What do We Need to Learn Before Burning the Next One Million GPU Hours?

Iz Beltagy

Julien Launay

Allen Institute for Al

LightOn

What we did for the past year in architecture & scaling...

What Language Model to Train if You Have One Million GPU Hours? Le Scao et al. (2022). What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization? Wang et al. (ICML 2022). ...but this talk is about what we learned and what open questions we still need to answer?

Evaluation

Architecture and Pretraining Objective

Scaling

Datasets

Engineering

Efficient Pretraining

Evaluation

Architecture and Pretraining Objective

Scaling

Datasets

Engineering

Efficient Pretraining

Many settings

- LM loss vs. downstream
- Zero-shot vs. few-shot
- Prompting vs. finetuning
- Parameter-efficient vs. full finetuning
- With/without multi-task finetuning

Evaluation

What evaluation setup to use to make modeling decisions?

Many settings and results don't necessarily transfer

- LM loss vs. downstream (Tay et al., 2021, Abnar et. al., 2021)
- Zero-shot vs. few-shot
- Prompting vs. finetuning (Wang et al., 2022)
- Parameter-efficient vs. full finetuning
- With/without multi-task finetuning (Wang et al., 2022)

Tay et. al., 2021: Scale Efficiently: Insights From Pre-trained and Fine-tuned Transformers Abnar et. al., 2021: Exploring the Limits of Large Scale Pre-training Wang et. al., 2022: What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Many settings and results don't necessarily transfer

- LM loss vs. downstream (Tay et al., 2022, Abnar et. al., 2021)
- Zero-shot vs. few-shot
- **Prompting** vs. finetuning (Wang et al., 2022)
- Parameter-efficient vs. full finetuning
- With/without multi-task finetuning (Wang et al., 2022)

Tay et. al., 2021: Scale Efficiently: Insights From Pre-trained and Fine-tuned Transformers Abnar et. al., 2021: Exploring the Limits of Large Scale Pre-training Wang et. al., 2022: What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Many settings and results don't necessarily transfer

- LM loss vs. downstream (Tay et al., 2022, Abnar et. al., 2021)
- Zero-shot vs. few-shot Prompting vs. finetuning (Wang et al., 202
- Parameter-efficient vs. full finetuning
- With/without multi-task finetuning (Wang

- Fast and easy to run

- Representative of how the model will be used in practice

Tay et. al., 2021: Scale Efficiently: Insights From Pre-trained and Fine-tuned Transformers Abnar et. al., 2021: Exploring the Limits of Large Scale Pre-training Wang et. al., 2022: What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Open question

- Better understanding of the relation between different setup, and why the results differ

Evaluation

Architecture and Pretraining Objective

Scaling

Datasets

Engineering

Efficient Pretraining

What is a model architecture and pretraining objective that work for all settings?

What is a model architecture and pretraining objective that work for all settings?

What is a model architecture and pretraining objective that work for all settings?

What is a model architecture and pretraining objective that work for all settings?

Wang et al., 2022: zero-shot generalization

- GPT2-style: after pretraining

What is a model architecture and pretraining objective that work for all settings?

- GPT2-style: after pretraining
- T5-style: after pretraining + multitask finetuning (e.g. T0 adaptation)

What is a model architecture and pretraining objective that work for all settings?

- GPT2-style: after pretraining
- T5-style: after pretraining + multitask finetuning (e.g. T0 adaptation)

What is a model architecture and pretraining objective that work for all settings?

- GPT2-style: after pretraining
- T5-style: after pretraining + multitask finetuning (e.g. T0 adaptation)

What is a model architecture and pretraining objective that work for all settings?

- GPT2-style: after pretraining
- T5-style: after pretraining + multitask finetuning (e.g. T0 adaptation)

What is a model architecture and pretraining objective that work for all settings?

- GPT2-style: after pretraining
- T5-style: after pretraining + multitask finetuning (e.g. T0 adaptation)

What is a model architecture and pretraining objective that work for all settings?

Wang et al., 2022: zero-shot generalization

- GPT2-style: after pretraining
- T5-style: after pretraining + multitask finetuning (e.g. T0 adaptation)

Wang et. al., 2022: What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Architectures:

- Vanilla transformer

- Vanilla transformer
 - Decoder-only

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

Mixture of Experts (MoEs) or Conditionally-Activated Transformers:

- Different examples activate different parts ("experts") of the model

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

- Different examples activate different parts ("experts") of the model
- Examples: Switch Transformer, Base-layer, DEMix Layers, GLaM, LaMDa

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

- Different examples activate different parts ("experts") of the model
- Examples: Switch Transformer, Base-layer, DEMix Layers, GLaM, LaMDa
- Interesting but haven't seen the same adoption as dense models

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

- Different examples activate different parts ("experts") of the model
- Examples: Switch Transformer, Base-layer, DEMix Layers, GLaM, LaMDa
- Interesting but haven't seen the same adoption as dense models

Architectures

Architectures:

- Vanilla transformer
 - Decoder-only
 - Encoder-decoder
- Transformer variants

Narang et. al.,: most transformer variants are comparable to vanilla transformers.

Mixture of Experts (MoEs) or Conditionally-Activated Transformers:

- Different examples activate different parts ("experts") of the model
- Examples: Switch Transformer, Base-layer, DEMix Layers, GLaM, LaMDa
- Interesting but haven't seen the same adoption as dense models

Narang et. al., 2021: Do Transformer Modifications Transfer Across Implementations and Applications?

Mixture of objectives

- UL2: Tay et. al., 2022

- UL2: Tay et. al., 2022
- CM3: Aghajanyan et. al., 2022

- UL2: Tay et. al., 2022
- CM3: Aghajanyan et. al., 2022
- Argue that the objectives are complementary \Rightarrow train on a mix of them

- UL2: Tay et. al., 2022
- CM3: Aghajanyan et. al., 2022
- Argue that the objectives are complementary \Rightarrow train on a mix of them

- UL2: Tay et. al., 2022
- CM3: Aghajanyan et. al., 2022
- Argue that the objectives are complementary \Rightarrow train on a mix of them

- UL2: Tay et. al., 2022
- CM3: Aghajanyan et. al., 2022
- Argue that the objectives are complementary \Rightarrow train on a mix of them

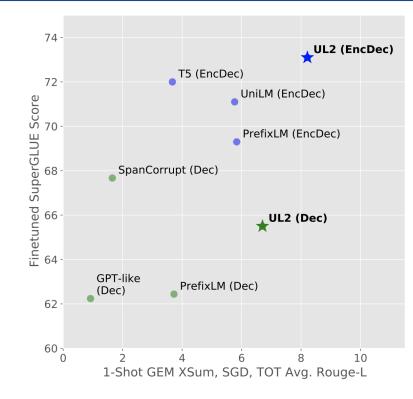
Mixture of objectives

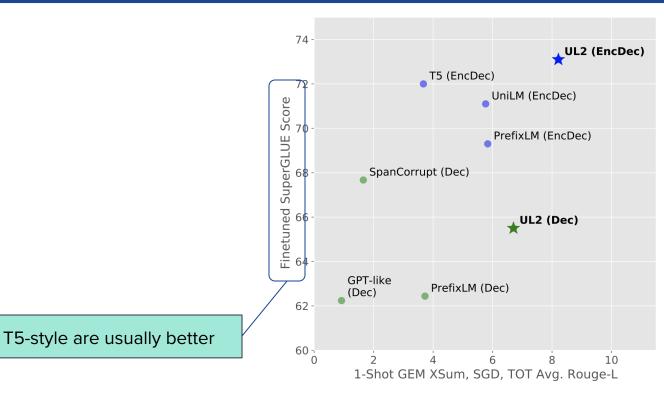
- UL2: Tay et. al., 2022
- CM3: Aghajanyan et. al., 2022
- Argue that the objectives are complementary \Rightarrow train on a mix of them

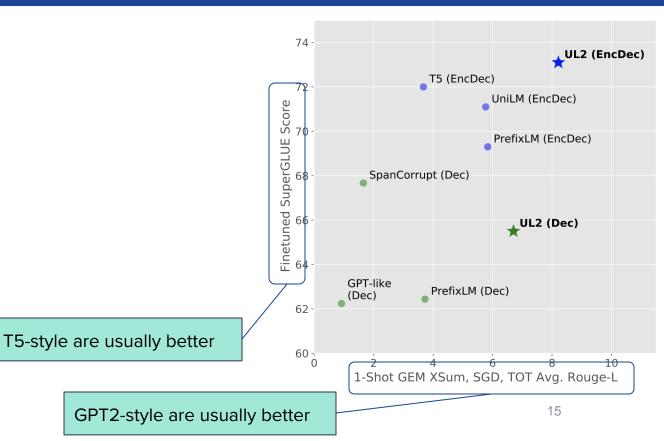
Mixture of objectives

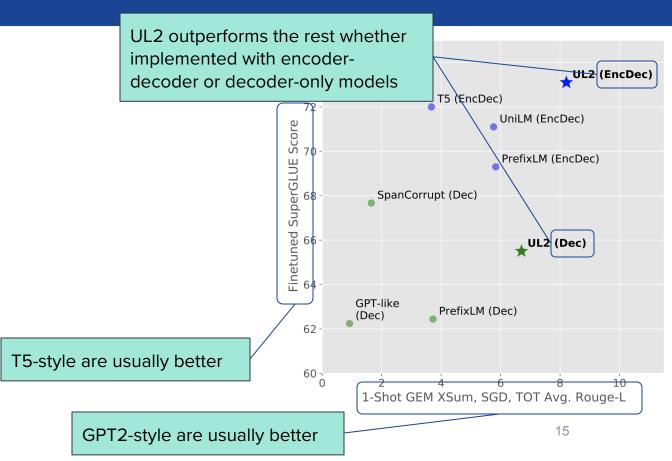
- UL2: Tay et. al., 2022
- CM3: Aghajanyan et. al., 2022
- Argue that the objectives are complementary \Rightarrow train on a mix of them

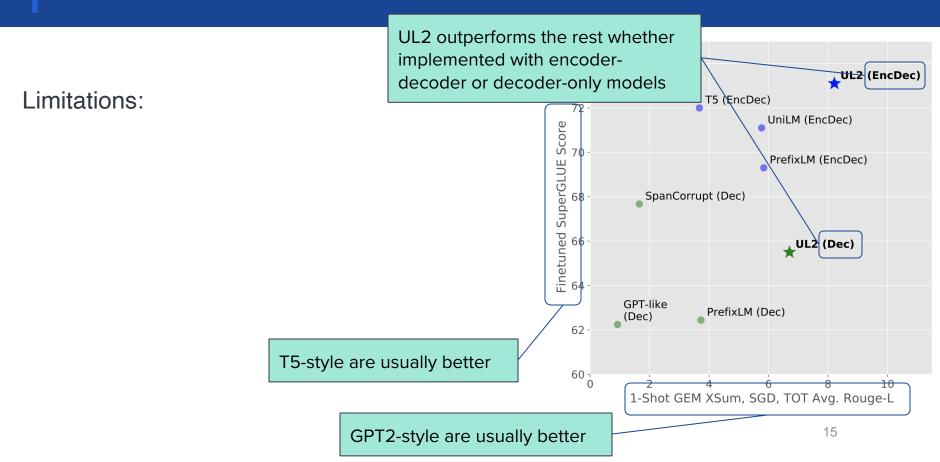
Tay et. al., 2022: Unifying Language Learning Paradigms Aghajanyan et. al., 2022: CM3: A Causal Masked Multimodal Model of the Internet











Limitations:

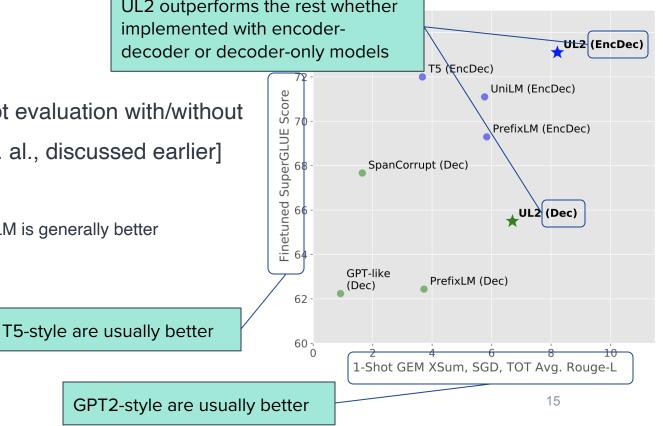
-

UL2 outperforms the rest whether implemented with encoder-UL2 (EncDec) decoder or decoder-only models T5 (EncDec) UniLM (EncDec) Score Missing the zero-shot evaluation with/without PrefixLM (EncDec) SuperGLUE 3 MT-F [as in Wang et. al., discussed earlier] SpanCorrupt (Dec) Finetuned UL2 (Dec) **GPT-like** PrefixLM (Dec) (Dec) 62 T5-style are usually better 60 -0 1-Shot GEM XSum, SGD, TOT Avg. Rouge-L 15 GPT2-style are usually better

UL2 outperforms the rest whether implemented with encoderdecoder or decoder-only models

Limitations:

- Missing the zero-shot evaluation with/without -MT-F [as in Wang et. al., discussed earlier]
- Ignored causal LM -
 - Claimed that Prefix LM is generally better -



What is a model architecture and pretraining objective that work for all settings?

What is a model architecture and pretraining objective that work for all settings?

What is a model architecture and pretraining objective that work for all settings?

We don't know, but we are getting closer

Evaluation

Architecture and Pretraining Objective

Scaling

Datasets

Engineering

Efficient Pretraining

Kaplan et. al.,: grow model size much faster than tokens (e.g, GPT3, OPT, PaLM)

Kaplan et. al.,: grow model size much faster than tokens (e.g, GPT3, OPT, PaLM)

- Given 10x compute, increase \mathbb{N} by 5.5x, and \mathbb{D} by 1.8x

Kaplan et. al.,: grow model size much faster than tokens (e.g, GPT3, OPT, PaLM)

- Given 10x compute, increase \mathbb{N} by 5.5x, and \mathbb{D} by 1.8x

Kaplan et. al.,: grow model size much faster than tokens (e.g, GPT3, OPT, PaLM)

- Given 10x compute, increase \mathbb{N} by 5.5x, and \mathbb{D} by 1.8x

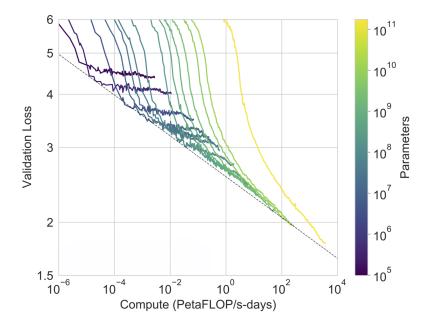
Hoffmann et. al.,: grow model size and number of token **at the same rate** (e.g, Chinchilla)

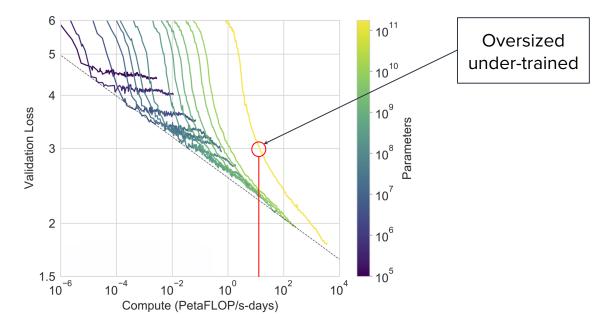
Kaplan et. al.,: grow model size much faster than tokens (e.g, GPT3, OPT, PaLM)

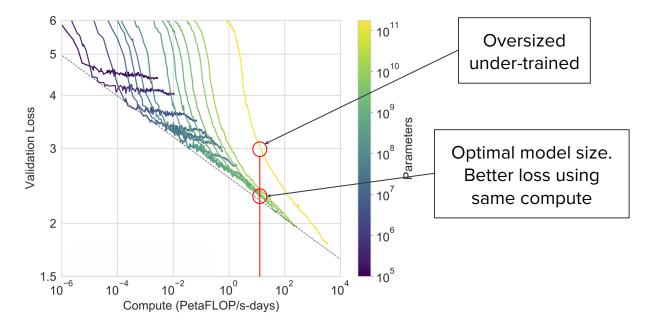
- Given 10x compute, increase \mathbb{N} by 5.5x, and \mathbb{D} by 1.8x

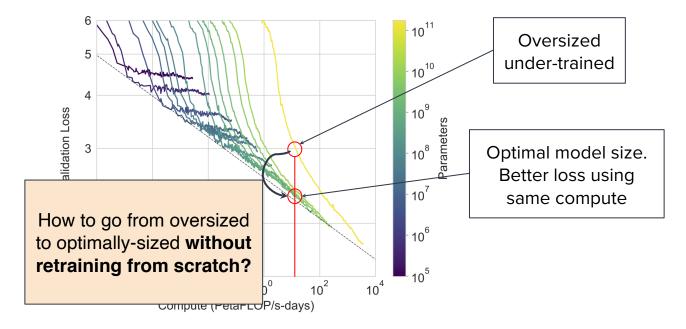
Hoffmann et. al.,: grow model size and number of token **at the same rate** (e.g, Chinchilla)

- Given 10x compute, grow \mathbb{N} by 3.2x and \mathbb{D} by 3.2x









Chonk' me up Scotty

For the next generation of LLMs, we will need to <u>scale</u>...

Evaluation

Architecture and Pretraining Objective

Scaling

Datasets

Engineering

Efficient Pretraining

Chonk' me up Scotty

For the next generation of LLMs, we will need to <u>scale</u>...

quality at scale

Chonk' me up Scotty

For the next generation of LLMs, we will need to <u>scale</u>...

engineering challenges

quality at scale

Chonk' me up Scotty

For the next generation of LLMs, we will need to <u>scale</u>...

engineering challenges

quality at scale

accelerate scaling

Training data matters <u>a lot</u>! (more than most modeling choices?)

Training data matters <u>a lot</u>! (more than most modeling choices?)

Aggregated performance on EAI harness

Parameters	Pretraining tokens				
	Dataset	11 2B	250B	300B	
6.7B				49.28	
1.3B				45.30	
1.3B	The Pile			42.94	
13B	OSCAR			47.09	
1.3B	The Pile	42.79	43.12	43.46	
1.3B	C4	42.77			
1.3B	OSCAR	41.72			
	6.7B 1.3B 1.3B 13B 1.3B 1.3B 1.3B	Dataset6.7B1.3B1.3BThe Pile13BOSCAR1.3BThe Pile1.3BC4	Dataset 112B 6.7B - 1.3B - 1.3B The Pile 13B OSCAR 1.3B The Pile 1.3B C4	Dataset 112B 250B 6.7B 1.3B 1.3B 1.3B The Pile	

Le Scao et al., 2022.

Training data matters <u>a lot</u>! (more than most modeling choices?)

Aggregated performance on EAI harness

Model	Parameters	Pro	etrainin	g tokens	5
		Dataset	112B	250B	300B
OpenAI — Curie	6.7B				49.28
OpenAI — Babbage	1.3B				45.30
EleutherAI — GPT-Neo	1.3B	The Pile			42.94
	13B	OSCAR			47.09
O	1.3B	The Pile	42.79	43.12	43.46
Ours	1.3B	C4	42.77		
	1.3B	OSCAR	41.72		

Le Scao et al., 2022.

Training data matters <u>a lot</u>! (more than most modeling choices?)

Aggregated performance on EAI harness

Model	Parameters	Pretraining tokens				
		Dataset	11 2B	250B	300B	
OpenAI — Curie	6.7B				49.28	
OpenAI — Babbage	1.3B				45.30	
EleutherAl — GPT-Neo	1 .3B	The Pile			42.94	
	13B	OSCAR			47.09	
Ound	1.3B	The Pile	42.79	43.12	43.46	
Ours	1.3B	C4	42.77			
	1.3B	OSCAR	41.72			

Le Scao et al., 2022.

Same architecture, <u>different</u> data:

45.30%

OpenAl-Babbage(1.3B)

Training data matters <u>a lot</u>! (more than most modeling choices?)

Aggregated performance on EAI harness

Model	Parameters	Pretraining tokens				
		Dataset	112B	250B	300B	
OpenAI — Curie	6.7B				49.28	
OpenAI — Babbage	1.3B				45.30	
EleutherAl — GPT-Neo	1.3B	The Pile			42.94	
	13B	OSCAR			47.09	
0	1.3B	The Pile	42.79	43.12	43.46	
	1.3B	C4	42.77			
	1.3B	OSCAR	41.72			

Le Scao et al., 2022.

Same architecture, <u>different</u> data:

45.30% 43.46%

OpenAl-Babbage(1.3B)

Ours-1.3B@The Pile

Training data matters <u>a lot</u>! (more than most modeling choices?)

Aggregated performance on EAI harness

Model	Parameters	Pr	etrainin	g tokens	5
		Dataset	112B	250B	300B
OpenAI — Curie	6.7B				49.28
OpenAI — Babbage	1.3B				45.30
EleutherAI — GPT-Neo	1.3B	The Pile			42.94
	13B	OSCAR			47.09
O	1.3B	The Pile	42.79	43.12	43.46
Ours	1.3B	C4	42.77		
	1.3B	OSCAR	41.72		

Le Scao et al., 2022.

a:

Training data matters <u>a lot</u>! (more than most modeling choices?)

Model	Parameters	Pretraining tokens				
		Dataset	112B	250B	300B	
OpenAI — Curie	6.7B				<u>49.28</u>	
OpenAI — Babbage	1.3B				45.30	
EleutherAI — GPT-Neo	1.3B	The Pile			42.94	
	13B	OSCAR			47.09	
0	1.3B	The Pile	42.79	43.12	43.46	
Ours	1.3B	C4	42.77			
	1.3B	OSCAR	41.72			

Aggregated performance on EAI harness

Le Scao et al., 2022.

Scale <u>can't</u> compensate for bad data:

49.28%

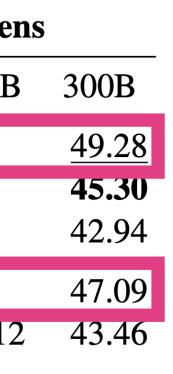
OpenAl-Curie(6.7B)

Training data matters <u>a lot</u>! (more than most modeling choices?)

Aggregated performance on EAI harness

Model	Parameters	Pre	etraining	g toke
		Dataset	112 B	250B
OpenAI — Curie	6.7B			
OpenAI — Babbage	1.3B			
EleutherAI — GPT-Neo	1.3B	The Pile		
	13 B	OSCAR		
Ours	1.3B	The Pile	42.79	43.12
Ours	1.3B	C4	42.77	
	1.3B	OSCAR	41.72	

Le Scao et al., 2022.



Scale <u>can't</u> compensate for bad data:

49.28%

OpenAl-Curie(6.7B)

47.09%

Ours-13B@OSCAR

Previously... Kaplan et al., 2020

176B parameters → 300B tokens

Previously... Kaplan et al., 2020

176B parameters -> 300B tokens

Now... Hoffmann et al., 2020

isoFLOPs 50B parameters -> 1000B tokens

Previously... Kaplan et al., 2020

176B parameters -> 300B tokens

Now... Hoffmann et al., 2020

isoFLOPs 50B parameters -> 1000B tokens

isoparams 176B parameters -> 3700B tokens

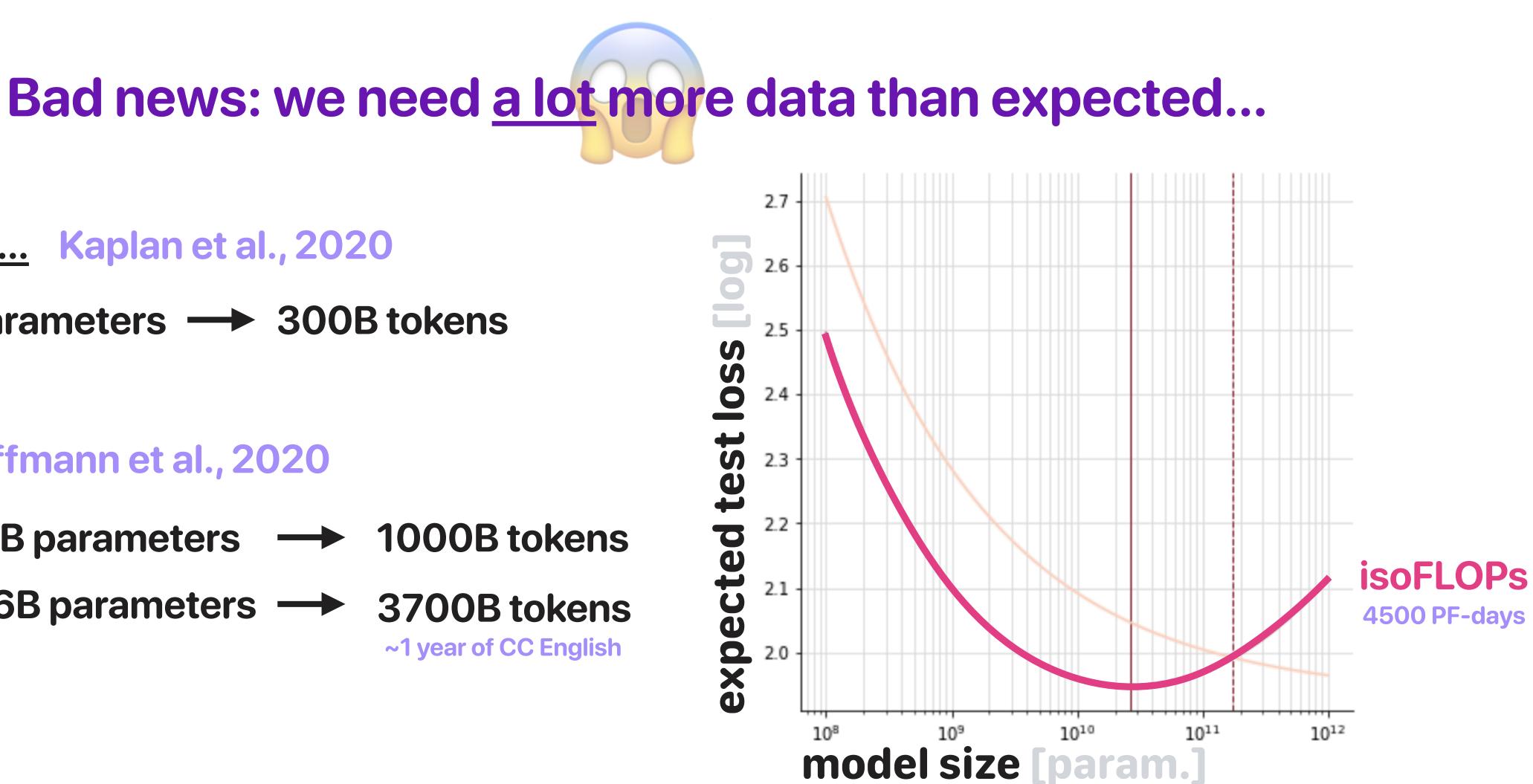
Previously... Kaplan et al., 2020

176B parameters \longrightarrow 300B tokens

Now... Hoffmann et al., 2020

isoFLOPs 50B parameters **1000B tokens**

isoparams 176B parameters -> 3700B tokens



Bad news: we need <u>a lot more data than expected...</u>

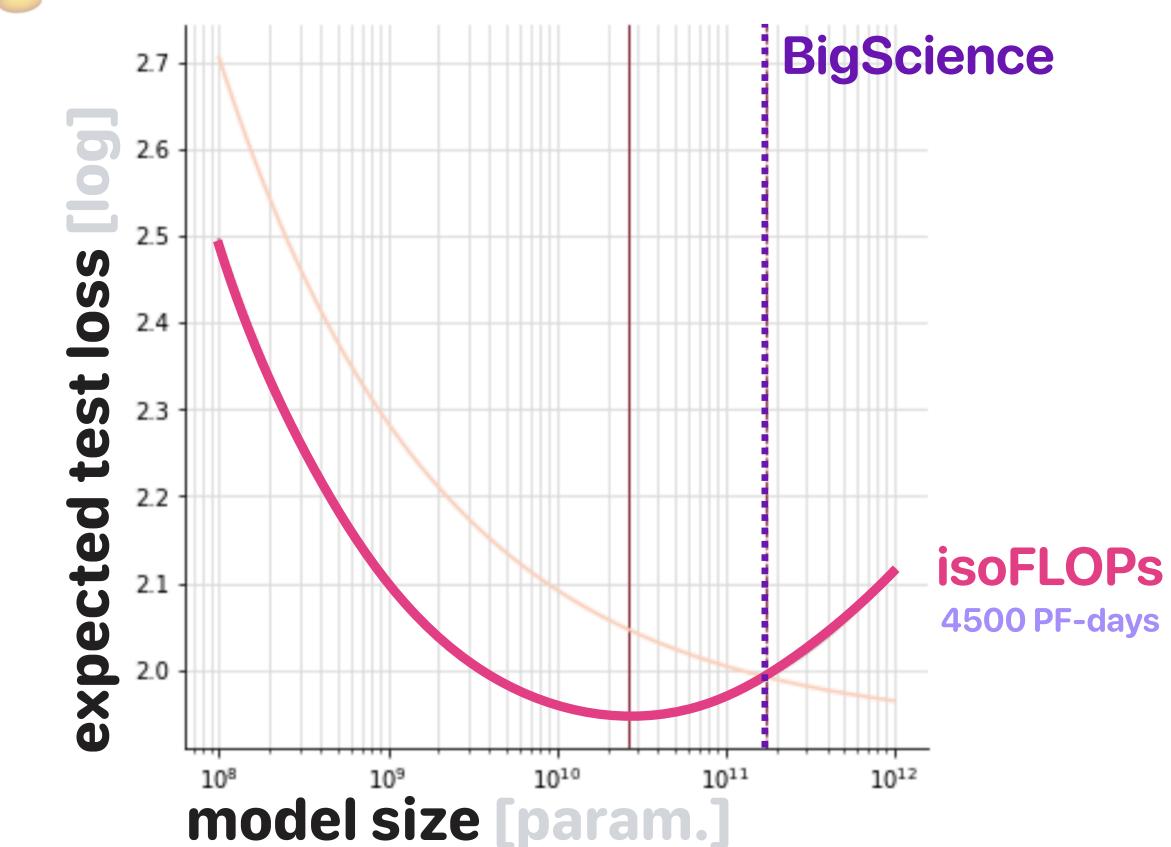
Previously... Kaplan et al., 2020

176B parameters -> 300B tokens

Now... Hoffmann et al., 2020

isoFLOPs 50B parameters → 1000B tokens

isoparams 176B parameters -> 3700B tokens



Bad news: we need <u>a lot more data than expected...</u>

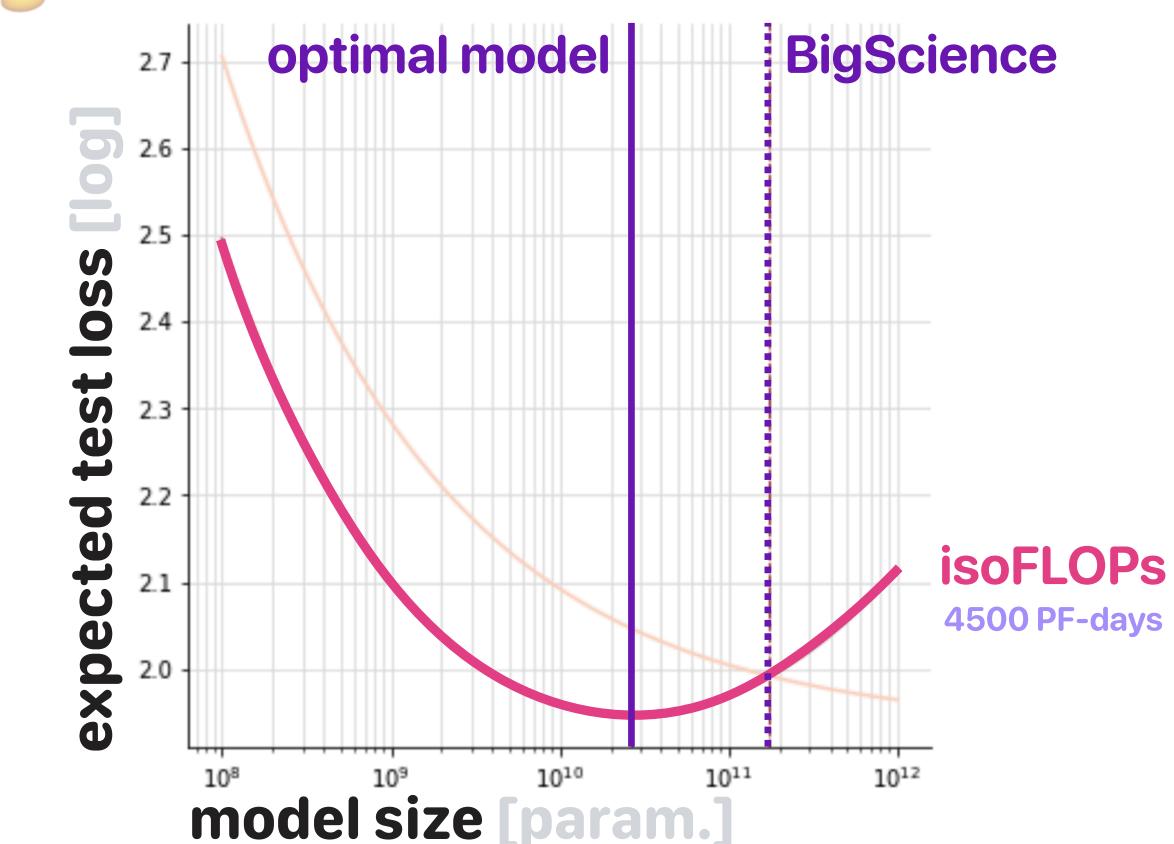
Previously... Kaplan et al., 2020

176B parameters -> 300B tokens

Now... Hoffmann et al., 2020

isoFLOPs 50B parameters → 1000B tokens

isoparams 176B parameters -> 3700B tokens



Bad news: we need <u>a lot more data than expected...</u>

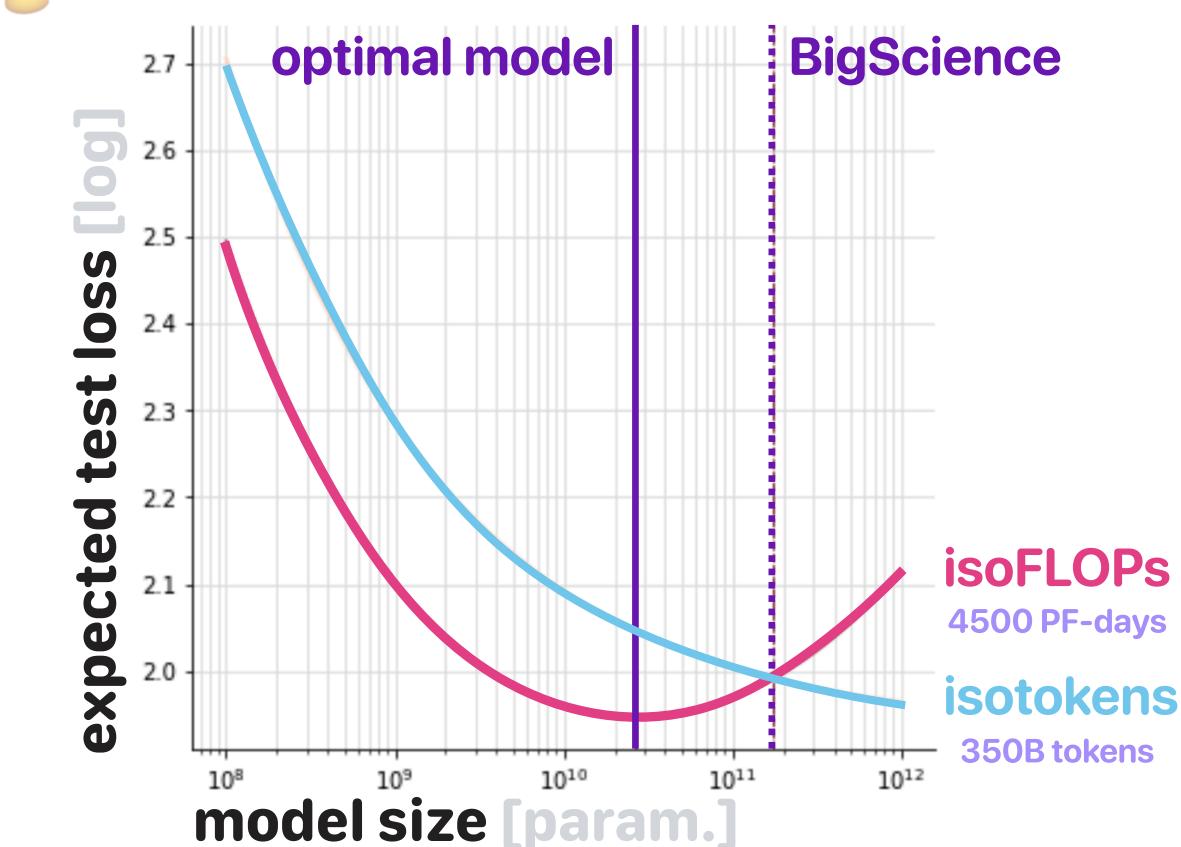
Previously... Kaplan et al., 2020

176B parameters -> 300B tokens

Now... Hoffmann et al., 2020

isoFLOPs 50B parameters → 1000B tokens

isoparams 176B parameters \rightarrow 3700B tokens



Previously... Kaplan et al., 2020

176B parameters \longrightarrow 300B tokens

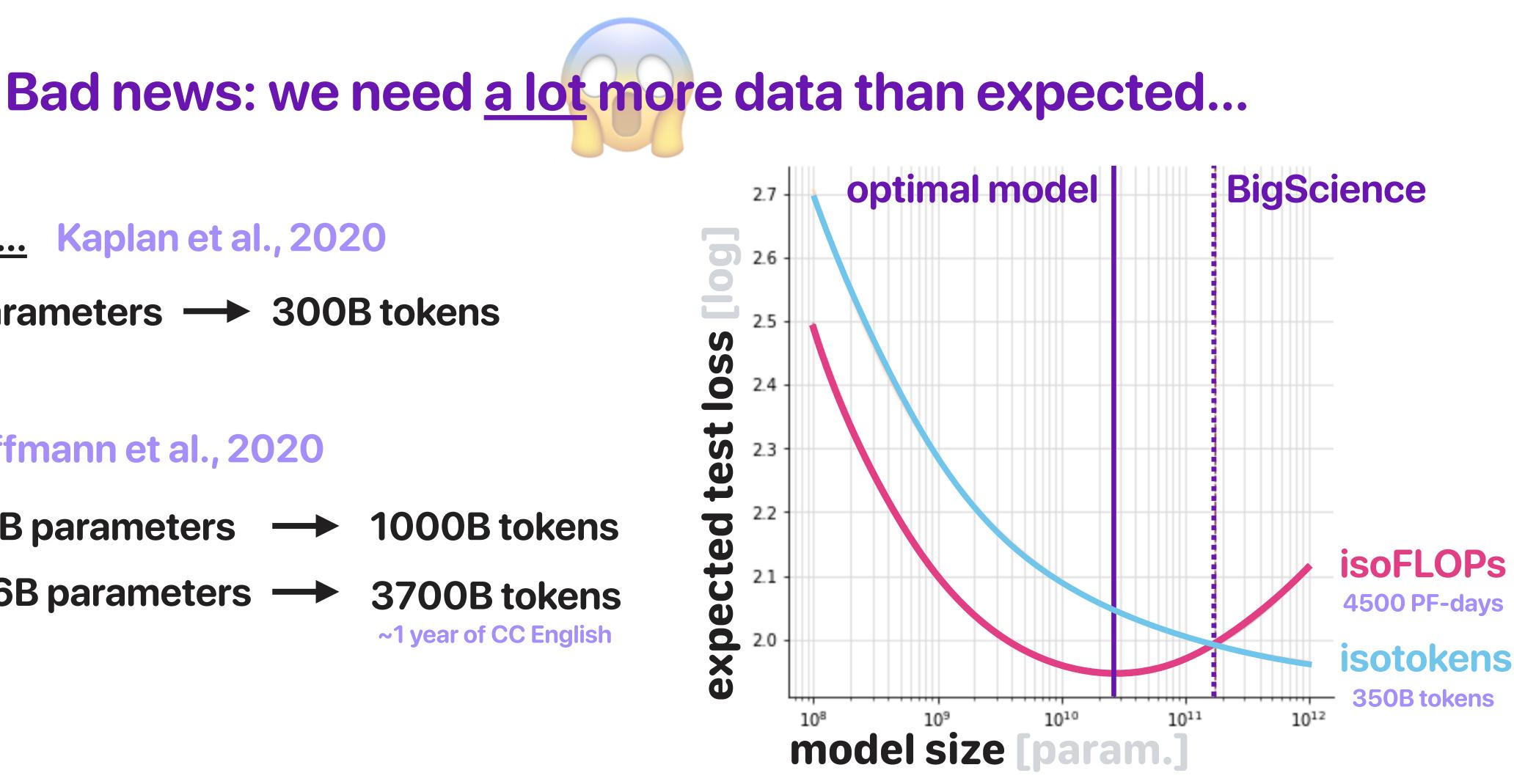
Now... Hoffmann et al., 2020

isoFLOPs 50B parameters → 1000B tokens

isoparams 176B parameters -> 3700B tokens

~1 year of CC English

Will we be <u>data-bound</u> instead of compute-bound?



What even is high-quality data? technical filtering deduplication, lack of artefacts, etc.

cura

hnical filtering	deduplication, lack of artefacts, etc
ation	diverse, cross-domain, etc.

C.

What even is high-quality data? technical filtering deduplication, lack of artefacts, etc. diverse, cross-domain, etc. curation

"social media <u>conversations</u>"

Data source	Proportion of data
Social media conversations (multilingual)	50%
Filtered webpages (multilingual)	27%
Books (English)	13%
GitHub (code)	5%
Wikipedia (multilingual)	4%
News (English)	1%

Chowdhery et al., 2022.

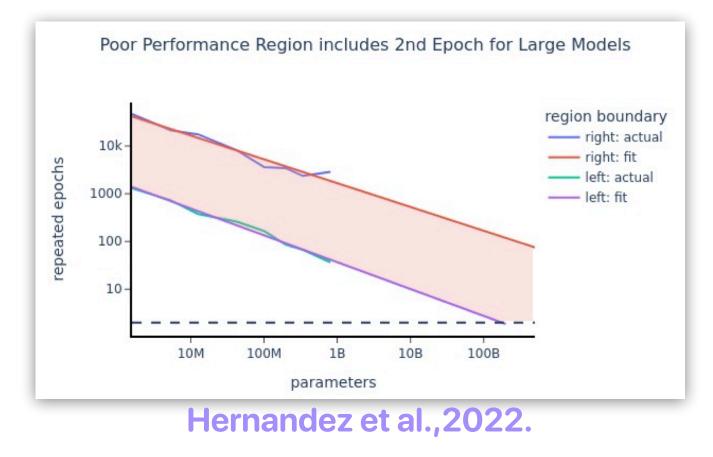
technical filteringdeduplication, lack of artefacts, etc.curationdiverse, cross-domain, etc.

"social media <u>conversations</u>"

Data source	Proportion of data
Social media conversations (multilingual)	50%
Filtered webpages (multilingual)	27%
Books (English)	13%
GitHub (code)	5%
Wikipedia (multilingual)	4%
News (English)	1%

Chowdhery et al., 2022.

double descent for <u>duplication</u>?



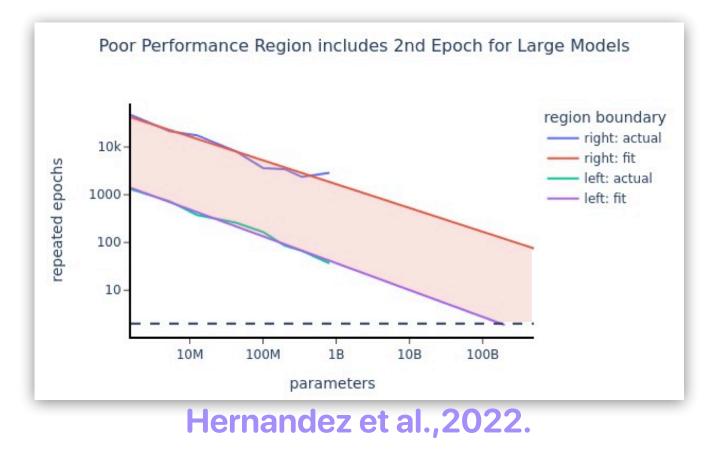
"social media <u>conversations</u>"

Data source	Proportion of data
Social media conversations (multilingual)	50%
Filtered webpages (multilingual)	27%
Books (English)	13%
GitHub (code)	5%
Wikipedia (multilingual)	4%
News (English)	1%

Chowdhery et al., 2022.

technical filtering deduplication, lack of artefacts, etc. curation diverse, cross-domain, etc.

double descent for duplication?



Ourrently, dataset construction is more akin to magic... Need principled methods!

"social media <u>conversations</u>"

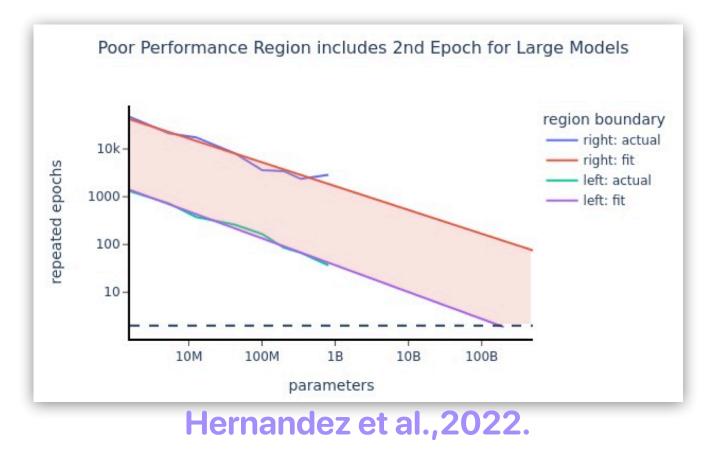
Total dataset size $= 780$ billion tokens					
Data source	Proportion of data				
Social media conversations (multilingual)	50%				
Filtered webpages (multilingual)	27%				
Books (English)	13%				
GitHub (code)	5%				
Wikipedia (multilingual)	4%				
News (English)	1%				

Chowdhery et al., 2022.

! Emergence of data moats which could stand in the way of research.

technical filtering deduplication, lack of artefacts, etc. diverse, cross-domain, etc. curation

double descent for duplication?



Currently, dataset construction is more akin to magic... Need principled methods!

LLMs are a true big science and require significant engineering efforts...

state-of-the-art HPC challenges

LLMs are a true big science and require significant engineering efforts...

Principled approaches are very much needed:

state-of-the-art HPC challenges

LLMs are a true big science and require significant engineering efforts...

state-of-the-art HPC challenges

Principled approaches are very much needed: <u>tested</u> and validated frameworks

LLMs are a true big science and require significant engineering efforts...

state-of-the-art HPC challenges

Principled approaches are very much needed: <u>tested</u> and validated frameworks expert <u>HPC/software engineering</u> knowledge

LLMs are a true big science and require significant engineering efforts...

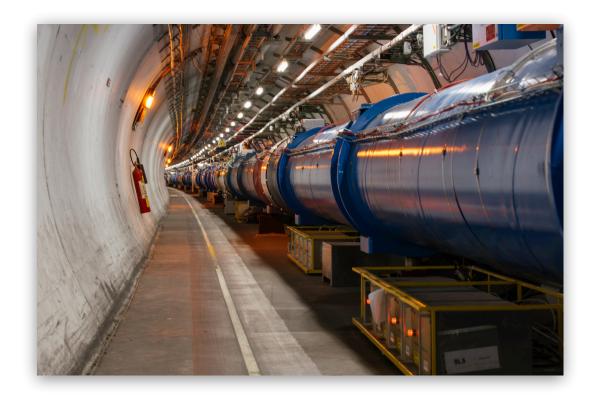
BLOOM: >100 configurations tested!

state-of-the-art HPC challenges

Principled approaches are very much needed: <u>tested</u> and validated frameworks expert <u>HPC/software engineering</u> knowledge performance tuning is magic currently e.g. tile/wave quantization, distributed hyperparameters, etc.

LLMs are a true big science and require significant engineering efforts...

BLOOM: >100 configurations tested!

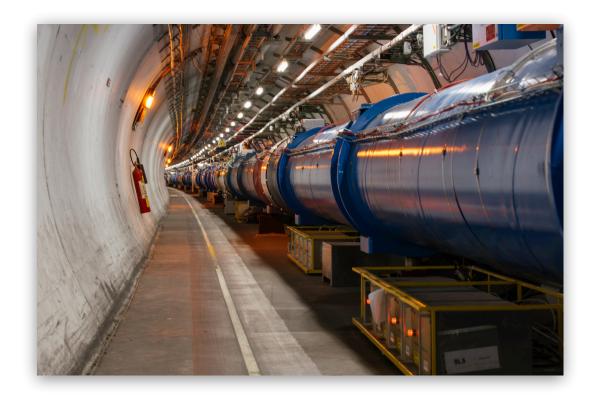


state-of-the-art HPC challenges

Principled approaches are very much needed: <u>tested</u> and validated frameworks expert <u>HPC/software engineering</u> knowledge performance tuning is magic currently e.g. tile/wave quantization, distributed hyperparameters, etc.

LLMs are a true big science and require significant engineering efforts... state-of-the-art HPC challenges

BLOOM: >100 configurations tested!



Principled approaches are very much needed: <u>tested</u> and validated frameworks expert <u>HPC/software engineering</u> knowledge performance tuning is magic currently

e.g. tile/wave quantization, distributed hyperparameters, etc.

(let's avoid this)

Zhang et al., 2022

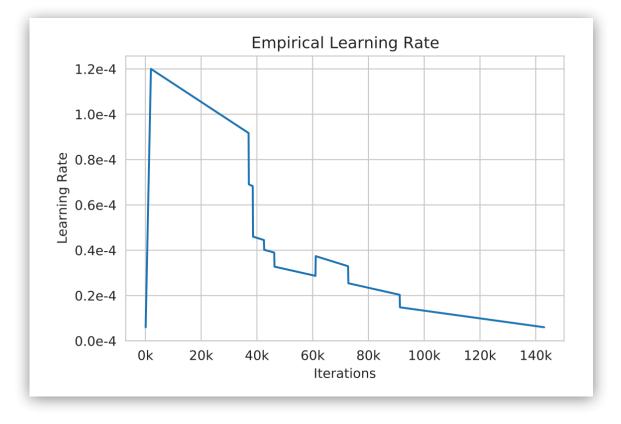
OPT: Open Pre-Trained Transformer Language Models

OPT: Open Pre-Trained Transformer Language Models Zhang et al., 2022

Meta's open "reproduction" of GPT-3 was... a challenging experience!

OPT: Open Pre-Trained Transformer Language Models Zhang et al., 2022

Meta's open "reproduction" of GPT-3 was... a challenging experience!

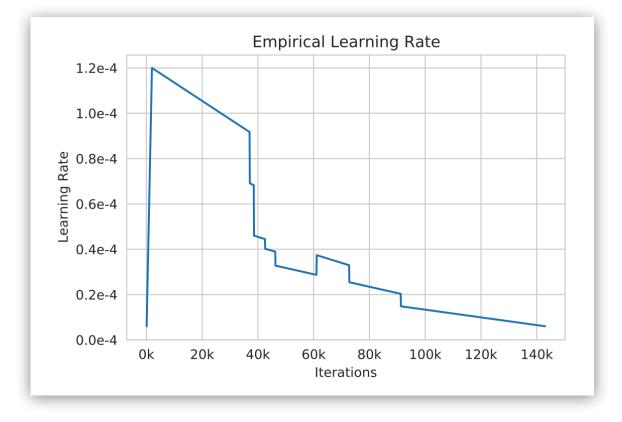


manually tuned learning rate

hundreds of restarts, spikes, etc.

Zhang et al., 2022

Meta's open "reproduction" of GPT-3 was... a challenging experience!



manually tuned learning rate

hundreds of restarts, spikes, etc.

OPT: Open Pre-Trained Transformer Language Models

But why?

FP16

template: Karpathy, 2020

Hardware progress is secretly shaping machine learning

The Hardware Lottery

Sara Hooker, 2020

Hardware progress is secretly shaping machine learning

The Hardware Lottery

Sara Hooker, 2020

pure data/model parallelism uniform platform experience

Hardware progress is secretly shaping machine learning

The Hardware Lottery

Sara Hooker, 2020

TPU

pure data/model parallelism uniform platform experience

GPU

data/model/pipeline/sequence parallelism diversity in HPC platforms network topology, etc.

Hardware progress is secretly shaping machine learning

The Hardware Lottery

Sara Hooker, 2020

TPU

pure data/model parallelism uniform platform experience

GPU

data/model/pipeline/sequence parallelism diversity in HPC platforms network topology, etc.

Hardware progress is secretly shaping machine learning

The Hardware Lottery

Sara Hooker, 2020

TPU

pure data/model parallelism uniform platform experience

GPU

data/model/pipeline/sequence parallelism diversity in HPC platforms network topology, etc.

Google, Facebook, Tesla, Amazon are all making their <u>own</u> chips!

We can gain in efficiency...

We can gain in efficiency... current approaches, ~50% GPU FLOPs usage

We can gain in efficiency... current approaches, ~50% GPU FLOPs usage

reduced numerical precision: down to int8

see Transformer engine in H100

- We can gain in efficiency...

current approaches, ~50% GPU FLOPs usage

reduced numerical precision: down to int8

see Transformer engine in H100

reduce number of computations

efficient attention, etc.

- We can gain in efficiency... current approaches, ~50% GPU FLOPs usage
 - reduced numerical precision: down to int8
 - reduce number of computations

But can we also fundamentally change scaling behaviour?

see Transformer engine in H100

efficient attention, etc.

- We can gain in efficiency... current approaches, ~50% GPU FLOPs usage
 - reduced numerical precision: down to int8
 - reduce number of computations

But can we also fundamentally <u>change scaling</u> behaviour?

see Transformer engine in H100

efficient attention, etc.

First, optimise pretraining:

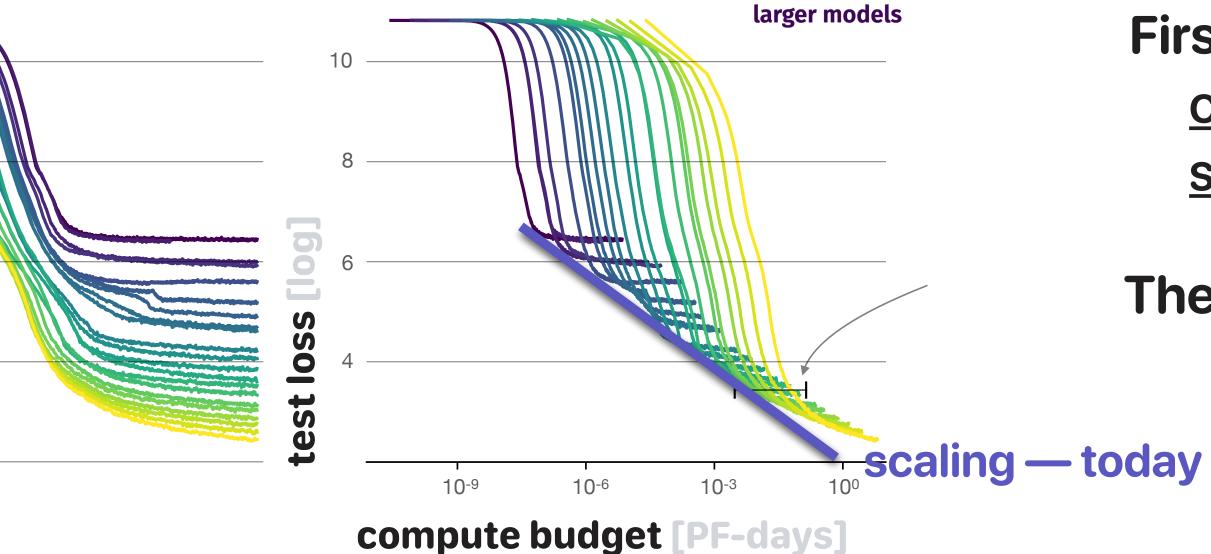
<u>Curriculum learning</u>, grow sequence length Li et al., 2021 **Staged training, progressively grow model** Shen et al., 2022

- We can gain in efficiency... current approaches, ~50% GPU FLOPs usage

 - reduce number of computations

But can we also fundamentally <u>change scaling</u> behaviour?

uire fewer samples performance



reduced numerical precision: down to int8

see Transformer engine in H100

efficient attention, etc.

First, optimise pretraining:

<u>Curriculum learning</u>, grow sequence length

Staged training, progressively grow model

Li et al., 2021 Shen et al., 2022

Then, can we get **better** scaling?

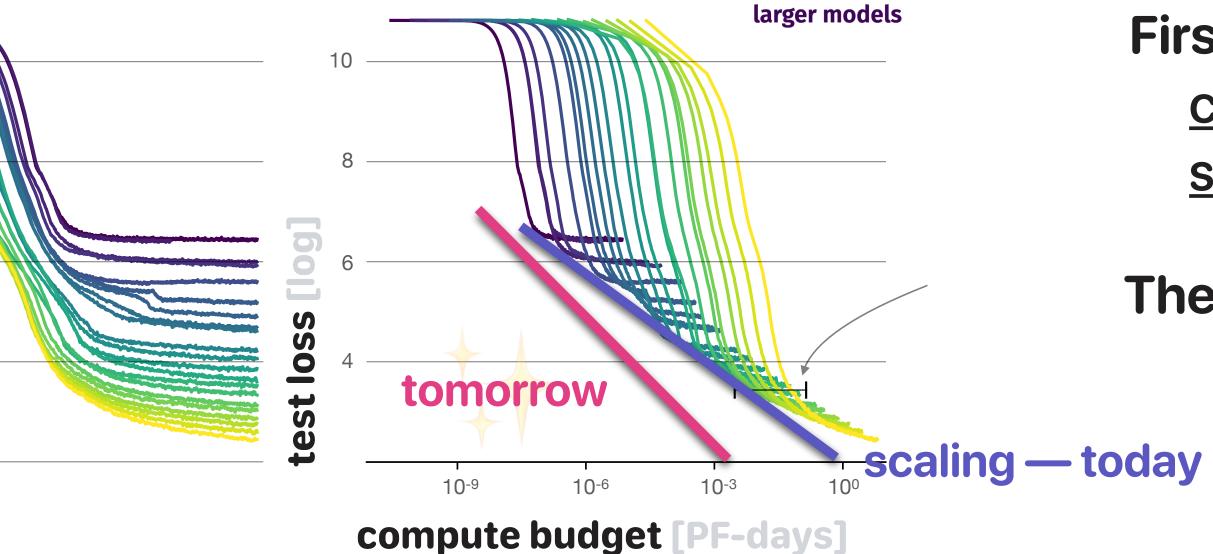
e please report scaling laws in your modeling work!

- We can gain in efficiency... current approaches, ~50% GPU FLOPs usage

 - reduce number of computations

But can we also fundamentally <u>change scaling</u> behaviour?

uire fewer samples performance



reduced numerical precision: down to int8

see Transformer engine in H100

efficient attention, etc.

First, optimise pretraining:

<u>Curriculum learning</u>, grow sequence length

Staged training, progressively grow model

Li et al., 2021 Shen et al., 2022

Then, can we get **better** scaling?

e please report scaling laws in your modeling work!

Thank you to all contributors!

