
1 Security Assessment Report

Sanctum S
February 8, 2024

Sec3 Report

Summary

The Sec3 team (formerly Soteria) was engaged to conduct a thorough security analysis of the

Sanctum S smart contracts.

The artifact of the audit was the source code of the following programs, excluding tests, in a

private repository.

The initial audit focused on the following versions and revealed 16 issues or questions.

program type commit

P1 S Controller Solana dd0768d496fdba80a019ccce86d187fbc2355223

P2 Pricing Program Solana dd0768d496fdba80a019ccce86d187fbc2355223

P3 SOL Value Calculator Solana dd0768d496fdba80a019ccce86d187fbc2355223

This report provides a detailed description of the findings and their respective resolutions.

1

Sec3 Report

Table of Contents

Result Overview.. 3

Findings in Detail .. 4

[P1-L-01]Missing PoolState validation when removing LST.. 4

[P1-I-01]Missing equivalence check for incoming and outgoing LSTs..................................... 5

[P1-I-02] Inconsistent rent receiver related checks .. 6

[P1-I-03] Arbitrage opportunities... 7

[P1-I-04] Create ATAs only if needed when adding LST... 8

[P1-I-05] Incomplete dst_lst check during rebalancing... 9

[P1-I-06] Incomplete lst_mint check when adding LST.. 11

[P1-I-07]Missing lst_mint check when withdrawing protocol fee .. 12

[P1-I-08] Incorrect in_sol_value calculation in a corner case .. 13

[P1-I-09]Missing redundancy check when adding new disable pool authority 15

[P1-I-10]Missing healthy check during rebalancing... 16

[P1-I-11] Documentation and IDL nitpicks .. 17

[P2-L-01] Arbitrary account closure when removing LST... 18

[P2-I-01] Better signed fee bps check... 20

[P2-I-02]Missing lst_mint check when adding LST... 21

[P3-I-01] Round up withdraw fee for SPL stake pool .. 22

Appendix: Methodology and Scope of Work... 23

2

Sec3 Report

Result Overview

Issue Impact Status

S CONTROLLER

[P1-L-01]Missing PoolState validation when removing LST Low Resolved

[P1-I-01]Missing equivalence check for incoming and outgoing LSTs Info Resolved

[P1-I-02] Inconsistent rent receiver related checks Info Resolved

[P1-I-03] Arbitrage opportunities Info Acknowledged

[P1-I-04] Create ATAs only if needed when adding LST Info Resolved

[P1-I-05] Incomplete dst_lst check during rebalancing Info Resolved

[P1-I-06] Incomplete lst_mint check when adding LST Info Resolved

[P1-I-07]Missing lst_mint check when withdrawing protocol fee Info Acknowledged

[P1-I-08] Incorrect in_sol_value calculation in a corner case Info Resolved

[P1-I-09]Missing redundancy check when adding new disable pool authority Info Resolved

[P1-I-10]Missing healthy check during rebalancing Info Resolved

[P1-I-11] Documentation and IDL nitpicks Info Resolved

PRICING PROGRAM

[P2-L-01] Arbitrary account closure when removing LST Low Resolved

[P2-I-01] Better signed fee bps check Info Acknowledged

[P2-I-02]Missing lst_mint check when adding LST Info Resolved

SOL VALUE CALCULATOR

[P3-I-01] Round up withdraw fee for SPL stake pool Info Resolved

3

Sec3 Report

Findings in Detail

S CONTROLLER
[P1-L-01]Missing PoolState validation when removing LST

In the “RemoveLst” instruction, asper thedocumentation, the initial step involvesverifyingwhether

the pool is in a rebalancing state or disabled. However, the implemented code lacks the invo-

cation of the “verify_not_rebalancing_and_not_disabled” function, resulting in the omission of

pertinent checks.

It is noteworthy that this instruction can only be invoked by the pool administrator, and the req-

uisite checks are conducted in the preceding instruction, “DisableLstInput”, mitigating potential

risks to a considerable extent.

Recommendations

Consider adding the “verify_not_rebalancing_and_not_disabled” check.

Resolution

This issue has been resolved by commit 47b0fc1c1d238db6a931ed19ab5f27c3bef91cb3.

4

Sec3 Report

S CONTROLLER
[P1-I-01]Missing equivalence check for incoming and outgoing LSTs

Within the instructions “swap_exact_in” and “swap_exact_out”, both employed for swapping op-

erations, there is presently an absence of verification regarding the equivalence of the incoming

and outgoing LST tokens.

In the context of swapping, confirming the identity of these tokens is a customary safeguard to

protect users, and in certain protocols, it may prevent complications in the accounting process.

It is recommended to incorporate the check to comply with the common practice.

Resolution

This issue has been resolved by commit 4c6775fc06c07fa54cf6b994ef2764ac6a481d2e.

5

Sec3 Report

S CONTROLLER
[P1-I-02] Inconsistent rent receiver related checks

Within the project, three instructions, apart from “end_rebalance”, necessitate users to provide

a rent receiver for the restitution of rent upon the closure of an account. However, there exists

inconsistency in the behavior across these three instances.

• “remove_lst” in S Controller. The documentation specifies that “refund_rent_to” should be

mutable only. The implementation aligns with this specification.

• “remove_disable_pool_authority” in S Controller. Account “refund_rent_to” is mutable only

according to the documentation. However, the implementation additionally requires it to

be a signer.

• “remove_lst” in Pricing Program. The documentation specifies that “refund_rent_to” should

be a signer only. However, the implementation additionally requires it to be mutable.

Recommendations

It is recommended to standardize these three instances by specifying that “refund_rent_to”

should be mutable and no signer requirement is necessary.

Resolution

This issue has been resolved by commits 301c92c86048b8300d73a4765ae10bbd8da51398 and

4c6775fc06c07fa54cf6b994ef2764ac6a481d2e.

6

Sec3 Report

S CONTROLLER
[P1-I-03] Arbitrage opportunities

In the “add_liquidity” instruction, only the value of “lst_index” asset is updated. As a result, the

calculated “total_sol_value” may deviate from the actual value, leading to an over- or under-

issuance of “lp_tokens”. The same issue also exists in “remove_liquidity”.

Consider the following scenario: the pool contains n types of assets, and their values increase

on epoch transitions. The amount in the pool for LSTi is xi. When transitioning from epoch n to

epoch n + 1, the unit price of the assets changes, denoted as δi.

If, at this point, LST A in the pool has not been used in this epoch (whether through swap or

add/remove liquidity), then “sync_sol_value_unchecked” has not been called to update its real

value in “pool_state.total_sol_value”. At this point, arbitrageurs can use “add_liquidity” to

add another LST Bwith a total value varb. The proportion of “lp_tokens” obtainedwill be varb
varb+vpool

.

Subsequently, the arbitrageur, in the same transaction, adds a negligible amount of A to the

pool using “add_liquidity”. Since “sync_sol_value_unchecked(A)” is called, the pool’s value will

return to normal, increasing by δA · xA. The arbitrageur then uses “remove_liquidity” to burn

these “lp_tokens” and take back to A, profiting varb
varb+vpool

· (varb + vpool + δA · xA)− varb =
varb·δA·xA
varb+vpool

.

If a particular asset has not been used by anyone formultiple epochs (whether through swap or

add/remove liquidity), δA will be even larger, giving the arbitrageurs a greater profit potential,

even taking LP withdrawal fees into consideration.

To avoid such scenarios, consider to update the total value of the assets in the S Controllerwhen

an LST price change is observed or make sure to update the total value once every epoch.

Resolution

The team acknowledged this issue and plans to address it by updating the total value in an off-

chain program.

7

Sec3 Report

S CONTROLLER
[P1-I-04] Create ATAs only if needed when adding LST

∕* programs∕s-controller∕src∕processor∕add_lst.rs *∕
031 | ∕∕ Attempting to create the ATAs verifies that the mint is not a duplicate
032 | create_ata_invoke(CreateAtaAccounts {
033 | ata_to_create: accounts.pool_reserves,
034 | wallet: accounts.pool_state,
035 |
036 | payer: accounts.payer,
037 | mint: accounts.lst_mint,
038 | system_program: accounts.system_program,
039 | token_program: accounts.lst_token_program,
040 | })?;
041 |
042 | create_ata_invoke(CreateAtaAccounts {
043 | ata_to_create: accounts.protocol_fee_accumulator,
044 | wallet: accounts.protocol_fee_accumulator_auth,
045 |
046 | payer: accounts.payer,
047 | mint: accounts.lst_mint,
048 | system_program: accounts.system_program,
049 | token_program: accounts.lst_token_program,
050 | })?;

In the “add_lst” instruction, the program assesses whether the respective LST has been added

previously by creating the corresponding ATA and determining its existence based on the suc-

cess or failure of this operation. However, given that ATAs can be generated by any user, ma-

licious actors may intentionally create the relevant ATA in advance to induce a failure in the

“add_lst” instruction.

Recommendations

It is advisable to adopt amore robust approach for ascertainingwhether the LST has been previ-

ously added, and creating the associated ATAonlywhen the correspondingATAdoes not already

exist.

Resolution

This issue has been resolved by commit 4c6775fc06c07fa54cf6b994ef2764ac6a481d2e.

8

Sec3 Report

S CONTROLLER
[P1-I-05] Incomplete dst_lst check during rebalancing

“start_rebalance” and “end_rebalance” should be called in pairs.

In “start_rebalance”, the presence of a subsequent “end_rebalance”operation in the same trans-

action is verified through “verify_has_succeeding_end_rebalance_ix”. However, this check only

ensures the existence of “end_rebalance”without verifying the consistency of “dst_lst_mint”.

∕* programs∕s-controller∕src∕processor∕start_rebalance.rs *∕
39 | pub fn process_start_rebalance(
40 | accounts: &[AccountInfo],
41 | args: StartRebalanceIxArgs,
42 |) -> ProgramResult {

...
98 | let mut rebalance_record_data = accounts.rebalance_record.try_borrow_mut_data()?;
99 | let rebalance_record = try_rebalance_record_mut(&mut rebalance_record_data)?;

100 | rebalance_record.dst_lst_index = args.dst_lst_index;
101 | rebalance_record.old_total_sol_value = old_total_sol_value;

∕* libs∕s-controller-lib∕src∕accounts_resolvers∕end_rebalance.rs *∕
32 | pub fn resolve(self) -> Result<(EndRebalanceKeys, usize), SControllerError> {

...
43 | let rebalance_record_acc_data = self.rebalance_record.data();
44 | let RebalanceRecord { dst_lst_index, .. } =
45 | try_rebalance_record(&rebalance_record_acc_data)?;
46 | let dst_lst_index = index_to_usize(*dst_lst_index)?;
47 |
48 | let dst_lst_state =
49 | try_match_lst_mint_on_list(*self.dst_lst_mint.pubkey(), list, dst_lst_index)?;

Currently, the “start_rebalance” writes “dst_lst_index” to the “rebalance_record” account, and

the subsequent “end_rebalance” checks if the “dst_lst_index” in the “rebalance_record”matches

the “dst_lst_mint” passed in the accounts.

However, a malicious user may insert a “remove_lst” in between so that the index points to a

different “dst_lst_mint”. By doing this, the disabled check in “start_rebalance” can be bypassed.

Although this instruction can only be invoked by the rebalance authority, consider validating if

the “dst_lst” is consistent during rebalancing. In fact, we believe that “remove_lst” should not

be allowedduring rebalancing, as stated in issue[P1-L-01]Missing PoolState validationwhen

removing LST.

9

Sec3 Report

Resolution

This issue has been resolved by commit 4c6775fc06c07fa54cf6b994ef2764ac6a481d2e.

10

Sec3 Report

S CONTROLLER
[P1-I-06] Incomplete lst_mint check when adding LST

∕* libs∕s-controller-lib∕src∕accounts_resolvers∕add_lst.rs *∕
33 | pub fn resolve(self) -> Result<(AddLstKeys, LstStateBumps), SControllerError> {
34 | let AddLstFreeArgs {
35 | payer,
36 | sol_value_calculator,
37 | pool_state: pool_state_acc,
38 | lst_mint,
39 | } = self;

...
56 | Ok((
57 | AddLstKeys {
58 | payer,
59 | sol_value_calculator,
60 | lst_mint: *lst_mint.pubkey(),
61 | admin: pool_state.admin,
62 | pool_reserves,
63 | protocol_fee_accumulator,
64 | protocol_fee_accumulator_auth: PROTOCOL_FEE_ID,
65 | pool_state: POOL_STATE_ID,
66 | lst_state_list: LST_STATE_LIST_ID,
67 | associated_token_program: spl_associated_token_account::ID,
68 | system_program: system_program::ID,
69 | lst_token_program: *lst_mint.owner(),
70 | },
71 | LstStateBumps {
72 | protocol_fee_accumulator: protocol_fee_accumulator_bump,
73 | pool_reserves: pool_reserves_bump,
74 | },
75 |))
76 | }

In the “add_lst” instruction, theprogramsolelyverifies theownerof theuser-provided “lst_mint”

without conducting a comprehensive examination of whether it is a valid mint account.

Although this instruction can only be invoked by the admin, it is advisable to add a verification

step ensuring that “lst_mint” is a valid mint account.

Resolution

This issue has been resolved by commit 4c6775fc06c07fa54cf6b994ef2764ac6a481d2e.

11

Sec3 Report

S CONTROLLER
[P1-I-07]Missing lst_mint check whenwithdrawing protocol fee

∕* libs∕s-controller-lib∕src∕accounts_resolvers∕withdraw_protocol_fees.rs *∕
26 | pub fn resolve(self) -> Result<WithdrawProtocolFeesKeys, ProgramError> {
27 | let WithdrawProtocolFeesFreeArgs {
28 | pool_state: pool_state_acc,
29 | withdraw_to,
30 | } = self;

...
39 | let lst_mint = token_account_mint(&withdraw_to)?;

...
47 | Ok(WithdrawProtocolFeesKeys {
48 | pool_state: POOL_STATE_ID,
49 | protocol_fee_accumulator,
50 | protocol_fee_accumulator_auth: PROTOCOL_FEE_ID,
51 | protocol_fee_beneficiary: pool_state.protocol_fee_beneficiary,
52 | token_program: *withdraw_to.owner(),
53 | withdraw_to: *withdraw_to.pubkey(),
54 | lst_mint,
55 | })
56 | }

In the “withdraw_protocol_fees” instruction, the protocol fee beneficiary can withdraw protocol

fees associated with the specified “lst_mint” from the protocol fee account.

However, it doesn’t check if the “lst_mint” is a legitimatemint within the “lst_state_list”. Nev-

ertheless, since this function is exclusively callable by a specific user designated by the admin,

the lack of this check does not pose a security threat.

Resolution

The team acknowledged this issue and decided to keep it as is. The reason is that if the check is

added, the protocol fee beneficiary will not be able to withdraw accumulated protocol fees for

a LST that was previously on the list but removed.

12

Sec3 Report

S CONTROLLER
[P1-I-08] Incorrect in_sol_value calculation in a corner case

Within the “SwapExactOut” instruction, the programcomputes the value of the specified outgoing

LST as per user instruction, and then determines the requisite amount of input LST. However,

during the calculation process, the “in_sol_value” calculationmay be incorrect in a corner case.

∕* programs∕s-controller∕src∕processor∕swap_exact_out.rs *∕
061 | let out_sol_value = dst_lst_cpi.invoke_lst_to_sol(amount)?.max;
062 | let in_sol_value = pricing_cpi.invoke_price_exact_out(PricingProgramIxArgs {
063 | amount,
064 | sol_value: out_sol_value,
065 | })?;

∕* libs∕pricing-programs∕flat-fee-lib∕src∕calc∕price_exact_out.rs *∕
013 | pub fn calculate_price_exact_out(
014 | CalculatePriceExactOut {
015 | input_fee_bps,
016 | output_fee_bps,
017 | sol_value,
018 | }: CalculatePriceExactOut,
019 |) -> Result<u64, FlatFeeError> {
020 | let fee_bps = input_fee_bps
021 | .checked_add(output_fee_bps)
022 | .ok_or(FlatFeeError::MathError)?;
023 | let post_fee_bps: u64 = BPS_DENOMINATOR_I16
024 | .checked_sub(fee_bps)
025 | .and_then(|v| u64::try_from(v).ok())
026 | .ok_or(FlatFeeError::MathError)?;
027 | let post_fee_bps = U64RatioFloor {
028 | num: post_fee_bps,
029 | denom: BPS_DENOMINATOR,
030 | };
031 | let result = post_fee_bps
032 | .reverse(sol_value)
033 | .map_err(|_e| FlatFeeError::MathError)?;
034 | Ok(result.max)
035 | }

∕* sanctum-solana-utils-e0a9b6e99d4ff9ca∕2d1718f∕sanctum-token-ratio∕src∕u64_ratio_floor.rs *∕
045 | pub fn reverse(&self, amt_after_apply: u64) -> Result<U64ValueRange, MathError> {
046 | let d: u128 = self.denom.into();
047 | let n: u128 = self.num.into();
048 | let is_zero = d == 0 || n == 0;
049 | if is_zero {
050 | if amt_after_apply == 0 {
051 | return Ok(U64ValueRange::full());
052 | } else {
053 | return Err(MathError);
054 | };
055 | }

13

Sec3 Report

As shown in the above code snippet, if the user intends to exchange a quantity of some LST

resulting in a computed SOL value, represented by “out_sol_value” of 0, and the combined fee

rate for input and output LSTs is 100%, invoking the “reverse” function would have both “n” and

“amt_after_apply”set to0. Consequently, thiswould returnacomplete range from0to “u64::MAX”,

resulting in the computed “in_sol_value” being set to “u64::MAX”.

Although such a scenario is highly improbable and, due to the excessively large numerical value,

may only lead to a revert without causing any loss for both the user and the protocol, it is ad-

visable to introduce relevant checks to ensure “out_sol_value” is not equal to 0.

Resolution

This issue has been resolved by commit f1c6ff18fe004d22f3ab662a0d39b10739f21f1e.

14

Sec3 Report

S CONTROLLER
[P1-I-09]Missing redundancy checkwhenaddingnewdisablepool authority

The admin can augment the list of authorities authorized to disable a pool by invoking the “add_

disable_pool_authority” instruction.

However, in “add_disable_pool_authority”, it doesn’t check whether the authority being added

is already present in the list. Consequently, inappropriate usage may result in the presence of

multiple records for a single authority in the list.

However, when invoking “remove_disable_pool_authority” for deletion, only the initial record is

removed, potentially leading to unintended consequences.

Resolution

This issue has been resolved by commits e2d1e2c474884b39defd4fd324d015fc6122ca4f and ad

28d0c1d57a23642cee1829a40a498a4f506527.

15

Sec3 Report

S CONTROLLER
[P1-I-10]Missing healthy check during rebalancing

In the rebalance operation, the current implementation solely verifies that the total value in the

pool post-rebalancing is not less than pre-rebalancing. However, it lacks the incorporation of

heuristics to ensure that the state of the pool is genuinely more balanced after the rebalance.

It is advisable to introduce relevant checks to prevent intentional or unintentional deterioration

of the pool’s health by the caller through the rebalance operation.

Resolution

This issue has beenmitigated by commit 4c6775fc06c07fa54cf6b994ef2764ac6a481d2e by en-

suring the pool isn’t in an unexpected state before rebalance.

16

Sec3 Report

S CONTROLLER
[P1-I-11] Documentation and IDL nitpicks

In addition to the issues mentioned in P1-I-02, there are several minor issues pertaining to the

documentation and IDL, as delineated below:

• The flat fee pricing program documentation for “remove_lst” requires passing in system

programwhich is not necessary.

• The flat fee pricing program documentation for “add_lst” does not specify the require-

ment of “payer” to be mutable.

• The S Controller IDL for “disable_pool” requires “disable_pool_authority_list” to bemu-

table, which is not necessary.

• Incorrect description of “add_lst” and “remove_lst” in the flat fee pricing program docu-

mentation.

Resolution

This issue has been resolved by commit 66e1e123aec42175099ddcd777198adf1620d732.

17

Sec3 Report

PRICING PROGRAM
[P2-L-01] Arbitrary account closure when removing LST

In the “RemoveLst” instruction, subsequent to conducting basic checks on the user-provided ac-

counts, the instruction proceeds to close the “fee_acc” account and transfer the rent to the spec-

ified “refund_rent_to” account.

∕* programs∕pricing-programs∕flat-fee∕src∕processor∕remove_lst.rs *∕
029 | fn verify_remove_lst<'me, 'info>(
030 | accounts: &'me [AccountInfo<'info>],
031 |) -> Result<RemoveLstAccounts<'me, 'info>, ProgramError> {
032 | let actual: RemoveLstAccounts = load_accounts(accounts)?;
033 |
034 | let free_args = RemoveLstFreeArgs {
035 | refund_rent_to: *actual.refund_rent_to.key,
036 | state_acc: actual.state,
037 | fee_acc: *actual.fee_acc.key,
038 | };
039 | let expected: RemoveLstKeys = free_args.resolve()?;
040 |
041 | remove_lst_verify_account_keys(actual, expected).map_err(log_and_return_wrong_acc_err)?;
042 | remove_lst_verify_account_privileges(actual).map_err(log_and_return_acc_privilege_err)?;
043 |
044 | Ok(actual)
045 | }

021 | close_account(CloseAccountAccounts {
022 | refund_rent_to,
023 | close: fee_acc,
024 | })?;

Notably, this directive lacks checkson the “fee_acc”account, enabling theclosureof anyaccount,

including the program state singleton for the current program.

However, given that only the manager possesses the authority to invoke this instruction, the

potential impact is considered minimal.

Recommendations

It is recommended to implement validation checks on the seeds of “fee_acc” to ensure it is a

legitimate “FeeAccount” PDA.

18

Sec3 Report

Resolution

This issue has been resolved by commit 4c6775fc06c07fa54cf6b994ef2764ac6a481d2e.

19

Sec3 Report

PRICING PROGRAM
[P2-I-01] Better signed fee bps check

∕* programs∕pricing-programs∕flat-fee∕src∕processor∕add_lst.rs *∕
075 | verify_signed_fee_bps_bound(args.input_fee_bps)?;
076 | verify_signed_fee_bps_bound(args.output_fee_bps)?;

∕* libs∕pricing-programs∕flat-fee-lib∕src∕fee_bound.rs *∕
005 | pub fn verify_signed_fee_bps_bound(fee_bps_i16: i16) -> Result<(), FlatFeeError> {
006 | if MAX_FEE_BPS < fee_bps_i16 {
007 | return Err(FlatFeeError::SignedFeeOutOfBound);
008 | }
009 | Ok(())
010 | }

When adding a newLST, the “AddLst” instruction should be called to record the fee rates applica-

blewhen the specified LST is utilized as input or output. Please note that the fee rates employed

can assume negative values, indicative of rewarding users.

However, the “verify_signed_fee_bps_bound” function does not impose constraints on themaxi-

mumpercentage for rewards. Furthermore, the apparent upper limit of 100% for fee ratesmight

be too high, considering that practical computations often involve the summation of the respec-

tive fee rates for the two LSTs involved. Consequently, capping the maximum fee rate at 50%

may be a better constraint.

Resolution

The teamacknowledges the issue andhasmitigated themissing negative bound issue in commit

4c6775fc06c07fa54cf6b994ef2764ac6a481d2e by limiting the fee range to [-100%, +100%].

20

Sec3 Report

PRICING PROGRAM
[P2-I-02]Missing lst_mint check when adding LST

∕* libs∕pricing-programs∕flat-fee-lib∕src∕account_resolvers∕add_lst.rs *∕
018 | pub fn resolve(self) -> Result<(AddLstKeys, FeeAccountCreatePdaArgs), FlatFeeError> {
019 | let Self {
020 | payer,
021 | state_acc,
022 | lst_mint,
023 | } = self;
024 |
025 | if *state_acc.pubkey() != STATE_ID {
026 | return Err(FlatFeeError::IncorrectProgramState);
027 | }
028 |
029 | let bytes = &state_acc.data();
030 | let state: &ProgramState = try_program_state(bytes)?;
031 |
032 | let find_pda_args = FeeAccountFindPdaArgs { lst_mint };
033 | let (fee_acc, bump) = find_pda_args.get_fee_account_address_and_bump_seed();
034 |
035 | Ok((
036 | AddLstKeys {
037 | manager: state.manager,
038 | payer,
039 | fee_acc,
040 | lst_mint,
041 | state: STATE_ID,
042 | system_program: system_program::ID,
043 | },
044 | FeeAccountCreatePdaArgs {
045 | find_pda_args,
046 | bump,
047 | },
048 |))
049 | }

Within the “add_lst” instruction, the user-provided “lst_mint” serves as a free argumentwithout

undergoing much checks.

Although this instruction can only be invoked by themanager, it is advisable to add a verification

step ensuring that “lst_mint” is a valid mint account.

Resolution

This issue has been resolved by commit 4c6775fc06c07fa54cf6b994ef2764ac6a481d2e.

21

Sec3 Report

SOL VALUE CALCULATOR
[P3-I-01] Round upwithdraw fee for SPL stake pool

∕* libs∕sol-value-calculator-programs∕spl-calculator-lib∕src∕calc.rs *∕
070 | pub const fn stake_withdrawal_fee(&self) -> U64FeeFloor<u64, u64> {
071 | let Self {
072 | stake_withdrawal_fee_numerator,
073 | stake_withdrawal_fee_denominator,
074 | ..
075 | } = self;
076 | U64FeeFloor {
077 | fee_num: *stake_withdrawal_fee_numerator,
078 | fee_denom: *stake_withdrawal_fee_denominator,
079 | }
080 | }

...
088 | fn calc_lst_to_sol(&self, pool_tokens: u64) -> Result<U64ValueRange, ProgramError> {
089 | let AmtsAfterFee {
090 | amt_after_fee: pool_tokens_burnt,
091 | ..
092 | } = self.stake_withdrawal_fee().apply(pool_tokens)?;
093 | let withdraw_lamports = self.lst_to_lamports_ratio().apply(pool_tokens_burnt)?;
094 | Ok(U64ValueRange::single(withdraw_lamports))
095 | }

In the calculation of “lst_to_sol” within the SPL stake pool, the program employs a rounding

downmechanism for the withdrawal fee.

However, in the actual implementation of the SPL stake pool, rounding up is applied to thewith-

drawal fee. Although the disparity is a mere 1 lamport, it is recommended to align the imple-

mentation with the SPL stake pool for consistency.

Resolution

This issue has been resolved by commits 13933109110b0e430b48a19b47a15869d4ebdac1 and

bc8a4aaf5b6e8465c9c19dbc5d3072fe410735cf.

22

https://github.com/solana-labs/solana-program-library/blob/65a92e6e0a4346920582d9b3893cacafd85bb017/stake-pool/program/src/state.rs#L941-L952

Sec3 Report

Appendix: Methodology and Scope ofWork

The Sec3 (formerly Soteria) audit team, which consists of Computer Science professors and

industrial researchers with extensive experience in smart contract security, program analy-

sis, testing and formal verification, performed a comprehensive manual code review, software

static analysis and penetration testing.

Assisted by the Sec3 Scanner developed in-house, the audit team particularly focused on the

following work items:

• Check common security issues.

• Check program logic implementation against available design specifications.

• Check poor coding practices and unsafe behavior.

• The soundness of the economics design and algorithm is out of scope of this work

23

The instance report ("Report") was prepared pursuant to an agreement between Coder-

rect Inc. d/b/a Sec3 (the "Company") and Socean Foundation (the "Client"). This Report

solely includes the results of a technical assessment of a specific build and/or version of

the Client's code specified in the Report ("Assessed Code") by the Company. The sole pur-

pose of the Report is to provide the Client with the results of the technical assessment

of the Assessed Code. The Report does not apply to any other version and/or build of the

Assessed Code. Regardless of the contents of the Report, the Report does not (and should

not be interpreted to) provide anywarranty, representation or covenant that theAssessed

Code: (i) is error and/or bug free, (ii) has no security vulnerabilities, and/or (iii) does not

infringe any third-party rights. Moreover, the Report is not, and should not be considered,

an endorsement by the Company of the Assessed Code and/or of the Client. Finally, the

Report should not be considered investment advice or a recommendation to invest in the

Assessed Code and/or the Client.

This Report is considered null and void if the Report (or any portion thereof) is altered in

any manner.

DISCLAIMER

Founded by leading academics in the field of software security and senior industrial

veterans, Sec3 (formerly Soteria) is a leading blockchain security company. We are also

building sophisticated security tools that incorporate static analysis, penetration

testing, and formal verification.

At Sec3, we identify and eliminate security vulnerabilities through the most rigorous

process and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

ABOUT

https://www.sec3.dev/
https://twitter.com/Sec3dev

	Result Overview
	Findings in Detail
	[P1-L-01] Missing PoolState validation when removing LST
	[P1-I-01] Missing equivalence check for incoming and outgoing LSTs
	[P1-I-02] Inconsistent rent receiver related checks
	[P1-I-03] Arbitrage opportunities
	[P1-I-04] Create ATAs only if needed when adding LST
	[P1-I-05] Incomplete dst_lst check during rebalancing
	[P1-I-06] Incomplete lst_mint check when adding LST
	[P1-I-07] Missing lst_mint check when withdrawing protocol fee
	[P1-I-08] Incorrect in_sol_value calculation in a corner case
	[P1-I-09] Missing redundancy check when adding new disable pool authority
	[P1-I-10] Missing healthy check during rebalancing
	[P1-I-11] Documentation and IDL nitpicks
	[P2-L-01] Arbitrary account closure when removing LST
	[P2-I-01] Better signed fee bps check
	[P2-I-02] Missing lst_mint check when adding LST
	[P3-I-01] Round up withdraw fee for SPL stake pool
	Appendix: Methodology and Scope of Work

