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MOTIVATION
‘Want: Reinforcement learning agents that can re-use previously optimal
decision for transferring to new tasks
Need: Learning algorithms that can modify the mechanisms for choosing
certain actions independently of those for choosing others
Challenge: Currently we have no theory for how to achieve this kind of
modular credit assignment, nor formalism within which to express this theory

CONTRIBUTIONS

Problem Formulation

Dynamic modularity: Our definition of dynamic modularity extends the

traditional notion of static modularity to apply to learning systems that
change with feedback.

Modularity constraint: Our definition of modular credit assignment is a
constraint on the algorithmic mutual information among the gradients into
different modules.

Theorem: We show that static modularity + modular credit assignment
implies dynamic modularity and vice versa under certain conditions.

Challenge: Algorithmic mutual information is generally incomputable

ALGORITHMIC CAUSAL MODEL OF LEARNING
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(a) Algorithmic Causal Model of Learning

(b) Modular

Solution
Insight: Formally treat the learning algorithm as itself a causal graphll]
Benefit: Reduces measuring algorithmic mutual information to inspecting
the graph for d-separation
Theorem: We show how to evaluate, before any training, whether a
learning algorithm exhibits modular credit assignment by simply inspecting
its computational graph for d-separation.

(a) The algorithmic causal model of learning treats the execution of the learning algorithm as a causal graph
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Theoretical Results
Which reinforcement learning algorithms satisfy the modularity constraint?
e Policy gradient methods: No
0): No
ep temporal difference methods: Yes, for acyclic trajectories

o N-step temporal difference methods (n >
o Single-s

Which reinforcement learning algorithms enforce dynamic modularity?
e Tabular: Q-learning, SARSA, cloned Vickrey societyl
e General function approximation: cloned Vickrey societyl3

Empirical Results
e RL algorithms that are statically modular are correlated with higher
sample efficiency in transfer than non-modular RL algorithms
e RL algorithms that are dynamically modular are generally more sample
efficient than RL algorithms that are statically modular

MODULARITY IN REINFORCEMENT LEARNING
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(a-c) We can equivalently re-interpret a learnable discrete-action policy as composed of a society of lcamablc acuon apcmﬁc
functions and a non-learnable selection mechanism#.
(d) The hidden confounder for algorithms that use Monte Carlo returns is the sum of rewards.

(e) The hidden confounder for algorithms that use policy gradient is the normalization constant of the policy distribution.

(f) Single-step temporal difference algorithms have no confounders (for acyclic trajectories) and thus satisfy dynamic modularity.

MODULARITY CORRELATES WITH BETTER TRANSFER

Common Ancestor Common Descendant Linear Chain

Task Setup

isfer problems where
a previously optimal
ence needs fo be
dmngml .. previous optimal
actions might be A=B—C, but the
transfer task requires A—B—D.
(@) (b)
Training: (a)
Transfer: (a)—(b), (a)—(c), (a)—(d)
We enumerated all possible
topologies of triplets of decisions,
n and enumerated all ways of making
(© (@) a isolated change (o an optimal
decision sequence
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