Programming in Haskell
Solutions to Exercises

Graham Hutton
University of Nottingham

Contents

Chapter 1 - Introduction

Chapter 2 - First steps

Chapter 3 - Types and classes
Chapter 4 - Defining functions
Chapter 5 - List comprehensions
Chapter 6 - Recursive functions
Chapter 7 - Higher-order functions
Chapter 8 - Functional parsers
Chapter 9 - Interactive programs
Chapter 10 - Declaring types and classes
Chapter 11 - The countdown problem
Chapter 12 - Lazy evaluation

Chapter 13 - Reasoning about programs

13

15

19

21

23

24

26

Chapter 1 - Introduction

Exercise 1

double (double 2)

= { applying the inner double }
double (2 + 2)

= { applying double }
2+2)+(2+2)

= { applying the first + }
44 (2+2)

= { applying the second + }
444

= { applying + }
8

or

double (double 2)

= { applying the outer double }
(double 2) + (double 2)

= { applying the second double }
(double 2) + (2 +2)

= { applying the second + }
(double 2) + 4

= { applying double }
(242)+4

= { applying the first + }

444
{ applying + }

8

There are a number of other answers too.

Exercise 2

{ applying sum }
x + sum []
= { applying sum }
z+0
= { applying + }

Exercise 3

(1)

product [] =1
product (z:xs8) = x * product xs

product [2,3,4]

= { applying product }
2 x (product [3,4])

= { applying product }
2 % (3 x product [4])

= { applying product }
2% (3 * (4 * product []))

= { applying product }
2% (3% (4%1))

= { applying * }
24

Exercise 4
Replace the second equation by
gsort (x:xs) = gqsort larger H [z] H gsort smaller

That is, just swap the occurrences of smaller and larger.

Exercise 5

Duplicate elements are removed from the sorted list. For example:

gsort [2,2,3,1,1]

{ applying gsort }
gsort [1,1] + [2] + gsort [3]
= { applying gsort }

(gsort [] + [1] ++ gsort []) H [2] +H (gsort [] ++ [3] + gsort [])
= { applying gsort }

(T[] 1D+ 2]+ ([T + Bl D)
= { applying ++ }

[1] 4+ [2] ++ [3]
= { applying + }

1,2,3]

Chapter 2 - First steps

Exercise 1

(213) x4
(2%3) 4 (4%5)
24+ (3% (415))

Exercise 2

No solution required.

Exercise 3

n = a‘div length xs
where
a =10
xzs =[1,2,3,4,5]

Exercise 4

last zs = head (reverse xs)
or

last zs = xs!! (length s — 1)

Exercise 5

init s = take (length zs — 1) xs
or

init xs = reverse (tail (reverse xs))

Chapter 3 - Types and classes

Exercise 1

[Char]
(Char, Char, Char)
[(Bool, Char)]
([Bool], [Char])

[

[a] = [a]]

Exercise 2
[a] = a
(a,b) — (b, a)
a—b—(a,b)
Num a=a—a
Eq a = [a] — Bool

(a—a)—>a—a

Exercise 3

No solution required.

Exercise 4

In general, checking if two functions are equal requires enumerating all possible ar-
gument values, and checking if the functions give the same result for each of these
values. For functions with a very large (or infinite) number of argument values, such
as values of type Int or Integer, this is not feasible. However, for small numbers of
argument values, such as values of type of type Bool, it is feasible.

Chapter 4 - Defining functions

Exercise 1

halve zs = splitAt (length xs ‘div‘ 2) xs
or
halve xs = (take n xs, drop n xs)
where

n = length xs ‘div‘ 2

Exercise 2

(a)

safetail xs = if null zs then [] else tail zs
(b)

safetail xs | null xs =]

| otherwise = tail zs

(c)

safetail [| = |[]

safetail xs = tail xs
or

safetail [] =]

safetail (—:xzs) = s
Exercise 3
(1)

False V False = False

False V True = True

True V False = True

True V True = True
(2)

False V False = False

V = True
(3)

FalseVb = b

TrueV _ = True
(4)

bVelb==c = b

| otherwise = True

Exercise 4
aNb = if athen
if b then True else False

else
False

Exercise 5

aANb = if athen b else False

Exercise 6

mult = Az — Ay — Az > zxyx*2))

Chapter 5 - List comprehensions
Exercise 1

sum [z 12|z« [1..100]]

Exercise 2

replicate nx = [z | _«—[1..n]]

Exercise 3

pythsn = [(zayaz)kx‘*[l"n]a
y—[1..n],
z«—[1l..n],

z12+yl12==212]

Exercise 4

perfects n = [z |z« [L..n],sum (init (factors x)) == x|

Exercise 5

concat [[(z,y) | y «— [4,5,6]] | z [1,2,3]]

Exercise 6
positions x xs = find x (zip zs [0..n])
where n = length xs — 1

Exercise 7

scalarproduct xs ys = sum [z *xy | (z,y) — zip zs ys]

Exercise 8

shift :: Int — Char — Char
shift n c | isLower ¢ int2low ((low2int ¢ + n) ‘mod* 26)

| isUpper ¢ nt2upp ((upp2int ¢ + n) ‘mod* 26)
| otherwise c
fregs i String — [Float]
fregs xs [percent (count x zs') n |z «— [’a’..’z"]]
where
xs' = map toLower zs
n = letters xs
low2int :w Char — Int
low2int ¢ ord ¢ — ord ’a’

mt2low
mt2low n

upp2int
upp2int c

mt2upp
mt2upp n

letters
letters xs

Int — Char
chr (ord *a’ + n)

Char — Int

ord ¢ — ord ’A’
Int — Char

chr (ord A’ 4+ n)

String — Int
length [z | © < xs,isAlpha z]

Chapter 6 - Recursive functions

Exercise 1

(1)

m 710 = 1
ml(n+1) = mxmin
(2)
213
= { applying T }
2% (212)

= { applying 1 }
2% (2%(271))

= { applying T }
2% (2% (2% (270)))

= { applying T }
2% (2% (2x1))

= { applying * }
8

Exercise 2
(1)

length [1,2, 3]

= { applying length }
1+ length [2, 3]

= { applying length }
14 (1 + length [3])

= { applying length }
14+ (1 + (14 length []))

= { applying length }
1+(1+(1+0))

= { applying + }
3

drop 3 [1,2,3,4,5]

= { applying drop }
drop 2 [2,3,4,5]

= { applying drop }
drop 1 [3,4,5]

= { applying drop }
drop 0 [4,5]

= { applying drop }
14,5]

init [1,2,3]

= { applying init }
1: init [2,3]

= { applying init }
1:2:init [3]

= { applying init }
1:2:]

= { list notation }
1,2]

Exercise 3

and [] = True

and (b: bs) = bAand bs
concat [] =]

concat (xs : xss) = 18+ concat s

replicate 0 _ =]

replicate (n+ 1) x =z :replicate n x
(:c : _) 1N0] = =z
(—:rzs)(n+1) = aslln
elem x [] = False
elemz (y:ys) |z ==y = True

| otherwise = elem z ys

Exercise 4

merge [] ys = ys
merge s [] = s
merge (z:xzs) (y:ys) = if z <y then
x : merge xs (y : ys)
else

y : merge (:x8) ys

Exercise 5

halve s = splitAt (length xs ‘div‘ 2) xs
msort [| =[]

msort [z] = [z]

msort s = merge (msort ys) (msort zs)

where (ys, zs) = halve zs

10

Exercise 6.1
Step 1: define the type

sum = [Int] — Int
Step 2: enumerate the cases

sum [] =
sum (x:xs) =

Step 3: define the simple cases

sum [] =0
sum (xz:xs) =

Step 4: define the other cases

sum [] =0

sum (z:1xs) = x+ sum xs

Step 5: generalise and simplify

sum = Numa=[a] — a

sum = foldr (+) 0

Exercise 6.2
Step 1: define the type

take = Int — [a] — [a]
Step 2: enumerate the cases

take 0 [] =
take 0 (z : xs) =
take (n+1) [] =
take (n+1) (z:2s) =

Step 3: define the simple cases

take 0 [] =
take 0 (z : xs) =
take (n +1) [] =
take (n + 1) (z: zs)

Step 4: define the other cases

take 0 [] =
take 0 (z : xs) =
take (n + 1) [] =
take (n + 1) (z: zs)

Step 5: generalise and simplify

take

take 0 _ =
take (n + 1) [] =
take (n+1) (z:2s) =

z : take n s

11

Exercise 6.3

Step 1: define the type
last 1 [a] — [a]

Step 2: enumerate the cases
last (x:xs) =

Step 3: define the simple cases

last (x : xs) | null zs = =z
| otherwise =

Step 4: define the other cases

last (z: xs) | null zs =
| otherwise = last s

Step 5: generalise and simplify

last o [a] = [a]
last [z] = =z
last (—:xzs) = last zs

12

Chapter 7 - Higher-order functions

Exercise 1

map f (filter p xs)

Exercise 2

all p = andomap p
any p = oromapp
takeWhile _[] =[]
takeWhile p (z : xs)
|pz = 1z :takeWhile p xs
| otherwise =[]
dropWhile _[] =]
dropWhile p (z : xs)
|pz = dropWhile p xs
| otherwise = x:xs

Exercise 3

map f = foldr Az xs — f x:xs) []
filter p = foldr (A\z zs — if p z then z : zs else xs) []

Exercise 4

dec2nat = foldl Az y —10x2+y)0

Exercise 5

The functions being composed do not all have the same types. For example:

sum i [Int] — Int
map (12) = [Int] — [Int]
filter even = [Int] — [Int]

Exercise 6

curry w ((a,0) = ¢)— (a—b—0)
curry f = Avy—f(z,y)
UNCUTTY w (a—b—c¢)— ((a,b) — ¢)
uncurry f = Mz,y) = fzy

13

Exercise 7

chop8 = unfold null (take 8) (drop 8)
map f unfold null (f o head) tail
iterate f = wunfold (const False) id f

Exercise 8

encode
encode

decode
decode

addparity
addparity bs

parity
parity bs | odd (sum bs)
| otherwise

chop9
chop9 []
chop9 bits

checkparity
checkparity (b: bs)
| b == parity bs
| otherwise

Exercise 9

No solution required.

String — [Bit]
concat o map (addparity o make8 o int2bin o ord)

[Bit] — String
map (chr o bin2int o checkparity) o chop9

[Bit] — [DBit]
(parity bs) : bs

Bit] — Bit

1

0

[Bit] — [[Bit]]
(]

take 9 bits : chop9 (drop 9 bits)
[Bit] — [Bit]

bs

error "parity mismatch"

14

Chapter 8 - Functional parsers
Exercise 1

it = do char ’-’
n <« nat
return (—n)
+Hnat

Exercise 2
comment = do string "--"

many (sat (# ’\n’))
return ()

Exercise 3

(1)
expr
PR TN
expr + expr
PRI \
exrpr + expr term
| | |
term term factor
| b
factor factor nat
\ v |
nat nat 4
¥ v
2 3
(2)
expr
PR N
expr + expr
\ PRI
term expr + expr
| | |
factor term term
| | {
nat factor factor
| v v
2 nat nat
v \
3 4

15

Exercise 4

(1)

expr
PRI
term + expr
| |
factor term
| |
nat factor
' |
2 nat
v
3
(2)
expr
v
term
27N
factor * term
! 1N
nat factor * term
| | |
2 nat factor
b |
3 nat
\
4
(3)
expr
PR N
term + expr
| |
factor term
|
(/63}177”\) factor
2N \
term + exrpr nat
| | |
factor term 4
| '
nat factor
' |
2 nat
v
3

16

Exercise 5

Without left-factorising the grammar, the resulting parser would backtrack excessively
and have exponential time complexity in the size of the expression. For example, a
number would be parsed four times before being recognised as an expression.

Exercise 6

expr = dot« term
do symbol "+"
e «— expr
return (t + e)
+H do symbol "-"
e «— expr
return (t — e)
+ return t

term = do f < factor
do symbol "*"
t « term
return (f * t)
++H do symbol " /"

t < term
return (f ‘div‘ t)
++ return f
Exercise 7
(1)
factor == atom (7 factor | epsilon)
atom == (expr) | nat
(2)
factor :: Parser Int
factor = do a «— atom
do symbol "~"
f < factor
return (a 1 f)
- return a
atom 1 Parser Int
atom = do symbol " ("
e «— expr
symbol ") "
return e
++ natural

17

Exercise 8

(a)

expr = expr — nat | nat
nat = 0|1]2]--
(b)
expr = do e« expr
symbol "-"

n «— natural
return (e — n)
+H natural

The parser loops forever without producing a result, because the first
operation it performs is to call itself recursively.

expr = do n <« natural
ns — many (do symbol "-"
natural)
return (foldl (=) n ns)

18

Chapter 9 - Interactive programs

Exercise 1

readLine = get""

get xs = do z < getChar
case z of

’\n’ — return xs
’\DEL’ — if null zs then

get xs

else
do putStr "\ESC[1D \ESC[1D"
get (init xs)

— — get (xs + [z])

Exercise 2

No solution available.

Exercise 3

No solution available.

Exercise 4

No solution available.

Exercise 5

No solution available.

Exercise 6

type Board = [Int]

initial :t Board

initial = 1[5,4,3,2,1]

finished ;2 Board — Bool

finished b = adl(==0)b

valid :t Board — Int — Int — Bool

valid b row num = b (row — 1) > num

move :t Board — Int — Int — Board

move b row num = [if r == row then n — num else n
| (r,n) « zip [1..5] b]

newline w10 ()

newline = putChar >\n’

19

putBoard 2 Board — 10 ()

putBoard [a,b,c,d,e] = do putRow 1l a

putRow 2 b

putRow 3 ¢

putRow 4 d

putRow 5 e
putRow = Int — Int — 10 ()
putRow row num = do putStr (show row)

putStr ": "

putStrLn (stars num)
stars :: Int — String
stars n = concat (replicate n "* ")
getDigit = String — IO Int
getDigit prom = do putStr prom

z «— getChar

newline

if isDigit x then
return (ord x — ord ’0°)
else
do putStrLn "ERROR: Invalid digit"
getDigit prom

nim = 10 ()

nim = play initial 1

play . Board — Int — I0 ()
play board player = do newline

putBoard board
if finished board then
do newline
putStr "Player "
putStr (show (next player))
putStrLn " wins!!"
else
do newline
putStr "Player "
putStrLn (show player)
r <« getDigit "Enter a row number: "
n «— getDigit "Stars to remove : "
if valid board r n then
play (move board r n) (next player)
else
do newline
putStrLn "ERROR: Invalid move"
play board player

next o Int — Int
next 1 = 2
next 2 = 1

20

Chapter 10 - Declaring types and classes

Exercise 1

mult m Zero = Zero
mult m (Succ n) = add m (mult m n)

Exercise 2

occurs m (Leaf n) = m==n

occurs m (Node Il n) = case compare m n of
LT — occurs m 1
EQ — True

GT — occurs m r

This version is more efficient because it only requires one comparison for each node,
whereas the previous version may require two comparisons.

Exercise 3
leaves (Leaf _) =1
leaves (Node I 1) = leaves | + leaves r

balanced (Leaf _)
balanced (Node 1 r)

True
abs (leaves | — leaves) < 1
A balanced | A balanced r

Exercise 4

halve zs = splitAt (length xs ‘div‘ 2) s
balance [t] = Leaf x
balance s = Node (balance ys) (balance zs)

where (ys, zs) = halve zs

Exercise 5

data Prop

.-+ | Or Prop Prop | Equiv Prop Prop

eval s (Or p q) eval s p V eval s q
eval s (Equiv p q) = eval s p==eval s q

vars (Or p q) vars p -+ vars q
vars (Equiv p q) = wvars p +H vars q

Exercise 6

No solution available.

21

Exercise 7

data Fzxpr
type Cont
data Op

eval

eval (Val n) ops

eval (Add z y) ops =
eval (Mult = y) ops =

exec
exec [n

exec (EVALA y:ops)n =

exec (EVALM y:ops)n =
exec (MUL n : ops) m =

value
value e

Exercise 8

[
(

exec (ADD n: ops) m =
E

Val Int | Add Expr Expr | Mult Expr Ezpr

[Op]
EVALA Expr | ADD Int | EVALM Ezpr | MUL Int

Expr — Cont — Int
exec ops n

eval x (EVALA y : ops)
eval z (EVALM vy : ops)

Cont — Int — Int

n

eval y (ADD n : ops)
exec ops (n + m)
eval y (MUL n : ops)
exec ops (n *m)

Expr — Int
eval e[|

instance Monad Maybe where
a — Maybe a

return
return x

(>=)

Nothing >= _
(Just z) >=f

= Justx

Maybe a — (a — Maybe b) — Maybe b

fx

instance Monad [] where

return
return x
(>=)

xs >=f

a — [a]

[]

Nothing

[a] = (a — [b]) — [0]
concat (map f xs)

22

Chapter 11 - The countdown problem
Exercise 1

choices xs = [zs | ys « subs xs, zs < perms ys]

Exercise 2

removeone x |] =]
removeone (Y : ys)

|z ==y = ys
| otherwise = y:removeone T ys
isChoice [] — = True
isChoice (x:xs) [] = False
isChoice (x :xs) ys = elem x ys A isChoice xs (removeone x ys)

Exercise 3

It would lead to non-termination, because recursive calls to exprs would no longer be
guaranteed to reduce the length of the list.

Exercise 4
> length [e | ns' « choices [1,3,7,10,25,50], e — exprs ns]
33665406

> length [e | ns’ « choices [1,3,7,10,25,50], e — exprs ns, eval e # []]
4672540
Exercise 5

Modifying the definition of valid by

valid Subzy = True
valid Divzy = y#0Az‘mod y==0

gives

> length [e | ns’ «— choices [1,3,7,10,25,50], e < exprs ns’, eval e # []]
10839369

Exercise 6

No solution available.

23

Chapter 12 - Lazy evaluation

Exercise 1
(1)

2 % 3 is the only redex, and is both innermost and outermost.

(2)
1+ 2 and 2 + 3 are redexes, with 1+ 2 being innermost.

3)
142,243 and fst (1+ 2,2+ 3) are redexes, with the first of these being
innermost and the last being outermost.

(4)

2«3 and (Az — 1+ z) (2 * 3) are redexes, with the first being innermost
and the second being outermost.

Exercise 2

Outermost:

fst (1+2,2+ 3)
= { applying fst }
142

= { applying + }
3

Innermost:

fst (1+2,243)
= { applying the first + }
fst (3,2+3)
= { applying + }
fst (3,5)
= { applying fst }
3

Outermost evaluation is preferable because it avoids evaluation of the second argu-
ment, and hence takes one less reduction step.

Exercise 3

mult 3 4

= { applying mult }
Az = (A\y — z*y)) 34

= { applying Az — (A\y — z*y) }
Ay —3xy)4

= { applying A\y — 3*y }
3x4

= { applying * }
12

24

Exercise 4

fibs = 0:1:[z+vy]| (z,y) — zip fibs (tail fibs)]

Exercise 5
(1)
fibn = fibs!ln
(2)
head (drop While (< 1000) fibs)

Exercise 6

repeat Tree i a— Tree a
repeatTree = Nodetuzt
where t = repeatTree x
takeTree . Int — Tree a — Tree a
takeTree O _ = Leaf
takeTree (n + 1) Leaf = Leaf
takeTree (n + 1) (Node l x) = Node (takeTree n 1) z (takeTree n r)
replicate Tree 2 Int— a— Tree a
replicate Tree n = takeTree n o repeatTree

25

Chapter 13 - Reasoning about programs

Exercise 1

last w [a]l—a
last [z] = =z
last (—:zs) = last xs
or
init i [a] = [a]
mit[] =[]
ingt (x:xs) = x:init xs
or
foldr1 (a—a—a)—[a]—a
foldrl _|[z] =

x
foldrl f (z:xzs) = f x (foldrl [xs)

There are a number of other answers too.

Exercise 2

Base case:

add Zero (Succ m)

= { applying add }
Suce m

= { unapplying add }
Succ (add Zero m)

Inductive case:

add (Succ n) (Succ m)
= { applying add }
Succ (add n (Succ m))
{ induction hypothesis }
Succ (Suce (add n m))
= { unapplying add }
Succ (add (Succ n) m)

Exercise 3

Base case:
add Zero m
= { applying add }
m

{ property of add }
add m Zero

26

Inductive case:

add (Succ n) m
{ applying add }
Succ (add n m)
{ induction hypothesis }
Succ (add m n)
= { property of add }
add m (Succ n)

Exercise 4

Base case:

all (== x) (replicate 0)

= { applying replicate }
all (:: x) []

= { applying all }
True

Inductive case:

all (== z) (replicate (n + 1) z)
= { applying replicate }

all (== =) (z : replicate n x)
= { applying all }
z ==z A all (== z) (replicate n x)

= { applying == }
True A all (== z) (replicate n)
= { applying A }
all (== x) (replicate n x)
= { induction hypothesis }
True

Exercise 5.1

Base case:

[]++]
= { applying ++ }

[]

Inductive case:

= { applying + }
z:(zs H[])

{ induction hypothesis }
T T8

27

Exercise 5.2

Base case:

[]+ (ys + 23)

= { applying +- }
YS ++ z8

= { unapplying + }
([]+ ys) + 25

Inductive case:

(:xs) H (ys +H 2s)
= { applying + }
x: (s H (ys H 2s))
{ induction hypothesis }
x: ((xs H ys) H 2s)
= { unapplying + }
(z:(xs H ys)) H zs
= { unapplying + }
((z: zs) + ys) + 2s

Exercise 6

The three auxiliary results are all general properties that may be useful in other
contexts, whereas the single auxiliary result is specific to this application.

Exercise 7

Base case:

map f (map g [])

= { applying the inner map }
map f]

= . { applying map }

= { unapplying map }
map (f o g) []

Inductive case:

map f (map g (v : zs))

= { applying the inner map }
map f (g :map g xs)

= { applying the outer map }
f (¢ %) map f (map g 25)

= { induction hypothesis }
f(gx):map (fog)as

= { unapplying o }
(fog)z:map (fog)as

= { unappling map }
map (f o) (z : 5)

28

Exercise 8

Base case:

take 0 xs + drop 0 zs

= { applying take, drop }
[] +as

= { applying ++ }
zs

Base case:

take (n+1) [] + drop (n + 1) []
= { applying take, drop }

[]++]

. { applying ++ }

Inductive case:

take (n + 1) (z : z8) H drop (n+ 1) (z : xs)
{ applying take, drop }

(z: take n zs) ++ (drop n xs)

= { applying ++ }

z : (take n xs + drop n xs)
{ induction hypothesis }

T s

Exercise 9

Definitions:
leaves (Leaf _) =1
leaves (Node l r) = leaves | + leaves r
nodes (Leaf _) =0
nodes (Node I r) = 1+ nodes |+ nodes r
Property:

leaves t = nodes t + 1

Base case:

nodes (Leaf n) + 1

= { applying nodes }
0+1

= { applying + }
1

= { unapplying leaves }
leaves (Leaf n)

29

Inductive case:

nodes (Node | r) + 1
{ applying nodes }
1+ nodes I + nodes r + 1
= { arithmetic }
(nodes 1+ 1) + (nodes r + 1)
= { induction hypotheses }
leaves | + leaves r
= { unapplying leaves }
leaves (Node I 1)

Exercise 10

Base case:

comp’ (Val n) ¢

= { applying comp’ }
comp (Val n) + ¢

= { applying comp }
[PUSH n] ++ ¢

= { applying + }
PUSH n:c

Inductive case:

comp’ (Add z y) ¢
= { applying comp’ }

comp (Add = y) H ¢
= { applying comp }

(comp x +H comp y +H [ADD]) H ¢
= { associativity of + }

comp z +H (comp y +H ([ADD] H ¢))
= { applying + }

comp ¢+ (comp y +H (ADD : ¢))
= { induction hypothesis for y }
comp = +H (comp’ y (ADD : ¢))

{ induction hypothesis for z }
comp’ x (comp’ y (ADD : ¢))

In conclusion, we obtain:

comp’ (Val n) ¢ = PUSHn:c
comp’ (Add z y) ¢ = comp’ x (comp’ y (ADD : ¢))

30

