""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. """ # Authors: Fabian Pedregosa # Olivier Grisel # Mathieu Blondel # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import pylab as pl from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) pl.figure() ax = pl.subplot(111) for i in range(X.shape[0]): pl.text(X[i, 0], X[i, 1], str(digits.target[i]), color=pl.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=pl.cm.gray_r), X[i]) ax.add_artist(imagebox) pl.xticks([]), pl.yticks([]) if title is not None: pl.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) pl.imshow(img, cmap=pl.cm.binary) pl.xticks([]) pl.yticks([]) pl.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) pl.show()