Efficient Scaling of Language Model pretraining

|z Beltagy

+ Ai2

Larger, better, more expensive

LM are getting larger, more expensive

1000

But also getting better, new opr-3 (1759
capabilities, zero-shot generalization, R
better generation § A Turing-NLG (17.20)

T5 (11B)

As we scale the models to larger sizes,
they will keep getting better

[

GPT-2 (1.5B)

Model Size (in billions of parameters)

BERT-Large (340M)

o
=

This requires new efficient methods ELMo (o4)
for training, and better modeling
ChOiceS Photo credit: Microsoft Research Blog, Alvi et. al., 2021

> K12

Larger, better, more expensive, and efficient

| will discuss two recent works
- Staged Training for Transformer Language Models

A training regime that can save up to 20% of the compute

- What Language Model to Train if You Have One Million GPU Hours?

Modeling choices to get the best model

K12

Staged Training for Transformer
Language Models

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, |1z Beltagy

+ K12

Staged Training

Goal: Train a large language model
Now (1 stage training): [Large Model] = {Train} = [Target Model]
Proposed (multi-stage training):

[Small Model] = {Train} = {Grow} = [Larger Model] = {Train} = {Grow} = [Target Model]

Prior work (e.g. [1]) proposed the same method but missing key ideas and intuitions
to get it to work reliably and achieve max compute saving

[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016

> K12

Staged Training - Intuition

— GPT2_base_div4
GPT2_base

— GPT2_large_div4

— GPT2_large

101 -
s}rﬂl 1

Smaller models are initially faster to

train then they plateau
a 6x10°
EI
Larger models initially slower than SHEE
smaller models but eventually become .
1(;16 10'17 1(;18 1(;19
compute

more efficient

Staged Training - Intuition

Training regime:
- train small model until loss slows down
- “jump” to alarger one

- train larger one until loss slows down

Why?
- the jump saves compute

- intermediate model sizes for free

We call the “jump” a Growth Operator

101 4

6x10°

val_loss

4x10°

3x10°

trah>\

— GPT2_base_div4
GPT2_base

— GPT2_large_div4
\ —— GPT2_large
N

small
]g}\P
N train
\ large
10'16 10'17 1(;18 1(;19

compute

" K12

Staged Training - Intuition

— GPT2_base_div4

101 g
- How to jump effectively \ GPT2 base
\ — GPT2_large_div4

train\\ —— GPT2_large

g 6X10° small
. . . .)
- How to identify the 3 points for optimal train
compute saving 4x10° large
3x10° .
10'16 10'17 1(;18 1(;19
compute

s K12

Properties for Growth Operator

To effectively jump between learning
curves, growth operator should have the
following properties

1
10 — GPT2_base_div4

GPT2_base
—— GPT2_large_div4
N \ — GPT2_large
1) loss-preserving (function-preserving): 4 sx1° e :
loss before growing model is the same as A

after 4x10°

val_loss

3x10°

100 107 1000 1000
compute

> KI12

Growth operators - Depth

Depth growth: increase number of layers

|

Layer C

Layer B

Depth growth
2x layers

2x the model size

Layer A

%

|

Ve

Layer C’ =

Layer C

Layer B’ =1

Layer B

Layer A’ =

Layer A

Copy layers then
manipulate a few
weights to convert
it into an Identity

(Loss-preserving)

o K12

Growth operators - Width

Width growth: increase hidden size [Y Y Y }
t Width growth 4 e A

2x each Feed Forward Every embedding =>2x

4x the model size W 0
W | > _ A) Every FF becomes => 4x

4 ' R

Manipulate last hidden

O W state to get the same logits

@ N /{\ ' (Loss-preserving)
" Ai2

Properties for Growth Operator

To effectively jump between learning
curves, growth operator should have the
following properties

1) loss-preserving (function-preserving):

loss before growing model is the same as
after

2) training-dynamics-preserving: rate of
loss change after growing the model is
the same as training the model from
“scratch”

val loss

101 4

— GPT2_base_div4
GPT2_base

< —— GPT2_large_div4
\ \ —— GPT2_large
¥

6x10° 2 -

‘]\!}“p
4x10°
3x10°

100 107 1000 1000
compute

2 K12

Properties for Growth Operator

training-dynamics-preserving: after
growth, model trains as fast as the model
trained from scratch

An ineffective growth operator creates a
larger model but one that doesn’t train
fast

We are the first to recognize the
importance of this property

101 4

6x10°

val_loss

4x10°

3x10°

— GPT2_base_div4
GPT2_base

— GPT2_large_div4

— GPT2_large

10'16 10'1 7
compute

1(;18 1(;19

s AXI12

Properties for Growth Operator

To preserve training dynamics, growth
operator should grow whole training
state (optimizer state and LR) not just
model

101 4

- growth
target

— GP12_large

6x10°

val_loss

Intuition - get the whole training state to
match that of one trained from scratch 4x10°

LR: use LR at growth target 3x10°

10'16 10'17 1(;18 1(;19
Optimizer: grow optimizer state with a compute
mostly similar growth operator to model

growth (check paper for details) 1 A2

Properties for Growth Operator - Evaluation

Two models trained from scratch

5.00

—— GPT2arge
4.751 ' GPT2jarge/4 width
—— GPT2jarge/Ax4 width
4.501 ® Pre-Growth
(V)]
0 4.25
o
|
s 4.00
3
- 3.75
©
= 3.50
3.251
3.00
0 1 2 3 4 5

Tokens le9

5 12

Properties for Growth Operator - Evaluation

Grow width of the small model. Grown model matches size of the larger model

5.00

. I GPTZIarge
(LOSS preservmg) 4.751 —— GPT2arge/4 width
—— GPT23ge/4x4 width
4.501 ® Pre-Growth

()]
wn 4.25
o
|
s 4.00
-

" © 3.75
S 350

o K12

Properties for Growth Operator - Evaluation

Overlay grown model over larger model trained from scratch

5.00

— GPT2 large

(Preserving 4131 — GPT2pge/4 width
. . . 450, —— GPT2/arge/4x4 width
tralnlng dynam|CS) " ® Pre-Growth
0 4.25
3
s 4.00
3
375
S350

7 K12

Properties for Growth Operator - Evaluation

\ — GPT2p0se \ T GPT2pse 5.0
—— GPT2paseld \ —— GPT2pasel2 —— GPT2pase
4 a4 — GPT2bsseld
—— GPT2pase/4x4width ours \ —— GPT2pase/2x2depth ours base
Py i = 4.8 —— GPT2pase/Ax4width
k —— GPT2pase/4x4width ffn GPT2pase/2x2depth copy GPT2 4% axawidth init |
GPT2pase/4x4width zero_opt l —— GPT2pase/2x2depth zero_opt — base/4x4width init_Ir_restart
4.6
4.2 4.2
44
" .
4 2
S o
=l)
4.0 < 4.01 4.2
- 3
o) T 4.0
o ©
3.8 > 3.81 >
3.8
3.6
3.6 361
3.4
3.2
34 . . , 3.4 , . . . : , .
050 075 100 125 150 1.75 200 225 2.50 050 075 1.00 125 150 175 200 225 2.50 05 10 15 #Z'I.'Ok 23 300 35 40,
Tokens 1e9 # Tokens 1e9 okens

s 12

Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule
e Practical Training Schedule

e Evaluation

o 12

Optimal Training Schedule

Prior work splits the compute heuristically
between the stages. 10° -

— GPT2_base_div4
GPT2_base

— GPT2_large_div4

— GPT2_large

Here we see there’s a precise schedule

with the optimal compute saving 6x10°

val_loss

4x10°

3x10°

100 107 1000 1000
compute

» AKi2

Optimal Training Schedule

Prior work splits the compute heuristically
between the stages.

Here we see there’s a precise schedule

with the optimal compute saving g ox1
EI
Grow model too early, and you will waste i
the opportunity to save more (x-axis is log)
3x10°

101 4

— GPT2_base_div4
GPT2_base

— GPT2_large_div4

— GPT2_large

100 107 1000 1000
compute

2 AKi2

Optimal Training Schedule

Prior work splits the compute heuristically

between the stages. ol — T2 base_divé
GPT2_base
, . . — GPT2_large_div4
Here we see there’s a precise schedule with — GPT2_large
the optimal compute saving g 6x10°
El
Grow model too early, and you will waste ,
4x1
the opportunity to save more (x-axis is log)
. 3x10°
Grow model too late, and you will waste b o7 o i

compute

more compute than you save

Scaling Laws

Earlier learning curves are empirical, but they can be predicted using scaling
laws [Kaplan et. al., 2020]

Scaling laws predict loss (L) as function of model size (N) and compute (C) and
a list of empirically fitted constants

C ~6NBS,
Nc N SC ag
w9 - () +(5)

= Ki2

Optimal Training Schedule

Optimal training schedule is a constrained optimization problem

minimize > (compute per stages)
subject to

- Scalinglaws L = F(C, N)

- Size increments constrained to 2x or 4x
- Target model size N_target

- Target model loss L_target

 AKI2

Optimal Training Schedule - Observations

Assuming scaling laws fitting of Kaplan et. al.,
101 4

— GPT2_base_div4
GPT2 base

With no staged training (#stages = 1):

optimality

- The optimal solution reproduces the 100
optimal compute allocation of Kaplan et. al.3

- Train a large model and stop long before ~ 4*1%

convergence
3x10°

100 107 100 10

- We call this point optimality compute

s KI2

Optimal Training Schedule - Observations

Assuming scaling laws fitting of Kaplan et. al., # stages = saving

Expected compute saving plateaus at 3 stages 1 0 %
. 2 10%
(grow model 2 times)
3 15%
4 16.5%
With 3 stages, compute allocation is: 5 17.4%
- stage 1: 13% 6 17.9%
- stage 2: 10% 7 18.1%

- stage 3:62%
- save: 15% » K12

Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule
e Practical Training Schedule

e Evaluation

7 AKi2

Practical Training Schedule

Optimal schedule assumes you know scaling laws

Fitting scaling laws is expensive and time consuming because you need to
train many models of many different sizes

Instead, we develop a more practical training schedule that follows the
intuitions we learn from the optimal one

» Ki2

Practical Training Schedule

Each stage is characterized by 3 points:
— growth :
\ pre-growth target pedvé
- pre-growth: when to grow s Iar;ee e
- growth-target: LR after growth T2 e
v 6x10°
- optimality: stop training ; optimality
. 4x10°
We don't need to fit scaling laws and solve
optimization problem. Just find the 3 points 3*'* : , , :
1016 1017 1018 1019
compute
Q: Can we find them visually from the learning curves?
= AI2

A: No, because we want to avoid training the large model from scratch

Practical Training Schedule

Each stage is characterized by 3 points:

101 4

- pre-growth: when to grow
- slope of learning curve, Tdepth, Twidth
- optimality: stop training

- slope of learning curve, Topt

- growth-target: LR after growth

6x10°

val_loss

4x10°

pre-growth growth
target

slope = Tc se
GPT2_large_div4

se_div4

steps@pre-growth
- 3x10°

- ratio steps@growth-target
function of the growth OP: @depth, Qwidth

GPT2_large

optimality
slope = Topt

10'16 10'17 1(;18 1(;19
compute

Practical Training Schedule

Tg, Topt, @g are independent of the model size, so

Replaced fitting scaling laws with estimating 3 simple constants

Procedure:

- Train small models for a few thousand gradient updates:
- Use them to estimate Tg, Topt, 0g
- Then, apply the same constants when training larger models

2 AKiI2

Putting it all Together: Training Algorithm

START with a randomly initialized small model M
FOR number of stages REPEAT :
T=Topt IF last stage ELSE Tg
WHILE slope of learning curve < T:
Train M for another step, keep track of #steps S
M = grow(M) // applygrowth operator

S =S x gg // tosetlearningrate of the next stage

2 AKi2

Staged Training

e Properties of growth operators

o Loss preserving
m Depth and Width operators
o Training dynamics preserving

m Optimizer and Learning rate

e Optimal Training Schedule
e Practical Training Schedule

e Evaluation

= AKI2

Evaluation - Pretraining loss

4 x10°
e GPTZ/arge
—— GPT239e/4
—— GPT2j39e/4 #GPT2)5rge
(V)]
(V)]
(@)
|
(e
S
e A N PO N I
O
O
©
>
3x10°

10-2 101

Flops (PF-days)

“ AKiI2

Evaluation - Pretraining loss

Percentage of compute saving

GPT2Larc: GPT2pase
At OPT After OPT At OPT After OPT
2xW 73 52| 202 1973
4xW 53 38| 86 550
2 Stage practicat 2XD 11.0 6.1 204 1987
4xD 73 52| 101 648
2xDxW | 54 3.8 9.5 6.830
dstage. . 2X2XW 109 7.8 ((17.9 1148
gCpractical HyoeDy 1145 | 104 |1214) 1593 = Al2

Evaluation - Zero-shot downstream

Percentage of compute saving

| Zero-shot Wikitext-103 (PPL) Zero-shot LAMBADA (accuracy)
GPT2LARGE GPTZBASE GPT2LARGE GPTZBASE
@OPT AFTR OPT| @OPT AFTR OPT]| @OPT AFTR OPT | ' @OPT AFTR OPT
2xwidth -0.25 8.7 5.9 3.8 12.3 14.8 3.3 10.6
4xwidth 1.3 7.4 1.1 6.4 18.0 18.2 10.1 8.6
2 stage practica 2xdepth 135 114 335 175 235 214 16.8 139
4xdepth 17.5 9.5 7.9 3.1 20.5 14.6 9.4 7.8
2xdepthxwidth -0.3 1.6 3.6 4.5 -37.5 0.7 6.4 6.4
3 Staoe o 2x2xwidth 6.3 9.3 54 8.0 13.4 (20.3 1.8 (11.8
' £ practical 2x2xdepth 12.5 2.8 14.3 11.8 14.5 1(23.6 10.6 (15.0

© AKI2

Conclusion and Future Work

— GPT2_base_div4

- How to jump effectively
101 g
- How to identify the 3 points for optimal GPT2 buse
. N\ — GPT2_large_div4
compute saving Y \ —— GPT2_large
y 6x10° \ 3
- Saved up to 20% compute ; "*j\u\xp
4x%10°
3x10°
10'16 10'17 1(;18 1(;19
compute

Future work:
Staged training using Depth + Width + Sequence Length + Batch Size
7 K12

What Language Model to Train if You Have
One Million GPU Hours?

Thomas Wang, Teven Le Scao, Adam Roberts, Daniel Hesslow, Stas Bekman,
Lucile Saulnier, Hyung Won Chung, M Saiful Bari, Stella Biderman, Hady Elsahar,
Jason Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng Shen, Lintang Sutawika,

Jaesung Tae, Zheng Xin Yong, Julien Launay, |z Beltagy

Big Science Architecture and Scaling Group

= 12

You have 1Million GPU hours - Now what?

1Million GPU (A100) hours ~= GPT3 compute budget
What language model to train?

(architectures, pretraining objectives, model sizes, activation functions,
position embeddings, layernorms, training data ... etc)

This talk will only discuss architectures and pretraining objectives for
zero-shot evaluation. Check paper for more details

= AKI2

What Language Model Architecture and Pretraining

Objective Work Best for Zero-Shot Generalization?

Large language models started to exhibit zero-shot generalizations
No systematic evaluation of architectures and pretraining objectives of SOTA models.

This is a large scale empirical evaluation of modeling choices and their impact on
downstream zero-shot generalization

Two types of zero-shot generalization:

- Purely based on pretraining
- After multi-task supervised fine-tuning as in TO [Sanh et. al.], FLAN [Wei et. al.]

o Ki2

Experimental Setup

GPT2
4 7 V- R P ~ P ~
Causal Decoder i Full LM
a No Fine-tuning
| (CD) | \ (FLM) | - TO0-Eval
(/)
(N (B
Non-Causal N Prefix LM = g B .
Decoder (ND) (PLM) P \ , =
b 4 G J
Multi-Task EleutherAl
@ 2 (R . .
Fine-t -
Encoder-Decoder \ Masked LM 1n1\e/3[Tu;1ng H;r;;s; Efd
(ED) (MLM) (MT-F) (BAL-Eval) |
L y, L p, b > .
Architecture Objective Fine-tuning Evaluation
T5

a AKi2

Experimental Setup - Architectures

Transformer models. All have decoders to support generation tasks. All
seq2seq

Causal Decoder Non-causal Decoder Encoder-Decoder
= - 1=
[} Q [}
; N J § [[’ ; N]
3 < o
O Q 9]
[} Q [}
° kS| o °
- N f N (N N o) by f A (
3 °]
g O Q Q
g “ 8| g
g 4 % J A & Q 5]
8 ® -] 8
8 4 A\ J p A 4 S o &
g g — g
3 3 5] 3
— A e g N
S — 8 e
— — m —
Y N Y N —_—y
1 am a causal decoder 1 am a NC decoder I am an encoder decoder

Decoder Decoder Encoder Decoder
= XI2

Experimental Setup - Pretraining Objectives

Full Language Modeling

Prefix Language Modeling

Masked Language Modeling

targets
May |the force be with you]
targets
May the force |be with you
targets
May |the force be with you

= Ki2

Experimental Setup - Fine tuning

Supervised Multitask finetuning showed greatly improved zero-shot generalizations
e.g. TO[Sanh et. al., 2021], FLAN [Wei et. al., 2021]

We use the TO supervised multitask finetuning setup. Train for 10B tokens

Q: Do you expect the best architecture before and after TO finetuning to be the same or different?

“ AKi2

Experimental Setup - Evaluation Benchmarks

Focus on zero-shot evaluation
Two benchmarks:

- TO:using the TO heldout evaluations

- Zero-shot from task descriptions and prompt-engineering

- EAI: using the Eleuther Al evaluation benchmark
- Zero-shot using prompt-engineering

s AKi2

Experimental Setup

4 N 'd N\
Causal Decoder i Full LM
a No Fine-tuning
| (CD) | \ (FLM) | - TO0-Eval
(/)
(N (B
Non-Causal N Prefix LM = g B .
Decoder (ND) (PLM) P \ , =
b 4 G J
Multi-Task EleutherAl
@ 2 (R . .
Fine-t -
Encoder-Decoder \ Masked LM 1n1\e/3[Tu;1ng H;r;;s; Efd
(ED) (MLM) (MT-F) (BAL-Eval) |
L y, L p, b > .
Architecture Objective Fine-tuning Evaluation

© AKi2

Results - After Unsupervised Pretraining

EAI-EvAL TO-EVAL

FLM/PLM

Causal decoder 44.2 424
Non-causal decoder 43.5 41.8
Encoder-decoder 39.9 41.7
MLM

Causal decoder
Non-causal decoder
Encoder-decoder

random

Causal decoder (GPT2-style) works the best

All MLM models are around random chance because they don’t work for zero-shot 47 A|2

Results - After Supervised Multitask Finetuning

EAI-EvAL TO-EVAL

FLM/PLM

Causal decoder 50.4 514
Non-causal decoder 48.9 54.0
Encoder-decoder 44.2 45.8
MLM

Causal decoder 47.1 50.3
Non-causal decoder 51.0 55.2
Encoder-decoder 51.3 60.6

Encoder-decoder with MLM (T5-style) is the best after multitask finetuning

© Ki2

So which one to train?

Causal decoder with full LM (GPT2-style)
- Good for zero-shot, prompt-engineering, and generation
or Encoder-decoder with MLM (T5-style)

- Better zero-shot but only after supervised finetuning. Won’t work for
generation

Can we find a compromise?

- Adaptation: pretrain on one objective then continue pretairning on

another o K12

Language Model Adaptation

4 N 'd N\
Causal Decoder i Full LM
a No Fine-tuning
| (CD) | \ (FLM) | - TO0-Eval
(/)
(N (B
Non-Causal N Prefix LM = g B .
Decoder (ND) (PLM) P \ , =
b 4 G J
Multi-Task EleutherAl
@ 2 (R . .
Fine-t -
Encoder-Decoder \ Masked LM 1n1\e/3[Tu;1ng H;r;;s; Efd
(ED) (MLM) (MT-F) (BAL-Eval) |
L y, L p, b > .
Architecture Objective Fine-tuning Evaluation

o AKI2

Language Model Adaptation

|

No Fine-tuning

(/)

TO0-Eval

Causal Decoder Full LM o o adaptation
(CD) (FLM)
o J J
{5 o s
Non-Causal
DNon(;Cau;a;; Pr;ﬁ;\;‘M MLM Adaptation
ecoder
N () J () N (NC'A) y,
= 2 s R
Encoder-Decoder Masked LM | LM Adaptation
(ED) (MLM) (LM-A)
- J = J
Architecture Objective Adaptation

Multi-Task
Fine-tuning

(MT-F)

EleutherAl
Harness EAI
(EAI-Eval)

Fine-tuning

Evaluation

 AKI2

Language Model Adaptation

1.6 \
—— Non-causal MLM
1.5 —— MLM-Adapated Causal FLM .
30% more compute for adaptation
()]
§ 1.4 EAI-EvAL TO0-EVAL
Causal FLM 51.3 52.1
Non-causal MLM-Adapted 52.3 54.9
1.3 1
1 2 ! T T T
0 50 100 150

Billions of Tokens

2 AKI2

Conclusion and Future Work

Best for zero-shot: Causal decoder + full LM
Best for zero-shot after multitask finetuning: Encoder-decoder + MLM
Best compromise:

Causal decoder + full LM 70% of the compute, followed by

Non-causal decoder + MLM for 30% of the compute

= AKI2

Conclusion and Future Work

- Why best model changes after multi-task finetuning?

- What’s an architecture and pretraining objective that would work well
on both without an adaptation phase?

- We focused on zero-shot evaluation. Are the conclusions going to

change if we use few-shot with/without finetuning?

“ AKI2

Questions

101 B

4x10°

3x10°

Staged Training

— GPT2_base_div4
GPT2_base

X —— GPT2_large_div4
N —— GPT2_large
'\,\o

lolld 10.17 10'18 10‘19
compute

What Language Model to Train if
You Have One Million GPU Hours?

- Decoder-only model

- 70% on autoregressive LM, then

- 30% on MLM

= AI2

Evaluation - Pretraining loss

GPT2LARGE GPTZBASE
5k 10k 14k \ 3.75k 7k 11k
Baseline (loss) | 321 303 297 | 361 345 3.38

Compute savings (percent saved vs. baseline)

2xW 19.3 56 40 23.8 145 138
2xD 335 7.8 6.3 240 23.6 21.8

2xW 22.5 7.3 3.2 243 202 19.7
4xW 180 53 3.8 16.0 8.6 3.5
1 stage practicat 2XD 37.0 110 6.1 2477 204 19.8
4xD 22.5 7.5 3.2 18.8 10.1 6.4
2xDxW | 288 54 38 190 95 6.83

> ase . 2X2XW | 268 109 78| 268 179 114
Epuctical oD | 30.0 145 104 | 333 214 159 s II2

1 Stage manual

Evaluation - Zero-shot downstream

] Zero-shot Wikitext-103 (PPL) Zero-shot LAMBADA (accuracy)
GPTZLARGE GPTZBASE GPT2LARGE GPTZBASE
5k 10k 14k | 3.75k 7k 11k | S5k 10k 14k | 3.75k 7k 11k
Baseline | 41.0 323 303 | 68.5 57.1 50.0 | 30.6 432 447 | 31.1 33.0 34.7

Compute savings (percent saved vs. baseline, negative means more compute than baseline)

it 2xwidth -18.5 62 58| -197 03 24 32 6.7 8.3 -8.3 02 13.6
Sl 2xdepth 285 11.8 120 240 280 173 | 335 168 138 240 229 182
2xwidth -20.5 -0.25 87 | -157 59 38 | -155 123 148 | -15.7 33 10.6

4xwidth -13.4 1.3 74 | -12.0 1.1 64 | -11.0 18.0 182 | -120 10.1 8.6

1 stage practica 2xdepth 320 135 114 313 335 175 | 320 235 214 247 16.8 13.9
4xdepth 21.0 175 9.5 146 79 31| 210 205 146 146 94 7.8

2xdepthxwidth | -10.5 -0.3 16 | -120 36 45| -950 -375 0.7 54 64 64

% T 2x2xwidth -2.5 6.3 93 33 54 8.0 -33 134 203 -3.3 1.8 11.8
E padical 2x2xdepth 300 125 1238 333 143 118 | 190 145 236 199 10.6 15.0

7 AKI2

Experimental Setup

MODELS ARCHITECTURE

Decoder-only Encoder-decoder PRETRAINING MULTITASK FINETUNING
Parameters 4.8B 11.0B Dataset C4 TO train
Vocabulary 32,128 Steps 131,072 10,000
Positional embed. T5 relative Batch size in tokens 1,282,048 1,024
Embedding dim. 4,096 Optimizer X Adafactor(decay_rate=0.8)
Attention heads 64 LR schedule Tomnaoh fixed, 0.001
Feedforward dim. 10,240 Dropout 0.0 0.1
Activation GEGLU [Shazeer, 2020] z loss 0.0001
Layers 24 48 Precision bfloat16
Logits via embed. True
Precision bfloat16

= AI2

