

WASSA 2024 Shared Task Paper ID: WASSA-EMP-10

hyy33 at WASSA 2024 Empathy and Personality Shared Task: Using the CombinedLoss and FGM for Enhancing BERT-based Models in Emotion and Empathy Prediction from Conversation Turn

> Huiyu Yang, Liting Huang, Tian Li, Nicolay Rusnachenko, Huizhi Liang\* Newcastle University, Newcastle Upon Tyne, England {huiyu.yang33, huangliting2019, litianricardolee, rusnicolay}@gmail.com, huizhi.liang@newcastle.ac.uk



- 1. Introduction
- 2. Methodology
  - 2.1 Fine-tuned BERT and DeBERTa
  - 2.2 The CombinedLoss
  - 2.3 Adversarial Training with FGM
  - 2.4 Augmentation: the Segmented Mix-up2.5 Ensemble with Boosting

#### 3. Experiments and Results

- 3.1 Datasets and Evaluation Metrics
- 3.3 Implementation Details
- 3.4 Results and Analysis
- 4. Conclusions

## 1. Introduction

#### Introduction

**Emotion detection and empathy analysis** are important and inevitable topics with great application potentials. To provide more insights, **WASSA 2024 Shared Task** focuses on Empathy Detection and Emotion Classification and Personality Detection.

We propose a solution towards Track 2: Empathy and Emotion Prediction in Conversations Turns (CONV-turn), predicting the Emotion, Emotion Polarity and Empathy according to turn-level information during conversations

- To achieve this goal:
  BERT and DeBERTa are fine-tuned.
  Fast Gradient Method is used as adversarial training.
  The CombinedLoss is designed.
- After submitting to the competition:
  Data augmentation is adopted with the Segmented Mix-up.
  Boosting is used as ensemble method.
  Regression experiments are also conducted.

| A Training Sample from Track                                                                                                                          | 2                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Text:<br>I can't imagine just living in an area that i<br>being ravaged by hurricanes or earthquakes<br>location for granted.                         | s constantly<br>s. I take my |
| Label:<br>Emotion: 3<br>EmotionalPolarity: 2<br>Empathy: 4.6667<br>SelfDisclosure: 3.3333                                                             |                              |
| Other meta information:<br>id: 3, article_id: 35, conversation_id: 1,<br>turn_id: 3, speaker: "Person 2",<br>person_id_1: "p019", person_id_2: "p012" |                              |
|                                                                                                                                                       |                              |

# 2. Methodology

2.1 Methodology: Fine-tuned BERT and DeBERTa

- The proposed model includes:
  Fine-tuned BERT or DeBERTa.
  The CombinedLoss.
  Downstream head for classification or regression.
  Augmentation and ensemble.
- The pretrained language models
  BERT: bert-base-uncased.
  DeBERTa: deberta-base.
- Task-oriented fine-tuning on Track 2
  Conducted on the training set of Track 2.
  Adapt from general language model to specific prediction task.



Figure 2: The proposed model

#### 2.2 Methodology: The CombinedLoss

Different from commonly-used loss functions, we proposed the CombinedLoss

$$L_{\text{total}} = L_{\text{loss}} + \lambda (1 - Corr_{Pear}(\mathbf{\hat{y}}, \mathbf{y})), \quad (1)$$

- $L_{loss}$ : the structured contrastive loss for classification
- $\lambda$ : the regularization coefficient
- $Corr_{Pear}(\hat{y}, y)$ : Pearson correlation coefficient between prediction and the ground truth
- The Pearson correlation coefficient is used as a regularization term

2.3 Methodology: Adversarial Training with FGM

- To improve its robustness and generalization, **adversarial training** is introduced.

$$Obj = \min_{\theta} E(x, y) \left[ \max L(f_{\theta}(x + \delta), y) \right], \quad (2)$$

- *x*: the input sample
- $\delta$ : the added perturbation for adversarial training
- $f_{\theta}$ : neural network function with  $\theta$  as parameters
- By maximizing  $L(f_{\theta}(x + \delta))$ , the **most disturbing perturbation** are introduced
- The model is trained to minimize the error, which helps it to be more robust
- Fast Gradient Method is used as adversarial training strategy
- Computes the most disturbing perturbation through scaling the gradient

$$\delta = \epsilon \cdot \frac{g}{||g||_2} \tag{3}$$

$$g = \nabla_x L(x, y, \theta) \tag{4}$$

2.4 Methodology: Augmentation with the Segmented Mix-up

- Mix-up is often used as a **data augmentation** method.
- Mix-up without constraint can't generate meaningful samples -> We proposed Segmented Mix-up
- Samples are divided into two segments: the lower one and the upper one (according to their labels)
- Sample  $(x_i, y_i)$  is paired with a  $(x_j, y_j)$  from the same label segment
- The generated samples are computed as:
  - $\tilde{x}_i = \mu x_i + (1 \mu) x_j,$ (5)

 $\tilde{y}_i = \mu y_i + (1 - \mu) y_j,$ (6)

-  $\mu$ : the mix-up coefficient, sampled from a  $Beta(\alpha, \alpha)$ , with  $\alpha$  controls the mix-up strength.

#### 2.5 Methodology: Ensemble with Boosting

- To build more accurate and robust system, **boosting** is used to **ensemble** fine-tuned models
- Base models:
  Fine-tuned BERT and DeBERTa
- Weights:

Weights are assigned according to the accuracy of each model on the development set

- The model with the most reliable prediction has the greatest impact on the final output

## 3. Experiments and Results

3.1 Experiments and Results: the Dataset and the Metric

- The dataset of Track 2 includes:
  Training set: 11,166 samples
  Development set: 990 samples
  Test set: 2,061 valid samples
- Each **sample** consists:
  - **Text** content of a single dialogue turn The labels of **Emotion, Emotional Polarity and Empathy** Meta information of the speakers and the conversation
- A Training Sample from Track 2 Text: I can't imagine just living in an area that is constantly being ravaged by hurricanes or earthquakes. I take my location for granted. Label: Emotion: 3 EmotionalPolarity: 2 Empathy: 4.6667 SelfDisclosure: 3.3333 Other meta information: id: 3, article\_id: 35, conversation\_id: 1, turn\_id: 3, speaker: "Person 2", person\_id\_1: "p019", person\_id\_2: "p012"

Figure 1: A Data Sample from Track 2

- Evaluation Metric:
- **Pearson correlation** of the prediction sequence  $\hat{y}$  and the ground truth sequence y

### 3.2 Implementation Details

– Baselines:

BERT: **bert-base-uncased**, with 12 encoder layers and 110M parameters DeBERTa: **deberta-base**, with 390M parameters

– Hyper-parameters:

Tokenization: **BertTokenizer** and **DebertaTokenizer**, with  $max\_length = 128$ Optimization: **AdamW** optimizer,  $learning\_rate = 1e - 6$ , with exponential decay The Segmented Mix-up:  $\alpha = 0.2$  is used

Labels and Categories:

The original labels also include float values: 0.3333, 0.6667 (training set) and 0.5, 1.5 (development set) In classification, samples are **manually divided into categories** according to the label range In regression, **original labels** are directly used as target values 3.3 Results and Analysis

#### – Fine-tuned BERT and DeBERTa

- The average results of fine-tuned **DeBERTa** is better than fine-tuned BERT
- By implementing the **CombinedLoss**, both models demonstrate performance gain
- Adding adversarial training using FGM brings better overall performance

| Model   | Loss          | FGM | Emo    | EmoP   | Emp    | Avg    |
|---------|---------------|-----|--------|--------|--------|--------|
| BERT    | Cross-entropy | No  | 0.5867 | 0.6824 | 0.5703 | 0.6131 |
| BERT    | CombinedLoss  | No  | 0.5921 | 0.6836 | 0.5803 | 0.6187 |
| BERT    | CombinedLoss  | Yes | 0.6142 | 0.6899 | 0.5852 | 0.6298 |
| DeBERTa | Cross-entropy | No  | 0.6255 | 0.7281 | 0.5918 | 0.6485 |
| DeBERTa | CombinedLoss  | No  | 0.6348 | 0.7364 | 0.6042 | 0.6585 |
| DeBERTa | CombinedLoss  | Yes | 0.6399 | 0.7366 | 0.6064 | 0.6610 |

Table 1: Pearson correlation of fine-tuned models withCombinedLoss and FGM on the development set

3.3 Results and Analysis

- Ensemble and Augmentation
- The **combined boosting** yields the best avg. result among non-augment models
- Ensembling fine-tuned DeBERTas not always achieves the highest score
- Augmentation with our Segmented Mix-up brings further improvement

| Model         | Ensemble | Augment | Emo    | EmoP   | Emp    | Avg    |
|---------------|----------|---------|--------|--------|--------|--------|
| BERT          | Boosting | No      | 0.6521 | 0.7045 | 0.6069 | 0.6545 |
| DeBERTa       | Boosting | No      | 0.6470 | 0.7215 | 0.6112 | 0.6599 |
| BERT, DeBERTa | Boosting | No      | 0.6485 | 0.7253 | 0.6140 | 0.6626 |
| BERT, DeBERTa | Boosting | Mix-up  | 0.6521 | 0.7334 | 0.6326 | 0.6727 |

Table 2: Pearson correlation of fine-tuned models withensemble and augmentation on the development set

3.3 Results and Analysis

#### Classification and Regression

- The results of the fine-tuned DeBERTa (with CombinedLoss and FGM) in different downsteam tasks.
- The labelling details for classification and regression could be found in Section 3.3
- The fined-tuned DeBERTa achieved slightly better performance in regression task

| Model   | Task           | Emo    | EmoP   | Emp    | Avg    |
|---------|----------------|--------|--------|--------|--------|
| DeBERTa | Classification | 0.6399 | 0.7366 | 0.6064 | 0.6610 |
| DeBERTa | Regression     | 0.6409 | 0.7376 | 0.6105 | 0.6630 |

Table 3: Pearson correlation of fine-tuned DeBERTa (with CombinedLoss and FGM) in different down-stream tasks on the development set

## 4. Conclusions

## Conclusion

- This is our solution to WASSA 2024 Track 2, which predicts Emotion, Emotional Polarity and Empathy using turn-level information.
- BERT and DeBERTa is fine-tuned with the CombinedLoss and adversarial training with FGM.
- Achieved Pearson correlation of 0.581 for Emotion, 0.644 for Emotional Polarity and 0.544 for Empathy on the test set, with the average value of 0.590 (ranked 4th among all teams).
- After the submission, ensemble using boosting method and data augmentation with Segmented Mix-up are adopted, which yield even better results: 0.6521 for Emotion, 0.7376 for Emotional Polarity, 0.6326 for Empathy in Pearson correlation on the development set.
- In the future, we plan to introduce larger datasets for model re-training at earlier stage (e.g. the Masked Language Model), and consider introducing conversational context and speaker personality for better model construction.

# THANKS

Q & A

