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What we did for the past year in architecture &
scaling...

What Language Model to Train if What Language Model Architecture and
You Have One Million GPU Pretraining Objective Work Best for Zero-Shot
Hours? Generalization?

Le Scao et al. (2022). Wang et al. (ICML 2022).



...but this talk is about what we
learned and what open questions we
still need to answer?
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- Fast and easy to run

- Representative of how the
model will be used in practice
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Evaluation

What evaluation setup to use to make modeling decisions?

Open question
- Better understanding of the relation between different setup, and why the

results differ
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- Different examples activate different parts (“experts”) of the model
- Examples: Switch Transformer, Base-layer, DEMix Layers, GLaM, LaMDa
- Interesting but haven’t seen the same adoption as dense models

Narang et. al., 2021: Do Transformer Modifications Transfer Across Implementations and Applications?
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Mixture of objectives

- UL2: Tay et. al., 2022
- CMBS: Aghajanyan et. al., 2022

- Argue that the objectives are complementary = train on a mix of them

Tay et. al., 2022: Unifying Language Learning Paradigms
Aghajanyan et. al., 2022: CM3: A Causal Masked Multimodal Model of the Internet
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Architecture and Pretraining Objective

What is a model architecture and pretraining objective that work for all
settings?

We don’t know, but we are getting closer
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- Given 10x compute, increase N by 5.5x, and D by 1.8x

Hoffmann et. al.,: grow model size and number of token at the same rate (e.g,
Chinchilla)

- Given 10x compute, grow N by 3.2x and D by 3.2x
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27| . optimal model : BigScience
Previously... . 3
176B parameters —» 300B tokens 25 - ’

|
5
|

1/ isoFLOPs

Snmans v —rrrry v ———rrrry
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24 -

Now...

iIsoFLOPs 50B parameters —» 1000B tokens
isoparams 176B parameters —» 37008 tokens

expected test loss

10% 10’3.
model size

Will we be data-bound instead of compute-bound?
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Books (English) 13%
GitHub (code) 5%
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® Currently, dataset construction is more akin to magic... Need principled methods!

. Emergence of data moats which could stand in the way of research.



Fantastic training data and where to find it

Oh and by the way...
We need this in 2100 languages!
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BLOOM: >100 configurations tested!
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J Principled approaches are very much needed: tested and validated frameworks

expert HPC/software engineering knowledge

BLOOM: >100 configurations tested! .. :
performance tuning Is madgic currently

(let's avoid this)
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Abstract

Large language models, which are often
trained for hundreds of thousands of compute
days, have shown remarkable capabilites for
2er0- and few-shot leamning. Given their com-
putational cost, these models are difficul to
replicate without significant capital. For the
few that are available through APIS, no ac-
cess is granted to the full model weights, mak-
ing them dificult o study. We present Open
Pre-trained Transformers (OPT), a suite of
decoder-only pre-trained transformers ranging
from 125M to 175B parameters, which we aim

releasing our logbook detailing
ture challenges we faced, along with code for
experimenting with all of the released models.

1 Introduction

Large language models (LLMs) trained on massive
text collections have shown surprising emergent
capabilities to generate text and perform zero- and
few-shot learning (Brown et al , 2020; Lieber et al.,
2021; Smith et al, 2022; Rac et al, 2021; Chowd-
hery et al,, 2022). While in some cases the public
can interact with these models through paid APIs,
full model access is currently limited to only a
few highly resourced labs. 2 This restricted access
has limited researchers” ability to study how and
‘why these large language models work, hindering

*Equal contibuion.

! Work done while at Meta AL

"Following Brown et l. (2020), we use GPT:3 o refer (0
both he 1758 model and the smallr scale mavels s wel,

Exceptions include w

odels up to

leased dense models up to 138 and sparse m
v angoing wark

(Artebe et al,, 2021). Thee is also
i T

progress on improving known challenges in areas
such as robustness, bias, and toricity.

In this technical report, we present Open Pre-
trained Transformers (OPT), a suite of decoder-
only pre-trained transformers ranging from 125M
10 175B parameters, which we aim to fully and
responsibly share with interested rescarchers. We
train the OPT models to roughly match the per-
formance and sizes of the GPT 3 class of models,
‘while also applying the latest best practices in data
collection and efficient training. Our aim in de-
veloping this suite of OPT models is to enable re-
producible and responsible research at scale, and
10 bring more voices to the table in studying the
impact of these LLMs. Definitions of risk, harm,
bias, and toxicity, etc., should be articulated by the
collective research community as a whole, which is
only possible when models are available for study.

fe are releasing all of our models between
125M and 30B parameters, and will provide full
research access to OPT-175B upon request. Ac-
cess will be granted to academic researchers; those
affiliated with organizations in govemment, civil
Society, and academia; and those in industry re-
search laboratories. We are also releasing both the

Togbook of our model creation as well as our code-

sse, metaseq,’ which enabled training OPT-175B
0n 992 80GB A100 GPUs, reaching 147 TFLOP/s
utilization per GPU. Erom this implementation, and
from using the latest generation of NVIDIA hard-
ware, we are able to develop OPT-175B using only
177th the carbon footprint of GPT-3. While this is a
significant achievement,the energy cost of reating
such a model i still nontrivial, and repeated cflorts
to replicate a model of this size will only amplify
the growing compute footprint of these LLMs.

We believe the entire AT community — aca-
demic researchers,civil society, policymakers, and
industry — must work together to develop clear

bigscience
huggingLace. co/), which s o open source very uge
mulilingual anguage models and datescts.

Shttps://github. con/ facebookzeseazch/
netaseq

OPT: Open Pre-Trained Transformer Language Models
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Abstract

Large language models, which are often
trained for hundreds of thousands of compute
days, have shown remarkable capabilities for
2er0- and few-shot leamning. Given their com-
putational cost, these models are difficul to
replicate without significant capital. For the

that are available through APIs, no ac-
cess is granted to the full model weights, mak-
ing them dificult o study. We present Open
Pre-trained Transformers (OPT) of

)

a suite
decoder-only pre-trained transformers ranging
from 125M to 175B parameters, which we aim

experimenting with all of the released models.
1 Introduction

Large language models (LLMs) trained on massive
text collections have shown surprising emergent
capabilities to generate text and perform zero- and
few-shot learning (Brown et al , 2020; Lieber et al.,
2021; Smith et al, 2022; Rae et al, 2021; Chowd-
hery et al,, 2022). While in some cases the public
can interact with these models through paid APIs,
full model access is currently limited to only a
few highly resourced labs. 2 This restricted access
has limited researchers” ability to study how and
‘why these large language models work, hindering

*Equal contribution.

! Work done while at Meta AL

"Following Brown et l. (2020), we use GPT:3 o refe (0

both he 1758 model and the smallr scale mavels s wel,
xceptions inclu

leased dense models up t6 138 and sparse models up o
LIT (Ariete et al, 2021). There is also ongoing work

progress on improving known challenges in arcas
such as robustness, bias, and toxicity.

In this technical report, we present Open Pre-
trained Transformers (OPT), a suite of decoder-
only pre-trained transformers ranging from 125M
to 175B parameters, which we aim (o fully and
responsibly share with interested rescarchers. We
train the OPT models to roughly match the per-
formance and sizes of the GPT 3 class of models,
‘while also applying the latest best practices in data
collection and efficient training. Our aim in de-
veloping this suite of OPT models i to cnable re-
producible and responsible research at scale, and
o bring more voices to the table in studying the
impact of these LLMs. Definitions of risk, harm,
bias, and toxicity,etc., should be articulated by the
collective research community as a whole, which is
only possible when models are available for study.

We are releasing all of our models between
125M and 30B parameters, and will provide full
rescarch access to OPT-175B upon request. Ac-
cess will be granted to academic rescarchers; those
affiliated with organizations in goverment, civil
Society, and academia; and those in industry re-
search laboratorics. We are also releasing both the
logbook of our model creation as well as our code-

sse, metaseq,’ which enabled training OPT-175B
0n 992 80GB A100 GPUs, reaching 147 TFLOP/s
utilization per GPU. Erom this implementation, and
from using the latest generation of NVIDIA hard-
ware, we are able to develop OPT-175B using only
177th the carbon footprint of GPT:3. While this is a
significant achievement,the energy cost of reating
such a model i still nontrivial, and repeated cflorts
to replicate a model of this size will only amplify
the growing compute footprint of these LLMs.

We believe the entire AT community — aca-
demic researchers, civil society, policymakers, and
industry — must work together to develop clear

huggingLace. co/), which s o open source very uge
mulilingual anguage models and datescts.

*https://github. con/ tacebookresearch/
netaseq

OPT: Open Pre-Trained Transformer Language Models

& Meta's open “reproduction” of GPT-3 was... a challenging experience!
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Abstract

Large language models, which are often
trained for hundreds of thousands of compute
days, have shown remarkable capabilities for
2er0- and few-shot leamning. Given their com-
putational cost, these models are difficul to
replicate without significant capital. For the
few that are available through APIS, no ac-
cess s granted to the full model weights, mak-
ing them dificult o study. We present Open
Pre-trained Transformers (OPT), of

a suite
decoder-only pre-trained transformers ranging
from 125M to 175B parameters, which we aim

the carbon footprint to develop. We are also
releasing our logbook detailing the infrastruc-
ture challenges we faced, along with code for

allof the released models.

1 Introduction

Large language models (LLMs) trained on massive
text collections have shown surprising emergent
capabilities to generate text and perform zero- and
few-shot learning (Brown et al , 2020; Lieber et al.,
2021; Smith et al, 2022; Rac et al, 2021; Chowd-
hery et al,, 2022). While in some cases the public
can interact with these models through paid APTs,
full model access is currently limited to only a
few highly resourced labs. 2 This restricted access
has limited researchers” ability to study how and
‘why these large language models work, hindering

*Equal contribution.

! Work done while at Meta AL

"Following Brown et l. (2020), we use GPT:3 o refe (0
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LIT (Ariete et al, 2021). There is also ongoing work

progress on improving known challenges in arcas
such as robustness, bias, and toxicity.

In this technical report, we present Open Pre-
trained Transformers (OPT), a suite of decoder-
only pre-trained transformers ranging from 125M
to 175B parameters, which we aim (o fully and
responsibly share with interested rescarchers. We
train the OPT models to roughly match the per-
formance and sizes of the GPT 3 class of models,
‘while also applying the latest best practices in data
collection and efficient training. Our aim in de-
veloping this suite of OPT models i to cnable re-
producible and responsible research at scale, and
o bring more voices to the table in studying the
impact of these LLMs. Definitions of risk, harm,
bias, and toxicity,etc., should be articulated by the
collective research community as a whole, which is
only possible when models are available for study.

We are releasing all of our models between
125M and 30B parameters, and will provide full
rescarch access to OPT-175B upon request. Ac-
cess will be granted to academic rescarchers; those
affiliated with organizations in goverment, civil
Society, and academia; and those in industry re-
search laboratorics. We are also releasing both the
logbook of our model creation as well as our code-

ase, metaseq,’ which enabled training OPT-175B
0n 992 80GB A100 GPUs, reaching 147 TFLOP/s
utilization per GPU. Erom this implementation, and
from using the latest generation of NVIDIA hard-
ware, we are able to develop OPT-175B using only
177th the carbon footprint of GPT:3. While this is a
significant achievement,the energy cost of reating
such a model i still nontrivial, and repeated cflorts
to replicate a model of this size will only amplify
the growing compute footprint of these LLMs.

We believe the entire AT community — aca-
demic researchers, civil society, policymakers, and
industry — must work together to develop clear
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Abstract

Large language models, which are often
trained for hundreds of thousands of compute
days, have shown remarkable capabilities for
zeto- and few-shot leamning. Given their com-
putational cost, these models are difficult to
replicate without significant capital. For the
few that are available through APIS, o ac-

mak.

progress on improving known challenges in areas
such as robustness, bias, and toricity.

In this technical report, we present Open Pre-
trained Transformers (OPT), a suite of decoder-
only pre-trained transformers ranging from 125M
10 175B parameters, which we aim to fully and
responsibly share with interested rescarchers. We
train the OPT models to roughly match the per-

ing them difficult o study. We present Open
Pre-trained Transformers (OPT), a suite of
decoder-only pre-trained transformers ranging
from 125M to 175B parameters, which we aim
to fully and responsibly share with interested
rescarchers. We show that OPT-175B is com-
parable to GPT-3," while requiring only 1/7th
the carbon footprint to develop. We are also
releasing our logbook detailing the infrastruc-
ture challenges we faced, along with code for
experimenting with all of the released models.

1 Introduction

Large language models (LLMs) trained on massive
text collections have shown surprising emergent
capabilities to generate text and perform zero- and
few-shot learning (Brown et al , 2020; Lieber et al.
2021; Smith et al, 2022; Rac et al, 2021; Chowd-
hery et al. 2022). While in some cases the public
can interact with these models through paid APTs,
full model access is currently limited to only a
few highly resourced labs. 2 This restricted access
has limited researchers” ability to study how and
‘why these large language models work, hindering
Bl conition.

1 Work done whileat Meta AL

"Following Brown et l. (2020), we use GPT:3 o refe (0
both he 1758 model and the smallr scale mavels s wel,

‘Exceptions include work by EleutherAL who released
dense models up (0 208 i size (Black et al, 2022),
Salesforee (Nijkamp ct al, 2022), and Meta AL who 1o-
leased dense moels. up o 135 and sparse models up to
LIT (Ariese et al, 2021). There is also ongoing work

f d sizes of the GPT-3 class of models,
‘while also applying the latest best practices in data
lection and efficient training. Our aim in de-
veloping this suite of OPT models is to enable re-
producible and responsible research at scale, and
to bring more voices to the table in studying the
impact of these LLMs. Definitions of risk, harm,
bias, and toxicity, etc., should be articulated by the
collective research community as a whole, which is
only possible when models are available for study.
We are releasing all of our models between
125M and 30B parameters, and will provide full
rescarch access to OPT-175B upon request. Ac-
cess will be granted to academic rescarchers; those
affiliated with organizations in goverment, civil
Society, and academia; and those in industry re-
search laboratories. We are also releasing both the
Togbook of our model creation as well as our code-
base, metaseq, which enabled training OPT-175B
0n 992 80GB A100 GPUs, reaching 147 TFLOP/s
utilization per GPU. Erom this implementation, and
from using the latest generation of NVIDIA hard-
ware, we are able to develop OPT-175B using only
177th the carbon footprint of GPT:3. While this is a
significant achievement,the energy cost of reating
such a model i still nontrivial, and repeated cflorts
to replicate a model of this size will only amplify
the growing compute footprint of these LLMs.
We believe the entire AT community — aca-
demic researchers, civil society, policymakers, and
industry — must work together to develop clear

huggingLace . co/), which ims o open source very lage
mulilingual anguage models and datascts.
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Abstract

Hardware, systems and algorithms research communi orically
had different incentive structures and fluctuating motivation to engage with
each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to describe when a
research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.
Examples from early computer science history illustrate how hardware lot-
teries can delay research progress by casting successful ideas as failures.
These lessons are particularly salient given the advent of domain special-
ized hardware which make it increasingly costly to stray off of the beaten
‘This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
structed.

1 Introduction

History tells us that scientific progress is im-
perfect. Intellectual traditions and available
tooling can prejudice scientists against cer-
tain ideas and towards others (Kubn, 1962).
This adds noise to the marketplace of ideas,
and often means there is inertia in recogniz-
ing promising directions of research. In the
field of artificial intelligence research, this es-
say posits that it is our tooling which has
played a disproportionate role in_deciding
what ideas succeed (and which fail).

What follows is part position paper and part
historical review. This essay introduces the
term hardware lottery to describe when a
research idea wins because it is compatible
with available software and hardware and
not. because the idea is superior to alter-

often played a decisive role in deciding the
winners and losers in early computer science
history.

These lessons are particularly saliont as we
move into a new era of closer collabora-

tion between hardware, software and ma-

chine learning research communities. Af-

ter decades of treating hardware, software

and algorithms as separate choices, the cat-

alysts for closer collaboration include chang-
s 2

ing hardware economi nessy, 2019), a
“bigger is better” race in the size of deep
learning architectures (Amodei ct al., 2018;
Thompson et al., 2020b) and the dizzying re-
quirements of deploying machine learning to
edge devices (Warden & Situnayake, 2019)

Closer collaboration has centered on a wave
of new generation hardware that is "domain
specific” to optimize for commercial use cases
of deep neural networks (Jouppi et al., 2017;
Gupta & Tan, 2019; ARM, 2020; Lee &
Wang, 2018). While domain specialization
creates important efficiency gains for main-
stream research focused on deep neural net-
works, it arguably makes it more even more
costly to stray off of the beaten path of re-
search ideas. increasingly fragmented
hardware landscape means that the gains
from progress in computing will be increas-
ingly uneven. While deep neural networks
have clear commercial use cases, there are
carly warning signs that the path o the next

Hardware progress is secretly shaping machine learning

The Hardware Lottery
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ized hardware which make it increasingly costly to stray off of the beaten
path of research ideas. This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
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1 Introduction

History tells us that scientific progress is im-
perfect. Intellectual traditions and available
tooling can prejudice scientists against cer-
tain ideas and towards others (Kubn, 1962).
This adds noise to the marketplace of ideas,
and often means there is inertia in recogniz-
ing promising directions of research. In the
field of artificial intelligence research, this es-
say posits that it is our tooling which has
played a disproportionate role in_deciding
what ideas succeed (and which fail).

What follows is part position paper and part
historical review. This essay introduces the
term hardware lottery to describe when a
research idea wins because it is compatible
with available software and hardware and
a is superior to alter-
native research directions. We argue that
choices about software and hardware have
often played a decisive role in deciding the
winners and losers in early computer science
history.

These lessons are particularly saliont as we
move into a new era of closer collabora-

tion between hardware, software and ma-

chine learning research communities. Af-

ter decades of treating hardware, software

and algorithms as separate choices, the cat-

alysts for closer collaboration include chang-
s 2

ing hardware economi nessy, 2019), a
“bigger is better” race in the size of deep
learning architectures (Amodei ct al., 2018;
Thompson et al., 2020b) and the dizzying re-
quirements of deploying machine learning to
edge devices (Warden & Situnayake, 2019)

Closer collaboration has centered on a wave
of new generation hardware that is "domain
specific” to optimize for commercial use cases
of deep neural networks (Jouppi et al., 2017;
Gupta & Tan, 2019; ARM, 2020; Lee &
Wang, 2018). While domain specialization
creates important efficiency gains for main-
stream research focused on deep neural net-
works, it arguably makes it more even more
costly to stray off of the beaten path of re-
search ideas. increasingly fragmented
hardware landscape means that the gains
from progress in computing will be increas-
ingly uneven. While deep neural networks
have clear commercial use cases, there are
carly warning signs that the path o the next
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each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to describe when a
research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.
Examples from early computer science history illustrate how hardware lot-
teries can delay research progress by casting successful ideas as failures.
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ized hardware which make it increasingly costly to stray off of the beaten
path of research ideas. This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
structed.

1 Introduction

History tells us that scientific progress is im-
perfect. Intellectual traditions and available
tooling can prejudice scientists against cer-
tain ideas and towards others (Kubn, 1962).
This adds noise to the marketplace of ideas,
and often means there is inertia in recogniz-
ing promising directions of research. In the
field of artificial intelligence research, this es-
say posits that it is our tooling which has
played a disproportionate role in_deciding
what ideas succeed (and which fail).

What follows is part position paper and part
historical review. This essay introduces the
term hardware lottery to describe when a
research idea wins because it is compatible
with available software and hardware and
not_ b 5 is superior to alter-
native research directions. We argue that
choices about software and hardware have
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winners and losers in early computer science
history.

These lessons are particularly saliont as we
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chine learning research communities. Af-
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“bigger is better” race in the size of deep
learning architectures (Amodei ct al., 2018;
Thompson et al., 2020b) and the dizzying re-
quirements of deploying machine learning to
edge devices (Warden & Situnayake, 2019)

Closer collaboration has centered on a wave
of new generation hardware that is "domain
specific” to optimize for commercial use cases
of deep neural networks (Jouppi et al., 2017;
Gupta & Tan, 2019; ARM, 2020; Lee &
Wang, 2018). While domain specialization
creates important efficiency gains for main-
stream research focused on deep neural net-
works, it arguably makes it more even more
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Google, Facebook, Tesla, Amazon are all making their own chips!
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Can better modeling & more efficient pretraining change the playing field?

> We can gain in efficiency... current approaches, ~50% GPU FLOPs usage

reduced numerical precision: down to int38
see Transformer engine in H100

reduce number of computations
efficient attention, etc.

But can we also fundamentally change scaling behaviour?

larger models

. \ N First, optimise pretraining:
\ \\\\\\\\\\\\ Curriculum learning, grow sequence length Lietal., 2021
: \\ Staged training, progressively grow model Shenetal., 2022
6
/ Then, can we get better scaling?
4 Bl &) please report scaling laws in your modeling work!

tomorrow R

test loss

—scaling — today

10 106 108

compute budget



@ Thank you to all contributors!

Teven _L‘éScao Thoiﬁ_as a Q Daniel Hesslow

& L ZL0 TICA

- . {
XAV T @ :
» A /4 » < ,:\ 2554 S 0 0 [ ]
0 (] 0 \ = S 1| 6 20els 9 :\ 0 0
7 : "
4 ," g
° S v-.\ : / ‘:;
. era P / : -. %
o % { ) ¢ ¥ R e W
SN
- S 95 o Th
.;-l' ! -1 e i
“' b, N £ 7 ™
- e R




