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Motivation and Contribution

Motivation: VAEs can capture the latent space from which a distribution is

generated providing us an unfolded manifold‚ with observable linearity in be-

tween training examples.

Key Contributions:

Propose a new vicinal distribution called VarMixup (Variational Mixup) to

sample better Mixup images.

Experiments shows that VarMixup boosts the robustness to

out-of-distribution shifts as well calibration.

Additional analysis show that VarMixup significantly decreases the local

linearity error of the neural network.

Background and RelatedWork

Empirical Risk Minimization (ERM) minimize the average error over the
training dataset

pactual(x, y) ≈ pδ(x, y) = 1
N

·
N∑

i=1
δ(x = xi, y = yi)

w∗ = arg min
w

∫
L(Fw(x), y) · dpδ(x, y) = arg min

w

1
N

·
N∑

i=1
L(Fw(xi), yi)

Drawback: Overparametrized NNs suffer from memorization → leads to undesirable

behavior outside the training distribution.

Vicinal Risk Minimization: Popularly known as data augmentation. → define a vicinity or

neighbourhood around each training example (eg. in terms of brightness, contrast, noise,

etc.)

pactual(x, y) ≈ pv(x, y) = 1
N

·
N∑

i=1
v(x, y|xi, yi)

, where v is the vicinal distribution that calculates the probability of a data point (x, y) in
the vicinity of other samples (xi, yi).
Expected Vicinal Risk, then is given by

w∗ = arg min
w

∫
L(Fw(x), y) · dpv(x, y) = 1

N
·

N∑
i=1

g(Fw, L, xi, yi)

where g(Fw, L, xi, yi) =
∫

L(Fw(x), y) · dv(x, y|xi, yi).
MixUp is a popular technique to train models for better generalisation

Pang et al., 2020, Hendrycks et al., 2020, Lamb et al., 2019 - Mixup to improve the

robustness of models.

Thulasidasan et al., 2019 - Mixup-trained networks are significantly better calibrated.

Our Approach - VarMixup

We opt for an MMD-VAE because of its advantage over vanilla KL based
VAE

LMMD−V AE = γ · MMD(qφ(z)‖p(z)) + Ex∼pactual
Ez∼qφ(z|x)[log(pθ(x|z))]

Equivalent to constructing VarMixup samples as:

x′ = Ex [pθ (x|λ · Ez[qφ(z|xi)] + (1 − λ) · Ez[qφ(z|xj)])]
y′ = λ · yi + (1 − λ) · yj

Experiments

OOD Generalization

Robustness to common input corruptions on CIFAR-10-C, CIFAR-100-C and

Tiny-Imagenet-C

adv-VarMixup : Variant of VarMixup where we use adversarial robust VAE.

Method CIFAR-10-C CIFAR-100-C

AT (Madry et al., 2018) 73.12 ± 0.31 (85.58 ± 0.14) 45.09 ± 0.31 (60.28 ± 0.13)
TRADES (Zhang et al., 2019) 75.46 ± 0.21 (88.11 ± 0.43) 45.98 ± 0.41 (63.3 ± 0.32)
IAT (Lamb et al., 2019) 81.05 ± 0.42 (89.7 ± 0.33) 50.71 ± 0.25 (62.7 ± 0.21)

ERM 69.29 ± 0.21 (94.5 ± 0.14) 47.3 ± 0.32 (64.5 ± 0.10)
Mixup 74.74 ± 0.34 (95.5 ± 0.35 ) 52.13 ± 0.43 (76.8 ± 0.41)
Mixup-R 74.27 ± 0.22 (89.88 ± 0.11) 43.54 ± 0.15 (62.24 ± 0.21)

Manifold-Mixup 72.54 ± 0.14 (95.2 ± 0.18) 41.42 ± 0.23 (75.3 ± 0.48)
VarMixup 82.57 ± 0.42 (93.91 ± 0.45 ) 52.57 ± 0.39 (73.2 ± 0.44 )

adv-VarMixup 82.12 ± 0.46 (92.19 ± 0.32 ) 54.0 ± 0.41 (72.13 ± 0.34)

Calibration

Measures how good softmax

scores are as indicators of the

actual likelihood of a correct

prediction. We measure the

Expected Calibration Error (ECE,

lower the better)

Local Linearity of Loss

Surfaces

Qin et al., 2020 - local

linearity of loss landscapes

of NNs positively correlates

robustness.

Local linearity at a

data-point x within a
neighbourhood B(ε) as
γ(ε, x, y) =
max
δ∈B(ε)

|L(Fw(x + δ), y) − L(Fw(x), y)

− δTOxL(Fw(x), y)|

References

[1] D. P. Kingma and M. Welling.

Auto-encoding variational bayes.

arXiv, 2013.

[2] A. Lamb, V. Verma, J. Kannala, and Y. Bengio.

Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy.

In AISec, AISec’19, page 95–103, New York, NY, USA, 2019. Association for Computing Machinery.

[3] T. Pang*, K. Xu*, and J. Zhu.

Mixup inference: Better exploiting mixup to defend adversarial attacks.

In ICLR, 2020.

[4] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi, S. De, R. Stanforth, and P. Kohli.

Adversarial robustness through local linearization.

NeurIPS, 2019.

[5] S. Thulasidasan, G. Chennupati, J. Bilmes, T. Bhattacharya, and S. Michalak.

On mixup training: Improved calibration and predictive uncertainty for deep neural networks.

NeurIPS, 2019.

[6] S. Zhao, J. Song, and S. Ermon.

Infovae: Information maximizing variational autoencoders.

arXiv, 2017.


