Programming in Haskell

Solutions to Exercises

Graham Hutton University of Nottingham

Contents

Chapter 1 - Introduction	1
Chapter 2 - First steps	3
Chapter 3 - Types and classes	4
Chapter 4 - Defining functions	5
Chapter 5 - List comprehensions	7
Chapter 6 - Recursive functions	9
Chapter 7 - Higher-order functions	13
Chapter 8 - Functional parsers	15
Chapter 9 - Interactive programs	19
Chapter 10 - Declaring types and classes	21
Chapter 11 - The countdown problem	23
Chapter 12 - Lazy evaluation	24
Chapter 13 - Reasoning about programs	26

Chapter 1 - Introduction

Exercise 1

double (double 2) { applying the inner *double* } =double (2+2){ applying double } =(2+2) + (2+2) $\{ applying the first + \}$ = 4 + (2 + 2) $\{ applying the second + \}$ = 4+4 $\{ applying + \}$ = 8

 or

```
double (double 2)
        { applying the outer double }
=
    (double \ 2) + (double \ 2)
        { applying the second double }
=
    (double \ 2) + (2+2)
        \{ applying the second + \}
=
    (double \ 2) + 4
        { applying double }
=
    (2+2)+4
        \{ applying the first + \}
=
    4 + 4
        \{ applying + \}
=
    8
```

There are a number of other answers too.

Exercise 2

sum [x] $= \{ applying sum \}$ x + sum [] $= \{ applying sum \}$ x + 0 $= \{ applying + \}$ x

```
(1)

product [] = 1

product (x : xs) = x * product xs
```

product [2, 3, 4] $\{ applying product \}$ = 2 * (product [3, 4]) $\{ applying product \}$ = 2 * (3 * product [4]) $\{ applying product \}$ = 2 * (3 * (4 * product [])){ applying product } = 2 * (3 * (4 * 1)) $\{ applying * \}$ = 24

Exercise 4

Replace the second equation by

 $qsort (x:xs) = qsort \ larger ++ [x] ++ qsort \ smaller$ That is, just swap the occurrences of smaller and larger.

Exercise 5

Duplicate elements are removed from the sorted list. For example:

$$\begin{array}{rcl} qsort \ [2,2,3,1,1] \\ = & \{ \ applying \ qsort \ \} \\ qsort \ [1,1] ++ \ [2] ++ \ qsort \ [3] \\ = & \{ \ applying \ qsort \ \} \\ (qsort \ [] ++ \ [1] ++ \ qsort \ []) ++ \ [2] ++ (qsort \ [] ++ \ [3] ++ \ qsort \ []) \\ = & \{ \ applying \ qsort \ \} \\ ([] ++ \ [1] ++ \ []) ++ \ [2] ++ (\ [] ++ \ [3] ++ \ []) \\ = & \{ \ applying \ ++ \ \} \\ [1] ++ \ [2] ++ \ [3] \\ = & \{ \ applying \ ++ \ \} \\ [1,2,3] \end{array}$$

(2)

Chapter 2 - First steps

Exercise 1

$$(2 \uparrow 3) * 4$$

 $(2 * 3) + (4 * 5)$
 $2 + (3 * (4 \uparrow 5))$

Exercise 2

No solution required.

Exercise 3

n = a' div' length xswhere a = 10xs = [1, 2, 3, 4, 5]

Exercise 4

or

 $last \ xs \ = \ head \ (reverse \ xs)$

last xs = xs !! (length xs - 1)

Exercise 5

init xs = take (length xs - 1) xsor init xs = reverse (tail (reverse xs))

Chapter 3 - Types and classes

Exercise 1

[Char] (Char, Char, Char) [(Bool, Char)] ([Bool], [Char]) $[[a] \rightarrow [a]]$

Exercise 2

$$\begin{split} & [a] \to a \\ & (a,b) \to (b,a) \\ & a \to b \to (a,b) \\ & Num \; a \Rightarrow a \to a \\ & Eq \; a \Rightarrow [a] \to Bool \\ & (a \to a) \to a \to a \end{split}$$

Exercise 3

No solution required.

Exercise 4

In general, checking if two functions are equal requires enumerating all possible argument values, and checking if the functions give the same result for each of these values. For functions with a very large (or infinite) number of argument values, such as values of type *Int* or *Integer*, this is not feasible. However, for small numbers of argument values, such as values of type of type *Bool*, it is feasible.

Chapter 4 - Defining functions

Exercise 1

 $halve \ xs = splitAt \ (length \ xs \ 'div' \ 2) \ xs$ or $halve \ xs = (take \ n \ xs, drop \ n \ xs)$ where $n = length \ xs \ 'div' \ 2$

Exercise 2

(a) safetail xs = if null xs then [] else tail xs
(b) safetail xs | null xs = [] | otherwise = tail xs
(c) safetail [] = [] safetail xs = tail xs
or safetail [] = [] safetail (_: xs) = xs

```
(1)
      False \lor False = False
      False \lor True = True
      True \lor False = True
      True \lor True = True
(2)
      False \lor False = False
      -\vee _
            = True
(3)
      False \lor b = b
      True \lor \_ = True
(4)
      b \lor c \mid b == c
                       = b
           | otherwise = True
```

 $a \wedge b =$ if a then if b then True else False else False

Exercise 5

 $a \wedge b =$ **if** a **then** b **else** False

Exercise 6

 $mult = \lambda x \to (\lambda y \to (\lambda z \to x * y * z))$

Chapter 5 - List comprehensions

Exercise 1

 $sum [x \uparrow 2 \mid x \leftarrow [1..100]]$

Exercise 2

 $replicate \ n \ x \ = \ [x \mid _ \leftarrow [1 \dots n]]$

Exercise 3

Exercise 4

 $perfects \ n = [x \mid x \leftarrow [1 \dots n], sum \ (init \ (factors \ x)) == x]$

Exercise 5

concat $[[(x, y) | y \leftarrow [4, 5, 6]] | x \leftarrow [1, 2, 3]]$

Exercise 6

positions x xs = find x (zip xs [0..n])where n = length xs - 1

Exercise 7

scalar product xs ys = sum $[x * y | (x, y) \leftarrow zip xs ys]$

shift	::	$Int \rightarrow Char \rightarrow Char$
shift $n \ c \mid isLower \ c$	=	$int2low ((low2int \ c+n) \ mod^{\circ} 26)$
isUpper c	=	int 2upp ((upp2int $c + n$) 'mod' 26)
otherwise	=	c
freqs	::	$String \rightarrow [Float]$
freqs xs		[percent (count $x xs'$) $n \mid x \leftarrow ['a''z']$]
		where
		$xs' = map \ toLower \ xs$
		$n = letters \ xs$
low2int	::	$Char \rightarrow Int$
low2int c	=	$ord \ c - ord$ 'a'

		$Int \rightarrow Char \\ chr (ord 'a' + n)$
11		$Char \rightarrow Int$ ord $c - ord$ 'A'
11		$\begin{array}{l} Int \rightarrow Char \\ chr \; (ord \; `A' + n) \end{array}$
letters letters xs	:: =	$\begin{array}{l} String \rightarrow Int\\ length \; [x \mid x \leftarrow xs, isAlpha \; x] \end{array}$

Chapter 6 - Recursive functions

Exercise 1

```
(1)
        m\uparrow 0
                  = 1
        m \uparrow (n+1) = m * m \uparrow n
(2)
          2\uparrow 3
               \{ applying \uparrow \}
     =
          2 * (2 \uparrow 2)
     =
              \{ applying \uparrow \}
          2 * (2 * (2 \uparrow 1))
              \{ applying \uparrow \}
     =
          2 * (2 * (2 * (2 \uparrow 0)))
     =
             \{ applying \uparrow \}
          2 * (2 * (2 * 1))
               { applying * }
     =
          8
```

Exercise 2

(1)

```
length [1, 2, 3]
        { applying length }
=
    1 + length [2, 3]
        { applying length }
=
    1 + (1 + length [3])
       { applying length }
=
    1 + (1 + (1 + length []))
        { applying length }
=
    1 + (1 + (1 + 0))
        \{ applying + \}
=
    3
```

 $\begin{array}{rcl} drop \; 3 \; [1,2,3,4,5] \\ = & \{ \; \operatorname{applying} \; drop \; \} \\ drop \; 2 \; [2,3,4,5] \\ = & \{ \; \operatorname{applying} \; drop \; \} \\ drop \; 1 \; [3,4,5] \\ = & \{ \; \operatorname{applying} \; drop \; \} \\ drop \; 0 \; [4,5] \\ = & \{ \; \operatorname{applying} \; drop \; \} \\ [4,5] \end{array}$

 $init [1, 2, 3] = \{ applying init \} \\ 1 : init [2, 3] \\ = \{ applying init \} \\ 1 : 2 : init [3] \\ = \{ applying init \} \\ 1 : 2 : [] \\ = \{ list notation \} \\ [1, 2]$

Exercise 3

and [] and (b : bs)		$\begin{array}{l} True \\ b \wedge and \ bs \end{array}$
concat [] concat (xs : xss)	=	[] xs ++ concat xss
$\begin{array}{c} replicate \ 0 \ _ \\ replicate \ (n+1) \ x \end{array}$	=	$\begin{bmatrix} 1 \\ x : replicate \ n \ x \end{bmatrix}$
$(x:_) !! 0$ $(_:xs) !! (n+1)$	=	$x \\ xs !! n$
$\begin{array}{l} elem \ x \ []\\ elem \ x \ (y : ys) \mid x == y\\ \mid otherwise \end{array}$	=	False True elem x ys

Exercise 4

merge [] ys	=	ys
merge xs []	=	xs
merge $(x:xs)$ $(y:ys)$	=	if $x \leq y$ then
		$x:merge \ xs \ (y:ys)$
		else
		$y:merge \ (x:xs) \ ys$

Exercise 5

(3)

Exercise 6.1

Step 1: define the type

 $sum :: [Int] \rightarrow Int$

Step 2: enumerate the cases

sum [] = sum (x : xs) =

Step 3: define the simple cases

 $\begin{array}{rcl} sum \left[\right] & = & 0 \\ sum \left(x:xs \right) & = \end{array}$

Step 4: define the other cases

sum [] = 0sum (x : xs) = x + sum xs

Step 5: generalise and simplify

 $\begin{array}{rcl} sum & :: & Num \; a \Rightarrow [\,a\,] \rightarrow a \\ sum & = & foldr \; (+) \; 0 \end{array}$

Exercise 6.2

Step 1: define the type

take :: $Int \rightarrow [a] \rightarrow [a]$

Step 2: enumerate the cases

 $\begin{array}{ll} take \; 0 \; [] & = \\ take \; 0 \; (x:xs) & = \\ take \; (n+1) \; [] & = \\ take \; (n+1) \; (x:xs) & = \end{array}$

Step 3: define the simple cases

Step 4: define the other cases

Step 5: generalise and simplify

$$\begin{array}{rrrr} take & :: & Int \rightarrow [a] \rightarrow [a] \\ take \ 0 _ & = & [] \\ take \ (n+1) \ [] & = & [] \\ take \ (n+1) \ (x:xs) & = & x: take \ n \ xs \end{array}$$

Exercise 6.3

Step 1: define the type

 $last :: [a] \to [a]$

Step 2: enumerate the cases

last (x:xs) =

Step 3: define the simple cases

 $\begin{array}{rcl} last \; (x:xs) \mid null \; xs & = & x \\ \mid otherwise & = & \end{array}$

Step 4: define the other cases

$$\begin{array}{rcl} last \ (x:xs) \mid null \ xs & = & x \\ \mid otherwise & = & last \ xs \end{array}$$

Step 5: generalise and simplify

Chapter 7 - Higher-order functions

Exercise 1

map f (filter p xs)

Exercise 2

```
all p = and \circ map p
any p = or \circ map p
take While \_ [] = []
take While p (x : xs)
| p x = x : take While p xs
| otherwise = []
drop While \_ [] = []
drop While p (x : xs)
| p x = drop While p xs
| otherwise = x : xs
```

Exercise 3

 $map f = foldr (\lambda x \ xs \to f \ x : xs) []$ filter $p = foldr (\lambda x \ xs \to if \ p \ x \ then \ x : xs \ else \ xs) []$

Exercise 4

 $dec2nat = foldl (\lambda x \ y \rightarrow 10 * x + y) 0$

Exercise 5

The functions being composed do not all have the same types. For example:

 $\begin{array}{lll} sum & :: & [Int] \to Int \\ map \ (\uparrow 2) & :: & [Int] \to [Int] \\ filter \ even & :: & [Int] \to [Int] \end{array}$

curry curry f	$\begin{array}{l} ((a,b) \rightarrow c) \rightarrow (a \rightarrow b \rightarrow c) \\ \lambda x \ y \rightarrow f \ (x,y) \end{array}$
uncurry uncurry f	$ \begin{array}{l} (a \rightarrow b \rightarrow c) \rightarrow ((a,b) \rightarrow c) \\ \lambda(x,y) \rightarrow f \; x \; y \end{array} $

chop 8	=	$unfold \ null \ (take \ 8) \ (drop \ 8)$
$map \ f$	=	$unfold \ null \ (f \circ head) \ tail$
iterate f	=	unfold (const False) id f

Exercise 8

encode encode	:: =	$\begin{array}{l} String \rightarrow [Bit] \\ concat \circ map \; (addparity \circ make8 \; \circ \; int2bin \; \circ \; ord) \end{array}$
decode decode	:: =	$[Bit] \rightarrow String$ map (chr \circ bin2int \circ checkparity) \circ chop9
addparity addparity bs		$ \begin{bmatrix} Bit \end{bmatrix} \rightarrow \begin{bmatrix} Bit \end{bmatrix} \\ (parity \ bs) : bs $
parity parity bs odd (sum bs) otherwise		
chop9 chop9 [] chop9 bits		$ \begin{bmatrix} Bit \end{bmatrix} \rightarrow [[Bit]] \\ [] \\ take 9 \ bits : chop9 \ (drop \ 9 \ bits) $
checkparity	::	$[Bit] \to [Bit]$
$\begin{array}{l} checkparity \ (b:bs) \\ \mid b == parity \ bs \\ \mid otherwise \end{array}$	=	bs error "parity mismatch"

Exercise 9

No solution required.

Chapter 8 - Functional parsers

Exercise 1

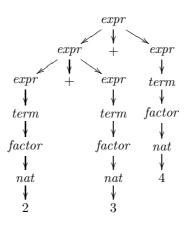
 $int = \mathbf{do} \ char \ '-'$ $n \leftarrow nat$ $return \ (-n)$ $+++ \ nat$

Exercise 2

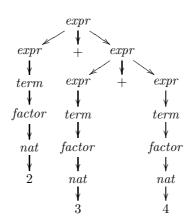
comment = do string "--" $many (sat (<math>\neq$ '\n')) return ()

Exercise 3

(1)



(2)





Without left-factorising the grammar, the resulting parser would backtrack excessively and have exponential time complexity in the size of the expression. For example, a number would be parsed four times before being recognised as an expression.

Exercise 6

```
expr
      = do t \leftarrow term
                 do symbol "+"
                    e \leftarrow expr
                    return (t+e)
                   +++ do symbol "-"
                           e \leftarrow expr
                           return (t-e)
                   +++ return t
term = \mathbf{do} f \leftarrow factor
                 do symbol "*"
                    t \leftarrow term
                    return (f * t)
                   +++ do symbol "/"
                           t \leftarrow term
                           return (f \, div \, t)
                   +++ return f
```

(1)

$$factor :::= atom (\uparrow factor | epsilon)$$

$$atom :::= (expr) | nat$$
(2)

$$factor :: Parser Int$$

$$factor = do a \leftarrow atom$$

$$do symbol "^{"}$$

$$f \leftarrow factor$$

$$return (a \uparrow f)$$

$$+++ return a$$

$$atom :: Parser Int$$

$$atom = do symbol "("$$

$$e \leftarrow expr$$

$$symbol ")"$$

$$return e$$

$$+++ natural$$

(a)
expr ::= expr - nat | nat nat ::= 0 | 1 | 2 | ···
(b)
expr = do e ← expr symbol "-" n ← natural return (e - n) +++ natural

(c)

The parser loops forever without producing a result, because the first operation it performs is to call itself recursively.

 $expr = do n \leftarrow natural$ $ns \leftarrow many (do symbol "-"$ natural) return (fold (-) n ns)

Chapter 9 - Interactive programs

Exercise 1

Exercise 2

No solution available.

Exercise 3

No solution available.

Exercise 4

No solution available.

Exercise 5

No solution available.

type Board	=	[Int]
initial initial	:: =	Board [5, 4, 3, 2, 1]
finished finished b		$\begin{array}{l} Board \rightarrow Bool\\ all \;(==0) \; b \end{array}$
valid valid b row num	:: =	$Board \rightarrow Int \rightarrow Int \rightarrow Bool$ $b !! (row - 1) \ge num$
move move b row num	:: =	$Board \rightarrow Int \rightarrow Int \rightarrow Board$ [if $r == row$ then $n - num$ else n $(r, n) \leftarrow zip$ [15] b]
$new line \\ new line$		IO () putChar '\n'

putBoard putBoard [a, b, c, d, e]		$\begin{array}{l} Board \rightarrow IO \ () \\ \textbf{do} \ putRow \ 1 \ a \\ putRow \ 2 \ b \\ putRow \ 3 \ c \\ putRow \ 4 \ d \\ putRow \ 5 \ e \end{array}$
putRow putRow row num	:: =	$Int \rightarrow Int \rightarrow IO ()$ do putStr (show row) putStr ": " putStrLn (stars num)
stars stars n	:: =	$Int \rightarrow String \\ concat (replicate n "* ")$
getDigit getDigit prom	:: =	$\begin{array}{l} String \rightarrow IO \ Int \\ \textbf{do} \ putStr \ prom \\ x \leftarrow getChar \\ newline \\ \textbf{if} \ isDigit \ x \ \textbf{then} \\ return \ (ord \ x - ord \ `0`) \\ \textbf{else} \\ \textbf{do} \ putStrLn \ "ERROR: \ Invalid \ digit" \\ getDigit \ prom \end{array}$
nim nim	:: =	IO () play initial 1
play play board player	:: =	$\begin{array}{c} Board \rightarrow Int \rightarrow IO \ () \\ \textbf{do} \ newline \\ putBoard \ board \\ \textbf{if} \ finished \ board \ \textbf{then} \\ \textbf{do} \ newline \\ putStr \ (Player \ " \\ putStr \ (show \ (next \ player))) \\ putStrLn \ " \ wins ! ! " \\ \textbf{else} \\ \textbf{do} \ newline \\ putStrLn \ (show \ player) \\ r \leftarrow getDigit \ "Enter \ a \ row \ number: \ " \\ n \leftarrow getDigit \ "Stars \ to \ remove : \ " \\ \textbf{if} \ valid \ board \ r \ n \ \textbf{then} \\ play \ (move \ board \ r \ n) \ (next \ player) \\ \textbf{else} \\ \textbf{do} \ newline \\ putStrLn \ "ERROR: \ Invalid \ move" \\ play \ board \ player \end{array}$
next next 1 next 2	:: = =	$ \begin{array}{l} Int \to Int \\ 2 \\ 1 \end{array} $

Chapter 10 - Declaring types and classes

Exercise 1

mult m Zero = Zeromult m (Succ n) = add m (mult m n)

Exercise 2

This version is more efficient because it only requires one comparison for each node, whereas the previous version may require two comparisons.

Exercise 3

leaves (Leaf _) leaves (Node l r)	=	$\begin{array}{c} 1\\ leaves \ l+leaves \ r \end{array}$
balanced (Leaf _)	=	True
balanced (Node $l r$)	=	$abs \ (leaves \ l-leaves \ r) \leq 1$
		$\wedge \ balanced \ l \wedge balanced \ r$

Exercise 4

halve xs	=	splitAt (length xs 'div' 2) xs
balance $[x]$	=	Leaf x
$balance \ xs$	=	Node (balance ys) (balance zs)
		where $(ys, zs) = halve xs$

Exercise 5

data Prop	=	$\cdots \mid Or \ Prop \ Prop \mid Equiv \ Prop \ Prop$
$\begin{array}{l} eval \ s \ (Or \ p \ q) \\ eval \ s \ (Equiv \ p \ q) \end{array}$		$\begin{array}{l} eval \ s \ p \lor eval \ s \ q \\ eval \ s \ p == eval \ s \ q \end{array}$
vars (Or p q) vars (Equiv p q)		

Exercise 6

No solution available.

data Expr	=	Val Int Add Expr Expr Mult Expr Expr
type Cont	=	[Op]
data Op	=	$EVALA \ Expr \mid ADD \ Int \mid EVALM \ Expr \mid MUL \ Int$
eval eval (Val n) ops eval (Add x y) ops eval (Mult x y) ops	=	$\begin{aligned} Expr &\to Cont \to Int\\ exec \ ops \ n\\ eval \ x \ (EVALA \ y : ops)\\ eval \ x \ (EVALM \ y : ops) \end{aligned}$
exec exec [] n exec (EVALA y : ops) n exec (ADD n : ops) m exec (EVALM y : ops) n exec (MUL n : ops) m	= = =	$Cont \rightarrow Int \rightarrow Int$ n $eval \ y \ (ADD \ n : ops)$ $exec \ ops \ (n + m)$ $eval \ y \ (MUL \ n : ops)$ $exec \ ops \ (n * m)$
value value e		$\begin{aligned} Expr &\to Int \\ eval \ e \ [\] \end{aligned}$

Exercise 8

instance Monad Maybe where

 $\begin{array}{rcl} return & :: & a \to Maybe \ a \\ return \ x & = & Just \ x \\ (\gg) & :: & Maybe \ a \to (a \to Maybe \ b) \to Maybe \ b \\ Nothing \gg _ & = & Nothing \\ (Just \ x) \gg f & = & f \ x \end{array}$

instance Monad [] where

 $\begin{array}{rcl} return & :: & \stackrel{\frown}{a} \to [a] \\ return x & = & [x] \\ (\gg) & :: & [a] \to (a \to [b]) \to [b] \\ xs \gg f & = & concat \ (map \ f \ xs) \end{array}$

Chapter 11 - The countdown problem

Exercise 1

choices $xs = [zs | ys \leftarrow subs xs, zs \leftarrow perms ys]$

Exercise 2

Exercise 3

It would lead to non-termination, because recursive calls to exprs would no longer be guaranteed to reduce the length of the list.

Exercise 4

> length [$e \mid ns' \leftarrow choices [1, 3, 7, 10, 25, 50], e \leftarrow exprs ns$] 33665406

> length [e | ns' \leftarrow choices [1, 3, 7, 10, 25, 50], e \leftarrow exprs ns, eval e \neq []] 4672540

Exercise 5

Modifying the definition of *valid* by

valid Sub x y = Truevalid Div $x y = y \neq 0 \land x `mod` y == 0$

gives

```
> length [e \mid ns' \leftarrow choices [1, 3, 7, 10, 25, 50], e \leftarrow exprs ns', eval e \neq []] 10839369
```

Exercise 6

No solution available.

Chapter 12 - Lazy evaluation

Exercise 1

(1)

 $2\ast 3$ is the only redex, and is both innermost and outermost.

(2)

1+2 and 2+3 are redexes, with 1+2 being innermost.

(3)

1+2, 2+3 and *fst* (1+2, 2+3) are redexes, with the first of these being innermost and the last being outermost.

(4)

2 * 3 and $(\lambda x \to 1 + x) (2 * 3)$ are redexes, with the first being innermost and the second being outermost.

Exercise 2

Outermost:

 $\begin{array}{rcl}
 & fst \ (1+2,2+3) \\
 & & \{ \text{ applying } fst \} \\
 & & 1+2 \\
 & & \{ \text{ applying } + \} \\
 & & 3 \\
\end{array}$

Innermost:

$$\begin{array}{rcl}
& fst (1+2,2+3) \\
& & \{ \text{ applying the first } + \} \\
& fst (3,2+3) \\
& & \{ \text{ applying } + \} \\
& fst (3,5) \\
& & & \{ \text{ applying } fst \} \\
& & & 3 \\
\end{array}$$

Outermost evaluation is preferable because it avoids evaluation of the second argument, and hence takes one less reduction step.

$$mult 3 4$$

$$= \{ applying mult \}$$

$$(\lambda x \to (\lambda y \to x * y)) 3 4$$

$$= \{ applying \lambda x \to (\lambda y \to x * y) \}$$

$$(\lambda y \to 3 * y) 4$$

$$= \{ applying \lambda y \to 3 * y \}$$

$$3 * 4$$

$$= \{ applying * \}$$

$$12$$

 $fibs = 0:1: [x + y | (x, y) \leftarrow zip fibs (tail fibs)]$

Exercise 5

fib n = fibs !! n

(2)

(1)

head (drop While (≤ 1000) fibs)

repeatTree	::	$a \rightarrow Tree \ a$
$repeatTree \ x$	=	Node $t \ x \ t$
		where $t = repeatTree x$
takeTree	::	$Int \rightarrow Tree \ a \rightarrow Tree \ a$
takeTree 0	=	Leaf
takeTree (n+1) Leaf	=	Leaf
$takeTree (n + 1) (Node \ l \ x \ r)$	=	Node (takeTree $n l$) x (takeTree $n r$)
replicateTree	::	$Int \rightarrow a \rightarrow Tree \ a$
$replicateTree\ n$	=	$takeTree \ n \circ repeatTree$

Chapter 13 - Reasoning about programs

Exercise 1

There are a number of other answers too.

Exercise 2

Base case:

add Zero (Succ m) $= \{ applying add \}$ Succ m $= \{ unapplying add \}$ Succ (add Zero m)

Inductive case:

$$add (Succ n) (Succ m)$$

$$= \begin{cases} applying add \\ Succ (add n (Succ m)) \end{cases}$$

$$= \begin{cases} induction hypothesis \\ Succ (Succ (add n m)) \end{cases}$$

$$= \begin{cases} unapplying add \\ Succ (add (Succ n) m) \end{cases}$$

Exercise 3

Base case:

add Zero m $= \{ applying add \}$ m $= \{ property of add \}$ add m Zero

Inductive case:

$$add (Succ n) m$$

$$= \{ applying add \}$$

$$Succ (add n m)$$

$$= \{ induction hypothesis \}$$

$$Succ (add m n)$$

$$= \{ property of add \}$$

$$add m (Succ n)$$

Exercise 4

Base case:

$$all (== x) (replicate 0 x)$$

$$= \{ applying replicate \}$$

$$all (== x) []$$

$$= \{ applying all \}$$

$$True$$

Inductive case:

$$all (== x) (replicate (n + 1) x)$$

$$= \begin{cases} applying replicate \} \\ all (== x) (x : replicate n x) \end{cases}$$

$$= \begin{cases} applying all \} \\ x == x \land all (== x) (replicate n x) \end{cases}$$

$$= \begin{cases} applying == \} \\ True \land all (== x) (replicate n x) \end{cases}$$

$$= \begin{cases} applying \land \} \\ all (== x) (replicate n x) \end{cases}$$

$$= \begin{cases} applying \land \} \\ all (== x) (replicate n x) \end{cases}$$

$$= \begin{cases} induction hypothesis \} \\ True \end{cases}$$

Exercise 5.1

Base case:

$$= \begin{cases} [] ++ [] \\ \{ applying ++ \} \\ [] \end{cases}$$

Inductive case:

$$(x:xs) ++ []$$

$$= \{ applying ++ \}$$

$$x: (xs ++ [])$$

$$= \{ induction hypothesis \}$$

$$x:xs$$

Exercise 5.2

Base case:

$$[] ++ (ys ++ zs) = \{ applying ++ \} ys ++ zs = \{ unapplying ++ \} ([] ++ ys) ++ zs$$

Inductive case:

$$\begin{array}{rcl}
& (x:xs) ++ (ys ++ zs) \\
& = & \{ & \text{applying }++ \} \\
& x:(xs ++ (ys ++ zs)) \\
& = & \{ & \text{induction hypothesis} \} \\
& x:((xs ++ ys) ++ zs) \\
& = & \{ & \text{unapplying }++ \} \\
& (x:(xs ++ ys)) ++ zs \\
& = & \{ & \text{unapplying }++ \} \\
& ((x:xs) ++ ys) ++ zs \\
\end{array}$$

Exercise 6

The three auxiliary results are all general properties that may be useful in other contexts, whereas the single auxiliary result is specific to this application.

Exercise 7

Base case:

$$map f (map g []) = \begin{cases} applying the inner map \\ map f [] \\ = \\ [] \\ [] \\ = \\ map (f \circ g) [] \end{cases}$$

Inductive case:

$$map f (map g (x: ss))$$

$$= \begin{cases} applying the inner map \\ map f (g x: map g xs) \end{cases}$$

$$= \begin{cases} applying the outer map \\ f (g x): map f (map g xs) \end{cases}$$

$$= \begin{cases} induction hypothesis \\ f (g x): map (f \circ g) xs \end{cases}$$

$$= \begin{cases} unapplying \circ \\ (f \circ g) x: map (f \circ g) xs \end{cases}$$

$$= \begin{cases} unapplying map \\ map (f \circ g) (x: xs) \end{cases}$$

Base case:

$$take 0 xs ++ drop 0 xs$$

$$= \{ applying take, drop \}$$

$$[] ++ xs$$

$$= \{ applying ++ \}$$

$$xs$$

Base case:

$$take (n + 1) [] + drop (n + 1) [] { applying take, drop } [] ++ [] { applying ++ } []$$

Inductive case:

$$take (n + 1) (x : xs) ++ drop (n + 1) (x : xs)$$

$$= \{ applying take, drop \}$$

$$(x : take n xs) ++ (drop n xs)$$

$$= \{ applying ++ \}$$

$$x : (take n xs ++ drop n xs)$$

$$= \{ induction hypothesis \}$$

$$x : xs$$

Exercise 9

Definitions:

Property:

 $leaves \ t = nodes \ t + 1$

Base case:

$$nodes (Leaf n) + 1$$

$$= \{ applying nodes \}$$

$$0+1$$

$$= \{ applying + \}$$

$$1$$

$$= \{ unapplying leaves \}$$

$$leaves (Leaf n)$$

Inductive case:

nodes (Node l r) + 1 $= \{ applying nodes \}$ 1 + nodes l + nodes r + 1 $= \{ arithmetic \}$ (nodes l + 1) + (nodes r + 1) $= \{ induction hypotheses \}$ leaves l + leaves r $= \{ unapplying leaves \}$ leaves (Node l r)

Exercise 10

Base case:

$$comp' (Val n) c$$

$$= \{ applying comp' \}$$

$$comp (Val n) ++ c$$

$$= \{ applying comp \}$$

$$[PUSH n] ++ c$$

$$= \{ applying ++ \}$$

$$PUSH n : c$$

Inductive case:

$$comp' (Add x y) c$$

$$= \{ applying comp' \}$$

$$comp (Add x y) ++ c$$

$$= \{ applying comp \}$$

$$(comp x ++ comp y ++ [ADD]) ++ c$$

$$= \{ associativity of ++ \}$$

$$comp x ++ (comp y ++ ([ADD] ++ c))$$

$$= \{ applying ++ \}$$

$$comp x ++ (comp y ++ (ADD : c))$$

$$= \{ induction hypothesis for y \}$$

$$comp x ++ (comp' y (ADD : c))$$

$$= \{ induction hypothesis for x \}$$

$$comp' x (comp' y (ADD : c))$$

In conclusion, we obtain: