[CFP Contest 2022
Specification V2.3

Alperen Keles

Introduction

The mighty wizards of Lambda land has seen all your poses from last year and
they were absolutely fascinated by them. They were so inspired by you that they
have been discovering the secret arts of painting for the rest of the year, waiting
for you to join them. Your mission, if you choose to accept it; will be to develop
algorithms for robo-painters of the future. After all, there are so many paintings
to make, and so little of us functional programmers to make them. The winner
will receive the honor medal of Leonardo Da Vinci, the RoboVinci Medal.

Full Division v.1

As we go through the contest, we must adapt to changes. RoboPainters will no
longer work on empty canvases, but rather they will be given canvases already
painted.

As part of the full division problems, you will be given an initial configuration
and a target painting. Initial configurations will have the following json schema.

{
"width": <number>,
"height: <number>,
"blocks": [
{
"blockId": <block-id>,
"bottomLeft": <point>,
"topRight": <point>,
"color": <color>
}
]
}

Where number is an integer, block-id is an integer block id enclosed in double
quotes, bottomLeft and topRight are [number, number], color is [number,
number, number, number]. One example is given below. This is basically the
initial configuration we used in lightning division.

{
"width": 400,
"height: 400,
"blocks": [
{
"blockId": "O",
"bottomLeft": [0, O],
"topRight": [400, 400],
"color": [255, 255, 255, 255]
}
]
}

Block id’s will start from 0 and go to n-1 for n blocks.

Full Division v.2

For the last 24 hours of the contest, we wanted to present you with a challenge
worth of the time you have spent. In addition to having an initial configuration,
now this initial configuration might contain a reference from a png. Your new
task is to turn these pre-filled canvases to the target paintings.

New initial configurations will be in the form

{
"width": 400,
"height: 400,
"sourcePngJSON": "https://cdn.robovinci.xyz/initialpngs/36.json",
"sourcePngPNG": "https://cdn.robovinci.xyz/initialpngs/36.png",
"blocks": [

{
"blockId": "O",
"bottomLeft": [0, O],
"topRight": [400, 200],
"color": [255, 255, 255, 255]
},
{
"blockId": "1",
"bottomLeft": [0, 200],
"topRight": [400, 400],
"pngBottomLeftPoint": [0, 200]
}

]
}

This means that, while the bottom part of the canvas is filled with (255, 255,
255, 255), upper part uses the png data given at “sourcePng” to fill itself.

We provide 2 files, “sourcePngJSON” and “sourcePngPNG”, “sourcePngPNG”
is the actual PNG file of the initial canvas, whereas “sourcePngJSON” is the
serialized version of the same file as an array of RGBA values. They both
represent the same data.

A block will have either color or pngBottomLeftPoint, never both.

The difference from Full Division V1 is that, blocks no longer have simple
RGBA contents, but rather they can be references to a given PNG file.
pngBottomLeftPoint is the bottomLeft point on the PNG that corresponds to
the given block.

For these problems, cost coefficients are also adjusted.

Move Type Base Cost
Line Cut 2

Move Type Base Cost

Point Cut 3
Color 5
Swap 3
Merge 1

Timeline

Note that there will be updates to this specification, and more problems will be
released during the contest. This will happen at these specific times:

e 4 hours into the contest (new problems only, no changes to specification)

¢ 8 hours into the contest (new problems only, no changes to specification)

e 12 hours into the contest (new problems, small changes to the specification
- we decided no changes to the specification)

e 24 hours into the contest (after the lightning division ends)

e 36 hours into the contest

e 48 hours into the contest

Changelog

o Fix(typo in question): Leondardo -> Leonardo

¢ Functional definition of blocks is removed as it caused confusion.

o Block definition is rewritten for clarity.

¢ Rest API Documentation will be announced soon.

e Size is the area of the rectangle. It can be calculated by multiplying width
and height.

e Playground is aimed at learning. It has some bugs(probably ones we
currently don’t know too, so please act with caution)

e A shape is a rectangle

o All given canvases in the lightning round are 400x400, they are colored with
RGBA(255, 255, 255, 255), sorry for the initial mistake in the specification.

¢ A minor bug in the implementation of the instruction validity checks is
fixed. (cut [0] [200,200], swap [0.1] [0.3]) now works.

e A major bug in the implementation of swap is fixed. All submissions
will be rejudged in regard to this change, system will be closed between
15.00-15.10 UTC.

e We decided to apply no changes to the specification at 12.

¢ A bug in the implementation of Point Cut is fixed. Please resubmit your
codes in that regard.

Problem Specification

The task is to paint a given canvas with the least cost and highest similarity.
As part of the task, you will be given;

e a set of moves applicable over the canvas,

e an instruction language to express your set of moves,

¢ a cost function for calculating the cost of each move,

¢ a similarity function for calculating the similarity of your painted
canvas to the target painting.

As part of individual problems, you will be given;

e an initial canvas,
o a target painting.

Canvas

Canvas is an abstract 2-dimensional pixel space of RGBA channels.

Each move transforms the canvas in a different sense.

After all moves are applied to a canvas, it can be rendered to a painting.

Canvas is made out of blocks.

Blocks

A block is either a frame that consists of a set of sub-blocks; or a simple structure
with shape and color.

A move on a block either changes the block contents, or it destroys the old block
and creates new ones.

Color and Swap changes the contents of the block.

Cut and Merge destroys(takes the block out of the scope so it cannot be referenced
in the latter instructions) the old block, generates new blocks.

Merge does so by creating a new top level block where the id is created by
holding a global counter incremented at each merge operation, destroying the old
blocks and adding them as sub-blocks inside the newly created complex block.
Sub-blocks generated via merge can never be addressed. They are only used to
describe colors within a block. A simple block can only have pixels of the same
color, but a complex block (consisting of multiple sub-blocks) can have multiple
colors.

Cut destroys the old block, generates new blocks where the id is created by
appending the old id with .0, .1, .2 or .3. Cut blocks are now independent
from the block they originated from, even though their block-id is tied with that
block.

https://en.wikipedia.org/wiki/RGBA_color_model

The initial canvas is defined according to the initial configuration provided
with the problem.

Blocks are uniquely defined by their block__id.

Painting

Painting is a concrete 2-dimensional pixel space of RGBA channels. For
individual problems, you will be provided with PNG files for the paintings.

Moves

We present you with 5 different moves you can use to paint your canvases.

Cut Moves
Cut moves take a block, and some cut instruction over that block. Create new

sub-blocks; preserving the colors.

Line Cut Move A line cut move takes a block(defined by its block-id), an
orientation(X or x for Vertical, Y or y for Horizontal), an offset(the 1-d coordinate
for the cut operation) and creates 2 sub-blocks of the given block.

Sub-blocks of line cuts are numbered from bottom to top, or left to right.

(0, 100) (100, 100) (0, 100) {(40, 100) [(100, 100)
cut [0] [x] [40]
0 I 100 | o1
(0, 0) (100, 0) (0,0) (40, 0) (100, 0)
(0, 100) (100, 100) (0, 100) (100, 100)
4.1
cut [4] [Y] [60] (0, 60) (100, 60)
4 I >
4.0
(0, 0) (100, 0) (0, 0) (100, 0)

Figure 1: Line Cut Move Image

https://en.wikipedia.org/wiki/RGBA_color_model

Point Cut Move A point cut move takes a block(defined by its block-id), an
offset(the 2-d coordinate for the cut operation) and creates 4 sub-blocks of the
given block.

Sub-blocks of point cuts are numbered from bottom left using reverse clock-wise
numbering.

(40, 100) (100, 100) (100, 100)
3 cut [1] [30, 30]
(40, 50) I
(0, 30)
(40, 0)
(0,0) (40, 0) (100, 0) (0, 0) (30, 0) (100, 0)

Figure 2: Point Cut Move Image

Color Move

Color move takes a block, and some color on RGBA space. It changes the color
content of the given block to the given color.

(0, 100) [(40,100) |(100, 100) (40,100) (100, 100)

color [0.0] [100, 0, 50, 100]

00 | o1 | > 0.1

(0, 0) (40, 0) (100, 0) (0,0) (40, 0) (100, 0)

Figure 3: Color Move Image

Swap Move
Swap move takes two blocks. It swaps the contents of the given blocks.

Blocks must have the same shape to be swapped.

(0, 100) [EUNTI)} (100, 100) [((OUL)RN (40, 100) (100, 100)
0.0.1 0.1 swap [0.0.1] [0.0.0] 0.0.0 0.1
(OO (10, 50) I > (0,50) [CU)]
0.0.0
(100, 0) (0, 0) (40, 0) (100, 0)

Figure 4: Swap Move Image

Merge Move

Merge move takes two blocks. It merges the blocks by creating a new block,
adding these blocks to this new block as sub-blocks.

Blocks must be compatible to be merged. They must be adjoint, and their
adjoint sides must have the same length. Informally; the merge of the blocks
must create a new rectangle.

Each time a merge operation is performed, a new block is created. The newly
created block has the block id according to the global counter. For example,
when global counter is n, the block generated by this merge operation will have
the block id n+1.

ORCOM (20, 100) |(100, 100) (100, 100)
0.0.1 merge [0.0.1] [0.0.0]

OO (-0, 50) 0 >
0.0.0 (©:50)

(0,0) (40, 0) (100, 0) (0,0) (40, 0) (100, 0)

Figure 5: Merge Move Image

Instruction Language

Your task is to apply a set of moves to a canvas to similarize it to a given target
painting. The way you will provide these set of moves is via submitting an

10

ISL(Instruction Set Language) file for each problem. ISL code directly
corresponds to the set of moves given above.

A BNF(Backus-Naur Form) form of the ISL grammar is given at the end of this
specification.

11

Cost Function

Each move has a defined cost.

Below is the table for base cost for each move

Move Type Base Cost

Line Cut 7
Point Cut 10
Color 5
Swap 3
Merge 1

The function for cost is;
cost(move, block, canvas) = round(base_cost(move) x size(canvas)/size(block))

Where size(rectangle) = rectangle.width * rectangle.height, and
round is the nearest integer. We are using Math.round function to compute the
round.

For each submission, these score are calculated for each move and aggregated
for the total cost calculation.

12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round

Similarity Function

After processing all moves of a submission, the system calculates the similarity
of the result to the target painting.

This is done via calculating pixel difference on RGBA Color Space for each
pixel and aggregating those results.

Pixel difference is calculated via Euclidian Distance of RGBA Values of
Pixels. Typescript code for the calculation is given below;

class RGBA {

r: number;
g: number;
b: number;
a: number;
constructor(rgba: [number, number, number, number] = [0, O, 0, 0]) {

[this.r, this.g, this.b, this.a] = rgba;
}
}

class SimilarityChecker {
static imageDiff(f1: RGBA[], £2: RGBA[]): number {
let diff = 0;
let alpha = 0.005;
for (let index = 0; index < f1l.length; index++) {
const pl = f1[index];
const p2 = f2[index];
diff += this.pixelDiff(pl, p2);
}
return Math.round(diff * alpha);
}

static pixelDiff(pl: RGBA, p2: RGBA): number {
const rDist = (pl.r - p2.r) * (pl.r - p2.r);
const gDist = (pl.g - p2.g) * (pl.g - p2.g);
const bDist = (pl.b - p2.b) * (pl.b - p2.b);
const aDist = (pl.a - p2.a) * (pl.a - p2.a);
const distance = Math.sqrt(rDist + gDist + bDist + aDist);
return distance;

13

Scoring

Score for each individual problem is calculated by adding the cost of the ISL
code and the result of the Similarity Function. A higher cost will result in a
lower position on the scoreboard.

For the contest scoreboard, we will first classify participants by the number of
problems they submitted solutions to. For each class of participants, we will
sum their costs, sort them accordingly. We will then sort participant classes by
the number of submitted solutions.

As a more concrete example, for the contestant list given below:

P1: 2 problems, total cost 90
P2: 3 problems, total cost 100
P3: 2 problems, total cost 80
P4: 1 problems, total cost 50

Scoreboard would have the participants sorted as P2, P3, P1, P4.

Submission

You will submit ISL code over panel inside the portal. We will also provide a
REST API for the submissions.

Deadlines

As traditional, the contest will have a Lightning Division spanning the first 24
hours. To qualify for the Lightning Division prize, submit your ISL codes by
September 3, 2021, 12:00pm (noon) UTC.

To qualify for the Full Division prize, submit your ISL codes by September 5,
2021, 12:00pm (noon) UTC.

In order to qualify for any prizes, your source code must be submitted by the
end of the contest as well. You can do this through the web portal.

Determining the Winner

We will use the same procedure to determine the winner in both the lightning
and full divisions, ranking the teams by cumulative score, computed as the sum
of scores for each task.

REST API

You can use the given endpoints to do your submissions.

14

API Endpoints

GET /api/users Get information of your team. This can be used to verify that
you can access API with your token.

POST /api/problems/$PROBLEM_ID Make a submission. The multipart/form-
data body of the request should contain your isl file with the key ‘file’ . Returns
a submission ID.

Example CURL Request :

curl --header "Authorization: Bearer YourAPIToken" -F
file=Q@your.isl https://robovinci.xyz/api/problems/1

GET /api/submissions/$SUBMISSION ID Retrieves information about a sub-
mission. It returns a JSON object with the following attributes: e status: Either
QUEUED, PROCESSING, SUCCEEDED, or FAILED e cost: The calculated
cost, when submission is SUCCEEDED. e error: The error message, when
submission is FAILED. e file url: The link of the submitted file.

GET /api/results/user Retrieves result of all problems.

15

ISL Specification

ISL code is a set of moves over a canvas.

We start with a description of ISL grammar.

ISL Grammar

<program>
<program-line>
<comment>
<move>

<pcut-move>
<lcut-move>
<color-move>
<swap-move>
<merge-move>
<orientation>
<orientation-type>
<vertical>
<horizontal>
<line-number>
<block>

<point>

<color>

<block-id>

<x> | <y>

<id> | <number>
<r> | <g> | | <a>
<newline>

<program-line> | <program-line> <newline>
<newline> | <comment> | <move>

"#" <unicode-string>

<pcut-move> | <lcut-move> | <color-move>
| <swap-move> | <merge-move>

"cut" <block> <point>

"cut" <block> <orientation> <line-number>
"color" <block> <color>

"swap" <block> <block>

"merge" <block> <block>

"[" <orientation-type> "]"

<vertical> | <horizontal>

nyn | gt

lIYll | llyll

"[" <number> "]"

"[" <block-id> "1"

L ogx> N <y> "]

mLM <> M, o<g> "L, "L, <a> "]
<id> | <id> "." <block-id>

oM, M, 2.

IIOII’ lllll’ ll2ll..‘

oM, "iM, "2".. . "255"

ll\nll

16

<program>

	Introduction
	Full Division v.1
	Full Division v.2
	Timeline
	Changelog

	Problem Specification
	Canvas
	Blocks

	Painting
	Moves
	Cut Moves
	Color Move
	Swap Move
	Merge Move

	Instruction Language
	Cost Function
	Similarity Function
	Scoring

	Submission
	Deadlines
	Determining the Winner
	REST API
	API Endpoints

	ISL Specification
	ISL Grammar

