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  Larger, better, more expensive

LM are getting larger, more expensive

But also getting better, new 
capabilities, zero-shot generalization, 
better generation

As we scale the models to larger sizes, 
they will keep getting better

This requires new efficient methods 
for training, and better modeling 
choices
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I will discuss two recent works

- Staged Training for Transformer Language Models

A training regime that can save up to 20% of the compute

- What Language Model to Train if You Have One Million GPU Hours?

Modeling choices to get the best model

Larger, better, more expensive, and efficient
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Staged Training for Transformer 
Language Models

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, Iz Beltagy
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Goal: Train a large language model

Now  (1 stage training):                     [Large Model]  ⇒ {Train} ⇒  [Target Model]

Proposed (multi-stage training):

 [Small Model] ⇒ {Train} ⇒ {Grow} ⇒ [Larger Model] ⇒ {Train} ⇒ {Grow}  …. ⇒ [Target Model]

Prior work (e.g. [1]) proposed the same method but missing key ideas and intuitions 
to get it to work reliably and achieve max compute saving

[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016

Staged Training
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  Staged Training - Intuition

Smaller models are initially faster to 
train then they plateau

Larger models initially slower than 
smaller models but eventually become 
more efficient
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small

large



  Staged Training - Intuition
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train 
small

train 
large

jump

Training regime:

- train small model until loss slows down

- “jump” to a larger one 

- train larger one until loss slows down

Why?

- the jump saves compute 

- intermediate model sizes for free

We call the “jump” a Growth Operator



  Staged Training - Intuition
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train 
small

train 
large

jump

- How to jump effectively 

- How to identify the 3 points for optimal 
compute saving



  Properties for Growth Operator
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jump

To effectively jump between learning 
curves, growth operator should have the 
following properties

1)  loss-preserving (function-preserving): 
loss before growing model is the same as 
after



  

Depth growth: increase number of layers

Growth operators - Depth
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Layer C

Layer B

Layer A

Layer C’ = I

Layer B

Layer A

Layer A’ = I

Layer B’ = I

Layer CDepth growth
2x layers 

2x the model size
Copy layers then 
manipulate a few 
weights to convert 
it into an Identity

(Loss-preserving)



  

Width growth: increase hidden size

Growth operators - Width
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W

Width growth
2x each Feed Forward

4x the model size
Every embedding =>2x 

Every FF becomes => 4x

Manipulate last hidden 
state to get the same logits

(Loss-preserving)X

Y
W 0

0 W

X X

Y Y



  

To effectively jump between learning 
curves, growth operator should have the 
following properties

1)  loss-preserving (function-preserving): 
loss before growing model is the same as 
after

2) training-dynamics-preserving: rate of 
loss change after growing the model is 
the same as training the model from 
“scratch”

Properties for Growth Operator
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jump



  

training-dynamics-preserving: after 
growth, model trains as fast as the model 
trained from scratch

An ineffective growth operator creates a 
larger model but one that doesn’t train 
fast

We are the first to recognize the 
importance of this property

Properties for Growth Operator
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  Properties for Growth Operator

To preserve training dynamics, growth 
operator should grow whole training 
state (optimizer state and LR) not just 
model

Intuition - get the whole training state to 
match that of one trained from scratch

LR: use LR at growth target

Optimizer: grow optimizer state with a 
mostly similar growth operator to model 
growth (check paper for details) 14

growth 
target



  

Two models trained from scratch

Properties for Growth Operator - Evaluation
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Grow width of the small model. Grown model matches size of the larger model

(Loss preserving)

Properties for Growth Operator - Evaluation
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Overlay grown model over larger model trained from scratch

Properties for Growth Operator - Evaluation
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(Preserving 

training dynamics)



  

PLOTs - no optimizer state, no learning rate, not loss-preserving

Conclusion: we have reliable growth operators that can effectively jump from one 
learning curve to the other

Properties for Growth Operator - Evaluation
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● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Practical Training Schedule

● Evaluation

Staged Training
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Prior work splits the compute heuristically 
between the stages. 

Here we see there’s a precise schedule 
with the optimal compute saving

Optimal Training Schedule
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Prior work splits the compute heuristically 
between the stages. 

Here we see there’s a precise schedule 
with the optimal compute saving

Grow model too early, and you will waste 
the opportunity to save more (x-axis is log)

Optimal Training Schedule
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  Optimal Training Schedule
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Prior work splits the compute heuristically 
between the stages. 

Here we see there’s a precise schedule with 
the optimal compute saving

Grow model too early, and you will waste 
the opportunity to save more (x-axis is log)

Grow model too late, and you will waste 
more compute than you save



  

Earlier learning curves are empirical, but they can be predicted using scaling 
laws [Kaplan et. al., 2020]

Scaling laws predict loss (L) as function of model size (N) and compute (C) and 
a list of empirically fitted constants

Scaling Laws
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Optimal training schedule is a constrained optimization problem 

Optimal Training Schedule
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minimize ∑(compute per stages)

subject to 

- Scaling laws L = F(C, N)

- Size increments constrained to 2x or 4x 

- Target model size N_target

- Target model loss L_target



  

Assuming scaling laws fitting of Kaplan et. al., 

With no staged training (#stages = 1):

- The optimal solution reproduces the 
optimal compute allocation of Kaplan et. al.

- Train a large model and stop long before 
convergence

- We call this point optimality

Optimal Training Schedule - Observations
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optimality



  

Assuming scaling laws fitting of Kaplan et. al., 

Expected compute saving plateaus at 3 stages

(grow model 2 times)

With 3 stages, compute allocation is:

- stage 1: 13%
- stage 2: 10%
- stage 3: 62% 
- save: 15%

Optimal Training Schedule - Observations
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# stages saving

1 0 %

2 10%

3 15%

4 16.5%

5 17.4%

6 17.9%

7 18.1%



  

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Practical Training Schedule

● Evaluation

Staged Training
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  Practical Training Schedule
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Optimal schedule assumes you know scaling laws

Fitting scaling laws is expensive and time consuming because you need to 
train many models of many different sizes

Instead, we develop a more practical training schedule that follows the 
intuitions we learn from the optimal one



  

Each stage is characterized by 3 points: 

- pre-growth: when to grow

- growth-target: LR after growth

- optimality: stop training

We don’t need to fit scaling laws and solve 

optimization problem. Just find the 3 points

Practical Training Schedule
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optimality

growth 
targetpre-growth

Q: Can we find them visually from the learning curves?

A: No, because we want to avoid training the large model from scratch



  

Each stage is characterized by 3 points: 

- pre-growth: when to grow

- slope of learning curve, Ⲧdepth, Ⲧwidth

- optimality: stop training

- slope of learning curve, Ⲧopt

- growth-target: LR after growth

- ratio —--------------------------- =  𝝆
- function of the growth OP: 𝝆depth, 𝝆width

Practical Training Schedule
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optimality
slope = Ⲧopt

growth 
target

pre-growth
slope = ⲦG

steps@pre-growth
steps@growth-target



  Practical Training Schedule

Ⲧg, Ⲧopt, 𝝆g are independent of the model size, so

Replaced fitting scaling laws with estimating 3 simple constants

Procedure: 

- Train small models for a few thousand gradient updates:

- Use them to estimate Ⲧg, Ⲧopt, 𝝆g

- Then, apply the same constants when training larger models
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  Putting it all Together: Training Algorithm

START with a randomly initialized small model M

FOR number of stages REPEAT:

         Ⲧ = Ⲧopt IF last stage ELSE Ⲧg

WHILE slope of learning curve < Ⲧ:

Train M for another step, keep track of #steps S

M = grow(M)       // apply growth operator

S = S x 𝝆g      // to set learning rate of the next stage
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● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Practical Training Schedule

● Evaluation

Staged Training
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  Evaluation - Pretraining loss
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Percentage of compute saving 

Evaluation - Pretraining loss
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Percentage of compute saving

Evaluation - Zero-shot downstream
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- How to jump effectively

- How to identify the 3 points for optimal 
compute saving

- Saved up to 20% compute

Conclusion and Future Work
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jump

Future work: 

Staged training using Depth + Width + Sequence Length + Batch Size



What Language Model to Train if You Have 
One Million GPU Hours?

Thomas Wang, Teven Le Scao, Adam Roberts, Daniel Hesslow,  Stas Bekman, 
Lucile Saulnier, Hyung Won Chung, M Saiful Bari, Stella Biderman, Hady Elsahar, 
Jason Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng Shen, Lintang Sutawika, 

Jaesung Tae, Zheng Xin Yong, Julien Launay, Iz Beltagy

Big Science Architecture and Scaling Group
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1Million GPU (A100) hours ~= GPT3 compute budget

What language model to train? 

(architectures, pretraining objectives, model sizes, activation functions, 
position embeddings, layernorms, training data  … etc)

This talk will only discuss architectures and pretraining objectives for 
zero-shot evaluation. Check paper for more details

You have 1Million GPU hours - Now what? 
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Large language models started to  exhibit zero-shot generalizations

No systematic evaluation of architectures and pretraining objectives of SOTA models.

This is a large scale empirical evaluation of modeling choices and their impact on 
downstream zero-shot generalization

Two types of zero-shot generalization:

- Purely based on pretraining
- After multi-task supervised fine-tuning as in T0 [Sanh et. al.], FLAN [Wei et. al.]

What Language Model Architecture and Pretraining
Objective Work Best for Zero-Shot Generalization?
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  Experimental Setup
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GPT2

T5



  Experimental Setup - Architectures
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Transformer models. All have decoders to support generation tasks. All 
seq2seq



  Experimental Setup - Pretraining Objectives
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  Experimental Setup - Fine tuning
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Supervised Multitask finetuning showed greatly improved zero-shot generalizations

e.g. T0 [Sanh et. al.,  2021], FLAN [Wei et. al., 2021]

We use the T0 supervised multitask finetuning setup. Train for 10B tokens

Q: Do you expect the best architecture before and after T0 finetuning to be the same or different?



  Experimental Setup - Evaluation Benchmarks 
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Focus on zero-shot evaluation

Two benchmarks:

- T0: using the T0 heldout evaluations
- Zero-shot from task descriptions and prompt-engineering

- EAI: using the Eleuther AI evaluation benchmark
- Zero-shot using prompt-engineering



  Experimental Setup
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  Results - After Unsupervised Pretraining
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Causal decoder (GPT2-style) works the best

All MLM models are  around random chance because they don’t work for zero-shot

random



  Results - After Supervised Multitask Finetuning
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Encoder-decoder with MLM (T5-style) is the best after multitask finetuning



  So which one to train?
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Causal decoder with full LM (GPT2-style)

- Good for zero-shot, prompt-engineering, and generation

or Encoder-decoder with MLM (T5-style)

- Better zero-shot but only after supervised finetuning. Won’t work for 
generation

Can we find a compromise?

- Adaptation: pretrain on one objective then continue pretairning on 
another



  Language Model Adaptation

50



  Language Model Adaptation
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  Language Model Adaptation
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30% more compute for adaptation



  Conclusion and Future Work
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Best for zero-shot: Causal decoder + full LM 

Best for zero-shot after multitask finetuning: Encoder-decoder + MLM

Best compromise:

Causal decoder + full LM 70% of the compute, followed by

Non-causal decoder + MLM for 30% of the compute



  Conclusion and Future Work
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- Why best model changes after multi-task  finetuning?

- What’s an architecture and pretraining objective that would work well 

on both without an adaptation phase?

- We focused on zero-shot evaluation. Are the conclusions going to 

change if we use few-shot with/without finetuning?



  

What Language Model to Train if 
You Have One Million GPU Hours?

- Decoder-only model

- 70% on autoregressive LM, then

- 30% on MLM

Staged Training

Questions

55

jump



  Evaluation - Pretraining loss
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  Evaluation - Zero-shot downstream
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  Experimental Setup

58


