
RIDE – A review journal for digital editions and resources

published by the IDE

Untangling Data Complexity: Custom

Oxygen Frameworks for Edition Projects

Custom Oxygen Frameworks, SyncRo Soft SRL (ed.), ~2012-2024. https://www.oxygenxml.com/

doc/versions/26.0/ug-editor/topics/authoring_customization.html (Last Accessed: 31.01.2024).

Reviewed by Jennifer Bunselmeier (University of Wuppertal), bunselmeier@uni-wuppertal.de

and Sina Krottmaier (University of Graz), sina.krottmaier@uni-graz.at.

Abstract

Consistency and coherence in annotated and enriched data are vital to the success of

any digital edition project. Custom frameworks within the oXygen XML Editor provide a

user-friendly approach for editors to interact directly with XML data, thus lowering entry

barriers and ensuring consistency across datasets. Drawing on our experiences as

customisers, this review explores the benefits and limitations of these custom

frameworks, highlighting their potential for interdisciplinary teams with varying levels of

XML expertise. We critically examine the technical requirements for creating and

maintaining custom frameworks, as well as the current state of documentation. We also

discuss challenges that users may face with oXygen’s complex interface. Once

implemented, frameworks facilitate uniform data input, allow for the automation of

repetitive annotation tasks, and integrate seamlessly with project workflows, thereby

enabling users to focus on annotation tasks in an environment tailored to the specific

needs of each project. In our opinion, despite being underutilised and insufficiently

promoted within the oXygen platform, custom frameworks offer extensive functionalities

that meet the needs of a wide variety of edition projects.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

1

https://ride.i-d-e.de/
https://www.i-d-e.de/
https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/authoring_customization.html
https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/authoring_customization.html
https://orcid.org/0000-0001-8011-2376
https://orcid.org/0000-0001-8011-2376
https://orcid.org/0000-0002-7966-7996
https://orcid.org/0000-0002-7966-7996
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

The Reviewer

1 Dr Jennifer Bunselmeier is a Digital Humanities research assistant in the digital

edition projects ‘Rhodomanologia’ (classical philology) and ‘Niklas Luhmann-Archiv’

(sociology) at the University of Wuppertal. Her expertise lies in data modelling, data

curation, frontend design, and workflow management. She has been developing and

maintaining custom oXygen frameworks for five years.

2 Sina Krottmaier is a research assistant in the project ‘History as a Visual Concept

Peter of Poitiers’ Compendium historiae’ at the Department of Digital Humanities at the

University of Graz. In this project, she is currently developing and maintaining a custom

oXygen framework to simplify and streamline the process of collecting metadata for

users.

Introduction

3 Consistency and coherence of annotated and enriched data are crucial for

successful edition projects. To extract necessary information from the data, it must be

encoded in accordance with established standards. However, when dealing with large

amounts of data, this can be a challenging task, particularly when an interdisciplinary

project team with varying levels of editorial and XML expertise is involved. In some

cases, ensuring uniformity and consistency of data can pose a significant challenge in a

project.

4 This review examines a very powerful, yet regrettably ‘hidden tool’ in the oXygen

XML Editor (see SyncRo Soft 2002–2024m): custom oXygen frameworks. First, we will

provide a brief overview of the tool’s advantages and disadvantages. Then the technical

aspects, particularly the installation process, necessary conceptual steps and the tool’s

GUI, documentation, and learnability will be discussed, including an overview of relevant

functionalities and the relevant terminology. Finally, we summarise the tool’s strengths

and weaknesses and evaluate its usefulness for digital edition projects.

Identification of the Tool

5 Custom oXygen frameworks (hereafter referred to as framework) are an

integrated feature of the oXygen XML Editor (hereafter referred to as oXygen). The

proprietary editor, which has been continuously developed and maintained by SyncRo

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

2

Soft SRL since 2002, specialises in XML-heavy authoring, developing and annotating

tasks. It is widely used not only in the private sector (see ibid. 2002–2024g), but also in

the Digital Humanities community. Due to the proprietary nature of oXygen (see ibid.),

the creation and especially the use of frameworks is only possible once the software has

been purchased by all users, meaning that functionality depends on possessing a valid

oXygen software license1.

6 There are two types of frameworks integrated into oXygen: predefined frameworks

for various XML specifications (e.g. TEI2 or DITA3), and custom frameworks, which are

created from scratch for specific requirements. The integration of the custom

frameworks option can be traced back at least to version 13.2 of oXygen, published in

2012. Since then, the functionality has continuously evolved, with the latest changes

introduced in Version 25.1 in 2023 (see SyncRo Soft SRL 2023).

7 This review concentrates on the second type – the option to construct frameworks

from scratch. It assesses the effort required from the perspective of a user-developer

(hereafter customiser). However, to comprehensively address this, it is essential to also

evaluate the tool’s output – the crafted framework – as perceived by the user4. The

review will use the term tool to refer to the features for creating a framework, while also

considering the created framework as a tool to facilitate XML annotation.

8 Furthermore, it is important to note, that working with oXygen frameworks not

automatically means working with ediarum (see Berlin-Brandenburgische Akademie der

Wissenschaften, and TELOTA - IT/DH 2024a; Dumont et al. 2021). Ediarum is an

environment that enables collaborative working and publishing of edition projects. The

environment consists of multiple software components, one of which specifically utilises

the framework tool of oXygen and expands it by adding additional functionalities. It also

incorporates a database (eXist-db5) which, when set up on a server, enables

collaborative working on and publishing of edition projects. Alternatively, it is possible to

include the ediarum.jar in an existing framework to add additional java operations.

(Berlin-Brandenburgische Akademie der Wissenschaften, and TELOTA - IT/DH 2024b;

ibid. 2024c; Fechner 2023)

9 So, while ediarum can be broadly described as a large-scale working

environment, frameworks are a feature in the oXygen editor itself. Therefore, oXygen

frameworks are not the same as ediarum, but ediarum utilises the oXygen framework

functionality and incorporates it into its working environment. Since creating custom

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

3

oXygen frameworks is entirely sufficient for our project work, our review will focus

specifically on this aspect: the creation and usefulness of custom oXygen frameworks

for edition projects.6

What Is an oXygen Framework?

10 When editing an XML file, oXygen enables users to seamlessly switch between

an XML view (Text mode), displaying the raw XML code, and a visual editing

environment (Author mode). In Author mode, the code is presented in a visually

enhanced format. A framework is a configuration or set of rules defining how XML

documents are structured, presented, and edited.

11 The advantage of the Author mode is that it enables users with little or no

knowledge of XML to work with XML files without having to engage directly with the XML

code, as it is hidden from them. For example, the editing process can be made more

controlled and streamlined by displaying only those fields (elements) that are to be filled

with content, or by implementing dropdown menus that allow only certain predefined

values to be added to the XML file. Users can insert, modify, or delete XML fragments

using various functionalities without accessing the actual source code. Hiding the source

code behind a form-like appearance minimises errors and inconsistencies, such as

inserting elements in the wrong place or the accidental deletion of elements.

12 A framework can be as simple or as complex as required, varying greatly in the

number of functionalities and features provided. Frameworks can therefore be tailored to

different data complexities and requirements, and are not limited to specific use cases.

13 It is crucial to note that the framework options are both extensive and powerful,

mirroring the capabilities of oXygen. However, this review will only focus on and assess

the functionalities we deem useful for projects working on digital editions, as shown in

section ‘Creating a Framework’.

Technical Aspects

14 This section focuses on the technical aspects of installing and using the tool.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

4

General Technical Aspects

15 oXygen and its functionalities are written in Java. However, as oXygen is

designed for editing and processing XML data, customisers only require Java skills if

they wish to modify or expand core functionalities or write their own operations. The

integrated functionalities should be sufficient to handle most use cases. Moreover, since

XML is the designated data format, all operations related to XML data (such as XPath,

XQuery, XSLT transformations, schemata) are fully supported.7

16 Performance issues emerge in larger files (initially observed in a 1.3 MB file),

especially when combined with complex CSS rendering and continuous background

validation. The framework’s response time noticeably slows down, impacting processes

like inserting fragments or navigating from one fillable form field to another. As of now,

the exact cause and potential countermeasures have not yet been determined, as this

issue has not been systematically analysed.

Installation and Building Process

Fig. 1: Initial folder structure of a framework.

Fig. 2: Referencing of the framework in the Document Type Association tab.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

5

17 oXygen allows users and customisers to create and use frameworks, regardless

of the operating system used8. However, it is important to note that the editor’s interface

and the layout of the created framework, including spacing and field size, may vary. The

steps required for installing a framework depend on the person’s role, whether they are

a customiser (i.e. technical personnel) or a user (i.e. involved in editing the texts).

18 For customisers, in order to create a framework for a project, a few preparatory

steps and configurations are necessary.9 Those include:

The creation of a specific folder hierarchy (e.g., Demo/framework), as well as

folders for icons, templates and a CSS file (fig. 1).

The referencing of the folder structure as a Location in the Document Type

Association Tab in oXygen (fig. 2).

The actual creation process of a new framework (Document Type) in the

Document Type Association Tab.

Fig. 3: Association rules of a framework.

19 During this creation process, the framework is named, the previously created

folders and files (framework folder, template folder, and CSS) are assigned, and the

criteria on the basis of which a framework is applied to a file (association rules) are

defined by the customiser.

•

•

•

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

6

20 For instance, fig. 3 shows the association rules for a Demo framework specifying

that it is applicable to all TEI files with the attribute @rendition and the value ‘demo’ in

the <TEI> root element.

Fig. 4: Framework folder structure after all configurations.

21 After all these configurations, the newly created framework will be visible in the

Document Type Association list. It is crucial that customisers initialise the framework by

clicking on ‘Apply’. This will automatically generate a *.framework file in the chosen

directory, containing all the framework’s information (fig. 4).

22 Once these steps have been completed, customisers can start editing the

framework. It is recommended to create an oXygen project for the development process

(see SyncRo Soft SRL 2002–2024d), as this allows for quicker access to the files.

23 To use a framework, all users need to do is associate it in oXygen. For this,

customisers can either package the framework as an add-on for users to integrate or

implement a GitHub (see GitHub Inc. 2024) or GitLab (see GitLab B.V. 2024) workflow

for file sharing, which has proven effective for us10. If the latter is set up, users can

simply:

Clone the framework repository from GitHub (or GitLab).

Open oXygen, navigate to the Document Type Association Tab, and add the

cloned folder structure as a Location.

•

•

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

7

The framework is then added to oXygen, and any file containing the defined attribute-

value pair in the root element will automatically be rendered using the framework’s

layout and have all its features.

Creating a Framework

24 This section focuses on the process of creating a framework and highlights its

most important components. This includes technical and conceptual prerequisites, an

evaluation of the tool’s graphical user interface (GUI) and documentation, and examples

showcasing core features and functionalities.

Technical Know-How

25 For customisers, proficiency in CSS is essential for the design, as XML is

translated into the visually appealing and user-friendly display of the Author mode

through CSS. To selectively address and manipulate individual elements within the –

sometimes intricate – XML structure or to insert a fragment at a context-dependent

location, the ability to navigate the XML tree using XPath expressions is also

necessary.11

26 While not strictly necessary, an understanding of the concept of variables and

skills in XSL, XQuery, or JavaScript are helpful for making full use of the tool, as it

supports the inclusion of scripts via dedicated Author Mode operations (e.g.

JSOperation, XSLTOperation, and XQueryOperation12). This allows for more complex

XML manipulations for which the tool does not provide build-in operations.

27 Finally, knowledge of and the use of schemata such as XML Schema (see W3C,

Fallside, and Walmsley 2004) or RelaxNG (see “RELAX NG Home Page” 2014) facilitate

control over the data, preventing issues such as proliferation of attribute values, and

ensuring that fragments are only inserted in valid places.

Conceptual Know-How

28 Before commencing framework development, the project’s conceptual

objectives, requirements, and prerequisites must be established. This is vital for creating

a tailored framework that meets the project’s specific needs. The process involves a

comprehensive analysis of the source material and identification of existing groundwork

(e.g. existing annotations of the data and / or defined data model) and requirements for

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

8

the framework (e.g. how should it support users, what should be recorded and how). It

also requires addressing questions related to the depth of information, features of the

published (digital) edition, and any research questions the project aims to answer.

29 Guided by these conceptual considerations and building upon a data model13,

customisers can create template XML files, which are then accessible to users through

oXygen’s ‘New Document’ option.14 Templates provide the project’s individual XML

structure and placeholders for data entry, ensuring uniformity across all files.

Technical Interface and GUI

30 Once created, the framework is stored in a .framework file, which is a

configuration XML file that encapsulates all the settings and resources needed to work

with XML-based documents associated through document type association. This

means, it can be manually accessed and edited in oXygen, just like any other XML file.

Alternatively, the tool provides a graphical user interface (GUI). It primarily consists of

classical dialogue boxes for creating and editing the framework.

Fig. 5: Action configuration options in the framework options dialogue box.

31 The GUI generally poses no obstacle for customisers familiar with working with

oXygen. It has the advantage of providing framework variables and displaying all

possible options for selection, making it easier to configure settings without needing to

know the exact XML syntax. However, the tool follows a logically formal arrangement of

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

9

options, which regrettably causes essential settings to be somewhat hidden. It might be

helpful if fundamental configuration options were more prominently placed or

highlighted. For example, while actions are the core features of each framework, their

configuration options are found only in the fourth tab within the second submenu of the

dialogue box (fig. 5).

Fig. 6: Options to create a custom oXygen toolbar (here ‘Rhodomanologia’).

Fig. 7: Example of a framework’s custom toolbar and menu with individual icons and

descriptions.

32 The same applies to the valuable option of integrating the framework’s actions

into a new custom oXygen toolbar or menu15 (fig. 6, 7).

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

10

Fig. 8: XML fragment inserted via an input field in the dialogue box.

Fig. 9: XML fragment inserted directly into the framework file’s source code.

33 While the GUI proves to be sufficient and comfortable for most tasks, there are

instances where direct access to the framework file is a more effective approach. For

instance, if modifications are required in later stages of framework development, such as

altering the name of an element that is used in multiple instances, the XML framework

file can easily be searched, ensuring comprehensive changes across all fragments. In

contrast, in the GUI each action dialogue box needs to be opened, checked and edited

manually. Additionally, due to the restricted size of the input field for fragments in the

dialogue box (fig. 8), directly inserting content into the XML file may be easier. However,

the fragment is inserted as a plain text string without any code markup, which

significantly reduces readability (fig. 9).

Terminology and Functionalities – Overview

34 oXygen provides a variety of built-in functionalities that can be used in either the

CSS file or the framework file to facilitate interaction between the user and the

document. The following is an overview of options deemed most useful, some of which

will be explored in more detail later on.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

11

Fig. 10: Action dialogue box with form-like design.

35 Author Mode Action16: used in the framework file. Actions are the core feature

of the framework. Their main elements (fig. 10) are:

ID – to identify each action and make it invocable from anywhere in the framework,

such as the CSS file or other actions.

Description – a plain text description of the action’s functionality to be displayed to

the user on mouseover.

Icon – to visually represent the action when it is displayed as a button, for example

in the toolbar.

Keyboard shortcut – to call the action using a keyboard shortcut.

Operation – the operation to be performed and its arguments.

XPath constraint – to enable or disable application of the action in certain parts of

the document.17

36 Author Mode Operations18: used in Author Mode Actions; serving as the

primary task to be performed, for example:

DeleteElementOperation – deletes an element.

ExecuteMultipleActionsOperation – consecutively calls and executes a list

of actions via their ID.

ExecuteValidationScenarioOperation and

ExecuteTransformationScenariosOperation – validates or transforms the

•

•

•

•

•

•

•

•

•

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

12

document using a scenario already configured in oXygen’s validation /

transformation settings.

InsertFragmentOperation – inserts an XML fragment.

XSLTOperation – executes an XSL transformation either referencing an external

XSL file or providing the entire script in the action’s script argument.

37 Form Controls19: used in the CSS file to provide graphical user interfaces, for

example:

oxy_browser() – to integrate an HTML frame.

oxy_checkbox() – a checkbox to select or de-select an option.

oxy_combobox() – a dropdown menu with predefined values.

oxy_datePicker() – a calendar (with the option to specify the desired date

format).

oxy_textfield() – a plain text input field.

oxy_video() – to integrate a video.

38 Custom CSS Functions20: used in the CSS file to enhance the layout for users

and perform specific operations on values, for example:

oxy_action() – calls a predefined action from the framework or defines an action

directly.

oxy_concat() – concatenates strings.

oxy_editor()21 – used in combination with oxy_label() to style forms.

oxy_label() – supplies a display label for the edited segment.

oxy_xpath() – evaluates an XPath expression.

39 Additional CSS Properties22: used in the CSS file to control the appearance or

behaviour of elements, for example:

-oxy-collapse-text – to hide the text content of an element, for example, when

it is already rendered using a function such as oxy_editor() (otherwise the content

would be displayed twice).

-oxy-editable – to enable or prohibit editing the content of an element.

-oxy-foldable – to make elements foldable, for example, the metadata or

facsimile section at the beginning of a TEI document.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

13

-oxy-placeholder-content – to show a placeholder for empty elements to let

the users know what kind of input is expected (particularly useful when a form-like

layout with labels is not feasible).

40 Editor Variables23: used in the framework file to define reusable values and

thereby facilitate flexible interactions between users and the framework, for example:

${ask} – to ask users to provide more input or to choose from a given set of

options before an XML fragment is inserted, e.g., values for attributes.

${caret} – current cursor location, e.g., to set the next editable position inside or

after an inserted XML fragment.

${date} – to insert or display the current date.

${framework} – the path of the current framework directory, e.g., to set a relative

path to the folder containing icons used in the framework.

${id} and ${uuid} – application-level or universally unique identifier, e.g., to

generate IDs to insert into the XML file or to use only during processing.

${selection} – currently selected text, e.g., to surround it with an XML fragment.

Design and Visualisation (CSS)

41 The design of the final framework is entirely in the hands of the customiser.

Whether users consider a framework practical or not depends on how the customiser

shapes the framework and utilises the capabilities provided by the tool. It must therefore

be noted in all subsequent considerations that only the presence of a function in the tool

or its implementation effort should be understood as part of this paper’s tool critique, not

the actual realisation and configuration in the individual framework.

42 In our experience, a framework’s acceptance among users and non-technical

personnel is improved by visual proximity to familiar programmes. For instance, aligning

the layout with widely-used word processing programmes such as MS Word lowers the

entry barrier due to familiarity and facilitates intuitive use. Actions such as highlighting

text and applying formatting through a toolbar button, for example, to mark headings or

italicisation, are well-known to users. The tool allows customisers to create buttons in a

similar manner, group them in a toolbar, and assign them individual actions. This layout

is particularly suitable for projects or documents where predominantly prose text is

generated, such as transcripts or introductory sections.

•

•

•

•

•

•

•

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

14

43 Regarding the rendering24 of the XML file, essentially anything styleable using

CSS is possible25, such as Word-like page layouts, frames, colours, and more.

However, CSS rendering has its limitations. Since no transformation or programming

language is involved, each element is simply output where it appears in the document.

Re-ordering or repositioning elements, such as numbered footnotes, or grouping and

sorting metadata for neater input, is not possible, whereas in web development, CSS is

widely used for these tasks. Furthermore, context-dependent styling is limited to the

capabilities of CSS selectors: an element can be styled differently, for example,

depending on its ancestor elements (parent / ancestor selector) or when it differs in

terms of attributes or attribute values (attribute selector). However, it is not possible to

conditionally output or style elements based on the presence of specific descendant

elements.26

Fig. 11: Example of an XML file rendered as form fields for users to fill in (here bibliographic

metadata).

44 Beyond conventional CSS styling options, the tool provides additional oXygen-

specific CSS functionalities that broaden the spectrum. For instance, clearly structured

and self-explanatory form fields can be designed through the oxy_editor() function

(generating an input field that can be filled in by the users, adding either element content

or attribute values), and explanatory labels can be provided through the oxy_label()

function (fig. 11). As users are usually familiar with filling in forms, this approach

combines intuitive form completion with standardised input formats, ensuring good data

quality. In our projects, we found the form approach particularly useful in areas where

traditionally highly formalised information is provided, such as metadata, bibliographic

details, indices, or object descriptions.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

15

45 Especially in digital edition projects, where data is traditionally published online

both as data and as a digital edition, there is also the opportunity to tailor the

framework’s design to align with the online presentation. This way, users can already

visualise the future presentation of the edited text during the editing process, which is

often perceived as helpful. For instance, elements that will later be presented as links

can already be displayed in blue and underlined in the framework, elements denoting

quotations can be surrounded by quotation marks, and text justification, indentation, or

different font sizes can already be implemented.

46 One last aspect not to be underestimated is the ability to hide elements from the

XML file that are relevant only for technical personnel, not for users, such as sections

related to copyright and rights. This ensures a cleaner look and prevents accidental

alterations to sections that should not be edited.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

16

Functionality (Framework)

Fig. 12: Three versions for date insertion: calendar, automatic insertion of current date, and

text input field.

47 There are often multiple ways through which a single action can be realised (fig.

12). For instance, when a date value needs to be inserted into the document, the tool

offers the option to open a calendar dialog box (oxy_datePicker()). Users can then

select the date from the calendar, and it is automatically inserted in the desired,

predefined format. Additionally, there is the option to insert the current date directly

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

17

through an editor variable (${date}). And, of course, a free text field can also be

created, allowing users to manually input the date (oxy_textfield()). All three options

have legitimate use cases, and the choice made by the customiser depends not on

limitations of the tool, but on the specific needs of the project. For new customisers, it

would be helpful if more projects shared their examples, specific use cases, and

experiences online. This would provide a broader understanding of the advantages and

disadvantages associated with different implementation approaches.

48 It is important to note that the person customising the framework is often not the

one using it. We therefore consider the need for communication between customiser

and user as an essential part of working with the tool. Ideally, users express a desire for

workflow improvement or highlight a cumbersome step, and the customiser provides a

solution by implementing a suitable action from the tool.

49 Following is a selection of settings, operations, form controls, and variables,

which have proven particularly useful for working on digital editions. As mentioned

earlier, the capability to design buttons through which users can trigger actions is a

central feature of the tool. They can be freely arranged in the toolbar, visually sorted

using separators, or grouped thematically in dropdown submenus. The oxy_action()

function in CSS allows buttons to be directly output within the text. This option is

particularly useful when an action only makes sense at specific points in the document,

such as when users should be able to delete an optional element. Icons can be custom-

designed, and a freely formulated mouseover message can inform users about the

action triggered by the button.

50 When there is a need to add content to existing elements, dropdown menus can

be easily styled using the oxy_combobox() function. While the primary use case likely

involves adding attribute values, it is also possible to provide a list of text content to

choose from. This is particularly useful when standardised values are frequently

repeated but should be inserted as a text node rather than an attribute value. For

example, if the text genre in the metadata section isn’t manually inserted but can be

selected from a list of options and then applied as a text node, it reduces the user’s

typing workload, ensures consistency, and eliminates the risk of typographical errors.

51 When combined with the oxy-xpath() function, a dropdown menu doesn’t

necessarily require a fixed, predefined list of values; instead, it can dynamically fetch

and display values based on the provided path. For instance, in a section where the

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

18

user must specify a location, the list of values can import the project’s index file and offer

only those entries that are discernible as place names.

52 To assist users in using the framework correctly, external points of reference can

be included. For example, oxy_video() allows the embedding of locally stored or

remote videos (such as YouTube tutorials), providing guidance for users throughout the

editing process. The oxy_browser() form control facilitates the integration of web

pages, enabling customisers to link parts of a documentation to the framework.

Customisers proficient in Java coding can also create their own custom form controls

(see SyncRo Soft SRL 2002–2024k).

53 One of the most frequently used operations is to insert an XML fragment, for

example, to create a new empty entry in an index file, which can then be filled in by the

user (InsertFragmentOperation). The insert position is freely selectable (before /

after, as the first / last child) and the insert location (any element in the document) can

be specified via XPath. Thus, it does not necessarily have to happen at the point from

which the action is triggered.

54 If the fragment is not only to be inserted but also to replace the selected content

or surround it with markup, there are two closely related alternatives to achieve just that

(InsertOrReplaceFragmentOperation and SurroundWithFragmentOperation).

These are useful when it is necessary to add markup to existing text or elements, for

instance, to mark a selected text as an entity, such as person or place, and surround it

with the corresponding XML markup.

Fig. 13: Example of using the ${ask} variable in the dialogue box, asking the user to

choose between two attribute values before the XML code is inserted.

55 The XML fragment to be inserted or wrapped around the selected text is stored

in the framework file and is output as is. However, there are instances where it proves

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

19

beneficial to permit users to augment the fragment before it is inserted. This involves

options such as selecting from a predefined list of attribute values to categorise an entity

as either a person or a place. This approach enables key parts of the fragment to be

determined dynamically without the need to customise separate actions for each variant.

To facilitate this, editor variables can be used in the XML fragment. While powerful,

these variables can be intricate to write in the input field due to their complexity. For

instance, the ${ask} variable can be used to create a dialogue box, prompting users to

choose from a list of predefined values in a radio menu27 before inserting the XML

fragment with the selected values. A simple fragment (<entity>) with only two values

(‘person’ and ‘place’) for the @type attribute might look as shown in fig. 13.

56 Customisers can specify a title for the dialogue box, telling users what kind of

information they need to provide (‘Choose type of entity’), along with a list of values to

be inserted into the fragment, a label to display in the dialogue box (‘Person’ and

‘Place’), and a default value, pre-selecting the option in the radio menu (‘person’).

57 The importance of the default value argument must not be underestimated. It

allows users to swiftly proceed through dialogue boxes by pressing ‘Enter’ if the most

common option is pre-selected. Day-to-day use has shown that these seemingly minor

simplifications can significantly enhance work efficiency. The ${ask} editor variable has

proven useful and very popular among users, as manually entering the sometimes quite

technical attribute values can be tiresome. Moreover, it reduces the necessity for

displaying separate input fields for each attribute, contributing to a cleaner framework.

This is especially useful for projects that rely heavily on storing standardised information

in attributes instead of textual element content.

58 Particularly for complex encoding it may not always be possible to achieve the

desired result in a single action. The ExecuteMultipleActionsOperation allows listing

multiple actions that are then triggered consecutively. For example, the first action might

insert a <graphic> element to the XML file, asking users to provide an ID and an URL

to the image file. A second action could then execute an XSL script using the

XSLTOperation to update a corresponding facsimile section of the document. The

XSLTOperation is a powerful operation, as it allows for complex manipulations of the

XML file which are not possible with the build-in operations. It must be noted, however,

that the tool’s interface only provides a small input field for providing XML fragments or

scripts. Due to the window’s limited size and without most of oXygen’s usual code

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

20

support, such as colours and indentation, debugging and maintenance can be difficult. It

is therefore recommended to store XSL scripts as separate files.

59 Alternatively, the ExecuteTransformationScenariosOperation could be

employed, which references and triggers a transformation scenario already configured in

the transformation settings, thus including all the scenario’s arguments, such as defining

an output file path for the resulting document.

60 Another highly advantageous configuration option involves the ability to mark text

content, entire elements, attribute values, or suggested values in dropdown menus as

either editable or non-editable by setting the editable argument of the function to either

true or false. This way, more technical segments, such as IDs, metadata, or attribute

values, can be selected and displayed but not altered. If entire elements should be

displayed for review but not edited, the CSS property -oxy-editable can be set to

false.

61 And finally, for clarity of layout, the :empty (and :not(:empty)) selector in CSS

has proven particularly effective. It enables the customiser to reduce the display to

relevant parts of the XML file or to present action buttons in the text only when they are

contextually appropriate, such as displaying an ‘open link in browser’ icon only once a

URL has been provided. It enhances clarity when specific elements or actions are

revealed to the user only after a higher-level value has been selected or entered.

Moreover, empty fields can be highlighted in colour, or specific placeholder content can

be displayed using the -oxy-placeholder-content CSS property, drawing the user’s

attention to missing inputs.

Documentation and Learnability

62 oXygen’s website provides a comprehensive guide (see SyncRo Soft SRL 2002–

2024j) for creating custom frameworks, with additional resources available in various

webinars on oXygen ‘s official YouTube channel (see SyncRo Soft SRL and

@oxygenxml 2004). However, these materials provide only a basic overview. The

webinars primarily focus on customising the DITA framework or addressing specific use

cases. The website documentation outlines the functions of individual options but lacks

clear implementation instructions and examples. This information gap is particularly

noticeable regarding the built-in Author Mode operations.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

21

63 In some cases, unexpected issues may arise, such as with the

SurroundWithFragmentOperation and the InsertOrReplaceFragmentOperation.

The intention was to display a button in the text, triggering the action of surrounding a

selected passage of text with XML markup (indicated by explicitly including the $

{selection} variable). However, the action was not applied to the selected text.

Instead, an empty element fragment was inserted where the button was displayed.

Apparently, the text selection was shifted to the button’s position when it was clicked.

This issue could only be resolved by relocating the button to the toolbar. Instances like

these highlight the need for more comprehensive documentation and additional

examples.

Fig. 14: CSS code using oxy_editor() for creating a dropdown menu for the values of the

@type attribute.

Fig. 15: CSS code using oxy_combobox() for creating a dropdown menu for the values of

the @type attribute.

64 In other sections the documentation omits the explanation of functions that

seem to be deprecated but still work, as exemplified by the oxy_editor() function. It

was introduced to the framework in 2012 (see SyncRo Soft SRL 2012) to facilitate form-

based layouts. As noted before, the oxy_editor() function can include any form

control as an argument, such as comboboxes. The two code snippets shown in fig. 14

and 15 are therefore functionally identical.

65 Both versions create a dropdown menu, offering the values A, B, C, D for the

@type attribute of the <p> element. The value selected by the user will then be used as

the attribute value. The oxy_editor() function is widely used in webinars, yet it is

missing from the current documentation. This means new customisers cannot find any

information on the arguments associated with this function.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

22

66 In our opinion, the documentation could be improved by adopting a more user-

friendly style and intuitive navigation system. Currently, it adheres to the formal structure

of the GUI dialogue boxes, making it difficult to find important features. The table of

contents can also be challenging to navigate, especially for first-time users who are not

familiar with form controls, CSS functions, and other technical distinctions. Improving the

clarity and structure of the documentation would help customisers access the

information they need.

67 In summary, learning to use custom frameworks can be challenging and requires

extensive research through written documentation and video tutorials. The full potential

of the tool may only become apparent through interactions with experienced

customisers and users who actively use frameworks, as they can often identify areas for

improvement by addressing tedious or laborious processes that may not be immediately

apparent to new customisers.

Conclusion

68 Custom oXygen frameworks are a powerful tool to enable users with little or no

knowledge of XML to engage directly with XML files, thereby lowering the barrier for

non-technical personnel to work in digital edition projects. Creating and maintaining

frameworks requires a certain level of technical knowledge from the customiser,

including proficiency in CSS, schema languages, XPath, and XSL. For users of a

framework, a significant challenge may arise from the complexity of the oXygen XML

Editor itself, as it can initially feel overwhelming with its numerous features and

functionalities. However, once the hurdle of setting up and familiarising oneself with

oXygen are overcome, the benefits of using frameworks in projects become clear. They

significantly reduce the need for specialised technical and digital annotation knowledge

by visually replicating familiar systems (e.g., designing the framework as a form or

making it resemble known text editors like Word). This allows users to focus on their

annotation work in a familiar environment while producing high-quality data.

69 Frameworks integrate well into existing project workflows and processes, as

diverse techniques and project materials can be seamlessly and flexibly combined to

create a comprehensive working environment that encompasses content creation,

validation, and documentation. Data quality is reliably ensured, as the data inserted

through the framework is uniform, and illegitimate or missing content can be highlighted

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

23

and easily spotted by users. The built-in actions and functions meet the majority of

editing requirements and can even be expanded and customised when necessary.

70 Regrettably, the custom frameworks tool is not prominently featured in the

oXygen environment, and its potential is not effectively communicated. A more user-

friendly documentation and more real-world examples from other users and customisers

would significantly improve visibility and accessibility.

71 While the term ‘framework’ is often used interchangeably with ‘ediarum’, it is

crucial to recognise that they are not synonymous. Ediarum is a large-scale working

environment that relies on oXygen frameworks, whereas using the oXygen custom

framework tool directly to create project specific frameworks is a highly effective and

less technically demanding solution. The broad range of functionalities and options

available cover all of our projects’ use cases. Even knowing or using only a basic set of

the tool’s features, some of which were explored in this paper, is still sufficient to meet

the tailored needs of most edition projects.

72 To conclude, in our project experience, both the customisers and the users

consider oXygen frameworks to be an effective, recommendable tool that significantly

improves the editing workflow.

Notes

1. While the licenses for the private sector are rather expensive, SyncRo Soft SRL

accommodates the academic sector with relatively inexpensive academic licenses (see

SyncRo Soft SRL 2002–2024l).

2. For more information on the TEI Standard, see TEI Consortium n.d.

3. For more information on the DITA Standard, see OASIS Open 2018.

4. To avoid confusion, the term ‘user’ will be employed when discussing the person

engaged in the editing process, as distinct from the term ‘editor’, which refers to the

oXygen XML Editor programme.

5. For more information on eXist-db, see eXist Solutions 2018.

6. A detailed review of ediarum can be found in RIDE Issue 11 (see Mertgens 2019), for

anyone interested in a working and publishing environment for their project.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

24

7. It should be noted that oXygen also supports many other formats, such as JSON,

HTML or JavaScript. However, these play a subordinate role in the creation of and work

with frameworks, which is why other formats and functionalities are not discussed in this

review.

8. oXygen is available for Windows, MacOS, and Linux.

9. For step-by-step instructions, see SyncRo Soft SRL 2002–2024c. However, it should

be noted that the documentation does not include visual illustrations of individual steps,

which may pose challenges for new customisers during the initial configuration process.

10. For alternative methods of sharing a framework, such as via an add-on, and

detailed instructions, see SyncRo Soft SRL 2002–2024n.

11. Both CSS and XPath are thoroughly documented, and numerous tutorials are

available online for beginners as well as for more advanced requirements. See, for

example, W3schools 1999–2024a; ibid. 1999–2024b; W3C et al. 2017; W3C and Bos

2004.

12. In this review we do not delve deeply into these operations, as they have played

only a limited role in our projects. For a full description, see SyncRo Soft SRL

2002-2024b.

13. It is strongly recommended to commence work on the framework and deploy it in

productive editorial work only when the data model is largely finalised and no more

significant changes are anticipated, as late or frequent changes to the data model

require significant post-work in the framework. Additionally, using a schema enables

schema-aware restrictions of actions, preventing users from inadvertently inserting XML

fragments in places where they are not allowed, according to the data model.

14. The complexity of the project determines the number of template files needed. For

instance, a homogeneous set of documents like letters might require just one template

file. Conversely, projects dealing with diverse content types, such as transcriptions of

diverse source material (e.g., manuscripts, letters, poems) and editorial content (e.g.,

bibliographic items, indices, introductory texts), may necessitate multiple template files.

15. The menu option is particularly suitable for complex frameworks and projects where

numerous actions need to be nested and grouped, and displaying all options in the

toolbar would be overwhelming.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

25

16. For the full list of Author Mode Actions, see SyncRo Soft SRL 2002–2024e.

17. The usefulness of XPath constraints cannot be overstated. It allows customisers to

control action execution, ensuring that only valid XML data is generated. Entire actions

can be restricted to the cursor being placed in the right place in the document. For

example, a toolbar button triggering an action for encoding reading variants in a

manuscript transcription could appear grey and unclickable if the cursor is placed in a

section where this action is not applicable, such as the metadata section.

18. For the full list of Author Mode Operations, see SyncRo Soft SRL 2002–2024b.

19. For the full list of Form Controls, see SyncRo Soft SRL 2002–2024i.

20. For the full list of Custom CSS Functions, see SyncRo Soft SRL 2002–2024f.

21. oxy_editor() is an alternative, possibly deprecated, method of using form controls as

they can be taken as an argument; see section 'Documentation and Learnability', p. 64

for more details.

22. For the full list of Additional CSS Properties, see SyncRo Soft SRL 2002–2024a.

23. For the full list of editor variables, see SyncRo Soft SRL 2002–2024h.

24. This section focuses solely on rendering the XML file using CSS. The options for

modifying the XML content will be discussed in the next section.

25. Note that while CSS display commonly varies by machine, browser, or platform,

oXygen generally maintains a consistent display across different environments.

However, not all typical CSS features and selectors are supported. For a full list, see

SyncRo Soft SRL 2002–2024o.

26. For example, it is possible to style <note> elements differently based on their

ancestor, such as teiHeader note {...} vs. text note {...}, or based on their

attributes, like note[type="footnote"] vs. note[type="endnote"]. However, it is

not possible, for instance, to change a note’s text colour from red to green once a

certain descendant element has been added by the user.

27. In addition to radio buttons, the ${ask} editor variable also supports creating

dropdown menus or fields for free text entry in the dialogue box. These can be used, for

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

26

example, to prompt the user to provide the number of a footnote as a text value, or to

select the language of a text from a list of standardised language codes.

References

Berlin-Brandenburgische Akademie der Wissenschaften, and TELOTA - IT/DH. 2024a.

“ediarum. Digitale Editionen Erstellen Und Publizieren.” ediarum. Digitale Editionen

erstellen und publizieren. Accessed September 6, 2024.

https://web.archive.org/web/20240917072449/https://www.ediarum.org/index.html.

———. 2024b. “ediarum.JAR”: GitHub. Accessed September 6, 2024.

https://web.archive.org/web/20240917072314/https://github.com/ediarum/

ediarum.JAR.

———. 2024c. “Features.” ediarum. Accessed September 6, 2024.

https://web.archive.org/web/20240917072606/https://www.ediarum.org/

features.html.

Dumont, Stefan, Nadine Arndt, Sascha Grabsch, and Lou Klappenbach. 2021.

ediarum.BASE.edit v2.0.0 (v2.0.0). Zenodo.

https://doi.org/10.5281/zenodo.5897100.

eXist Solutions. 2018. “eXistdb.” eXist. Accessed September 9, 2024.

https://exist-db.org/exist/apps/homepage/index.html.

Fechner, Martin. 2023. ediarum.JAR (v3.2.1). Zenodo.

https://doi.org/10.5281/zenodo.7941448

Github Inc. 2024. “GitHub.” Software development platform. Accessed January 18,

2024.

https://web.archive.org/web/20240913063037/https://github.com/.

GitLab B.V. 2024. “GitLab.” Software development platform. Accessed January 18,

2024.

https://web.archive.org/web/20240917071638/https://about.gitlab.com/.

Mertgens, Andreas. “Ediarum. A toolbox for editors and developers” RIDE 11 (2019).

Accessed September 6 2024.

https://doi.org/10.18716/ride.a.11.4.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

27

https://web.archive.org/web/20240917072449/https://www.ediarum.org/index.html
https://web.archive.org/web/20240917072314/https://github.com/ediarum/ediarum.JAR
https://web.archive.org/web/20240917072314/https://github.com/ediarum/ediarum.JAR
https://web.archive.org/web/20240917072606/https://www.ediarum.org/features.html
https://web.archive.org/web/20240917072606/https://www.ediarum.org/features.html
https://doi.org/10.5281/zenodo.5897100
https://exist-db.org/exist/apps/homepage/index.html
https://doi.org/10.5281/zenodo.7941448
https://web.archive.org/web/20240913063037/https://github.com/
https://web.archive.org/web/20240917071638/https://about.gitlab.com/
https://doi.org/10.18716/ride.a.11.4

OASIS Open. 2018. “DITA Version 1.3 Specification.” OASIS. Accessed January 16,

2024.

https://web.archive.org/web/20240116105406/http://docs.oasis-open.org/dita/dita/

v1.3/dita-v1.3-part0-overview.html.

“RELAX NG Home Page.” 2014. RELAX NG Home Page. Accessed January 18, 2024.

https://web.archive.org/web/20240118070611/https://relaxng.org/.

SyncRo Soft SRL. 2002–2024a. “Additional CSS Properties.” Documentation. oXygen

XML Editor. Accessed January 18, 2024.

http://web.archive.org/web/20240118071706/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/dg-css-additional-properties.html.

———. 2002–2024b. “Built-in Author Mode Operations.” Documentation. oXygen XML

Editor. Accessed January 18, 2024.

http://web.archive.org/web/20240118071822/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/dg-default-author-operations.html.

———. 2002–2024c. “Creating a Framework through the Configuration Dialog.”

Documentation. oXygen XML Editor. Accessed January 16, 2024.

https://web.archive.org/web/20240116111755/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/framework-customization-extending.html.

———. 2002–2024d. “Creating a New Project.” Documentation. oXygen XML Editor.

Accessed January 18, 2024.

https://web.archive.org/web/20240118063352/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/create-new-project.html.

———. 2002–2024e. “Creating and Customizing Author Mode Actions for a Framework.”

Documentation. oXygen XML Editor. Accessed January 18, 2024.

https://web.archive.org/web/20240118070808/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/dg-create-custom-actions.html.

———. 2002–2024f. “Custom CSS Functions.” Documentation. oXygen XML Editor.

Accessed January 18, 2024.

http://web.archive.org/web/20240118071502/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/dg-oxygen-css-functions.html.

———. 2002–2024g. “Customers.” oXygen XML Editor. Accessed January 16, 2024.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

28

https://web.archive.org/web/20240116105406/http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
https://web.archive.org/web/20240116105406/http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html
https://web.archive.org/web/20240118070611/https://relaxng.org/
http://web.archive.org/web/20240118071706/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-css-additional-properties.html
http://web.archive.org/web/20240118071706/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-css-additional-properties.html
http://web.archive.org/web/20240118071822/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-default-author-operations.html
http://web.archive.org/web/20240118071822/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-default-author-operations.html
https://web.archive.org/web/20240116111755/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/framework-customization-extending.html
https://web.archive.org/web/20240116111755/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/framework-customization-extending.html
https://web.archive.org/web/20240118063352/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/create-new-project.html
https://web.archive.org/web/20240118063352/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/create-new-project.html
https://web.archive.org/web/20240118070808/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-create-custom-actions.html
https://web.archive.org/web/20240118070808/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-create-custom-actions.html
http://web.archive.org/web/20240118071502/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-oxygen-css-functions.html
http://web.archive.org/web/20240118071502/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/dg-oxygen-css-functions.html

https://web.archive.org/web/20240116104421/https://www.oxygenxml.com/

customers.html.

———. 2002–2024h. “Editor Variables.” Documentation. oXygen XML Editor. Accessed

January 18, 2024.

http://web.archive.org/web/20240118071843/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/editor-variables.html#editor-variables.

———. 2002–2024i. “Form Controls.” Documentation. oXygen XML Editor. Accessed

January 18, 2024.

http://web.archive.org/web/20240118071348/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/form-controls.html.

———. 2002–2024j. “Framework and Author Mode Customization.” Documentation.

oXygen XML Editor. Accessed January 18, 2024.

http://web.archive.org/web/20240118072955/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/authoring_customization.html.

———. 2002–2024k. “Implementing Custom Form Controls.” Documentation. oXygen

XML Editor. Accessed January 18, 2024.

http://web.archive.org/web/20240118072107/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/implementing-custom-form-controls.html.

———. 2002–2024l. “Oxygen XML Editor - Academic Edition.” oXygen XML Editor.

Accessed October 3, 2024.

https://web.archive.org/web/20241003103831/https://www.oxygenxml.com/

buy_academic_edition.html.

———. 2002–2024m. oXygen XML Editor (version 23.1). Windows, MacOS, Linux.

Romania: SyncRo Soft SRL. Accessed December 18, 2023.

https://web.archive.org/web/20231218081955/https://www.oxygenxml.com/

xml_editor.html.

———. 2002–2024n. “Sharing a Framework.” Topic. oXygen XML Editor. Accessed

January 18, 2024.

https://web.archive.org/web/20240118064556/https://www.oxygenxml.com/doc/

versions/26.0/ug-editor/topics/author-document-type-extension-sharing.html.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

29

https://web.archive.org/web/20240116104421/https://www.oxygenxml.com/customers.html
https://web.archive.org/web/20240116104421/https://www.oxygenxml.com/customers.html
http://web.archive.org/web/20240118071843/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/editor-variables.html#editor-variables
http://web.archive.org/web/20240118071843/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/editor-variables.html#editor-variables
http://web.archive.org/web/20240118071348/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/form-controls.html
http://web.archive.org/web/20240118071348/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/form-controls.html
http://web.archive.org/web/20240118072955/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/authoring_customization.html
http://web.archive.org/web/20240118072955/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/authoring_customization.html
http://web.archive.org/web/20240118072107/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/implementing-custom-form-controls.html
http://web.archive.org/web/20240118072107/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/implementing-custom-form-controls.html
https://web.archive.org/web/20241003103831/https://www.oxygenxml.com/buy_academic_edition.html
https://web.archive.org/web/20241003103831/https://www.oxygenxml.com/buy_academic_edition.html
https://web.archive.org/web/20231218081955/https://www.oxygenxml.com/xml_editor.html
https://web.archive.org/web/20231218081955/https://www.oxygenxml.com/xml_editor.html
https://web.archive.org/web/20240118064556/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/author-document-type-extension-sharing.html
https://web.archive.org/web/20240118064556/https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/author-document-type-extension-sharing.html

———. 2002–2024o. “Standard W3C CSS Supported Features.” oXygen XML Editor.

Accessed October 3, 2024.

https://www.oxygenxml.com/doc/versions/26.1/ug-editor/topics/dg-standard-css-

support.html.

———. 2012. “Oxygen XML Editor 14.1.” Version History. oXygen XML Editor. Accessed

January 18, 2024.

http://web.archive.org/web/20240118074418/https://www.oxygenxml.com/

xml_editor/whatisnew14.1.html.

———. 2023. “What’s New in Oxygen XML Editor 25.1.” oXygen XML Editor. Accessed

January 16, 2024.

https://web.archive.org/web/20240116104953/https://www.oxygenxml.com/

xml_editor/whatisnew25.1.html.

SyncRo Soft SRL, and @oxygenxml. 2004. oXygen XML Channel. Webinars and

conference recordings. YouTube: oXygen XML Channel. Accessed January 18,

2024.

https://www.youtube.com/@oxygenxml/search?query=Framework.

TEI Consortium. n.d. “TEI: Text Encoding Initiative.” Accessed January 16, 2024.

https://web.archive.org/web/20240116105707/https://tei-c.org/.

W3C, and Bert Bos. 2024. “CSS Specifications.” Documentation. W3C – Description of

All CSS Specifications. Accessed January 18, 2024.

https://web.archive.org/web/20240118065122/https://www.w3.org/Style/CSS/

specs.en.html.

W3C, David C. Fallside, and Priscilla Walmsley. 2004. “XML Schema Part 0: Primer

Second Edition.” Documentation. W3C Recommendation. Accessed January 18,

2024.

https://web.archive.org/web/20240118070415/https://www.w3.org/TR/

xmlschema-0/.

W3C, Jonathan Robie, Michael Dyck, and Josh Spiegel. 2017. “XML Path Language

(XPath) 3.1.” Documentation. W3C Recommendations. Accessed January 18,

2024.

https://web.archive.org/web/20240118065535/https://www.w3.org/TR/xpath-31/.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

30

https://www.oxygenxml.com/doc/versions/26.1/ug-editor/topics/dg-standard-css-support.html
https://www.oxygenxml.com/doc/versions/26.1/ug-editor/topics/dg-standard-css-support.html
http://web.archive.org/web/20240118074418/https://www.oxygenxml.com/xml_editor/whatisnew14.1.html
http://web.archive.org/web/20240118074418/https://www.oxygenxml.com/xml_editor/whatisnew14.1.html
https://web.archive.org/web/20240116104953/https://www.oxygenxml.com/xml_editor/whatisnew25.1.html
https://web.archive.org/web/20240116104953/https://www.oxygenxml.com/xml_editor/whatisnew25.1.html
https://www.youtube.com/@oxygenxml/search?query=Framework
https://web.archive.org/web/20240116105707/https://tei-c.org/
https://web.archive.org/web/20240118065122/https://www.w3.org/Style/CSS/specs.en.html
https://web.archive.org/web/20240118065122/https://www.w3.org/Style/CSS/specs.en.html
https://web.archive.org/web/20240118070415/https://www.w3.org/TR/xmlschema-0/
https://web.archive.org/web/20240118070415/https://www.w3.org/TR/xmlschema-0/
https://web.archive.org/web/20240118065535/https://www.w3.org/TR/xpath-31/

W3schools. 1999–2024a. “CSS Tutorial.” Tutorial. W3schools. Accessed January 18,

2024.

https://web.archive.org/web/20240118070014/https://www.w3schools.com/css/

default.asp.

———. 1999–2024b. “XPath Tutorial.” Tutorial. W3schools. Accessed January 18, 2024.

https://web.archive.org/web/20240118070143/https://www.w3schools.com/xml/

xpath_intro.asp.

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

31

https://web.archive.org/web/20240118070014/https://www.w3schools.com/css/default.asp
https://web.archive.org/web/20240118070014/https://www.w3schools.com/css/default.asp
https://web.archive.org/web/20240118070143/https://www.w3schools.com/xml/xpath_intro.asp
https://web.archive.org/web/20240118070143/https://www.w3schools.com/xml/xpath_intro.asp

Factsheet

Resource reviewed

Title Custom Oxygen Frameworks

Editors SyncRo Soft SRL

URI https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/
authoring_customization.html

Publication Date ~2012-2024

Date of last
access

31.01.2024

Reviewer

Name Bunselmeier, Jennifer

Affiliation University of Wuppertal

Place Wuppertal

Email bunselmeier (at) uni-wuppertal.de

Reviewer

Name Krottmaier, Sina

Affiliation University of Graz

Place Graz

Email sina.krottmaier (at) uni-graz.at

General information

Software type What type of software is it?
(cf. Catalogue 0.1.1)

Software tool

Identification of
the environment

On which platform runs the tool?
(cf. Catalogue 1.4)

Another application

Purpose For what purpose was the tool
developed?
(cf. Catalogue 1.5)

developed to accomplish a
general task

Funding Which is the financial model of the tool?
(cf. Catalogue 1.6)

Behind a paywall

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

32

https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/authoring_customization.html
https://www.oxygenxml.com/doc/versions/26.0/ug-editor/topics/authoring_customization.html
https://orcid.org/0000-0001-8011-2376
https://orcid.org/0000-0001-8011-2376
https://orcid.org/0000-0002-7966-7996
https://orcid.org/0000-0002-7966-7996
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K0.1.1
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K1.4
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K1.5
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K1.6

Maturity What is the development stage of the
tool?
(cf. Catalogue 1.5)

Release

Methods and implementation

Programming
Language

Which programming languages and
technologies are used?
(cf. Catalogue 2.3)

Java, XSLT, Other: CSS,
XQuery

Reuse Does the tool reuse portions of other
existing software?
(cf. Catalogue 2.3)

no

Input format Which input formats are supported?
(cf. Catalogue 2.4)

.xml, .xml/tei

Output format Which output formats are supported?
(cf. Catalogue 2.4)

.xml, .xml/tei, .html

Encoding Which character encoding formats are
supported?
(cf. Catalogue 2.4)

utf-8, Other: Unicode, US-
ASCII, etc.

Encoding
preprocessing

Is a pre-processing conversion included? no

Dependencies Does the documentation list
dependencies on other software,
libraries or hardware?
(cf. Catalogue 3.2)

Yes, Oxygen XML Editor

Dependencies
installation

If yes, is the software handling the
installation of dependencies during the
general installation process (you don't
have to install them manually before the
installation)?

no

Documentation and support

Documentation Is documentation and/or a manual
available? (tool website, wiki, blog,
documentation, or tutorial)
(cf. Catalogue 3.4)

yes

Documentation
format

Which format has the documentation?
(cf. Catalogue 3.3)

.html, .pdf, Other:
Documentation on Website

Documentation
parts

Which of the following sections does the
documentation contain?
(cf. Catalogue 3.3)

‘Getting Started’ section
(installation and
configuration), Step-by-step
instructions, API
documentation (if relevant)

Documentation
language

In what languages is the documentation
available?
(cf. Catalogue 3.3)

English

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

33

https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K1.5
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K2.3
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.1.6
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K2.3
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K2.3
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K2.3
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.2
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.4
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.3
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.3
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.3

Support Is there a method to get active support
from the developer(s) or from the
community?
(cf. Catalogue 3.4)

yes

From of support Which form of support is offered?
(cf. Catalogue 3.4)

Forum, Other: Video Tutorials,
Technical Support Form,
FAQs

Issue tracker Is it possible to post bugs or issue using
issue tracker mechanisms?
(cf. Catalogue 3.4)

no

Usability and sustainability

Build and install Grade how straightforward it is to build or
install the tool on a supported platform:
(cf. Catalogue 3.6)

straightforward

Tests Is there a test suite, covering the core
functionality in order to check that the
tool has been correctly built or installed?
(cf. Catalogue 3.7)

no

Portability and
interoperability

On which platforms can the tool/software
be deployed?
(cf. Catalogue 3.8)

Linux/BSD/Unix, Mac OS X,
Windows

Devices On which devices can the tool/software
be deployed?
(cf. Catalogue 3.8)

Desktop, Laptop

Browsers If the tool is web-based: On which
browsers can the tool/software be
deployed?
(cf. Catalogue 3.8)

Not applicable (if not web-
based for example)

Plugins If the tool is web-based: Does the tool
rely on browser plugins?
(cf. Catalogue 3.8)

not applicable

API Is there an API for the tool?
(cf. Catalogue 3.8)

yes

Code Is the source code open?
(cf. Catalogue 3.9)

no

License Under what license is the tool released?
(cf. Catalogue 3.9)

No explicit license / all rights
reserved

Credits Does the software make adequate
acknowledgement and credit to the
project contributors?
(cf. Catalogue 3.9)

no

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

34

https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.4
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.4
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.4
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.6
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.7
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.8
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.8
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.8
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.8
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.8
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.9
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.9
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.9

Registered Is the tool/software registered in a
software repository?
(cf. Catalogue 3.9)

no

Possible
contribution

If yes, can you contribute to the software
development via the repository/
development platform?

not applicable

Analysability, extensibility, reusability of the code

Analysability Can the code be analyzed easily (is it
structured, commented, following
standards)?
(cf. Catalogue 3.10)

Unknown

Extensibility Can the code be extended easily
(because there are contribution
mechanisms, attribution for changes and
backward compatibility)?
(cf. Catalogue 3.10)

yes

Reusability Can the code be reused easily in other
contexts (because there are appropriate
interfaces and/or a modular
architecture)?
(cf. Catalogue 3.10)

yes

Security and
privacy

Does the software provide sufficient
information about the treatment of the
data entered by the users?
(cf. Catalogue 3.11)

no

Supportability
and maintenance

Is there information available whether
the tool will be supported currently and in
the future?
(cf. Catalogue 3.12)

no

Citability Does the tool supply citation guidelines
(e.g. using the Citation File Format)?
(cf. Catalogue 3.13)

no

User interaction, GUI and visualization

User profile What kind of users are expected?
(cf. Catalogue 4.1)

Humanities researcher, Digital
humanist

User interaction What kind of user interactions are
expected?
(cf. Catalogue 4.1)

Text editing, Image editing

User Interface What kind of interface does the tool
provide?
(cf. Catalogue 4.2 and 0.1.1)

Graphical User Interface
(GUI)

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

35

https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.9
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.10
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.10
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.10
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.11
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.12
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.13
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K4.1
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K4.1
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#

Visualization Does the tool provide a particular
visualizations (in terms of analysis) of the
input and/or the output data?
(cf. Catalogue 4.3)

no

User
empowerment

Is the user allowed to customize the
functioning of the tool and the output
configuration?
(cf. Catalogue 4.4)

yes

Accessibility Does the tool provide particular features
for improving accessibility, allowing
„people with the widest range of
characteristics and capabilities" to use it?
(cf. Catalogue 4.5)

no

Personnel

Editors SyncRo Soft SRL

Programmers SyncRo Soft SRL

Designers SyncRo Soft SRL

Bunselmeier, Jennifer and Sina Krottmaier. “Review of ‘Untangling Data Complexity: Custom
Oxygen Frameworks for Edition Projects’.” RIDE 19 (2024). doi: 10.18716/ride.a.19.2. Accessed:
13.12.2024.

36

https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.13
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K3.13
https://www.i-d-e.de/publikationen/weitereschriften/criteria-tools-version-1/#K4.5

	RIDE – A review journal for digital editions and resources
	Untangling Data Complexity: Custom Oxygen Frameworks for Edition Projects
	Abstract
	The Reviewer
	Introduction
	Identification of the Tool
	What Is an oXygen Framework?

	Technical Aspects
	General Technical Aspects
	Installation and Building Process

	Creating a Framework
	Technical Know-How
	Conceptual Know-How
	Technical Interface and GUI
	Terminology and Functionalities – Overview
	Design and Visualisation (CSS)
	Functionality (Framework)
	Documentation and Learnability

	Conclusion
	Notes
	References
	Factsheet

