NEMO: NEURAL MESH MODELS OF CONTRASTIVE
FEATURES FOR ROBUST 3D POSE ESTIMATION
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NeMo Perform 3D pose estimation via feature level render-and-compare

Current render-and-compare approaches to image analysis operate on pixels
intensity level. Which lead these methods have following limitations:

* The reconstruction loss in inherently hard to optimize w.r.t. pose parameters.
« Requires detailed and instance specific mesh models.

Contribution

This work proposes NeMo, a 3D object pose estimation pipeline conducts neural

feature level render-and-compare. NeMo combines a prototypical geometric

representation of the object with a generative model of neural network features

that are invariant to object details. Which allows NeMo have following advantages:

« Reconstruction loss is very easy to optimize with standard gradient descent (one
global optimum)

* Requires only a very crude prototypical 3D mesh.

« SOTA 3D pose estimation performance and exceptional robustness to out
distributed cases, i.e. occlusions, unseen views.

Method

We define the likelihood of the feature representation F as:

F‘J(Flmy:ﬂl! B) — H p(fi|myiﬂt) H P(fi’lB)
iEFG i'cEBG
whereM,is the 3D mesh representation, m is the camera pose, B is mixture parameters.

Then the forearound and backaround feature likelihoods:
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where 0 is the per vertex feature vector, (3 is the clutter feature vector, o is the variance
of each distribution.

During training, we constrain the variances that{e? = o2 = 1|¥r}, the max likelihood loss:
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To efficiently learn 6,,, £, and the feature extractor using the whole training set, we use
the contrastive keypoint representation learning pipeline[5] to train NeMo with loss:
"‘:’(F my! ., B) — 'CJ.LZIL(F! my: T, B) + ﬁFEr_‘afu?‘E(Fi ‘Fg) + *"-‘:Eaf:k (F, -ng Bg}
where,
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During Inference, the object pose is optimized via maximizing the model Iikelihood:
p(F|M,,m,B, z;) = H [p(fi| My, m)p(zi=1)]"" [p(f:|B)p(zi= “_ H p(fi| B
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Code: https://github.com/Angtian/NeMo. UNIVERSITY
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Train NeMo

1) Project vertices to the image manifold with the pose annotation. <Black>

2) Extract features from training image. <Aquamarine>

3) Learn a per vertex feature representation (NMM) via dense point position
on feature map. <Blue>

4) Optimize the CNN Backbone with contrastive loss such that vertex
features become different from each other.<Grey>

5) Repeat 2) to 4) Contrastlve Loss
Backward
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Pose Estimation with NeMo

1) Extract features (F) using the trained backbone.

2) Render a feature map (F’) using the trained NMM under a (random
initialized) camera pose. <Blue>

Compare F and F’ to compute a foreground score map. <Green>
Occlusion prediction using the clutter feature 3. <Orange>
Optimize camera parameters w.r.t loss. <Grey>

Repeat 2) to 5) until converge
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Qualitative Result
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Top-left: the input image; Top-right: A mesh superimposed on the input image in the predicted 3D pose; Bottom-left: The occluder
localization result, yellow -> background, green -> non-occluded area, red -> occluded; Bottomright: The loss landscape for each
individual camera parameter respectively.

Pre-process Meshes

Experiment setup including 3 mesh sampling methods: DownSample,
MultiCuboid and SingleCuboid.
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Robust 3D Pose Estimation Under Occlusion

Experiments on PASCAL3D+[1] (LO) and Occluded-PASCAL3D+[2] dataset (L1 to
L3 with increasing ratio of occluded area on the object). We use accuracy under
given threshold of the error between the predicted and groundtruth rotation matrix.

Evaluation Metric ACC= 1 ACC= 1

Occlusion Level LO L1 L2 L3 |LO L1 L2 L3
Res50-General 85.9 66.5 50.8 38.0[38.6 26.5 18.8 12.2
Res50-Specific 86.5 71.4 564 41.3(39.7 299 21.5 13.8
StarMap@! 89.4 71.1 47.2 229|595 344 139 38
NeMo 84.1 73.1 599 41.3|60.1 45.1 30.2 14.5
NeMo -MultiCuboid |86.7 77.3 65.2 47.1|63.2 499 34.5 17.8
NeMo -SingleCuboid | 85.0 75.8 63.5 45.8|57.7 43.7 304 15.1

Generalization to Unseen Views
The PASCAL3D+ dataset is split into 4 bins based on the ground-truth

azimuth angle.

Evaluation Metric ACCz 1 ACC = 1

/ \ Data Split Seen Unseen | Seen Unseen

j \ Res50-General 91.7 37.2 47.9 53
Res50-Specific 91.2 34.7 47.9 4.0

\ / StarMap 93.1 49.8 68.6 13.5

\ / NeMo-MultiCuboid 88.6 54.7 70.2 31.0

NeMo-SingleCuboid | 88.5 543 68.6 27.9

The image on the left shows how we separate the PASCAL3D+ dataset based on the azimuth annotations. The Blue bins indicates

azimuth range used during training. The number and histogram shows the azimuth distribution of PASCAL3D+ testing set.
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ACCz 1 bed bookshelf calculator cellphone computer cabinet guitar iron  knife

StarMap 40.0 72.9 21.1 41.9 62.1 799 38.7 2.0 6.1

NeMo-MultiCuboid|  56.1 53.7 57.1 28.2 78.8 83.6 38.8 323 9.8

ACC = T microwave  pen pot rifle s]i@cr stove milr::t tub wh{:{:l_chair

StarMap 86.9 124 45.1 3.0 13.3 79.7 356 464 17.7

NeMo-MultiCuboid |  90.3 3.7 66.7 13.7 6.1 85.2 745 616 717
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