#### **Efficient Scaling of Language Model pretraining**

Iz Beltagy



#### Larger, better, more expensive

LM are getting larger, more expensive

But also getting better, new capabilities, zero-shot generalization, better generation

As we scale the models to larger sizes, they will keep getting better

This requires new efficient methods for training, and better modeling choices

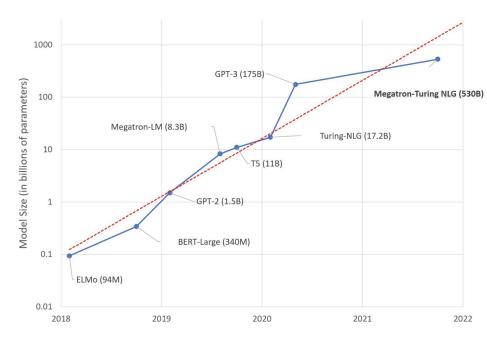


Photo credit: Microsoft Research Blog, Alvi et. al., 2021



#### Larger, better, more expensive, and efficient

I will discuss two recent works

- Staged Training for Transformer Language Models

A training regime that can save up to 20% of the compute

What Language Model to Train if You Have One Million GPU Hours?
Modeling choices to get the best model



# **Staged Training for Transformer Language Models**

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, Iz Beltagy



# **Staged Training**

Goal: Train a large language model

**Now** (1 stage training): [Large Model]  $\Rightarrow$  {Train}  $\Rightarrow$  [Target Model]

**Proposed** (multi-stage training):

 $[Small Model] \Rightarrow \{Train\} \Rightarrow \{Grow\} \Rightarrow [Larger Model] \Rightarrow \{Train\} \Rightarrow \{Grow\} \dots \Rightarrow [Target Model]$ 

**Prior work** (e.g. [1]) proposed the same method but missing key ideas and intuitions to get it to work reliably and achieve max compute saving

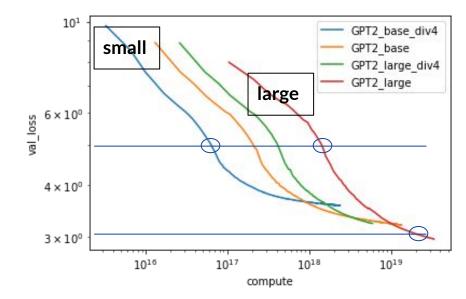
[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016



# **Staged Training - Intuition**

# **Smaller** models are **initially faster** to train then they **plateau**

Larger models initially slower than smaller models but eventually become more efficient



# **Staged Training - Intuition**

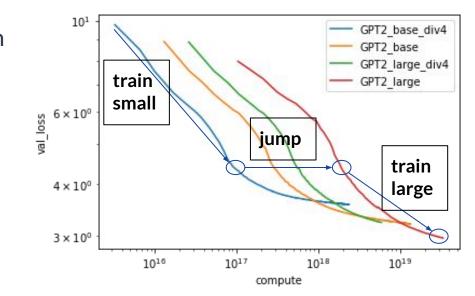
Training regime:

- train small model until loss slows down
- "jump" to a larger one
- train larger one until loss slows down

Why?

- the jump saves compute
- intermediate model sizes for free



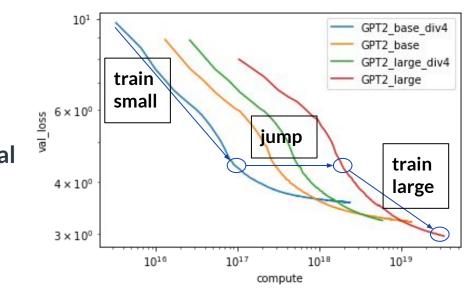


7 **A**2

## **Staged Training - Intuition**

- How to jump effectively

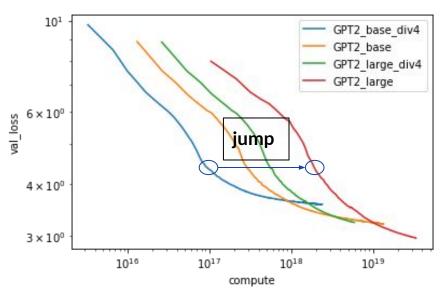
- How to identify the 3 points for **optimal** compute saving



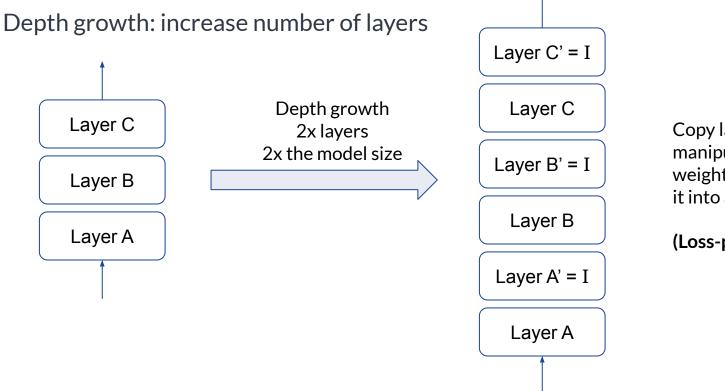


To effectively jump between learning curves, growth operator should have the following properties

1) **loss-preserving** (function-preserving): loss before growing model is the same as after



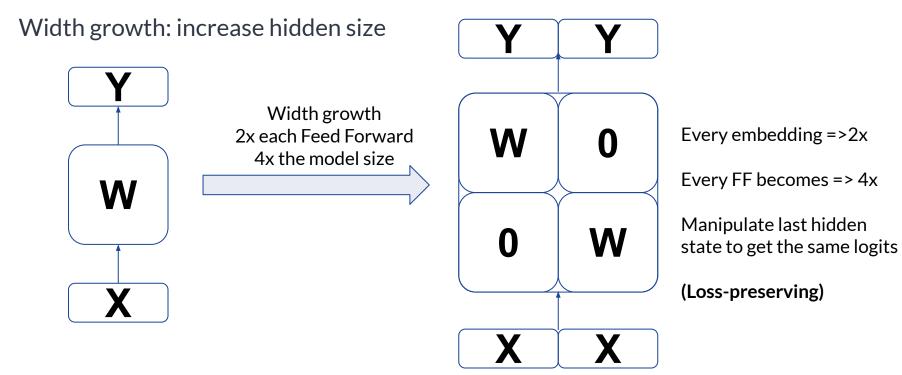
#### **Growth operators - Depth**



Copy layers then manipulate a few weights to convert it into an Identity

(Loss-preserving)

## **Growth operators - Width**

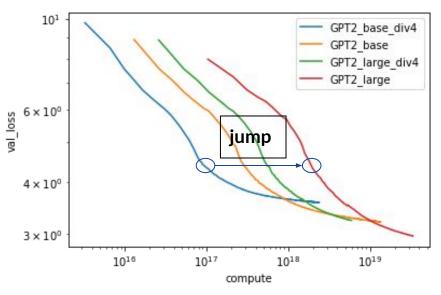




To effectively jump between learning curves, growth operator should have the following properties

1) **loss-preserving** (function-preserving): loss before growing model is the same as after

2) **training-dynamics-preserving**: rate of loss change after growing the model is the same as training the model from "scratch"

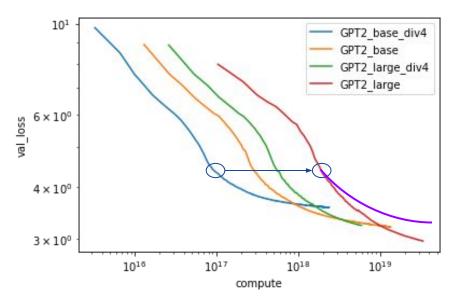




**training-dynamics-preserving**: after growth, model trains as fast as the model trained from scratch

An ineffective growth operator creates a larger model but one that doesn't train fast

We are the first to recognize the importance of this property

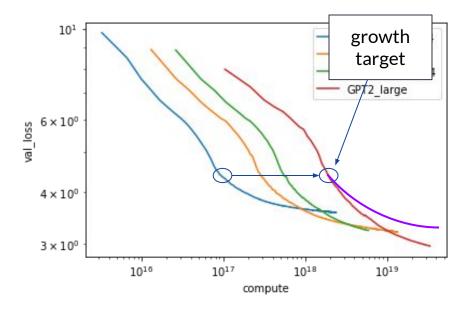


To preserve training dynamics, growth operator should grow **whole training state (optimizer state and LR)** not just model

Intuition - get the whole training state to match that of one trained from scratch

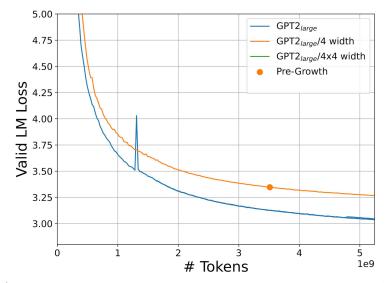
LR: use LR at growth target

**Optimizer**: grow optimizer state with a mostly similar growth operator to model growth (check paper for details)





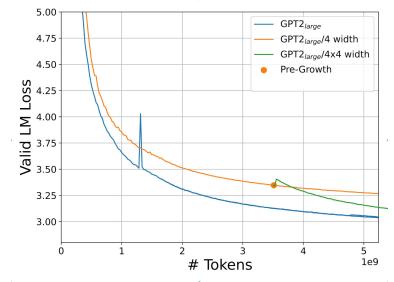
#### Two models trained from scratch





Grow width of the small model. Grown model matches size of the larger model

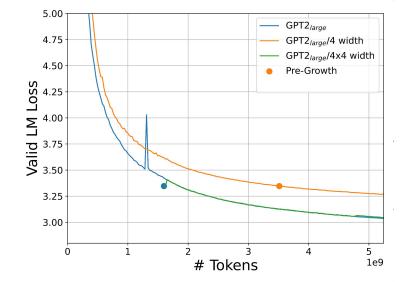
(Loss preserving)

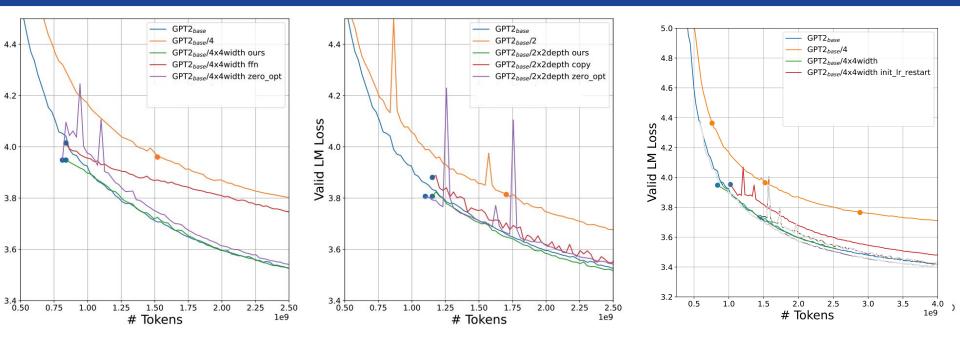


16

Overlay grown model over larger model trained from scratch

(Preserving training dynamics)







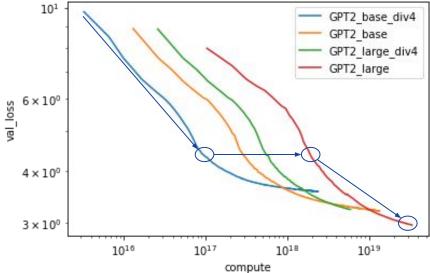
# **Staged Training**

- Properties of growth operators
  - Loss preserving
    - Depth and Width operators
  - Training dynamics preserving
    - Optimizer and Learning rate
- Optimal Training Schedule
- Practical Training Schedule
- Evaluation



Prior work splits the compute heuristically between the stages.

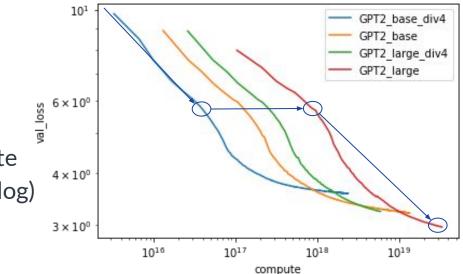
Here we see there's a **precise schedule** with the **optimal compute saving** 



Prior work splits the compute heuristically between the stages.

Here we see there's a precise schedule with the optimal compute saving

Grow model **too early**, and you will waste the **opportunity to save more** (x-axis is log)

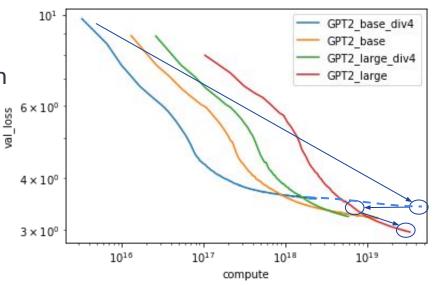


Prior work splits the compute heuristically between the stages.

Here we see there's a precise schedule with the optimal compute saving

Grow model too early, and you will waste the opportunity to save more (x-axis is log)

Grow model **too late**, and you will **waste more compute** than you save





Earlier learning curves are empirical, but they can be predicted using scaling laws [Kaplan et. al., 2020]

Scaling laws predict **loss (L)** as function of **model size (N)** and **compute (C)** and a list of empirically fitted constants

$$C \approx 6NBS,$$
$$L(N,S) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{S_c}{S}\right)^{\alpha_S}$$



Optimal training schedule is a constrained optimization problem

minimize  $\sum$  (compute per stages)

subject to

- Scaling laws L = F(C, N)
- Size increments constrained to 2x or 4x
- Target model size N\_target
- Target model loss L\_target



# **Optimal Training Schedule - Observations**

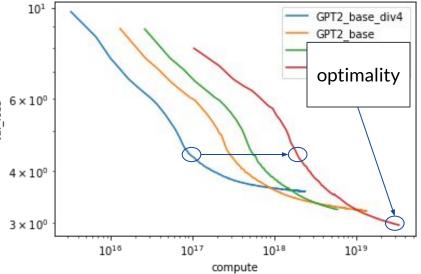
Assuming scaling laws fitting of Kaplan et. al.,

With no staged training (#stages = 1):

- The optimal solution reproduces the optimal compute allocation of Kaplan et. al.  $\frac{8}{3}$ 

- Train a large model and stop long before convergence

- We call this point optimality



# **Optimal Training Schedule - Observations**

Assuming scaling laws fitting of Kaplan et. al.,

Expected compute saving plateaus at 3 stages

(grow model 2 times)

With 3 stages, compute allocation is:

- stage 1: 13%
- stage 2: 10%
- stage 3: 62%
- save: 15%

| # stages | saving |  |  |  |  |
|----------|--------|--|--|--|--|
| 1        | 0 %    |  |  |  |  |
| 2        | 10%    |  |  |  |  |
| 3        | 15%    |  |  |  |  |
| 4        | 16.5%  |  |  |  |  |
| 5        | 17.4%  |  |  |  |  |
| 6        | 17.9%  |  |  |  |  |
| 7        | 18.1%  |  |  |  |  |



# **Staged Training**

- Properties of growth operators
  - Loss preserving
    - Depth and Width operators
  - Training dynamics preserving
    - Optimizer and Learning rate
- Optimal Training Schedule
- Practical Training Schedule
- Evaluation



Optimal schedule assumes you know scaling laws

Fitting scaling laws is expensive and time consuming because you need to train many models of many different sizes

Instead, we develop a more practical training schedule that follows the intuitions we learn from the optimal one



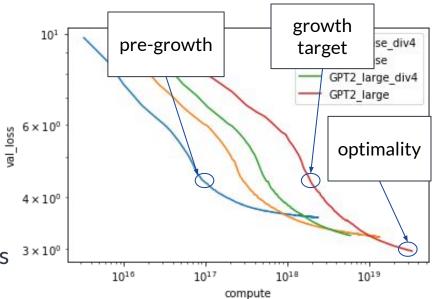
Each stage is characterized by 3 points:

- **pre-growth**: when to grow
- growth-target: LR after growth
- optimality: stop training

We don't need to fit scaling laws and solve <sup>4</sup> optimization problem. Just find the 3 points <sup>3</sup>

Q: Can we find them visually from the learning curves?

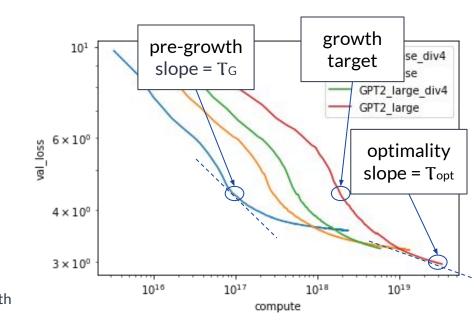
A: No, because we want to avoid training the large model from scratch



Each stage is characterized by 3 points:

- pre-growth: when to grow
  - slope of learning curve, Tdepth, Twidth
- optimality: stop training
  - slope of learning curve, Topt
- **growth-target**: LR after growth
  - ratio  $\frac{\text{steps@pre-growth}}{\text{steps@growth-target}} = \varrho$

  - function of the growth OP: *Q* depth, *Q* width



Tg, Topt, *Q*g are independent of the model size, so

Replaced fitting scaling laws with estimating 3 simple constants

Procedure:

- Train small models for a few thousand gradient updates:
- Use them to estimate **T**g, **Topt**, *Q*g
- Then, apply the same constants when training larger models



### Putting it all Together: Training Algorithm

START with a randomly initialized small model  ${\tt M}$ 

FOR number of stages REPEAT:

T = Topt IF last stage ELSE Tg

WHILE slope of learning curve < T:

Train M for another step, keep track of #steps S

M = grow(M) / / apply growth operator

 $S = S \times \rho g$  // to set learning rate of the next stage

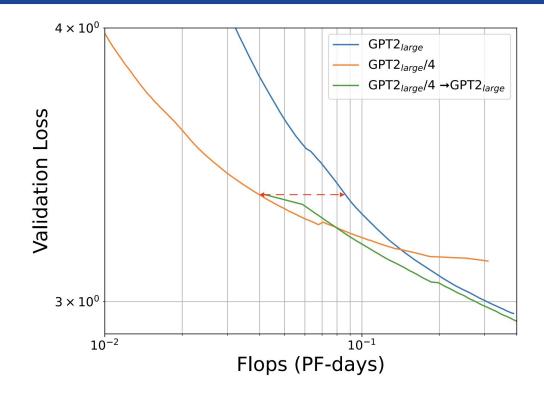
<sup>2</sup> **A**2

# **Staged Training**

- Properties of growth operators
  - Loss preserving
    - Depth and Width operators
  - Training dynamics preserving
    - Optimizer and Learning rate
- Optimal Training Schedule
- Practical Training Schedule
- Evaluation



#### **Evaluation - Pretraining loss**



34 **A**2

#### **Evaluation - Pretraining loss**

#### Percentage of compute saving

|                   |       |      | $\left[ \frac{2_{Large}}{After OPT} \right]$ | GPT2 <sub>H</sub><br>At OPT A | BASE<br>After OPT |
|-------------------|-------|------|----------------------------------------------|-------------------------------|-------------------|
| 2 stage practical | 2xW   | 7.3  | 5.2                                          | 20.2                          | 19.7.3            |
|                   | 4xW   | 5.3  | 3.8                                          | 8.6                           | 5.5.0             |
|                   | 2xD   | 11.0 | 6.1                                          | 20.4                          | 19.8.7            |
|                   | 4xD   | 7.3  | 5.2                                          | 10.1                          | 6.4.8             |
|                   | 2xDxW | 5.4  | 3.8                                          | 9.5                           | 6.83.0            |
| 3 stage practical | 2x2xW | 10.9 | 7.8                                          | 17.9                          | 11.4.8            |
|                   | 2x2xD | 14.5 | 10.4                                         | 21.4                          | 15.9.3            |

#### **Evaluation - Zero-shot downstream**

#### Percentage of compute saving

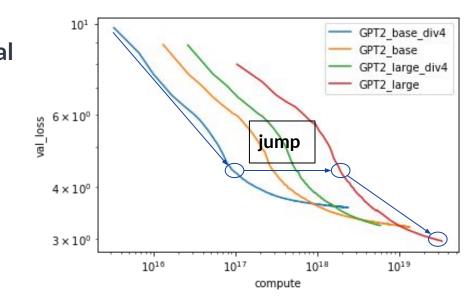
|                   |                                                           | Zero-shot Wikitext-103 (PPL)         |                                        |                                  |                                              | Zero-sho                              | Zero-shot LAMBADA (accuracy)                  |                                   |                                       |  |
|-------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------|---------------------------------------|--|
|                   |                                                           |                                      | GPT2 <sub>Large</sub><br>@OPT_AFTR_OPT |                                  | <b>GPT2</b> <sub>BASE</sub><br>@OPT AFTR OPT |                                       | <b>GPT2</b> <sub>Large</sub><br>@OPT AFTR OPT |                                   | GPT2 <sub>BASE</sub><br>@OPT_AFTR_OPT |  |
| 2 stage practical | 2xwidth<br>4xwidth<br>2xdepth<br>4xdepth<br>2xdepthxwidth | -0.25<br>1.3<br>13.5<br>17.5<br>-0.3 | 8.7<br>7.4<br>11.4<br>9.5<br>1.6       | 5.9<br>1.1<br>33.5<br>7.9<br>3.6 | 3.8<br>6.4<br>17.5<br>3.1<br>4.5             | 12.3<br>18.0<br>23.5<br>20.5<br>-37.5 | 14.8<br>18.2<br>21.4<br>14.6<br>0.7           | 3.3<br>10.1<br>16.8<br>9.4<br>6.4 |                                       |  |
| 3 stage practical | 2x2xwidth<br>2x2xdepth                                    | 6.3<br>12.5                          | 9.3<br>12.8                            | 5.4<br>14.3                      | 8.0<br>11.8                                  | 13.4<br>14.5                          | 20.3<br>23.6                                  | 1.8<br>10.6                       | 11.8<br>15.0                          |  |

# **Conclusion and Future Work**

- How to jump effectively
- How to identify the 3 points for **optimal** compute saving
- Saved up to 20% compute







# What Language Model to Train if You Have One Million GPU Hours?

Thomas Wang, Teven Le Scao, Adam Roberts, Daniel Hesslow, Stas Bekman, Lucile Saulnier, Hyung Won Chung, M Saiful Bari, Stella Biderman, Hady Elsahar, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, Iz Beltagy

Big Science Architecture and Scaling Group



# You have 1Million GPU hours - Now what?

1Million GPU (A100) hours ~= GPT3 compute budget

What language model to train?

(architectures, pretraining objectives, model sizes, activation functions, position embeddings, layernorms, training data ... etc)

This talk will only discuss architectures and pretraining objectives for zero-shot evaluation. Check paper for more details



#### What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Large language models started to exhibit zero-shot generalizations

No systematic evaluation of architectures and pretraining objectives of SOTA models.

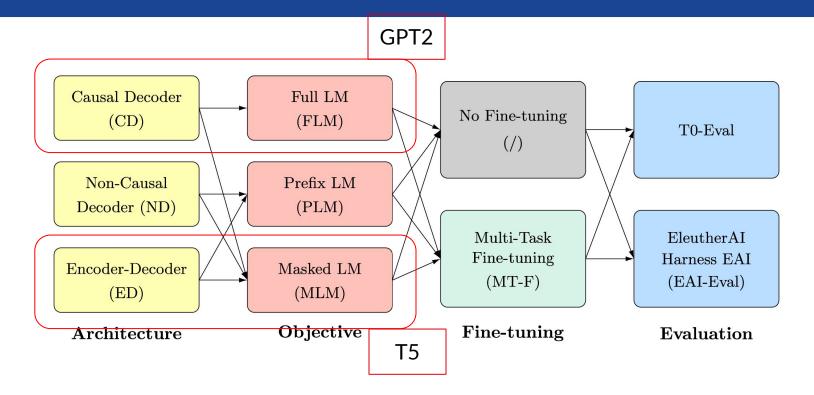
This is a large scale empirical evaluation of modeling choices and their impact on downstream **zero-shot generalization** 

Two types of zero-shot generalization:

- Purely based on pretraining
- After multi-task supervised fine-tuning as in TO [Sanh et. al.], FLAN [Wei et. al.]



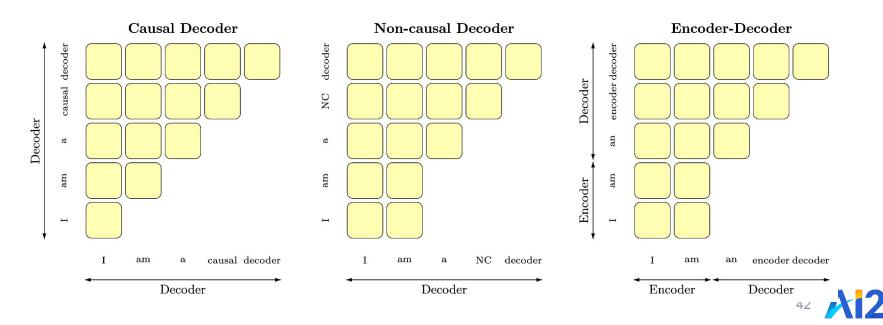
#### **Experimental Setup**



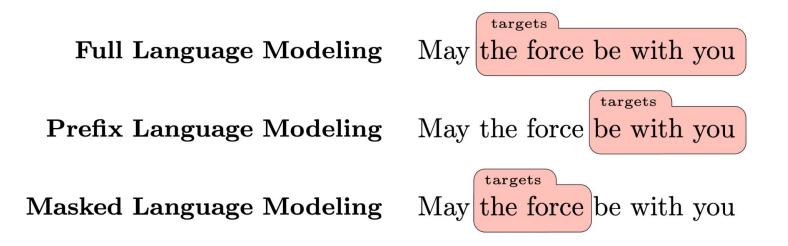
41 **A**2

#### **Experimental Setup - Architectures**

# Transformer models. All have decoders to support generation tasks. All seq2seq



#### **Experimental Setup - Pretraining Objectives**





#### **Experimental Setup - Fine tuning**

Supervised Multitask finetuning showed greatly improved zero-shot generalizations

e.g. T0 [Sanh et. al., 2021], FLAN [Wei et. al., 2021]

We use the TO supervised multitask finetuning setup. Train for 10B tokens

Q: Do you expect the best architecture before and after TO finetuning to be the same or different?



#### **Experimental Setup - Evaluation Benchmarks**

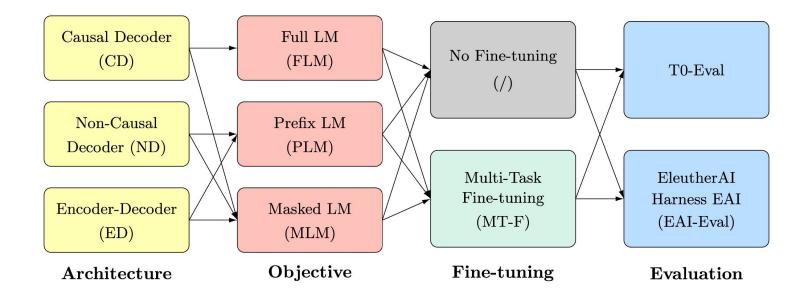
Focus on zero-shot evaluation

Two benchmarks:

- TO: using the TO heldout evaluations
  - Zero-shot from task descriptions and prompt-engineering
- EAI: using the Eleuther AI evaluation benchmark
  - Zero-shot using prompt-engineering



#### **Experimental Setup**





#### **Results - After Unsupervised Pretraining**

|                                                                | EAI-EVAL | T0-EVAL |
|----------------------------------------------------------------|----------|---------|
| FLM/PLM                                                        |          |         |
| Causal decoder                                                 | 44.2     | 42.4    |
| Non-causal decoder                                             | 43.5     | 41.8    |
| Encoder-decoder                                                | 39.9     | 41.7    |
| MLM<br>Causal decoder<br>Non-causal decoder<br>Encoder-decoder | rando    | om      |

Causal decoder (GPT2-style) works the best

All MLM models are around random chance because they don't work for zero-shot

#### **Results - After Supervised Multitask Finetuning**

|                    | EAI-EVAL | T0-Eval |
|--------------------|----------|---------|
| FLM/PLM            |          |         |
| Causal decoder     | 50.4     | 51.4    |
| Non-causal decoder | 48.9     | 54.0    |
| Encoder-decoder    | 44.2     | 45.8    |
| MLM                |          |         |
| Causal decoder     | 47.1     | 50.3    |
| Non-causal decoder | 51.0     | 55.2    |
| Encoder-decoder    | 51.3     | 60.6    |

Encoder-decoder with MLM (T5-style) is the best after multitask finetuning

#### So which one to train?

Causal decoder with full LM (GPT2-style)

- Good for zero-shot, prompt-engineering, and generation

or Encoder-decoder with MLM (T5-style)

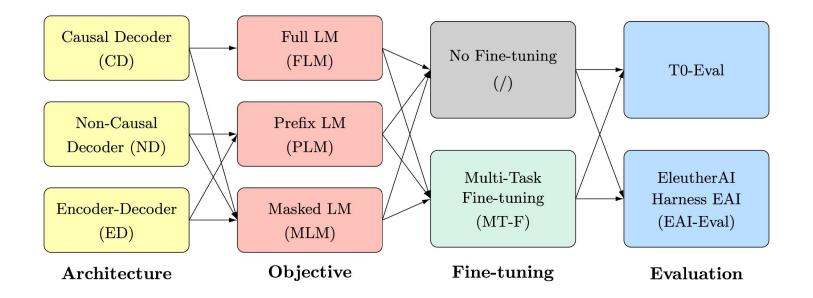
- Better zero-shot but only after supervised finetuning. Won't work for generation

Can we find a compromise?

- Adaptation: pretrain on one objective then continue pretairning on another

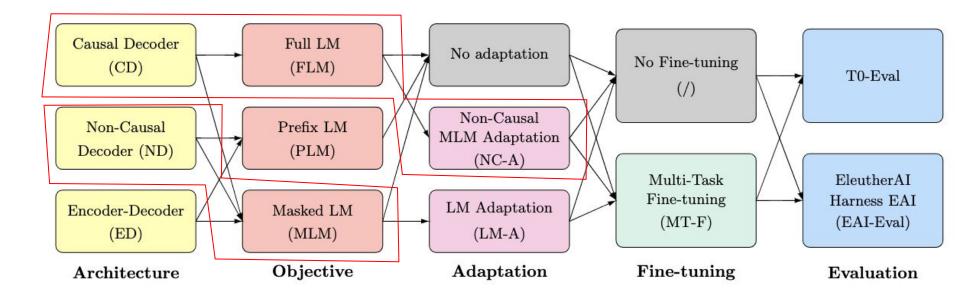


#### Language Model Adaptation

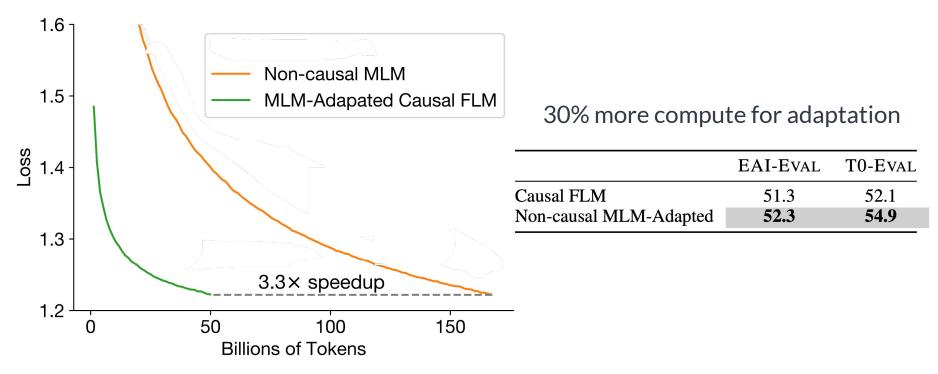




#### Language Model Adaptation



#### Language Model Adaptation





#### **Conclusion and Future Work**

Best for zero-shot: Causal decoder + full LM

Best for zero-shot after multitask finetuning: Encoder-decoder + MLM

Best compromise:

Causal decoder + full LM 70% of the compute, followed by

Non-causal decoder + MLM for 30% of the compute

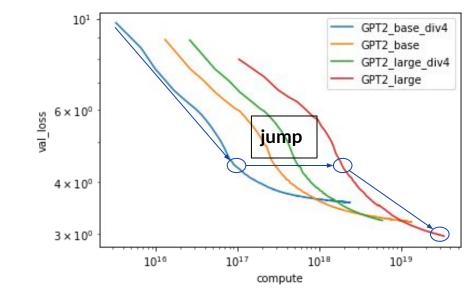


#### **Conclusion and Future Work**

- Why best model changes after multi-task finetuning?
- What's an architecture and pretraining objective that would work well on both without an adaptation phase?
- We focused on zero-shot evaluation. Are the conclusions going to change if we use few-shot with/without finetuning?



# Questions



#### **Staged Training**

#### What Language Model to Train if You Have One Million GPU Hours?

- Decoder-only model
- 70% on autoregressive LM, then
- 30% on MLM



## **Evaluation - Pretraining loss**

|                                              |        | GPT2 <sub>LARGE</sub> |      |      | GPT2 <sub>BASE</sub> |      |      |  |
|----------------------------------------------|--------|-----------------------|------|------|----------------------|------|------|--|
|                                              |        | 5k                    | 10k  | 14k  | 3.75k                | 7k   | 11k  |  |
| Baseline                                     | (loss) | 3.21                  | 3.03 | 2.97 | 3.61                 | 3.45 | 3.38 |  |
| Compute savings (percent saved vs. baseline) |        |                       |      |      |                      |      |      |  |
| 1 stage                                      | 2xW    | 19.3                  | 5.6  | 4.0  | 23.8                 | 14.5 | 13.8 |  |
| 1 stage manual                               | 2xD    | 33.5                  | 7.8  | 6.3  | 24.0                 | 23.6 | 21.8 |  |
|                                              | 2xW    | 22.5                  | 7.3  | 5.2  | 24.3                 | 20.2 | 19.7 |  |
|                                              | 4xW    | 18.0                  | 5.3  | 3.8  | 16.0                 | 8.6  | 5.5  |  |
| 1 stage practical                            | 2xD    | 37.0                  | 11.0 | 6.1  | 24.7                 | 20.4 | 19.8 |  |
|                                              | 4xD    | 22.5                  | 7.3  | 5.2  | 18.8                 | 10.1 | 6.4  |  |
|                                              | 2xDxW  | 28.8                  | 5.4  | 3.8  | 19.0                 | 9.5  | 6.83 |  |
| 2 stage                                      | 2x2xW  | 26.8                  | 10.9 | 7.8  | 26.8                 | 17.9 | 11.4 |  |
| 2 stage practical                            | 2x2xD  | 30.0                  | 14.5 | 10.4 | 33.3                 | 21.4 | 15.9 |  |

56

### **Evaluation - Zero-shot downstream**

|                                                                                         |               | Zero-shot Wikitext-103 (PPL) |       |      |       |                       | 2    | Zero-shot LAMBADA (accuracy) |                       |      |                      |      |      |
|-----------------------------------------------------------------------------------------|---------------|------------------------------|-------|------|-------|-----------------------|------|------------------------------|-----------------------|------|----------------------|------|------|
|                                                                                         |               | GPT2 <sub>LARGE</sub>        |       |      |       | PT2 <sub>BASE</sub> C |      |                              | GPT2 <sub>LARGE</sub> |      | GPT2 <sub>BASE</sub> |      |      |
|                                                                                         |               | 5k                           | 10k   | 14k  | 3.75k | 7k                    | 11k  | 5k                           | 10k                   | 14k  | 3.75k                | 7k   | 11k  |
| Baseline                                                                                |               | 41.0                         | 32.3  | 30.3 | 68.5  | 57.1                  | 50.0 | 39.6                         | 43.2                  | 44.7 | 31.1                 | 33.0 | 34.7 |
| Compute savings (percent saved vs. baseline, negative means more compute than baseline) |               |                              |       |      |       |                       |      |                              |                       |      |                      |      |      |
| 1 stage                                                                                 | 2xwidth       | -18.5                        | 6.2   | 5.8  | -19.7 | 0.3                   | 2.4  | 3.2                          | 6.7                   | 8.3  | -8.3                 | 0.2  | 13.6 |
| 1 stage manual                                                                          | 2xdepth       | 28.5                         | 11.8  | 12.0 | 24.0  | 28.0                  | 17.3 | 33.5                         | 16.8                  | 13.8 | 24.0                 | 22.9 | 18.2 |
|                                                                                         | 2xwidth       | -20.5                        | -0.25 | 8.7  | -15.7 | 5.9                   | 3.8  | -15.5                        | 12.3                  | 14.8 | -15.7                | 3.3  | 10.6 |
|                                                                                         | 4xwidth       | -13.4                        | 1.3   | 7.4  | -12.0 | 1.1                   | 6.4  | -11.0                        | 18.0                  | 18.2 | -12.0                | 10.1 | 8.6  |
| 1 stage practical                                                                       | 2xdepth       | 32.0                         | 13.5  | 11.4 | 31.3  | 33.5                  | 17.5 | 32.0                         | 23.5                  | 21.4 | 24.7                 | 16.8 | 13.9 |
|                                                                                         | 4xdepth       | 21.0                         | 17.5  | 9.5  | 14.6  | 7.9                   | 3.1  | 21.0                         | 20.5                  | 14.6 | 14.6                 | 9.4  | 7.8  |
|                                                                                         | 2xdepthxwidth | -10.5                        | -0.3  | 1.6  | -12.0 | 3.6                   | 4.5  | -95.0                        | -37.5                 | 0.7  | 5.4                  | 6.4  | 6.4  |
| 2 stage practical                                                                       | 2x2xwidth     | -2.5                         | 6.3   | 9.3  | 3.3   | 5.4                   | 8.0  | -3.3                         | 13.4                  | 20.3 | -3.3                 | 1.8  | 11.8 |
|                                                                                         | 2x2xdepth     | 30.0                         | 12.5  | 12.8 | 33.3  | 14.3                  | 11.8 | 19.0                         | 14.5                  | 23.6 | 19.9                 | 10.6 | 15.0 |

#### **Experimental Setup**

|                   | MODELS A<br>Decoder-only | RCHITECTURE<br>Encoder-decoder |             | PRETRAINING                    | Multitask finetuning |  |
|-------------------|--------------------------|--------------------------------|-------------|--------------------------------|----------------------|--|
| Parameters        | 4.8B                     | 11.0B                          | Dataset     | C4                             | T0 train             |  |
| Vocabulary        | 32                       | 32,128                         |             | 131,072                        | 10,000               |  |
| Positional embed. |                          | T5 relative                    |             | 1,282,048                      | 1,024                |  |
| Embedding dim.    | 4,096                    |                                | Optimizer   | Adafactor(decay_rate=0.8)      |                      |  |
| Attention heads   |                          | 64                             | LR schedule | $rac{1}{\sqrt{\max(n,10^4)}}$ | fixed, 0.001         |  |
| Feedforward dim.  | 10                       | 0,240                          | Dropout     | 0.0                            | 0.1                  |  |
| Activation        | GEGLU [S                 | Shazeer, 2020]                 | z loss      | 0.0001                         |                      |  |
| Layers            | 24 48                    |                                | Precision   | bfloat16                       |                      |  |
| Logits via embed. | True                     |                                |             |                                |                      |  |
| Precision         | bfl                      | loat16                         |             |                                |                      |  |