PUBLIC

Security Audit

of IEXEC’s Smart Contracts

April 16, 2019

Produced for
1Exec

by

@EHAINSECURITY

Table Of Contents

Foreword L 1
Executive Summary e 1
Audit OVerview 2
1. Scopeofthe Audit e 2
2. Depthof Audit. 2
3. Terminology 2
Limitations 4
System Overview L e 5
1. Simplified life-cycle of adeal 5
2. lexecClerk e 5
3. lexecHub 5
4. AppsandDatasets 5
5. ROlES . . 6
Best Practices in IEXEC’s project e 7
1. Hard Requirements e 7
2. SoftRequirements L 7
Verified Properties o 8
1. Properties related to the ITexecClerk contract, 8

1.1 Deposits increases stake RAAEIIHEY 8

1.2 stakeincreases indirectly PAAEIGIESY 8

1.3 Withdraw decreases stake RAAEIQIEY 8

1.4 stake decreases indirectly RAAEIGIETY 8

1.5 Deposit increases IexecClerk contract RLC token balance FANEIGIEY 8

1.6 Withdraw decreases IexecClerk contract RLC token balance FZAVEIGIEY 9

1.7 Value moves from stake to locked RZRAVCIGIET] 9

https://chainsecurity.com

https://chainsecurity.com

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

Value moves from locked to stake RZRAVCIGIIET]
Reward kitty increases upon failedWork call R4AVEIQIE)
Deal remains unchanged after creation RZRAVCIGIIETeR
IexecClerk.token neverchanges RANEIGIEY
IexecClerk.IexecHub never changes RAACIGIER
TexecClerk . EIP712DOMAIN_SEPARATOR never changes NGOl - - - - - - - - - - - -
Only IexecHub is allowed to call RAAVEIGHERY
m_presigned is only updated once RZAVEIQIIETe]
Scheduler stake is locked FAVEIIERR - - - . -
No-one is allowed to withdraw from the reward kitty R4AEIQIE]
No-one is allowed to directly deposit to the reward kitty FZRWCIGIIETR

Reward kitty is not burned RAEIGIER

2. Properties related to the IexecHub contract

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

Contribution status can only change in a specific order RAAEIGIECN
Task status can only change in a specific order PAACIGIEC

When a task status is UNSET it must be UNSET previously RANGEIGIECY -

Contribution status changes from CONTRIBUTED to PROVED only when the task status is

REVEALING RAAEIGIEN

Values must be set, when a task in REVEALING state PAACIQIEEeY
Only the owner is allowed to call IexecHub.attachContracts() KFANGIGIECR
Active tasks have certain variables set and some unset [Vl - - - - - - - - - - - - -
Result variables set when contribution status is not UNSET 4AVCIGIIEeR
Task’s finalDeadline greater than contributionDeadline RANGCIGIEER
Only initialise creates a task
initialise never overwrites an existing task AACEIQIEES]

Only the current owner can change the owner FAVEIGIECY

ChainSecurity Audit Report

2.13 Only reveal increases a task’s revealCounter PANEIGIECN 13

2.14 reopen resets some fields FAVEIGIERR - 13
2.15 The locked value decreases PAAVCEIGHES] 13
3. Properties related to both TexecHub and IexecClerk contracts 13
3.1 The locked valueincreases P@VEIGIEY 13
3.2 Thestakevalueincreases FAVEIGIERR 14
3.3 Thestakevaluedecreases Z@VEIGEY 14
Security ISSUES L 15

1. Old version of Solidity compiler used 0 15

Trust ISSUES e 16
Design ISsSUes e 17
1. Unused EIP712D0MAIN_SEPARATOR variable | [N - - - - - - - - - - 17
Disclaimer e 18

https://chainsecurity.com

https://chainsecurity.com

Foreword

We would first and foremost like to thank IEXEC for giving us the opportunity to audit their smart contracts. This
document outlines our methodology, limitations and results.

— ChainSecurity

Executive Summary

The audit of IEXEC smart contracts focused on verifying a list of invariants, both provided by IEXEC and aug-
mented by CHAINSECURITY. Initially a lot of the verification work was done by a newly developed system of
CHAINSECURITY. During the audit limitations of this system became obvious and CHAINSECURITY switched
to manually verifying the properties.

Overall, we found that IEXEC employs good coding practices and has clean, well-documented code. All
properties verified by CHAINSECURITY hold. However, CHAINSECURITY raised minor security and design
issues, which have been fixed in the latest code commit.

The audit did not include a general manual code audit independent of checking for specific properties. As
such it is possible that unintended behavior not covered by one of the provided invariants is present in the
contracts.

ChainSecurity Audit Report

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. They have been reviewed based on SOLC
compiler, version 0.5.5 and EVM version PETERSBURG. All of these source code files were received on March
11, 2019.

The corresponding Git commit is: 4025775a796fe60ed33ad66554f8b83ede5a400b.

The latest update has been received on April 15, 2019.

The corresponding Git commit is: 4d017e2468c64067addabb42ee30e59bdf4beas?.

File SHA-256 checksum

./CategoryManager.sol 10808812160143£40237ecccf650542d9e7e5e03c372ed2bd0a10b1c03409a37
./Escrow.sol 93£7396362480451daf056£2a0652b3bb0c4224ec3a09bb51bdabb8337361e49
JlexecClerk.sol b5f62769e3ccc8aadaf1e724abf593b8b82d4936e1ddcf484905e2021eb6ad98
lexecClerkABILegacy.sol b583bdaa632e4920065fc3ed149f63c262b34bae641d6be386dd074£52e31321
/lexecHub.sol 54114b013626318b281145f43edf1fb74c581750dfc1841fd6edda7062ef1f1f
./lexecHubABILegacy.sol 6cbc7505d609d5618096£1900015155317df9a60c78db3bc0283£d9fb3958376
./lexecHubAccessor.sol 38588dd62bc65ded6b55ddal61d86611678412597fcf8ffe046f2e1b11a20e35
./lexecHublnterface.sol 9a8049fbece8ceb1f5d1543fea899ad6badeeb0£1910d059ff2316aae4044bf2
./SignatureVerifier.sol 031d3al152eladeedc4d6b323266722e97c2e56996d5339ea62b4722ec3757659
Jlibs/lexecODBLibCore.sol b9ec4c3e149784114c81a88676e9b90ceb28bb32aaeeb9beb1c6b4b0£03dd092
Jlibs/lexecODBLibOrders.sol 2a7242ae8f0168e59e0£64810c0f6e9fbad9c84fd57£cf99£9350bbd5ed4b0b73
Jregistries/App.sol d34cd0e94£366f2d78ec59c88454c433381d74f51a9ca5008ba6fb3c2ae6d09a
[registries/AppRegistry.sol 892723dfd2aa4035127c30c9fad6cdd687dd3808df21b104d140f64412acabba
registries/Dataset.sol 610£13ce6b2ce8de91b525eff7b353ba87a944£dd0e0f767e5a9e072bdab454e
Jregistries/DatasetRegistry.sol 631cb7dd775a86£89ad3£7232588072456830c9831ab747214b1f4cd92dfcbecl
Jregistries/RegistryBase.sol 78baclclf7edce32bcb8ab4e2f18d6547185¢c1e4f46126£975£8f£524f9a30afb
Jregistries/Workerpool.sol a71a3c6d7d6a82e0b3883f9e1e6763b4155f77dedab40585ff44£659689b07ch

[registries/WorkerpoolRegistry.sol e0c27d5c87c704781633a2cfa6431b6d03a8b03ed9281a20943bbd1acef433dd

Depth of Audit
The scope of the security audit conducted by CHAINSECURITY was restricted to:
e Manual verification of the system invariants.

e The invariants were checked only on the respective files. Majorly in IexecHub and IexecClerk contracts.

Terminology

For the purpose of this audit, CHAINSECURITY has adopted the following terminology. For security vulnerabili-
ties, we specify the likelihood, impact and severity (inspired by the OWASP risk rating methodology').

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.

Impact specifies the technical and business-related consequences of an exploit.

Thttps://www.owasp. org/index.php/0WASP_Risk_Rating_Methodology

g https://chainsecurity.com

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://chainsecurity.com

Severity is derived based on the likelihood and the impact calculated previously.

We categorise the findings into four distinct categories, depending on their severities:

e | Low: can be considered less important

° 0 Medium: should be fixed

° 0 High: we strongly suggest fixing it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the table below, following a standard
approach in risk assessment.

IMPACT

LIKELIHOOD

During the audit, concerns might arise or tools might flag certain security issues. After carefully inspecting
the potential security impact, we assign the following labels:

o P no security impact
o : during the course of the audit process, the issue has been addressed technically
o PGl N: issue addressed otherwise by improving documentation or further specification

o ANe (lelV[[Eo[e[STell: issue is meant to be fixed in the future without immediate changes to the code

Findings that are labelled as either or are resolved and therefore pose no security
threat. Their severity is still listed, but just to give the reader a quick overview of what kind of issues were found
during the audit.

For the purpose of manually and automatically verifying the systems’ invariants, different labels are used
for the individual property or invariant CHAINSECURITY checked:

o WAVLEIER: A property/invariant is verified and holds in the system.
o RLELNeilplello]: A property/invariant does not hold in the system.

ChainSecurity Audit Report

Limitations

Security auditing cannot uncover all existing vulnerabilities; even an audit in which no vulnerabilities are found
is not a guarantee of a secure smart contract. However, auditing enables discovery of vulnerabilities that were
overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they are completely
unprotected against it. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. This is why we carry out a source code review aimed at determining all
locations that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed
auditing in order to discover as many vulnerabilities as possible.

https://chainsecurity.com

https://chainsecurity.com

System Overview

IEXEC provides a fully decentralized solution where providers of applications, datasets and computational
power can meet users. Due to its decentralized nature and the use of smart contracts, there is no need to rely
on any one single agent.

The new version of IEXEC introduces Proof-of-Contribution (PoCo). Honest contributions are ensured by
staking, because bad actors will lose their stake.

User interaction happens through the IEXEC market front-end. Users buy computational resources with
specific apps and, if needed, datatsets, while worker pool owners sell computational power. Payment and
staking are carried out with RLC tokens. The user creating an order can set the confidence level desired; this
corresponds to a minimum correctness likelihood that the result achieves. Furthermore, enforcing execution of
a task in a Trusted Execution Environment is supported. However, this trusted execution does not fall under
the scope of this audit. Here, we will focus on the underlying smart contract suite.

Simplified life-cycle of a deal

Note that, in contrast to the previous version, sealing a deal, including order matching, is now done off-
chain. First, an order is created off-chain, then the signature of the intended order is checked on-chain in
the IexecClerk contract. These open orders can subsequently be matched. While the Clerk is responsible
for matching orders, in theory anyone can do so.

Once matchOrder is called, this marks the beginning of the execution of a task. Funds of the requester
and the scheduler (worker pool owner) are locked to ensure that these parties make honest contributions.
The consensus timer starts and the corresponding task must be completed before the final deadline. If a task
is not completed by this time, the scheduler is punished and the requester gets their funds back. Thus, the
scheduler has an incentive to ensure the task is completed on time. To start the execution, the scheduler
initializes the task in IexecHub and designates workers to participate. Only these designated workers may
participate, to ensure this, the scheduler signs and shares messages with these workers’ addresses, which
are later cross-checked. Contributing workers now compute the requested task and, upon completion, call
contribute.

Only the designated workers may do so and they have to lock a certain stake to ensure honest contribution.
As soon as the contributions exceed the consensus level needed by the task, the task transitions from ACTIVE
to REVEALING. Contributors need to reveal some parameters in order to prove they actually computed the
parameters contributed. After the REVEAL phase is over, the scheduler calls finalize. Successful contributions
are rewarded and locked stakes are released.

There is functionality for the scheduler to reset the contribution phase. This can be done only when the
task’s final deadline is not reached and there is still some time left before the reveal deadline. The scheduler
can only reset the contribution phase when no workers have revealed their results. When a task is reset, it is
again open for workers to contribute their results.

lexecClerk

Contains functionality to sign a deal and match orders. Also includes an Escrow which is responsible for storing
users’ funds safely.

lexecHub

Handles all functionality during processing of a task from initializing to finalizing.

Apps and Datasets

Anyone may provide Applications that can do certain computations (e.g. image processing) or datasets and
earn RLC tokens. These must first be approved by IEXEC.

ChainSecurity Audit Report _

Roles

Scheduler The owner of a worker pool. Coordinates the workers to complete a task and is responsible for
leading the process in IexecHub.

Requester Any user requesting that a task be completed.
Worker Any worker inside any worker pool. They contribute computing power to the network.
Clerk Responsible for matching the orders.

Application provider Application providers or developers can monetize their applications and algorithms by
setting a fixed fee for each single instance of software use.

Dataset provider They own valuable datasets and can make them available for use by applications.

https://chainsecurity.com

https://chainsecurity.com

Best Practices in IEXEC’s project

Good-quality projects follow best practices. In doing so, they make audits more meaningful, by allowing efforts
to be focused on subtle and project-specific issues rather than the fulfilment of general guidelines.

Avoiding code duplication is a good example of good engineering practice which increases the potential of
any security audit.

We would now like to list a few points that should be enforced in any good project that aims to be deployed
on the Ethereum blockchain. The corresponding box is ticked when IEXEC’s project meets the criterion when
the audit started.

Hard Requirements

These requirements ensure that the IEXEC’s project can be audited by CHAINSECURITY.

m The code is provided as a Git repository to allow reviewing of future code changes.
m Code duplication is minimal, or justified and documented.

Libraries are properly referred to as package dependencies, including the specific version(s) that are
compatible with IEXEC’s project. No library files are mixed with IEXEC’s own files.

The code compiles with the latest Solidity compiler version. If IEXEC uses an older version, the reasons
are documented.

m There are no compiler warnings, or warnings are documented.
Soft Requirements

Although these requirements are not as important as the previous ones, they still help to make the audit more
valuable to IEXEC.

IZ There are migration scripts.

L/] There are tests.

IZ The tests are related to the migration scripts and a clear distinction is made between the two.

|Z[The tests are easy to run for CHAINSECURITY, using the documentation provided by IEXEC.

|:| The test coverage is available or can be obtained easily.

IZ The output of the build process (including possible flattened files) is not committed to the Git repository.

The project only contains audit-related files, or, if this is not possible, a meaningful distinction is made
between modules that have to be audited and modules that CHAINSECURITY should assume are correct
and out-of-scope.

m There is no dead code.
IZ The code is well-documented.

The high-level specification is thorough and enables quick understanding of the project without any need
to look at the code.

Both the code documentation and the high-level specification are up-to-date with respect to the code
version CHAINSECURITY audits.

IZ There are no getter functions for public variables, or the reason why these getters are in the code is given.

|:| Functions are grouped together according either to the Solidity guidelines?, or to their functionality.

2https://solidity.readthedocs.io/en/latest/style- guide.html#order-of-functions

ChainSecurity Audit Report

https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions

Verified Properties

CHAINSECURITY investigated selected customer-specific invariants manually. The verified and violated prop-
erties are listed below:

Properties related to the IexecClerk contract

The properties for the IexecClerk contract, which are verified manually, are outlined below.

1.1 Deposits increases stake R 1L

In IEXEC contracts, each entity has to stake some RLC tokens in the IexecClerk contract. Staking is
performed using deposit functions. Depositing an RLC token using deposit-specific functions present in
IexecClerk increases the stake of a user. The functions that directly increase the stake of the function
call are as follows:

e IexecClerk.deposit()
e IexecClerk.depositFor()
e IexecClerk.depositForArray()

The user calling the above function provides the number of RLC tokens to the function calls, e.g. the number
of tokens is X, then the stake will be increased by X amount.

A user can increase their own stake by calling the IexecClerk.deposit() function and a user can in-
crease their or someone else’s stake by calling the IexecClerk .depositFor () or IexecClerk.depositForArray
() function.

1.2 stake increases indirectly R 11|

There are some process-specific indirect function calls that increase the stake of any passed-in account. The
functions that indirectly increase the stake amount are as follows:

e IexecClerk.unlockContribution()

e IexecClerk.unlockAndRewardForContribution()
e IexecClerk.successWork()

e IexecClerk.rewardForScheduling()

e IexecClerk. failedWork()

1.3 Withdraw decreases stake R 1]

An entity is allowed to withdraw their RLC token stake from the IexecClerk contract. This process decreases
the stake of a particular user by X amount, whereby X is the amount that the user provided in the IexecClerk
.withdraw() function call. A user is only allowed to withdraw their own staked RLC token and decreases the
stake amount.

1.4 stake decreases indirectly AL

There are some process-specific indirect function calls that decrease the stake of any passed-in account. This
can be performed by calling the TexecClerk.lockContribution() function.

1.5 Deposit increases IexecClerk contract RLC token balance Rl

An entity deposits an RLC token to the IexecClerk contract to increase staking. This process increases the
stake for that entity and increase the RLC token balance of the IexecClerk contract.
The contract provides specific functions for depositing the RLC token to the contract:

e IexecClerk.deposit()

e IexecClerk.depositFor()

m https://chainsecurity.com

https://chainsecurity.com

e IexecClerk.depositForArray()

However, direct transfer of the RLC token to the IexecClerk would also increase the RLC token balance
for the IexecClerk contract:

e RLC.transfer()

e RLC.transferFrom()

The only ways to increase the RLC token balance are outlined above. There are no other possible ways to
increasing the RLC token balance of an IexecClerk contract.

1.6 Withdraw decreases IexecClerk contract RLC token balance A/ {1l

An entity can withdraw its portion of the stake in RLC tokens from the IexecClerk contract. The call to
IexecClerk.withdraw() reduces the stake of the caller and transfers the requested amount of RLC tokens
to its address. This process reduces the RLC token balance from the IexecClerk contract.

This is the only possible way of reducing the balance of the RLC token in the IexecClerk contract.

1.7 Value moves from stake to locked RAACLIIEL

An entity’s RLC token stake is locked for it to perform certain actions. The same amount is deducted from
stake and increased in locked. This is performed using the following function calls:

e IexecClerk.lockContribution() function internally calls TexecClerk.lock() and moves the value
from stake to locked for a given account.

e IexecClerk.matchOrders() function internally calls IexecClerk.lock() for the requester and sched-
uler, which moves values from stake to locked.

The only two function calls that deduct the X amount from stake and increase the X amount in locked
are outlined above.

1.8 Value moves from locked to stake RAACLITEL

After some operations, an entity’s RLC token stake is unlocked. When unlocking takes place, the same amount
is deducted from locked and increased in stake for the specific account. This is performed using the following
function calls:

e IexecClerk.unlockContribution() function internally calls IexecClerk.unlock() and moves the
value from locked to stake for a given account.

e IexecClerk. failedWork() function internally calls IexecClerk.unlock() for the requester account,
which reduces the amount for 1ocked and increases it for stake.

The only two function calls that deduct the X amount from locked and increase the X amount in stake are
outlined above.

However, there are still some functions that move an amount from locked to stake. But the amount is not
the same, there would be a slightly increased amount for stake as the Reward Kitty is also credited while the
following function calls are being performed:

e IexecClerk.successWork() function internally calls IexecClerk.unlock() for the scheduler account,
which reduces the same amount in locked and increases it in stake, but at the end it checks for the
Reward Kitty; if it is present in the pool, a portion of the Reward Kitty is also given to the scheduler. This
process increase their stake balance further.

e IexecClerk.unlockAndRewardForContribution() function internally calls IexecClerk.unlock() and
IexecClerk.reward() functions. The unlock() call would reduce the same amount from locked and
increases it in stake. However, the reward() call would further increase the stake balance of the given
account.

1.9 Reward Kitty increases upon failedWork call RG]

The reward kitty is a special account in which RLC tokens are credited when a task is failed. Once a task has
failed consensus, the stake of the pool worker (scheduler) of that task is seized and credited to the reward kitty
address. The reward kitty account is tracked using address (@) address.

Once IexecClerk. failedWork () is called, the reward kitty account (address(@)) is staked with poolstake
and further locked using the IexecClerk. lock() call.

It is not possible to deposit RLC tokens in the IexecClerk contract for the reward kitty, as IexecClerk.
depositFor checks for address (@) and reverts the transaction. Hence, the reward kitty only increases using
IexecClerk. failedWork().

ChainSecurity Audit Report _

1.10 Deal remains unchanged after creation FZZ/{Ii=]

Anyone is allowed to call the IexecClerk.matchOrders() function. A deal is created when the function
IexecClerk.matchOrders() is called. Once it has been created, the deal will never be changed.

1.11 IexecClerk.token never changes FAA'L11i(l]

Upon creation of the IexecClerk contract, the RLC token address is passed to the constructor. The address
gets stored in IexecClerk.token and is never updated by the contract. Hence, the value will never change
once set by the constructor.

1.12 IexecClerk.IexecHub never changes AL

Upon creation of the IexecClerk contract, the IexecHub contract address is passed to the constructor. The
address gets stored in IexecClerk.IexecHub and is never updated by the contract. Hence, the value will
never change once set by the constructor.

1.13 IexecClerk.EIP712DOMAIN_SEPARATOR never changes R

Upon creation of the IexecClerk contract, the hash of some fixed parameters is calculated and gets stored
in the TexecClerk.EIP712DOMAIN_SEPARATOR state variable. The value is never updated by the contract.
Hence, the value will never change once set by the constructor.

1.14 Only IexecHub is allowed to call R EL

In the TexecClerk contract, there are a few functions that can only be called by the IexecHub contract. These
functions are:

e IexecClerk.lockContribution()

e IexecClerk.unlockContribution()

IexecClerk.unlockAndRewardForContribution()

IexecClerk.seizeContribution()

e IexecClerk.rewardForScheduling()
e IexecClerk.successWork()

e IexecClerk. failedWork()

The above functions are restricted with the onlyIexecHub modifier, which checks the msg.sender address
with TexecHub. The IexecHub is never changed once it has been set by the constructor.
1.15 m_presigned is only updated once R {Ii-l¢|
When an App order, a Dataset order, a Worker pool order and a Request order are signed by the corresponding
entity, it updates m_presigned mapping. Once a key present in m_presigned mapping is set to true, it never
resets back to false.
1.16 Scheduler stake is locked AT {(-]e]
A scheduler's RLC token stake is locked once a deal has been created. This process locks the configured
percentage of the worker’s pool price from the schedule’s RLC token stake.
1.17 No-one is allowed to withdraw from the reward kitty FZA'CIT1HCL!

The reward kitty account is maintained using a special address (address(@)). The functions that change the
reward kitty are as follows:

e IexecClerk.successWork(): The function takes a portion of the amount and rewards it to deal.
workerpool.owner. This function can only be called from IexecHub.finalise, which can only be
called by the scheduler.

e IexecClerk. failedWork(): The function only increases the reward Kitty.

However, there is a way to directly withdraw an RLC token from the reward kitty.

m https://chainsecurity.com

https://chainsecurity.com

1.18 No-one is allowed to directly deposit to the reward kitty R {1

The reward kitty account is maintained using a special address (address(@)). The function IexecClerk
.depositFor checks for the address(@) when depositing the RLC token. Hence, none of the functions
depositFor and depositForArray deposits to the reward kitty account.

1.19 Reward kitty is not burned FZACIEDS
The reward kitty account is maintained using a special address (address(Q)).

e The reward kitty increases when work has failed; the scheduler's amount is credited to the reward kitty
account.

e The portion of amount from the reward kitty is distributed to the scheduler upon successWork.

Hence, the reward kitty amount is never burned.

Properties related to the IexecHub contract

The properties for the IexecHub contract, which are verified manually, are outlined below:

2.1 Contribution status can only change in a specific order R {1 {(=Te]

The contribution status of a task along with its worker is changed only in a specific order using the following
function calls:

e The contribution status changes only from UNSET to CONTRIBUTED when the IexecHub.contribute()
function is called.

e The contribution status changes only from CONTRIBUTED to PROVED when the IexecHub.reveal () func-
tion is called.

e The contribution status changes only from CONTRIBUTED to REJECTED when the IexecHub.reopen()
function is called.
2.2 Task status can only change in a specific order FACI{HEL
The task status of a task can change only in a specific order using the following function calls:

e The task status changes only from UNSET to ACTIVE when the IexecHub.initialise() function is
called.

e The task status changes only from ACTIVE to FAILED when the IexecHub.claim() function is called.

e The task status changes only from ACTIVE to REVEALING when the IexecHub.contribute() function is
called.

e The task status changes only from REVEALING to ACTIVE when the IexecHub.reopen() function is
called.

e The task status changes only from REVEALING to FAILED when the IexecHub.claim() or IexecHub.
claimArray() function is called.

e The task status changes only from REVEALING to COMPLETED when the IexecHub.finalise() function
is called.
2.3 When a task status is UNSET it must be UNSET previously RAAIT1{(Te]
If a task status is UNSET then it was previously UNSET. The UNSET status is set by default and never set again
from any of the functions.
2.4 Contribution status changes from CONTRIBUTED to PROVED only when the task status is REVEALING RZAI{1iCT]

Once contributions by the workers are complete and consensus is achieved, the workers call the IexecHub
.reveal function. This function changes the contribution status from CONTRIBUTED to PROVED for a worker’s
contributions. To call this function, the task status must be in the REVEALING state.

ChainSecurity Audit Report g

2.5 Values must be set, when a task in REVEALING state FAACl{1i[e!

When a task status changes from ACTIVE to REVEALING, some of the variables of that task must be set and
the conditions below must hold:

e IexecHub.m_tasks[task_id].consensusValue != 0
e IexecHub.m_tasks[task_id].revealDeadline != 0
e IexecHub.m_tasks[task_id].winnerCounter != 0

e IexecHub.m_tasks[task_id].revealCounter ==

2.6 Only the owner is allowed to call IexecHub.attachContracts() R

The function IexecHub.attachContracts() is called by the owner of the contract to attach the other contracts
to the IexecHub contract. The function is only allowed to be called by the current owner of the IexecHub con-
tract. However, once the ITexecClerk address is set to a non-zero (0x@) address, the call to attachContracts
() is not allowed again.

2.7 Active tasks have certain variables set and some unset A1

When a task is in the ACTIVE state, some of its variables must be set to to non-zero values and some must be
set to zero or the default value (0x0). In this case, the following holds:

e IexecHub.m_tasks[task_id].dealid != ©

e IexecHub.m_tasks[task_id].idx != @

e IexecHub.m_tasks[task_id].timeref != 0

e IexecHub.m_tasks[task_id].contributionDeadline != @
e IexecHub.m_tasks[task_id].finalDeadline != @

e IexecHub.m_tasks[task_id].consensusValue == 0x0

e IexecHub.m_tasks[task_id].winnerCounter ==

e IexecHub.m_tasks[task_id].contributors.length ==
e IexecHub.m_tasks|[task_id].revealDeadline == 0

e IexecHub.m_tasks[task_id].results ==

2.8 Result variables set when contribution status is not UNSET R {1i(=(s]

When a specific contribution’s status is not in the UNSET state, then its result-specific fields must have non-zero
values set. In this case, the following holds:

e IexecHub.m_contributions|[task_id] [worker].resultHash != 0x0

e IexecHub.m_contributions|[task_id] [worker] .resultSeal != 0x0@

2.9 Task’s finalDeadline greater than contributionDeadline RAACIf1{]]

When a task is initialised, two deadlines are set for that particular task. The task’s finalDeadline is always
greater than the contributionDeadline.

2.10 Onlyinitialise creates a task A1l

When the IexecHub.initialise() function is called with the dealid and idx parameters that have not been
used before, it would create and initialise a new task. The status of the task would be set to ACTIVE. It also
sets the following variables of a task:

e IexecHub.m_tasks[0@x1].dealid

e IexecHub.m_tasks[0@x1].idx

e IexecHub.m_tasks[0@x1].timeref
].

contributionDeadline

IexecHub.m_tasks[0x1

IexecHub.m_tasks[01].finalDeadline

g https://chainsecurity.com

https://chainsecurity.com

2.11 initialise never overwrites an existing task R 1L

Once a task is initialised using the initialise function call, it is not overwritten again. This is prevented
because, for the initialised task, its status is changed from UNSET to ACTIVE. Hence, it is not possible to
re-initialise an existing task.

2.12 Only the current owner can change the owner R

The IexecHub indirectly inherits from the Ownable contract. Hence, the owner variable can be changed to new
owner. The current owner is the only address that can set the new owner address by calling the IexecHub.
transferOwnership() function. They can also call the IexecHub.renounceOwnership() function to leave
the ownership permanently.

2.13 Only reveal increases a task’s revealCounter RN

When the TexecHub.reveal() function is executed by the worker to reveal their work result, the function
increases the IexecHub.m_tasks[task_id].revealCounter by one to update the count of the results that
have been revealed.

2.14 reopen resets some fields FALli1{

When the IexecHub.reopen() function is called, it changes the state of the provided task from REVEALING to
ACTIVE. It also resets some of the task’s variables:

e IexecHub.m_tasks|[task_id].consensusValue == 0x0
e IexecHub.m_tasks[task_id].revealDeadline == 0
e IexecHub.m_tasks[task_id].winnerCounter ==
2.15 The locked value decreases
The locked value decreases for an account when the following functions are called:

e IexecHub.finalise(): The function internally calls IexecClerk.successWork which seizes the deal.
requester’s stake and unlocks the deal .workerpool . owner stake, which in tern decreases the 1ocked
value.

— Also, this function internally calls IexecHub.distributeRewards, which further calls TexecClerk.
seizeContribution and decreases the locked value.

— This function also calls IexecClerk .unlockAndRewardForContribution and decreases the locked
value.

e IexecHub.claim(): The function internally calls IexecClerk. failedWork which seizes the token from
the deal .workerpool .owner’s stake. It also unlocks the deal .requester stake.

— This function also makes a call to IexecClerk.unlockContribution, which also decreases the
locked value.
Properties related to both IexecHub and IexecClerk contracts
The following are the properties for IexecHub and IexecClerk contracts that are verified manually:
3.1 The locked value increases AL {1i(=L]
The locked value increases for an account when the following functions are called:

e IexecClerk.matchOrder(): Function locks the stake for deal.requester and deal.workerpool.
owner.

e IexecHub.contribute(): Function calls IexecClerk. lockContribution which locks the stake.

e IexecHub.claim(): Function internally calls IexecClerk. failedWork which increases the locked for
the reward Kitty.

ChainSecurity Audit Report “

3.2 The stake value increases ALl
The stake value increases for an account when the following functions are called:

e IexecClerk.deposit(): The function deposits an RLC token and increases the stake.

e IexecClerk.depositFor(): The function deposits an RLC token for a specific address and increases
the stake.

e IexecClerk.depositForArray(): The function deposits RLC tokens for specific addresses and in-
creases the stake for each of them.

e IexecHub. finalise(): The function internally calls IexecClerk.successWork, which unlocks and re-
wards. This increases the stake of deal .workerpool . owner.

e IexecHub.claim(): The function internally calls IexecClerk. failedWork, which unlocks the deal.
requester and increases their stake.

3.3 The stake value decreases A1l
The stake value decreases for an account when the following functions are called:

e IexecClerk.withdraw(): The function decreases the stake as it withdraws RLC tokens from the con-
tract.

e IexecClerk.matchOrder(): The function locks the stake and decreases it.

e IexecHub.contribute(): The function internally calls IexecClerk. lockContribution which decreases
the stake and locks it.

https://chainsecurity.com

https://chainsecurity.com

Security Issues

This section relates to our investigation into security issues. It is meant to highlight times when we found
specific issues, but also mentions what vulnerability classes do not appear, if relevant.

Old version of Solidity compiler used m

In many of the contracts, the compiler experimental feature pragma experimental ABIEncoderV2 is used.
The Solidity version 0.5.72 has some important bug fixes related to ABIEncoderV2.
CHAINSECURITY recommends that the latest version of the Solidity compiler ©.5.7 should be used.
Likelihood: Medium
Impact: Medium

Fixed: |1EXEC fixed the problem by upgrading to solidity compiler version ©.5.7. IEXEC is aware about this
issue and waiting for native support for ABIEncoderV2 in solidity compiler version ©.6.0.

Shttps://solidity.readthedocs.io/en/v0.5. 7/bugs .html

ChainSecurity Audit Report

https://solidity.readthedocs.io/en/v0.5.7/bugs.html

Trust Issues

This section mentions functionality that is not fixed inside the smart contract and hence requires additional trust
in IEXEC, including in IEXEC’s ability to deal with such powers appropriately.
CHAINSECURITY has no concerns to raise in this category of the report.

https://chainsecurity.com

https://chainsecurity.com

Design Issues

This section lists general recommendations about the design and style of IEXEC’s project. These recommen-
dations highlight possible ways for IEXEC to improve the code further.

The IexecClerk and IexecClerkABILegacy contracts both have an EIP712DOMAIN_SEPARATOR state variable

defined.

However, the IexecClerk contract inherits from IexecClerkABILegacy, hence the EIP712DOMAIN_SEPARATOR
state variable is defined twice in the ITexecClerk contract.

CHAINSECURITY recommends to avoid duplication of variables.

Acknowledged: |EXEC has written client application using Webg3j Java library. The library does not support
ABIEncoderV2 compiled ABI and crashes the client. Hence, it is the workaround to have support for Webg;j.

ChainSecurity Audit Report

Disclaimer

UPON REQUEST BY IEXEC, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT PUBLIC.
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND
WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE
ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT

REMAINS WITH CHAINSECURITY LTD..

https://chainsecurity.com

https://chainsecurity.com

	Foreword
	Executive Summary
	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	System Overview
	Simplified life-cycle of a deal
	IexecClerk
	IexecHub
	Apps and Datasets
	Roles

	Best Practices in iExec's project
	Hard Requirements
	Soft Requirements

	Verified Properties
	Properties related to the !IexecClerk! contract
	Deposits increases !stake! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!stake! increases indirectly push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Withdraw decreases !stake! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!stake! decreases indirectly push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Deposit increases !IexecClerk! contract RLC token balance push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Withdraw decreases !IexecClerk! contract RLC token balance push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Value moves from !stake! to !locked! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Value moves from !locked! to !stake! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Reward kitty increases upon !failedWork! call push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Deal remains unchanged after creation push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!IexecClerk.token! never changes push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!IexecClerk.IexecHub! never changes push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!IexecClerk.EIP712DOMAIN_SEPARATOR! never changes push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Only !IexecHub! is allowed to call push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!mpresigned! is only updated once push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Scheduler stake is locked push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	No-one is allowed to withdraw from the reward kitty push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	No-one is allowed to directly deposit to the reward kitty push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Reward kitty is not burned push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Properties related to the !IexecHub! contract
	Contribution status can only change in a specific order push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Task status can only change in a specific order push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	When a task status is !UNSET! it must be !UNSET! previously push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Contribution status changes from !CONTRIBUTED! to !PROVED! only when the task status is !REVEALING! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Values must be set, when a task in !REVEALING! state push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Only the owner is allowed to call !IexecHub.attachContracts()! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Active tasks have certain variables set and some unset push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Result variables set when contribution status is not !UNSET! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Task's !finalDeadline! greater than !contributionDeadline! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Only !initialise! creates a task push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!initialise! never overwrites an existing task push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Only the current owner can change the owner push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Only reveal increases a task's !revealCounter! push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	!reopen! resets some fields push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	The !locked! value decreases push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Properties related to both !IexecHub! and !IexecClerk! contracts
	The !locked! value increases push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	The !stake! value increases push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	The !stake! value decreases push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Verifieddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Security Issues
	Old version of Solidity compiler used replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Design Issues
	Unused !EIP712DOMAINSEPARATOR! variable repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Disclaimer

