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ABSTRACT

Molecular biology, specifically protein folding and heuristic structural prediction
problems, have been revolutionised by computational methods (such as gradi-
ent descent algorithms and transformer based architectures (like BERT and it’s
variants)) which proffer interesting insights on multi-scale representations, cross-
modality embeddings, rotation invariant shape-mers, simultaneous inclusion of
protein backbone and extension to euclidean vector spaces. But the generalis-
ability of the behavior of these systems and their respective representations to
two levels of evolutionary diversity: (a) multitude of protein compositions that
varies across interaction mechanisms (host-microbiome) (b) single cell analyses
and how they scale to sub-populations and populations of cells remains obscure.
We propose to tackle the same by applying similar methods to various interaction
settings, and understanding how single cell analysis methods generalise to capture
heterogeneity: patterns within cells to patterns within sub-populations of cells.
While repetitions across scale in different organisms perfectly embodies the re-
cursiveness that connectionist models excel at, the underlying influencing factors
(protein localisation sites, cell types and cell organisations that affect recruitment,
inter and intra cellular communication etc.) pose an adverse challenge to both ba-
sic and applied artificial intelligence. The vast amounts of unannotated data along
with the capability for empirical verification and the potential of comparing rad-
ically differing techniques under a unifying set of problems could help uncover
fundamental strengths and weaknesses of NLP and computer vision approaches.
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