
☺ A retrospective on Pugs☺

Ingo Blechschmidt
<iblech@speicherleck.de>

April 13th, 2015

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 1 / 37

Abstract. “Hi. Today I have started working on specifying and implementing Feath-
erweight Perl 6 (FP6), a side-effect-free subset of Perl 6.” Audrey Tang used these
words to unveil the Pugs project in February of 2005. Initially conceived as an imple-
mentation of a small subset of Perl 6 in Haskell, the project quickly grew to contain
a full-fledged compiler and interpreter for Perl 6 and aracted a large and diverse
community.

e talk will give a subjective survey of the history of Pugs. We will pay particular
aention to the special manner with which Audrey led the project and what the phi-
losophy “-Ofun” meant to the developers. We’ll also discuss which parts of Pugs were
absorbed into other implementations of Perl 6 and which influence Pugs had on the
Perl and Haskell communities.

Aboutme. I contributed to Pugs as a school student in 2005, at first by portingmodules
and writing tests, then gradually also by writing Haskell code and later by implement-
ing a JavaScript backend. Audrey and the unique spirit in the Pugs community had
a strong and lasting influence on me (exposing me to Haskell, category theory, and a
beautiful way of tending communities); I look back on very exciting and fun days.

Warning. e account is mostly from memory and not properly researched. Try not
to trust it! Also note that the timeline covers only the year 2005 and that the code
excerpts are edited for legibility, i. e. shortened at a few places and not reproduced
verbatim. Pull requests are very much welcome; in fact, in good old Pugs spirit you
will get full write access to the repository so you can merge them yourself.

https://github.com/iblech/talk-pugs-retrospective

https://github.com/iblech/talk-pugs-retrospective

1 A glimpse of Perl 6

2 Timeline of Pugs development
e beginning
e early days
Further highlights
e end

3 Pugs’s unique culture
Test-driven development
Transparency
Optimizing for fun

4 Lasting contributions of Pugs

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 3 / 37

A glimpse of Perl 6

1 if all(@age) > 42 or $name eq "Curry"|"Schoenfinkel" {
2 say "All good!";
3 }
4

5 for 17..41 -> $i {
6 ...;
7 }
8

9 say "I was compiled ", time - BEGIN { time },
10 " seconds ago.";
11

12 say @foo.map:{ $_**2 }.sort:{ abs($ ^ a) <=> abs($ ^ b) };

closures • anonymous types • roles and traits • named argu-
ments • expressive subroutine andmethod signatures • a strong
meta object system •macros • state variables • cleaned up reg-
ular expressions • named regexes for easy reuse • grammars for
parsing • lazy lists • junctions of values • optional type anno-
tations (gradual typing) • powerful run-time multi dispatch •
lexical imports

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 4 / 37

A glimpse of Perl 6

1 class Fido {
2 is Dog;
3

4 has Str $name;
5 has Person $owner is rw;
6

7 method bark (Int $times) {
8 say "Wuff!" for 1..$times;
9 }

10 }

closures • anonymous types • roles and traits • named argu-
ments • expressive subroutine andmethod signatures • a strong
meta object system •macros • state variables • cleaned up reg-
ular expressions • named regexes for easy reuse • grammars for
parsing • lazy lists • junctions of values • optional type anno-
tations (gradual typing) • powerful run-time multi dispatch •
lexical imports

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 4 / 37

A glimpse of Perl 6

closures • anonymous types • roles and traits • named argu-
ments • expressive subroutine andmethod signatures • a strong
meta object system •macros • state variables • cleaned up reg-
ular expressions • named regexes for easy reuse • grammars for
parsing • lazy lists • junctions of values • optional type anno-
tations (gradual typing) • powerful run-time multi dispatch •
lexical imports

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 4 / 37

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 5 / 37

e beginning

“Hi. Today I have started working on specifying and
implementing Featherweight Perl 6 (FP6), a side-effect-
free subset of Perl 6.”

– Audrey Tang, February 2nd, 2005, link

2001 Apocalypse 1, first Perl 6 design document

2004 Many Apocalypse and Synopse documents

2005 Active discussion on perl6-language@perl.org

2005 Pugs, providing the first usable implementation

2005 Facebook

2005 YouTube

2008 GitHub

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 6 / 37

http://www.nntp.perl.org/group/perl.perl6.language/2005/02/msg19013.html

Haskell?

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 7 / 37

Screenshot
.=====. __ __ ____ ___ ___
|| || || || || || ||__' Pugs 6: Based on the Perl 6 Synopses
||====' ||__|| ||__|| __|| Copyright (c) 2005 Autrijus Tang
|| `====' ___|| `===' World Wide Web: http://autrijus.org/pugs
|| `====' Report bugs to: autrijus@autrijus.org
== Version: 6.0.0 ===

Welcome to Pugs -- Perl6 User's Golfing System
Type :h for help

pugs> :h
Commands available from the prompt:
:h = show this help message
:q = quit
. <exp> = show the syntax tree of an expression
? <exp> = evaluate an expression

pugs> . ('1' & "2") * (3.0 | "4abcd")
Op2 "*" (Op2 "&" (Val (VStr "1")) (Val (VStr "2"))) (Op2 "|" (Val (VNum 3.0)) (Val (VStr "4abcd")))

pugs> ('1' & "2") * (3.0 | "4abcd")
((3.0 | 4.0) & (6.0 | 8.0))

pugs> :q
Leaving pugs.

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 8 / 37

• “As I’m finding my way through TaPL and ATTaPL today, it oc-
curs tome that I should implement a real language as an exercise;
that real language turns out to be Perl 6. So it begins . . . ”

– Audrey Tang, February 1st, 2005, link

• TaPL refers to Types and Programming Languages, a computer-
science book on implementing programming languages.

• Audrey quickly dropped her initial plan to focus on a side-effect-
free subset (on day 3, to be precise).

• ere was an implementation before Pugs, a tiny project siing
in the Parrot source tree.

• Audrey’s first post contained a language semantics question. is
would be the beginning of continuing refinements of the specifi-
cation, made possible by the existence of a useful Perl 6 platform
which allowed people to play with Perl 6.

http://wayback.archive.org/web/20050206202119/http://use.perl.org/~autrijus/journal/

• “is last year, we were starting to lose our sense of fun in the
Perl community. oughwe tried to be careful about not making
promises, everyone knew in their hearts that five years is an
awfully long time to wait for anything. People were geing tired
and discouraged and a lile bit dreary.

en [Audrey Tang] showed up.”

– Larry Wall, August 2005 (OSCON), link

http://www.perl.com/pub/2005/09/22/onion.html

#haskell on 2009-04-17, discussion about (AT)TaPL, link:

〈edwardk〉 shapr recommended it to audreyt and audrey went off and
wrote pugs to work through the processes in the book

So, thank you shapr!

http://ircbrowse.net/browse/haskell?id=7390873

e early days

Day 4 “Parsec; 90 % of operators implemented!” .see code

Day 8 “Pugs 6.0.2; Turing Completeness” .see code

Day 12 “Refactoring” .see code

Day 13 “Continuations” .see code

Day 14 “All tests successful” .see code

Day 20 “6.0.8” .see code

Day 23 “Test.pm flies!” .see code

.skip details

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 9 / 37

As can be seen by the journal headlines, Pugs was extremely fast-
moving. In the early days, a Pugs build of a day ago was considered
to be vastly outdated. is had two reasons:

• Firstly, Audrey was an astoundingly productive hacker, rapidly
implementing major features and aracting a large community
of fellow lambdacamels (totaling more than 200 contributors).

• Secondly, Haskell’s unique features rendered it a very fine lan-
guage for implementing other languages. It allowed both for
quick prototyping and easy refactoring.

See the logs of #perl6 for 2005-03-02 (link) for an interesting chat be-
tween Audrey and chromatic, among other things about Pugs’s be-
ginnings and Haskell’s strengths. Highly recomended reading.

http://irclog.perlgeek.de/perl6/2005-03-02

• is graph was made at the release of Pugs 6.2.10. e red curve
shows the absolute number of commits, the green one shows the
number of commiers – multiplied by 10.

• is graph is by far not the nicest graph in the history of graphs.

.Continue slides . . .

Day 4: “Parsec; 90 % of operators implemented!”

1 -- src/AST.hs at revision 7
2 data Exp
3 = App String [Exp]
4 | Syn String [Exp]
5 | Prim ([Val] -> Val)
6 | Val Val
7 | Var String SourcePos
8

9 data Val
10 = VUndef
11 | VBool Bool
12 | VList [Val]
13 | VNum Double

1 -- src/Parser.hs at revision 7
2 parseVar = lexeme $ do
3 sigil <- oneOf "$@%&"
4 name <- many1 (alphaNum <|> char '_')
5 return $ Var (sigil:name)

1 -- src/Prim.hs at revision 7
2 op2 :: Ident -> Val -> Val -> Val
3 op2 "*" = op2Numeric (*)
4 op2 "~" = op2Str (++)
5

6 op2Str f x y = VStr $ f (vCast x) (vCast y)

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 10 / 37

.Continue slides . . .

Day 4: “Parsec; 90 % of operators implemented!”

1 -- src/Parser.hs at revision 7
2 parseVar = lexeme $ do
3 sigil <- oneOf "$@%&"
4 name <- many1 (alphaNum <|> char '_')
5 return $ Var (sigil:name)

1 -- src/Prim.hs at revision 7
2 op2 :: Ident -> Val -> Val -> Val
3 op2 "*" = op2Numeric (*)
4 op2 "~" = op2Str (++)
5

6 op2Str f x y = VStr $ f (vCast x) (vCast y)

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 10 / 37

• To read the Haskell snippets, one needs to know two peculiarities of Haskell’s syntax.
Firstly, function application is wrien by juxtaposition, without parentheses – “f x y”
instead of “f(x, y)”. Secondly, a dollar sign is like a big opening parenthesis. e
corresponding closing parenthesis is implicitly at the end of the line or block – that is
“foo $ a long expression” instead of “foo (a long expression)”.

• An English reading of the presented parser snippet goes as follows. “First, try to read
one of the characters $@%&. en try to read many, at least one, alphanumerical char-
acters (or underscores). If that worked, prepend the sigil to the variable name (using
the : operator), and pack the result into an abstract syntax tree.”

• We used the magic of parser combinators (in the form of the Parsec library) to build the
parser. eir central idea is to provide higher-order functions (like many1) to construct
complex parsers from simple building blocks (like alphaNum or char). is style allows
for parsers which are easy to read, write, and maintain. Also, the parsing rules may
dynamically depend on arbitrary runtime values; this flexibility is necessary to support
user-defined operators and BEGIN blocks executing at parse time. An important differ-
ence to the regular expressions of Perl 5 is that while parsing, one can build a complex
syntax tree.

.Continue slides . . .

Day 8: “Pugs 6.0.2; Turing Completeness”

User-defined subroutines, variable binding, . . .

1 -- src/Eval.hs at revision 7
2 reduce env@Env{ cxt = cxt } exp@(Syn name exps)
3 | name `isInfix` ";"
4 , [left, right] <- exps
5 , (env', exp) <- runStmt "Any" env left
6 , (env'', exp) <- runStmt cxt env' right
7 = (const env'', exp)
8 | name `isInfix` ":="
9 , [Var var _, exp] <- exps

10 , (fenv, Val val) <- reduce env exp
11 = (combineEnv fenv var val, Val val)

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 11 / 37

• In line 5, the code to the le of the semicolon operator is executed
in the (Perl) context Any and in the environment env.

• is results in some changed environment env' and a value exp
(which is ignored).

• In line 6, the code to the right of the semicolon operator is exe-
cuted in the context cxt of the whole expression, resulting in a
further updated environment env'' and a value exp (this shad-
ows the earlier declarations of exp).

.Continue slides . . .

Day 12: “Refactoring”

eval(), rand(), . . .

1 -- src/Prim.hs at revision 19
2 op1 "rand" e = \(x :: VNum) -> VNum $
3 unsafePerformIO $ getStdRandom
4 (randomR (0, if x == 0 then 1 else x))

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 12 / 37

.Continue slides . . .

Day 13: “Continuations”

1 -- src/Monads.hs at revision 23
2 data Env = Env { envContext :: Cxt
3 , envPad :: Pad
4 , envEval :: Exp -> Eval Val
5 , envCC :: Val -> Eval Val
6 , envBody :: Exp
7 , envID :: Unique
8 }

1 -- src/AST.hs at revision 27
2 type Eval a = ContT Val (ReaderT Env IO) a

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 13 / 37

.Continue slides . . .

Day 14: “All tests successful”

1 # t/01basic.t at revision 32
2 use v6;
3

4 say "1..2";
5 say "ok 1 # Welcome to Pugs!";
6

7 sub cool { fine($_) ~ " # We've got " ~ toys }
8 sub fine { "ok " ~ $_ }
9 sub toys { "fun and games!" }

10

11 say cool 2; # and that's it, folks!

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 14 / 37

.Continue slides . . .

Day 20: “6.0.8”

Hashes, pairs, many IO primitives, . . .

1 sub { $_ ?? $_ * &?SUB($_ - 1) :: 1 }.(10).say
2 # 3628800

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 15 / 37

.Continue slides . . .

Day 23: “Test.pm flies!”

First Perl 6 module, more than 400 unit tests, . . .

1 module Test-0.0.1;
2 use v6;
3

4 my $loop = 0;
5

6 sub ok (Bool $cond, Str ?$desc) is export {
7 my $ok := $cond ?? "ok " :: "not ok ";
8 my $out := defined($desc)
9 ?? (" - " ~ $desc)

10 :: "";
11 $loop++;
12 say $ok, $loop, $out;
13 }

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 16 / 37

Further highlights

Day 47 “Perl 5 regular expressions landed.” .see code

Day 50 Compiling to Parrot

Day 69 Autovivification, tied magic, slice assignment .see code

Day 85 BEGIN blocks .see code

Day 87 “STM: Atomic power!” .see code

Day 88 “A shiny new monad.” .see code

Day 99 “Full named rules!” .see code

Day 100 “OO support landed!” (a first sketch)

Day 107 User-defined operators, Inline::Pugs .see code

Day 108 svnbot (announcing commits to #perl6) .see code

Day 109 gather/take .see code

Day 111 Hyper operators .see code

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 17 / 37

Further highlights, cont’d

Day 113 “Pugs runs CPAN modules!” .see code

Day 117 evalbot (using a new safe mode)

Day 128 Academic paper for the Haskell Workshop 2005, link
(rejected, but still recommended reading)

Day 162 “Say hello to P5ugs!”

Day 164 “Perl 6 compiled to. . . JavaScript!” .see code

Day 166 “Mandel.p6 on JavaScript.”

Day 177 “JS backend 43% pass”

Day 193 “JSAN and CPAN, here we come!”

Day 219 Perl 6 on JavaScript passes 91%.
Timeline only covers 2005 and has several highlights omied.

.skip details

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 18 / 37

https://github.com/iblech/talk-pugs-retrospective/raw/master/hw2005.pdf

.Continue slides . . .

Day 47: “Perl 5 regular expressions landed.”

1 "(balanced)" ~~ rx:perl5{^(\()?[^()]+(?(1)\))$};
2 # bool::true
3

4 "(balanced" ~~ rx:perl5{^(\()?[^()]+(?(1)\))$};
5 # bool::false

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 19 / 37

“Today I asked on #perl6 which one should I do first: Perl 5 regex (via
PCRE), or a Perl 6 to C compiler (via TemplateHaskell)? pjcj suggested
that the former is more practical, so I went with it. I’m glad to report
that it now works, with full $/ as arrayref and $0 $1 $2 etc capturing
magic.”

.Continue slides . . .

Day 69: Tied %*ENV

1 -- src/AST.hs at revision 1750
2 instance Hash.Class IHashEnv where
3 fetch _ = do
4 envs <- liftIO getEnvironment
5 return [(k, VStr v) | (k, v) <- envs]
6 fetchVal _ key = tryIO undef $ do
7 str <- getEnv key
8 return $ VStr str
9 storeVal _ key val = do

10 str <- fromVal val
11 liftIO $ setEnv key str True

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 20 / 37

.Continue slides . . .

Day 85: BEGIN blocks

1 -- src/Pugs/Parser.hs at revision 2380
2 ruleClosureTrait :: RuleParser Exp
3 ruleClosureTrait = rule "closure trait" $ do
4 name <- tryChoice $ map symbol $ words "BEGIN END"
5 block <- ruleBlock
6 let (fun, names) = extract (block, [])
7 let code = VCode { subName = name, subFun = fun }
8 case name of
9 -- Notice the bug here? Yes, you in the audience!

10 "END" -> return $
11 App "&unshift" [Var "@*END"] [Syn "sub" code]
12 "BEGIN" -> do
13 rv <- unsafeEvalExp fun
14 return rv

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 21 / 37

• e parser desugared END blocks to something like unshift
@*END, { ... }. e runtime system took care of running the
blocks stored in @*END at the end of program execution.

• By calling unsafeEvalExp in the BEGIN branch, the block was
executed immediately, at parse time.

• So what’s the bug in the END branch?

.Continue slides . . .

Day 87: “STM: Atomic power!”

1 my ($x, $y) = (1, 2);
2 async { atomic { $x = $y * 10; $y = $x * 10 } };
3 async { atomic { $x = $y * 10; $y = $x * 10 } };
4 async { atomic { $x = $y * 10; $y = $x * 10 } };
5 atomic { $x = $y * 10; $y = $x * 10 };
6 say "$x, $y"; # always "20000000, 200000000"

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 22 / 37

• Shared Transactional Memory (STM) is an exciting technology
for writing composable threadsafe codewithout having toworry
about race conditions.

• It was easy to expose Haskell’s STM support to the user, so we
did it (as an unspecced extension).

.Continue slides . . .

Day 88: “A shiny new monad.”

〈obra〉 What the hell changed in the last 12 hours with pugs?

〈obra〉 I mean it smoked 30% faster.

〈audreyt〉 oh. yeah. I rewrote the monad

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 23 / 37

.Continue slides . . .

Day 99: “Full named rules!”

Perl 6 rules: Named regexes that form a formal grammar.
Capture objects can be full-fledged abstract syntax trees.

1 grammar Perl6 {
2 token ident { <alpha> \w+ }
3

4 token name { <ident> ['::' <ident>] * }
5

6 token sigil { '$' | '@' | '&' | '%' }
7

8 token variable { <sigil> <name> }
9 }

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 24 / 37

.Continue slides . . .

Day 107: User-defined operators

1 sub prefix:<Σ> (@x) { [+] *@x }
2 sub postfix:<!> ($x) { [*] 1..$x }
3 say Σ [1..5!]; # 7260

1 -- src/Pugs/Parser.hs at revision 3388
2 tightOperators :: RuleParser [[Operator Char Env Exp]]
3 tightOperators = do
4 infixOps <- currentInfixOps
5 return $
6 [leftOps $ " " ++ unwords infixOps ++ " "
7 , leftOps " >>+<< + - ~ +| +^ ~| ~^ ?| "
8 , listOps " & "
9 , listOps " ^ | "

10 , ...
11]

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 25 / 37

.Continue slides . . .

Day 108: svnbot

〈svnbot6〉 r3131 | clkao++ | for svnbot.p6:
〈svnbot6〉 r3131 | clkao++ | * Increase karma for
〈svnbot6〉 r3131 | clkao++ | author that commits.

. . .
〈osfameron〉 ooo, you get a ++ every time you commit!

〈Juerd〉 No, for every line in the commit message.
So flood away!

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 26 / 37

.Continue slides . . .

Day 108: svnbot

e bot used a module Net::IRC (link), which at the time emulated
true OO:

1 # ext/Net-IRC/lib/Net/IRC.pm at revision 2850
2 module Net::IRC-0.03;
3

4 sub new_bot (Str $nick, Str $host, ...) {
5 my $self;
6 ...;
7 return $self = {
8 connect => {...},
9 join => -> Str $channel {...},

10 ...,
11 };
12 }
13

14 # Usage: my $bot = new_bot(...); $bot<run>();
Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 27 / 37

https://github.com/audreyt/pugs/blob/master/ext/Net-IRC/lib/Net/IRC.pm

.Continue slides . . .

Day 109: gather/take
1 my @foo = gather {
2 for @data {
3 take ... if ...;
4 take ... if ...;
5 }
6 };

1 -- src/Pugs/Prim.hs at revision 3524
2 op1 "gather" = \v -> do
3 av <- newArray []
4 evl <- asks envEval
5 symTake <- genSym "@?TAKE" (MkRef av)
6 enterLex [symTake] $ evl (App (Val v) [] [])
7 fmap VList $ readIVar av
8

9 op1 "take" = \v -> do
10 lex <- asks envLexical
11 arr <- findSymRef "@?TAKE" lex
12 op2 "push" (VRef arr) v

my @foo = gather {
for @data {

take ... if ...;
take ... if ...;

}
};

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 28 / 37

.Continue slides . . .

Day 109: gather/take

1 -- src/Pugs/Prim.hs at revision 3524
2 op1 "gather" = \v -> do
3 av <- newArray []
4 evl <- asks envEval
5 symTake <- genSym "@?TAKE" (MkRef av)
6 enterLex [symTake] $ evl (App (Val v) [] [])
7 fmap VList $ readIVar av
8

9 op1 "take" = \v -> do
10 lex <- asks envLexical
11 arr <- findSymRef "@?TAKE" lex
12 op2 "push" (VRef arr) v

my @foo = gather {
for @data {

take ... if ...;
take ... if ...;

}
};

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 28 / 37

• In plain English: A gather call creates an internal lexical vari-
able @?TAKE. Calling take pushes to this array.

.Continue slides . . .

Day 111: Hyper operators

1 (1,2,3) >>-<< (4,5,6) # (-3, -3, -3)
2

3 -<< (4,5,6) # (-4, -5, -6)
4

5 sub postfix:<!> { [*] 1..$_ }
6 (4, 5, 6) >>! # (24, 120, 720)
7

8 [+]<< ([1,2], [3,4]) # (3, 7)
9

10 [//] @foo # first defined value in @foo

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 29 / 37

.Continue slides . . .

Day 113: “Pugs runs CPAN modules‼”

1 # Perl 6 code, runnable in Pugs.
2 use Digest::SHA1--perl5;
3

4 my $cxt = Digest::SHA1.new;
5 $cxt.add('Pugs!');
6

7 say $cxt.hexdigest;
8 # 66db83c4c3953949a30563141f08a848c4202f7f

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 30 / 37

.Continue slides . . .

Day 164 and others: Perl 6 on JavaScript

1 use jsan:Number.Roman <to_roman>;
2 say to_roman(42); # XLII

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 31 / 37

• PIL2JS was wrien in Perl 5, in a style heavily influenced by Haskell. It used the Haskell
part of Pugs to parse (and run BEGIN blocks) of Perl 6 code and translated the resulting
PIL code (Pugs Intermediate Language) to JavaScript. Together with a runtime library
in JavaScript, this allowed Perl 6 code to be run in the browser.

• Having the advantage of a later start, with more details of Perl 6’s container bind-
ing semantics understood, it was the first backend to pass those tests. (See https:
//github.com/perl6/roast/blob/master/S03-binding/arrays.t for some of
the binding features of Perl 6.)

• e first version was hacked together on a weekend and passed most of the basic “sanity
tests”, two days aer puer (Mitchell N. Charity) started working on a PIL interpreter
in Perl 5.

• Amazingly, a compiled version of the testsuite survived ten years of life: Run the tests
yourself at http://speicherleck.de/iblech/stuff/not_perm/pil2js-demo/.
For the bulk of the tests, in the t/ subdirectory, you have to add the entry 31.15.67.4
m19s28.vlinux.de to your /etc/hosts.

https://github.com/perl6/roast/blob/master/S03-binding/arrays.t
https://github.com/perl6/roast/blob/master/S03-binding/arrays.t
http://speicherleck.de/iblech/stuff/not_perm/pil2js-demo/

• JSAN was an aempt to bring a CPAN-like platform to JavaScript. e JavaScript back-
end was able to use JSAN modules.

• Foreshadowing node.js: “It is entirely possible that the JavaScript backend may prove to
be the most important one. [. . .] Indeed, if JavaScript2 does survive the standardization
process, it is entirely possible that it may become the next Ruby, because writing pro-
grams that run at both client and server side is a strong motivation – the same reason
to keep Pugs targetable to multiple backends.”

– Audrey Tang, October 30th, 2005, link

http://wayback.archive.org/web/20060924085336/http://use.perl.org/journal.pl?op=display&uid=1505&start=10

e end

Beginning of 2007 Active development of Pugs stalls.

– discussion only verbally –

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 32 / 37

• For school reasons, I withdrew from Pugs development before
its active phase ended. erefore I’m not qualified to report on
the reasons for its end and deem it unresponsible to speculate in
public.

• Note that Pugs is still kept compatible with respect to new GHC
releases.

Test-driven development

Tests as to do lists.

Tests as bug reports.

Tests as specification.

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 33 / 37

• One could upload test results to a public smoke server.

• e neat visualization (using Test::TAP::HTMLMatrix, created specifically for Pugs) was
interlinked with the design documents.

Transparency

Audrey’s journal (link):
documenting progress,

spreading excitement

Public IRC logs

svnbot, announcing new commits

“Private code = dead code.” “url?”

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 34 / 37

http://pugs.blogs.com/

Pugs’s unique culture

..-O2

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 35 / 37

Pugs’s unique culture

..-Os

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 35 / 37

Optimizing for fun

-Ofun!
Liberal granting of commit bits.
Forgiveness > permission.
“Imagineering”, sketching ideas with code.
Many subprojects, avoiding deadlocks.

Audrey single-handedly bootstrapped a diverse and
tight-knit community of lambdacamels, sharing a
common vision and thoroughly enjoying their time.
ank you, Audrey. ♥

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 36 / 37

Optimizing for fun

-Ofun!
Liberal granting of commit bits.
Forgiveness > permission.
“Imagineering”, sketching ideas with code.
Many subprojects, avoiding deadlocks.

Audrey single-handedly bootstrapped a diverse and
tight-knit community of lambdacamels, sharing a
common vision and thoroughly enjoying their time.
ank you, Audrey. ♥

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 36 / 37

• “Patches are boring, commits are fun.”

• ediverse communitywas verywelcoming. Trolls were hugged
and turned into commiers.

• Somebody would come to #perl6 and mention that $FEATURE
does not work yet. Audrey would send them a commit bit, ask
to create a test exemplifying the missing feature, and oen im-
plement the feature till the next day (or hour (or quarter of an
hour)).

• People worked on the Haskell parts of the interpreter and the
compiler, on unit tests, on porting and creating modules, on
examples and documentation, on various backends (Perl 5 and
JavaScript) wrien in Perl 5, on fun side projects (such as under-
standing type inference algorithms), and many other things.

• Audrey’s slides -Ofun: Optimizing for Fun and Geoff Broadwell’s
article on O’Reilly Network are highly recommended reading.

https://speakerdeck.com/audreyt/ofun-optimizing-for-fun
https://web.archive.org/web/20051125071047/http://www.oreillynet.com/pub/wlg/7996

• “One ofmy goals of this project is to keep it dual-cultured. So the
source tree is managed with both svk and darcs; the build system
requires both Perl5 and GHC; I will submit my Apocrypha series
of design documents as monthly articles to both Perl.com and
e Monad Reader; the project info is on both CPAN and the
Haskell Wiki; etc, etc.”

– Audrey Tang, February 6st, 2005, link

• “In other news, Pugs was mentioned on e Haskell Sequence
today. Indeed, I have noted that a significant part of questions
asked in #haskell are from camelfolks. Conversely, we saw a
large influx from lambdafolks to #perl6 as well. Lots of knowl-
edge transfer is happening, which makes me really happy.”

– Audrey Tang, February 24th, 2005, link

http://wayback.archive.org/web/20050206202119/http://use.perl.org/~autrijus/journal/
http://pugs.blogs.com/pugs/2005/02/day_24_an_amazi.html

• Post on Lambda the Ultimate, a programming languages weblog:

“I’m a great fan of theoretical concepts like arrows, but at the
same time I’m a self-employed programmer interested in solving
my clients’ problems.

Pugs is notable in that it profitably uses recent developments
such as GADTs and Template Haskell for an implementation of
Perl6.

I recently became a regular on the #perl6 irc channel and soon
aer joined the list of commiers.

In just a few days I’ve seen a lot. I’ve seen enthusiastic mem-
bers of the Perl community learning Haskell. I’ve seen myself
learning Perl. I’ve also seen how daily Perl programmers work
with abstractions like monad transformers. I’ve seen how some
structures are easy to extend for programmers new to both the
Pugs codebase and Haskell.”

– Shae Errison (shapr), April 5st, 2005, link

http://lambda-the-ultimate.org/node/620

#haskell on 2013-03-23, link:

〈edwardk〉 I found Haskell first through the existence of pugs.
〈elliott〉 perl, well known for aracting category theorists
〈edwardk〉 well, i was mining category theory at the time too.
〈shaaf〉 Pugs, well known for geing people into Haskell.

Edward Kme is well-known in the Haskell community. One of his
hobbies is infusing Haskell’s equivalent of CPANwith generalized ab-
stract nonsense packages inspired by category theory, which some-
how end up as dependencies for such mundane things as web frame-
works.

http://ircbrowse.net/browse/haskell?events_page=439213

• Other fun aspects of Pugs’s culture: academic paper reading, game development, code
obfuscation, Lord of the Rings poetry, other poetry (Larry was a mariner), videos (Fear
and Loathing in Pugsland), hackathons (among others, with Elizabeth Maijsen – now,
of course, a prolific Rakudo contributor), . . .

1 -- src/Main.hs at revision 1
2 {-# OPTIONS -fglasgow-exts #-}
3

4 {-
5 The Main REPL loop.
6

7 A ship then new they built for him
8 Of mithril and of elven-glass
9 With shining prow; no shaven oar

10 Nor sail she bore on silver mast;
11 The Silmaril as lantern light
12 And banner bright with living flame
13 To gleam thereon by Elbereth
14 Herself was set, who thither came...
15 -}

https://github.com/audreyt/pugs/blob/master/docs/talks/larry_mariner.txt
https://github.com/iblech/talk-pugs-retrospective/raw/master/oscon05-stevan.mp4
https://github.com/iblech/talk-pugs-retrospective/raw/master/oscon05-stevan.mp4

Lasting contributions of Pugs

Renewed interest in Perl 6.
Major refinements of the specification.

e test suite. Approximately 20 000 unit tests.
e culture.
Publicity for Haskell.
Moose.

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 37 / 37

Lasting contributions of Pugs

Renewed interest in Perl 6.
Major refinements of the specification.
e test suite. Approximately 20 000 unit tests.

e culture.
Publicity for Haskell.
Moose.

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 37 / 37

Lasting contributions of Pugs

Renewed interest in Perl 6.
Major refinements of the specification.
e test suite. Approximately 20 000 unit tests.
e culture.
Publicity for Haskell.

Moose.

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 37 / 37

Lasting contributions of Pugs

Renewed interest in Perl 6.
Major refinements of the specification.
e test suite. Approximately 20 000 unit tests.
e culture.
Publicity for Haskell.
Moose.

Augsburg.pm (April 13th, 2015) Pugs, an experimental Perl 6 platform: a retrospective 37 / 37

#perl6 on 2005-07-20:
〈stevan〉 geoffb: I think “moose” is a private joke between nothingmuch

and himself :)

#perl6 on 2006-03-06:
〈stevan〉 audreyt: I have to run (dinnertime), but I have to show you

Moose.pm soon, it is my (Class::MOP based) answer to Spiffy :)

stevan is Stevan Lile, nothingmuch is Yuval Kogman. Moose origi-
nated in Stevan’s work on the Perl 6 metamodel (which governs ob-
jects, classes, and metaclasses).

“It came out of the Pugs project, which is a project that in about 2005 started. It was Audrey
Tang who had decided that she wanted to implement Perl 6 in Haskell. So it was sort of a very
fun project. Audrey coined the term “-Ofun”, optimized for fun.

And a lot of the goal of the project was to get some juice flowing back into the Perl 6 community
and really get a working or a semi-working implementation so people could play with it.

One of the things that I did in that project was to prototype the object system for Perl 6. I read
over the Apocalypse 12, read up on a number of different object systems in different languages
such as Smalltalk, CLOS, which is the Common Lisp Object System. Objective C’s object run-
time, Ruby, Python, all those things. We were doing a lot of research at the time and we tried
to put a lot of that stuff, a lot of the good ideas, into the Perl 6 object system.

And then basically as the Pugs project started to peter out, I found myself going back to my
work code, which was your basic vanilla Perl 5 OO. And I really craved all the features that I
had been prototyping.

So months here and months there, I fiddled around and I finally came up with a module called
Class::MOP which is basically the basis on which Moose sits. And so a couple months aer
Class::MOP, we released Moose and sort of got running from there.”

– Stevan Lile, December 2010, link

http://www.perlcast.com/2010/07/stevan-little-on-moose.html

is lambdacamel illustration is by Carina Willbold. Feel free to use
it in your talks! (CC BY)

	A glimpse of Perl 6
	Timeline of Pugs development
	Pugs's unique culture
	Lasting contributions of Pugs
	Appendix

