"foo":123,"bar":"abc"}

https://developer.mozilla.org/en-US/docs/Web/API/console
https://nodejs.org/api/console.html

7.2 The console.* API: printing data and more 51

• %% inserts a single %.
console.log('%s%%', 99);
// Output:
// 99%

7.2.2 Printing error information: console.error() (stderr)
console.error()works the same as console.log(), but what it logs is considered error
information. For Node.js, that means that the output goes to stderr instead of stdout on
Unix.

7.2.3 Printing nested objects via JSON.stringify()
JSON.stringify() is occasionally useful for printing nested objects:

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));

Output:
{

"first": "Jane",
"last": "Doe"

}

52 7 Consoles: interactive JavaScript command lines

Chapter 8

Assertion API

Contents
8.1 Assertions in software development 53
8.2 How assertions are used in this book 53

8.2.1 Documenting results in code examples via assertions 54
8.2.2 Implementing test-driven exercises via assertions 54

8.3 Normal comparison vs. deep comparison 54
8.4 Quick reference: module assert . 55

8.4.1 Normal equality . 55
8.4.2 Deep equality . 55
8.4.3 Expecting exceptions . 55
8.4.4 Another tool function . 56

8.1 Assertions in software development
In software development, assertions state facts about values or pieces of code that must
be true. If they aren’t, an exception is thrown. Node.js supports assertions via its built-in
module assert – for example:

import {strict as assert} from 'assert';
assert.equal(3 + 5, 8);

This assertion states that the expected result of 3 plus 5 is 8. The import statement uses
the recommended strict version of assert.

8.2 How assertions are used in this book
In this book, assertions are used in two ways: to document results in code examples and
to implement test-driven exercises.

53

https://nodejs.org/api/assert.html#assert_strict_mode

54 8 Assertion API

8.2.1 Documenting results in code examples via assertions
In code examples, assertions express expected results. Take, for example, the following
function:

function id(x) {
return x;

}

id() returns its parameter. We can show it in action via an assertion:
assert.equal(id('abc'), 'abc');

In the examples, I usually omit the statement for importing assert.
The motivation behind using assertions is:

• You can specify precisely what is expected.
• Code examples can be tested automatically, which ensures that they really work.

8.2.2 Implementing test-driven exercises via assertions
The exercises for this book are test-driven, via the test framework AVA. Checks inside
the tests are made via methods of assert.
The following is an example of such a test:

// For the exercise, you must implement the function hello().
// The test checks if you have done it properly.
test('First exercise', t => {

assert.equal(hello('world'), 'Hello world!');
assert.equal(hello('Jane'), 'Hello Jane!');
assert.equal(hello('John'), 'Hello John!');
assert.equal(hello(''), 'Hello !');

});

For more information, consult §9 “Getting started with quizzes and exercises”.

8.3 Normal comparison vs. deep comparison
The strict equal() uses === to compare values. Therefore, an object is only equal to itself
– even if another object has the same content (because === does not compare the contents
of objects, only their identities):

assert.notEqual({foo: 1}, {foo: 1});

deepEqual() is a better choice for comparing objects:
assert.deepEqual({foo: 1}, {foo: 1});

This method works for Arrays, too:
assert.notEqual(['a', 'b', 'c'], ['a', 'b', 'c']);
assert.deepEqual(['a', 'b', 'c'], ['a', 'b', 'c']);

8.4 Quick reference: module assert 55

8.4 Quick reference: module assert
For the full documentation, see the Node.js docs.

8.4.1 Normal equality
• function equal(actual: any, expected: any, message?: string): void

actual === expectedmust be true. If not, an AssertionError is thrown.
assert.equal(3+3, 6);

• function notEqual(actual: any, expected: any, message?: string): void

actual !== expectedmust be true. If not, an AssertionError is thrown.
assert.notEqual(3+3, 22);

The optional last parameter message can be used to explain what is asserted. If the asser-
tion fails, the message is used to set up the AssertionError that is thrown.

let e;
try {

const x = 3;
assert.equal(x, 8, 'x must be equal to 8')

} catch (err) {
assert.equal(

String(err),
'AssertionError [ERR_ASSERTION]: x must be equal to 8');

}

8.4.2 Deep equality
• function deepEqual(actual: any, expected: any, message?: string): void

actualmust be deeply equal to expected. If not, an AssertionError is thrown.
assert.deepEqual([1,2,3], [1,2,3]);
assert.deepEqual([], []);

// To .equal(), an object is only equal to itself:
assert.notEqual([], []);

• function notDeepEqual(actual: any, expected: any, message?: string):
void

actualmust not be deeply equal to expected. If it is, an AssertionError is thrown.
assert.notDeepEqual([1,2,3], [1,2]);

8.4.3 Expecting exceptions
If you want to (or expect to) receive an exception, you need throws(): This function
calls its first parameter, the function block, and only succeeds if it throws an exception.
Additional parameters can be used to specify what that exception must look like.

https://nodejs.org/api/assert.html

56 8 Assertion API

• function throws(block: Function, message?: string): void

assert.throws(
() => {
null.prop;

}
);

• function throws(block: Function, error: Function, message?: string):
void

assert.throws(
() => {
null.prop;

},
TypeError

);

• function throws(block: Function, error: RegExp, message?: string): void

assert.throws(
() => {
null.prop;

},
/^TypeError: Cannot read property 'prop' of null$/

);

• function throws(block: Function, error: Object, message?: string): void

assert.throws(
() => {
null.prop;

},
{
name: 'TypeError',
message: `Cannot read property 'prop' of null`,

}
);

8.4.4 Another tool function
• function fail(message: string | Error): never

Always throws an AssertionError when it is called. That is occasionally useful
for unit testing.

try {
functionThatShouldThrow();
assert.fail();

} catch (_) {
// Success

}

8.4 Quick reference: module assert 57

Quiz
See quiz app.

58 8 Assertion API

Chapter 9

Getting started with quizzes and
exercises

Contents
9.1 Quizzes . 59
9.2 Exercises . 59

9.2.1 Installing the exercises . 59
9.2.2 Running exercises . 60

9.3 Unit tests in JavaScript . 60
9.3.1 A typical test . 60
9.3.2 Asynchronous tests in AVA 61

Throughout most chapters, there are quizzes and exercises. These are a paid feature, but
a comprehensive preview is available. This chapter explains how to get started with
them.

9.1 Quizzes
Installation:

• Download and unzip impatient-js-quiz.zip

Running the quiz app:
• Open impatient-js-quiz/index.html in a web browser
• You’ll see a TOC of all the quizzes.

9.2 Exercises
9.2.1 Installing the exercises
To install the exercises:

59

60 9 Getting started with quizzes and exercises

• Download and unzip impatient-js-code.zip
• Follow the instructions in README.txt

9.2.2 Running exercises
• Exercises are referred to by path in this book.

– For example: exercises/quizzes-exercises/first_module_test.mjs
• Within each file:

– The first line contains the command for running the exercise.
– The following lines describe what you have to do.

9.3 Unit tests in JavaScript
All exercises in this book are tests that are run via the test framework AVA. This section
gives a brief introduction.

9.3.1 A typical test
Typical test code is split into two parts:

• Part 1: the code to be tested.
• Part 2: the tests for the code.

Take, for example, the following two files:
• id.mjs (code to be tested)
• id_test.mjs (tests)

9.3.1.1 Part 1: the code
The code itself resides in id.mjs:

export function id(x) {
return x;

}

The key thing here is: everything you want to test must be exported. Otherwise, the test
code can’t access it.

9.3.1.2 Part 2: the tests

Don’t worry about the exact details of tests
You don’t need to worry about the exact details of tests: They are always imple-
mented for you. Therefore, you only need to read them, but not write them.

The tests for the code reside in id_test.mjs:
// npm t demos/quizzes-exercises/id_test.mjs

import test from 'ava'; // (A)

https://github.com/avajs/ava

9.3 Unit tests in JavaScript 61

import {strict as assert} from 'assert'; // (B)
import {id} from './id.mjs'; // (C)

test('My test', t => { // (D)
assert.equal(id('abc'), 'abc'); // (E)

});

The core of this test file is line E – an assertion: assert.equal() specifies that the expected
result of id('abc') is 'abc'.
As for the other lines:

• The comment at the very beginning shows the shell command for running the test.
• Line A: We import the test framework.
• Line B: We import the assertion library. AVA has built-in assertions, but module

assert lets us remain compatible with plain Node.js.
• Line C: We import the function to test.
• Line D: We define a test. This is done by calling the function test():

– First parameter: the name of the test.
– Second parameter: the test code, which is provided via an arrow function.
The parameter t gives us access to AVA’s testing API (assertions, etc.).

To run the test, we execute the following in a command line:
npm t demos/quizzes-exercises/id_test.mjs

The t is an abbreviation for test. That is, the long version of this command is:
npm test demos/quizzes-exercises/id_test.mjs

Exercise: Your first exercise
The following exercise gives you a first taste of what exercises are like:

• exercises/quizzes-exercises/first_module_test.mjs

9.3.2 Asynchronous tests in AVA

Reading
You can postpone reading this section until you get to the chapters on asynchronous
programming.

Writing tests for asynchronous code requires extra work: The test receives its results
later and has to signal to AVA that it isn’t finished yet when it returns. The following
subsections examine three ways of doing so.

9.3.2.1 Asynchronicity via callbacks
If we call test.cb() instead of test(), AVA switches to callback-based asynchronicity.
When we are done with our asynchronous work, we have to call t.end():

62 9 Getting started with quizzes and exercises

test.cb('divideCallback', t => {
divideCallback(8, 4, (error, result) => {

if (error) {
t.end(error);

} else {
assert.strictEqual(result, 2);
t.end();

}
});

});

9.3.2.2 Asynchronicity via Promises
If a test returns a Promise, AVA switches to Promise-based asynchronicity. A test is con-
sidered successful if the Promise is fulfilled and failed if the Promise is rejected.

test('dividePromise 1', t => {
return dividePromise(8, 4)
.then(result => {

assert.strictEqual(result, 2);
});

});

9.3.2.3 Async functions as test “bodies”
Async functions always return Promises. Therefore, an async function is a convenient
way of implementing an asynchronous test. The following code is equivalent to the pre-
vious example.

test('dividePromise 2', async t => {
const result = await dividePromise(8, 4);
assert.strictEqual(result, 2);
// No explicit return necessary!

});

You don’t need to explicitly return anything: The implicitly returned undefined is used
to fulfill the Promise returned by this async function. And if the test code throws an
exception, then the async function takes care of rejecting the returned Promise.

Part III

Variables and values

63

Chapter 10

Variables and assignment

Contents
10.1 let . 66
10.2 const . 66

10.2.1 const and immutability . 66
10.2.2 const and loops . 67

10.3 Deciding between const and let . 67
10.4 The scope of a variable . 67

10.4.1 Shadowing variables . 68
10.5 (Advanced) . 69
10.6 Terminology: static vs. dynamic . 69

10.6.1 Static phenomenon: scopes of variables 69
10.6.2 Dynamic phenomenon: function calls 69

10.7 Global variables and the global object 70
10.7.1 globalThis [ES2020] . 70

10.8 Declarations: scope and activation 72
10.8.1 const and let: temporal dead zone 72
10.8.2 Function declarations and early activation 73
10.8.3 Class declarations are not activated early 75
10.8.4 var: hoisting (partial early activation) 75

10.9 Closures . 76
10.9.1 Bound variables vs. free variables 76
10.9.2 What is a closure? . 76
10.9.3 Example: A factory for incrementors 77
10.9.4 Use cases for closures . 78

These are JavaScript’s main ways of declaring variables:
• let declares mutable variables.
• const declares constants (immutable variables).

Before ES6, there was also var. But it has several quirks, so it’s best to avoid it in modern
JavaScript. You can read more about it in Speaking JavaScript.

65

http://speakingjs.com/es5/ch16.html

66 10 Variables and assignment

10.1 let

Variables declared via let are mutable:

let i;
i = 0;
i = i + 1;
assert.equal(i, 1);

You can also declare and assign at the same time:

let i = 0;

10.2 const

Variables declared via const are immutable. You must always initialize immediately:

const i = 0; // must initialize

assert.throws(
() => { i = i + 1 },
{

name: 'TypeError',
message: 'Assignment to constant variable.',

}
);

10.2.1 const and immutability
In JavaScript, const only means that the binding (the association between variable name
and variable value) is immutable. The value itself may be mutable, like obj in the fol-
lowing example.

const obj = { prop: 0 };

// Allowed: changing properties of `obj`
obj.prop = obj.prop + 1;
assert.equal(obj.prop, 1);

// Not allowed: assigning to `obj`
assert.throws(

() => { obj = {} },
{

name: 'TypeError',
message: 'Assignment to constant variable.',

}
);

10.3 Deciding between const and let 67

10.2.2 const and loops
You can use constwith for-of loops, where a fresh binding is created for each iteration:

const arr = ['hello', 'world'];
for (const elem of arr) {

console.log(elem);
}
// Output:
// 'hello'
// 'world'

In plain for loops, you must use let, however:
const arr = ['hello', 'world'];
for (let i=0; i<arr.length; i++) {

const elem = arr[i];
console.log(elem);

}

10.3 Deciding between const and let

I recommend the following rules to decide between const and let:
• const indicates an immutable binding and that a variable never changes its value.

Prefer it.
• let indicates that the value of a variable changes. Use it only when you can’t use

const.

Exercise: const
exercises/variables-assignment/const_exrc.mjs

10.4 The scope of a variable
The scope of a variable is the region of a program where it can be accessed. Consider the
following code.

{ // // Scope A. Accessible: x
const x = 0;
assert.equal(x, 0);
{ // Scope B. Accessible: x, y

const y = 1;
assert.equal(x, 0);
assert.equal(y, 1);
{ // Scope C. Accessible: x, y, z

const z = 2;
assert.equal(x, 0);
assert.equal(y, 1);

68 10 Variables and assignment

assert.equal(z, 2);
}

}
}
// Outside. Not accessible: x, y, z
assert.throws(

() => console.log(x),
{

name: 'ReferenceError',
message: 'x is not defined',

}
);

• Scope A is the (direct) scope of x.
• Scopes B and C are inner scopes of scope A.
• Scope A is an outer scope of scope B and scope C.

Each variable is accessible in its direct scope and all scopes nested within that scope.

The variables declared via const and let are called block-scoped because their scopes are
always the innermost surrounding blocks.

10.4.1 Shadowing variables
You can’t declare the same variable twice at the same level:

assert.throws(
() => {

eval('let x = 1; let x = 2;');
},
{

name: 'SyntaxError',
message: "Identifier 'x' has already been declared",

});

Why eval()?
eval() delays parsing (and therefore the SyntaxError), until the callback of as-
sert.throws() is executed. If we didn’t use it, we’d already get an error when this
code is parsed and assert.throws() wouldn’t even be executed.

You can, however, nest a block and use the same variable name x that you used outside
the block:

const x = 1;
assert.equal(x, 1);
{

const x = 2;
assert.equal(x, 2);

10.5 (Advanced) 69

}
assert.equal(x, 1);

Inside the block, the inner x is the only accessible variable with that name. The inner x is
said to shadow the outer x. Once you leave the block, you can access the old value again.

Quiz: basic
See quiz app.

10.5 (Advanced)
All remaining sections are advanced.

10.6 Terminology: static vs. dynamic
These two adjectives describe phenomena in programming languages:

• Staticmeans that something is related to source code and can be determined with-
out executing code.

• Dynamicmeans at runtime.

Let’s look at examples for these two terms.

10.6.1 Static phenomenon: scopes of variables
Variable scopes are a static phenomenon. Consider the following code:

function f() {
const x = 3;
// ···

}

x is statically (or lexically) scoped. That is, its scope is fixed and doesn’t change at runtime.

Variable scopes form a static tree (via static nesting).

10.6.2 Dynamic phenomenon: function calls
Function calls are a dynamic phenomenon. Consider the following code:

function g(x) {}
function h(y) {

if (Math.random()) g(y); // (A)
}

Whether or not the function call in line A happens, can only be decided at runtime.

Function calls form a dynamic tree (via dynamic calls).

70 10 Variables and assignment

10.7 Global variables and the global object
JavaScript’s variable scopes are nested. They form a tree:

• The outermost scope is the root of the tree.
• The scopes directly contained in that scope are the children of the root.
• And so on.

The root is also called the global scope. In web browsers, the only location where one is
directly in that scope is at the top level of a script. The variables of the global scope are
called global variables and accessible everywhere. There are two kinds of global variables:

• Global declarative variables are normal variables.
– They can only be created while at the top level of a script, via const, ‘let, and
class declarations.

• Global object variables are stored in properties of the so-called global object.
– They are created in the top level of a script, via var and function declarations.
– The global object can be accessed via the global variable globalThis. It can
be used to create, read, and delete global object variables.

– Other than that, global object variables work like normal variables.

The following HTML fragment demonstrates globalThis and the two kinds of global
variables.

<script>
const declarativeVariable = 'd';
var objectVariable = 'o';

</script>
<script>

// All scripts share the same top-level scope:
console.log(declarativeVariable); // 'd'
console.log(objectVariable); // 'o'

// Not all declarations create properties of the global object:
console.log(globalThis.declarativeVariable); // undefined
console.log(globalThis.objectVariable); // 'o'

</script>

Each ECMAScript module has its own scope. Therefore, variables that exist at the top
level of a module are not global. Fig. 10.1 illustrates how the various scopes are related.

10.7.1 globalThis [ES2020]
The global variable globalThis is the new standard way of accessing the global object.
It got its name from the fact that it has the same value as this in global scope.

globalThis does not always directly point to the global object
For example, in browsers, there is an indirection. That indirection is normally not
noticable, but it is there and can be observed.

https://exploringjs.com/deep-js/ch_global-scope.html#window-proxy

10.7 Global variables and the global object 71

Object variables

Global scope

Module scope 1 ···

Declarative variables

Top level of scripts:

var, function declarations

const, let, class declarations

Module scope 2

Figure 10.1: The global scope is JavaScript’s outermost scope. It has two kinds of vari-
ables: object variables (managed via the global object) and normal declarative variables. Each
ECMAScript module has its own scope which is contained in the global scope.

10.7.1.1 Alternatives to globalThis

Older ways of accessing the global object depend on the platform:
• Global variable window: is the classic way of referring to the global object. But it

doesn’t work in Node.js and in Web Workers.
• Global variable self: is available in Web Workers and browsers in general. But it

isn’t supported by Node.js.
• Global variable global: is only available in Node.js.

10.7.1.2 Use cases for globalThis
The global object is now considered a mistake that JavaScript can’t get rid of, due to
backward compatibility. It affects performance negatively and is generally confusing.
ECMAScript 6 introduced several features that make it easier to avoid the global object
– for example:

• const, let, and class declarations don’t create global object properties when used
in global scope.

• Each ECMAScript module has its own local scope.
It is usually better to access global object variables via variables and not via properties
of globalThis. The former has always worked the same on all JavaScript platforms.
Tutorials on the web occasionally access global variables globVar via window.globVar.
But the prefix “window.” is not necessary and I recommend to omit it:

window.encodeURIComponent(str); // no
encodeURIComponent(str); // yes

Therefore, there are relatively few use cases for globalThis – for example:

72 10 Variables and assignment

• Polyfills that add new features to old JavaScript engines.
• Feature detection, to find out what features a JavaScript engine supports.

10.8 Declarations: scope and activation
These are two key aspects of declarations:

• Scope: Where can a declared entity be seen? This is a static trait.
• Activation: When can I access an entity? This is a dynamic trait. Some entities

can be accessed as soon as we enter their scopes. For others, we have to wait until
execution reaches their declarations.

Tbl. 10.1 summarizes how various declarations handle these aspects.

Table 10.1: Aspects of declarations. “Duplicates” describes if a declara-
tion can be used twice with the same name (per scope). “Global prop.”
describes if a declaration adds a property to the global object, when it is
executed in the global scope of a script. TDZ means temporal dead zone
(which is explained later). (*) Function declarations are normally block-
scoped, but function-scoped in sloppy mode.

Scope Activation Duplicates Global prop.
const Block decl. (TDZ) ✘ ✘
let Block decl. (TDZ) ✘ ✘
function Block (*) start ✔ ✔
class Block decl. (TDZ) ✘ ✘
import Module same as export ✘ ✘
var Function start, partially ✔ ✔

import is described in §24.5 “ECMAScript modules”. The following sections describe
the other constructs in more detail.

10.8.1 const and let: temporal dead zone
For JavaScript, TC39 needed to decide what happens if you access a constant in its direct
scope, before its declaration:

{
console.log(x); // What happens here?
const x;

}

Some possible approaches are:

1. The name is resolved in the scope surrounding the current scope.
2. You get undefined.
3. There is an error.

10.8 Declarations: scope and activation 73

Approach 1 was rejected because there is no precedent in the language for this approach.
It would therefore not be intuitive to JavaScript programmers.
Approach 2 was rejected because then xwouldn’t be a constant – it would have different
values before and after its declaration.
let uses the same approach 3 as const, so that bothwork similarly and it’s easy to switch
between them.
The time between entering the scope of a variable and executing its declaration is called
the temporal dead zone (TDZ) of that variable:

• During this time, the variable is considered to be uninitialized (as if that were a
special value it has).

• If you access an uninitialized variable, you get a ReferenceError.
• Once you reach a variable declaration, the variable is set to either the value of

the initializer (specified via the assignment symbol) or undefined – if there is no
initializer.

The following code illustrates the temporal dead zone:
if (true) { // entering scope of `tmp`, TDZ starts

// `tmp` is uninitialized:
assert.throws(() => (tmp = 'abc'), ReferenceError);
assert.throws(() => console.log(tmp), ReferenceError);

let tmp; // TDZ ends
assert.equal(tmp, undefined);

}

The next example shows that the temporal dead zone is truly temporal (related to time):
if (true) { // entering scope of `myVar`, TDZ starts

const func = () => {
console.log(myVar); // executed later

};

// We are within the TDZ:
// Accessing `myVar` causes `ReferenceError`

let myVar = 3; // TDZ ends
func(); // OK, called outside TDZ

}

Even though func() is located before the declaration of myVar and uses that variable, we
can call func(). But we have to wait until the temporal dead zone of myVar is over.

10.8.2 Function declarations and early activation

More information on functions

74 10 Variables and assignment

In this section, we are using functions – before we had a chance to learn them prop-
erly. Hopefully, everything still makes sense. Whenever it doesn’t, please see §23
“Callable values”.

A function declaration is always executed when entering its scope, regardless of where it
is locatedwithin that scope. That enables you to call a function foo() before it is declared:

assert.equal(foo(), 123); // OK
function foo() { return 123; }

The early activation of foo()means that the previous code is equivalent to:
function foo() { return 123; }
assert.equal(foo(), 123);

If you declare a function via const or let, then it is not activated early. In the following
example, you can only use bar() after its declaration.

assert.throws(
() => bar(), // before declaration
ReferenceError);

const bar = () => { return 123; };

assert.equal(bar(), 123); // after declaration

10.8.2.1 Calling ahead without early activation
Even if a function g() is not activated early, it can be called by a preceding function f()
(in the same scope) if we adhere to the following rule: f() must be invoked after the
declaration of g().

const f = () => g();
const g = () => 123;

// We call f() after g() was declared:
assert.equal(f(), 123);

The functions of amodule are usually invoked after its complete body is executed. There-
fore, in modules, you rarely need to worry about the order of functions.
Lastly, note how early activation automatically keeps the aforementioned rule: when
entering a scope, all function declarations are executed first, before any calls are made.

10.8.2.2 A pitfall of early activation
If you rely on early activation to call a function before its declaration, then you need to
be careful that it doesn’t access data that isn’t activated early.

funcDecl();

const MY_STR = 'abc';
function funcDecl() {

10.8 Declarations: scope and activation 75

assert.throws(
() => MY_STR,
ReferenceError);

}

The problem goes away if you make the call to funcDecl() after the declaration of MY_-
STR.

10.8.2.3 The pros and cons of early activation
We have seen that early activation has a pitfall and that you can get most of its benefits
without using it. Therefore, it is better to avoid early activation. But I don’t feel strongly
about this and, as mentioned before, often use function declarations because I like their
syntax.

10.8.3 Class declarations are not activated early
Even though they are similar to function declarations in some ways, class declarations
are not activated early:

assert.throws(
() => new MyClass(),
ReferenceError);

class MyClass {}

assert.equal(new MyClass() instanceof MyClass, true);

Why is that? Consider the following class declaration:
class MyClass extends Object {}

The operand of extends is an expression. Therefore, you can do things like this:
const identity = x => x;
class MyClass extends identity(Object) {}

Evaluating such an expression must be done at the location where it is mentioned. Any-
thing else would be confusing. That explains why class declarations are not activated
early.

10.8.4 var: hoisting (partial early activation)
var is an older way of declaring variables that predates const and let (which are pre-
ferred now). Consider the following var declaration.

var x = 123;

This declaration has two parts:
• Declaration var x: The scope of a var-declared variable is the innermost surround-

ing function and not the innermost surrounding block, as for most other declara-
tions. Such a variable is already active at the beginning of its scope and initialized
with undefined.

76 10 Variables and assignment

• Assignment x = 123: The assignment is always executed in place.
The following code demonstrates the effects of var:

function f() {
// Partial early activation:
assert.equal(x, undefined);
if (true) {

var x = 123;
// The assignment is executed in place:
assert.equal(x, 123);

}
// Scope is function, not block:
assert.equal(x, 123);

}

10.9 Closures
Before we can explore closures, we need to learn about bound variables and free vari-
ables.

10.9.1 Bound variables vs. free variables
Per scope, there is a set of variables that are mentioned. Among these variables we dis-
tinguish:

• Bound variables are declared within the scope. They are parameters and local vari-
ables.

• Free variables are declared externally. They are also called non-local variables.
Consider the following code:

function func(x) {
const y = 123;
console.log(z);

}

In the body of func(), x and y are bound variables. z is a free variable.

10.9.2 What is a closure?
What is a closure then?

A closure is a function plus a connection to the variables that exist at its “birth
place”.

What is the point of keeping this connection? It provides the values for the free variables
of the function – for example:

function funcFactory(value) {
return () => {

return value;

10.9 Closures 77

};
}

const func = funcFactory('abc');
assert.equal(func(), 'abc'); // (A)

funcFactory returns a closure that is assigned to func. Because func has the connection
to the variables at its birth place, it can still access the free variable valuewhen it is called
in line A (even though it “escaped” its scope).

All functions in JavaScript are closures
Static scoping is supported via closures in JavaScript. Therefore, every function is
a closure.

10.9.3 Example: A factory for incrementors
The following function returns incrementors (a name that I just made up). An incrementor
is a function that internally stores a number. When it is called, it updates that number
by adding the argument to it and returns the new value.

function createInc(startValue) {
return (step) => { // (A)

startValue += step;
return startValue;

};
}
const inc = createInc(5);
assert.equal(inc(2), 7);

Wecan see that the function created in lineA keeps its internal number in the free variable
startValue. This time, we don’t just read from the birth scope, we use it to store data
that we change and that persists across function calls.

We can create more storage slots in the birth scope, via local variables:

function createInc(startValue) {
let index = -1;
return (step) => {

startValue += step;
index++;
return [index, startValue];

};
}
const inc = createInc(5);
assert.deepEqual(inc(2), [0, 7]);
assert.deepEqual(inc(2), [1, 9]);
assert.deepEqual(inc(2), [2, 11]);

78 10 Variables and assignment

10.9.4 Use cases for closures
What are closures good for?

• For starters, they are simply an implementation of static scoping. As such, they
provide context data for callbacks.

• They can also be used by functions to store state that persists across function calls.
createInc() is an example of that.

• And they can provide private data for objects (produced via literals or classes).
The details of how that works are explained in Exploring ES6.

Quiz: advanced
See quiz app.

https://exploringjs.com/es6/ch_classes.html#_private-data-via-constructor-environments

Chapter 11

Values

Contents
11.1 What’s a type? . 79
11.2 JavaScript’s type hierarchy . 80
11.3 The types of the language specification 80
11.4 Primitive values vs. objects . 81

11.4.1 Primitive values (short: primitives) 81
11.4.2 Objects . 82

11.5 The operators typeof and instanceof: what’s the type of a value? . 83
11.5.1 typeof . 84
11.5.2 instanceof . 85

11.6 Classes and constructor functions 85
11.6.1 Constructor functions associated with primitive types 85

11.7 Converting between types . 86
11.7.1 Explicit conversion between types 87
11.7.2 Coercion (automatic conversion between types) 87

In this chapter, we’ll examine what kinds of values JavaScript has.

Supporting tool: ===
In this chapter, we’ll occasionally use the strict equality operator. a === b evaluates
to true if a and b are equal. What exactly that means is explained in §12.4.2 “Strict
equality (=== and !==)”.

11.1 What’s a type?
For this chapter, I consider types to be sets of values – for example, the type boolean is
the set { false, true }.

79

80 11 Values

11.2 JavaScript’s type hierarchy

(any)

(object)(primitive value)

boolean

number

string

symbol

undefined

null

Object

Array

Map

Set

Function

RegExp

Date

Figure 11.1: A partial hierarchy of JavaScript’s types. Missing are the classes for errors,
the classes associated with primitive types, and more. The diagram hints at the fact that
not all objects are instances of Object.

Fig. 11.1 shows JavaScript’s type hierarchy. What do we learn from that diagram?

• JavaScript distinguishes two kinds of values: primitive values and objects. We’ll
see soon what the difference is.

• The diagram differentiates objects and instances of class Object. Each instance
of Object is also an object, but not vice versa. However, virtually all objects that
you’ll encounter in practice are instances of Object – for example, objects created
via object literals. More details on this topic are explained in §26.4.3.4 “Objects that
aren’t instances of Object”.

11.3 The types of the language specification
The ECMAScript specification only knows a total of seven types. The names of those
types are (I’m using TypeScript’s names, not the spec’s names):

• undefined with the only element undefined
• null with the only element null
• boolean with the elements false and true
• number the type of all numbers (e.g., -123, 3.141)
• bigint the type of all big integers (e.g., -123n)
• string the type of all strings (e.g., 'abc')
• symbol the type of all symbols (e.g., Symbol('My Symbol'))
• object the type of all objects (different from Object, the type of all instances of

class Object and its subclasses)

11.4 Primitive values vs. objects 81

11.4 Primitive values vs. objects
The specification makes an important distinction between values:

• Primitive values are the elements of the types undefined, null, boolean, number,
bigint, string, symbol.

• All other values are objects.

In contrast to Java (that inspired JavaScript here), primitive values are not second-class
citizens. The difference between them and objects is more subtle. In a nutshell:

• Primitive values: are atomic building blocks of data in JavaScript.
– They are passed by value: when primitive values are assigned to variables or
passed to functions, their contents are copied.

– They are compared by value: when comparing two primitive values, their con-
tents are compared.

• Objects: are compound pieces of data.
– They are passed by identity (my term): when objects are assigned to variables
or passed to functions, their identities (think pointers) are copied.

– They are compared by identity (my term): when comparing two objects, their
identities are compared.

Other than that, primitive values and objects are quite similar: they both have properties
(key-value entries) and can be used in the same locations.

Next, we’ll look at primitive values and objects in more depth.

11.4.1 Primitive values (short: primitives)
11.4.1.1 Primitives are immutable

You can’t change, add, or remove properties of primitives:

let str = 'abc';
assert.equal(str.length, 3);
assert.throws(

() => { str.length = 1 },
/^TypeError: Cannot assign to read only property 'length'/

);

11.4.1.2 Primitives are passed by value

Primitives are passed by value: variables (including parameters) store the contents of the
primitives. When assigning a primitive value to a variable or passing it as an argument
to a function, its content is copied.

let x = 123;
let y = x;
assert.equal(y, 123);

82 11 Values

11.4.1.3 Primitives are compared by value

Primitives are compared by value: when comparing two primitive values, we compare
their contents.

assert.equal(123 === 123, true);
assert.equal('abc' === 'abc', true);

To see what’s so special about this way of comparing, read on and find out how objects
are compared.

11.4.2 Objects
Objects are covered in detail in §25 “Single objects” and the following chapter. Here, we
mainly focus on how they differ from primitive values.
Let’s first explore two common ways of creating objects:

• Object literal:
const obj = {

first: 'Jane',
last: 'Doe',

};

The object literal starts and ends with curly braces {}. It creates an object with
two properties. The first property has the key 'first' (a string) and the value
'Jane'. The second property has the key 'last' and the value 'Doe'. For more
information on object literals, consult §25.2.1 “Object literals: properties”.

• Array literal:
const arr = ['foo', 'bar'];

The Array literal starts and ends with square brackets []. It creates an Array with
two elements: 'foo' and 'bar'. For more information on Array literals, consult
[content not included].

11.4.2.1 Objects are mutable by default
By default, you can freely change, add, and remove the properties of objects:

const obj = {};

obj.foo = 'abc'; // add a property
assert.equal(obj.foo, 'abc');

obj.foo = 'def'; // change a property
assert.equal(obj.foo, 'def');

11.4.2.2 Objects are passed by identity

Objects are passed by identity (my term): variables (including parameters) store the identi-
ties of objects.

11.5 The operators typeof and instanceof: what’s the type of a value? 83

The identity of an object is like a pointer (or a transparent reference) to the object’s actual
data on the heap (think shared main memory of a JavaScript engine).

When assigning an object to a variable or passing it as an argument to a function, its
identity is copied. Each object literal creates a fresh object on the heap and returns its
identity.

const a = {}; // fresh empty object
// Pass the identity in `a` to `b`:
const b = a;

// Now `a` and `b` point to the same object
// (they “share” that object):
assert.equal(a === b, true);

// Changing `a` also changes `b`:
a.foo = 123;
assert.equal(b.foo, 123);

JavaScript uses garbage collection to automatically manage memory:

let obj = { prop: 'value' };
obj = {};

Now the old value { prop: 'value' } of obj is garbage (not used anymore). JavaScript
will automatically garbage-collect it (remove it from memory), at some point in time (pos-
sibly never if there is enough free memory).

Details: passing by identity
“Passing by identity” means that the identity of an object (a transparent reference)
is passed by value. This approach is also called “passing by sharing”.

11.4.2.3 Objects are compared by identity

Objects are compared by identity (my term): two variables are only equal if they contain
the same object identity. They are not equal if they refer to different objects with the same
content.

const obj = {}; // fresh empty object
assert.equal(obj === obj, true); // same identity
assert.equal({} === {}, false); // different identities, same content

11.5 The operators typeof and instanceof: what’s the type
of a value?

The two operators typeof and instanceof let you determine what type a given value x
has:

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_sharing

84 11 Values

if (typeof x === 'string') ···
if (x instanceof Array) ···

How do they differ?
• typeof distinguishes the 7 types of the specification (minus one omission, plus one

addition).
• instanceof tests which class created a given value.

Rule of thumb: typeof is for primitive values; instanceof is for objects

11.5.1 typeof

Table 11.1: The results of the typeof operator.

x typeof x

undefined 'undefined'
null 'object'
Boolean 'boolean'
Number 'number'
Bigint 'bigint'
String 'string'
Symbol 'symbol'
Function 'function'
All other objects 'object'

Tbl. 11.1 lists all results of typeof. They roughly correspond to the 7 types of the language
specification. Alas, there are two differences, and they are language quirks:

• typeof null returns 'object' and not 'null'. That’s a bug. Unfortunately, it
can’t be fixed. TC39 tried to do that, but it broke too much code on the web.

• typeof of a function should be 'object' (functions are objects). Introducing a
separate category for functions is confusing.

These are a few examples of using typeof:
> typeof undefined
'undefined'
> typeof 123n
'bigint'
> typeof 'abc'
'string'
> typeof {}
'object'

Exercises: Two exercises on typeof

11.6 Classes and constructor functions 85

• exercises/values/typeof_exrc.mjs

• Bonus: exercises/values/is_object_test.mjs

11.5.2 instanceof

This operator answers the question: has a value x been created by a class C?
x instanceof C

For example:
> (function() {}) instanceof Function
true
> ({}) instanceof Object
true
> [] instanceof Array
true

Primitive values are not instances of anything:
> 123 instanceof Number
false
> '' instanceof String
false
> '' instanceof Object
false

Exercise: instanceof
exercises/values/instanceof_exrc.mjs

11.6 Classes and constructor functions
JavaScript’s original factories for objects are constructor functions: ordinary functions that
return “instances” of themselves if you invoke them via the new operator.
ES6 introduced classes, which are mainly better syntax for constructor functions.
In this book, I’m using the terms constructor function and class interchangeably.
Classes can be seen as partitioning the single type object of the specification into sub-
types – they give us more types than the limited 7 ones of the specification. Each class is
the type of the objects that were created by it.

11.6.1 Constructor functions associated with primitive types
Each primitive type (except for the spec-internal types for undefined and null) has an
associated constructor function (think class):

• The constructor function Boolean is associated with booleans.
• The constructor function Number is associated with numbers.

86 11 Values

• The constructor function String is associated with strings.
• The constructor function Symbol is associated with symbols.

Each of these functions plays several roles – for example, Number:

• You can use it as a function and convert values to numbers:

assert.equal(Number('123'), 123);

• Number.prototype provides the properties for numbers – for example, method
.toString():

assert.equal((123).toString, Number.prototype.toString);

• Number is a namespace/container object for tool functions for numbers – for exam-
ple:

assert.equal(Number.isInteger(123), true);

• Lastly, you can also use Number as a class and create number objects. These objects
are different from real numbers and should be avoided.

assert.notEqual(new Number(123), 123);
assert.equal(new Number(123).valueOf(), 123);

11.6.1.1 Wrapping primitive values

The constructor functions related to primitive types are also called wrapper types because
they provide the canonical way of converting primitive values to objects. In the process,
primitive values are “wrapped” in objects.

const prim = true;
assert.equal(typeof prim, 'boolean');
assert.equal(prim instanceof Boolean, false);

const wrapped = Object(prim);
assert.equal(typeof wrapped, 'object');
assert.equal(wrapped instanceof Boolean, true);

assert.equal(wrapped.valueOf(), prim); // unwrap

Wrapping rarelymatters in practice, but it is used internally in the language specification,
to give primitives properties.

11.7 Converting between types
There are two ways in which values are converted to other types in JavaScript:

• Explicit conversion: via functions such as String().
• Coercion (automatic conversion): happens when an operation receives operands/-

parameters that it can’t work with.

11.7 Converting between types 87

11.7.1 Explicit conversion between types
The function associated with a primitive type explicitly converts values to that type:

> Boolean(0)
false
> Number('123')
123
> String(123)
'123'

You can also use Object() to convert values to objects:
> typeof Object(123)
'object'

The following table describes in more detail how this conversion works:

x Object(x)

undefined {}
null {}
boolean new Boolean(x)
number new Number(x)
bigint An instance of BigInt (new throws TypeError)
string new String(x)
symbol An instance of Symbol (new throws TypeError)
object x

11.7.2 Coercion (automatic conversion between types)
Formany operations, JavaScript automatically converts the operands/parameters if their
types don’t fit. This kind of automatic conversion is called coercion.
For example, the multiplication operator coerces its operands to numbers:

> '7' * '3'
21

Many built-in functions coerce, too. For example, parseInt() coerces its parameter to
string (parsing stops at the first character that is not a digit):

> parseInt(123.45)
123

Exercise: Converting values to primitives
exercises/values/conversion_exrc.mjs

88 11 Values

Quiz
See quiz app.

Chapter 12

Operators

Contents
12.1 Making sense of operators . 89

12.1.1 Operators coerce their operands to appropriate types 90
12.1.2 Most operators only work with primitive values 90

12.2 The plus operator (+) . 90
12.3 Assignment operators . 91

12.3.1 The plain assignment operator 91
12.3.2 Compound assignment operators 91
12.3.3 A list of all compound assignment operators 91

12.4 Equality: == vs. === . 92
12.4.1 Loose equality (== and !=) . 92
12.4.2 Strict equality (=== and !==) 93
12.4.3 Recommendation: always use strict equality 93
12.4.4 Even stricter than ===: Object.is() 94

12.5 Ordering operators . 95
12.6 The nullish coalescing operator (??) for default values [ES2020] . . 95

12.6.1 Example: counting matches 95
12.6.2 Example: specifying a default value for a property 96
12.6.3 Using destructuring for default values 96
12.6.4 Legacy approach: using logical Or (||) for default values . . . 96

12.7 Various other operators . 97
12.7.1 Comma operator . 97
12.7.2 void operator . 97

12.1 Making sense of operators
JavaScript’s operators may seem quirky. With the following two rules, they are easier to
understand:

89

90 12 Operators

• Operators coerce their operands to appropriate types
• Most operators only work with primitive values

12.1.1 Operators coerce their operands to appropriate types
If an operator gets operands that don’t have the proper types, it rarely throws an excep-
tion. Instead, it coerces (automatically converts) the operands so that it can work with
them. Let’s look at two examples.
First, the multiplication operator can only work with numbers. Therefore, it converts
strings to numbers before computing its result.

> '7' * '3'
21

Second, the square brackets operator ([]) for accessing the properties of an object can
only handle strings and symbols. All other values are coerced to string:

const obj = {};
obj['true'] = 123;

// Coerce true to the string 'true'
assert.equal(obj[true], 123);

12.1.2 Most operators only work with primitive values
As mentioned before, most operators only work with primitive values. If an operand is
an object, it is usually coerced to a primitive value – for example:

> [1,2,3] + [4,5,6]
'1,2,34,5,6'

Why? The plus operator first coerces its operands to primitive values:
> String([1,2,3])
'1,2,3'
> String([4,5,6])
'4,5,6'

Next, it concatenates the two strings:
> '1,2,3' + '4,5,6'
'1,2,34,5,6'

12.2 The plus operator (+)
The plus operator works as follows in JavaScript:

• First, it converts both operands to primitive values. Then it switches to one of two
modes:

– String mode: If one of the two primitive values is a string, then it converts
the other one to a string, concatenates both strings, and returns the result.

12.3 Assignment operators 91

– Numbermode: Otherwise, It converts both operands to numbers, adds them,
and returns the result.

String mode lets us use + to assemble strings:
> 'There are ' + 3 + ' items'
'There are 3 items'

Number mode means that if neither operand is a string (or an object that becomes a
string) then everything is coerced to numbers:

> 4 + true
5

Number(true) is 1.

12.3 Assignment operators
12.3.1 The plain assignment operator
The plain assignment operator is used to change storage locations:

x = value; // assign to a previously declared variable
obj.propKey = value; // assign to a property
arr[index] = value; // assign to an Array element

Initializers in variable declarations can also be viewed as a form of assignment:
const x = value;
let y = value;

12.3.2 Compound assignment operators
Given an operator op, the following two ways of assigning are equivalent:

myvar op= value
myvar = myvar op value

If, for example, op is +, then we get the operator += that works as follows.
let str = '';
str += '';
str += 'Hello!';
str += '';

assert.equal(str, 'Hello!');

12.3.3 A list of all compound assignment operators
• Arithmetic operators:

+= -= *= /= %= **=

+= also works for string concatenation

92 12 Operators

• Bitwise operators:
<<= >>= >>>= &= ^= |=

12.4 Equality: == vs. ===
JavaScript has two kinds of equality operators: loose equality (==) and strict equality
(===). The recommendation is to always use the latter.

Other names for == and ===

• == is also called double equals. Its official name in the language specification
is abstract equality comparison.

• === is also called triple equals.

12.4.1 Loose equality (== and !=)
Loose equality is one of JavaScript’s quirks. It often coerces operands. Some of those
coercions make sense:

> '123' == 123
true
> false == 0
true

Others less so:
> '' == 0
true

Objects are coerced to primitives if (and only if!) the other operand is primitive:
> [1, 2, 3] == '1,2,3'
true
> ['1', '2', '3'] == '1,2,3'
true

If both operands are objects, they are only equal if they are the same object:
> [1, 2, 3] == ['1', '2', '3']
false
> [1, 2, 3] == [1, 2, 3]
false

> const arr = [1, 2, 3];
> arr == arr
true

Lastly, == considers undefined and null to be equal:
> undefined == null
true

https://tc39.github.io/ecma262/#sec-abstract-equality-comparison

12.4 Equality: == vs. === 93

12.4.2 Strict equality (=== and !==)
Strict equality never coerces. Two values are only equal if they have the same type. Let’s
revisit our previous interaction with the == operator and see what the === operator does:

> false === 0
false
> '123' === 123
false

An object is only equal to another value if that value is the same object:

> [1, 2, 3] === '1,2,3'
false
> ['1', '2', '3'] === '1,2,3'
false

> [1, 2, 3] === ['1', '2', '3']
false
> [1, 2, 3] === [1, 2, 3]
false

> const arr = [1, 2, 3];
> arr === arr
true

The === operator does not consider undefined and null to be equal:

> undefined === null
false

12.4.3 Recommendation: always use strict equality
I recommend to always use ===. It makes your code easier to understand and spares you
from having to think about the quirks of ==.

Let’s look at two use cases for == and what I recommend to do instead.

12.4.3.1 Use case for ==: comparing with a number or a string

== lets you check if a value x is a number or that number as a string – with a single
comparison:

if (x == 123) {
// x is either 123 or '123'

}

I prefer either of the following two alternatives:

if (x === 123 || x === '123') ···
if (Number(x) === 123) ···

You can also convert x to a number when you first encounter it.

94 12 Operators

12.4.3.2 Use case for ==: comparing with undefined or null
Another use case for == is to check if a value x is either undefined or null:

if (x == null) {
// x is either null or undefined

}

The problem with this code is that you can’t be sure if someone meant to write it that
way or if they made a typo and meant === null.
I prefer either of the following two alternatives:

if (x === undefined || x === null) ···
if (!x) ···

A downside of the second alternative is that it accepts values other than undefined and
null, but it is a well-established pattern in JavaScript (to be explained in detail in §14.3
“Truthiness-based existence checks”).
The following three conditions are also roughly equivalent:

if (x != null) ···
if (x !== undefined && x !== null) ···
if (x) ···

12.4.4 Even stricter than ===: Object.is()
Method Object.is() compares two values:

> Object.is(123, 123)
true
> Object.is(123, '123')
false

It is even stricter than ===. For example, it considers NaN, the error value for computations
involving numbers, to be equal to itself:

> Object.is(NaN, NaN)
true
> NaN === NaN
false

That is occasionally useful. For example, you can use it to implement an improved ver-
sion of the Array method .indexOf():

const myIndexOf = (arr, elem) => {
return arr.findIndex(x => Object.is(x, elem));

};

myIndexOf() finds NaN in an Array, while .indexOf() doesn’t:
> myIndexOf([0,NaN,2], NaN)
1
> [0,NaN,2].indexOf(NaN)
-1

12.6 The nullish coalescing operator (??) for default values [ES2020] 95

The result -1means that .indexOf() couldn’t find its argument in the Array.

12.5 Ordering operators

Table 12.1: JavaScript’s ordering operators.

Operator name
< less than
<= Less than or equal
> Greater than
>= Greater than or equal

JavaScript’s ordering operators (tbl. 12.1) work for both numbers and strings:
> 5 >= 2
true
> 'bar' < 'foo'
true

<= and >= are based on strict equality.

The ordering operators don’t work well for human languages
The ordering operators don’t work well for comparing text in a human language,
e.g., when capitalization or accents are involved. The details are explained in §18.5
“Comparing strings”.

12.6 The nullish coalescing operator (??) for default val-
ues [ES2020]

Sometimes we receive a value and only want to use it if it isn’t either null or undefined.
Otherwise, we’d like to use a default value, as a fallback. We can do that via the nullish
coalescing operator (??):

const valueToUse = receivedValue ?? defaultValue;

The following two expressions are equivalent:
a ?? b
a !== undefined && a !== null ? a : b

12.6.1 Example: counting matches
The following code shows a real-world example:

function countMatches(regex, str) {
const matchResult = str.match(regex); // null or Array

96 12 Operators

return (matchResult ?? []).length;
}

assert.equal(
countMatches(/a/g, 'ababa'), 3);

assert.equal(
countMatches(/b/g, 'ababa'), 2);

assert.equal(
countMatches(/x/g, 'ababa'), 0);

If there are one or more matches for regex inside str, then .match() returns an Array.
If there are no matches, it unfortunately returns null (and not the empty Array). We fix
that via the ?? operator.

We also could have used optional chaining:

return matchResult?.length ?? 0;

12.6.2 Example: specifying a default value for a property
function getTitle(fileDesc) {

return fileDesc.title ?? '(Untitled)';
}

const files = [
{path: 'index.html', title: 'Home'},
{path: 'tmp.html'},

];
assert.deepEqual(

files.map(f => getTitle(f)),
['Home', '(Untitled)']);

12.6.3 Using destructuring for default values
In some cases, destructuring can also be used for default values – for example:

function getTitle(fileDesc) {
const {title = '(Untitled)'} = fileDesc;
return title;

}

12.6.4 Legacy approach: using logical Or (||) for default values
Before ECMAScript 2020 and the nullish coalescing operator, logical Or was used for
default values. That has a downside.

|| works as expected for undefined and null:

> undefined || 'default'
'default'

12.7 Various other operators 97

> null || 'default'
'default'

But it also returns the default for all other falsy values – for example:
> false || 'default'
'default'
> 0 || 'default'
'default'
> 0n || 'default'
'default'
> '' || 'default'
'default'

Compare that to how ?? works:
> undefined ?? 'default'
'default'
> null ?? 'default'
'default'

> false ?? 'default'
false
> 0 ?? 'default'
0
> 0n ?? 'default'
0n
> '' ?? 'default'
''

12.7 Various other operators
Operators for booleans, strings, numbers, objects: are covered elsewhere in this book.
The next two subsections discuss two operators that are rarely used.

12.7.1 Comma operator
The comma operator has two operands, evaluates both of them and returns the second
one:

> 'a', 'b'
'b'

For more information on this operator, see Speaking JavaScript.

12.7.2 void operator
The void operator evaluates its operand and returns undefined:

> void (3 + 2)
undefined

http://speakingjs.com/es5/ch09.html#comma_operator

98 12 Operators

For more information on this operator, see Speaking JavaScript.

Quiz
See quiz app.

http://speakingjs.com/es5/ch09.html#void_operator

Part IV

Primitive values

99

Chapter 13

The non-values undefined and
null

Contents
13.1 undefined vs. null . 101
13.2 Occurrences of undefined and null 102

13.2.1 Occurrences of undefined . 102
13.2.2 Occurrences of null . 102

13.3 Checking for undefined or null . 103
13.4 undefined and null don’t have properties 103
13.5 The history of undefined and null 104

Many programming languages have one “non-value” called null. It indicates that a vari-
able does not currently point to an object – for example, when it hasn’t been initialized
yet.
In contrast, JavaScript has two of them: undefined and null.

13.1 undefined vs. null
Both values are very similar and often used interchangeably. How they differ is therefore
subtle. The language itself makes the following distinction:

• undefinedmeans “not initialized” (e.g., a variable) or “not existing” (e.g., a prop-
erty of an object).

• null means “the intentional absence of any object value” (a quote from the lan-
guage specification).

Programmers may make the following distinction:
• undefined is the non-value used by the language (when something is uninitialized,

etc.).

101

https://tc39.github.io/ecma262/#sec-null-value
https://tc39.github.io/ecma262/#sec-null-value

102 13 The non-values undefined and null

• nullmeans “explicitly switched off”. That is, it helps implement a type that com-
prises both meaningful values and a meta-value that stands for “no meaningful
value”. Such a type is called option type or maybe type in functional programming.

13.2 Occurrences of undefined and null

The following subsections describe where undefined and null appear in the language.
We’ll encounter several mechanisms that are explained in more detail later in this book.

13.2.1 Occurrences of undefined
Uninitialized variable myVar:

let myVar;
assert.equal(myVar, undefined);

Parameter x is not provided:

function func(x) {
return x;

}
assert.equal(func(), undefined);

Property .unknownProp is missing:

const obj = {};
assert.equal(obj.unknownProp, undefined);

If you don’t explicitly specify the result of a function via a return statement, JavaScript
returns undefined for you:

function func() {}
assert.equal(func(), undefined);

13.2.2 Occurrences of null
The prototype of an object is either an object or, at the end of a chain of prototypes, null.
Object.prototype does not have a prototype:

> Object.getPrototypeOf(Object.prototype)
null

If you match a regular expression (such as /a/) against a string (such as 'x'), you either
get an object withmatching data (if matchingwas successful) or null (if matching failed):

> /a/.exec('x')
null

The JSON data format does not support undefined, only null:

> JSON.stringify({a: undefined, b: null})
'{"b":null}'

https://en.wikipedia.org/wiki/Option_type

13.3 Checking for undefined or null 103

13.3 Checking for undefined or null
Checking for either:

if (x === null) ···
if (x === undefined) ···

Does x have a value?

if (x !== undefined && x !== null) {
// ···

}
if (x) { // truthy?

// x is neither: undefined, null, false, 0, NaN, ''
}

Is x either undefined or null?

if (x === undefined || x === null) {
// ···

}
if (!x) { // falsy?

// x is: undefined, null, false, 0, NaN, ''
}

Truthymeans “is true if coerced to boolean”. Falsymeans “is false if coerced to boolean”.
Both concepts are explained properly in §14.2 “Falsy and truthy values”.

13.4 undefined and null don’t have properties
undefined and null are the two only JavaScript values where you get an exception if
you try to read a property. To explore this phenomenon, let’s use the following function,
which reads (“gets”) property .foo and returns the result.

function getFoo(x) {
return x.foo;

}

If we apply getFoo() to various values, we can see that it only fails for undefined and
null:

> getFoo(undefined)
TypeError: Cannot read property 'foo' of undefined
> getFoo(null)
TypeError: Cannot read property 'foo' of null

> getFoo(true)
undefined
> getFoo({})
undefined

104 13 The non-values undefined and null

13.5 The history of undefined and null

In Java (which inspired many aspects of JavaScript), initialization values depend on the
static type of a variable:

• Variables with object types are initialized with null.
• Each primitive type has its own initialization value. For example, int variables

are initialized with 0.
In JavaScript, each variable can hold both object values and primitive values. Therefore,
if null means “not an object”, JavaScript also needs an initialization value that means
“neither an object nor a primitive value”. That initialization value is undefined.

Quiz
See quiz app.

Chapter 14

Booleans

Contents
14.1 Converting to boolean . 105
14.2 Falsy and truthy values . 106

14.2.1 Checking for truthiness or falsiness 107
14.3 Truthiness-based existence checks 107

14.3.1 Pitfall: truthiness-based existence checks are imprecise 108
14.3.2 Use case: was a parameter provided? 108
14.3.3 Use case: does a property exist? 109

14.4 Conditional operator (? :) . 109
14.5 Binary logical operators: And (x && y), Or (x || y) 110

14.5.1 Logical And (x && y) . 110
14.5.2 Logical Or (||) . 111
14.5.3 Legacy use case for logical Or (||): providing default values . 111

14.6 Logical Not (!) . 111

The primitive type boolean comprises two values – false and true:
> typeof false
'boolean'
> typeof true
'boolean'

14.1 Converting to boolean

The meaning of “converting to [type]”
“Converting to [type]” is short for “Converting arbitrary values to values of type
[type]”.

These are three ways in which you can convert an arbitrary value x to a boolean.

105

106 14 Booleans

• Boolean(x)
Most descriptive; recommended.

• x ? true : false
Uses the conditional operator (explained later in this chapter).

• !!x
Uses the logical Not operator (!). This operator coerces its operand to boolean. It
is applied a second time to get a non-negated result.

Tbl. 14.1 describes how various values are converted to boolean.

Table 14.1: Converting values to booleans.

x Boolean(x)

undefined false
null false
boolean x (no change)
number 0 → false, NaN → false

Other numbers → true
bigint 0 → false

Other numbers → true
string '' → false

Other strings → true
symbol true
object Always true

14.2 Falsy and truthy values
When checking the condition of an if statement, a while loop, or a do-while loop,
JavaScript works differently than you may expect. Take, for example, the following
condition:

if (value) {}

In many programming languages, this condition is equivalent to:

if (value === true) {}

However, in JavaScript, it is equivalent to:

if (Boolean(value) === true) {}

That is, JavaScript checks if value is truewhen converted to boolean. This kind of check
is so common that the following names were introduced:

• A value is called truthy if it is true when converted to boolean.
• A value is called falsy if it is false when converted to boolean.

Each value is either truthy or falsy. Consulting tbl. 14.1, we can make an exhaustive list
of falsy values:

14.3 Truthiness-based existence checks 107

• undefined
• null
• Boolean: false
• Numbers: 0, NaN
• Bigint: 0n
• String: ''

All other values (including all objects) are truthy:
> Boolean('abc')
true
> Boolean([])
true
> Boolean({})
true

14.2.1 Checking for truthiness or falsiness
if (x) {

// x is truthy
}

if (!x) {
// x is falsy

}

if (x) {
// x is truthy

} else {
// x is falsy

}

const result = x ? 'truthy' : 'falsy';

The conditional operator that is used in the last line, is explained later in this chapter.

Exercise: Truthiness
exercises/booleans/truthiness_exrc.mjs

14.3 Truthiness-based existence checks
In JavaScript, if you read something that doesn’t exist (e.g., a missing parameter or a
missing property), you usually get undefined as a result. In these cases, an existence
check amounts to comparing a value with undefined. For example, the following code
checks if object obj has the property .prop:

if (obj.prop !== undefined) {
// obj has property .prop

108 14 Booleans

}

Due to undefined being falsy, we can shorten this check to:

if (obj.prop) {
// obj has property .prop

}

14.3.1 Pitfall: truthiness-based existence checks are imprecise
Truthiness-based existence checks have one pitfall: they are not very precise. Consider
this previous example:

if (obj.prop) {
// obj has property .prop

}

The body of the if statement is skipped if:

• obj.prop is missing (in which case, JavaScript returns undefined).

However, it is also skipped if:

• obj.prop is undefined.
• obj.prop is any other falsy value (null, 0, '', etc.).

In practice, this rarely causes problems, but you have to be aware of this pitfall.

14.3.2 Use case: was a parameter provided?
A truthiness check is often used to determine if the caller of a function provided a param-
eter:

function func(x) {
if (!x) {

throw new Error('Missing parameter x');
}
// ···

}

On the plus side, this pattern is established and short. It correctly throws errors for un-
defined and null.

On the minus side, there is the previously mentioned pitfall: the code also throws errors
for all other falsy values.

An alternative is to check for undefined:

if (x === undefined) {
throw new Error('Missing parameter x');

}

14.4 Conditional operator (? :) 109

14.3.3 Use case: does a property exist?
Truthiness checks are also often used to determine if a property exists:

function readFile(fileDesc) {
if (!fileDesc.path) {

throw new Error('Missing property: .path');
}
// ···

}
readFile({ path: 'foo.txt' }); // no error

This pattern is also established and has the usual caveat: it not only throws if the property
is missing, but also if it exists and has any of the falsy values.

If you truly want to check if the property exists, you have to use the in operator:

if (! ('path' in fileDesc)) {
throw new Error('Missing property: .path');

}

14.4 Conditional operator (? :)
The conditional operator is the expression version of the if statement. Its syntax is:

«condition» ? «thenExpression» : «elseExpression»

It is evaluated as follows:

• If condition is truthy, evaluate and return thenExpression.
• Otherwise, evaluate and return elseExpression.

The conditional operator is also called ternary operator because it has three operands.

Examples:

> true ? 'yes' : 'no'
'yes'
> false ? 'yes' : 'no'
'no'
> '' ? 'yes' : 'no'
'no'

The following code demonstrates that whichever of the two branches “then” and “else”
is chosen via the condition, only that branch is evaluated. The other branch isn’t.

const x = (true ? console.log('then') : console.log('else'));

// Output:
// 'then'

110 14 Booleans

14.5 Binary logical operators: And (x && y), Or (x || y)
The operators && and || are value-preserving and short-circuiting. What does that mean?
Value-preservation means that operands are interpreted as booleans but returned
unchanged:

> 12 || 'hello'
12
> 0 || 'hello'
'hello'

Short-circuitingmeans if the first operand already determines the result, then the second
operand is not evaluated. The only other operator that delays evaluating its operands
is the conditional operator. Usually, all operands are evaluated before performing an
operation.
For example, logical And (&&) does not evaluate its second operand if the first one is falsy:

const x = false && console.log('hello');
// No output

If the first operand is truthy, console.log() is executed:
const x = true && console.log('hello');

// Output:
// 'hello'

14.5.1 Logical And (x && y)
The expression a && b (“a And b”) is evaluated as follows:

1. Evaluate a.
2. Is the result falsy? Return it.
3. Otherwise, evaluate b and return the result.

In other words, the following two expressions are roughly equivalent:
a && b
!a ? a : b

Examples:
> false && true
false
> false && 'abc'
false

> true && false
false
> true && 'abc'
'abc'

14.6 Logical Not (!) 111

> '' && 'abc'
''

14.5.2 Logical Or (||)
The expression a || b (“a Or b”) is evaluated as follows:

1. Evaluate a.
2. Is the result truthy? Return it.
3. Otherwise, evaluate b and return the result.

In other words, the following two expressions are roughly equivalent:
a || b
a ? a : b

Examples:
> true || false
true
> true || 'abc'
true

> false || true
true
> false || 'abc'
'abc'

> 'abc' || 'def'
'abc'

14.5.3 Legacy use case for logical Or (||): providing default values
ECMAScript 2020 introduced the nullish coalescing operator (??) for default values. Be-
fore that, logical Or was used for this purpose:

const valueToUse = receivedValue || defaultValue;

See §12.6 “The nullish coalescing operator (??) for default values [ES2020]” for more
information on ?? and the downsides of || in this case.

Legacy exercise: Default values via the Or operator (||)
exercises/booleans/default_via_or_exrc.mjs

14.6 Logical Not (!)
The expression !x (“Not x”) is evaluated as follows:

1. Evaluate x.
2. Is it truthy? Return false.

112 14 Booleans

3. Otherwise, return true.
Examples:

> !false
true
> !true
false

> !0
true
> !123
false

> !''
true
> !'abc'
false

Quiz
See quiz app.

Chapter 15

Numbers

Contents
15.1 Numbers are used for both floating point numbers and integers . . 114
15.2 Number literals . 114

15.2.1 Integer literals . 114
15.2.2 Floating point literals . 115
15.2.3 Syntactic pitfall: properties of integer literals 115

15.3 Arithmetic operators . 115
15.3.1 Binary arithmetic operators 115
15.3.2 Unary plus (+) and negation (-) 116
15.3.3 Incrementing (++) and decrementing (--) 116

15.4 Converting to number . 118
15.5 Error values . 118
15.6 Error value: NaN . 119

15.6.1 Checking for NaN . 119
15.6.2 Finding NaN in Arrays . 119

15.7 Error value: Infinity . 120
15.7.1 Infinity as a default value 120
15.7.2 Checking for Infinity . 120

15.8 The precision of numbers: careful with decimal fractions 121
15.9 (Advanced) . 121
15.10Background: floating point precision 121

15.10.1 A simplified representation of floating point numbers 122
15.11Integer numbers in JavaScript . 123

15.11.1 Converting to integer . 124
15.11.2 Ranges of integer numbers in JavaScript 124
15.11.3 Safe integers . 125

15.12Bitwise operators . 126
15.12.1 Internally, bitwise operators work with 32-bit integers 126
15.12.2 Bitwise Not . 127

113

114 15 Numbers

15.12.3 Binary bitwise operators . 127
15.12.4 Bitwise shift operators . 127
15.12.5 b32(): displaying unsigned 32-bit integers in binary notation . 128

15.13Quick reference: numbers . 128
15.13.1 Global functions for numbers 128
15.13.2 Static properties of Number . 129
15.13.3 Static methods of Number . 129
15.13.4Methods of Number.prototype 131
15.13.5 Sources . 133

JavaScript has two kinds of numeric values:
• Numbers are 64-bit floating point numbers and are also used for smaller integers
(within a range of plus/minus 53 bits).

• Bigints represent integers with an arbitrary precision.
This chapter covers numbers. Bigints are covered later in this book.

15.1 Numbers are used for both floating point numbers
and integers

The type number is used for both integers and floating point numbers in JavaScript:
98
123.45

However, all numbers are doubles, 64-bit floating point numbers implemented according
to the IEEE Standard for Floating-Point Arithmetic (IEEE 754).
Integer numbers are simply floating point numbers without a decimal fraction:

> 98 === 98.0
true

Note that, under the hood, most JavaScript engines are often able to use real integers,
with all associated performance and storage size benefits.

15.2 Number literals
Let’s examine literals for numbers.

15.2.1 Integer literals
Several integer literals let you express integers with various bases:

// Binary (base 2)
assert.equal(0b11, 3);

// Octal (base 8)
assert.equal(0o10, 8);

15.3 Arithmetic operators 115

// Decimal (base 10):
assert.equal(35, 35);

// Hexadecimal (base 16)
assert.equal(0xE7, 231);

15.2.2 Floating point literals
Floating point numbers can only be expressed in base 10.
Fractions:

> 35.0
35

Exponent: eNmeans ×10N

> 3e2
300
> 3e-2
0.03
> 0.3e2
30

15.2.3 Syntactic pitfall: properties of integer literals
Accessing a property of an integer literal entails a pitfall: If the integer literal is immedi-
ately followed by a dot, then that dot is interpreted as a decimal dot:

7.toString(); // syntax error

There are four ways to work around this pitfall:
7.0.toString()
(7).toString()
7..toString()
7 .toString() // space before dot

15.3 Arithmetic operators
15.3.1 Binary arithmetic operators
Tbl. 15.1 lists JavaScript’s binary arithmetic operators.

Table 15.1: Binary arithmetic operators.

Operator Name Example
n + m Addition ES1 3 + 4 → 7
n - m Subtraction ES1 9 - 1 → 8
n * m Multiplication ES1 3 * 2.25 → 6.75

116 15 Numbers

Operator Name Example
n / m Division ES1 5.625 / 5 → 1.125
n % m Remainder ES1 8 % 5 → 3

-8 % 5 → -3
n ** m Exponentiation ES2016 4 ** 2 → 16

15.3.1.1 % is a remainder operator
% is a remainder operator, not a modulo operator. Its result has the sign of the first
operand:

> 5 % 3
2
> -5 % 3
-2

For more information on the difference between remainder and modulo, see the blog
post “Remainder operator vs. modulo operator (with JavaScript code)” on 2ality.

15.3.2 Unary plus (+) and negation (-)
Tbl. 15.2 summarizes the two operators unary plus (+) and negation (-).

Table 15.2: The operators unary plus (+) and negation (-).

Operator Name Example
+n Unary plus ES1 +(-7) → -7
-n Unary negation ES1 -(-7) → 7

Both operators coerce their operands to numbers:
> +'5'
5
> +'-12'
-12
> -'9'
-9

Thus, unary plus lets us convert arbitrary values to numbers.

15.3.3 Incrementing (++) and decrementing (--)
The incrementation operator ++ exists in a prefix version and a suffix version. In both ver-
sions, it destructively adds one to its operand. Therefore, its operand must be a storage
location that can be changed.
The decrementation operator --works the same, but subtracts one from its operand. The
next two examples explain the difference between the prefix and the suffix version.

https://2ality.com/2019/08/remainder-vs-modulo.html

15.3 Arithmetic operators 117

Tbl. 15.3 summarizes the incrementation and decrementation operators.

Table 15.3: Incrementation operators and decrementation operators.

Operator Name Example
v++ Increment ES1 let v=0; [v++, v] → [0, 1]
++v Increment ES1 let v=0; [++v, v] → [1, 1]
v-- Decrement ES1 let v=1; [v--, v] → [1, 0]
--v Decrement ES1 let v=1; [--v, v] → [0, 0]

Next, we’ll look at examples of these operators in use.

Prefix ++ and prefix -- change their operands and then return them.

let foo = 3;
assert.equal(++foo, 4);
assert.equal(foo, 4);

let bar = 3;
assert.equal(--bar, 2);
assert.equal(bar, 2);

Suffix ++ and suffix -- return their operands and then change them.

let foo = 3;
assert.equal(foo++, 3);
assert.equal(foo, 4);

let bar = 3;
assert.equal(bar--, 3);
assert.equal(bar, 2);

15.3.3.1 Operands: not just variables

You can also apply these operators to property values:

const obj = { a: 1 };
++obj.a;
assert.equal(obj.a, 2);

And to Array elements:

const arr = [4];
arr[0]++;
assert.deepEqual(arr, [5]);

Exercise: Number operators
exercises/numbers-math/is_odd_test.mjs

118 15 Numbers

15.4 Converting to number
These are three ways of converting values to numbers:

• Number(value)
• +value
• parseFloat(value) (avoid; different than the other two!)

Recommendation: use the descriptive Number(). Tbl. 15.4 summarizes how it works.

Table 15.4: Converting values to numbers.

x Number(x)

undefined NaN
null +0
boolean false → +0, true → 1
number x (no change)
bigint Throws TypeError
string '' → +0

Other → parsed number, ignoring leading/trailing whitespace
symbol Throws TypeError
object Configurable (e.g. via .valueOf())

Examples:

assert.equal(Number(123.45), 123.45);

assert.equal(Number(''), 0);
assert.equal(Number('\n 123.45 \t'), 123.45);
assert.equal(Number('xyz'), NaN);

How objects are converted to numbers can be configured – for example, by overriding
.valueOf():

> Number({ valueOf() { return 123 } })
123

Exercise: Converting to number
exercises/numbers-math/parse_number_test.mjs

15.5 Error values
Two number values are returned when errors happen:

• NaN
• Infinity

15.6 Error value: NaN 119

15.6 Error value: NaN
NaN is an abbreviation of “not a number”. Ironically, JavaScript considers it to be a num-
ber:

> typeof NaN
'number'

When is NaN returned?

NaN is returned if a number can’t be parsed:

> Number('$$$')
NaN
> Number(undefined)
NaN

NaN is returned if an operation can’t be performed:

> Math.log(-1)
NaN
> Math.sqrt(-1)
NaN

NaN is returned if an operand or argument is NaN (to propagate errors):

> NaN - 3
NaN
> 7 ** NaN
NaN

15.6.1 Checking for NaN
NaN is the only JavaScript value that is not strictly equal to itself:

const n = NaN;
assert.equal(n === n, false);

These are several ways of checking if a value x is NaN:

const x = NaN;

assert.equal(Number.isNaN(x), true); // preferred
assert.equal(Object.is(x, NaN), true);
assert.equal(x !== x, true);

In the last line, we use the comparison quirk to detect NaN.

15.6.2 Finding NaN in Arrays
Some Array methods can’t find NaN:

> [NaN].indexOf(NaN)
-1

120 15 Numbers

Others can:
> [NaN].includes(NaN)
true
> [NaN].findIndex(x => Number.isNaN(x))
0
> [NaN].find(x => Number.isNaN(x))
NaN

Alas, there is no simple rule of thumb. You have to check for eachmethod how it handles
NaN.

15.7 Error value: Infinity
When is the error value Infinity returned?
Infinity is returned if a number is too large:

> Math.pow(2, 1023)
8.98846567431158e+307
> Math.pow(2, 1024)
Infinity

Infinity is returned if there is a division by zero:
> 5 / 0
Infinity
> -5 / 0
-Infinity

15.7.1 Infinity as a default value
Infinity is larger than all other numbers (except NaN), making it a good default value:

function findMinimum(numbers) {
let min = Infinity;
for (const n of numbers) {

if (n < min) min = n;
}
return min;

}

assert.equal(findMinimum([5, -1, 2]), -1);
assert.equal(findMinimum([]), Infinity);

15.7.2 Checking for Infinity
These are two common ways of checking if a value x is Infinity:

const x = Infinity;

15.8 The precision of numbers: careful with decimal fractions 121

assert.equal(x === Infinity, true);
assert.equal(Number.isFinite(x), false);

Exercise: Comparing numbers
exercises/numbers-math/find_max_test.mjs

15.8 The precision of numbers: careful with decimal frac-
tions

Internally, JavaScript floating point numbers are represented with base 2 (according to
the IEEE 754 standard). That means that decimal fractions (base 10) can’t always be
represented precisely:

> 0.1 + 0.2
0.30000000000000004
> 1.3 * 3
3.9000000000000004
> 1.4 * 100000000000000
139999999999999.98

You therefore need to take rounding errors into consideration when performing arith-
metic in JavaScript.
Read on for an explanation of this phenomenon.

Quiz: basic
See quiz app.

15.9 (Advanced)
All remaining sections of this chapter are advanced.

15.10 Background: floating point precision
In JavaScript, computations with numbers don’t always produce correct results – for
example:

> 0.1 + 0.2
0.30000000000000004

Tounderstandwhy,weneed to explore how JavaScript represents floating point numbers
internally. It uses three integers to do so, which take up a total of 64 bits of storage (double
precision):

122 15 Numbers

Component Size Integer range
Sign 1 bit [0, 1]
Fraction 52 bits [0, 252−1]
Exponent 11 bits [−1023, 1024]

The floating point number represented by these integers is computed as follows:
(–1)sign × 0b1.fraction × 2exponent

This representation can’t encode a zero because its second component (involving the
fraction) always has a leading 1. Therefore, a zero is encoded via the special exponent
−1023 and a fraction 0.

15.10.1 A simplified representation of floating point numbers
To make further discussions easier, we simplify the previous representation:

• Instead of base 2 (binary), we use base 10 (decimal) because that’s what most peo-
ple are more familiar with.

• The fraction is a natural number that is interpreted as a fraction (digits after a point).
We switch to a mantissa, an integer that is interpreted as itself. As a consequence,
the exponent is used differently, but its fundamental role doesn’t change.

• As the mantissa is an integer (with its own sign), we don’t need a separate sign,
anymore.

The new representation works like this:
mantissa × 10exponent

Let’s try out this representation for a few floating point numbers.
• For the integer −123, we mainly need the mantissa:

> -123 * (10 ** 0)
-123

• For the number 1.5, we imagine there being a point after the mantissa. We use a
negative exponent to move that point one digit to the left:

> 15 * (10 ** -1)
1.5

• For the number 0.25, we move the point two digits to the left:
> 25 * (10 ** -2)
0.25

Representations with negative exponents can also be written as fractions with positive
exponents in the denominators:

> 15 * (10 ** -1) === 15 / (10 ** 1)
true
> 25 * (10 ** -2) === 25 / (10 ** 2)
true

15.11 Integer numbers in JavaScript 123

These fractions help with understanding why there are numbers that our encoding can-
not represent:

• 1/10 can be represented. It already has the required format: a power of 10 in the
denominator.

• 1/2 can be represented as 5/10. We turned the 2 in the denominator into a power
of 10 by multiplying the numerator and denominator by 5.

• 1/4 can be represented as 25/100. We turned the 4 in the denominator into a power
of 10 by multiplying the numerator and denominator by 25.

• 1/3 cannot be represented. There is no way to turn the denominator into a power
of 10. (The prime factors of 10 are 2 and 5. Therefore, any denominator that only
has these prime factors can be converted to a power of 10, by multiplying both the
numerator and denominator by enough twos and fives. If a denominator has a
different prime factor, then there’s nothing we can do.)

To conclude our excursion, we switch back to base 2:

• 0.5 = 1/2 can be represented with base 2 because the denominator is already a
power of 2.

• 0.25 = 1/4 can be represented with base 2 because the denominator is already a
power of 2.

• 0.1 = 1/10 cannot be represented because the denominator cannot be converted
to a power of 2.

• 0.2 = 2/10 cannot be represented because the denominator cannot be converted
to a power of 2.

Now we can see why 0.1 + 0.2 doesn’t produce a correct result: internally, neither of
the two operands can be represented precisely.

The only way to compute precisely with decimal fractions is by internally switching to
base 10. For many programming languages, base 2 is the default and base 10 an option.
For example, Java has the class BigDecimal and Python has the module decimal. There
are tentative plans to add something similar to JavaScript: the ECMAScript proposal
“Decimal” is currently at stage 0.

15.11 Integer numbers in JavaScript
Integer numbers are normal (floating point) numbers without decimal fractions:

> 1 === 1.0
true
> Number.isInteger(1.0)
true

In this section, we’ll look at a few tools for working with these pseudo-integers.
JavaScript also supports bigints, which are real integers.

https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.python.org/3/library/decimal.html
https://github.com/tc39/proposals/blob/master/stage-0-proposals.md
https://github.com/tc39/proposals/blob/master/stage-0-proposals.md

124 15 Numbers

15.11.1 Converting to integer
The recommended way of converting numbers to integers is to use one of the rounding
methods of the Math object:

• Math.floor(n): returns the largest integer i ≤ n

> Math.floor(2.1)
2
> Math.floor(2.9)
2

• Math.ceil(n): returns the smallest integer i ≥ n

> Math.ceil(2.1)
3
> Math.ceil(2.9)
3

• Math.round(n): returns the integer that is “closest” to nwith __.5 being rounded
up – for example:

> Math.round(2.4)
2
> Math.round(2.5)
3

• Math.trunc(n): removes any decimal fraction (after the point) that n has, therefore
turning it into an integer.

> Math.trunc(2.1)
2
> Math.trunc(2.9)
2

For more information on rounding, consult §16.3 “Rounding”.

15.11.2 Ranges of integer numbers in JavaScript
These are important ranges of integer numbers in JavaScript:

• Safe integers: can be represented “safely” by JavaScript (more onwhat thatmeans
in the next subsection)

– Precision: 53 bits plus sign
– Range: (−253, 253)

• Array indices
– Precision: 32 bits, unsigned
– Range: [0, 232−1) (excluding the maximum length)
– Typed Arrays have a larger range of 53 bits (safe and unsigned)

• Bitwise operators (bitwise Or, etc.)
– Precision: 32 bits
– Range of unsigned right shift (>>>): unsigned, [0, 232)
– Range of all other bitwise operators: signed, [−231, 231)

15.11 Integer numbers in JavaScript 125

15.11.3 Safe integers
This is the range of integer numbers that are safe in JavaScript (53 bits plus a sign):

[–253–1, 253–1]
An integer is safe if it is represented by exactly one JavaScript number. Given that
JavaScript numbers are encoded as a fraction multiplied by 2 to the power of an
exponent, higher integers can also be represented, but then there are gaps between
them.
For example (18014398509481984 is 254):

> 18014398509481984
18014398509481984
> 18014398509481985
18014398509481984
> 18014398509481986
18014398509481984
> 18014398509481987
18014398509481988

The following properties of Number help determine if an integer is safe:
assert.equal(Number.MAX_SAFE_INTEGER, (2 ** 53) - 1);
assert.equal(Number.MIN_SAFE_INTEGER, -Number.MAX_SAFE_INTEGER);

assert.equal(Number.isSafeInteger(5), true);
assert.equal(Number.isSafeInteger('5'), false);
assert.equal(Number.isSafeInteger(5.1), false);
assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER), true);
assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER+1), false);

Exercise: Detecting safe integers
exercises/numbers-math/is_safe_integer_test.mjs

15.11.3.1 Safe computations
Let’s look at computations involving unsafe integers.
The following result is incorrect and unsafe, even though both of its operands are safe:

> 9007199254740990 + 3
9007199254740992

The following result is safe, but incorrect. The first operand is unsafe; the second operand
is safe:

> 9007199254740995 - 10
9007199254740986

Therefore, the result of an expression a op b is correct if and only if:

126 15 Numbers

isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)

That is, both operands and the result must be safe.

15.12 Bitwise operators
15.12.1 Internally, bitwise operators work with 32-bit integers
Internally, JavaScript’s bitwise operators work with 32-bit integers. They produce their
results in the following steps:

• Input (JavaScript numbers): The 1–2 operands are first converted to JavaScript
numbers (64-bit floating point numbers) and then to 32-bit integers.

• Computation (32-bit integers): The actual operation processes 32-bit integers and
produces a 32-bit integer.

• Output (JavaScript number): Before returning the result, it is converted back to a
JavaScript number.

15.12.1.1 The types of operands and results
For each bitwise operator, this book mentions the types of its operands and its result.
Each type is always one of the following two:

Type Description Size Range
Int32 signed 32-bit integer 32 bits incl. sign [−231, 231)
Uint32 unsigned 32-bit integer 32 bits [0, 232)

Considering the previously mentioned steps, I recommend to pretend that bitwise oper-
ators internally work with unsigned 32-bit integers (step “computation”) and that Int32
andUint32 only affect how JavaScript numbers are converted to and from integers (steps
“input” and “output”).

15.12.1.2 Displaying JavaScript numbers as unsigned 32-bit integers

While exploring the bitwise operators, it occasionally helps to display JavaScript num-
bers as unsigned 32-bit integers in binary notation. That’s what b32() does (whose im-
plementation is shown later):

assert.equal(
b32(-1),
'11111111111111111111111111111111');

assert.equal(
b32(1),
'00000000000000000000000000000001');

assert.equal(
b32(2 ** 31),
'10000000000000000000000000000000');

15.12 Bitwise operators 127

15.12.2 Bitwise Not
Table 15.7: The bitwise Not operator.

Operation Name Type signature
~num Bitwise Not, ones’ complement Int32 → Int32 ES1

The bitwise Not operator (tbl. 15.7) inverts each binary digit of its operand:
> b32(~0b100)
'11111111111111111111111111111011'

This so-called ones’ complement is similar to a negative for some arithmetic operations.
For example, adding an integer to its ones’ complement is always -1:

> 4 + ~4
-1
> -11 + ~-11
-1

15.12.3 Binary bitwise operators

Table 15.8: Binary bitwise operators.

Operation Name Type signature
num1 & num2 Bitwise And Int32 × Int32 → Int32 ES1
num1 ¦ num2 Bitwise Or Int32 × Int32 → Int32 ES1
num1 ^ num2 Bitwise Xor Int32 × Int32 → Int32 ES1

The binary bitwise operators (tbl. 15.8) combine the bits of their operands to produce
their results:

> (0b1010 & 0b0011).toString(2).padStart(4, '0')
'0010'
> (0b1010 | 0b0011).toString(2).padStart(4, '0')
'1011'
> (0b1010 ^ 0b0011).toString(2).padStart(4, '0')
'1001'

15.12.4 Bitwise shift operators

Table 15.9: Bitwise shift operators.

Operation Name Type signature
num << count Left shift Int32 × Uint32 → Int32 ES1
num >> count Signed right shift Int32 × Uint32 → Int32 ES1

128 15 Numbers

Operation Name Type signature
num >>> count Unsigned right shift Uint32 × Uint32 → Uint32 ES1

The shift operators (tbl. 15.9) move binary digits to the left or to the right:
> (0b10 << 1).toString(2)
'100'

>> preserves highest bit, >>> doesn’t:
> b32(0b10000000000000000000000000000010 >> 1)
'11000000000000000000000000000001'
> b32(0b10000000000000000000000000000010 >>> 1)
'01000000000000000000000000000001'

15.12.5 b32(): displaying unsigned 32-bit integers in binary notation
We have now used b32() a few times. The following code is an implementation of it:

/**
* Return a string representing n as a 32-bit unsigned integer,
* in binary notation.
*/
function b32(n) {

// >>> ensures highest bit isn’t interpreted as a sign
return (n >>> 0).toString(2).padStart(32, '0');

}
assert.equal(

b32(6),
'00000000000000000000000000000110');

n >>> 0 means that we are shifting n zero bits to the right. Therefore, in principle, the
>>> operator does nothing, but it still coerces n to an unsigned 32-bit integer:

> 12 >>> 0
12
> -12 >>> 0
4294967284
> (2**32 + 1) >>> 0
1

15.13 Quick reference: numbers
15.13.1 Global functions for numbers
JavaScript has the following four global functions for numbers:

• isFinite()
• isNaN()
• parseFloat()

15.13 Quick reference: numbers 129

• parseInt()

However, it is better to use the corresponding methods of Number (Number.isFinite(),
etc.), which have fewer pitfalls. They were introduced with ES6 and are discussed below.

15.13.2 Static properties of Number
• .EPSILON: number [ES6]

The difference between 1 and the next representable floating point number. In
general, amachine epsilon provides an upper bound for rounding errors in floating
point arithmetic.

– Approximately: 2.2204460492503130808472633361816 × 10-16

• .MAX_SAFE_INTEGER: number [ES6]

The largest integer that JavaScript can represent unambiguously (253−1).
• .MAX_VALUE: number [ES1]

The largest positive finite JavaScript number.
– Approximately: 1.7976931348623157 × 10308

• .MIN_SAFE_INTEGER: number [ES6]

The smallest integer that JavaScript can represent unambiguously (−253+1).
• .MIN_VALUE: number [ES1]

The smallest positive JavaScript number. Approximately 5 × 10−324.
• .NaN: number [ES1]

The same as the global variable NaN.
• .NEGATIVE_INFINITY: number [ES1]

The same as -Number.POSITIVE_INFINITY.
• .POSITIVE_INFINITY: number [ES1]

The same as the global variable Infinity.

15.13.3 Static methods of Number
• .isFinite(num: number): boolean [ES6]

Returns true if num is an actual number (neither Infinity nor -Infinity nor NaN).
> Number.isFinite(Infinity)
false
> Number.isFinite(-Infinity)
false
> Number.isFinite(NaN)
false

https://en.wikipedia.org/wiki/Machine_epsilon

130 15 Numbers

> Number.isFinite(123)
true

• .isInteger(num: number): boolean [ES6]

Returns true if num is a number and does not have a decimal fraction.

> Number.isInteger(-17)
true
> Number.isInteger(33)
true
> Number.isInteger(33.1)
false
> Number.isInteger('33')
false
> Number.isInteger(NaN)
false
> Number.isInteger(Infinity)
false

• .isNaN(num: number): boolean [ES6]

Returns true if num is the value NaN:

> Number.isNaN(NaN)
true
> Number.isNaN(123)
false
> Number.isNaN('abc')
false

• .isSafeInteger(num: number): boolean [ES6]

Returns true if num is a number and unambiguously represents an integer.

• .parseFloat(str: string): number [ES6]

Coerces its parameter to string and parses it as a floating point number. For con-
verting strings to numbers, Number() (which ignores leading and trailing white-
space) is usually a better choice than Number.parseFloat() (which ignores leading
whitespace and illegal trailing characters and can hide problems).

> Number.parseFloat(' 123.4#')
123.4
> Number(' 123.4#')
NaN

• .parseInt(str: string, radix=10): number [ES6]

Coerces its parameter to string and parses it as an integer, ignoring leading white-
space and illegal trailing characters:

> Number.parseInt(' 123#')
123

15.13 Quick reference: numbers 131

The parameter radix specifies the base of the number to be parsed:
> Number.parseInt('101', 2)
5
> Number.parseInt('FF', 16)
255

Do not use this method to convert numbers to integers: coercing to string is ineffi-
cient. And stopping before the first non-digit is not a good algorithm for removing
the fraction of a number. Here is an example where it goes wrong:

> Number.parseInt(1e21, 10) // wrong
1

It is better to use one of the rounding functions of Math to convert a number to an
integer:

> Math.trunc(1e21) // correct
1e+21

15.13.4 Methods of Number.prototype
(Number.prototype is where the methods of numbers are stored.)

• .toExponential(fractionDigits?: number): string [ES3]

Returns a string that represents the number via exponential notation. With frac-
tionDigits, you can specify, how many digits should be shown of the number
that is multiplied with the exponent (the default is to show as many digits as nec-
essary).
Example: number too small to get a positive exponent via .toString().

> 1234..toString()
'1234'

> 1234..toExponential() // 3 fraction digits
'1.234e+3'
> 1234..toExponential(5)
'1.23400e+3'
> 1234..toExponential(1)
'1.2e+3'

Example: fraction not small enough to get a negative exponent via .toString().
> 0.003.toString()
'0.003'
> 0.003.toExponential()
'3e-3'

• .toFixed(fractionDigits=0): string [ES3]

Returns an exponent-free representation of the number, rounded to fractionDig-
its digits.

132 15 Numbers

> 0.00000012.toString() // with exponent
'1.2e-7'

> 0.00000012.toFixed(10) // no exponent
'0.0000001200'
> 0.00000012.toFixed()
'0'

If the number is 1021 or greater, even .toFixed() uses an exponent:

> (10 ** 21).toFixed()
'1e+21'

• .toPrecision(precision?: number): string [ES3]

Works like .toString(), but precision specifies how many digits should be
shown. If precision is missing, .toString() is used.

> 1234..toPrecision(3) // requires exponential notation
'1.23e+3'

> 1234..toPrecision(4)
'1234'

> 1234..toPrecision(5)
'1234.0'

> 1.234.toPrecision(3)
'1.23'

• .toString(radix=10): string [ES1]

Returns a string representation of the number.

By default, you get a base 10 numeral as a result:

> 123.456.toString()
'123.456'

If you want the numeral to have a different base, you can specify it via radix:

> 4..toString(2) // binary (base 2)
'100'
> 4.5.toString(2)
'100.1'

> 255..toString(16) // hexadecimal (base 16)
'ff'
> 255.66796875.toString(16)
'ff.ab'

> 1234567890..toString(36)
'kf12oi'

15.13 Quick reference: numbers 133

parseInt() provides the inverse operation: it converts a string that contains an
integer (no fraction!) numeral with a given base, to a number.

> parseInt('kf12oi', 36)
1234567890

15.13.5 Sources
• Wikipedia
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

Quiz: advanced
See quiz app.

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

134 15 Numbers

Chapter 16

Math

Contents
16.1 Data properties . 135
16.2 Exponents, roots, logarithms . 136
16.3 Rounding . 137
16.4 Trigonometric Functions . 138
16.5 Various other functions . 140
16.6 Sources . 141

Math is an object with data properties and methods for processing numbers. You can see
it as a poor man’s module: It was created long before JavaScript had modules.

16.1 Data properties
• Math.E: number [ES1]

Euler’s number, base of the natural logarithms, approximately 2.7182818284590452354.

• Math.LN10: number [ES1]

The natural logarithm of 10, approximately 2.302585092994046.

• Math.LN2: number [ES1]

The natural logarithm of 2, approximately 0.6931471805599453.

• Math.LOG10E: number [ES1]

The logarithm of e to base 10, approximately 0.4342944819032518.

• Math.LOG2E: number [ES1]

The logarithm of e to base 2, approximately 1.4426950408889634.

• Math.PI: number [ES1]

135

136 16 Math

The mathematical constant π, ratio of a circle’s circumference to its diameter, ap-
proximately 3.1415926535897932.

• Math.SQRT1_2: number [ES1]

The square root of 1/2, approximately 0.7071067811865476.
• Math.SQRT2: number [ES1]

The square root of 2, approximately 1.4142135623730951.

16.2 Exponents, roots, logarithms
• Math.cbrt(x: number): number [ES6]

Returns the cube root of x.
> Math.cbrt(8)
2

• Math.exp(x: number): number [ES1]

Returns ex (e being Euler’s number). The inverse of Math.log().
> Math.exp(0)
1
> Math.exp(1) === Math.E
true

• Math.expm1(x: number): number [ES6]

Returns Math.exp(x)-1. The inverse of Math.log1p(). Very small numbers (frac-
tions close to 0) are represented with a higher precision. Therefore, this function
returns more precise values whenever .exp() returns values close to 1.

• Math.log(x: number): number [ES1]

Returns the natural logarithm of x (to base e, Euler’s number). The inverse of
Math.exp().

> Math.log(1)
0
> Math.log(Math.E)
1
> Math.log(Math.E ** 2)
2

• Math.log1p(x: number): number [ES6]

Returns Math.log(1 + x). The inverse of Math.expm1(). Very small numbers
(fractions close to 0) are represented with a higher precision. Therefore, you can
provide this function with a more precise argument whenever the argument for
.log() is close to 1.

• Math.log10(x: number): number [ES6]

16.3 Rounding 137

Returns the logarithm of x to base 10. The inverse of 10 ** x.

> Math.log10(1)
0
> Math.log10(10)
1
> Math.log10(100)
2

• Math.log2(x: number): number [ES6]

Returns the logarithm of x to base 2. The inverse of 2 ** x.

> Math.log2(1)
0
> Math.log2(2)
1
> Math.log2(4)
2

• Math.pow(x: number, y: number): number [ES1]

Returns xy, x to the power of y. The same as x ** y.

> Math.pow(2, 3)
8
> Math.pow(25, 0.5)
5

• Math.sqrt(x: number): number [ES1]

Returns the square root of x. The inverse of x ** 2.

> Math.sqrt(9)
3

16.3 Rounding
Rounding means converting an arbitrary number to an integer (a number without a dec-
imal fraction). The following functions implement different approaches to rounding.

• Math.ceil(x: number): number [ES1]

Returns the smallest (closest to −∞) integer i with x ≤ i.

> Math.ceil(2.1)
3
> Math.ceil(2.9)
3

• Math.floor(x: number): number [ES1]

Returns the largest (closest to +∞) integer i with i ≤ x.

138 16 Math

> Math.floor(2.1)
2
> Math.floor(2.9)
2

• Math.round(x: number): number [ES1]

Returns the integer that is closest to x. If the decimal fraction of x is .5 then
.round() rounds up (to the integer closer to positive infinity):

> Math.round(2.4)
2
> Math.round(2.5)
3

• Math.trunc(x: number): number [ES6]

Removes the decimal fraction of x and returns the resulting integer.
> Math.trunc(2.1)
2
> Math.trunc(2.9)
2

Tbl. 16.1 shows the results of the rounding functions for a few representative inputs.

Table 16.1: Rounding functions of Math. Note how things change with
negative numbers because “larger” always means “closer to positive in-
finity”.

-2.9 -2.5 -2.1 2.1 2.5 2.9

Math.floor -3 -3 -3 2 2 2
Math.ceil -2 -2 -2 3 3 3
Math.round -3 -2 -2 2 3 3
Math.trunc -2 -2 -2 2 2 2

16.4 Trigonometric Functions
All angles are specified in radians. Use the following two functions to convert between
degrees and radians.

function degreesToRadians(degrees) {
return degrees / 180 * Math.PI;

}
assert.equal(degreesToRadians(90), Math.PI/2);

function radiansToDegrees(radians) {
return radians / Math.PI * 180;

}
assert.equal(radiansToDegrees(Math.PI), 180);

16.4 Trigonometric Functions 139

• Math.acos(x: number): number [ES1]

Returns the arc cosine (inverse cosine) of x.

> Math.acos(0)
1.5707963267948966
> Math.acos(1)
0

• Math.acosh(x: number): number [ES6]

Returns the inverse hyperbolic cosine of x.

• Math.asin(x: number): number [ES1]

Returns the arc sine (inverse sine) of x.

> Math.asin(0)
0
> Math.asin(1)
1.5707963267948966

• Math.asinh(x: number): number [ES6]

Returns the inverse hyperbolic sine of x.

• Math.atan(x: number): number [ES1]

Returns the arc tangent (inverse tangent) of x.

• Math.atanh(x: number): number [ES6]

Returns the inverse hyperbolic tangent of x.

• Math.atan2(y: number, x: number): number [ES1]

Returns the arc tangent of the quotient y/x.

• Math.cos(x: number): number [ES1]

Returns the cosine of x.

> Math.cos(0)
1
> Math.cos(Math.PI)
-1

• Math.cosh(x: number): number [ES6]

Returns the hyperbolic cosine of x.

• Math.hypot(...values: number[]): number [ES6]

Returns the square root of the sum of the squares of values (Pythagoras’ theorem):

> Math.hypot(3, 4)
5

140 16 Math

• Math.sin(x: number): number [ES1]

Returns the sine of x.
> Math.sin(0)
0
> Math.sin(Math.PI / 2)
1

• Math.sinh(x: number): number [ES6]

Returns the hyperbolic sine of x.
• Math.tan(x: number): number [ES1]

Returns the tangent of x.
> Math.tan(0)
0
> Math.tan(1)
1.5574077246549023

• Math.tanh(x: number): number; [ES6]

Returns the hyperbolic tangent of x.

16.5 Various other functions
• Math.abs(x: number): number [ES1]

Returns the absolute value of x.
> Math.abs(3)
3
> Math.abs(-3)
3
> Math.abs(0)
0

• Math.clz32(x: number): number [ES6]

Counts the leading zero bits in the 32-bit integer x. Used in DSP algorithms.
> Math.clz32(0b01000000000000000000000000000000)
1
> Math.clz32(0b00100000000000000000000000000000)
2
> Math.clz32(2)
30
> Math.clz32(1)
31

• Math.max(...values: number[]): number [ES1]

Converts values to numbers and returns the largest one.

16.6 Sources 141

> Math.max(3, -5, 24)
24

• Math.min(...values: number[]): number [ES1]

Converts values to numbers and returns the smallest one.
> Math.min(3, -5, 24)
-5

• Math.random(): number [ES1]

Returns a pseudo-random number n where 0 ≤ n < 1.
Computing a random integer i where 0 ≤ i < max:

function getRandomInteger(max) {
return Math.floor(Math.random() * max);

}

• Math.sign(x: number): number [ES6]

Returns the sign of a number:
> Math.sign(-8)
-1
> Math.sign(0)
0
> Math.sign(3)
1

16.6 Sources
• Wikipedia
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

142 16 Math

Chapter 17

Unicode – a brief introduction
(advanced)

Contents
17.1 Code points vs. code units . 143

17.1.1 Code points . 144
17.1.2 Encoding Unicode code points: UTF-32, UTF-16, UTF-8 144

17.2 Encodings used in web development: UTF-16 and UTF-8 146
17.2.1 Source code internally: UTF-16 146
17.2.2 Strings: UTF-16 . 146
17.2.3 Source code in files: UTF-8 . 146

17.3 Grapheme clusters – the real characters 146

Unicode is a standard for representing and managing text in most of the world’s writing
systems. Virtually all modern software that works with text, supports Unicode. The
standard is maintained by the Unicode Consortium. A new version of the standard is
published every year (with new emojis, etc.). Unicode version 1.0.0 was published in
October 1991.

17.1 Code points vs. code units
Two concepts are crucial for understanding Unicode:

• Code points are numbers that represent Unicode characters.
• Code units are numbers that encode code points, to store or transmit Unicode text.

One or more code units encode a single code point. Each code unit has the same
size, which depends on the encoding format that is used. The most popular format,
UTF-8, has 8-bit code units.

143

144 17 Unicode – a brief introduction (advanced)

17.1.1 Code points
The first version of Unicode had 16-bit code points. Since then, the number of characters
has grown considerably and the size of code points was extended to 21 bits. These 21
bits are partitioned in 17 planes, with 16 bits each:

• Plane 0: Basic Multilingual Plane (BMP), 0x0000–0xFFFF
– Contains characters for almost all modern languages (Latin characters, Asian
characters, etc.) and many symbols.

• Plane 1: Supplementary Multilingual Plane (SMP), 0x10000–0x1FFFF
– Supports historicwriting systems (e.g., Egyptian hieroglyphs and cuneiform)
and additional modern writing systems.

– Supports emojis and many other symbols.
• Plane 2: Supplementary Ideographic Plane (SIP), 0x20000–0x2FFFF

– Contains additional CJK (Chinese, Japanese, Korean) ideographs.
• Plane 3–13: Unassigned
• Plane 14: Supplementary Special-Purpose Plane (SSP), 0xE0000–0xEFFFF

– Contains non-graphical characters such as tag characters and glyph variation
selectors.

• Plane 15–16: Supplementary Private Use Area (S PUA A/B), 0x0F0000–0x10FFFF
– Available for character assignment by parties outside the ISO and the Uni-
code Consortium. Not standardized.

Planes 1-16 are called supplementary planes or astral planes.

Let’s check the code points of a few characters:

> 'A'.codePointAt(0).toString(16)
'41'
> 'ü'.codePointAt(0).toString(16)
'fc'
> 'π'.codePointAt(0).toString(16)
'3c0'
> '☺'.codePointAt(0).toString(16)
'1f642'

The hexadecimal numbers of the code points tell us that the first three characters reside
in plane 0 (within 16 bits), while the emoji resides in plane 1.

17.1.2 Encoding Unicode code points: UTF-32, UTF-16, UTF-8
The main ways of encoding code points are three Unicode Transformation Formats (UTFs):
UTF-32, UTF-16, UTF-8. The number at the end of each format indicates the size (in bits)
of its code units.

17.1.2.1 UTF-32 (Unicode Transformation Format 32)

UTF-32 uses 32 bits to store code units, resulting in one code unit per code point. This
format is the only one with fixed-length encoding; all others use a varying number of code
units to encode a single code point.

17.1 Code points vs. code units 145

17.1.2.2 UTF-16 (Unicode Transformation Format 16)
UTF-16 uses 16-bit code units. It encodes code points as follows:

• The BMP (first 16 bits of Unicode) is stored in single code units.
• Astral planes: The BMP comprises 0x10_000 code points. Given that Unicode has

a total of 0x110_000 code points, we still need to encode the remaining 0x100_000
code points (20 bits). The BMP has two ranges of unassigned code points that
provide the necessary storage:

– Most significant 10 bits (leading surrogate): 0xD800-0xDBFF
– Least significant 10 bits (trailing surrogate): 0xDC00-0xDFFF

In other words, the two hexadecimal digits at the end contribute 8 bits. But we can only
use those 8 bits if a BMP starts with one of the following 2-digit pairs:

• D8, D9, DA, DB
• DC, DD, DE, DF

Per surrogate, we have a choice between 4 pairs, which is where the remaining 2 bits
come from.
As a consequence, each UTF-16 code unit is always either a leading surrogate, a trailing
surrogate, or encodes a BMP code point.
These are two examples of UTF-16-encoded code points:

• Code point 0x03C0 (π) is in the BMP and can therefore be represented by a single
UTF-16 code unit: 0x03C0.

• Code point 0x1F642 (☺) is in an astral plane and represented by two code units:
0xD83D and 0xDE42.

17.1.2.3 UTF-8 (Unicode Transformation Format 8)
UTF-8 has 8-bit code units. It uses 1–4 code units to encode a code point:

Code points Code units
0000–007F 0bbbbbbb (7 bits)
0080–07FF 110bbbbb, 10bbbbbb (5+6 bits)
0800–FFFF 1110bbbb, 10bbbbbb, 10bbbbbb (4+6+6 bits)
10000–1FFFFF 11110bbb, 10bbbbbb, 10bbbbbb, 10bbbbbb (3+6+6+6 bits)

Notes:
• The bit prefix of each code unit tells us:

– Is it first in a series of code units? If yes, how many code units will follow?
– Is it second or later in a series of code units?

• The charactermappings in the 0000–007F range are the same asASCII, which leads
to a degree of backward compatibility with older software.

Three examples:

146 17 Unicode – a brief introduction (advanced)

Character Code point Code units
A 0x0041 01000001
π 0x03C0 11001111, 10000000
☺ 0x1F642 11110000, 10011111, 10011001, 10000010

17.2 Encodings used in web development: UTF-16 and
UTF-8

The Unicode encoding formats that are used in web development are: UTF-16 and UTF-
8.

17.2.1 Source code internally: UTF-16
The ECMAScript specification internally represents source code as UTF-16.

17.2.2 Strings: UTF-16
The characters in JavaScript strings are based on UTF-16 code units:

> const smiley = '☺';
> smiley.length
2
> smiley === '\uD83D\uDE42' // code units
true

For more information on Unicode and strings, consult §18.6 “Atoms of text: Unicode
characters, JavaScript characters, grapheme clusters”.

17.2.3 Source code in files: UTF-8
HTML and JavaScript are almost always encoded as UTF-8 these days.
For example, this is how HTML files usually start now:

<!doctype html>
<html>
<head>

<meta charset="UTF-8">
···

For HTML modules loaded in web browsers, the standard encoding is also UTF-8.

17.3 Grapheme clusters – the real characters
The concept of a character becomes remarkably complex once you consider many of the
world’s writing systems.
On one hand, there are Unicode characters, as represented by code points.

https://html.spec.whatwg.org/multipage/webappapis.html#fetch-a-single-module-script

17.3 Grapheme clusters – the real characters 147

On the other hand, there are grapheme clusters. A grapheme cluster corresponds most
closely to a symbol displayed on screen or paper. It is defined as “a horizontally seg-
mentable unit of text”. Therefore, official Unicode documents also call it a user-perceived
character. One or more code point characters are needed to encode a grapheme cluster.
For example, the Devanagari kshi is encoded by 4 code points. We use spreading (...) to
split a string into an Array with code point characters (for details, consult §18.6.1 “Work-
ing with code points”):

Flag emojis are also grapheme clusters and composed of two code point characters – for
example, the flag of Japan:

More information on grapheme clusters
For more information, consult “Let’s Stop Ascribing Meaning to Code Points” by
Manish Goregaokar.

Quiz
See quiz app.

https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
https://manishearth.github.io/blog/2017/01/14/stop-ascribing-meaning-to-unicode-code-points/

148 17 Unicode – a brief introduction (advanced)

Chapter 18

Strings

Contents
18.1 Plain string literals . 150

18.1.1 Escaping . 150
18.2 Accessing characters and code points 150

18.2.1 Accessing JavaScript characters 150
18.2.2 Accessing Unicode code point characters via for-of and

spreading . 150
18.3 String concatenation via + . 151
18.4 Converting to string . 151

18.4.1 Stringifying objects . 152
18.4.2 Customizing the stringification of objects 153
18.4.3 An alternate way of stringifying values 153

18.5 Comparing strings . 153
18.6 Atoms of text: Unicode characters, JavaScript characters, grapheme

clusters . 154
18.6.1 Working with code points . 154
18.6.2 Working with code units (char codes) 155
18.6.3 Caveat: grapheme clusters . 156

18.7 Quick reference: Strings . 156
18.7.1 Converting to string . 156
18.7.2 Numeric values of characters 156
18.7.3 String operators . 156
18.7.4 String.prototype: finding and matching 157
18.7.5 String.prototype: extracting 159
18.7.6 String.prototype: combining 160
18.7.7 String.prototype: transforming 160
18.7.8 Sources . 163

Strings are primitive values in JavaScript and immutable. That is, string-related opera-
tions always produce new strings and never change existing strings.

149

150 18 Strings

18.1 Plain string literals
Plain string literals are delimited by either single quotes or double quotes:

const str1 = 'abc';
const str2 = "abc";
assert.equal(str1, str2);

Single quotes are used more often because it makes it easier to mention HTML, where
double quotes are preferred.
The next chapter covers template literals, which give you:

• String interpolation
• Multiple lines
• Raw string literals (backslash has no special meaning)

18.1.1 Escaping
The backslash lets you create special characters:

• Unix line break: '\n'
• Windows line break: '\r\n'
• Tab: '\t'
• Backslash: '\\'

The backslash also lets you use the delimiter of a string literal inside that literal:
assert.equal(

'She said: "Let\'s go!"',
"She said: \"Let's go!\"");

18.2 Accessing characters and code points
18.2.1 Accessing JavaScript characters
JavaScript has no extra data type for characters – characters are always represented as
strings.

const str = 'abc';

// Reading a character at a given index
assert.equal(str[1], 'b');

// Counting the characters in a string:
assert.equal(str.length, 3);

18.2.2 AccessingUnicode code point characters via for-of and spread-
ing

Iterating over strings via for-of or spreading (...) visits Unicode code point characters.
Each code point character is encoded by 1–2 JavaScript characters. Formore information,

18.3 String concatenation via + 151

see §18.6 “Atoms of text: Unicode characters, JavaScript characters, grapheme clusters”.

This is how you iterate over the code point characters of a string via for-of:

for (const ch of 'x☺y') {
console.log(ch);

}
// Output:
// 'x'
// '☺'
// 'y'

And this is how you convert a string into anArray of code point characters via spreading:

assert.deepEqual([...'x☺y'], ['x', '☺', 'y']);

18.3 String concatenation via +
If at least one operand is a string, the plus operator (+) converts any non-strings to strings
and concatenates the result:

assert.equal(3 + ' times ' + 4, '3 times 4');

The assignment operator += is useful if you want to assemble a string, piece by piece:

let str = ''; // must be `let`!
str += 'Say it';
str += ' one more';
str += ' time';

assert.equal(str, 'Say it one more time');

Concatenating via + is efficient
Using + to assemble strings is quite efficient because most JavaScript engines inter-
nally optimize it.

Exercise: Concatenating strings
exercises/strings/concat_string_array_test.mjs

18.4 Converting to string
These are three ways of converting a value x to a string:

• String(x)
• ''+x
• x.toString() (does not work for undefined and null)

152 18 Strings

Recommendation: use the descriptive and safe String().

Examples:

assert.equal(String(undefined), 'undefined');
assert.equal(String(null), 'null');

assert.equal(String(false), 'false');
assert.equal(String(true), 'true');

assert.equal(String(123.45), '123.45');

Pitfall for booleans: If you convert a boolean to a string via String(), you generally can’t
convert it back via Boolean():

> String(false)
'false'
> Boolean('false')
true

The only string for which Boolean() returns false, is the empty string.

18.4.1 Stringifying objects
Plain objects have a default string representation that is not very useful:

> String({a: 1})
'[object Object]'

Arrays have a better string representation, but it still hides much information:

> String(['a', 'b'])
'a,b'
> String(['a', ['b']])
'a,b'

> String([1, 2])
'1,2'
> String(['1', '2'])
'1,2'

> String([true])
'true'
> String(['true'])
'true'
> String(true)
'true'

Stringifying functions, returns their source code:

> String(function f() {return 4})
'function f() {return 4}'

18.5 Comparing strings 153

18.4.2 Customizing the stringification of objects
You can override the built-in way of stringifying objects by implementing the method
toString():

const obj = {
toString() {

return 'hello';
}

};

assert.equal(String(obj), 'hello');

18.4.3 An alternate way of stringifying values
The JSON data format is a text representation of JavaScript values. Therefore, JSON.
stringify() can also be used to convert values to strings:

> JSON.stringify({a: 1})
'{"a":1}'
> JSON.stringify(['a', ['b']])
'["a",["b"]]'

The caveat is that JSON only supports null, booleans, numbers, strings, Arrays, and
objects (which it always treats as if they were created by object literals).

Tip: The third parameter lets you switch on multiline output and specify how much to
indent – for example:

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));

This statement produces the following output:

{
"first": "Jane",
"last": "Doe"

}

18.5 Comparing strings
Strings can be compared via the following operators:

< <= > >=

There is one important caveat to consider: These operators compare based on the nu-
meric values of JavaScript characters. That means that the order that JavaScript uses for
strings is different from the one used in dictionaries and phone books:

> 'A' < 'B' // ok
true
> 'a' < 'B' // not ok
false

154 18 Strings

> 'ä' < 'b' // not ok
false

Properly comparing text is beyond the scope of this book. It is supported via the ECMA-
Script Internationalization API (Intl).

18.6 Atoms of text: Unicode characters, JavaScript charac-
ters, grapheme clusters

Quick recap of §17 “Unicode – a brief introduction”:
• Unicode characters are represented by code points – numbers which have a range

of 21 bits.
• In JavaScript strings, Unicode is implemented via code units based on the encoding

format UTF-16. Each code unit is a 16-bit number. One to two of code units are
needed to encode a single code point.

– Therefore, each JavaScript character is represented by a code unit. In the
JavaScript standard library, code units are also called char codes. Which is
what they are: numbers for JavaScript characters.

• Grapheme clusters (user-perceived characters) are written symbols, as displayed on
screen or paper. One or more Unicode characters are needed to encode a single
grapheme cluster.

The following code demonstrates that a single Unicode character comprises one or two
JavaScript characters. We count the latter via .length:

// 3 Unicode characters, 3 JavaScript characters:
assert.equal('abc'.length, 3);

// 1 Unicode character, 2 JavaScript characters:
assert.equal('☺'.length, 2);

The following table summarizes the concepts we have just explored:

Entity Numeric representation Size Encoded via
Grapheme cluster 1+ code points
Unicode character Code point 21 bits 1–2 code units
JavaScript character UTF-16 code unit 16 bits –

18.6.1 Working with code points
Let’s explore JavaScript’s tools for working with code points.
A code point escape lets you specify a code point hexadecimally. It produces one or two
JavaScript characters.

> '\u{1F642}'
'☺'

String.fromCodePoint() converts a single code point to 1–2 JavaScript characters:

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Intl

18.6 Atoms of text: Unicode characters, JavaScript characters, grapheme clusters 155

> String.fromCodePoint(0x1F642)
'☺'

.codePointAt() converts 1–2 JavaScript characters to a single code point:

> '☺'.codePointAt(0).toString(16)
'1f642'

You can iterate over a string, which visits Unicode characters (not JavaScript characters).
Iteration is described later in this book. One way of iterating is via a for-of loop:

const str = '☺a';
assert.equal(str.length, 3);

for (const codePointChar of str) {
console.log(codePointChar);

}

// Output:
// '☺'
// 'a'

Spreading (...) into Array literals is also based on iteration and visits Unicode characters:

> [...'☺a']
['☺', 'a']

That makes it a good tool for counting Unicode characters:

> [...'☺a'].length
2
> '☺a'.length
3

18.6.2 Working with code units (char codes)
Indices and lengths of strings are based on JavaScript characters (as represented by UTF-
16 code units).

To specify a code unit hexadecimally, you can use a code unit escape:

> '\uD83D\uDE42'
'☺'

And you can use String.fromCharCode(). Char code is the standard library’s name for
code unit:

> String.fromCharCode(0xD83D) + String.fromCharCode(0xDE42)
'☺'

To get the char code of a character, use .charCodeAt():

> '☺'.charCodeAt(0).toString(16)
'd83d'

156 18 Strings

18.6.3 Caveat: grapheme clusters
When working with text that may be written in any human language, it’s best to split at
the boundaries of grapheme clusters, not at the boundaries of Unicode characters.
TC39 is working on Intl.Segmenter, a proposal for the ECMAScript Internationaliza-
tion API to support Unicode segmentation (along grapheme cluster boundaries, word
boundaries, sentence boundaries, etc.).
Until that proposal becomes a standard, you can use one of several libraries that are
available (do a web search for “JavaScript grapheme”).

18.7 Quick reference: Strings
Strings are immutable; none of the string methods ever modify their strings.

18.7.1 Converting to string
Tbl. 18.2 describes how various values are converted to strings.

Table 18.2: Converting values to strings.

x String(x)

undefined 'undefined'
null 'null'
boolean false → 'false', true → 'true'
number Example: 123 → '123'
bigint Example: 123n → '123'
string x (input, unchanged)
symbol Example: Symbol('abc') → 'Symbol(abc)'
object Configurable via, e.g., toString()

18.7.2 Numeric values of characters
• Char code: represents a JavaScript character numerically. JavaScript’s name for

Unicode code unit.
– Size: 16 bits, unsigned
– Convert number to character: String.fromCharCode() [ES1]

– Convert character to number: string method .charCodeAt() [ES1]

• Code point: represents a Unicode character numerically.
– Size: 21 bits, unsigned (17 planes, 16 bits each)
– Convert number to character: String.fromCodePoint() [ES6]

– Convert character to number: string method .codePointAt() [ES6]

18.7.3 String operators
// Access characters via []
const str = 'abc';

https://github.com/tc39/proposal-intl-segmenter

18.7 Quick reference: Strings 157

assert.equal(str[1], 'b');

// Concatenate strings via +
assert.equal('a' + 'b' + 'c', 'abc');
assert.equal('take ' + 3 + ' oranges', 'take 3 oranges');

18.7.4 String.prototype: finding and matching
(String.prototype is where the methods of strings are stored.)

• .endsWith(searchString: string, endPos=this.length): boolean [ES6]

Returns true if the string would end with searchString if its length were endPos.
Returns false otherwise.

> 'foo.txt'.endsWith('.txt')
true
> 'abcde'.endsWith('cd', 4)
true

• .includes(searchString: string, startPos=0): boolean [ES6]

Returns true if the string contains the searchString and false otherwise. The
search starts at startPos.

> 'abc'.includes('b')
true
> 'abc'.includes('b', 2)
false

• .indexOf(searchString: string, minIndex=0): number [ES1]

Returns the lowest index at which searchString appears within the string or -1,
otherwise. Any returned index will beminIndex‘ or higher.

> 'abab'.indexOf('a')
0
> 'abab'.indexOf('a', 1)
2
> 'abab'.indexOf('c')
-1

• .lastIndexOf(searchString: string, maxIndex=Infinity): number [ES1]

Returns the highest index at which searchString appears within the string or -1,
otherwise. Any returned index will bemaxIndex‘ or lower.

> 'abab'.lastIndexOf('ab', 2)
2
> 'abab'.lastIndexOf('ab', 1)
0
> 'abab'.lastIndexOf('ab')
2

158 18 Strings

• [1 of 2] .match(regExp: string | RegExp): RegExpMatchArray | null [ES3]

If regExp is a regular expression with flag /g not set, then .match() returns the
first match for regExpwithin the string. Or null if there is no match. If regExp is a
string, it is used to create a regular expression (think parameter of new RegExp())
before performing the previously mentioned steps.

The result has the following type:

interface RegExpMatchArray extends Array<string> {
index: number;
input: string;
groups: undefined | {
[key: string]: string

};
}

Numbered capture groups become Array indices (which is why this type extends
Array). Named capture groups (ES2018) become properties of .groups. In this
mode, .match() works like RegExp.prototype.exec().

Examples:

> 'ababb'.match(/a(b+)/)
{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: undefined }
> 'ababb'.match(/a(?<foo>b+)/)
{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: { foo: 'b' } }
> 'abab'.match(/x/)
null

• [2 of 2] .match(regExp: RegExp): string[] | null [ES3]

If flag /g of regExp is set, .match() returns either an Array with all matches or
null if there was no match.

> 'ababb'.match(/a(b+)/g)
['ab', 'abb']
> 'ababb'.match(/a(?<foo>b+)/g)
['ab', 'abb']
> 'abab'.match(/x/g)
null

• .search(regExp: string | RegExp): number [ES3]

Returns the index at which regExp occurs within the string. If regExp is a string, it
is used to create a regular expression (think parameter of new RegExp()).

> 'a2b'.search(/[0-9]/)
1
> 'a2b'.search('[0-9]')
1

• .startsWith(searchString: string, startPos=0): boolean [ES6]

18.7 Quick reference: Strings 159

Returns true if searchString occurs in the string at index startPos. Returns
false otherwise.

> '.gitignore'.startsWith('.')
true
> 'abcde'.startsWith('bc', 1)
true

18.7.5 String.prototype: extracting
• .slice(start=0, end=this.length): string [ES3]

Returns the substring of the string that starts at (including) index start and ends
at (excluding) index end. If an index is negative, it is added to .length before it is
used (-1 becomes this.length-1, etc.).

> 'abc'.slice(1, 3)
'bc'
> 'abc'.slice(1)
'bc'
> 'abc'.slice(-2)
'bc'

• .split(separator: string | RegExp, limit?: number): string[] [ES3]

Splits the string into an Array of substrings – the strings that occur between the
separators. The separator can be a string:

> 'a | b | c'.split('|')
['a ', ' b ', ' c']

It can also be a regular expression:

> 'a : b : c'.split(/ *: */)
['a', 'b', 'c']
> 'a : b : c'.split(/(*):(*)/)
['a', ' ', ' ', 'b', ' ', ' ', 'c']

The last invocation demonstrates that captures made by groups in the regular ex-
pression become elements of the returned Array.

Warning: .split('') splits a string into JavaScript characters. That doesn’t
work well when dealing with astral Unicode characters (which are encoded as
two JavaScript characters). For example, emojis are astral:

> '☺X☺'.split('')
['\uD83D', '\uDE42', 'X', '\uD83D', '\uDE42']

Instead, it is better to use spreading:

> [...'☺X☺']
['☺', 'X', '☺']

• .substring(start: number, end=this.length): string [ES1]

160 18 Strings

Use .slice() instead of this method. .substring() wasn’t implemented consis-
tently in older engines and doesn’t support negative indices.

18.7.6 String.prototype: combining
• .concat(...strings: string[]): string [ES3]

Returns the concatenation of the string and strings. 'a'.concat('b') is equiva-
lent to 'a'+'b'. The latter is much more popular.

> 'ab'.concat('cd', 'ef', 'gh')
'abcdefgh'

• .padEnd(len: number, fillString=' '): string [ES2017]

Appends (fragments of) fillString to the string until it has the desired length len.
If it already has or exceeds len, then it is returned without any changes.

> '#'.padEnd(2)
'# '
> 'abc'.padEnd(2)
'abc'
> '#'.padEnd(5, 'abc')
'#abca'

• .padStart(len: number, fillString=' '): string [ES2017]

Prepends (fragments of) fillString to the string until it has the desired length
len. If it already has or exceeds len, then it is returned without any changes.

> '#'.padStart(2)
' #'
> 'abc'.padStart(2)
'abc'
> '#'.padStart(5, 'abc')
'abca#'

• .repeat(count=0): string [ES6]

Returns the string, concatenated count times.
> '*'.repeat()
''
> '*'.repeat(3)
'***'

18.7.7 String.prototype: transforming
• .normalize(form: 'NFC'|'NFD'|'NFKC'|'NFKD' = 'NFC'): string [ES6]

Normalizes the string according to the Unicode Normalization Forms.
• [1 of 2] .replace(searchValue: string | RegExp, replaceValue: string):

string [ES3]

https://unicode.org/reports/tr15/

18.7 Quick reference: Strings 161

Replace matches of searchValue with replaceValue. If searchValue is a string,
only the first verbatim occurrence is replaced. If searchValue is a regular expres-
sion without flag /g, only the first match is replaced. If searchValue is a regular
expression with /g then all matches are replaced.

> 'x.x.'.replace('.', '#')
'x#x.'
> 'x.x.'.replace(/./, '#')
'#.x.'
> 'x.x.'.replace(/./g, '#')
'####'

Special characters in replaceValue are:

– $$: becomes $
– $n: becomes the capture of numbered group n (alas, $0 stands for the string

'$0', it does not refer to the complete match)
– $&: becomes the complete match
– $`: becomes everything before the match
– $': becomes everything after the match

Examples:

> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$2|')
'a |04| b'
> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$&|')
'a |2020-04| b'
> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$`|')
'a |a | b'

Named capture groups (ES2018) are supported, too:

– $<name> becomes the capture of named group name

Example:

assert.equal(
'a 2020-04 b'.replace(
/(?<year>[0-9]{4})-(?<month>[0-9]{2})/, '|$<month>|'),

'a |04| b');

• [2 of 2] .replace(searchValue: string | RegExp, replacer: (...args: any[])
=> string): string [ES3]

If the second parameter is a function, occurrences are replaced with the strings it
returns. Its parameters args are:

– matched: string. The complete match
– g1: string|undefined. The capture of numbered group 1
– g2: string|undefined. The capture of numbered group 2
– (Etc.)
– offset: number. Where was the match found in the input string?
– input: string. The whole input string

162 18 Strings

const regexp = /([0-9]{4})-([0-9]{2})/;
const replacer = (all, year, month) => '|' + all + '|';
assert.equal(

'a 2020-04 b'.replace(regexp, replacer),
'a |2020-04| b');

Named capture groups (ES2018) are supported, too. If there are any, an argument
is added at the end with an object whose properties contain the captures:

const regexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})/;
const replacer = (...args) => {

const groups=args.pop();
return '|' + groups.month + '|';

};
assert.equal(

'a 2020-04 b'.replace(regexp, replacer),
'a |04| b');

• .toUpperCase(): string [ES1]

Returns a copy of the string in which all lowercase alphabetic characters are con-
verted to uppercase. How well that works for various alphabets, depends on the
JavaScript engine.

> '-a2b-'.toUpperCase()
'-A2B-'
> 'αβγ'.toUpperCase()
'ΑΒΓ'

• .toLowerCase(): string [ES1]

Returns a copy of the string in which all uppercase alphabetic characters are con-
verted to lowercase. How well that works for various alphabets, depends on the
JavaScript engine.

> '-A2B-'.toLowerCase()
'-a2b-'
> 'ΑΒΓ'.toLowerCase()
'αβγ'

• .trim(): string [ES5]

Returns a copy of the string in which all leading and trailing whitespace (spaces,
tabs, line terminators, etc.) is gone.

> '\r\n#\t '.trim()
'#'
> ' abc '.trim()
'abc'

• .trimEnd(): string [ES2019]

Similar to .trim() but only the end of the string is trimmed:

18.7 Quick reference: Strings 163

> ' abc '.trimEnd()
' abc'

• .trimStart(): string [ES2019]

Similar to .trim() but only the beginning of the string is trimmed:
> ' abc '.trimStart()
'abc '

18.7.8 Sources
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

Exercise: Using string methods
exercises/strings/remove_extension_test.mjs

Quiz
See quiz app.

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

164 18 Strings

Chapter 19

Using template literals and
tagged templates

Contents
19.1 Disambiguation: “template” . 165
19.2 Template literals . 166
19.3 Tagged templates . 167

19.3.1 Cooked vs. raw template strings (advanced) 167
19.3.2 Tag function library: lit-html 168
19.3.3 Tag function library: re-template-tag 168
19.3.4 Tag function library: graphql-tag 169

19.4 Raw string literals . 169
19.5 (Advanced) . 169
19.6 Multiline template literals and indentation 170

19.6.1 Fix: template tag for dedenting 170
19.6.2 Fix: .trim() . 171

19.7 Simple templating via template literals 171
19.7.1 A more complex example . 172
19.7.2 Simple HTML-escaping . 173

Before we dig into the two features template literal and tagged template, let’s first examine
the multiple meanings of the term template.

19.1 Disambiguation: “template”
The following three things are significantly different despite all having template in their
names and despite all of them looking similar:

• A text template is a function from data to text. It is frequently used in web devel-
opment and often defined via text files. For example, the following text defines a
template for the library Handlebars:

165

https://handlebarsjs.com

166 19 Using template literals and tagged templates

<div class="entry">
<h1>{{title}}</h1>
<div class="body">
{{body}}

</div>
</div>

This template has two blanks to be filled in: title and body. It is used like this:

// First step: retrieve the template text, e.g. from a text file.
const tmplFunc = Handlebars.compile(TMPL_TEXT); // compile string
const data = {title: 'My page', body: 'Welcome to my page!'};
const html = tmplFunc(data);

• A template literal is similar to a string literal, but has additional features – for exam-
ple, interpolation. It is delimited by backticks:

const num = 5;
assert.equal(`Count: ${num}!`, 'Count: 5!');

• Syntactically, a tagged template is a template literal that follows a function (or rather,
an expression that evaluates to a function). That leads to the function being called.
Its arguments are derived from the contents of the template literal.

const getArgs = (...args) => args;
assert.deepEqual(

getArgs`Count: ${5}!`,
[['Count: ', '!'], 5]);

Note that getArgs() receives both the text of the literal and the data interpolated
via ${}.

19.2 Template literals
A template literal has two new features compared to a normal string literal.

First, it supports string interpolation: if you put a dynamically computed value inside a
${}, it is converted to a string and inserted into the string returned by the literal.

const MAX = 100;
function doSomeWork(x) {

if (x > MAX) {
throw new Error(`At most ${MAX} allowed: ${x}!`);

}
// ···

}
assert.throws(

() => doSomeWork(101),
{message: 'At most 100 allowed: 101!'});

Second, template literals can span multiple lines:

19.3 Tagged templates 167

const str = `this is
a text with
multiple lines`;

Template literals always produce strings.

19.3 Tagged templates
The expression in line A is a tagged template. It is equivalent to invoking tagFunc() with
the arguments listed in the Array in line B.

function tagFunc(...args) {
return args;

}

const setting = 'dark mode';
const value = true;

assert.deepEqual(
tagFunc`Setting ${setting} is ${value}!`, // (A)
[['Setting ', ' is ', '!'], 'dark mode', true] // (B)

);

The function tagFunc before the first backtick is called a tag function. Its arguments are:
• Template strings (first argument): an Arraywith the text fragments surrounding the

interpolations ${}.
– In the example: ['Setting ', ' is ', '!']

• Substitutions (remaining arguments): the interpolated values.
– In the example: 'dark mode' and true

The static (fixed) parts of the literal (the template strings) are kept separate from the
dynamic parts (the substitutions).
A tag function can return arbitrary values.

19.3.1 Cooked vs. raw template strings (advanced)
So far, we have only seen the cooked interpretation of template strings. But tag functions
actually get two interpretations:

• A cooked interpretation where backslashes have special meaning. For example, \t
produces a tab character. This interpretation of the template strings is stored as an
Array in the first argument.

• A raw interpretation where backslashes do not have special meaning. For exam-
ple, \t produces two characters – a backslash and a t. This interpretation of the
template strings is stored in property .raw of the first argument (an Array).

The following tag function cookedRaw uses both interpretations:
function cookedRaw(templateStrings, ...substitutions) {

return {

168 19 Using template literals and tagged templates

cooked: [...templateStrings], // copy just the Array elements
raw: templateStrings.raw,
substitutions,

};
}
assert.deepEqual(

cookedRaw`\tab${'subst'}\newline\\`,
{

cooked: ['\tab', '\newline\\'],
raw: ['\\tab', '\\newline\\\\'],
substitutions: ['subst'],

});

The raw interpretation enables raw string literals via String.raw (described later) and
similar applications.
Tagged templates are great for supporting small embedded languages (so-called domain-
specific languages). We’ll continue with a few examples.

19.3.2 Tag function library: lit-html
lit-html is a templating library that is based on tagged templates and used by the frontend
framework Polymer:

import {html, render} from 'lit-html';

const template = (items) => html`

${
repeat(items,
(item) => item.id,
(item, index) => html`${index}. ${item.name}`

)
}

`;

repeat() is a custom function for looping. Its 2nd parameter produces unique keys for
the values returned by the 3rd parameter. Note the nested tagged template used by that
parameter.

19.3.3 Tag function library: re-template-tag
re-template-tag is a simple library for composing regular expressions. Templates tagged
with re produce regular expressions. Themain benefit is that you can interpolate regular
expressions and plain text via ${} (line A):

const RE_YEAR = re`(?<year>[0-9]{4})`;
const RE_MONTH = re`(?<month>[0-9]{2})`;
const RE_DAY = re`(?<day>[0-9]{2})`;
const RE_DATE = re`/${RE_YEAR}-${RE_MONTH}-${RE_DAY}/u`; // (A)

https://github.com/Polymer/lit-html
https://www.polymer-project.org/
https://www.polymer-project.org/
https://github.com/rauschma/re-template-tag

19.4 Raw string literals 169

const match = RE_DATE.exec('2017-01-27');
assert.equal(match.groups.year, '2017');

19.3.4 Tag function library: graphql-tag
The library graphql-tag lets you create GraphQL queries via tagged templates:

import gql from 'graphql-tag';

const query = gql`
{

user(id: 5) {
firstName
lastName

}
}
`;

Additionally, there are plugins for pre-compiling such queries in Babel, TypeScript, etc.

19.4 Raw string literals
Raw string literals are implemented via the tag function String.raw. They are string
literals where backslashes don’t do anything special (such as escaping characters, etc.):

assert.equal(String.raw`\back`, '\\back');

This helps whenever data contains backslashes – for example, strings with regular ex-
pressions:

const regex1 = /^\./;
const regex2 = new RegExp('^\\.');
const regex3 = new RegExp(String.raw`^\.`);

All three regular expressions are equivalent. With a normal string literal, you have to
write the backslash twice, to escape it for that literal. With a raw string literal, you don’t
have to do that.

Raw string literals are also useful for specifying Windows filename paths:

const WIN_PATH = String.raw`C:\foo\bar`;
assert.equal(WIN_PATH, 'C:\\foo\\bar');

19.5 (Advanced)
All remaining sections are advanced

https://github.com/apollographql/graphql-tag

170 19 Using template literals and tagged templates

19.6 Multiline template literals and indentation
If you put multiline text in template literals, two goals are in conflict: On one hand, the
template literal should be indented to fit inside the source code. On the other hand, the
lines of its content should start in the leftmost column.

For example:

function div(text) {
return `

<div>
${text}

</div>
`;

}
console.log('Output:');
console.log(

div('Hello!')
// Replace spaces with mid-dots:
.replace(/ /g, '·')
// Replace \n with #\n:
.replace(/\n/g, '#\n')

);

Due to the indentation, the template literal fits well into the source code. Alas, the output
is also indented. And we don’t want the return at the beginning and the return plus two
spaces at the end.

Output:
#
····<div>#
······Hello!#
····</div>#
··

There are two ways to fix this: via a tagged template or by trimming the result of the
template literal.

19.6.1 Fix: template tag for dedenting
The first fix is to use a custom template tag that removes the unwanted whitespace. It
uses the first line after the initial line break to determine in which column the text starts
and shortens the indentation everywhere. It also removes the line break at the very begin-
ning and the indentation at the very end. One such template tag is dedent by Desmond
Brand:

import dedent from 'dedent';
function divDedented(text) {

return dedent`
<div>
${text}

https://github.com/dmnd/dedent
https://github.com/dmnd/dedent

19.7 Simple templating via template literals 171

</div>
`.replace(/\n/g, '#\n');

}
console.log('Output:');
console.log(divDedented('Hello!'));

This time, the output is not indented:

Output:
<div>#

Hello!#
</div>

19.6.2 Fix: .trim()
The second fix is quicker, but also dirtier:

function divDedented(text) {
return `

<div>
${text}

</div>
`.trim().replace(/\n/g, '#\n');

}
console.log('Output:');
console.log(divDedented('Hello!'));

The string method .trim() removes the superfluous whitespace at the beginning and at
the end, but the content itself must start in the leftmost column. The advantage of this
solution is that you don’t need a custom tag function. The downside is that it looks ugly.

The output is the same as with dedent:

Output:
<div>#

Hello!#
</div>

19.7 Simple templating via template literals
While template literals look like text templates, it is not immediately obvious how to use
them for (text) templating: A text template gets its data from an object, while a template
literal gets its data from variables. The solution is to use a template literal in the body of
a function whose parameter receives the templating data – for example:

const tmpl = (data) => `Hello ${data.name}!`;
assert.equal(tmpl({name: 'Jane'}), 'Hello Jane!');

172 19 Using template literals and tagged templates

19.7.1 A more complex example
As a more complex example, we’d like to take an Array of addresses and produce an
HTML table. This is the Array:

const addresses = [
{ first: '<Jane>', last: 'Bond' },
{ first: 'Lars', last: '<Croft>' },

];

The function tmpl() that produces the HTML table looks as follows:
1 const tmpl = (addrs) => `
2 <table>
3 ${addrs.map(
4 (addr) => `
5 <tr>
6 <td>${escapeHtml(addr.first)}</td>
7 <td>${escapeHtml(addr.last)}</td>
8 </tr>
9 `.trim()
10).join('')}
11 </table>
12 `.trim();

This code contains two templating functions:
• The first one (line 1) takes addrs, an Array with addresses, and returns a string
with a table.

• The second one (line 4) takes addr, an object containing an address, and returns a
string with a table row. Note the .trim() at the end, which removes unnecessary
whitespace.

The first templating function produces its result by wrapping a table element around an
Array that it joins into a string (line 10). That Array is produced by mapping the second
templating function to each element of addrs (line 3). It therefore contains strings with
table rows.
The helper function escapeHtml() is used to escape special HTML characters (line 6 and
line 7). Its implementation is shown in the next subsection.
Let us call tmpl() with the addresses and log the result:

console.log(tmpl(addresses));

The output is:
<table>

<tr>
<td><Jane></td>
<td>Bond</td>

</tr><tr>
<td>Lars</td>
<td><Croft></td>

19.7 Simple templating via template literals 173

</tr>
</table>

19.7.2 Simple HTML-escaping
The following function escapes plain text so that it is displayed verbatim in HTML:

function escapeHtml(str) {
return str

.replace(/&/g, '&') // first!

.replace(/>/g, '>')

.replace(/</g, '<')

.replace(/"/g, '"')

.replace(/'/g, ''')

.replace(/`/g, '`')
;

}
assert.equal(

escapeHtml('Rock & Roll'), 'Rock & Roll');
assert.equal(

escapeHtml('<blank>'), '<blank>');

Exercise: HTML templating
Exercise with bonus challenge: exercises/template-literals/templating_
test.mjs

Quiz
See quiz app.

174 19 Using template literals and tagged templates

Chapter 20

Symbols

Contents
20.1 Use cases for symbols . 176

20.1.1 Symbols: values for constants 176
20.1.2 Symbols: unique property keys 177

20.2 Publicly known symbols . 178
20.3 Converting symbols . 178

Symbols are primitive values that are created via the factory function Symbol():

const mySymbol = Symbol('mySymbol');

The parameter is optional and provides a description, which is mainly useful for debug-
ging.

On one hand, symbols are like objects in that each value created by Symbol() is unique
and not compared by value:

> Symbol() === Symbol()
false

On the other hand, they also behave like primitive values. They have to be categorized
via typeof:

const sym = Symbol();
assert.equal(typeof sym, 'symbol');

And they can be property keys in objects:

const obj = {
[sym]: 123,

};

175

176 20 Symbols

20.1 Use cases for symbols
The main use cases for symbols, are:

• Values for constants
• Unique property keys

20.1.1 Symbols: values for constants
Let’s assume you want to create constants representing the colors red, orange, yellow,
green, blue, and violet. One simple way of doing so would be to use strings:

const COLOR_BLUE = 'Blue';

On the plus side, logging that constant produces helpful output. On theminus side, there
is a risk of mistaking an unrelated value for a color because two strings with the same
content are considered equal:

const MOOD_BLUE = 'Blue';
assert.equal(COLOR_BLUE, MOOD_BLUE);

We can fix that problem via symbols:
const COLOR_BLUE = Symbol('Blue');
const MOOD_BLUE = Symbol('Blue');

assert.notEqual(COLOR_BLUE, MOOD_BLUE);

Let’s use symbol-valued constants to implement a function:
const COLOR_RED = Symbol('Red');
const COLOR_ORANGE = Symbol('Orange');
const COLOR_YELLOW = Symbol('Yellow');
const COLOR_GREEN = Symbol('Green');
const COLOR_BLUE = Symbol('Blue');
const COLOR_VIOLET = Symbol('Violet');

function getComplement(color) {
switch (color) {

case COLOR_RED:
return COLOR_GREEN;

case COLOR_ORANGE:
return COLOR_BLUE;

case COLOR_YELLOW:
return COLOR_VIOLET;

case COLOR_GREEN:
return COLOR_RED;

case COLOR_BLUE:
return COLOR_ORANGE;

case COLOR_VIOLET:
return COLOR_YELLOW;

default:

20.1 Use cases for symbols 177

throw new Exception('Unknown color: '+color);
}

}
assert.equal(getComplement(COLOR_YELLOW), COLOR_VIOLET);

20.1.2 Symbols: unique property keys
The keys of properties (fields) in objects are used at two levels:

• The program operates at a base level. The keys at that level reflect the problem that
the program solves.

• Libraries and ECMAScript operate at a meta-level. The keys at that level are used
by services operating on base-level data and code. One such key is 'toString'.

The following code demonstrates the difference:
const pt = {

x: 7,
y: 4,
toString() {

return `(${this.x}, ${this.y})`;
},

};
assert.equal(String(pt), '(7, 4)');

Properties .x and .y exist at the base level. They hold the coordinates of the point
represented by pt and are used to solve a problem – computing with points. Method
.toString() exists at a meta-level. It is used by JavaScript to convert this object to a
string.
Meta-level properties must never interfere with base-level properties. That is, their keys
must never overlap. That is difficult when both language and libraries contribute to
the meta-level. For example, it is now impossible to give new meta-level methods sim-
ple names, such as toString because they might clash with existing base-level names.
Python’s solution to this problem is to prefix and suffix special names with two under-
scores: __init__, __iter__, __hash__, etc. However, even with this solution, libraries
can’t have their ownmeta-level properties because those might be in conflict with future
language properties.
Symbols, used as property keys, help us here: Each symbol is unique and a symbol key
never clashes with any other string or symbol key.

20.1.2.1 Example: a library with a meta-level method
As an example, let’s assume we are writing a library that treats objects differently if they
implement a special method. This is what defining a property key for such a method
and implementing it for an object would look like:

const specialMethod = Symbol('specialMethod');
const obj = {

_id: 'kf12oi',

178 20 Symbols

[specialMethod]() { // (A)
return this._id;

}
};
assert.equal(obj[specialMethod](), 'kf12oi');

The square brackets in line A enable us to specify that the method must have the key
specialMethod. More details are explained in §25.6.2 “Computed property keys”.

20.2 Publicly known symbols
Symbols that play special roles within ECMAScript are called publicly known symbols. Ex-
amples include:

• Symbol.iterator: makes an object iterable. It’s the key of a method that returns an
iterator. For more information on this topic, see [content not included].

• Symbol.hasInstance: customizes how instanceofworks. If an object implements
a method with that key, it can be used at the right-hand side of that operator. For
example:

const PrimitiveNull = {
[Symbol.hasInstance](x) {
return x === null;

}
};
assert.equal(null instanceof PrimitiveNull, true);

• Symbol.toStringTag: influences the default .toString()method.
> String({})
'[object Object]'
> String({ [Symbol.toStringTag]: 'is no money' })
'[object is no money]'

Note: It’s usually better to override .toString().

Exercises: Publicly known symbols
• Symbol.toStringTag: exercises/symbols/to_string_tag_test.mjs
• Symbol.hasInstance: exercises/symbols/has_instance_test.mjs

20.3 Converting symbols
What happens if we convert a symbol sym to another primitive type? Tbl. 20.1 has the
answers.

20.3 Converting symbols 179

Table 20.1: The results of converting symbols to other primitive types.

Convert to Explicit conversion Coercion (implicit conv.)
boolean Boolean(sym) → OK !sym → OK
number Number(sym) → TypeError sym*2 → TypeError
string String(sym) → OK ''+sym → TypeError

sym.toString() → OK `${sym}` → TypeError

One key pitfall with symbols is how often exceptions are thrown when converting them
to something else. What is the thinking behind that? First, conversion to number never
makes sense and should be warned about. Second, converting a symbol to a string is
indeed useful for diagnostic output. But it also makes sense to warn about accidentally
turning a symbol into a string (which is a different kind of property key):

const obj = {};
const sym = Symbol();
assert.throws(

() => { obj['__'+sym+'__'] = true },
{ message: 'Cannot convert a Symbol value to a string' });

The downside is that the exceptionsmakeworkingwith symbols more complicated. You
have to explicitly convert symbols when assembling strings via the plus operator:

> const mySymbol = Symbol('mySymbol');
> 'Symbol I used: ' + mySymbol
TypeError: Cannot convert a Symbol value to a string
> 'Symbol I used: ' + String(mySymbol)
'Symbol I used: Symbol(mySymbol)'

Quiz
See quiz app.

180 20 Symbols

Part V

Control flow and data flow

181

Chapter 21

Control flow statements

Contents
21.1 Conditions of control flow statements 184
21.2 Controlling loops: break and continue 184

21.2.1 break . 184
21.2.2 break plus label: leaving any labeled statement 185
21.2.3 continue . 185

21.3 if statements . 186
21.3.1 The syntax of if statements 186

21.4 switch statements . 187
21.4.1 A first example of a switch statement 187
21.4.2 Don’t forget to return or break! 188
21.4.3 Empty case clauses . 188
21.4.4 Checking for illegal values via a default clause 189

21.5 while loops . 189
21.5.1 Examples of while loops . 190

21.6 do-while loops . 190
21.7 for loops . 190

21.7.1 Examples of for loops . 191
21.8 for-of loops . 191

21.8.1 const: for-of vs. for . 192
21.8.2 Iterating over iterables . 192
21.8.3 Iterating over [index, element] pairs of Arrays 192

21.9 for-await-of loops . 193
21.10for-in loops (avoid) . 193

This chapter covers the following control flow statements:
• if statement (ES1)
• switch statement (ES3)
• while loop (ES1)

183

184 21 Control flow statements

• do-while loop (ES3)
• for loop (ES1)
• for-of loop (ES6)
• for-await-of loop (ES2018)
• for-in loop (ES1)

Before we get to the actual control flow statements, let’s take a look at two operators for
controlling loops.

21.1 Conditions of control flow statements
if, while, and do-while have conditions that are, in principle, boolean. However, a
condition only has to be truthy (true if coerced to boolean) in order to be accepted. In
other words, the following two control flow statements are equivalent:

if (value) {}
if (Boolean(value) === true) {}

This is a list of all falsy values:

• undefined, null
• false
• 0, NaN
• 0n
• ''

All other values are truthy. For more information, see §14.2 “Falsy and truthy values”.

21.2 Controlling loops: break and continue

The two operators break and continue can be used to control loops and other statements
while you are inside them.

21.2.1 break

There are two versions of break: one with an operand and one without an operand. The
latter version works inside the following statements: while, do-while, for, for-of, for-
await-of, for-in and switch. It immediately leaves the current statement:

for (const x of ['a', 'b', 'c']) {
console.log(x);
if (x === 'b') break;
console.log('---')

}

// Output:
// 'a'
// '---'
// 'b'

21.2 Controlling loops: break and continue 185

21.2.2 break plus label: leaving any labeled statement
break with an operand works everywhere. Its operand is a label. Labels can be put in
front of any statement, including blocks. break foo leaves the statement whose label is
foo:

foo: { // label
if (condition) break foo; // labeled break
// ···

}

In the following example, we use break with a label to leave a loop differently when we
succeeded (line A). Then we skip what comes directly after the loop, which is where we
end up if we failed.

function findSuffix(stringArray, suffix) {
let result;
search_block: {

for (const str of stringArray) {
if (str.endsWith(suffix)) {
// Success:
result = str;
break search_block; // (A)

}
} // for
// Failure:
result = '(Untitled)';

} // search_block

return { suffix, result };
// Same as: {suffix: suffix, result: result}

}
assert.deepEqual(

findSuffix(['foo.txt', 'bar.html'], '.html'),
{ suffix: '.html', result: 'bar.html' }

);
assert.deepEqual(

findSuffix(['foo.txt', 'bar.html'], '.mjs'),
{ suffix: '.mjs', result: '(Untitled)' }

);

21.2.3 continue

continue only works inside while, do-while, for, for-of, for-await-of, and for-in.
It immediately leaves the current loop iteration and continues with the next one – for
example:

const lines = [
'Normal line',
'# Comment',

186 21 Control flow statements

'Another normal line',
];
for (const line of lines) {

if (line.startsWith('#')) continue;
console.log(line);

}
// Output:
// 'Normal line'
// 'Another normal line'

21.3 if statements
These are two simple if statements: one with just a “then” branch and one with both a
“then” branch and an “else” branch:

if (cond) {
// then branch

}

if (cond) {
// then branch

} else {
// else branch

}

Instead of the block, else can also be followed by another if statement:

if (cond1) {
// ···

} else if (cond2) {
// ···

}

if (cond1) {
// ···

} else if (cond2) {
// ···

} else {
// ···

}

You can continue this chain with more else ifs.

21.3.1 The syntax of if statements
The general syntax of if statements is:

if (cond) «then_statement»
else «else_statement»

21.4 switch statements 187

So far, the then_statement has always been a block, but we can use any statement. That
statement must be terminated with a semicolon:

if (true) console.log('Yes'); else console.log('No');

That means that else if is not its own construct; it’s simply an if statement whose
else_statement is another if statement.

21.4 switch statements
A switch statement looks as follows:

switch («switch_expression») {
«switch_body»

}

The body of switch consists of zero or more case clauses:
case «case_expression»:

«statements»

And, optionally, a default clause:
default:

«statements»

A switch is executed as follows:
• It evaluates the switch expression.
• It jumps to the first case clause whose expression has the same result as the switch

expression.
• Otherwise, if there is no such clause, it jumps to the default clause.
• Otherwise, if there is no default clause, it does nothing.

21.4.1 A first example of a switch statement
Let’s look at an example: The following function converts a number from 1–7 to the name
of a weekday.

function dayOfTheWeek(num) {
switch (num) {

case 1:
return 'Monday';

case 2:
return 'Tuesday';

case 3:
return 'Wednesday';

case 4:
return 'Thursday';

case 5:
return 'Friday';

case 6:

188 21 Control flow statements

return 'Saturday';
case 7:
return 'Sunday';

}
}
assert.equal(dayOfTheWeek(5), 'Friday');

21.4.2 Don’t forget to return or break!
At the end of a case clause, execution continues with the next case clause, unless you
return or break – for example:

function englishToFrench(english) {
let french;
switch (english) {

case 'hello':
french = 'bonjour';

case 'goodbye':
french = 'au revoir';

}
return french;

}
// The result should be 'bonjour'!
assert.equal(englishToFrench('hello'), 'au revoir');

That is, our implementation of dayOfTheWeek() only worked because we used return.
We can fix englishToFrench() by using break:

function englishToFrench(english) {
let french;
switch (english) {

case 'hello':
french = 'bonjour';
break;

case 'goodbye':
french = 'au revoir';
break;

}
return french;

}
assert.equal(englishToFrench('hello'), 'bonjour'); // ok

21.4.3 Empty case clauses
The statements of a case clause can be omitted, which effectively gives us multiple case
expressions per case clause:

function isWeekDay(name) {
switch (name) {

case 'Monday':

21.5 while loops 189

case 'Tuesday':
case 'Wednesday':
case 'Thursday':
case 'Friday':

return true;
case 'Saturday':
case 'Sunday':

return false;
}

}
assert.equal(isWeekDay('Wednesday'), true);
assert.equal(isWeekDay('Sunday'), false);

21.4.4 Checking for illegal values via a default clause
A default clause is jumped to if the switch expression has no other match. That makes
it useful for error checking:

function isWeekDay(name) {
switch (name) {

case 'Monday':
case 'Tuesday':
case 'Wednesday':
case 'Thursday':
case 'Friday':

return true;
case 'Saturday':
case 'Sunday':

return false;
default:

throw new Error('Illegal value: '+name);
}

}
assert.throws(

() => isWeekDay('January'),
{message: 'Illegal value: January'});

Exercises: switch
• exercises/control-flow/number_to_month_test.mjs

• Bonus: exercises/control-flow/is_object_via_switch_test.mjs

21.5 while loops
A while loop has the following syntax:

190 21 Control flow statements

while («condition») {
«statements»

}

Before each loop iteration, while evaluates condition:
• If the result is falsy, the loop is finished.
• If the result is truthy, the while body is executed one more time.

21.5.1 Examples of while loops
The following code uses a while loop. In each loop iteration, it removes the first element
of arr via .shift() and logs it.

const arr = ['a', 'b', 'c'];
while (arr.length > 0) {

const elem = arr.shift(); // remove first element
console.log(elem);

}
// Output:
// 'a'
// 'b'
// 'c'

If the condition always evaluates to true, then while is an infinite loop:
while (true) {

if (Math.random() === 0) break;
}

21.6 do-while loops
The do-while loop works much like while, but it checks its condition after each loop
iteration, not before.

let input;
do {

input = prompt('Enter text:');
console.log(input);

} while (input !== ':q');

prompt() is a global function that is available in web browsers. It prompts the user to
input text and returns it.

21.7 for loops
A for loop has the following syntax:

for («initialization»; «condition»; «post_iteration») {
«statements»

}

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt

21.8 for-of loops 191

The first line is the head of the loop and controls how often the body (the remainder of the
loop) is executed. It has three parts and each of them is optional:

• initialization: sets up variables, etc. for the loop. Variables declared here via
let or const only exist inside the loop.

• condition: This condition is checked before each loop iteration. If it is falsy, the
loop stops.

• post_iteration: This code is executed after each loop iteration.
A for loop is therefore roughly equivalent to the following while loop:

«initialization»
while («condition») {

«statements»
«post_iteration»

}

21.7.1 Examples of for loops
As an example, this is how to count from zero to two via a for loop:

for (let i=0; i<3; i++) {
console.log(i);

}

// Output:
// 0
// 1
// 2

This is how to log the contents of an Array via a for loop:
const arr = ['a', 'b', 'c'];
for (let i=0; i<arr.length; i++) {

console.log(arr[i]);
}

// Output:
// 'a'
// 'b'
// 'c'

If you omit all three parts of the head, you get an infinite loop:
for (;;) {

if (Math.random() === 0) break;
}

21.8 for-of loops
A for-of loop iterates over an iterable – a data container that supports the iteration protocol.
Each iterated value is stored in a variable, as specified in the head:

192 21 Control flow statements

for («iteration_variable» of «iterable») {
«statements»

}

The iteration variable is usually created via a variable declaration:
const iterable = ['hello', 'world'];
for (const elem of iterable) {

console.log(elem);
}
// Output:
// 'hello'
// 'world'

But you can also use a (mutable) variable that already exists:
const iterable = ['hello', 'world'];
let elem;
for (elem of iterable) {

console.log(elem);
}

21.8.1 const: for-of vs. for
Note that in for-of loops you can use const. The iteration variable can still be different
for each iteration (it just can’t change during the iteration). Think of it as a new const
declaration being executed each time in a fresh scope.
In contrast, in for loops you must declare variables via let or var if their values change.

21.8.2 Iterating over iterables
As mentioned before, for-of works with any iterable object, not just with Arrays – for
example, with Sets:

const set = new Set(['hello', 'world']);
for (const elem of set) {

console.log(elem);
}

21.8.3 Iterating over [index, element] pairs of Arrays
Lastly, you can also use for-of to iterate over the [index, element] entries of Arrays:

const arr = ['a', 'b', 'c'];
for (const [index, elem] of arr.entries()) {

console.log(`${index} -> ${elem}`);
}
// Output:
// '0 -> a'
// '1 -> b'
// '2 -> c'

21.9 for-await-of loops 193

With [index, element], we are using destructuring to access Array elements.

Exercise: for-of
exercises/control-flow/array_to_string_test.mjs

21.9 for-await-of loops
for-await-of is like for-of, but it works with asynchronous iterables instead of syn-
chronous ones. And it can only be used inside async functions and async generators.

for await (const item of asyncIterable) {
// ···

}

for-await-of is described in detail in the chapter on asynchronous iteration.

21.10 for-in loops (avoid)

Recommendation: don’t use for-in loops
for-in has several pitfalls. Therefore, it is usually best to avoid it.

This is an example of using for-in properly, which involves boilerplate code (line A):
function getOwnPropertyNames(obj) {

const result = [];
for (const key in obj) {

if ({}.hasOwnProperty.call(obj, key)) { // (A)
result.push(key);

}
}
return result;

}
assert.deepEqual(

getOwnPropertyNames({ a: 1, b:2 }),
['a', 'b']);

assert.deepEqual(
getOwnPropertyNames(['a', 'b']),
['0', '1']); // strings!

We can implement the same functionality without for-in, which is almost always better:
function getOwnPropertyNames(obj) {

const result = [];
for (const key of Object.keys(obj)) {

result.push(key);
}

194 21 Control flow statements

return result;
}

Quiz
See quiz app.

Chapter 22

Exception handling

Contents
22.1 Motivation: throwing and catching exceptions 195
22.2 throw . 196

22.2.1 Options for creating error objects 197
22.3 The try statement . 197

22.3.1 The try block . 197
22.3.2 The catch clause . 197
22.3.3 The finally clause . 198

22.4 Error classes . 199
22.4.1 Properties of error objects . 199

This chapter covers how JavaScript handles exceptions.

Why doesn’t JavaScript throw exceptions more often?
JavaScript didn’t support exceptions until ES3. That explains why they are used
sparingly by the language and its standard library.

22.1 Motivation: throwing and catching exceptions
Consider the following code. It reads profiles stored in files into an Array with instances
of class Profile:

function readProfiles(filePaths) {
const profiles = [];
for (const filePath of filePaths) {

try {
const profile = readOneProfile(filePath);
profiles.push(profile);

195

196 22 Exception handling

} catch (err) { // (A)
console.log('Error in: '+filePath, err);

}
}

}
function readOneProfile(filePath) {

const profile = new Profile();
const file = openFile(filePath);
// ··· (Read the data in `file` into `profile`)
return profile;

}
function openFile(filePath) {

if (!fs.existsSync(filePath)) {
throw new Error('Could not find file '+filePath); // (B)

}
// ··· (Open the file whose path is `filePath`)

}

Let’s examine what happens in line B: An error occurred, but the best place to handle
the problem is not the current location, it’s line A. There, we can skip the current file and
move on to the next one.

Therefore:

• In line B, we use a throw statement to indicate that there was a problem.
• In line A, we use a try-catch statement to handle the problem.

When we throw, the following constructs are active:

readProfiles(···)
for (const filePath of filePaths)

try
readOneProfile(···)

openFile(···)
if (!fs.existsSync(filePath))

throw

One by one, throw exits the nested constructs, until it encounters a try statement. Exe-
cution continues in the catch clause of that try statement.

22.2 throw

This is the syntax of the throw statement:

throw «value»;

Any value can be thrown, but it’s best to throw an instance of Error or its subclasses.

throw new Error('Problem!');

22.3 The try statement 197

22.2.1 Options for creating error objects
• Use class Error. That is less limiting in JavaScript than in a more static language

because you can add your own properties to instances:
const err = new Error('Could not find the file');
err.filePath = filePath;
throw err;

• Use one of JavaScript’s subclasses of Error (which are listed later).
• Subclass Error yourself.

class MyError extends Error {
}
function func() {

throw new MyError('Problem!');
}
assert.throws(

() => func(),
MyError);

22.3 The try statement
The maximal version of the try statement looks as follows:

try {
«try_statements»

} catch (error) {
«catch_statements»

} finally {
«finally_statements»

}

You can combine these clauses as follows:
• try-catch
• try-finally
• try-catch-finally

Since ECMAScript 2019, you can omit the catch parameter (error), if you are not inter-
ested in the value that was thrown.

22.3.1 The try block
The try block can be considered the body of the statement. This is where we execute the
regular code.

22.3.2 The catch clause
If an exception reaches the try block, then it is assigned to the parameter of the catch
clause and the code in that clause is executed. Next, execution normally continues after

198 22 Exception handling

the try statement. That may change if:
• There is a return, break, or throw inside the catch block.
• There is a finally clause (which is always executed before the try statement ends).

The following code demonstrates that the value that is thrown in line A is indeed caught
in line B.

const errorObject = new Error();
function func() {

throw errorObject; // (A)
}

try {
func();

} catch (err) { // (B)
assert.equal(err, errorObject);

}

22.3.3 The finally clause
The code inside the finally clause is always executed at the end of a try statement – no
matter what happens in the try block or the catch clause.
Let’s look at a common use case for finally: You have created a resource and want to
always destroy it when you are done with it, no matter what happens while working
with it. You’d implement that as follows:

const resource = createResource();
try {

// Work with `resource`. Errors may be thrown.
} finally {

resource.destroy();
}

22.3.3.1 finally is always executed
The finally clause is always executed, even if an error is thrown (line A):

let finallyWasExecuted = false;
assert.throws(

() => {
try {
throw new Error(); // (A)

} finally {
finallyWasExecuted = true;

}
},
Error

);
assert.equal(finallyWasExecuted, true);

22.4 Error classes 199

And even if there is a return statement (line A):
let finallyWasExecuted = false;
function func() {

try {
return; // (A)

} finally {
finallyWasExecuted = true;

}
}
func();
assert.equal(finallyWasExecuted, true);

22.4 Error classes
Error is the common superclass of all built-in error classes. It has the following sub-
classes (I’m quoting the ECMAScript specification):

• RangeError: Indicates a value that is not in the set or range of allowable values.
• ReferenceError: Indicate that an invalid reference value has been detected.
• SyntaxError: Indicates that a parsing error has occurred.
• TypeError: is used to indicate an unsuccessful operation when none of the other

NativeError objects are an appropriate indication of the failure cause.
• URIError: Indicates that one of the global URI handling functions was used in a
way that is incompatible with its definition.

22.4.1 Properties of error objects
Consider err, an instance of Error:

const err = new Error('Hello!');
assert.equal(String(err), 'Error: Hello!');

Two properties of err are especially useful:
• .message: contains just the error message.

assert.equal(err.message, 'Hello!');

• .stack: contains a stack trace. It is supported by all mainstream browsers.
assert.equal(
err.stack,
`
Error: Hello!

at ch_exception-handling.mjs:1:13
`.trim());

Exercise: Exception handling

https://tc39.github.io/ecma262/#sec-native-error-types-used-in-this-standard

200 22 Exception handling

exercises/exception-handling/call_function_test.mjs

Quiz
See quiz app.

Chapter 23

Callable values

Contents
23.1 Kinds of functions . 201
23.2 Ordinary functions . 202

23.2.1 Parts of a function declaration 202
23.2.2 Roles played by ordinary functions 203
23.2.3 Names of ordinary functions 203

23.3 Specialized functions . 204
23.3.1 Specialized functions are still functions 204
23.3.2 Recommendation: prefer specialized functions 205
23.3.3 Arrow functions . 205

23.4 More kinds of functions and methods 207
23.5 Returning values from functions and methods 208
23.6 Parameter handling . 209

23.6.1 Terminology: parameters vs. arguments 209
23.6.2 Terminology: callback . 209
23.6.3 Too many or not enough arguments 210
23.6.4 Parameter default values . 210
23.6.5 Rest parameters . 210
23.6.6 Named parameters . 211
23.6.7 Simulating named parameters 212
23.6.8 Spreading (...) into function calls 212

23.7 Dynamically evaluating code: eval(), new Function() (advanced) . 213
23.7.1 eval() . 214
23.7.2 new Function() . 214
23.7.3 Recommendations . 215

23.1 Kinds of functions
JavaScript has two categories of functions:

201

202 23 Callable values

• An ordinary function can play several roles:
– Real function
– Method
– Constructor function

• A specialized function can only play one of those roles – for example:
– An arrow function can only be a real function.
– A method can only be a method.
– A class can only be a constructor function.

The next two sections explain what all of those things mean.

23.2 Ordinary functions
The following code shows three ways of doing (roughly) the same thing: creating an
ordinary function.

// Function declaration (a statement)
function ordinary1(a, b, c) {

// ···
}

// const plus anonymous function expression
const ordinary2 = function (a, b, c) {

// ···
};

// const plus named function expression
const ordinary3 = function myName(a, b, c) {

// `myName` is only accessible in here
};

As we have seen in §10.8 “Declarations: scope and activation”, function declarations are
activated early, while variable declarations (e.g., via const) are not.
The syntax of function declarations and function expressions is very similar. The context
determines which is which. For more information on this kind of syntactic ambiguity,
consult §6.5 “Ambiguous syntax”.

23.2.1 Parts of a function declaration
Let’s examine the parts of a function declaration via an example:

function add(x, y) {
return x + y;

}

• add is the name of the function declaration.
• add(x, y) is the head of the function declaration.
• x and y are the parameters.
• The curly braces ({ and }) and everything between themare the body of the function

declaration.

23.2 Ordinary functions 203

• The return statement explicitly returns a value from the function.

23.2.2 Roles played by ordinary functions
Consider the following function declaration from the previous section:

function add(x, y) {
return x + y;

}

This function declaration creates an ordinary functionwhose name is add. As an ordinary
function, add() can play three roles:

• Real function: invoked via a function call.
assert.equal(add(2, 1), 3);

• Method: stored in property, invoked via a method call.
const obj = { addAsMethod: add };
assert.equal(obj.addAsMethod(2, 4), 6); // (A)

In line A, obj is called the receiver of the method call. It can be accessed via this
inside the method.

• Constructor function/class: invoked via new.
const inst = new add();
assert.equal(inst instanceof add, true);

(As an aside, the names of classes normally start with capital letters.)

Ordinary function vs. real function
In JavaScript, we distinguish:

• The entity ordinary function
• The role real function, as played by an ordinary function

In many other programming languages, the entity function only plays one role –
function. Therefore, the same name function can be used for both.

23.2.3 Names of ordinary functions
The name of a function expression is only accessible inside the function, where the func-
tion can use it to refer to itself (e.g., for self-recursion):

const func = function funcExpr() { return funcExpr };
assert.equal(func(), func);

// The name `funcExpr` only exists inside the function:
assert.throws(() => funcExpr(), ReferenceError);

In contrast, the name of a function declaration is accessible inside the current scope:

204 23 Callable values

function funcDecl() { return funcDecl }

// The name `funcDecl` exists in the current scope
assert.equal(funcDecl(), funcDecl);

23.3 Specialized functions
Specialized functions are single-purpose versions of ordinary functions. Each one of
them specializes in a single role:

• The purpose of an arrow function is to be a real function:
const arrow = () => { return 123 };
assert.equal(arrow(), 123);

• The purpose of a method is to be a method:
const obj = { method() { return 'abc' } };
assert.equal(obj.method(), 'abc');

• The purpose of a class is to be a constructor function:
class MyClass { /* ··· */ }
const inst = new MyClass();

Apart from nicer syntax, each kind of specialized function also supports new features,
making them better at their jobs than ordinary functions.

• Arrow functions are explained later in this chapter.
• Methods are explained in the chapter on single objects.
• Classes are explained in the chapter on classes.

Tbl. 23.1 lists the capabilities of ordinary and specialized functions.

Table 23.1: Capabilities of four kinds of functions. “Lexical this” means
that this is defined by the surroundings of an arrow function, not by
method calls.

Function call Method call Constructor call
Ordinary function (this === undefined) ✔ ✔
Arrow function ✔ (lexical this) ✘
Method (this === undefined) ✔ ✘
Class ✘ ✘ ✔

23.3.1 Specialized functions are still functions
It’s important to note that arrow functions, methods, and classes are still categorized as
functions:

> (() => {}) instanceof Function
true
> ({ method() {} }.method) instanceof Function

23.3 Specialized functions 205

true
> (class SomeClass {}) instanceof Function
true

23.3.2 Recommendation: prefer specialized functions
Normally, you should prefer specialized functions over ordinary functions, especially
classes and methods. The choice between an arrow function and an ordinary function is
less clear-cut, though:

• On one hand, an ordinary function has this as an implicit parameter. That param-
eter is set to undefined during function calls – which is not what you want. An
arrow function treats this like any other variable. For details, see §25.4.6 “Avoid-
ing the pitfalls of this”.

• On the other hand, I like the syntax of a function declaration (which produces an
ordinary function). If you don’t use this inside it, it is mostly equivalent to const
plus arrow function:

function funcDecl(x, y) {
return x * y;

}
const arrowFunc = (x, y) => {

return x * y;
};

23.3.3 Arrow functions
Arrow functions were added to JavaScript for two reasons:

1. To provide a more concise way for creating functions.
2. To make working with real functions easier: You can’t refer to the this of the

surrounding scope inside an ordinary function.
Next, we’ll first look at the syntax of arrow functions and then how they help with this.

23.3.3.1 The syntax of arrow functions
Let’s review the syntax of an anonymous function expression:

const f = function (x, y, z) { return 123 };

The (roughly) equivalent arrow function looks as follows. Arrow functions are expres-
sions.

const f = (x, y, z) => { return 123 };

Here, the body of the arrow function is a block. But it can also be an expression. The
following arrow function works exactly like the previous one.

const f = (x, y, z) => 123;

If an arrow function has only a single parameter and that parameter is an identifier (not
a destructuring pattern) then you can omit the parentheses around the parameter:

206 23 Callable values

const id = x => x;

That is convenient when passing arrow functions as parameters to other functions or
methods:

> [1,2,3].map(x => x+1)
[2, 3, 4]

This previous example demonstrates one benefit of arrow functions – conciseness. If we
perform the same task with a function expression, our code is more verbose:

[1,2,3].map(function (x) { return x+1 });

23.3.3.2 Arrow functions: lexical this

Ordinary functions can be both methods and real functions. Alas, the two roles are in
conflict:

• As each ordinary function can be a method, it has its own this.
• The own this makes it impossible to access the this of the surrounding scope

from inside an ordinary function. And that is inconvenient for real functions.

The following code demonstrates the issue:

const person = {
name: 'Jill',
someMethod() {

const ordinaryFunc = function () {
assert.throws(
() => this.name, // (A)
/^TypeError: Cannot read property 'name' of undefined$/);

};
const arrowFunc = () => {
assert.equal(this.name, 'Jill'); // (B)

};

ordinaryFunc();
arrowFunc();

},
}

In this code, we can observe two ways of handling this:

• Dynamic this: In line A, we try to access the this of .someMethod() from an ordi-
nary function. There, it is shadowed by the function’s own this, which is undefined
(as filled in by the function call). Given that ordinary functions receive their this
via (dynamic) function or method calls, their this is called dynamic.

• Lexical this: In line B, we again try to access the this of .someMethod(). This
time, we succeed because the arrow function does not have its own this. this
is resolved lexically, just like any other variable. That’s why the this of arrow
functions is called lexical.

23.4 More kinds of functions and methods 207

23.3.3.3 Syntax pitfall: returning an object literal from an arrow function
If you want the expression body of an arrow function to be an object literal, you must
put the literal in parentheses:

const func1 = () => ({a: 1});
assert.deepEqual(func1(), { a: 1 });

If you don’t, JavaScript thinks, the arrow function has a block body (that doesn’t return
anything):

const func2 = () => {a: 1};
assert.deepEqual(func2(), undefined);

{a: 1} is interpreted as a blockwith the label a: and the expression statement 1. Without
an explicit return statement, the block body returns undefined.
This pitfall is caused by syntactic ambiguity: object literals and code blocks have the
same syntax. We use the parentheses to tell JavaScript that the body is an expression (an
object literal) and not a statement (a block).
For more information on shadowing this, consult §25.4.5 “this pitfall: accidentally
shadowing this”.

23.4 More kinds of functions and methods

This section is a summary of upcoming content
This section mainly serves as a reference for the current and upcoming chapters.
Don’t worry if you don’t understand everything.

So far, all (real) functions and methods, that we have seen, were:
• Single-result
• Synchronous

Later chapters will cover other modes of programming:
• Iteration treats objects as containers of data (so-called iterables) and provides a stan-

dardized way for retrieving what is inside them. If a function or a method returns
an iterable, it returns multiple values.

• Asynchronous programming deals with handling a long-running computation. You
are notified when the computation is finished and can do something else in be-
tween. The standard pattern for asynchronously delivering single results is called
Promise.

These modes can be combined – for example, there are synchronous iterables and asyn-
chronous iterables.
Several new kinds of functions and methods help with some of the mode combinations:

• Async functions help implement functions that return Promises. There are also
async methods.

208 23 Callable values

• Synchronous generator functions help implement functions that return synchronous
iterables. There are also synchronous generator methods.

• Asynchronous generator functions help implement functions that return asyn-
chronous iterables. There are also asynchronous generator methods.

That leaves us with 4 kinds (2 × 2) of functions and methods:
• Synchronous vs. asynchronous
• Generator vs. single-result

Tbl. 23.2 gives an overview of the syntax for creating these 4 kinds of functions andmeth-
ods.

Table 23.2: Syntax for creating functions and methods. The last column
specifies how many values are produced by an entity.

Result Values
Sync function Sync method
function f() {} { m() {} } value 1
f = function () {}
f = () => {}
Sync generator function Sync gen. method
function* f() {} { * m() {} } iterable 0+
f = function* () {}
Async function Async method
async function f() {} { async m() {} } Promise 1
f = async function () {}
f = async () => {}
Async generator function Async gen. method
async function* f() {} { async * m() {} } async iterable 0+
f = async function* () {}

23.5 Returning values from functions and methods
(Everything mentioned in this section applies to both functions and methods.)
The return statement explicitly returns a value from a function:

function func() {
return 123;

}
assert.equal(func(), 123);

Another example:
function boolToYesNo(bool) {

if (bool) {
return 'Yes';

} else {
return 'No';

23.6 Parameter handling 209

}
}
assert.equal(boolToYesNo(true), 'Yes');
assert.equal(boolToYesNo(false), 'No');

If, at the end of a function, you haven’t returned anything explicitly, JavaScript returns
undefined for you:

function noReturn() {
// No explicit return

}
assert.equal(noReturn(), undefined);

23.6 Parameter handling
Once again, I am only mentioning functions in this section, but everything also applies
to methods.

23.6.1 Terminology: parameters vs. arguments
The term parameter and the term argument basically mean the same thing. If you want to,
you can make the following distinction:

• Parameters are part of a function definition. They are also called formal parameters
and formal arguments.

• Arguments are part of a function call. They are also called actual parameters and
actual arguments.

23.6.2 Terminology: callback
A callback or callback function is a function that is an argument of a function or method
call.
The following is an example of a callback:

const myArray = ['a', 'b'];
const callback = (x) => console.log(x);
myArray.forEach(callback);

// Output:
// 'a'
// 'b'

JavaScript uses the term callback broadly
In other programming languages, the term callback often has a narrower meaning:
it refers to a pattern for delivering results asynchronously, via a function-valued
parameter. In this meaning, the callback (or continuation) is invoked after a function

210 23 Callable values

has completely finished its computation.
Callbacks as an asynchronous pattern, are described in the chapter on asyn-
chronous programming.

23.6.3 Too many or not enough arguments
JavaScript does not complain if a function call provides a different number of arguments
than expected by the function definition:

• Extra arguments are ignored.
• Missing parameters are set to undefined.

For example:

function foo(x, y) {
return [x, y];

}

// Too many arguments:
assert.deepEqual(foo('a', 'b', 'c'), ['a', 'b']);

// The expected number of arguments:
assert.deepEqual(foo('a', 'b'), ['a', 'b']);

// Not enough arguments:
assert.deepEqual(foo('a'), ['a', undefined]);

23.6.4 Parameter default values
Parameter default values specify the value to use if a parameter has not been provided –
for example:

function f(x, y=0) {
return [x, y];

}

assert.deepEqual(f(1), [1, 0]);
assert.deepEqual(f(), [undefined, 0]);

undefined also triggers the default value:

assert.deepEqual(
f(undefined, undefined),
[undefined, 0]);

23.6.5 Rest parameters
A rest parameter is declared by prefixing an identifier with three dots (...). During a
function or method call, it receives an Array with all remaining arguments. If there are
no extra arguments at the end, it is an empty Array – for example:

23.6 Parameter handling 211

function f(x, ...y) {
return [x, y];

}
assert.deepEqual(

f('a', 'b', 'c'),
['a', ['b', 'c']]);

assert.deepEqual(
f(),
[undefined, []]);

23.6.5.1 Enforcing a certain number of arguments via a rest parameter
You can use a rest parameter to enforce a certain number of arguments. Take, for example,
the following function:

function createPoint(x, y) {
return {x, y};

// same as {x: x, y: y}
}

This is how we force callers to always provide two arguments:
function createPoint(...args) {

if (args.length !== 2) {
throw new Error('Please provide exactly 2 arguments!');

}
const [x, y] = args; // (A)
return {x, y};

}

In line A, we access the elements of args via destructuring.

23.6.6 Named parameters
When someone calls a function, the arguments provided by the caller are assigned to the
parameters received by the callee. Two common ways of performing the mapping are:

1. Positional parameters: An argument is assigned to a parameter if they have the
same position. A function call with only positional arguments looks as follows.

selectEntries(3, 20, 2)

2. Named parameters: An argument is assigned to a parameter if they have the same
name. JavaScript doesn’t have named parameters, but you can simulate them. For
example, this is a function call with only (simulated) named arguments:

selectEntries({start: 3, end: 20, step: 2})

Named parameters have several benefits:
• They lead to more self-explanatory code because each argument has a descriptive

label. Just compare the two versions of selectEntries(): with the second one, it
is much easier to see what happens.

212 23 Callable values

• The order of the arguments doesn’t matter (as long as the names are correct).
• Handling more than one optional parameter is more convenient: callers can easily

provide any subset of all optional parameters and don’t have to be aware of the
ones they omit (with positional parameters, you have to fill in preceding optional
parameters, with undefined).

23.6.7 Simulating named parameters
JavaScript doesn’t have real named parameters. The official way of simulating them is
via object literals:

function selectEntries({start=0, end=-1, step=1}) {
return {start, end, step};

}

This function uses destructuring to access the properties of its single parameter. The pat-
tern it uses is an abbreviation for the following pattern:

{start: start=0, end: end=-1, step: step=1}

This destructuring pattern works for empty object literals:
> selectEntries({})
{ start: 0, end: -1, step: 1 }

But it does not work if you call the function without any parameters:
> selectEntries()
TypeError: Cannot destructure property `start` of 'undefined' or 'null'.

You can fix this by providing a default value for the whole pattern. This default value
works the same as default values for simpler parameter definitions: if the parameter is
missing, the default is used.

function selectEntries({start=0, end=-1, step=1} = {}) {
return {start, end, step};

}
assert.deepEqual(

selectEntries(),
{ start: 0, end: -1, step: 1 });

23.6.8 Spreading (...) into function calls
If you put three dots (...) in front of the argument of a function call, then you spread it.
Thatmeans that the argumentmust be an iterable object and the iterated values all become
arguments. In other words, a single argument is expanded into multiple arguments – for
example:

function func(x, y) {
console.log(x);
console.log(y);

}
const someIterable = ['a', 'b'];

23.7 Dynamically evaluating code: eval(), new Function() (advanced) 213

func(...someIterable);
// same as func('a', 'b')

// Output:
// 'a'
// 'b'

Spreading and rest parameters use the same syntax (...), but they serve opposite pur-
poses:

• Rest parameters are used when defining functions or methods. They collect argu-
ments into Arrays.

• Spread arguments are used when calling functions or methods. They turn iterable
objects into arguments.

23.6.8.1 Example: spreading into Math.max()

Math.max() returns the largest one of its zero or more arguments. Alas, it can’t be used
for Arrays, but spreading gives us a way out:

> Math.max(-1, 5, 11, 3)
11
> Math.max(...[-1, 5, 11, 3])
11
> Math.max(-1, ...[-5, 11], 3)
11

23.6.8.2 Example: spreading into Array.prototype.push()

Similarly, the Array method .push() destructively adds its zero or more parameters to
the end of its Array. JavaScript has no method for destructively appending an Array to
another one. Once again, we are saved by spreading:

const arr1 = ['a', 'b'];
const arr2 = ['c', 'd'];

arr1.push(...arr2);
assert.deepEqual(arr1, ['a', 'b', 'c', 'd']);

Exercises: Parameter handling
• Positional parameters: exercises/callables/positional_parameters_

test.mjs
• Named parameters: exercises/callables/named_parameters_test.mjs

23.7 Dynamically evaluating code: eval(), new Func-
tion() (advanced)

Next, we’ll look at two ways of evaluating code dynamically: eval() and new Func-

214 23 Callable values

tion().

23.7.1 eval()

Given a string str with JavaScript code, eval(str) evaluates that code and returns the
result:

> eval('2 ** 4')
16

There are two ways of invoking eval():
• Directly, via a function call. Then the code in its argument is evaluated inside the

current scope.
• Indirectly, not via a function call. Then it evaluates its code in global scope.

“Not via a function call” means “anything that looks different than eval(···)”:
• eval.call(undefined, '···')
• (0, eval)('···') (uses the comma operator)
• globalThis.eval('···')
• const e = eval; e('···')
• Etc.

The following code illustrates the difference:
globalThis.myVariable = 'global';
function func() {

const myVariable = 'local';

// Direct eval
assert.equal(eval('myVariable'), 'local');

// Indirect eval
assert.equal(eval.call(undefined, 'myVariable'), 'global');

}

Evaluating code in global context is safer because the code has access to fewer internals.

23.7.2 new Function()

new Function() creates a function object and is invoked as follows:
const func = new Function('«param_1»', ···, '«param_n»', '«func_body»');

The previous statement is equivalent to the next statement. Note that «param_1», etc.,
are not inside string literals, anymore.

const func = function («param_1», ···, «param_n») {
«func_body»

};

In the next example, we create the same function twice, first via new Function(), then
via a function expression:

23.7 Dynamically evaluating code: eval(), new Function() (advanced) 215

const times1 = new Function('a', 'b', 'return a * b');
const times2 = function (a, b) { return a * b };

new Function() creates non-strict mode functions
Functions created via new Function() are sloppy.

23.7.3 Recommendations
Avoid dynamic evaluation of code as much as you can:

• It’s a security risk because it may enable an attacker to execute arbitrary code with
the privileges of your code.

• It may be switched off – for example, in browsers, via a Content Security Policy.
Very often, JavaScript is dynamic enough so that you don’t need eval() or similar. In
the following example, what we are doing with eval() (line A) can be achieved just as
well without it (line B).

const obj = {a: 1, b: 2};
const propKey = 'b';

assert.equal(eval('obj.' + propKey), 2); // (A)
assert.equal(obj[propKey], 2); // (B)

If you have to dynamically evaluate code:
• Prefer new Function() over eval(): it always executes its code in global context

and a function provides a clean interface to the evaluated code.
• Prefer indirect eval over direct eval: evaluating code in global context is safer.

Quiz
See quiz app.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

216 23 Callable values

Part VI

Modularity

217

Chapter 24

Modules

Contents
24.1 Overview: syntax of ECMAScript modules 220

24.1.1 Exporting . 220
24.1.2 Importing . 220

24.2 JavaScript source code formats . 221
24.2.1 Code before built-in modules was written in ECMAScript 5 . . 221

24.3 Before we had modules, we had scripts 221
24.4 Module systems created prior to ES6 222

24.4.1 Server side: CommonJS modules 223
24.4.2 Client side: AMD (Asynchronous Module Definition) modules 223
24.4.3 Characteristics of JavaScript modules 224

24.5 ECMAScript modules . 224
24.5.1 ES modules: syntax, semantics, loader API 225

24.6 Named exports and imports . 225
24.6.1 Named exports . 225
24.6.2 Named imports . 226
24.6.3 Namespace imports . 227
24.6.4 Named exporting styles: inline versus clause (advanced) . . . 227

24.7 Default exports and imports . 227
24.7.1 The two styles of default-exporting 228
24.7.2 The default export as a named export (advanced) 229

24.8 More details on exporting and importing 230
24.8.1 Imports are read-only views on exports 230
24.8.2 ESM’s transparent support for cyclic imports (advanced) . . . 231

24.9 npm packages . 231
24.9.1 Packages are installed inside a directory node_modules/ 232
24.9.2 Why can npm be used to install frontend libraries? 233

24.10Naming modules . 233
24.11Module specifiers . 234

219

220 24 Modules

24.11.1 Categories of module specifiers 234
24.11.2 ES module specifiers in browsers 234
24.11.3 ES module specifiers on Node.js 235

24.12Loading modules dynamically via import() [ES2020] 236
24.12.1 Example: loading a module dynamically 236
24.12.2 Use cases for import() . 237

24.13import.meta.url . 238
24.13.1 import.meta.url and class URL 238
24.13.2 import.meta.url on Node.js 239

24.14Polyfills: emulating native web platform features (advanced) 240
24.14.1 Sources of this section . 240

24.1 Overview: syntax of ECMAScript modules
24.1.1 Exporting

// Named exports
export function f() {}
export const one = 1;
export {foo, b as bar};

// Default exports
export default function f() {} // declaration with optional name
// Replacement for `const` (there must be exactly one value)
export default 123;

// Re-exporting from another module
export * from './some-module.mjs';
export {foo, b as bar} from './some-module.mjs';

24.1.2 Importing
// Named imports
import {foo, bar as b} from './some-module.mjs';
// Namespace import
import * as someModule from './some-module.mjs';
// Default import
import someModule from './some-module.mjs';

// Combinations:
import someModule, * as someModule from './some-module.mjs';
import someModule, {foo, bar as b} from './some-module.mjs';

// Empty import (for modules with side effects)
import './some-module.mjs';

24.3 Before we had modules, we had scripts 221

24.2 JavaScript source code formats
The current landscape of JavaScript modules is quite diverse: ES6 brought built-in mod-
ules, but the source code formats that came before them, are still around, too. Under-
standing the latter helps understand the former, so let’s investigate. The next sections
describe the following ways of delivering JavaScript source code:

• Scripts are code fragments that browsers run in global scope. They are precursors
of modules.

• CommonJS modules are a module format that is mainly used on servers (e.g., via
Node.js).

• AMD modules are a module format that is mainly used in browsers.
• ECMAScript modules are JavaScript’s built-in module format. It supersedes all pre-
vious formats.

Tbl. 24.1 gives an overview of these code formats. Note that for CommonJS modules
and ECMAScript modules, two filename extensions are commonly used. Which one is
appropriate depends on how youwant to use a file. Details are given later in this chapter.

Table 24.1: Ways of delivering JavaScript source code.

Runs on Loaded Filename ext.
Script browsers async .js
CommonJS module servers sync .js .cjs
AMDmodule browsers async .js
ECMAScript module browsers and servers async .js .mjs

24.2.1 Code before built-in modules was written in ECMAScript 5
Before we get to built-in modules (which were introduced with ES6), all code that you’ll
see, will be written in ES5. Among other things:

• ES5 did not have const and let, only var.
• ES5 did not have arrow functions, only function expressions.

24.3 Before we had modules, we had scripts
Initially, browsers only had scripts – pieces of code that were executed in global scope.
As an example, consider an HTML file that loads script files via the following HTML:

<script src="other-module1.js"></script>
<script src="other-module2.js"></script>
<script src="my-module.js"></script>

The main file is my-module.js, where we simulate a module:

var myModule = (function () { // Open IIFE
// Imports (via global variables)
var importedFunc1 = otherModule1.importedFunc1;

222 24 Modules

var importedFunc2 = otherModule2.importedFunc2;

// Body
function internalFunc() {

// ···
}
function exportedFunc() {

importedFunc1();
importedFunc2();
internalFunc();

}

// Exports (assigned to global variable `myModule`)
return {

exportedFunc: exportedFunc,
};

})(); // Close IIFE

myModule is a global variable that is assigned the result of immediately invoking a func-
tion expression. The function expression starts in the first line. It is invoked in the last
line.

This way of wrapping a code fragment is called immediately invoked function expression
(IIFE, coined by Ben Alman). What do we gain from an IIFE? var is not block-scoped
(like const and let), it is function-scoped: the only way to create new scopes for var-
declared variables is via functions or methods (with const and let, you can use either
functions, methods, or blocks {}). Therefore, the IIFE in the example hides all of the
following variables from global scope andminimizes name clashes: importedFunc1, im-
portedFunc2, internalFunc, exportedFunc.

Note that we are using an IIFE in a particular manner: at the end, we pick what we
want to export and return it via an object literal. That is called the revealing module pattern
(coined by Christian Heilmann).

This way of simulating modules, has several issues:

• Libraries in script files export and import functionality via global variables, which
risks name clashes.

• Dependencies are not stated explicitly, and there is no built-in way for a script to
load the scripts it depends on. Therefore, the web page has to load not just the
scripts that are needed by the page but also the dependencies of those scripts, the
dependencies’ dependencies, etc. And it has to do so in the right order!

24.4 Module systems created prior to ES6
Prior to ECMAScript 6, JavaScript did not have built-in modules. Therefore, the flexi-
ble syntax of the language was used to implement custom module systems within the
language. Two popular ones are:

• CommonJS (targeting the server side)

24.4 Module systems created prior to ES6 223

• AMD (Asynchronous Module Definition, targeting the client side)

24.4.1 Server side: CommonJS modules
The original CommonJS standard for modules was created for server and desktop plat-
forms. It was the foundation of the original Node.js module system, where it achieved
enormous popularity. Contributing to that popularity were the npm package manager
for Node and tools that enabled using Node modules on the client side (browserify, web-
pack, and others).
From now on, CommonJS module means the Node.js version of this standard (which has
a few additional features). This is an example of a CommonJS module:

// Imports
var importedFunc1 = require('./other-module1.js').importedFunc1;
var importedFunc2 = require('./other-module2.js').importedFunc2;

// Body
function internalFunc() {

// ···
}
function exportedFunc() {

importedFunc1();
importedFunc2();
internalFunc();

}

// Exports
module.exports = {

exportedFunc: exportedFunc,
};

CommonJS can be characterized as follows:
• Designed for servers.
• Modules are meant to be loaded synchronously (the importer waits while the im-

ported module is loaded and executed).
• Compact syntax.

24.4.2 Client side: AMD (Asynchronous Module Definition) modules
TheAMDmodule format was created to be easier to use in browsers than the CommonJS
format. Its most popular implementation is RequireJS. The following is an example of
an AMD module.

define(['./other-module1.js', './other-module2.js'],
function (otherModule1, otherModule2) {

var importedFunc1 = otherModule1.importedFunc1;
var importedFunc2 = otherModule2.importedFunc2;

function internalFunc() {

https://requirejs.org

224 24 Modules

// ···
}
function exportedFunc() {
importedFunc1();
importedFunc2();
internalFunc();

}

return {
exportedFunc: exportedFunc,

};
});

AMD can be characterized as follows:
• Designed for browsers.
• Modules are meant to be loaded asynchronously. That’s a crucial requirement for

browsers, where code can’t wait until a module has finished downloading. It has
to be notified once the module is available.

• The syntax is slightly more complicated.
On the plus side, AMD modules can be executed directly. In contrast, CommonJS mod-
ules must either be compiled before deployment or custom source code must be gen-
erated and evaluated dynamically (think eval()). That isn’t always permitted on the
web.

24.4.3 Characteristics of JavaScript modules
Looking at CommonJS and AMD, similarities between JavaScript module systems
emerge:

• There is one module per file.
• Such a file is basically a piece of code that is executed:

– Local scope: The code is executed in a local “module scope”. Therefore, by
default, all of the variables, functions, and classes declared in it are internal
and not global.

– Exports: If you want any declared entity to be exported, you must explicitly
mark it as an export.

– Imports: Each module can import exported entities from other modules.
Those other modules are identified via module specifiers (usually paths,
occasionally full URLs).

• Modules are singletons: Even if a module is imported multiple times, only a single
“instance” of it exists.

• No global variables are used. Instead, module specifiers serve as global IDs.

24.5 ECMAScript modules
ECMAScript modules (ES modules or ESM) were introduced with ES6. They continue the
tradition of JavaScript modules and have all of their aforementioned characteristics. Ad-
ditionally:

24.6 Named exports and imports 225

• With CommonJS, ES modules share the compact syntax and support for cyclic de-
pendencies.

• With AMD, ES modules share being designed for asynchronous loading.
ES modules also have new benefits:

• The syntax is even more compact than CommonJS’s.
• Modules have static structures (which can’t be changed at runtime). That helps
with static checking, optimized access of imports, dead code elimination, and
more.

• Support for cyclic imports is completely transparent.
This is an example of ES module syntax:

import {importedFunc1} from './other-module1.mjs';
import {importedFunc2} from './other-module2.mjs';

function internalFunc() {
···

}

export function exportedFunc() {
importedFunc1();
importedFunc2();
internalFunc();

}

From now on, “module” means “ECMAScript module”.

24.5.1 ES modules: syntax, semantics, loader API
The full standard of ES modules comprises the following parts:

1. Syntax (how code is written): What is a module? How are imports and exports
declared? Etc.

2. Semantics (how code is executed): How are variable bindings exported? How are
imports connected with exports? Etc.

3. A programmatic loader API for configuring module loading.
Parts 1 and 2 were introduced with ES6. Work on part 3 is ongoing.

24.6 Named exports and imports
24.6.1 Named exports
Each module can have zero or more named exports.
As an example, consider the following two files:

lib/my-math.mjs
main.mjs

Module my-math.mjs has two named exports: square and LIGHTSPEED.

226 24 Modules

// Not exported, private to module
function times(a, b) {

return a * b;
}
export function square(x) {

return times(x, x);
}
export const LIGHTSPEED = 299792458;

To export something, we put the keyword export in front of a declaration. Entities that
are not exported are private to a module and can’t be accessed from outside.

24.6.2 Named imports
Module main.mjs has a single named import, square:

import {square} from './lib/my-math.mjs';
assert.equal(square(3), 9);

It can also rename its import:

import {square as sq} from './lib/my-math.mjs';
assert.equal(sq(3), 9);

24.6.2.1 Syntactic pitfall: named importing is not destructuring

Both named importing and destructuring look similar:

import {foo} from './bar.mjs'; // import
const {foo} = require('./bar.mjs'); // destructuring

But they are quite different:

• Imports remain connected with their exports.

• You can destructure again inside a destructuring pattern, but the {} in an import
statement can’t be nested.

• The syntax for renaming is different:

import {foo as f} from './bar.mjs'; // importing
const {foo: f} = require('./bar.mjs'); // destructuring

Rationale: Destructuring is reminiscent of an object literal (including nesting),
while importing evokes the idea of renaming.

Exercise: Named exports
exercises/modules/export_named_test.mjs

24.7 Default exports and imports 227

24.6.3 Namespace imports
Namespace imports are an alternative to named imports. If we namespace-import a mod-
ule, it becomes an object whose properties are the named exports. This is what main.mjs
looks like if we use a namespace import:

import * as myMath from './lib/my-math.mjs';
assert.equal(myMath.square(3), 9);

assert.deepEqual(
Object.keys(myMath), ['LIGHTSPEED', 'square']);

24.6.4 Named exporting styles: inline versus clause (advanced)
The named export style we have seen so far was inline: We exported entities by prefixing
them with the keyword export.
But we can also use separate export clauses. For example, this is what lib/my-math.mjs
looks like with an export clause:

function times(a, b) {
return a * b;

}
function square(x) {

return times(x, x);
}
const LIGHTSPEED = 299792458;

export { square, LIGHTSPEED }; // semicolon!

With an export clause, we can rename before exporting and use different names inter-
nally:

function times(a, b) {
return a * b;

}
function sq(x) {

return times(x, x);
}
const LS = 299792458;

export {
sq as square,
LS as LIGHTSPEED, // trailing comma is optional

};

24.7 Default exports and imports
Eachmodule can have atmost one default export. The idea is that themodule is the default-
exported value.

228 24 Modules

Avoid mixing named exports and default exports
Amodule can have both named exports and a default export, but it’s usually better
to stick to one export style per module.

As an example for default exports, consider the following two files:

my-func.mjs
main.mjs

Module my-func.mjs has a default export:

const GREETING = 'Hello!';
export default function () {

return GREETING;
}

Module main.mjs default-imports the exported function:

import myFunc from './my-func.mjs';
assert.equal(myFunc(), 'Hello!');

Note the syntactic difference: the curly braces around named imports indicate that we
are reaching into the module, while a default import is the module.

What are use cases for default exports?
The most common use case for a default export is a module that contains a single
function or a single class.

24.7.1 The two styles of default-exporting
There are two styles of doing default exports.

First, you can label existing declarations with export default:

export default function foo() {} // no semicolon!
export default class Bar {} // no semicolon!

Second, you can directly default-export values. In that style, export default is itself
much like a declaration.

export default 'abc';
export default foo();
export default /^xyz$/;
export default 5 * 7;
export default { no: false, yes: true };

24.7 Default exports and imports 229

24.7.1.1 Why are there two default export styles?
The reason is that export default can’t be used to label const: constmay define multi-
ple values, but export default needs exactly one value. Consider the following hypo-
thetical code:

// Not legal JavaScript!
export default const foo = 1, bar = 2, baz = 3;

With this code, you don’t know which one of the three values is the default export.

Exercise: Default exports
exercises/modules/export_default_test.mjs

24.7.2 The default export as a named export (advanced)
Internally, a default export is simply a named export whose name is default. As an
example, consider the previous module my-func.mjs with a default export:

const GREETING = 'Hello!';
export default function () {

return GREETING;
}

The following module my-func2.mjs is equivalent to that module:
const GREETING = 'Hello!';
function greet() {

return GREETING;
}

export {
greet as default,

};

For importing, we can use a normal default import:
import myFunc from './my-func2.mjs';
assert.equal(myFunc(), 'Hello!');

Or we can use a named import:
import {default as myFunc} from './my-func2.mjs';
assert.equal(myFunc(), 'Hello!');

The default export is also available via property .default of namespace imports:
import * as mf from './my-func2.mjs';
assert.equal(mf.default(), 'Hello!');

230 24 Modules

Isn’t default illegal as a variable name?
default can’t be a variable name, but it can be an export name and it can be a
property name:

const obj = {
default: 123,

};
assert.equal(obj.default, 123);

24.8 More details on exporting and importing
24.8.1 Imports are read-only views on exports
So far, we have used imports and exports intuitively, and everything seems to have
worked as expected. But now it is time to take a closer look at how imports and exports
are really related.

Consider the following two modules:

counter.mjs
main.mjs

counter.mjs exports a (mutable!) variable and a function:

export let counter = 3;
export function incCounter() {

counter++;
}

main.mjs name-imports both exports. When we use incCounter(), we discover that the
connection to counter is live – we can always access the live state of that variable:

import { counter, incCounter } from './counter.mjs';

// The imported value `counter` is live
assert.equal(counter, 3);
incCounter();
assert.equal(counter, 4);

Note that while the connection is live and we can read counter, we cannot change this
variable (e.g., via counter++).

There are two benefits to handling imports this way:

• It is easier to split modules because previously shared variables can become ex-
ports.

• This behavior is crucial for supporting transparent cyclic imports. Read on for
more information.

24.9 npm packages 231

24.8.2 ESM’s transparent support for cyclic imports (advanced)
ESMsupports cyclic imports transparently. To understand how that is achieved, consider
the following example: fig. 24.1 shows a directed graph of modules importing other
modules. P importing M is the cycle in this case.

M

N O

P Q R S

Figure 24.1: A directed graph of modules importing modules: M imports N and O, N
imports P and Q, etc.

After parsing, these modules are set up in two phases:

• Instantiation: Every module is visited and its imports are connected to its exports.
Before a parent can be instantiated, all of its children must be instantiated.

• Evaluation: The bodies of the modules are executed. Once again, children are
evaluated before parents.

This approach handles cyclic imports correctly, due to two features of ES modules:

• Due to the static structure of ES modules, the exports are already known after
parsing. That makes it possible to instantiate P before its child M: P can already
look up M’s exports.

• When P is evaluated, M hasn’t been evaluated, yet. However, entities in P can
already mention imports from M. They just can’t use them, yet, because the im-
ported values are filled in later. For example, a function in P can access an import
from M. The only limitation is that we must wait until after the evaluation of M,
before calling that function.

Imports being filled in later is enabled by them being “live immutable views” on
exports.

24.9 npm packages
The npm software registry is the dominantway of distributing JavaScript libraries and apps
for Node.js and web browsers. It is managed via the npm package manager (short: npm).
Software is distributed as so-called packages. A package is a directory containing arbitrary
files and a file package.json at the top level that describes the package. For example,
when npm creates an empty package inside a directory foo/, you get this package.json:

{
"name": "foo",
"version": "1.0.0",

232 24 Modules

"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"

}

Some of these properties contain simple metadata:

• name specifies the name of this package. Once it is uploaded to the npm registry, it
can be installed via npm install foo.

• version is used for version management and follows semantic versioning, with
three numbers:

– Major version: is incremented when incompatible API changes are made.
– Minor version: is incremented when functionality is added in a backward
compatible manner.

– Patch version: is incremented when backward compatible changes are made.
• description, keywords, authormake it easier to find packages.
• license clarifies how you can use this package.

Other properties enable advanced configuration:

• main: specifies the module that “is” the package (explained later in this chapter).
• scripts: are commands that you can execute via npm run. For example, the script

test can be executed via npm run test.

For more information on package.json, consult the npm documentation.

24.9.1 Packages are installed inside a directory node_modules/

npm always installs packages inside a directory node_modules. There are usually many
of these directories. Which one npm uses, depends on the directory where one currently
is. For example, if we are inside a directory /tmp/a/b/, npm tries to find a node_modules
in the current directory, its parent directory, the parent directory of the parent, etc. In
other words, it searches the following chain of locations:

• /tmp/a/b/node_modules
• /tmp/a/node_modules
• /tmp/node_modules

When installing a package foo, npm uses the closest node_modules. If, for example, we
are inside /tmp/a/b/ and there is a node_modules in that directory, then npm puts the
package inside the directory:

/tmp/a/b/node_modules/foo/

When importing a module, we can use a special module specifier to tell Node.js that we
want to import it from an installed package. How exactly that works, is explained later.
For now, consider the following example:

https://semver.org
https://docs.npmjs.com/files/package.json

24.10 Naming modules 233

// /home/jane/proj/main.mjs
import * as theModule from 'the-package/the-module.mjs';

To find the-module.mjs (Node.js prefers the filename extension .mjs for ES modules),
Node.js walks up the node_module chain and searches the following locations:

• /home/jane/proj/node_modules/the-package/the-module.mjs
• /home/jane/node_modules/the-package/the-module.mjs
• /home/node_modules/the-package/the-module.mjs

24.9.2 Why can npm be used to install frontend libraries?
Finding installed modules in node_modules directories is only supported on Node.js. So
why can we also use npm to install libraries for browsers?
That is enabled via bundling tools, such as webpack, that compile and optimize code
before it is deployed online. During this compilation process, the code in npm packages
is adapted so that it works in browsers.

24.10 Naming modules
There are no established best practices for naming module files and the variables they
are imported into.
In this chapter, I’m using the following naming style:

• The names of module files are dash-cased and start with lowercase letters:
./my-module.mjs
./some-func.mjs

• The names of namespace imports are lowercased and camel-cased:
import * as myModule from './my-module.mjs';

• The names of default imports are lowercased and camel-cased:
import someFunc from './some-func.mjs';

What are the rationales behind this style?
• npm doesn’t allow uppercase letters in package names (source). Thus, we avoid

camel case, so that “local” files have names that are consistent with those of npm
packages. Using only lowercase letters also minimizes conflicts between file sys-
tems that are case-sensitive and file systems that aren’t: the former distinguish files
whose names have the same letters, but with different cases; the latter don’t.

• There are clear rules for translating dash-cased file names to camel-cased
JavaScript variable names. Due to how we name namespace imports, these rules
work for both namespace imports and default imports.

I also like underscore-casedmodule file names because you can directly use these names
for namespace imports (without any translation):

import * as my_module from './my_module.mjs';

https://docs.npmjs.com/files/package.json#name

234 24 Modules

But that style does not work for default imports: I like underscore-casing for namespace
objects, but it is not a good choice for functions, etc.

24.11 Module specifiers
Module specifiers are the strings that identify modules. They work slightly differently in
browsers and Node.js. Before we can look at the differences, we need to learn about the
different categories of module specifiers.

24.11.1 Categories of module specifiers
In ES modules, we distinguish the following categories of specifiers. These categories
originated with CommonJS modules.

• Relative path: starts with a dot. Examples:
'./some/other/module.mjs'
'../../lib/counter.mjs'

• Absolute path: starts with a slash. Example:
'/home/jane/file-tools.mjs'

• URL: includes a protocol (technically, paths are URLs, too). Examples:
'https://example.com/some-module.mjs'
'file:///home/john/tmp/main.mjs'

• Bare path: does not start with a dot, a slash or a protocol, and consists of a single
filename without an extension. Examples:

'lodash'
'the-package'

• Deep import path: starts with a bare path and has at least one slash. Example:
'the-package/dist/the-module.mjs'

24.11.2 ES module specifiers in browsers
Browsers handle module specifiers as follows:

• Relative paths, absolute paths, and URLs work as expected. They all must point to
real files (in contrast to CommonJS, which lets you omit filename extensions and
more).

• The file name extensions of modules don’t matter, as long as they are served with
the content type text/javascript.

• How bare paths will end up being handled is not yet clear. You will probably
eventually be able to map them to other specifiers via lookup tables.

Note that bundling tools such as webpack, which combine modules into fewer files, are
often less strict with specifiers than browsers. That’s because they operate at build/-
compile time (not at runtime) and can search for files by traversing the file system.

24.11 Module specifiers 235

24.11.3 ES module specifiers on Node.js

Support for ES modules on Node.js is still new
You may have to switch it on via a command line flag. See the Node.js documenta-
tion for details.

Node.js handles module specifiers as follows:

• Relative paths are resolved as they are in web browsers – relative to the path of the
current module.

• Absolute paths are currently not supported. As a workaround, you can use URLs
that start with file:///. You can create such URLs via url.pathToFileURL().

• Only file: is supported as a protocol for URL specifiers.

• A bare path is interpreted as a package name and resolved relative to the closest
node_modules directory. Whatmodule should be loaded, is determined by looking
at property "main" of the package’s package.json (similarly to CommonJS).

• Deep import paths are also resolved relatively to the closest node_modules direc-
tory. They contain file names, so it is always clear which module is meant.

All specifiers, except bare paths, must refer to actual files. That is, ESM does not support
the following CommonJS features:

• CommonJS automatically adds missing filename extensions.

• CommonJS can import a directory foo if there is a foo/package.jsonwith a "main"
property.

• CommonJS can import a directory foo if there is a module foo/index.js.

All built-in Node.js modules are available via bare paths and have named ESM exports
– for example:

import * as path from 'path';
import {strict as assert} from 'assert';

assert.equal(
path.join('a/b/c', '../d'), 'a/b/d');

24.11.3.1 Filename extensions on Node.js

Node.js supports the following default filename extensions:

• .mjs for ES modules
• .cjs for CommonJS modules

The filename extension .js stands for either ESM or CommonJS.Which one it is is config-
ured via the “closest” package.json (in the current directory, the parent directory, etc.).
Using package.json in this manner is independent of packages.

https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html

236 24 Modules

In that package.json, there is a property "type", which has two settings:
• "commonjs" (the default): files with the extension .js or without an extension are

interpreted as CommonJS modules.
• "module": files with the extension .js or without an extension are interpreted as

ESM modules.

24.11.3.2 Interpreting non-file source code as either CommonJS or ESM
Not all source code executed by Node.js comes from files. You can also send it code via
stdin, --eval, and --print. The command line option --input-type lets you specify
how such code is interpreted:

• As CommonJS (the default): --input-type=commonjs
• As ESM: --input-type=module

24.12 Loadingmodules dynamically via import() [ES2020]
So far, the onlyway to import amodule has been via an import statement. That statement
has several limitations:

• Youmust use it at the top level of a module. That is, you can’t, for example, import
something when you are inside a block.

• The module specifier is always fixed. That is, you can’t change what you import
depending on a condition. And you can’t assemble a specifier dynamically.

The import() operator changes that. Let’s look at an example of it being used.

24.12.1 Example: loading a module dynamically
Consider the following files:

lib/my-math.mjs
main1.mjs
main2.mjs

We have already seen module my-math.mjs:
// Not exported, private to module
function times(a, b) {

return a * b;
}
export function square(x) {

return times(x, x);
}
export const LIGHTSPEED = 299792458;

This is what using import() looks like in main1.mjs:
const dir = './lib/';
const moduleSpecifier = dir + 'my-math.mjs';

24.12 Loading modules dynamically via import() [ES2020] 237

function loadConstant() {
return import(moduleSpecifier)
.then(myMath => {

const result = myMath.LIGHTSPEED;
assert.equal(result, 299792458);
return result;

});
}

Method .then() is part of Promises, a mechanism for handling asynchronous results,
which is covered later in this book.
Two things in this code weren’t possible before:

• We are importing inside a function (not at the top level).
• The module specifier comes from a variable.

Next, we’ll implement the exact same functionality in main2.mjs but via a so-called async
function, which provides nicer syntax for Promises.

const dir = './lib/';
const moduleSpecifier = dir + 'my-math.mjs';

async function loadConstant() {
const myMath = await import(moduleSpecifier);
const result = myMath.LIGHTSPEED;
assert.equal(result, 299792458);
return result;

}

Why is import() an operator and not a function?
Even though it works much like a function, import() is an operator: in order to
resolve module specifiers relatively to the current module, it needs to know from
which module it is invoked. A normal function cannot receive this information as
implicitly as an operator can. It would need, for example, a parameter.

24.12.2 Use cases for import()
24.12.2.1 Loading code on demand
Some functionality of web apps doesn’t have to be present when they start, it can be
loaded on demand. Then import() helps because you can put such functionality into
modules – for example:

button.addEventListener('click', event => {
import('./dialogBox.mjs')

.then(dialogBox => {
dialogBox.open();

})
.catch(error => {

238 24 Modules

/* Error handling */
})

});

24.12.2.2 Conditional loading of modules
We may want to load a module depending on whether a condition is true. For example,
a module with a polyfill that makes a new feature available on legacy platforms:

if (isLegacyPlatform()) {
import('./my-polyfill.mjs')

.then(···);
}

24.12.2.3 Computed module specifiers
For applications such as internationalization, it helps if you can dynamically compute
module specifiers:

import(`messages_${getLocale()}.mjs`)
.then(···);

24.13 import.meta.url

The object import.meta holds metadata for the current module. Its most important prop-
erty is import.meta.url, which contains a stringwith the URL of the current module file.
For example:

'https://example.com/code/main.mjs'

24.13.1 import.meta.url and class URL
Class URL is available via a global variable in browsers and onNode.js. You can look up its
full functionality in the Node.js documentation. When working with import.meta.url,
its constructor is especially useful:

new URL(input: string, base?: string|URL)

Parameter input contains theURL to be parsed. It can be relative if the second parameter,
base, is provided.
In other words, this constructor lets us resolve a relative path against a base URL:

> new URL('other.mjs', 'https://example.com/code/main.mjs').href
'https://example.com/code/other.mjs'
> new URL('../other.mjs', 'https://example.com/code/main.mjs').href
'https://example.com/other.mjs'

This is howwe get a URL instance that points to a file data.txt that sits next to the current
module:

const urlOfData = new URL('data.txt', import.meta.url);

https://nodejs.org/api/url.html#url_class_url

24.13 import.meta.url 239

24.13.2 import.meta.url on Node.js
On Node.js, import.meta.url is always a string with a file: URL – for example:

'file:///Users/rauschma/my-module.mjs'

24.13.2.1 Example: reading a sibling file of a module

Many Node.js file system operations accept either strings with paths or instances of URL.
That enables us to read a sibling file data.txt of the current module:

import * as fs from 'fs';
function readData() {

// data.txt sits next to current module
const urlOfData = new URL('data.txt', import.meta.url);
return fs.readFileSync(urlOfData, {encoding: 'UTF-8'});

}

24.13.2.2 Module fs and URLs

For most functions of the module fs, we can refer to files via:

• Paths – in strings or instances of Buffer.
• URLs – in instances of URL (with the protocol file:)

For more information on this topic, see the Node.js API documentation.

24.13.2.3 Converting between file: URLs and paths

The Node.js module url has two functions for converting between file: URLs and
paths:

• fileURLToPath(url: URL|string): string
Converts a file: URL to a path.

• pathToFileURL(path: string): URL
Converts a path to a file: URL.

If you need a path that can be used in the local file system, then property .pathname of
URL instances does not always work:

assert.equal(
new URL('file:///tmp/with%20space.txt').pathname,
'/tmp/with%20space.txt');

Therefore, it is better to use fileURLToPath():

import * as url from 'url';
assert.equal(

url.fileURLToPath('file:///tmp/with%20space.txt'),
'/tmp/with space.txt'); // result on Unix

Similarly, pathToFileURL() does more than just prepend 'file://' to an absolute path.

https://nodejs.org/api/fs.html#fs_file_paths
https://nodejs.org/api/url.html

240 24 Modules

24.14 Polyfills: emulating native web platform features
(advanced)

Backends have polyfills, too
This section is about frontend development and web browsers, but similar ideas
apply to backend development.

Polyfills help with a conflict that we are facing when developing a web application in
JavaScript:

• On one hand, we want to use modern web platform features that make the app
better and/or development easier.

• On the other hand, the app should run on as many browsers as possible.
Given a web platform feature X:

• A polyfill for X is a piece of code. If it is executed on a platform that already has built-
in support for X, it does nothing. Otherwise, it makes the feature available on the
platform. In the latter case, the polyfilled feature is (mostly) indistinguishable from
a native implementation. In order to achieve that, the polyfill usuallymakes global
changes. For example, it may modify global data or configure a global module
loader. Polyfills are often packaged as modules.

– The term polyfill was coined by Remy Sharp.
• A speculative polyfill is a polyfill for a proposed web platform feature (that is not

standardized, yet).
– Alternative term: prollyfill

• A replica of X is a library that reproduces the API and functionality of X locally.
Such a library exists independently of a native (and global) implementation of X.

– Replica is a new term introduced in this section. Alternative term: ponyfill
• There is also the term shim, but it doesn’t have a universally agreed upon definition.

It often means roughly the same as polyfill.
Every time our web applications starts, it must first execute all polyfills for features that
may not be available everywhere. Afterwards, we can be sure that those features are
available natively.

24.14.1 Sources of this section
• “What is a Polyfill?” by Remy Sharp
• Inspiration for the term replica: The Eiffel Tower in Las Vegas
• Useful clarification of “polyfill” and related terms: “Polyfills and the evolution of

the Web”. Edited by Andrew Betts.

Quiz
See quiz app.

https://remysharp.com/2010/10/08/what-is-a-polyfill
https://remysharp.com/2010/10/08/what-is-a-polyfill
https://en.wikipedia.org/wiki/Paris_Las_Vegas
https://www.w3.org/2001/tag/doc/polyfills/
https://www.w3.org/2001/tag/doc/polyfills/

Chapter 25

Single objects

Contents
25.1 What is an object? . 243

25.1.1 Roles of objects: record vs. dictionary 243
25.2 Objects as records . 243

25.2.1 Object literals: properties . 243
25.2.2 Object literals: property value shorthands 244
25.2.3 Getting properties . 244
25.2.4 Setting properties . 244
25.2.5 Object literals: methods . 245
25.2.6 Object literals: accessors . 245

25.3 Spreading into object literals (...) [ES2018] 246
25.3.1 Use case for spreading: copying objects 247
25.3.2 Use case for spreading: default values for missing properties . 247
25.3.3 Use case for spreading: non-destructively changing properties 248

25.4 Methods . 248
25.4.1 Methods are properties whose values are functions 248
25.4.2 .call(): specifying this via a parameter 249
25.4.3 .bind(): pre-filling this and parameters of functions 250
25.4.4 this pitfall: extracting methods 251
25.4.5 this pitfall: accidentally shadowing this 252
25.4.6 Avoiding the pitfalls of this 254
25.4.7 The value of this in various contexts 254

25.5 Optional chaining for property accesses and method calls (ad-
vanced) [ES2020] . 255
25.5.1 Example: optional static property access 255
25.5.2 The operators in more detail (advanced) 256
25.5.3 Short-circuiting (advanced) 257
25.5.4 Frequently asked questions 257

25.6 Objects as dictionaries (advanced) 258

241

242 25 Single objects

25.6.1 Arbitrary fixed strings as property keys 258
25.6.2 Computed property keys . 259
25.6.3 The in operator: is there a property with a given key? 260
25.6.4 Deleting properties . 260
25.6.5 Listing property keys . 260
25.6.6 Listing property values via Object.values() 262
25.6.7 Listing property entries via Object.entries() 262
25.6.8 Properties are listed deterministically 262
25.6.9 Assembling objects via Object.fromEntries() 263
25.6.10 The pitfalls of using an object as a dictionary 265

25.7 Standard methods (advanced) . 266
25.7.1 .toString() . 266
25.7.2 .valueOf() . 266

25.8 Advanced topics . 266
25.8.1 Object.assign() [ES6] . 266
25.8.2 Freezing objects [ES5] . 267
25.8.3 Property attributes and property descriptors [ES5] 267

In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in
four steps. This chapter covers step 1; the next chapter covers steps 2–4. The steps are
(fig. 25.1):

1. Single objects (this chapter): How do objects, JavaScript’s basic OOP building
blocks, work in isolation?

2. Prototype chains (next chapter): Each object has a chain of zero or more prototype
objects. Prototypes are JavaScript’s core inheritance mechanism.

3. Classes (next chapter): JavaScript’s classes are factories for objects. The relation-
ship between a class and its instances is based on prototypal inheritance.

4. Subclassing (next chapter): The relationship between a subclass and its superclass
is also based on prototypal inheritance.

ƒmthd

data
__proto__

4
ƒ

data
mthd

4

MyClass

data
mthd

SubClass

subData
subMthd

SuperClass

superData
superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 25.1: This book introduces object-oriented programming in JavaScript in four
steps.

25.1 What is an object? 243

25.1 What is an object?
In JavaScript:

• An object is a set of properties (key-value entries).
• A property key can only be a string or a symbol.

25.1.1 Roles of objects: record vs. dictionary
Objects play two roles in JavaScript:

• Records: Objects-as-records have a fixed number of properties, whose keys are
known at development time. Their values can have different types.

• Dictionaries: Objects-as-dictionaries have a variable number of properties, whose
keys are not known at development time. All of their values have the same type.

These roles influence how objects are explained in this chapter:
• First, we’ll explore objects-as-records. Even though property keys are strings or

symbols under the hood, they will appear as fixed identifiers to us, in this part of
the chapter.

• Later, we’ll explore objects-as-dictionaries. Note that Maps are usually better dic-
tionaries than objects. However, some of the operations that we’ll encounter, can
also be useful for objects-as-records.

25.2 Objects as records
Let’s first explore the role record of objects.

25.2.1 Object literals: properties
Object literals are one way of creating objects-as-records. They are a stand-out feature of
JavaScript: you can directly create objects – no need for classes! This is an example:

const jane = {
first: 'Jane',
last: 'Doe', // optional trailing comma

};

In the example, we created an object via an object literal, which starts and endswith curly
braces {}. Inside it, we defined two properties (key-value entries):

• The first property has the key first and the value 'Jane'.
• The second property has the key last and the value 'Doe'.

We will later see other ways of specifying property keys, but with this way of specifying
them, they must follow the rules of JavaScript variable names. For example, you can
use first_name as a property key, but not first-name). However, reserved words are
allowed:

const obj = {
if: true,

244 25 Single objects

const: true,
};

In order to check the effects of various operations on objects, we’ll occasionally use Ob-
ject.keys() in this part of the chapter. It lists property keys:

> Object.keys({a:1, b:2})
['a', 'b']

25.2.2 Object literals: property value shorthands
Whenever the value of a property is defined via a variable name and that name is the
same as the key, you can omit the key.

function createPoint(x, y) {
return {x, y};

}
assert.deepEqual(

createPoint(9, 2),
{ x: 9, y: 2 }

);

25.2.3 Getting properties
This is how you get (read) a property (line A):

const jane = {
first: 'Jane',
last: 'Doe',

};

// Get property .first
assert.equal(jane.first, 'Jane'); // (A)

Getting an unknown property produces undefined:

assert.equal(jane.unknownProperty, undefined);

25.2.4 Setting properties
This is how you set (write to) a property:

const obj = {
prop: 1,

};
assert.equal(obj.prop, 1);
obj.prop = 2; // (A)
assert.equal(obj.prop, 2);

We just changed an existing property via setting. If we set an unknown property, we
create a new entry:

25.2 Objects as records 245

const obj = {}; // empty object
assert.deepEqual(

Object.keys(obj), []);

obj.unknownProperty = 'abc';
assert.deepEqual(

Object.keys(obj), ['unknownProperty']);

25.2.5 Object literals: methods
The following code shows how to create the method .says() via an object literal:

const jane = {
first: 'Jane', // data property
says(text) { // method

return `${this.first} says “${text}”`; // (A)
}, // comma as separator (optional at end)

};
assert.equal(jane.says('hello'), 'Jane says “hello”');

During the method call jane.says('hello'), jane is called the receiver of the method
call and assigned to the special variable this. That enables method .says() to access
the sibling property .first in line A.

25.2.6 Object literals: accessors
There are two kinds of accessors in JavaScript:

• A getter is a method-like entity that is invoked by getting a property.
• A setter is a method-like entity that is invoked by setting a property.

25.2.6.1 Getters

A getter is created by prefixing a method definition with the modifier get:

const jane = {
first: 'Jane',
last: 'Doe',
get full() {

return `${this.first} ${this.last}`;
},

};

assert.equal(jane.full, 'Jane Doe');
jane.first = 'John';
assert.equal(jane.full, 'John Doe');

25.2.6.2 Setters

A setter is created by prefixing a method definition with the modifier set:

246 25 Single objects

const jane = {
first: 'Jane',
last: 'Doe',
set full(fullName) {

const parts = fullName.split(' ');
this.first = parts[0];
this.last = parts[1];

},
};

jane.full = 'Richard Roe';
assert.equal(jane.first, 'Richard');
assert.equal(jane.last, 'Roe');

Exercise: Creating an object via an object literal
exercises/single-objects/color_point_object_test.mjs

25.3 Spreading into object literals (...) [ES2018]
Inside a function call, spreading (...) turns the iterated values of an iterable object into
arguments.
Inside an object literal, a spread property adds the properties of another object to the current
one:

> const obj = {foo: 1, bar: 2};
> {...obj, baz: 3}
{ foo: 1, bar: 2, baz: 3 }

If property keys clash, the property that is mentioned last “wins”:
> const obj = {foo: 1, bar: 2, baz: 3};
> {...obj, foo: true}
{ foo: true, bar: 2, baz: 3 }
> {foo: true, ...obj}
{ foo: 1, bar: 2, baz: 3 }

All values are spreadable, even undefined and null:
> {...undefined}
{}
> {...null}
{}
> {...123}
{}
> {...'abc'}
{ '0': 'a', '1': 'b', '2': 'c' }
> {...['a', 'b']}
{ '0': 'a', '1': 'b' }

25.3 Spreading into object literals (...) [ES2018] 247

Property .length of strings and of Arrays is hidden from this kind of operation (it is
not enumerable; see §25.8.3 “Property attributes and property descriptors [ES5]” for more
information).

25.3.1 Use case for spreading: copying objects
You can use spreading to create a copy of an object original:

const copy = {...original};

Caveat – copying is shallow: copy is a fresh object with duplicates of all properties (key-
value entries) of original. But if property values are objects, then those are not copied
themselves; they are shared between original and copy. Let’s look at an example:

const original = { a: 1, b: {foo: true} };
const copy = {...original};

The first level of copy is really a copy: If you change any properties at that level, it does
not affect the original:

copy.a = 2;
assert.deepEqual(

original, { a: 1, b: {foo: true} }); // no change

However, deeper levels are not copied. For example, the value of .b is shared between
original and copy. Changing .b in the copy also changes it in the original.

copy.b.foo = false;
assert.deepEqual(

original, { a: 1, b: {foo: false} });

JavaScript doesn’t have built-in support for deep copying
Deep copies of objects (where all levels are copied) are notoriously difficult to do
generically. Therefore, JavaScript does not have a built-in operation for them (for
now). If you need such an operation, you have to implement it yourself.

25.3.2 Use case for spreading: default values for missing properties
If one of the inputs of your code is an object with data, you can make properties optional
by specifying default values that are used if those properties are missing. One technique
for doing so is via an object whose properties contain the default values. In the following
example, that object is DEFAULTS:

const DEFAULTS = {foo: 'a', bar: 'b'};
const providedData = {foo: 1};

const allData = {...DEFAULTS, ...providedData};
assert.deepEqual(allData, {foo: 1, bar: 'b'});

The result, the object allData, is created by copying DEFAULTS and overriding its proper-
ties with those of providedData.

248 25 Single objects

But you don’t need an object to specify the default values; you can also specify them
inside the object literal, individually:

const providedData = {foo: 1};

const allData = {foo: 'a', bar: 'b', ...providedData};
assert.deepEqual(allData, {foo: 1, bar: 'b'});

25.3.3 Use case for spreading: non-destructively changing properties
So far, we have encountered one way of changing a property .foo of an object: We set it
(line A) and mutate the object. That is, this way of changing a property is destructive.

const obj = {foo: 'a', bar: 'b'};
obj.foo = 1; // (A)
assert.deepEqual(obj, {foo: 1, bar: 'b'});

With spreading, we can change .foo non-destructively – we make a copy of obj where
.foo has a different value:

const obj = {foo: 'a', bar: 'b'};
const updatedObj = {...obj, foo: 1};
assert.deepEqual(updatedObj, {foo: 1, bar: 'b'});

Exercise: Non-destructively updating a property via spreading (fixed key)
exercises/single-objects/update_name_test.mjs

25.4 Methods
25.4.1 Methods are properties whose values are functions
Let’s revisit the example that was used to introduce methods:

const jane = {
first: 'Jane',
says(text) {

return `${this.first} says “${text}”`;
},

};

Somewhat surprisingly, methods are functions:
assert.equal(typeof jane.says, 'function');

Why is that? We learned in the chapter on callable values, that ordinary functions play
several roles. Method is one of those roles. Therefore, under the hood, jane roughly looks
as follows.

const jane = {
first: 'Jane',
says: function (text) {

25.4 Methods 249

return `${this.first} says “${text}”`;
},

};

25.4.2 .call(): specifying this via a parameter
Remember that each function someFunc is also an object and therefore has methods. One
suchmethod is .call() – it lets you call a functionwhile specifying this via a parameter:

someFunc.call(thisValue, arg1, arg2, arg3);

25.4.2.1 Methods and .call()

If you make a method call, this is an implicit parameter that is filled in via the receiver
of the call:

const obj = {
method(x) {

assert.equal(this, obj); // implicit parameter
assert.equal(x, 'a');

},
};

obj.method('a'); // receiver is `obj`

The method call in the last line sets up this as follows:

obj.method.call(obj, 'a');

As an aside, that means that there are actually two different dot operators:

1. One for accessing properties: obj.prop
2. One for making method calls: obj.prop()

They are different in that (2) is not just (1) followed by the function call operator ().
Instead, (2) additionally specifies a value for this.

25.4.2.2 Functions and .call()

If you function-call an ordinary function, its implicit parameter this is also provided –
it is implicitly set to undefined:

function func(x) {
assert.equal(this, undefined); // implicit parameter
assert.equal(x, 'a');

}

func('a');

The method call in the last line sets up this as follows:

func.call(undefined, 'a');

250 25 Single objects

this being set to undefined during a function call, indicates that it is a feature that is
only needed during a method call.
Next, we’ll examine the pitfalls of using this. Before we can do that, we need one more
tool: method .bind() of functions.

25.4.3 .bind(): pre-filling this and parameters of functions
.bind() is another method of function objects. This method is invoked as follows:

const boundFunc = someFunc.bind(thisValue, arg1, arg2);

.bind() returns a new function boundFunc(). Calling that function invokes someFunc()
with this set to thisValue and these parameters: arg1, arg2, followed by the parameters
of boundFunc().
That is, the following two function calls are equivalent:

boundFunc('a', 'b')
someFunc.call(thisValue, arg1, arg2, 'a', 'b')

25.4.3.1 An alternative to .bind()

Another way of pre-filling this and parameters is via an arrow function:
const boundFunc2 = (...args) =>

someFunc.call(thisValue, arg1, arg2, ...args);

25.4.3.2 An implementation of .bind()
Considering the previous section, .bind() can be implemented as a real function as fol-
lows:

function bind(func, thisValue, ...boundArgs) {
return (...args) =>

func.call(thisValue, ...boundArgs, ...args);
}

25.4.3.3 Example: binding a real function
Using .bind() for real functions is somewhat unintuitive because you have to provide
a value for this. Given that it is undefined during function calls, it is usually set to
undefined or null.
In the following example, we create add8(), a function that has one parameter, by binding
the first parameter of add() to 8.

function add(x, y) {
return x + y;

}

const add8 = add.bind(undefined, 8);
assert.equal(add8(1), 9);

25.4 Methods 251

25.4.3.4 Example: binding a method
In the following code, we turn method .says() into the stand-alone function func():

const jane = {
first: 'Jane',
says(text) {

return `${this.first} says “${text}”`; // (A)
},

};

const func = jane.says.bind(jane, 'hello');
assert.equal(func(), 'Jane says “hello”');

Setting this to jane via .bind() is crucial here. Otherwise, func()wouldn’t work prop-
erly because this is used in line A.

25.4.4 this pitfall: extracting methods
We now know quite a bit about functions andmethods and are ready to take a look at the
biggest pitfall involving methods and this: function-calling a method extracted from an
object can fail if you are not careful.
In the following example, we fail when we extract method jane.says(), store it in the
variable func, and function-call func().

const jane = {
first: 'Jane',
says(text) {

return `${this.first} says “${text}”`;
},

};
const func = jane.says; // extract the method
assert.throws(

() => func('hello'), // (A)
{

name: 'TypeError',
message: "Cannot read property 'first' of undefined",

});

The function call in line A is equivalent to:
assert.throws(

() => jane.says.call(undefined, 'hello'), // `this` is undefined!
{

name: 'TypeError',
message: "Cannot read property 'first' of undefined",

});

So how do we fix this? We need to use .bind() to extract method .says():
const func2 = jane.says.bind(jane);
assert.equal(func2('hello'), 'Jane says “hello”');

252 25 Single objects

The .bind() ensures that this is always jane when we call func().

You can also use arrow functions to extract methods:

const func3 = text => jane.says(text);
assert.equal(func3('hello'), 'Jane says “hello”');

25.4.4.1 Example: extracting a method

The following is a simplified version of code that you may see in actual web develop-
ment:

class ClickHandler {
constructor(id, elem) {

this.id = id;
elem.addEventListener('click', this.handleClick); // (A)

}
handleClick(event) {

alert('Clicked ' + this.id);
}

}

In line A, we don’t extract the method .handleClick() properly. Instead, we should do:

elem.addEventListener('click', this.handleClick.bind(this));

Exercise: Extracting a method
exercises/single-objects/method_extraction_exrc.mjs

25.4.5 this pitfall: accidentally shadowing this

Accidentally shadowing this is only an issue with ordinary functions
Arrow functions don’t shadow this.

Consider the following problem: when you are inside an ordinary function, you can’t
access the this of the surrounding scope because the ordinary function has its own this.
In other words, a variable in an inner scope hides a variable in an outer scope. That is
called shadowing. The following code is an example:

const prefixer = {
prefix: '==> ',
prefixStringArray(stringArray) {

return stringArray.map(
function (x) {
return this.prefix + x; // (A)

});
},

25.4 Methods 253

};
assert.throws(

() => prefixer.prefixStringArray(['a', 'b']),
/^TypeError: Cannot read property 'prefix' of undefined$/);

In line A, we want to access the this of .prefixStringArray(). But we can’t since the
surrounding ordinary function has its own this that shadows (blocks access to) the this
of the method. The value of the former this is undefined due to the callback being
function-called. That explains the error message.

The simplest way to fix this problem is via an arrow function, which doesn’t have its own
this and therefore doesn’t shadow anything:

const prefixer = {
prefix: '==> ',
prefixStringArray(stringArray) {

return stringArray.map(
(x) => {
return this.prefix + x;

});
},

};
assert.deepEqual(

prefixer.prefixStringArray(['a', 'b']),
['==> a', '==> b']);

We can also store this in a different variable (line A), so that it doesn’t get shadowed:

prefixStringArray(stringArray) {
const that = this; // (A)
return stringArray.map(

function (x) {
return that.prefix + x;

});
},

Another option is to specify a fixed this for the callback via .bind() (line A):

prefixStringArray(stringArray) {
return stringArray.map(

function (x) {
return this.prefix + x;

}.bind(this)); // (A)
},

Lastly, .map() lets us specify a value for this (line A) that it uses when invoking the
callback:

prefixStringArray(stringArray) {
return stringArray.map(

function (x) {
return this.prefix + x;

254 25 Single objects

},
this); // (A)

},

25.4.6 Avoiding the pitfalls of this
We have seen two big this-related pitfalls:

1. Extracting methods
2. Accidentally shadowing this

One simple rule helps avoid the second pitfall:

“Avoid the keyword function”: Never use ordinary functions, only arrow
functions (for real functions) and method definitions.

Following this rule has two benefits:

• It prevents the second pitfall because ordinary functions are never used as real
functions.

• this becomes easier to understand because it will only appear inside methods
(never inside ordinary functions). That makes it clear that this is an OOP feature.

However, even though I don’t use (ordinary) function expressions anymore, I do like func-
tion declarations syntactically. You can use them safely if you don’t refer to this inside
them. The static checking tool ESLint can warn you during development when you do
this wrong via a built-in rule.

Alas, there is no simple way around the first pitfall: whenever you extract a method, you
have to be careful and do it properly – for example, by binding this.

25.4.7 The value of this in various contexts
What is the value of this in various contexts?

Inside a callable entity, the value of this depends on how the callable entity is invoked
and what kind of callable entity it is:

• Function call:
– Ordinary functions: this === undefined (in strict mode)
– Arrow functions: this is same as in surrounding scope (lexical this)

• Method call: this is receiver of call
• new: this refers to newly created instance

You can also access this in all common top-level scopes:

• <script> element: this === globalThis
• ECMAScript modules: this === undefined
• CommonJS modules: this === module.exports

However, I like to pretend that you can’t access this in top-level scopes because top-level
this is confusing and rarely useful.

https://eslint.org/docs/rules/no-invalid-this

25.5 Optional chaining for property accesses and method calls (advanced) [ES2020] 255

25.5 Optional chaining for property accesses and method
calls (advanced) [ES2020]

The following kinds of optional chaining operations exist:
obj?.prop // optional static property access
obj?.[«expr»] // optional dynamic property access
func?.(«arg0», «arg1») // optional function or method call

The rough idea is:
• If the value before the question mark is neither undefined nor null, then perform

the operation after the question mark.
• Otherwise, return undefined.

25.5.1 Example: optional static property access
Consider the following data:

const persons = [
{

surname: 'Zoe',
address: {

street: {
name: 'Sesame Street',
number: '123',

},
},

},
{

surname: 'Mariner',
},
{

surname: 'Carmen',
address: {
},

},
];

We can use optional chaining to safely extract street names:
const streetNames = persons.map(

p => p.address?.street?.name);
assert.deepEqual(

streetNames, ['Sesame Street', undefined, undefined]
);

25.5.1.1 Handling defaults via nullish coalescing
The nullish coalescing operator allows us to use the default value '(no street)' instead
of undefined:

256 25 Single objects

const streetNames = persons.map(
p => p.address?.street?.name ?? '(no name)');

assert.deepEqual(
streetNames, ['Sesame Street', '(no name)', '(no name)']

);

25.5.2 The operators in more detail (advanced)
25.5.2.1 Optional static property access

The following two expressions are equivalent:

o?.prop
(o !== undefined && o !== null) ? o.prop : undefined

Examples:

assert.equal(undefined?.prop, undefined);
assert.equal(null?.prop, undefined);
assert.equal({prop:1}?.prop, 1);

25.5.2.2 Optional dynamic property access

The following two expressions are equivalent:

o?.[«expr»]
(o !== undefined && o !== null) ? o[«expr»] : undefined

Examples:

const key = 'prop';
assert.equal(undefined?.[key], undefined);
assert.equal(null?.[key], undefined);
assert.equal({prop:1}?.[key], 1);

25.5.2.3 Optional function or method call

The following two expressions are equivalent:

f?.(arg0, arg1)
(f !== undefined && f !== null) ? f(arg0, arg1) : undefined

Examples:

assert.equal(undefined?.(123), undefined);
assert.equal(null?.(123), undefined);
assert.equal(String?.(123), '123');

Note that this operator produces an error if its left-hand side is not callable:

assert.throws(
() => true?.(123),
TypeError);

25.5 Optional chaining for property accesses and method calls (advanced) [ES2020] 257

Why? The idea is that the operator only tolerates deliberate omissions. An uncallable
value (other than undefined and null) is probably an error and should be reported,
rather than worked around.

25.5.3 Short-circuiting (advanced)
In a chain of property accesses and function/method invocations, evaluation stops once
the first optional operator encounters undefined or null at its left-hand side:

function isInvoked(obj) {
let invoked = false;
obj?.a.b.m(invoked = true);
return invoked;

}

assert.equal(
isInvoked({a: {b: {m() {}}}}), true);

// The left-hand side of ?. is undefined
// and the assignment is not executed
assert.equal(

isInvoked(undefined), false);

This behavior differs from a normal operator/function where JavaScript always evalu-
ates all operands/arguments before evaluating the operator/function. It is called short-
circuiting. Other short-circuiting operators:

• a && b
• a || b
• c ? t : e

25.5.4 Frequently asked questions
25.5.4.1 Why are there dots in o?.[x] and f?.()?

The syntaxes of the following two optional operator are not ideal:

obj?.[«expr»] // better: obj?[«expr»]
func?.(«arg0», «arg1») // better: func?(«arg0», «arg1»)

Alas, the less elegant syntax is necessary, because distinguishing the ideal syntax (first
expression) from the conditional operator (second expression) is too complicated:

obj?['a', 'b', 'c'].map(x => x+x)
obj ? ['a', 'b', 'c'].map(x => x+x) : []

25.5.4.2 Why does null?.prop evaluate to undefined and not null?

The operator ?. is mainly about its right-hand side: Does property .prop exist? If not,
stop early. Therefore, keeping information about its left-hand side is rarely useful. How-
ever, only having a single “early termination” value does simplify things.

258 25 Single objects

25.6 Objects as dictionaries (advanced)
Objects work best as records. But before ES6, JavaScript did not have a data structure for
dictionaries (ES6 broughtMaps). Therefore, objects had to be used as dictionaries, which
imposed a signficant constraint: keys had to be strings (symbols were also introduced
with ES6).
Wefirst look at features of objects that are related to dictionaries but also useful for objects-
as-records. This section concludes with tips for actually using objects as dictionaries
(spoiler: use Maps if you can).

25.6.1 Arbitrary fixed strings as property keys
So far, we have always used objects as records. Property keys were fixed tokens that had
to be valid identifiers and internally became strings:

const obj = {
mustBeAnIdentifier: 123,

};

// Get property
assert.equal(obj.mustBeAnIdentifier, 123);

// Set property
obj.mustBeAnIdentifier = 'abc';
assert.equal(obj.mustBeAnIdentifier, 'abc');

As a next step, we’ll go beyond this limitation for property keys: In this section, we’ll use
arbitrary fixed strings as keys. In the next subsection, we’ll dynamically compute keys.
Two techniques allow us to use arbitrary strings as property keys.
First, when creating property keys via object literals, we can quote property keys (with
single or double quotes):

const obj = {
'Can be any string!': 123,

};

Second, when getting or setting properties, we can use square brackets with strings in-
side them:

// Get property
assert.equal(obj['Can be any string!'], 123);

// Set property
obj['Can be any string!'] = 'abc';
assert.equal(obj['Can be any string!'], 'abc');

You can also use these techniques for methods:
const obj = {

'A nice method'() {

25.6 Objects as dictionaries (advanced) 259

return 'Yes!';
},

};

assert.equal(obj['A nice method'](), 'Yes!');

25.6.2 Computed property keys
So far, property keys were always fixed strings inside object literals. In this section we
learn how to dynamically compute property keys. That enables us to use either arbitrary
strings or symbols.
The syntax of dynamically computed property keys in object literals is inspired by dy-
namically accessing properties. That is, we can use square brackets to wrap expressions:

const obj = {
['Hello world!']: true,
['f'+'o'+'o']: 123,
[Symbol.toStringTag]: 'Goodbye', // (A)

};

assert.equal(obj['Hello world!'], true);
assert.equal(obj.foo, 123);
assert.equal(obj[Symbol.toStringTag], 'Goodbye');

The main use case for computed keys is having symbols as property keys (line A).
Note that the square brackets operator for getting and setting properties works with
arbitrary expressions:

assert.equal(obj['f'+'o'+'o'], 123);
assert.equal(obj['==> foo'.slice(-3)], 123);

Methods can have computed property keys, too:
const methodKey = Symbol();
const obj = {

[methodKey]() {
return 'Yes!';

},
};

assert.equal(obj[methodKey](), 'Yes!');

For the remainder of this chapter, we’ll mostly use fixed property keys again (because
they are syntactically more convenient). But all features are also available for arbitrary
strings and symbols.

Exercise: Non-destructively updating a property via spreading (computed
key)

260 25 Single objects

exercises/single-objects/update_property_test.mjs

25.6.3 The in operator: is there a property with a given key?
The in operator checks if an object has a property with a given key:

const obj = {
foo: 'abc',
bar: false,

};

assert.equal('foo' in obj, true);
assert.equal('unknownKey' in obj, false);

25.6.3.1 Checking if a property exists via truthiness
You can also use a truthiness check to determine if a property exists:

assert.equal(
obj.foo ? 'exists' : 'does not exist',
'exists');

assert.equal(
obj.unknownKey ? 'exists' : 'does not exist',
'does not exist');

The previous checkswork because obj.foo is truthy and because reading amissing prop-
erty returns undefined (which is falsy).
There is, however, one important caveat: truthiness checks fail if the property exists, but
has a falsy value (undefined, null, false, 0, "", etc.):

assert.equal(
obj.bar ? 'exists' : 'does not exist',
'does not exist'); // should be: 'exists'

25.6.4 Deleting properties
You can delete properties via the delete operator:

const obj = {
foo: 123,

};
assert.deepEqual(Object.keys(obj), ['foo']);

delete obj.foo;

assert.deepEqual(Object.keys(obj), []);

25.6.5 Listing property keys

25.6 Objects as dictionaries (advanced) 261

Table 25.1: Standard library methods for listing own (non-inherited)
property keys. All of them return Arrays with strings and/or symbols.

enumerable non-e. string symbol
Object.keys() ✔ ✔
Object.getOwnPropertyNames() ✔ ✔ ✔
Object.getOwnPropertySymbols() ✔ ✔ ✔
Reflect.ownKeys() ✔ ✔ ✔ ✔

Each of the methods in tbl. 25.1 returns an Array with the own property keys of the
parameter. In the names of the methods, you can see that the following distinction is
made:

• A property key can be either a string or a symbol.
• A property name is a property key whose value is a string.
• A property symbol is a property key whose value is a symbol.

The next section describes the term enumerable and demonstrates each of the methods.

25.6.5.1 Enumerability

Enumerability is an attribute of a property. Non-enumerable properties are ignored by
some operations – for example, by Object.keys() (see tbl. 25.1) and by spread properties.
By default, most properties are enumerable. The next example shows how to change that.
It also demonstrates the various ways of listing property keys.

const enumerableSymbolKey = Symbol('enumerableSymbolKey');
const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

// We create enumerable properties via an object literal
const obj = {

enumerableStringKey: 1,
[enumerableSymbolKey]: 2,

}

// For non-enumerable properties, we need a more powerful tool
Object.defineProperties(obj, {

nonEnumStringKey: {
value: 3,
enumerable: false,

},
[nonEnumSymbolKey]: {

value: 4,
enumerable: false,

},
});

assert.deepEqual(

262 25 Single objects

Object.keys(obj),
['enumerableStringKey']);

assert.deepEqual(
Object.getOwnPropertyNames(obj),
['enumerableStringKey', 'nonEnumStringKey']);

assert.deepEqual(
Object.getOwnPropertySymbols(obj),
[enumerableSymbolKey, nonEnumSymbolKey]);

assert.deepEqual(
Reflect.ownKeys(obj),
[

'enumerableStringKey', 'nonEnumStringKey',
enumerableSymbolKey, nonEnumSymbolKey,

]);

Object.defineProperties() is explained later in this chapter.

25.6.6 Listing property values via Object.values()
Object.values() lists the values of all enumerable properties of an object:

const obj = {foo: 1, bar: 2};
assert.deepEqual(

Object.values(obj),
[1, 2]);

25.6.7 Listing property entries via Object.entries()
Object.entries() lists key-value pairs of enumerable properties. Each pair is encoded
as a two-element Array:

const obj = {foo: 1, bar: 2};
assert.deepEqual(

Object.entries(obj),
[

['foo', 1],
['bar', 2],

]);

Exercise: Object.entries()
exercises/single-objects/find_key_test.mjs

25.6.8 Properties are listed deterministically
Own (non-inherited) properties of objects are always listed in the following order:

1. Properties with string keys that contain integer indices (that includes Array in-
dices):
In ascending numeric order

25.6 Objects as dictionaries (advanced) 263

2. Remaining properties with string keys:
In the order in which they were added

3. Properties with symbol keys:
In the order in which they were added

The following example demonstrates how property keys are sorted according to these
rules:

> Object.keys({b:0,a:0, 10:0,2:0})
['2', '10', 'b', 'a']

The order of properties
The ECMAScript specification describes in more detail how properties are ordered.

25.6.9 Assembling objects via Object.fromEntries()
Given an iterable over [key, value] pairs, Object.fromEntries() creates an object:

assert.deepEqual(
Object.fromEntries([['foo',1], ['bar',2]]),
{

foo: 1,
bar: 2,

}
);

Object.fromEntries() does the opposite of Object.entries().
To demonstrate both, we’ll use them to implement two tool functions from the library
Underscore in the next subsubsections.

25.6.9.1 Example: pick(object, ...keys)

pick returns a copy of object that only has those properties whose keys are mentioned
as arguments:

const address = {
street: 'Evergreen Terrace',
number: '742',
city: 'Springfield',
state: 'NT',
zip: '49007',

};
assert.deepEqual(

pick(address, 'street', 'number'),
{

street: 'Evergreen Terrace',
number: '742',

}
);

https://tc39.github.io/ecma262/#sec-ordinaryownpropertykeys
https://underscorejs.org
https://underscorejs.org/#pick

264 25 Single objects

We can implement pick() as follows:
function pick(object, ...keys) {

const filteredEntries = Object.entries(object)
.filter(([key, _value]) => keys.includes(key));

return Object.fromEntries(filteredEntries);
}

25.6.9.2 Example: invert(object)
invert returns a copy of objectwhere the keys and values of all properties are swapped:

assert.deepEqual(
invert({a: 1, b: 2, c: 3}),
{1: 'a', 2: 'b', 3: 'c'}

);

We can implement invert() like this:
function invert(object) {

const reversedEntries = Object.entries(object)
.map(([key, value]) => [value, key]);

return Object.fromEntries(reversedEntries);
}

25.6.9.3 A simple implementation of Object.fromEntries()
The following function is a simplified version of Object.fromEntries():

function fromEntries(iterable) {
const result = {};
for (const [key, value] of iterable) {

let coercedKey;
if (typeof key === 'string' || typeof key === 'symbol') {
coercedKey = key;

} else {
coercedKey = String(key);

}
result[coercedKey] = value;

}
return result;

}

25.6.9.4 A polyfill for Object.fromEntries()
The npm package object.fromentries is a polyfill for Object.entries(): it installs its
own implementation if that method doesn’t exist on the current platform.

Exercise: Object.entries() and Object.fromEntries()

https://underscorejs.org/#invert
https://github.com/es-shims/Object.fromEntries

25.6 Objects as dictionaries (advanced) 265

exercises/single-objects/omit_properties_test.mjs

25.6.10 The pitfalls of using an object as a dictionary
If you use plain objects (created via object literals) as dictionaries, you have to look out
for two pitfalls.

The first pitfall is that the in operator also finds inherited properties:

const dict = {};
assert.equal('toString' in dict, true);

Wewant dict to be treated as empty, but the in operator detects the properties it inherits
from its prototype, Object.prototype.

The second pitfall is that you can’t use the property key __proto__ because it has special
powers (it sets the prototype of the object):

const dict = {};

dict['__proto__'] = 123;
// No property was added to dict:
assert.deepEqual(Object.keys(dict), []);

So how do we avoid these pitfalls?

• Whenever you can, use Maps. They are the best solution for dictionaries.
• If you can’t, use a library for objects-as-dictionaries that does everything safely.
• If you can’t, use an object without a prototype.

The following code demonstrates using objects without prototypes as dictionaries:

const dict = Object.create(null); // no prototype

assert.equal('toString' in dict, false); // (A)

dict['__proto__'] = 123;
assert.deepEqual(Object.keys(dict), ['__proto__']);

We avoided both pitfalls: First, a property without a prototype does not inherit any
properties (line A). Second, in modern JavaScript, __proto__ is implemented via Ob-
ject.prototype. That means that it is switched off if Object.prototype is not in the
prototype chain.

Exercise: Using an object as a dictionary
exercises/single-objects/simple_dict_test.mjs

266 25 Single objects

25.7 Standard methods (advanced)
Object.prototype defines several standardmethods that can be overridden to configure
how an object is treated by the language. Two important ones are:

• .toString()
• .valueOf()

25.7.1 .toString()

.toString() determines how objects are converted to strings:

> String({toString() { return 'Hello!' }})
'Hello!'
> String({})
'[object Object]'

25.7.2 .valueOf()

.valueOf() determines how objects are converted to numbers:

> Number({valueOf() { return 123 }})
123
> Number({})
NaN

25.8 Advanced topics
The following subsections give brief overviews of a few advanced topics.

25.8.1 Object.assign() [ES6]
Object.assign() is a tool method:

Object.assign(target, source_1, source_2, ···)

This expression assigns all properties of source_1 to target, then all properties of
source_2, etc. At the end, it returns target – for example:

const target = { foo: 1 };

const result = Object.assign(
target,
{bar: 2},
{baz: 3, bar: 4});

assert.deepEqual(
result, { foo: 1, bar: 4, baz: 3 });

// target was modified and returned:
assert.equal(result, target);

25.8 Advanced topics 267

The use cases for Object.assign() are similar to those for spread properties. In a way,
it spreads destructively.

25.8.2 Freezing objects [ES5]
Object.freeze(obj) makes obj completely immutable: You can’t change properties,
add properties, or change its prototype – for example:

const frozen = Object.freeze({ x: 2, y: 5 });
assert.throws(

() => { frozen.x = 7 },
{

name: 'TypeError',
message: /^Cannot assign to read only property 'x'/,

});

There is one caveat: Object.freeze(obj) freezes shallowly. That is, only the properties
of obj are frozen but not objects stored in properties.

More information
For more information on freezing and other ways of locking down objects, seeDeep
JavaScript.

25.8.3 Property attributes and property descriptors [ES5]
Just as objects are composed of properties, properties are composed of attributes. The
value of a property is only one of several attributes. Others include:

• writable: Is it possible to change the value of the property?
• enumerable: Is the property considered by Object.keys(), spreading, etc.?

When you are using one of the operations for handling property attributes, attributes are
specified via property descriptors: objects where each property represents one attribute.
For example, this is how you read the attributes of a property obj.foo:

const obj = { foo: 123 };
assert.deepEqual(

Object.getOwnPropertyDescriptor(obj, 'foo'),
{

value: 123,
writable: true,
enumerable: true,
configurable: true,

});

And this is how you set the attributes of a property obj.bar:
const obj = {

foo: 1,
bar: 2,

https://exploringjs.com/deep-js/ch_protecting-objects.html
https://exploringjs.com/deep-js/ch_protecting-objects.html

268 25 Single objects

};

assert.deepEqual(Object.keys(obj), ['foo', 'bar']);

// Hide property `bar` from Object.keys()
Object.defineProperty(obj, 'bar', {

enumerable: false,
});

assert.deepEqual(Object.keys(obj), ['foo']);

Further reading:
• Enumerability is covered in greater detail earlier in this chapter.
• For more information on property attributes and property descriptors, see Deep

JavaScript.

Quiz
See quiz app.

https://exploringjs.com/deep-js/ch_property-attributes-intro.html
https://exploringjs.com/deep-js/ch_property-attributes-intro.html

Chapter 26

Prototype chains and classes

Contents
26.1 Prototype chains . 270

26.1.1 JavaScript’s operations: all properties vs. own properties . . . 271
26.1.2 Pitfall: only the first member of a prototype chain is mutated . 271
26.1.3 Tips for working with prototypes (advanced) 272
26.1.4 Sharing data via prototypes 273

26.2 Classes . 275
26.2.1 A class for persons . 275
26.2.2 Classes under the hood . 276
26.2.3 Class definitions: prototype properties 277
26.2.4 Class definitions: static properties 278
26.2.5 The instanceof operator . 278
26.2.6 Why I recommend classes . 279

26.3 Private data for classes . 279
26.3.1 Private data: naming convention 279
26.3.2 Private data: WeakMaps . 280
26.3.3 More techniques for private data 281

26.4 Subclassing . 281
26.4.1 Subclasses under the hood (advanced) 282
26.4.2 instanceof in more detail (advanced) 283
26.4.3 Prototype chains of built-in objects (advanced) 283
26.4.4 Dispatched vs. direct method calls (advanced) 286
26.4.5 Mixin classes (advanced) . 287

26.5 FAQ: objects . 289
26.5.1 Why do objects preserve the insertion order of properties? . . 289

In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in
four steps. This chapter covers steps 2–4, the previous chapter covers step 1. The steps
are (fig. 26.1):

269

270 26 Prototype chains and classes

1. Single objects (previous chapter): How do objects, JavaScript’s basic OOP build-
ing blocks, work in isolation?

2. Prototype chains (this chapter): Each object has a chain of zero or more prototype
objects. Prototypes are JavaScript’s core inheritance mechanism.

3. Classes (this chapter): JavaScript’s classes are factories for objects. The relationship
between a class and its instances is based on prototypal inheritance.

4. Subclassing (this chapter): The relationship between a subclass and its superclass
is also based on prototypal inheritance.

ƒmthd

data
__proto__

4
ƒ

data
mthd

4

MyClass

data
mthd

SubClass

subData
subMthd

SuperClass

superData
superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 26.1: This book introduces object-oriented programming in JavaScript in four
steps.

26.1 Prototype chains
Prototypes are JavaScript’s only inheritance mechanism: each object has a prototype that
is either null or an object. In the latter case, the object inherits all of the prototype’s
properties.
In an object literal, you can set the prototype via the special property __proto__:

const proto = {
protoProp: 'a',

};
const obj = {

__proto__: proto,
objProp: 'b',

};

// obj inherits .protoProp:
assert.equal(obj.protoProp, 'a');
assert.equal('protoProp' in obj, true);

Given that a prototype object can have a prototype itself, we get a chain of objects – the
so-called prototype chain. That means that inheritance gives us the impression that we are
dealing with single objects, but we are actually dealing with chains of objects.
Fig. 26.2 shows what the prototype chain of obj looks like.
Non-inherited properties are called own properties. obj has one own property, .objProp.

26.1 Prototype chains 271

__proto__
protoProp 'a'

proto

. . .

objProp
__proto__

'b'

obj

Figure 26.2: obj starts a chain of objects that continues with proto and other objects.

26.1.1 JavaScript’s operations: all properties vs. own properties
Some operations consider all properties (own and inherited) – for example, getting prop-
erties:

> const obj = { foo: 1 };
> typeof obj.foo // own
'number'
> typeof obj.toString // inherited
'function'

Other operations only consider own properties – for example, Object.keys():

> Object.keys(obj)
['foo']

Read on for another operation that also only considers own properties: setting proper-
ties.

26.1.2 Pitfall: only the first member of a prototype chain is mutated
One aspect of prototype chains that may be counter-intuitive is that setting any property
via an object – even an inherited one – only changes that very object – never one of the
prototypes.

Consider the following object obj:

const proto = {
protoProp: 'a',

};
const obj = {

__proto__: proto,
objProp: 'b',

};

272 26 Prototype chains and classes

In the next code snippet, we set the inherited property obj.protoProp (line A). That
“changes” it by creating an own property: When reading obj.protoProp, the own prop-
erty is found first and its value overrides the value of the inherited property.

// In the beginning, obj has one own property
assert.deepEqual(Object.keys(obj), ['objProp']);

obj.protoProp = 'x'; // (A)

// We created a new own property:
assert.deepEqual(Object.keys(obj), ['objProp', 'protoProp']);

// The inherited property itself is unchanged:
assert.equal(proto.protoProp, 'a');

// The own property overrides the inherited property:
assert.equal(obj.protoProp, 'x');

The prototype chain of obj is depicted in fig. 26.3.

protoProp 'a'
__proto__

proto

. . .

'b'
__proto__
objProp
protoProp 'x'

obj

Figure 26.3: The own property .protoProp of obj overrides the property inherited from
proto.

26.1.3 Tips for working with prototypes (advanced)
26.1.3.1 Best practice: avoid __proto__, except in object literals
I recommend to avoid the pseudo-property __proto__: As we will see later, not all ob-
jects have it.
However, __proto__ in object literals is different. There, it is a built-in feature and always
available.
The recommended ways of getting and setting prototypes are:

• The best way to get a prototype is via the following method:

26.1 Prototype chains 273

Object.getPrototypeOf(obj: Object) : Object

• The best way to set a prototype is when creating an object – via __proto__ in an
object literal or via:

Object.create(proto: Object) : Object

If you have to, you can use Object.setPrototypeOf() to change the prototype of
an existing object. But that may affect performance negatively.

This is how these features are used:
const proto1 = {};
const proto2 = {};

const obj = Object.create(proto1);
assert.equal(Object.getPrototypeOf(obj), proto1);

Object.setPrototypeOf(obj, proto2);
assert.equal(Object.getPrototypeOf(obj), proto2);

26.1.3.2 Check: is an object a prototype of another one?
So far, “p is a prototype of o” alwaysmeant “p is a direct prototype of o”. But it can also be
usedmore loosely andmean that p is in the prototype chain of o. That looser relationship
can be checked via:

p.isPrototypeOf(o)

For example:
const a = {};
const b = {__proto__: a};
const c = {__proto__: b};

assert.equal(a.isPrototypeOf(b), true);
assert.equal(a.isPrototypeOf(c), true);

assert.equal(a.isPrototypeOf(a), false);
assert.equal(c.isPrototypeOf(a), false);

26.1.4 Sharing data via prototypes
Consider the following code:

const jane = {
name: 'Jane',
describe() {

return 'Person named '+this.name;
},

};
const tarzan = {

name: 'Tarzan',

274 26 Prototype chains and classes

describe() {
return 'Person named '+this.name;

},
};

assert.equal(jane.describe(), 'Person named Jane');
assert.equal(tarzan.describe(), 'Person named Tarzan');

We have two objects that are very similar. Both have two properties whose names are
.name and .describe. Additionally, method .describe() is the same. How can we
avoid duplicating that method?
We can move it to an object PersonProto and make that object a prototype of both jane
and tarzan:

const PersonProto = {
describe() {

return 'Person named ' + this.name;
},

};
const jane = {

__proto__: PersonProto,
name: 'Jane',

};
const tarzan = {

__proto__: PersonProto,
name: 'Tarzan',

};

The name of the prototype reflects that both jane and tarzan are persons.

__proto__
name 'Jane' name

__proto__
'Tarzan'

describe function() {···}

jane tarzan

PersonProto

Figure 26.4: Objects jane and tarzan share method .describe(), via their common pro-
totype PersonProto.

Fig. 26.4 illustrates how the three objects are connected: The objects at the bottom now
contain the properties that are specific to jane and tarzan. The object at the top contains
the properties that are shared between them.
When you make the method call jane.describe(), this points to the receiver of that
method call, jane (in the bottom-left corner of the diagram). That’s why the method still
works. tarzan.describe() works similarly.

26.2 Classes 275

assert.equal(jane.describe(), 'Person named Jane');
assert.equal(tarzan.describe(), 'Person named Tarzan');

26.2 Classes
We are now ready to take on classes, which are basically a compact syntax for setting up
prototype chains. Under the hood, JavaScript’s classes are unconventional. But that is
something you rarely see when working with them. They should normally feel familiar
to people who have used other object-oriented programming languages.

26.2.1 A class for persons
We have previously worked with jane and tarzan, single objects representing persons.
Let’s use a class declaration to implement a factory for person objects:

class Person {
constructor(name) {

this.name = name;
}
describe() {

return 'Person named '+this.name;
}

}

jane and tarzan can now be created via new Person():

const jane = new Person('Jane');
assert.equal(jane.name, 'Jane');
assert.equal(jane.describe(), 'Person named Jane');

const tarzan = new Person('Tarzan');
assert.equal(tarzan.name, 'Tarzan');
assert.equal(tarzan.describe(), 'Person named Tarzan');

Class Person has two methods:

• The normal method .describe()
• The special method .constructor() which is called directly after a new instance

has been created and initializes that instance. It receives the arguments that are
passed to the new operator (after the class name). If you don’t need any arguments
to set up a new instance, you can omit the constructor.

26.2.1.1 Class expressions

There are two kinds of class definitions (ways of defining classes):

• Class declarations, which we have seen in the previous section.
• Class expressions, which we’ll see next.

Class expressions can be anonymous and named:

276 26 Prototype chains and classes

// Anonymous class expression
const Person = class { ··· };

// Named class expression
const Person = class MyClass { ··· };

The name of a named class expression works similarly to the name of a named function
expression.
This was a first look at classes. We’ll explore more features soon, but first we need to
learn the internals of classes.

26.2.2 Classes under the hood
There is a lot going on under the hood of classes. Let’s look at the diagram for jane
(fig. 26.5).

__proto__
name 'Jane'

describe function() {...}
constructor

jane

Person.prototype

prototype

Person

Figure 26.5: The class Person has the property .prototype that points to an object that
is the prototype of all instances of Person. jane is one such instance.

The main purpose of class Person is to set up the prototype chain on the right (jane,
followed by Person.prototype). It is interesting to note that both constructs inside class
Person (.constructor and .describe()) created properties for Person.prototype, not
for Person.
The reason for this slightly odd approach is backward compatibility: prior to classes,
constructor functions (ordinary functions, invoked via the new operator) were often used
as factories for objects. Classes are mostly better syntax for constructor functions and
therefore remain compatible with old code. That explains why classes are functions:

> typeof Person
'function'

In this book, I use the terms constructor (function) and class interchangeably.
It is easy to confuse .__proto__ and .prototype. Hopefully, fig. 26.5 makes it clear how
they differ:

26.2 Classes 277

• .__proto__ is a pseudo-property for accessing the prototype of an object.
• .prototype is a normal property that is only special due to how the new operator

uses it. The name is not ideal: Person.prototype does not point to the prototype
of Person, it points to the prototype of all instances of Person.

26.2.2.1 Person.prototype.constructor (advanced)
There is one detail in fig. 26.5 thatwe haven’t looked at, yet: Person.prototype.constructor
points back to Person:

> Person.prototype.constructor === Person
true

This setup also exists due to backward compatibility. But it has two additional benefits.
First, each instance of a class inherits property .constructor. Therefore, given an in-
stance, you can make “similar” objects using it:

const jane = new Person('Jane');

const cheeta = new jane.constructor('Cheeta');
// cheeta is also an instance of Person
// (the instanceof operator is explained later)
assert.equal(cheeta instanceof Person, true);

Second, you can get the name of the class that created a given instance:
const tarzan = new Person('Tarzan');

assert.equal(tarzan.constructor.name, 'Person');

26.2.3 Class definitions: prototype properties
All constructs in the body of the following class declaration create properties of
Foo.prototype.

class Foo {
constructor(prop) {

this.prop = prop;
}
protoMethod() {

return 'protoMethod';
}
get protoGetter() {

return 'protoGetter';
}

}

Let’s examine them in order:
• .constructor() is called after creating a new instance of Foo to set up that in-

stance.
• .protoMethod() is a normal method. It is stored in Foo.prototype.

278 26 Prototype chains and classes

• .protoGetter is a getter that is stored in Foo.prototype.

The following interaction uses class Foo:

> const foo = new Foo(123);
> foo.prop
123

> foo.protoMethod()
'protoMethod'
> foo.protoGetter
'protoGetter'

26.2.4 Class definitions: static properties
All constructs in the body of the following class declaration create so-called static prop-
erties – properties of Bar itself.

class Bar {
static staticMethod() {

return 'staticMethod';
}
static get staticGetter() {

return 'staticGetter';
}

}

The static method and the static getter are used as follows:

> Bar.staticMethod()
'staticMethod'
> Bar.staticGetter
'staticGetter'

26.2.5 The instanceof operator
The instanceof operator tells you if a value is an instance of a given class:

> new Person('Jane') instanceof Person
true
> ({}) instanceof Person
false
> ({}) instanceof Object
true
> [] instanceof Array
true

We’ll explore the instanceof operator in more detail later, after we have looked at sub-
classing.

26.3 Private data for classes 279

26.2.6 Why I recommend classes
I recommend using classes for the following reasons:

• Classes are a common standard for object creation and inheritance that is now
widely supported across frameworks (React, Angular, Ember, etc.). This is an im-
provement to how things were before, when almost every framework had its own
inheritance library.

• They help tools such as IDEs and type checkers with their work and enable new
features there.

• If you come from another language to JavaScript and are used to classes, then you
can get started more quickly.

• JavaScript engines optimize them. That is, code that uses classes is almost always
faster than code that uses a custom inheritance library.

• You can subclass built-in constructor functions such as Error.
That doesn’t mean that classes are perfect:

• There is a risk of overdoing inheritance.
• There is a risk of putting toomuch functionality in classes (when some of it is often

better put in functions).
• How theywork superficially and under the hood is quite different. In other words,

there is a disconnect between syntax and semantics. Two examples are:
– A method definition inside a class C creates a method in the object

C.prototype.
– Classes are functions.

The motivation for the disconnect is backward compatibility. Thankfully, the dis-
connect causes few problems in practice; you are usually OK if you go along with
what classes pretend to be.

Exercise: Writing a class
exercises/proto-chains-classes/point_class_test.mjs

26.3 Private data for classes
This section describes techniques for hiding some of the data of an object from the outside.
We discuss them in the context of classes, but they also work for objects created directly,
e.g., via object literals.

26.3.1 Private data: naming convention
The first technique makes a property private by prefixing its name with an underscore.
This doesn’t protect the property in any way; it merely signals to the outside: “You don’t
need to know about this property.”

280 26 Prototype chains and classes

In the following code, the properties ._counter and ._action are private.
class Countdown {

constructor(counter, action) {
this._counter = counter;
this._action = action;

}
dec() {

this._counter--;
if (this._counter === 0) {
this._action();

}
}

}

// The two properties aren’t really private:
assert.deepEqual(

Object.keys(new Countdown()),
['_counter', '_action']);

With this technique, you don’t get any protection and private names can clash. On the
plus side, it is easy to use.

26.3.2 Private data: WeakMaps
Another technique is to use WeakMaps. How exactly that works is explained in the
chapter on WeakMaps. This is a preview:

const _counter = new WeakMap();
const _action = new WeakMap();

class Countdown {
constructor(counter, action) {

_counter.set(this, counter);
_action.set(this, action);

}
dec() {

let counter = _counter.get(this);
counter--;
_counter.set(this, counter);
if (counter === 0) {
_action.get(this)();

}
}

}

// The two pseudo-properties are truly private:
assert.deepEqual(

Object.keys(new Countdown()),
[]);

26.4 Subclassing 281

This technique offers you considerable protection from outside access and there can’t be
any name clashes. But it is also more complicated to use.

26.3.3 More techniques for private data
This book explains the most important techniques for private data in classes. There will
also probably soon be built-in support for it. Consult the ECMAScript proposal “Class
Public Instance Fields & Private Instance Fields” for details.

A few additional techniques are explained in Exploring ES6.

26.4 Subclassing
Classes can also subclass (“extend”) existing classes. As an example, the following class
Employee subclasses Person:

class Person {
constructor(name) {

this.name = name;
}
describe() {

return `Person named ${this.name}`;
}
static logNames(persons) {

for (const person of persons) {
console.log(person.name);

}
}

}

class Employee extends Person {
constructor(name, title) {

super(name);
this.title = title;

}
describe() {

return super.describe() +
` (${this.title})`;

}
}

const jane = new Employee('Jane', 'CTO');
assert.equal(

jane.describe(),
'Person named Jane (CTO)');

Two comments:

• Inside a .constructor()method, youmust call the super-constructor via super()

https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://exploringjs.com/es6/ch_classes.html#sec_private-data-for-classes

282 26 Prototype chains and classes

before you can access this. That’s because this doesn’t exist before the super-
constructor is called (this phenomenon is specific to classes).

• Staticmethods are also inherited. For example, Employee inherits the staticmethod
.logNames():

> 'logNames' in Employee
true

Exercise: Subclassing
exercises/proto-chains-classes/color_point_class_test.mjs

26.4.1 Subclasses under the hood (advanced)

Person Person.prototype

Employee Employee.prototype

jane

__proto__

__proto__

prototype

prototype

Object.prototype

__proto__

__proto__

Function.prototype

__proto__

Figure 26.6: These are the objects that make up class Person and its subclass, Employee.
The left column is about classes. The right column is about the Employee instance jane
and its prototype chain.

The classes Person and Employee from the previous section aremade up of several objects
(fig. 26.6). One key insight for understanding how these objects are related is that there
are two prototype chains:

• The instance prototype chain, on the right.
• The class prototype chain, on the left.

26.4.1.1 The instance prototype chain (right column)

The instance prototype chain starts with jane and continues with Employee.prototype
and Person.prototype. In principle, the prototype chain ends at this point, but we get
one more object: Object.prototype. This prototype provides services to virtually all
objects, which is why it is included here, too:

26.4 Subclassing 283

> Object.getPrototypeOf(Person.prototype) === Object.prototype
true

26.4.1.2 The class prototype chain (left column)
In the class prototype chain, Employee comes first, Person next. Afterward, the chain
continues with Function.prototype, which is only there because Person is a function
and functions need the services of Function.prototype.

> Object.getPrototypeOf(Person) === Function.prototype
true

26.4.2 instanceof in more detail (advanced)
We have not yet seen how instanceof really works. Given the expression:

x instanceof C

How does instanceof determine if x is an instance of C (or a subclass of C)? It does so by
checking if C.prototype is in the prototype chain of x. That is, the following expression
is equivalent:

C.prototype.isPrototypeOf(x)

If we go back to fig. 26.6, we can confirm that the prototype chain does lead us to the
following correct answers:

> jane instanceof Employee
true
> jane instanceof Person
true
> jane instanceof Object
true

26.4.3 Prototype chains of built-in objects (advanced)
Next, we’ll use our knowledge of subclassing to understand the prototype chains of a
few built-in objects. The following tool function p() helps us with our explorations.

const p = Object.getPrototypeOf.bind(Object);

We extracted method .getPrototypeOf() of Object and assigned it to p.

26.4.3.1 The prototype chain of {}
Let’s start by examining plain objects:

> p({}) === Object.prototype
true
> p(p({})) === null
true

Fig. 26.7 shows a diagram for this prototype chain. We can see that {} really is an instance
of Object – Object.prototype is in its prototype chain.

284 26 Prototype chains and classes

Object.prototype

{}

__proto__

null

__proto__

Figure 26.7: The prototype chain of an object created via an object literal starts with that
object, continues with Object.prototype, and ends with null.

26.4.3.2 The prototype chain of []

What does the prototype chain of an Array look like?

> p([]) === Array.prototype
true
> p(p([])) === Object.prototype
true
> p(p(p([]))) === null
true

Object.prototype

Array.prototype

[]

__proto__

__proto__

null

__proto__

Figure 26.8: The prototype chain of an Array has these members: the Array instance,
Array.prototype, Object.prototype, null.

This prototype chain (visualized in fig. 26.8) tells us that an Array object is an instance of
Array, which is a subclass of Object.

26.4 Subclassing 285

26.4.3.3 The prototype chain of function () {}

Lastly, the prototype chain of an ordinary function tells us that all functions are objects:
> p(function () {}) === Function.prototype
true
> p(p(function () {})) === Object.prototype
true

26.4.3.4 Objects that aren’t instances of Object
An object is only an instance of Object if Object.prototype is in its prototype chain.
Most objects created via various literals are instances of Object:

> ({}) instanceof Object
true
> (() => {}) instanceof Object
true
> /abc/ug instanceof Object
true

Objects that don’t have prototypes are not instances of Object:
> ({ __proto__: null }) instanceof Object
false

Object.prototype ends most prototype chains. Its prototype is null, which means it
isn’t an instance of Object either:

> Object.prototype instanceof Object
false

26.4.3.5 How exactly does the pseudo-property .__proto__ work?
The pseudo-property .__proto__ is implemented by class Object via a getter and a setter.
It could be implemented like this:

class Object {
get __proto__() {

return Object.getPrototypeOf(this);
}
set __proto__(other) {

Object.setPrototypeOf(this, other);
}
// ···

}

That means that you can switch .__proto__ off by creating an object that doesn’t have
Object.prototype in its prototype chain (see the previous section):

> '__proto__' in {}
true
> '__proto__' in { __proto__: null }
false

286 26 Prototype chains and classes

26.4.4 Dispatched vs. direct method calls (advanced)
Let’s examine how method calls work with classes. We are revisiting jane from earlier:

class Person {
constructor(name) {

this.name = name;
}
describe() {

return 'Person named '+this.name;
}

}
const jane = new Person('Jane');

Fig. 26.9 has a diagram with jane’s prototype chain.

__proto__
describe function() {···}

Person.prototype

. . .

name
__proto__

'Jane'

jane

Figure 26.9: The prototype chain of jane starts with jane and continues with Per-
son.prototype.

Normal method calls are dispatched – the method call jane.describe() happens in two
steps:

• Dispatch: In the prototype chain of jane, find the first property whose key is 'de-
scribe' and retrieve its value.

const func = jane.describe;

• Call: Call the value, while setting this to jane.

func.call(jane);

This way of dynamically looking for a method and invoking it is called dynamic dispatch.

You can make the same method call directly, without dispatching:

Person.prototype.describe.call(jane)

This time, we directly point to the method via Person.prototype.describe and don’t
search for it in the prototype chain. We also specify this differently via .call().

26.4 Subclassing 287

Note that this always points to the beginning of a prototype chain. That enables .de-
scribe() to access .name.

26.4.4.1 Borrowing methods

Direct method calls become useful when you are working with methods of Ob-
ject.prototype. For example, Object.prototype.hasOwnProperty(k) checks if this
has a non-inherited property whose key is k:

> const obj = { foo: 123 };
> obj.hasOwnProperty('foo')
true
> obj.hasOwnProperty('bar')
false

However, in the prototype chain of an object, theremay be another property with the key
'hasOwnProperty' that overrides the method in Object.prototype. Then a dispatched
method call doesn’t work:

> const obj = { hasOwnProperty: true };
> obj.hasOwnProperty('bar')
TypeError: obj.hasOwnProperty is not a function

The workaround is to use a direct method call:

> Object.prototype.hasOwnProperty.call(obj, 'bar')
false
> Object.prototype.hasOwnProperty.call(obj, 'hasOwnProperty')
true

This kind of direct method call is often abbreviated as follows:

> ({}).hasOwnProperty.call(obj, 'bar')
false
> ({}).hasOwnProperty.call(obj, 'hasOwnProperty')
true

This pattern may seem inefficient, but most engines optimize this pattern, so perfor-
mance should not be an issue.

26.4.5 Mixin classes (advanced)
JavaScript’s class system only supports single inheritance. That is, each class can have
at most one superclass. One way around this limitation is via a technique called mixin
classes (short: mixins).

The idea is as follows: Let’s say we want a class C to inherit from two superclasses S1
and S2. That would be multiple inheritance, which JavaScript doesn’t support.

Our workaround is to turn S1 and S2 into mixins, factories for subclasses:

const S1 = (Sup) => class extends Sup { /*···*/ };
const S2 = (Sup) => class extends Sup { /*···*/ };

288 26 Prototype chains and classes

Each of these two functions returns a class that extends a given superclass Sup. We create
class C as follows:

class C extends S2(S1(Object)) {
/*···*/

}

We now have a class C that extends a class S2 that extends a class S1 that extends Object
(which most classes do implicitly).

26.4.5.1 Example: a mixin for brand management

We implement amixin Branded that has helpermethods for setting and getting the brand
of an object:

const Branded = (Sup) => class extends Sup {
setBrand(brand) {

this._brand = brand;
return this;

}
getBrand() {

return this._brand;
}

};

We use this mixin to implement brand management for a class Car:

class Car extends Branded(Object) {
constructor(model) {

super();
this._model = model;

}
toString() {

return `${this.getBrand()} ${this._model}`;
}

}

The following code confirms that the mixin worked: Car has method .setBrand() of
Branded.

const modelT = new Car('Model T').setBrand('Ford');
assert.equal(modelT.toString(), 'Ford Model T');

26.4.5.2 The benefits of mixins

Mixins free us from the constraints of single inheritance:

• The same class can extend a single superclass and zero or more mixins.
• The same mixin can be used by multiple classes.

26.5 FAQ: objects 289

26.5 FAQ: objects
26.5.1 Why do objects preserve the insertion order of properties?
In principle, objects are unordered. The main reason for ordering properties is so that
operations that list entries, keys, or values are deterministic. That helps, e.g., with testing.

Quiz
See quiz app.

290 26 Prototype chains and classes

Chapter 27

Where are the remaining
chapters?

You are reading a preview version of this book. You can either read all essential chapters
online or you can buy the full version.
You can take a look at the full table of contents, which is also linked to from the book’s
homepage.

291

https://exploringjs.com/impatient-js/toc.html
https://exploringjs.com/impatient-js/toc.html
https://exploringjs.com/impatient-js/#buy
https://exploringjs.com/impatient-js/downloads/complete-toc.html

	I Background
	About this book
	About the content
	Previewing and buying this book
	What's new in this book?
	About the author
	Acknowledgements

	FAQ: Book and supplementary material
	How to read this book
	I own a digital edition
	I own the print edition
	Notations and conventions

	History and evolution of JavaScript
	How JavaScript was created
	Standardizing JavaScript
	Timeline of ECMAScript versions
	Ecma Technical Committee 39 (TC39)
	The TC39 process
	FAQ: TC39 process
	Evolving JavaScript: Don't break the web

	FAQ: JavaScript
	What are good references for JavaScript?
	How do I find out what JavaScript features are supported where?
	Where can I look up what features are planned for JavaScript?
	Why does JavaScript fail silently so often?
	Why can't we clean up JavaScript, by removing quirks and outdated features?
	How can I quickly try out a piece of JavaScript code?

	II First steps
	The big picture
	What are you learning in this book?
	The structure of browsers and Node.js
	JavaScript references
	Further reading

	Syntax
	An overview of JavaScript's syntax
	(Advanced)
	Identifiers
	Statement vs. expression
	Ambiguous syntax
	Semicolons
	Automatic semicolon insertion (ASI)
	Semicolons: best practices
	Strict mode vs. sloppy mode

	Consoles: interactive JavaScript command lines
	Trying out JavaScript code
	The console.* API: printing data and more

	Assertion API
	Assertions in software development
	How assertions are used in this book
	Normal comparison vs. deep comparison
	Quick reference: module assert

	Getting started with quizzes and exercises
	Quizzes
	Exercises
	Unit tests in JavaScript

	III Variables and values
	Variables and assignment
	let
	const
	Deciding between const and let
	The scope of a variable
	(Advanced)
	Terminology: static vs. dynamic
	Global variables and the global object
	Declarations: scope and activation
	Closures

	Values
	What's a type?
	JavaScript's type hierarchy
	The types of the language specification
	Primitive values vs. objects
	The operators typeof and instanceof: what's the type of a value?
	Classes and constructor functions
	Converting between types

	Operators
	Making sense of operators
	The plus operator (+)
	Assignment operators
	Equality: == vs. ===
	Ordering operators
	The nullish coalescing operator (??) for default values [ES2020]
	Various other operators

	IV Primitive values
	The non-values undefined and null
	undefined vs. null
	Occurrences of undefined and null
	Checking for undefined or null
	undefined and null don't have properties
	The history of undefined and null

	Booleans
	Converting to boolean
	Falsy and truthy values
	Truthiness-based existence checks
	Conditional operator (? :)
	Binary logical operators: And (x && y), Or (x || y)
	Logical Not (!)

	Numbers
	Numbers are used for both floating point numbers and integers
	Number literals
	Arithmetic operators
	Converting to number
	Error values
	Error value: NaN
	Error value: Infinity
	The precision of numbers: careful with decimal fractions
	(Advanced)
	Background: floating point precision
	Integer numbers in JavaScript
	Bitwise operators
	Quick reference: numbers

	Math
	Data properties
	Exponents, roots, logarithms
	Rounding
	Trigonometric Functions
	Various other functions
	Sources

	Unicode – a brief introduction (advanced)
	Code points vs. code units
	Encodings used in web development: UTF-16 and UTF-8
	Grapheme clusters – the real characters

	Strings
	Plain string literals
	Accessing characters and code points
	String concatenation via +
	Converting to string
	Comparing strings
	Atoms of text: Unicode characters, JavaScript characters, grapheme clusters
	Quick reference: Strings

	Using template literals and tagged templates
	Disambiguation: ``template''
	Template literals
	Tagged templates
	Raw string literals
	(Advanced)
	Multiline template literals and indentation
	Simple templating via template literals

	Symbols
	Use cases for symbols
	Publicly known symbols
	Converting symbols

	V Control flow and data flow
	Control flow statements
	Conditions of control flow statements
	Controlling loops: break and continue
	if statements
	switch statements
	while loops
	do-while loops
	for loops
	for-of loops
	for-await-of loops
	for-in loops (avoid)

	Exception handling
	Motivation: throwing and catching exceptions
	throw
	The try statement
	Error classes

	Callable values
	Kinds of functions
	Ordinary functions
	Specialized functions
	More kinds of functions and methods
	Returning values from functions and methods
	Parameter handling
	Dynamically evaluating code: eval(), new Function() (advanced)

	VI Modularity
	Modules
	Overview: syntax of ECMAScript modules
	JavaScript source code formats
	Before we had modules, we had scripts
	Module systems created prior to ES6
	ECMAScript modules
	Named exports and imports
	Default exports and imports
	More details on exporting and importing
	npm packages
	Naming modules
	Module specifiers
	Loading modules dynamically via import() [ES2020]
	import.meta.url
	Polyfills: emulating native web platform features (advanced)

	Single objects
	What is an object?
	Objects as records
	Spreading into object literals (...) [ES2018]
	Methods
	Optional chaining for property accesses and method calls (advanced) [ES2020]
	Objects as dictionaries (advanced)
	Standard methods (advanced)
	Advanced topics

	Prototype chains and classes
	Prototype chains
	Classes
	Private data for classes
	Subclassing
	FAQ: objects

	Where are the remaining chapters?

