
Efficient Scaling of Language Model pretraining

Iz Beltagy

1

 Larger, better, more expensive

LM are getting larger, more expensive

But also getting better, new
capabilities, zero-shot generalization,
better generation

As we scale the models to larger sizes,
they will keep getting better

This requires new efficient methods
for training, and better modeling
choices

2

Photo credit: Microsoft Research Blog, Alvi et. al., 2021

I will discuss two recent works

- Staged Training for Transformer Language Models

A training regime that can save up to 20% of the compute

- What Language Model to Train if You Have One Million GPU Hours?

Modeling choices to get the best model

Larger, better, more expensive, and efficient

3

Staged Training for Transformer
Language Models

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, Iz Beltagy

4

Goal: Train a large language model

Now (1 stage training): [Large Model] ⇒ {Train} ⇒ [Target Model]

Proposed (multi-stage training):

 [Small Model] ⇒ {Train} ⇒ {Grow} ⇒ [Larger Model] ⇒ {Train} ⇒ {Grow} …. ⇒ [Target Model]

Prior work (e.g. [1]) proposed the same method but missing key ideas and intuitions
to get it to work reliably and achieve max compute saving

[1] Net2Net: Accelerating Learning via Knowledge Transfer, Chen et. al., ICLR 2016

Staged Training

5

 Staged Training - Intuition

Smaller models are initially faster to
train then they plateau

Larger models initially slower than
smaller models but eventually become
more efficient

6

small

large

 Staged Training - Intuition

7

train
small

train
large

jump

Training regime:

- train small model until loss slows down

- “jump” to a larger one

- train larger one until loss slows down

Why?

- the jump saves compute

- intermediate model sizes for free

We call the “jump” a Growth Operator

 Staged Training - Intuition

8

train
small

train
large

jump

- How to jump effectively

- How to identify the 3 points for optimal
compute saving

 Properties for Growth Operator

9

jump

To effectively jump between learning
curves, growth operator should have the
following properties

1) loss-preserving (function-preserving):
loss before growing model is the same as
after

Depth growth: increase number of layers

Growth operators - Depth

10

Layer C

Layer B

Layer A

Layer C’ = I

Layer B

Layer A

Layer A’ = I

Layer B’ = I

Layer CDepth growth
2x layers

2x the model size
Copy layers then
manipulate a few
weights to convert
it into an Identity

(Loss-preserving)

Width growth: increase hidden size

Growth operators - Width

11

W

Width growth
2x each Feed Forward

4x the model size
Every embedding =>2x

Every FF becomes => 4x

Manipulate last hidden
state to get the same logits

(Loss-preserving)X

Y
W 0

0 W

X X

Y Y

To effectively jump between learning
curves, growth operator should have the
following properties

1) loss-preserving (function-preserving):
loss before growing model is the same as
after

2) training-dynamics-preserving: rate of
loss change after growing the model is
the same as training the model from
“scratch”

Properties for Growth Operator

12

jump

training-dynamics-preserving: after
growth, model trains as fast as the model
trained from scratch

An ineffective growth operator creates a
larger model but one that doesn’t train
fast

We are the first to recognize the
importance of this property

Properties for Growth Operator

13

 Properties for Growth Operator

To preserve training dynamics, growth
operator should grow whole training
state (optimizer state and LR) not just
model

Intuition - get the whole training state to
match that of one trained from scratch

LR: use LR at growth target

Optimizer: grow optimizer state with a
mostly similar growth operator to model
growth (check paper for details) 14

growth
target

Two models trained from scratch

Properties for Growth Operator - Evaluation

15

Grow width of the small model. Grown model matches size of the larger model

(Loss preserving)

Properties for Growth Operator - Evaluation

16

Overlay grown model over larger model trained from scratch

Properties for Growth Operator - Evaluation

17

(Preserving

training dynamics)

PLOTs - no optimizer state, no learning rate, not loss-preserving

Conclusion: we have reliable growth operators that can effectively jump from one
learning curve to the other

Properties for Growth Operator - Evaluation

18

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Practical Training Schedule

● Evaluation

Staged Training

19

Prior work splits the compute heuristically
between the stages.

Here we see there’s a precise schedule
with the optimal compute saving

Optimal Training Schedule

20

Prior work splits the compute heuristically
between the stages.

Here we see there’s a precise schedule
with the optimal compute saving

Grow model too early, and you will waste
the opportunity to save more (x-axis is log)

Optimal Training Schedule

21

 Optimal Training Schedule

22

Prior work splits the compute heuristically
between the stages.

Here we see there’s a precise schedule with
the optimal compute saving

Grow model too early, and you will waste
the opportunity to save more (x-axis is log)

Grow model too late, and you will waste
more compute than you save

Earlier learning curves are empirical, but they can be predicted using scaling
laws [Kaplan et. al., 2020]

Scaling laws predict loss (L) as function of model size (N) and compute (C) and
a list of empirically fitted constants

Scaling Laws

23

Optimal training schedule is a constrained optimization problem

Optimal Training Schedule

24

minimize ∑(compute per stages)

subject to

- Scaling laws L = F(C, N)

- Size increments constrained to 2x or 4x

- Target model size N_target

- Target model loss L_target

Assuming scaling laws fitting of Kaplan et. al.,

With no staged training (#stages = 1):

- The optimal solution reproduces the
optimal compute allocation of Kaplan et. al.

- Train a large model and stop long before
convergence

- We call this point optimality

Optimal Training Schedule - Observations

25

optimality

Assuming scaling laws fitting of Kaplan et. al.,

Expected compute saving plateaus at 3 stages

(grow model 2 times)

With 3 stages, compute allocation is:

- stage 1: 13%
- stage 2: 10%
- stage 3: 62%
- save: 15%

Optimal Training Schedule - Observations

26

stages saving

1 0 %

2 10%

3 15%

4 16.5%

5 17.4%

6 17.9%

7 18.1%

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Practical Training Schedule

● Evaluation

Staged Training

27

 Practical Training Schedule

28

Optimal schedule assumes you know scaling laws

Fitting scaling laws is expensive and time consuming because you need to
train many models of many different sizes

Instead, we develop a more practical training schedule that follows the
intuitions we learn from the optimal one

Each stage is characterized by 3 points:

- pre-growth: when to grow

- growth-target: LR after growth

- optimality: stop training

We don’t need to fit scaling laws and solve

optimization problem. Just find the 3 points

Practical Training Schedule

29

optimality

growth
targetpre-growth

Q: Can we find them visually from the learning curves?

A: No, because we want to avoid training the large model from scratch

Each stage is characterized by 3 points:

- pre-growth: when to grow

- slope of learning curve, Ⲧdepth, Ⲧwidth

- optimality: stop training

- slope of learning curve, Ⲧopt

- growth-target: LR after growth

- ratio —--------------------------- = 𝝆
- function of the growth OP: 𝝆depth, 𝝆width

Practical Training Schedule

30

optimality
slope = Ⲧopt

growth
target

pre-growth
slope = ⲦG

steps@pre-growth
steps@growth-target

 Practical Training Schedule

Ⲧg, Ⲧopt, 𝝆g are independent of the model size, so

Replaced fitting scaling laws with estimating 3 simple constants

Procedure:

- Train small models for a few thousand gradient updates:

- Use them to estimate Ⲧg, Ⲧopt, 𝝆g

- Then, apply the same constants when training larger models

31

 Putting it all Together: Training Algorithm

START with a randomly initialized small model M

FOR number of stages REPEAT:

 Ⲧ = Ⲧopt IF last stage ELSE Ⲧg

WHILE slope of learning curve < Ⲧ:

Train M for another step, keep track of #steps S

M = grow(M) // apply growth operator

S = S x 𝝆g // to set learning rate of the next stage

32

● Properties of growth operators

○ Loss preserving

■ Depth and Width operators

○ Training dynamics preserving

■ Optimizer and Learning rate

● Optimal Training Schedule

● Practical Training Schedule

● Evaluation

Staged Training

33

 Evaluation - Pretraining loss

34

Percentage of compute saving

Evaluation - Pretraining loss

35

Percentage of compute saving

Evaluation - Zero-shot downstream

36

- How to jump effectively

- How to identify the 3 points for optimal
compute saving

- Saved up to 20% compute

Conclusion and Future Work

37

jump

Future work:

Staged training using Depth + Width + Sequence Length + Batch Size

What Language Model to Train if You Have
One Million GPU Hours?

Thomas Wang, Teven Le Scao, Adam Roberts, Daniel Hesslow, Stas Bekman,
Lucile Saulnier, Hyung Won Chung, M Saiful Bari, Stella Biderman, Hady Elsahar,
Jason Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng Shen, Lintang Sutawika,

Jaesung Tae, Zheng Xin Yong, Julien Launay, Iz Beltagy

Big Science Architecture and Scaling Group

38

1Million GPU (A100) hours ~= GPT3 compute budget

What language model to train?

(architectures, pretraining objectives, model sizes, activation functions,
position embeddings, layernorms, training data … etc)

This talk will only discuss architectures and pretraining objectives for
zero-shot evaluation. Check paper for more details

You have 1Million GPU hours - Now what?

39

Large language models started to exhibit zero-shot generalizations

No systematic evaluation of architectures and pretraining objectives of SOTA models.

This is a large scale empirical evaluation of modeling choices and their impact on
downstream zero-shot generalization

Two types of zero-shot generalization:

- Purely based on pretraining
- After multi-task supervised fine-tuning as in T0 [Sanh et. al.], FLAN [Wei et. al.]

What Language Model Architecture and Pretraining
Objective Work Best for Zero-Shot Generalization?

40

 Experimental Setup

41

GPT2

T5

 Experimental Setup - Architectures

42

Transformer models. All have decoders to support generation tasks. All
seq2seq

 Experimental Setup - Pretraining Objectives

43

 Experimental Setup - Fine tuning

44

Supervised Multitask finetuning showed greatly improved zero-shot generalizations

e.g. T0 [Sanh et. al., 2021], FLAN [Wei et. al., 2021]

We use the T0 supervised multitask finetuning setup. Train for 10B tokens

Q: Do you expect the best architecture before and after T0 finetuning to be the same or different?

 Experimental Setup - Evaluation Benchmarks

45

Focus on zero-shot evaluation

Two benchmarks:

- T0: using the T0 heldout evaluations
- Zero-shot from task descriptions and prompt-engineering

- EAI: using the Eleuther AI evaluation benchmark
- Zero-shot using prompt-engineering

 Experimental Setup

46

 Results - After Unsupervised Pretraining

47

Causal decoder (GPT2-style) works the best

All MLM models are around random chance because they don’t work for zero-shot

random

 Results - After Supervised Multitask Finetuning

48

Encoder-decoder with MLM (T5-style) is the best after multitask finetuning

 So which one to train?

49

Causal decoder with full LM (GPT2-style)

- Good for zero-shot, prompt-engineering, and generation

or Encoder-decoder with MLM (T5-style)

- Better zero-shot but only after supervised finetuning. Won’t work for
generation

Can we find a compromise?

- Adaptation: pretrain on one objective then continue pretairning on
another

 Language Model Adaptation

50

 Language Model Adaptation

51

 Language Model Adaptation

52

30% more compute for adaptation

 Conclusion and Future Work

53

Best for zero-shot: Causal decoder + full LM

Best for zero-shot after multitask finetuning: Encoder-decoder + MLM

Best compromise:

Causal decoder + full LM 70% of the compute, followed by

Non-causal decoder + MLM for 30% of the compute

 Conclusion and Future Work

54

- Why best model changes after multi-task finetuning?

- What’s an architecture and pretraining objective that would work well

on both without an adaptation phase?

- We focused on zero-shot evaluation. Are the conclusions going to

change if we use few-shot with/without finetuning?

What Language Model to Train if
You Have One Million GPU Hours?

- Decoder-only model

- 70% on autoregressive LM, then

- 30% on MLM

Staged Training

Questions

55

jump

 Evaluation - Pretraining loss

56

 Evaluation - Zero-shot downstream

57

 Experimental Setup

58

