Longformer: The Long-Document
Transformer

|z Beltagy, Matt Peters, Arman Cohan

Long documents:

- Many NLP tasks require processing full documents
- e.g: QA, summarization, document-classification
- Semantic scholar: 90% percentile paper length = 7,000 tokens

Transformers: SOTA

- LSTM scales to long documents but doesn’t work as well

Long documents + Transformers is hard

- Self-attention is expensive: O(n*2)

Prior work

- Avoid working with long documents

- e.g. MRQA: skip the question if the answer is not in the first 800 tokens

- Chunk, extract, combine
- task and dataset specific

- Loses global context

Prior work

Model attention char-lm other pretrain
matrix tasks
Transformer-XL (2019) Itr yes no no
Adaptive Span (2019) Itr yes no no
Compressive (2020) Itr yes no no
Reformer (2000) sparse vos L L
Sparse (2019) sparse yes no no
BP-Transformer (2019} sparse vos T O
Blockwise (2019) sparse no QA yes

Our Longformer sparse yes multiple yes

Longformer - sparse attention matrix

Avoid computing the full
attention matrix

Tokens attend to each others
following an “attention pattern’

Large receptive field with
stacked layers

(a) Full n? attention

(c) Dilated sliding window

(b) Sliding window attention

(d) Global+sliding window

Longformer - local and global attention

- Global attention is user defined based on the task

- Local attention - good token representation

- Global attention - flexibility to learn tasks

- LM: local representation

- Classification: aggregate seq into CLS

- QA: compare context and question tokens

- Notice: indirect information flow is not enough.

Direct attention is needed.

Implementation

e Required banded-multiplication is not supported in existing DL
libraries

e Implementation 1: sliding chunks

o Native PyTorch (easy to deploy and use)

o Limited to the non-dilated case

o Splits the sequence into chunks of size W and overlapping of size W/2, matrix
multiply each chunk, then mask out the extra elements

o Computed 2x more values than needed

Implementation

e Required banded-multiplication is not supported in existing DL
libraries

e Implementation 2: custom cuda kernel

o Implemented in TVM
m Compiles python code into cuda c++
m Easier to use than writing cuda from scratch
o Supports dilation
o Only computes the non-zero elements (memory efficient)

o Abit harder to deploy and use

Time

2500 7
=4=Full self-attention
4 =@ Longformer-loop
Pe rfo rmance 2000 =¥ | ongformer-chunks
< 1500 A == Longformer-cuda
loop Is a naive implementation using loops ‘g’loOO-
o 500 -
loop and cuda are the most memory efficient
0_
chunks uses 2x more memory than cuda (but still linear) e
. .. Memory
chunks faster than cuda because it uses nvidia MM 15000
12500 A

Use chunks for pretrain/finetune, use cuda for char-lm 10000-
S 7500 -
5000 -

2500 -

0 T T T
5000 10000 15000

seq len

CoNoOCUupR,WN =

import torch

im T tvm

from tvm.contrib import dlpack

d1 = tvm.var('d1') # define dimensions as variables

d2 = tvm.var('d2') # define dimensions as variables

d3 = tvm.var('d3') # define dimensions as variables

A = tvm.placeholder((d1, d2), name='A', dtype='float32') # first tensor
B = tvm.placeholder((d2, d3), name='B', dtype='float32') # second tensor
k = tvm.reduce_axis((0, d2), name='k') # dimension to sum over

output_shape = (d1, d3)
algorithm = lambda i, j: tvm.sum(A[i, k] * B[k, j], axis=k) # explain computation
R = tvm.compute(output_shape, algorithm, name='R")

s = tvm.create_schedule(R.op)

s[R].bind(s[R].op.axis[1], tvm.thread_axis("blockIdx.x")) # map computation to gpu resources
tvm_fn = tvm.build(s, [A, B, R], target='cuda', target_host='llvm') # generate and compile C++
tvm_fn.export_library('libmm.so') # save to disk

tvm_fn = tvm.module.load('libmm.so') # load from disk
my_mm_pytorch_fn = dlpack.to_pytorch_func(tvm_fn) # package it as a PyTorch function

X = torch.randn(128, 256, device='cuda') # allocate pytorch input tensors
Y = torch.randn(256, 32, device='cuda') # allocate pytorch input tensors
Z = X.new_empty(128, 32, device='cuda') # allocate pytorch output tensor

my_mm_pytorch_fn(X, Y, Z) # call the tvm kernel

torch.allclose(X.matmul(Y), Z, atol=1e-84) # compare tvm output with pytorch|

Evaluation (1) - Character Level Language Modeling

dataset - Metric (bpc, lower is better) Ours SOTA (small model)
enwik8 0.999 1.02
text8 Large 1.103 1.11

improvement

- Match SOTA result on the large model
- Requires sliding window with dilation on a few heads
- Largest train seqglen is 23k, evaluate on seqglen 32k

- fp16 and gradient checkpointing are important

Character Level Language Modeling - Details

Many different ways to configure window sizes and dilation
- increasing window size from 512 to 8192
- dilation on layers 6-12 on two heads only

- seqlen 32k

Training in 5 phases, with every phase, 2x window size and seqglen and 0.5x LR
- starting window sizes: 32 to 512

- starting seqlen 2048

Doubling window size has the most impact on bpc

- Atfirst, loss increases a lot then drops quickly (relevant for global attention later)

Keep selfattention in fp32 because the model learns to use large attention scores
12

Pretraining and finetuning

Goal: a BERT-like for long-doc NLP tasks
Procedure to convert RoBERTa into Longformer

e Increase size of position embedding matrix. Initialize it by copying the first 512

e Continue MLM pretrianing on a corpus of long docs

e Copy q, k, v linear projections to get[separate projections for global attention

This procedure can be easily applied to other models to convert them into Long

13

Pretraining - MLM results

Model base large
RoBERTa (seqlen: 512) 1.846 1.496
Longformer (seqlen: 4,096) 10.299 8.738
+ copy position embeddings 1.957 1.597

+ 2K gradient updates 1.753 1414

+ 65K gradient updates 1.705 1.358

14

Finetuning on downstream tasks

HotpotQA -- Multihop reasoning and evidence extraction

TriviaQA -- QA dataset from long Wikipedia articles

WikiHop -- QA requiring combining facts spread across multiple paragraphs
Coref -- Coreference chains across the document

IMDB -- Document classification

Hyperpartisan news -- Document classification

15

Finetuning on downstream tasks - Global attention

Classification: on CLS token

QA: on all question tokens

Coref: local attention only

16

Finetuning on downstream tasks - Results

QA Coref. Classification
Model WikiHop TriviaQA HotpotQA OntoNotes IMDB Hyperpartisan
RoBERTa-base 72.4 74.3 63.5 78.4 95.3 87.4
Longformer-base 75.0 75.2 64.4 78.6 95.7 94.8

17

Finetuning on downstream tasks - large model

Model WikiHop TriviaQA HotpotQA
SOTA on WikiHop and TriviaQA Current SOTA 78.3 73.3 74.2
Longformer-large 81.9 71.3 73.2
Model ans. supp. joint
T TAP 2 (ensemble) (GlaB8 et al., 2019) 79.8 86.7 70.7
Competltlve HOtpOtQA result SAE (Tu et al., 2019) 79.6 86.7 71.4
Quark (dev) (Groeneveld et al., 2020) 81.2 87.0 72.3
- Oursis Simpler C2F Reader (Shao et al., 2020) 81.2 876 728
o Longf -1 81.3 883 732
- Better models use GNN of entities ongormer-iarge % 88 1o
c imulate it with alobal attention? ETC-large! 812 89.1 73.6
HGN-large (Fang et al., 2019) 822 88.5 74.2

18

Finetuning on downstream tasks - ablation

Model Accuracy / A
Longformer (seqlen: 4,096) 73.8
RoBERTa-base (seqlen: 512) 72.4/-1.4
Longformer (seqlen: 4,096, 15 epochs) 75.0/+1.2
Longformer (seqlen: 512, attention: n?) 71.77-2.1
Longformer (seqlen: 512, attention: window) 68.8/-5.0
Longformer (seqlen: 2,048) 73.1/-0.7
Longformer (no MLLM pretraining) 73.2/-0.6
Longformer (no linear proj.) 72.2/-1.6

Longformer (no linear proj. no global atten.) 65.5/-8.3

Table 11: WikiHop development set ablations

19

Conclusion

We should consider tasks beyond LM to develop and evaluate long models

Usage

model = transformers.AutoModel ('allenai/longformer-base-4096")
Global attention is important and task specific

Follow our procedure to convert existing pretrained models into Long

20

Future work

LongformerEncoderDecoder

Better pretraining, other objective functions
Longer sequence

Better encoding of document structure
Global attention instead of GNN

More tasks; summarization, generation, IE

Multi-document

21

| transformers AutoModel
2 model = AutoModel('allenai/longformer-base-46096")

