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What we did for the past year in architecture & 
scaling…

What Language Model to Train if 
You Have One Million GPU 

Hours?  
Le Scao et al. (2022).

What Language Model Architecture and 
Pretraining Objective Work Best for Zero-Shot 

Generalization?  
Wang et al. (ICML 2022).
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…but this talk is about what we 
learned and what open questions we 

still need to answer?
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What evaluation setup to use to make modeling decisions?

Many settings
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- Fast and easy to run

- Representative of how the 
model will be used in practice



What evaluation setup to use to make modeling decisions?

Open question

- Better understanding of the relation between different setup, and why the 

results differ

Evaluation
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What is a model architecture and pretraining objective that work for all settings? 

Wang et al., 2022: zero-shot generalization 

- GPT2-style: after pretraining
- T5-style: after pretraining + multitask finetuning (e.g. T0 adaptation)

Wang et. al., 2022: What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?
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Mixture of Experts (MoEs) or Conditionally-Activated Transformers:
- Different examples activate different parts (“experts”) of the model
- Examples: Switch Transformer, Base-layer, DEMix Layers, GLaM, LaMDa
- Interesting but haven’t seen the same adoption as dense models

Narang et. al., 2021: Do Transformer Modifications Transfer Across Implementations and Applications?

Architectures

13



Pretraining Objective

14



Mixture of objectives

Pretraining Objective

14



Mixture of objectives

- UL2: Tay et. al., 2022

Pretraining Objective

14



Mixture of objectives

- UL2: Tay et. al., 2022

- CM3: Aghajanyan et. al., 2022

Pretraining Objective

14



Mixture of objectives

- UL2: Tay et. al., 2022

- CM3: Aghajanyan et. al., 2022

- Argue that the objectives are complementary ⇒ train on a mix of them

Pretraining Objective

14



Mixture of objectives

- UL2: Tay et. al., 2022

- CM3: Aghajanyan et. al., 2022

- Argue that the objectives are complementary ⇒ train on a mix of them

Pretraining Objective

14



Mixture of objectives

- UL2: Tay et. al., 2022

- CM3: Aghajanyan et. al., 2022

- Argue that the objectives are complementary ⇒ train on a mix of them

Pretraining Objective

14



Mixture of objectives

- UL2: Tay et. al., 2022

- CM3: Aghajanyan et. al., 2022

- Argue that the objectives are complementary ⇒ train on a mix of them

Pretraining Objective

14



Mixture of objectives

- UL2: Tay et. al., 2022

- CM3: Aghajanyan et. al., 2022

- Argue that the objectives are complementary ⇒ train on a mix of them

Tay et. al., 2022: Unifying Language Learning Paradigms

Pretraining Objective

14
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- CM3: Aghajanyan et. al., 2022

- Argue that the objectives are complementary ⇒ train on a mix of them

Tay et. al., 2022: Unifying Language Learning Paradigms
Aghajanyan et. al., 2022: CM3: A Causal Masked Multimodal Model of the Internet
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Tay et. al., 2022: Unifying Language Learning Paradigms

Limitations: 
- Missing the zero-shot evaluation with/without 

MT-F [as in Wang et. al., discussed earlier]
- Ignored causal LM

- Claimed that Prefix LM is generally better

UL2 outperforms the rest whether 
implemented with encoder-
decoder or decoder-only models

T5-style are usually better

GPT2-style are usually better 15



Architecture and Pretraining Objective

16



What is a model architecture and pretraining objective that work for all 
settings? 

Architecture and Pretraining Objective

16



What is a model architecture and pretraining objective that work for all 
settings? 

Architecture and Pretraining Objective

16



What is a model architecture and pretraining objective that work for all 
settings? 

We don’t know, but we are getting closer

Architecture and Pretraining Objective
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- Given 10x compute, increase N by 5.5x, and D by 1.8x

Hoffmann et. al.,: grow model size and number of token at the same rate (e.g, 
Chinchilla)

- Given 10x compute, grow N by 3.2x and D by 3.2x

Scaling - Kaplan et. al., 2020 vs. Hoffmann et. al., 2022
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How to go from oversized 
to optimally-sized without 
retraining from scratch?
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For the next generation of LLMs, we will need to scale…

!datasets
quality at scale

"compute
engineering challenges

#modeling?
accelerate scaling



Model quality is all about data quality

Training data matters a lot!
(more than most modeling choices?)



Le Scao et al.,2022.

Aggregated performance on EAI harness

Model quality is all about data quality

Training data matters a lot!
(more than most modeling choices?)



Le Scao et al.,2022.

Aggregated performance on EAI harness

Model quality is all about data quality

Training data matters a lot!
(more than most modeling choices?)

Same architecture, different data:



Le Scao et al.,2022.

Aggregated performance on EAI harness

Model quality is all about data quality

Training data matters a lot!
(more than most modeling choices?)

Same architecture, different data:

45.30%
OpenAI-Babbage(1.3B)



Le Scao et al.,2022.

Aggregated performance on EAI harness

Model quality is all about data quality

Training data matters a lot!
(more than most modeling choices?)

Same architecture, different data:

45.30%
OpenAI-Babbage(1.3B)

43.46%
Ours-1.3B@The Pile



Model quality is all about data quality

Le Scao et al.,2022.

Training data matters a lot!
(more than most modeling choices?)

Aggregated performance on EAI harness

Scale can’t compensate for bad data:



Model quality is all about data quality

Le Scao et al.,2022.

Training data matters a lot!
(more than most modeling choices?)

Aggregated performance on EAI harness

Scale can’t compensate for bad data:

49.28%
OpenAI-Curie(6.7B)



Model quality is all about data quality

Le Scao et al.,2022.

Training data matters a lot!
(more than most modeling choices?)

Aggregated performance on EAI harness

Scale can’t compensate for bad data:

49.28%
OpenAI-Curie(6.7B)

47.09%
Ours-13B@OSCAR
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We are gonna need a bigger dataset!

Bad news: we need a lot more data than expected…
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Fantastic training data and where to find it

% What even is high-quality data? technical filtering deduplication, lack of artefacts, etc.
curation diverse, cross-domain, etc.

Chowdhery et al.,2022.

“social media conversations”

Hernandez et al.,2022.

double descent for duplication?

& Currently, dataset construction is more akin to magic… Need principled methods!

⚠ Emergence of data moats which could stand in the way of research.
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Fantastic training data and where to find it

Oh and by the way…
We need this in >100 languages!
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We are doing Big Science, and this comes with challenges…

) LLMs are a true big science and require significant engineering efforts…
state-of-the-art HPC challenges

* Principled approaches are very much needed: tested and validated frameworks
expert HPC/software engineering knowledge
performance tuning is magic currently
e.g. tile/wave quantization, distributed hyperparameters, etc. 

BLOOM: >100 configurations tested!

(let’s avoid this)
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Case-study of how hard it can get: Meta’s OPT

OPT: Open Pre-Trained Transformer Language Models
Zhang et al., 2022

+ Meta’s open “reproduction” of GPT-3 was… a challenging experience!

manually tuned learning rate
hundreds of restarts, spikes, etc.

But why?
FP16 BF16

template: Karpathy, 2020
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He who controls the chips controls the LLMs

The Hardware Lottery
Sara Hooker, 2020

Hardware progress is secretly shaping machine learning

Google, Facebook, Tesla, Amazon are all making their own chips!

TPU pure data/model parallelism
uniform platform experience

GPU data/model/pipeline/sequence parallelism
diversity in HPC platforms

network topology, etc.

simpler experience?
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Can better modeling & more efficient pretraining change the playing field?
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