
Audit
Sanctum

Presented by:

OtterSec contact@osec.io

Thibault Marboud thibault@osec.io

Tamta Topuria tamta@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:thibault@osec.io
mailto:tamta@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-SCT-ADV-00 [med] | Rounding Error During Swaps . 6
OS-SCT-ADV-01 [med] | Missing Rebalance Checks . 7
OS-SCT-ADV-02 [med] | Potential Pool Unbalancing . 8
OS-SCT-ADV-03 [low] | Denial Of Service . 9
OS-SCT-ADV-04 [low] | Protocol Fee Modification Via Frontrunning 10
OS-SCT-ADV-05 [low] | Account Type Validation . 11

05 General Findings 12
OS-SCT-SUG-00 | Missing Minimum Protocol Fee Check . 13
OS-SCT-SUG-01 | Lack Of Account Verification . 14
OS-SCT-SUG-02 | Missing Checks . 15

Appendices

A Vulnerability Rating Scale 16

B Procedure 17

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 17

01 | Executive Summary

Overview
Igneous Labs engagedOtterSec toassess theSprogram. This assessmentwas conductedbetweenJanuary
2nd and January 15th, 2024. For more information on our auditing methodology, refer to Appendix B.

Key Findings
We produced 9 findings throughout this audit engagement.

Inparticular,we identified several vulnerabilities, including the lackof checks in the rebalance functionality
for confirmation of the destination liquidity pool’s mint account (OS-SCT-ADV-01) and another issue
concerning a potential denial of service scenario due to creating an excessive amount of associated
token accounts (OS-SCT-ADV-03). We further highlighted the ability of the admin to front-run the liquidity
provider deposits or withdrawals to manipulate the protocol fees (OS-SCT-ADV-04).

We provided recommendations regarding the risk of users executing swaps for free with minimal amounts
(OS-SCT-SUG-00) and suggested implementing account validation checks in certain areas of the code
base (OS-SCT-SUG-01). Additionally, we emphasized the importance of incorporating missing validations
(OS-SCT-SUG-02) to ensure adherence to best practices.

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 17

02 | Scope
The source codewas delivered to us in a Git repository at github.com/igneous-labs/S/tree/ottersec-231220.
This audit was performed against commit dd0768d.

A brief description of the programs is as follows:

Name Description

S TheSanctumprogramcollaboratively facilitatesamulti-liquid staking tokenautomatedmarket
maker, embodying the ”Curve of LSTs” concept by managing numerous liquid staking tokens.
This setup enables capital-efficient swaps between liquid staking tokens, with all accounting
and calculations conducted in SOL terms.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 17

https://github.com/igneous-labs/S/tree/ottersec-231220
https://github.com/igneous-labs/S/commit/dd0768d496fdba80a019ccce86d187fbc2355223

03 | Findings
Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 0

Medium 3
Low 3

Informational 3

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 17

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-SCT-ADV-00 Medium Resolved Utilizing U64RatioFloor:reverse rounds up the
sol_to_lst cross-program invocation, resulting in a
rounding error, allowing users to receive one extra token
than intended.

OS-SCT-ADV-01 Medium Resolved start_rebalance lacks checks to confirm the destina-
tion liquidity pool’s mint account (dst_lst_mint) and the
conditions stipulating re-balancing the reserves.

OS-SCT-ADV-02 Medium Resolved Re-balancing based on a fixed amount in the presence of
network latency and arbitrage activities may result in unbal-
anced pools due to state changes.

OS-SCT-ADV-03 Low Resolved add_lst is vulnerable to a denial of service attack through
associated token account creation.

OS-SCT-ADV-04 Low Resolved Deposits andwithdrawals initiated by liquidity providers lack
safeguards against potential front-running by an admin, al-
lowing the fee to become 100% via set_protocol_fee.

OS-SCT-ADV-05 Low Resolved add_lst and remove_lst lack validation for the account
type being added or removed.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 17

Sanctum Audit 04 | Vulnerabilities

OS-SCT-ADV-00 [med]| Rounding Error During Swaps

Description

Within swap_exact_in during the cross-program invocation call to sol_to_lst,
U64RatioFloor:reverse rounds up the resulting value. This rounding behavior may allow users
to receive one more lamport than they should. In the context of a token swap, this rounding behavior
may result in a situation where the resulting dst_lst amount is slightly higher than it would be with
rounding down. It should be noted that this issue becomes exploitable only if the flat-fee program is
configured with zero fees since, due to the absence of fees, the exact amount of tokens received becomes
critical for users looking to maximize their gains.

s-src/processor/swap_exact_in.rs RUST

pub fn process_swap_exact_in(accounts: &[AccountInfo], args: SwapExactInIxArgs) ->
ProgramResult {↪→

[...]
let out_sol_value = pricing_cpi.invoke_price_exact_in(PricingProgramIxArgs {

amount,
sol_value: in_sol_value,

})?;
let dst_lst_out = dst_lst_cpi.invoke_sol_to_lst(out_sol_value)?.min;
[...]

}

Remediation

Round down the result of U64RatioFloor:reverse in the instructions.

Patch

Fixed in 87832e3.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 17

https://github.com/igneous-labs/S/commit/87832e3ebc0b17161f1ab79f37ff0775910e8ab4

Sanctum Audit 04 | Vulnerabilities

OS-SCT-ADV-01 [med]|Missing Rebalance Checks

Description

start_rebalance initiates a re-balance operation between two liquidity pools. end_rebalance
is expected to conclude the re-balance operation. However, start_rebalance fails to perform a
thorough check on the destination liquidity pool’s mint account within process_start_rebalance,
specifically the dst_lst_mint account of end_rebalance. The absence of this verification of the
destination mint account renders the system susceptible to fund loss if the address in dst_lst_mint is
inadvertently set to an incorrect value.

s-src/processor/start_rebalance.rs RUST

pub fn process_start_rebalance(
accounts: &[AccountInfo],
args: StartRebalanceIxArgs,

) -> ProgramResult {
let (

accounts,
SrcDstLstSolValueCalculatorCpis {

src_lst: src_lst_cpi,
dst_lst: dst_lst_cpi,

},
SrcDstLstIndexes {

src_lst_index,
dst_lst_index,

},
) = verify_start_rebalance(accounts, &args)?;
[...]

}

Remediation

Implement checks inprocess_start_rebalance to ensure the destinationmint account aligns with
the expected properties.

Patch

Fixed in 2dec5bb.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 17

https://github.com/igneous-labs/S/commit/2dec5bb872b91c706d13f27c22e61876963e3904

Sanctum Audit 04 | Vulnerabilities

OS-SCT-ADV-02 [med]| Potential Pool Unbalancing

Description

pool adjusts the pool’s composition based on a specified amount of tokens. However, if the state of the
pool changes between the transaction submission and its execution due to factors such as arbitrage bots
exploiting price differences, it may imbalance the pool. Arbitrage activities may result in rapid changes
in token prices. If a re-balancing transaction is initiated but not executed immediately, the pool may
re-balance based on outdated prices, unbalancing it.

Remediation

Ensure that rebalancing is necessary to prevent alterations to the reserve balances. Additionally, compu-
tation for the rebalancing amount should be be on-chain, providing increased accuracy and adaptability
to changing market conditions.

Patch

Fixed in 0a258ce.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 17

https://github.com/igneous-labs/S/commit/0a258ce1417865161a2252e781e99b8184b586ae

Sanctum Audit 04 | Vulnerabilities

OS-SCT-ADV-03 [low] | Denial Of Service

Description

add_lst is vulnerable to a denial of service attack. process_add_lst creates two associated token
accounts before executing the main logic of the add_lst. The program creates associated token ac-
counts for pool_reserves and protocol_fee_accumulator associated with the lst_mint. It
is possible to invoke create_ata_invoke repeatedly to create numerous associated token accounts
for the same st_mint before executing the actual add_lst. This accumulates unnecessary associated
token accounts, consuming additional storage space on the blockchain.

s-src/processor/set_protocol_fee.rs RUST

pub fn process_add_lst(accounts: &[AccountInfo]) -> ProgramResult {
[...]
// Attempting to create the ATAs verifies that the mint is not a duplicate
create_ata_invoke(CreateAtaAccounts {

ata_to_create: accounts.pool_reserves,
wallet: accounts.pool_state,

payer: accounts.payer,
mint: accounts.lst_mint,
system_program: accounts.system_program,
token_program: accounts.lst_token_program,

})?;

create_ata_invoke(CreateAtaAccounts {
ata_to_create: accounts.protocol_fee_accumulator,
wallet: accounts.protocol_fee_accumulator_auth,

payer: accounts.payer,
mint: accounts.lst_mint,
system_program: accounts.system_program,
token_program: accounts.lst_token_program,

})?;
[...]

Remediation

The associated token account creation should ideally be part of the atomic operation performed by
add_lst. Additionally, verify that the lst_mint has not already been added before proceeding with
add_lst.

Patch

Fixed in 6cffae8.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 17

https://github.com/igneous-labs/S/commit/6cffae85d49f58cde1b10d4302e8adfac6d1e067

Sanctum Audit 04 | Vulnerabilities

OS-SCT-ADV-04 [low] | Protocol Fee Modification Via Frontrunning

Description

The current protocol design enables the admin to exploitset_protocol_feeby invoking it to front-run
liquidity provider deposits or withdrawals to manipulate the protocol fees. This may result in a scenario
in which the admin adjusts the protocol fees to an extremely high value (e.g., 100%).

s-controller/src/processor/set_protocol_fee.rs RUST

pub fn process_set_protocol_fee(
accounts: &[AccountInfo],
args: SetProtocolFeeIxArgs,

) -> ProgramResult {
let (

accounts,
SetProtocolFeeIxArgs {

new_trading_protocol_fee_bps,
new_lp_protocol_fee_bps,

},
) = verify_set_protocol_fee(accounts, args)?;
[...]
Ok(())

}

Consequently, users depositing into the liquidity pool may receive fewer liquidity pool tokens than
expected, impacting their share of the pool and potential rewards, and users withdrawing from the pool
may receive fewer underlying assets than expected due to the higher fee, reducing the value of their
holdings.

Remediation

As a preventive measure, introduce a new parameter (example: min_lp_token_out), ensuring that
users receive a minimum amount of liquidity pool tokens by calculating the tokens to distribute based on
the new protocol fees and ensuring that the output satisfies the specified minimum.

Patch

Fixed in 4f71ef6.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 17

https://github.com/igneous-labs/S/commit/4f71ef696ccda038e4a08ac4b5656d47fe3c122f

Sanctum Audit 04 | Vulnerabilities

OS-SCT-ADV-05 [low] | Account Type Validation

Description

add_lst in flat-fee and s-controller are expected to interact with a token program, which is
crucial for handling associated token accounts. However, the instruction does not checkwhether the token
program is eitherspl-2022 orspl-token. This lack of validationmay yield unintended consequences
when utilizing an unauthorized or incompatible token program.

Similarly, within remove_lst, while closing an account, it fails to ensure whether the account removed
is a free account. Thismay inadvertently delete the program’smain state by providing an arbitrary account
as the fee_acc argument, and the function would proceed to close that account without verifying its
type, affecting the overall functionality of the protocol.

Remediation

Add a validation step to check that the token program associated with the provided mint account is either
spl-2022 or spl-token before proceeding with add_lst. Additionally, ensure the account passed
to remove_lst is a fee account by d-serializing the account data.

Patch

Fixed in 83c0a5b and f0ee280.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 17

https://github.com/igneous-labs/S/commit/83c0a5b482da0b85ce11b16ec0f6d9757419d28e
https://github.com/igneous-labs/S/commit/f0ee280be5edef74b193c91c75ef511a8b5c1d38

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-SCT-SUG-00 swap_exact_in and swap_exact_out fails to ensure
to_protocol_fees_lst_amount is non-zero, enabling users to execute
swaps for free with minimal amounts.

OS-SCT-SUG-01 Suggestions regarding implementation of account validation checks.

OS-SCT-SUG-02 Recommendations regarding incorporating absent validations.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 17

Sanctum Audit 05 | General Findings

OS-SCT-SUG-00 |Missing Minimum Protocol Fee Check

Description

swap_exact_in and swap_exact_out fails to explicitly check whether
to_protocol_fees_lst_amount is zero after calculating the protocol fees. This omission allows
users to effectively swap for free with small amounts, as the protocol fees may round down to zero. If a
user initiates swap_exact_inwith a small amount, the calculation of protocol fees
(to_protocol_fees_lst_amount) is performed based on the small amount causing protocol fees
to be negligible, resulting in zero after truncation, allowing users to exploit the system by swapping small
amounts without paying the intended protocol fees.

Remediation

Include a check after calculating to_protocol_fees_lst_amount to ensure it is not zero.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 17

Sanctum Audit 05 | General Findings

OS-SCT-SUG-01 | Lack Of Account Verification

Description

1. add_lst and set_sol_value_calculator both require sol_value_calculator as an
account parameter. However, they lack a verification mechanism to ensure that the provided
sol_value_calculator is a valid Solana program account.

2. In process_set_pricing_program, the pricing program key is updated in the pool state.
However, there is no explicit check to ensure that the provided new_pricing_program account
is indeed a program account.

s-src/processor/set_pricing_program.rs RUST

pub fn process_set_pricing_program(accounts: &[AccountInfo]) -> ProgramResult
{↪→

let SetPricingProgramAccounts {
admin: _,
new_pricing_program,
pool_state,

} = verify_set_pricing_program(accounts)?;
let mut pool_state_bytes = pool_state.try_borrow_mut_data()?;
let pool_state = try_pool_state_mut(&mut pool_state_bytes)?;
pool_state.pricing_program = *new_pricing_program.key;
Ok(())

}

3. It may be beneficial to explicitly validate the discriminant and account types of the marinade and
lido state accounts in verify_lst_sol_common. This ensures that the function passes the
correct accounts to the program.

Remediation

1. Introduce a validation step by comparing the account’s program ID with the expected program ID to
enhance the safety of these operations.

2. Include a check to verify that new_pricing_program is a valid program account before pro-
ceeding with the update in the pool state.

3. Ensure to validate the discriminant and account types of the marinade and lido state accounts.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 17

Sanctum Audit 05 | General Findings

OS-SCT-SUG-02 |Missing Checks

Description

1. Within set_lp_withdrawal_fee, there is a lack of validation for the lower bound of the
lp_withdrawal_fee_bps parameter in process_set_lp_withdrawal_fee, aimed at
ensuring that fees remain within practical and expected ranges. It is advisable to introduce a check
at the beginning of process_set_lp_withdrawal_fee to guarantee that
lp_withdrawal_fee_bps is greater than or equal to a defined lower bound.

2. initialize employs spl_token_2022::instruction::AuthorityType to establish
authorities for the liquidity pool tokenmint. However, it is more appropriate to utilize
spl_token::instruction::AuthorityType for the originally imported version of the SPL
token program.

initialise.rs RUST

use spl_token::{native_mint, state::Mint};
use spl_token_2022::instruction::AuthorityType;

pub fn process_initialize(accounts: &[AccountInfo]) -> ProgramResult {
[...]
set_authority_invoke(

set_authority_accounts,
SetAuthorityArgs {

authority_type: AuthorityType::MintTokens,
new_authority: Some(*accounts.pool_state.key),

},
)?;
set_authority_invoke(

set_authority_accounts,
SetAuthorityArgs {

authority_type: AuthorityType::FreezeAccount,
new_authority: Some(*accounts.pool_state.key),

},
)

}

3. Inswap_exact_inandswap_exact_out, it is crucial toverify that the source token (src_lst)
differs from the destination token (dst_lst). Examine this fundamental invariant before proceed-
ing with the swap operation.

Remediation

Ensure to incorporate the checks mentioned above.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 17

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings may be found in the General Findings section.

Critical Vulnerabilities that immediately result in a loss of user funds with minimal precondi-
tions.

Examples:

• Misconfigured authority or access control validation.
• Improperly designed economic incentives leading to loss of funds.

High Vulnerabilities that may result in a loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions.
• Exploitation involving high capital requirement with respect to payout.

Medium Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion throughmalicious input.
• Forced exceptions in the normal user flow.

Low Low probability vulnerabilities, which are still exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions.

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.
• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 17

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
executionmodel. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to bemore “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 17

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-SCT-ADV-00 [med] | Rounding Error During Swaps
	OS-SCT-ADV-01 [med] | Missing Rebalance Checks
	OS-SCT-ADV-02 [med] | Potential Pool Unbalancing
	OS-SCT-ADV-03 [low] | Denial Of Service
	OS-SCT-ADV-04 [low] | Protocol Fee Modification Via Frontrunning
	OS-SCT-ADV-05 [low] | Account Type Validation

	General Findings
	OS-SCT-SUG-00 | Missing Minimum Protocol Fee Check
	OS-SCT-SUG-01 | Lack Of Account Verification
	OS-SCT-SUG-02 | Missing Checks

	Appendices
	Vulnerability Rating Scale
	Procedure

