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Preface

To Everyone

Welcome to this book! We hope you’ll enjoy reading it as much as we enjoyed
writing it. The book is called Operating Systems: Three Easy Pieces (available
at http://www.ostep.org), and the title is obviously an homage to one of the
greatest sets of lecture notes ever created, by one Richard Feynman on the topic of
Physics [F96]. While this book will undoubtedly fall short of the high standard set
by that famous physicist, perhaps it will be good enough for you in your quest to
understand what operating systems (and more generally, systems) are all about.

The three easy pieces refer to the three major thematic elements the book is
organized around: virtualization, concurrency, and persistence. In discussing
these concepts, we’ll end up discussing most of the important things an operating
system does; hopefully, you'll also have some fun along the way. Learning new
things is fun, right? At least, it should be.

Each major concept is divided into a set of chapters, most of which present a
particular problem and then show how to solve it. The chapters are short, and try
(as best as possible) to reference the source material where the ideas really came
from. One of our goals in writing this book is to make the paths of history as clear
as possible, as we think that helps a student understand what is, what was, and
what will be more clearly. In this case, seeing how the sausage was made is nearly
as important as understanding what the sausage is good for'.

There are a couple devices we use throughout the book which are probably
worth introducing here. The first is the crux of the problem. Anytime we are
trying to solve a problem, we first try to state what the most important issue is;
such a crux of the problem is explicitly called out in the text, and hopefully solved
via the techniques, algorithms, and ideas presented in the rest of the text.

In many places, we'll explain how a system works by showing its behavior
over time. These timelines are at the essence of understanding; if you know what
happens, for example, when a process page faults, you are on your way to truly
understanding how virtual memory operates. If you comprehend what takes place
when a journaling file system writes a block to disk, you have taken the first steps
towards mastery of storage systems.

There are also numerous asides and tips throughout the text, adding a little
color to the mainline presentation. Asides tend to discuss something relevant (but
perhaps not essential) to the main text; tips tend to be general lessons that can be

Hint: eating! Or if you're a vegetarian, running away from.

iii



iv

OPERATING
SYSTEMS

applied to systems you build. An index at the end of the book lists all of these tips
and asides (as well as cruces, the odd plural of crux) for your convenience.

We use one of the oldest didactic methods, the dialogue, throughout the book,
as a way of presenting some of the material in a different light. These are used to
introduce the major thematic concepts (in a peachy way, as we will see), as well as
to review material every now and then. They are also a chance to write in a more
humorous style. Whether you find them useful, or humorous, well, that’s another
matter entirely.

At the beginning of each major section, we'll first present an abstraction that an
operating system provides, and then work in subsequent chapters on the mecha-
nisms, policies, and other support needed to provide the abstraction. Abstractions
are fundamental to all aspects of Computer Science, so it is perhaps no surprise
that they are also essential in operating systems.

Throughout the chapters, we try to use real code (not pseudocode) where pos-
sible, so for virtually all examples, you should be able to type them up yourself and
run them. Running real code on real systems is the best way to learn about operat-
ing systems, so we encourage you to do so when you can. We are also making code
availableathttps://github.com/remzi-arpacidusseau/ostep—code for
your viewing pleasure.

In various parts of the text, we have sprinkled in a few homeworks to ensure
that you are understanding what is going on. Many of these homeworks are little
simulations of pieces of the operating system; you should download the home-
works, and run them to quiz yourself. The homework simulators have the follow-
ing feature: by giving them a different random seed, you can generate a virtually
infinite set of problems; the simulators can also be told to solve the problems for
you. Thus, you can test and re-test yourself until you have achieved a good level
of understanding.

The most important addendum to this book is a set of projects in which you
learn about how real systems work by designing, implementing, and testing your
own code. All projects (as well as the code examples, mentioned above) are in
the C programming language [KR88]; C is a simple and powerful language that
underlies most operating systems, and thus worth adding to your tool-chest of
languages. Two types of projects are available (see the online appendix for ideas).
The first are systems programming projects; these projects are great for those who
are new to C and UNIX and want to learn how to do low-level C programming.
The second type are based on a real operating system kernel developed at MIT
called xv6 [CK+08]; these projects are great for students that already have some C
and want to get their hands dirty inside the OS. At Wisconsin, we’ve run the course
in three different ways: either all systems programming, all xv6 programming, or
a mix of both.

We are slowly making project descriptions, and a testing framework, avail-
able. See https://github.com/remzi-arpacidusseau/ostep-projects
for more information. If not part of a class, this will give you a chance to do these
projects on your own, to better learn the material. Unfortunately, you don’t have
a TA to bug when you get stuck, but not everything in life can be free (but books
can bel).

[VERSION 1.00] WWW.OSTEP.ORG



To Educators

If you are an instructor or professor who wishes to use this book, please feel
free to do so. As you may have noticed, they are free and available on-line from
the following web page:

http://www.ostep.org

You can also purchase a printed copy from lulu.com. Look for it on the web
page above.
The (current) proper citation for the book is as follows:

Operating Systems: Three Easy Pieces

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
Arpaci-Dusseau Books

August, 2018 (Version 1.00)

http://www.ostep.org

The course divides fairly well across a 15-week semester, in which you can
cover most of the topics within at a reasonable level of depth. Cramming the
course into a 10-week quarter probably requires dropping some detail from each
of the pieces. There are also a few chapters on virtual machine monitors, which we
usually squeeze in sometime during the semester, either right at end of the large
section on virtualization, or near the end as an aside.

One slightly unusual aspect of the book is that concurrency, a topic at the front
of many OS books, is pushed off herein until the student has built an understand-
ing of virtualization of the CPU and of memory. In our experience in teaching
this course for nearly 20 years, students have a hard time understanding how the
concurrency problem arises, or why they are trying to solve it, if they don’t yet un-
derstand what an address space is, what a process is, or why context switches can
occur at arbitrary points in time. Once they do understand these concepts, how-
ever, introducing the notion of threads and the problems that arise due to them
becomes rather easy, or at least, easier.

As much as is possible, we use a chalkboard (or whiteboard) to deliver a lec-
ture. On these more conceptual days, we come to class with a few major ideas
and examples in mind and use the board to present them. Handouts are useful
to give the students concrete problems to solve based on the material. On more
practical days, we simply plug a laptop into the projector and show real code; this
style works particularly well for concurrency lectures as well as for any discus-
sion sections where you show students code that is relevant for their projects. We
don’t generally use slides to present material, but have now made a set available
for those who prefer that style of presentation.

If you'd like a copy of any of these materials, please drop us an email. We
have already shared them with many others around the world, and others have
contributed their materials as well.

One last request: if you use the free online chapters, please just link to them,
instead of making a local copy. This helps us track usage (over 1 million chapters
downloaded in the past few years!) and also ensures students get the latest (and
greatest?) version.

© 2008-18, ARPACI-DUSSEAU
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To Students

If you are a student reading this book, thank you! It is an honor for us to
provide some material to help you in your pursuit of knowledge about operating
systems. We both think back fondly towards some textbooks of our undergraduate
days (e.g., Hennessy and Patterson [HP90], the classic book on computer architec-
ture) and hope this book will become one of those positive memories for you.

You may have noticed this book is free and available online”. There is one major
reason for this: textbooks are generally too expensive. This book, we hope, is the
first of a new wave of free materials to help those in pursuit of their education,
regardless of which part of the world they come from or how much they are willing
to spend for a book. Failing that, it is one free book, which is better than none.

We also hope, where possible, to point you to the original sources of much
of the material in the book: the great papers and persons who have shaped the
field of operating systems over the years. Ideas are not pulled out of the air; they
come from smart and hard-working people (including numerous Turing-award
winners’), and thus we should strive to celebrate those ideas and people where
possible. In doing so, we hopefully can better understand the revolutions that
have taken place, instead of writing texts as if those thoughts have always been
present [K62]. Further, perhaps such references will encourage you to dig deeper
on your own; reading the famous papers of our field is certainly one of the best
ways to learn.

%A digression here: “free” in the way we use it here does not mean open source, and it
does not mean the book is not copyrighted with the usual protections — it is! What it means is
that you can download the chapters and use them to learn about operating systems. Why not
an open-source book, just like Linux is an open-source kernel? Well, we believe it is important
for a book to have a single voice throughout, and have worked hard to provide such a voice.
When you're reading it, the book should kind of feel like a dialogue with the person explaining
something to you. Hence, our approach.

*The Turing Award is the highest award in Computer Science; it is like the Nobel Prize,
except that you have never heard of it.

[VERSION 1.00] WWW.OSTEP.ORG
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Final Words

Yeats famously said “Education is not the filling of a pail but the lighting of a
fire.” He was right but wrong at the same time*. You do have to “fill the pail” a bit,
and these notes are certainly here to help with that part of your education; after all,
when you go to interview at Google, and they ask you a trick question about how
to use semaphores, it might be good to actually know what a semaphore is, right?

But Yeats’s larger point is obviously on the mark: the real point of education
is to get you interested in something, to learn something more about the subject
matter on your own and not just what you have to digest to get a good grade in
some class. As one of our fathers (Remzi’s dad, Vedat Arpaci) used to say, “Learn
beyond the classroom”.

We created these notes to spark your interest in operating systems, to read more
about the topic on your own, to talk to your professor about all the exciting re-
search that is going on in the field, and even to get involved with that research. It
is a great field(!), full of exciting and wonderful ideas that have shaped computing
history in profound and important ways. And while we understand this fire won’t
light for all of you, we hope it does for many, or even a few. Because once that fire
is lit, well, that is when you truly become capable of doing something great. And
thus the real point of the educational process: to go forth, to study many new and
fascinating topics, to learn, to mature, and most importantly, to find something
that lights a fire for you.

Andrea and Remzi

Married couple

Professors of Computer Science at the University of Wisconsin
Chief Lighters of Fires, hopefully’

*If he actually said this; as with many famous quotes, the history of this gem is murky.

°If this sounds like we are admitting some past history as arsonists, you are probably
missing the point. Probably. If this sounds cheesy, well, that’s because it is, but you'll just have
to forgive us for that.
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A Dialogue on the Book

Professor: Welcome to this book! It’s called Operating Systems in Three Easy
Pieces, and I am here to teach you the things you need to know about operating
systems. I am called “Professor”; who are you?

Student: Hi Professor! I am called “Student”, as you might have guessed. And
I am here and ready to learn!

Professor: Sounds good. Any questions?
Student: Sure! Why is it called “Three Easy Pieces”?

Professor: That's an easy one. Well, you see, there are these great lectures on
Physics by Richard Feynman...

Student: Oh! The guy who wrote “Surely You're Joking, Mr. Feynman”, right?
Great book! Is this going to be hilarious like that book was?

Professor: Um... well, no. That book was great, and I'm glad you've read it.
Hopefully this book is more like his notes on Physics. Some of the basics were
summed up in a book called “Six Easy Pieces”. He was talking about Physics;
we're going to do Three Easy Pieces on the fine topic of Operating Systems. This
is appropriate, as Operating Systems are about half as hard as Physics.

Student: Well, I liked physics, so that is probably good. What are those pieces?

Professor: They are the three key ideas we’re going to learn about: virtualiza-
tion, concurrency, and persistence. In learning about these ideas, we’ll learn
all about how an operating system works, including how it decides what program
to run next on a CPU, how it handles memory overload in a virtual memory sys-
tem, how virtual machine monitors work, how to manage information on disks,
and even a little about how to build a distributed system that works when parts
have failed. That sort of stuff.

Student: [ have no idea what you’re talking about, really.

Professor: Good! That means you are in the right class.

Student: [ have another question: what’s the best way to learn this stuff?
Professor: Excellent query! Well, each person needs to figure this out on their

1
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own, of course, but here is what I would do: go to class, to hear the professor
introduce the material. Then, at the end of every week, read these notes, to help
the ideas sink into your head a bit better. Of course, some time later (hint: before
the exam!), read the notes again to firm up your knowledge. Of course, your pro-
fessor will no doubt assign some homeworks and projects, so you should do those;
in particular, doing projects where you write real code to solve real problems is
the best way to put the ideas within these notes into action. As Confucius said...

Student: Oh, I know! I hear and I forget. I see and I remember. I do and I
understand.” Or something like that.

Professor: (surprised) How did you know what I was going to say?!
Student: It seemed to follow. Also, I am a big fan of Confucius, and an even
bigger fan of Xunzi, who actually is a better source for this quote'.

Professor: (stunned) Well, I think we are going to get along just fine! Just fine
indeed.

Student: Professor — just one more question, if I may. What are these dialogues
for? I mean, isn't this just supposed to be a book? Why not present the material
directly?

Professor: Ah, good question, good question! Well, I think it is sometimes
useful to pull yourself outside of a narrative and think a bit; these dialogues are
those times. So you and I are going to work together to make sense of all of these
pretty complex ideas. Are you up for it?

Student: So we have to think? Well, I'm up for that. I mean, what else do I have
to do anyhow? It’s not like I have much of a life outside of this book.

Professor: Me neither, sadly. So let’s get to work!

! According to this website (http://www.barrypopik.com/index.php/new _york_city/
entry/tell_me_and.i_forget_teach_me_and_i_may_remember_involve_me_and_i_will _lear/),
Confucian philosopher Xunzi said “Not having heard something is not as good as having
heard it; having heard it is not as good as having seen it; having seen it is not as good as
knowing it; knowing it is not as good as putting it into practice.” Later on, the wisdom got
attached to Confucius for some reason. Thanks to Jiao Dong (Rutgers) for telling us!
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Introduction to Operating Systems

If you are taking an undergraduate operating systems course, you should
already have some idea of what a computer program does when it runs.
If not, this book (and the corresponding course) is going to be difficult
— so you should probably stop reading this book, or run to the near-
est bookstore and quickly consume the necessary background material
before continuing (both Patt & Patel [PP03] and Bryant & O’Hallaron
[BOH10] are pretty great books).

So what happens when a program runs?

Well, a running program does one very simple thing: it executes in-
structions. Many millions (and these days, even billions) of times ev-
ery second, the processor fetches an instruction from memory, decodes
it (i.e., figures out which instruction this is), and executes it (i.e., it does
the thing that it is supposed to do, like add two numbers together, access
memory, check a condition, jump to a function, and so forth). After it is
done with this instruction, the processor moves on to the next instruction,
and so on, and so on, until the program finally completes'.

Thus, we have just described the basics of the Von Neumann model of
computing’. Sounds simple, right? But in this class, we will be learning
that while a program runs, a lot of other wild things are going on with
the primary goal of making the system easy to use.

There is a body of software, in fact, that is responsible for making it
easy to run programs (even allowing you to seemingly run many at the
same time), allowing programs to share memory, enabling programs to
interact with devices, and other fun stuff like that. That body of software

10f course, modern processors do many bizarre and frightening things underneath the
hood to make programs run faster, e.g., executing multiple instructions at once, and even issu-
ing and completing them out of order! But that is not our concern here; we are just concerned
with the simple model most programs assume: that instructions seemingly execute one at a
time, in an orderly and sequential fashion.

*Von Neumann was one of the early pioneers of computing systems. He also did pioneer-
ing work on game theory and atomic bombs, and played in the NBA for six years. OK, one of
those things isn’t true.
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THE CRUX OF THE PROBLEM:

How TO VIRTUALIZE RESOURCES
One central question we will answer in this book is quite simple: how
does the operating system virtualize resources? This is the crux of our
problem. Why the OS does this is not the main question, as the answer
should be obvious: it makes the system easier to use. Thus, we focus on
the how: what mechanisms and policies are implemented by the OS to
attain virtualization? How does the OS do so efficiently? What hardware
support is needed?

We will use the “crux of the problem”, in shaded boxes such as this one,
as a way to call out specific problems we are trying to solve in building
an operating system. Thus, within a note on a particular topic, you may
find one or more cruces (yes, this is the proper plural) which highlight the
problem. The details within the chapter, of course, present the solution,
or at least the basic parameters of a solution.

is called the operating system (OS)’, as it is in charge of making sure the
system operates correctly and efficiently in an easy-to-use manner.

The primary way the OS does this is through a general technique that
we call virtualization. That is, the OS takes a physical resource (such as
the processor, or memory, or a disk) and transforms it into a more gen-
eral, powerful, and easy-to-use virtual form of itself. Thus, we sometimes
refer to the operating system as a virtual machine.

Of course, in order to allow users to tell the OS what to do and thus
make use of the features of the virtual machine (such as running a pro-
gram, or allocating memory, or accessing a file), the OS also provides
some interfaces (APIs) that you can call. A typical OS, in fact, exports
a few hundred system calls that are available to applications. Because
the OS provides these calls to run programs, access memory and devices,
and other related actions, we also sometimes say that the OS provides a
standard library to applications.

Finally, because virtualization allows many programs to run (thus shar-
ing the CPU), and many programs to concurrently access their own in-
structions and data (thus sharing memory), and many programs to access
devices (thus sharing disks and so forth), the OS is sometimes known as
a resource manager. Each of the CPU, memory, and disk is a resource
of the system; it is thus the operating system’s role to manage those re-
sources, doing so efficiently or fairly or indeed with many other possible
goals in mind. To understand the role of the OS a little bit better, let’s take
a look at some examples.

3 Another early name for the OS was the supervisor or even the master control program.
Apparently, the latter sounded a little overzealous (see the movie Tron for details) and thus,
thankfully, “operating system” caught on instead.
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#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<sys/time.h>
<assert.h>
"common.h"

int
main(int argc, char xargv[])

{

if (argc !'= 2) {
fprintf (stderr, "usage: cpu <string>\n");
exit (1);
}
char *str = argv([l];
while (1) |
Spin(1);
printf ("$s\n", str);

return 0;

Figure 2.1: Simple Example: Code That Loops And Prints (cpu. c)
Virtualizing The CPU

Figure 2.1 depicts our first program. It doesn’t do much. In fact, all
it does is call Spin (), a function that repeatedly checks the time and
returns once it has run for a second. Then, it prints out the string that the
user passed in on the command line, and repeats, forever.

Let’s say we save this file as cpu. c and decide to compile and run it
on a system with a single processor (or CPU as we will sometimes call it).
Here is what we will see:

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"

A

A

A

A

e

prompt>

Not too interesting of a run — the system begins running the program,
which repeatedly checks the time until a second has elapsed. Once a sec-
ond has passed, the code prints the input string passed in by the user
(in this example, the letter “A”), and continues. Note the program will
run forever; only by pressing “Control-c” (which on UNIX-based systems
will terminate the program running in the foreground) can we halt the
program.

Now, let’s do the same thing, but this time, let’s run many different in-
stances of this same program. Figure 2.2 shows the results of this slightly
more complicated example.

(© 2008-18, ARPACI-DUSSEAU
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prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353
[2] 7354
[3] 7355
[4] 7356
A

B

D

C

A

B

D

C

A

C

B

D

Figure 2.2: Running Many Programs At Once

Well, now things are getting a little more interesting. Even though we
have only one processor, somehow all four of these programs seem to be
running at the same time! How does this magic happen?”

It turns out that the operating system, with some help from the hard-
ware, is in charge of this illusion, i.e., the illusion that the system has a
very large number of virtual CPUs. Turning a single CPU (or small set of
them) into a seemingly infinite number of CPUs and thus allowing many
programs to seemingly run at once is what we call virtualizing the CPU,
the focus of the first major part of this book.

Of course, to run programs, and stop them, and otherwise tell the OS
which programs to run, there need to be some interfaces (APIs) that you
can use to communicate your desires to the OS. We’ll talk about these
APIs throughout this book; indeed, they are the major way in which most
users interact with operating systems.

You might also notice that the ability to run multiple programs at once
raises all sorts of new questions. For example, if two programs want to
run at a particular time, which should run? This question is answered by
a policy of the OS; policies are used in many different places within an
OS to answer these types of questions, and thus we will study them as
we learn about the basic mechanisms that operating systems implement
(such as the ability to run multiple programs at once). Hence the role of
the OS as a resource manager.

*Note how we ran four processes at the same time, by using the & symbol. Doing so runs a
job in the background in the t csh shell, which means that the user is able to immediately issue
their next command, which in this case is another program to run. The semi-colon between
commands allows us to run multiple programs at the same time in tcsh. If you're using a
different shell (e.g., bash), it works slightly differently; read documentation online for details.
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#include <unistd.h>
#include <stdio.h>

#include <stdlib.h>
#include "common.h"

int
main (int argc, char xargvl[])

{

int *p = malloc(sizeof (int)); // al
assert (p != NULL);
printf (" (%d) address pointed to by p: %p\n",
getpid(), p)i // a2

*p = 0; // a3
while (1) |

Spin(1);

*p = *xp + 1;

printf (" (%d) p: %d\n", getpid(), *p); // a4

}

return 0;
Figure 2.3: A Program That Accesses Memory (mem. c)
Virtualizing Memory

Now let’s consider memory. The model of physical memory pre-
sented by modern machines is very simple. Memory is just an array of
bytes; to read memory, one must specify an address to be able to access
the data stored there; to write (or update) memory, one must also specify
the data to be written to the given address.

Memory is accessed all the time when a program is running. A pro-
gram keeps all of its data structures in memory, and accesses them through
various instructions, like loads and stores or other explicit instructions
that access memory in doing their work. Don’t forget that each instruc-
tion of the program is in memory too; thus memory is accessed on each
instruction fetch.

Let’s take a look at a program (in Figure 2.3) that allocates some mem-
ory by calling malloc (). The output of this program can be found here:

prompt> ./mem
2134) address pointed to by p: 0x200000

(

(2134) p: 1
(2134) p: 2
(2134) p: 3
(2134) p: 4
(2134) p: 5
e

The program does a couple of things. First, it allocates some memory
(line al). Then, it prints out the address of the memory (a2), and then
puts the number zero into the first slot of the newly allocated memory
(a3). Finally, it loops, delaying for a second and incrementing the value
stored at the address held in p. With every print statement, it also prints
out what is called the process identifier (the PID) of the running program.
This PID is unique per running process.

THREE
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prompt> ./mem &; ./mem &
1] 24113
2] 24114

24113) address pointed to by p: 0x200000

[

[

(

(24114) address pointed to by p: 0x200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
(24113) p: 4
(24114) p: 4

Figure 2.4: Running The Memory Program Multiple Times

Again, this first result is not too interesting. The newly allocated mem-
ory is at address 0x200000. As the program runs, it slowly updates the
value and prints out the result.

Now, we again run multiple instances of this same program to see
what happens (Figure 2.4). We see from the example that each running
program has allocated memory at the same address (0x200000), and yet
each seems to be updating the value at 0x200000 independently! It is as
if each running program has its own private memory, instead of sharing
the same physical memory with other running programs’.

Indeed, that is exactly what is happening here as the OS is virtualiz-
ing memory. Each process accesses its own private virtual address space
(sometimes just called its address space), which the OS somehow maps
onto the physical memory of the machine. A memory reference within
one running program does not affect the address space of other processes
(or the OS itself); as far as the running program is concerned, it has phys-
ical memory all to itself. The reality, however, is that physical memory is
a shared resource, managed by the operating system. Exactly how all of
this is accomplished is also the subject of the first part of this book, on the
topic of virtualization.

Concurrency

Another main theme of this book is concurrency. We use this concep-
tual term to refer to a host of problems that arise, and must be addressed,
when working on many things at once (i.e., concurrently) in the same
program. The problems of concurrency arose first within the operating
system itself; as you can see in the examples above on virtualization, the
OS is juggling many things at once, first running one process, then an-
other, and so forth. As it turns out, doing so leads to some deep and
interesting problems.

®For this example to work, you need to make sure address-space randomization is dis-
abled; randomization, as it turns out, can be a good defense against certain kinds of security
flaws. Read more about it on your own, especially if you want to learn how to break into
computer systems via stack-smashing attacks. Not that we would recommend such a thing...
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#include <stdio.h>
#include <stdlib.h>
#include "common.h"

volatile int counter = 0;
int loops;

void xworker (void xarg) {

int 1i;
for (i = 0; 1 < loops; i++) {
counter++;

}
return NULL;

}
int
main (int argc, char xargvl[])
{
if (argc !'= 2) {
fprintf (stderr, "usage: threads <value>\n");
exit (1);
}
loops = atoi(argv[l]);
pthread_t pl, p2;
printf ("Initial value : %d\n", counter);

Pthread_create(&pl, NULL, worker, NULL);
Pthread_create(&p2, NULL, worker, NULL);
Pthread_join(pl, NULL);

Pthread_join(p2, NULL);

printf ("Final value : %d\n", counter);
return 0;

Figure 2.5: A Multi-threaded Program (threads.c)

Unfortunately, the problems of concurrency are no longer limited just
to the OS itself. Indeed, modern multi-threaded programs exhibit the
same problems. Let us demonstrate with an example of a multi-threaded
program (Figure 2.5).

Although you might not understand this example fully at the moment
(and we'll learn a lot more about it in later chapters, in the section of the
book on concurrency), the basic idea is simple. The main program creates
two threads using Pthread_create () °. You can think of a thread as a
function running within the same memory space as other functions, with
more than one of them active at a time. In this example, each thread starts
running in a routine called worker (), in which it simply increments a
counter in a loop for 1oops number of times.

Below is a transcript of what happens when we run this program with
the input value for the variable 1oops set to 1000. The value of loops

“The actual call should be to lower-case pthread.create (); the upper-case version is
our own wrapper that calls pthread.create () and makes sure that the return code indicates
that the call succeeded. See the code for details.
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THE CRUX OF THE PROBLEM:
How To BUILD CORRECT CONCURRENT PROGRAMS
When there are many concurrently executing threads within the same
memory space, how can we build a correctly working program? What
primitives are needed from the OS? What mechanisms should be pro-
vided by the hardware? How can we use them to solve the problems of
concurrency?

determines how many times each of the two workers will increment the
shared counter in a loop. When the program is run with the value of
loops set to 1000, what do you expect the final value of counter to be?

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000

Initial value : O

Final value : 2000

As you probably guessed, when the two threads are finished, the final
value of the counter is 2000, as each thread incremented the counter 1000
times. Indeed, when the input value of loops is set to N, we would
expect the final output of the program to be 2V. But life is not so simple,
as it turns out. Let’s run the same program, but with higher values for
loops, and see what happens:

prompt> ./thread 100000

Initial value : 0

Final value : 143012 // huh??
prompt> ./thread 100000

Initial value : O

Final value : 137298 // what the??

In this run, when we gave an input value of 100,000, instead of getting
a final value of 200,000, we instead first get 143,012. Then, when we run
the program a second time, we not only again get the wrong value, but
also a different value than the last time. In fact, if you run the program
over and over with high values of 1oops, you may find that sometimes
you even get the right answer! So why is this happening?

As it turns out, the reason for these odd and unusual outcomes relate
to how instructions are executed, which is one at a time. Unfortunately, a
key part of the program above, where the shared counter is incremented,
takes three instructions: one to load the value of the counter from mem-
ory into a register, one to increment it, and one to store it back into mem-
ory. Because these three instructions do not execute atomically (all at
once), strange things can happen. It is this problem of concurrency that
we will address in great detail in the second part of this book.
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#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <fcntl.h>
#include <sys/types.h>

int
main(int argc, char xargv[])
{
int fd = open("/tmp/file", O_WRONLY | O_CREAT | O_TRUNC, S_IRWXU);
assert (fd > -1);
int rc = write(fd, "hello world\n", 13);
assert (rc == 13);
close (fd);
return 0;

Figure 2.6: A Program That Does I/O (io.c)

Persistence

The third major theme of the course is persistence. In system memory,
data can be easily lost, as devices such as DRAM store values in a volatile
manner; when power goes away or the system crashes, any data in mem-
ory is lost. Thus, we need hardware and software to be able to store data
persistently; such storage is thus critical to any system as users care a
great deal about their data.

The hardware comes in the form of some kind of input/output or I/O
device; in modern systems, a hard drive is a common repository for long-
lived information, although solid-state drives (SSDs) are making head-
way in this arena as well.

The software in the operating system that usually manages the disk is
called the file system; it is thus responsible for storing any files the user
creates in a reliable and efficient manner on the disks of the system.

Unlike the abstractions provided by the OS for the CPU and memory,
the OS does not create a private, virtualized disk for each application.
Rather, it is assumed that often times, users will want to share informa-
tion that is in files. For example, when writing a C program, you might
first use an editor (e.g., Emacs’) to create and edit the C file (emacs -nw
main.c). Once done, you might use the compiler to turn the source code
into an executable (e.g., gcc -0 main main.c). When you're finished,
you might run the new executable (e.g., . /main). Thus, you can see how
files are shared across different processes. First, Emacs creates a file that
serves as input to the compiler; the compiler uses that input file to create
anew executable file (in many steps — take a compiler course for details);
finally, the new executable is then run. And thus a new program is born!

To understand this better, let’s look at some code. Figure 2.6 presents
code to create a file (/tmp/£ile) that contains the string “hello world”.

7You should be using Emacs. If you are using vi, there is probably something wrong with
you. If you are using something that is not a real code editor, that is even worse.
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THE CRUX OF THE PROBLEM:
How TO STORE DATA PERSISTENTLY
The file system is the part of the OS in charge of managing persistent data.
What techniques are needed to do so correctly? What mechanisms and
policies are required to do so with high performance? How is reliability
achieved, in the face of failures in hardware and software?

To accomplish this task, the program makes three calls into the oper-
ating system. The first, a call to open (), opens the file and creates it; the
second, write (), writes some data to the file; the third, close (), sim-
ply closes the file thus indicating the program won’t be writing any more
data to it. These system calls are routed to the part of the operating sys-
tem called the file system, which then handles the requests and returns
some kind of error code to the user.

You might be wondering what the OS does in order to actually write
to disk. We would show you but you’d have to promise to close your
eyes first; it is that unpleasant. The file system has to do a fair bit of work:
first figuring out where on disk this new data will reside, and then keep-
ing track of it in various structures the file system maintains. Doing so
requires issuing I/O requests to the underlying storage device, to either
read existing structures or update (write) them. As anyone who has writ-
ten a device driver’ knows, getting a device to do something on your
behalf is an intricate and detailed process. It requires a deep knowledge
of the low-level device interface and its exact semantics. Fortunately, the
OS provides a standard and simple way to access devices through its sys-
tem calls. Thus, the OS is sometimes seen as a standard library.

Of course, there are many more details in how devices are accessed,
and how file systems manage data persistently atop said devices. For
performance reasons, most file systems first delay such writes for a while,
hoping to batch them into larger groups. To handle the problems of sys-
tem crashes during writes, most file systems incorporate some kind of
intricate write protocol, such as journaling or copy-on-write, carefully
ordering writes to disk to ensure that if a failure occurs during the write
sequence, the system can recover to reasonable state afterwards. To make
different common operations efficient, file systems employ many differ-
ent data structures and access methods, from simple lists to complex b-
trees. If all of this doesn’t make sense yet, good! We'll be talking about
all of this quite a bit more in the third part of this book on persistence,
where we’ll discuss devices and I/O in general, and then disks, RAIDs,
and file systems in great detail.

8A device driver is some code in the operating system that knows how to deal with a
specific device. We will talk more about devices and device drivers later.
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Design Goals

So now you have some idea of what an OS actually does: it takes phys-
ical resources, such as a CPU, memory, or disk, and virtualizes them. It
handles tough and tricky issues related to concurrency. And it stores files
persistently, thus making them safe over the long-term. Given that we
want to build such a system, we want to have some goals in mind to help
focus our design and implementation and make trade-offs as necessary;
finding the right set of trade-offs is a key to building systems.

One of the most basic goals is to build up some abstractions in order
to make the system convenient and easy to use. Abstractions are fun-
damental to everything we do in computer science. Abstraction makes
it possible to write a large program by dividing it into small and under-
standable pieces, to write such a program in a high-level language like
C’ without thinking about assembly, to write code in assembly without
thinking about logic gates, and to build a processor out of gates without
thinking too much about transistors. Abstraction is so fundamental that
sometimes we forget its importance, but we won’t here; thus, in each sec-
tion, we’ll discuss some of the major abstractions that have developed
over time, giving you a way to think about pieces of the OS.

One goal in designing and implementing an operating system is to
provide high performance; another way to say this is our goal is to mini-
mize the overheads of the OS. Virtualization and making the system easy
to use are well worth it, but not at any cost; thus, we must strive to pro-
vide virtualization and other OS features without excessive overheads.
These overheads arise in a number of forms: extra time (more instruc-
tions) and extra space (in memory or on disk). We'll seek solutions that
minimize one or the other or both, if possible. Perfection, however, is not
always attainable, something we will learn to notice and (where appro-
priate) tolerate.

Another goal will be to provide protection between applications, as
well as between the OS and applications. Because we wish to allow
many programs to run at the same time, we want to make sure that the
malicious or accidental bad behavior of one does not harm others; we
certainly don’t want an application to be able to harm the OS itself (as
that would affect all programs running on the system). Protection is at
the heart of one of the main principles underlying an operating system,
which is that of isolation; isolating processes from one another is the key
to protection and thus underlies much of what an OS must do.

The operating system must also run non-stop; when it fails, all appli-
cations running on the system fail as well. Because of this dependence,
operating systems often strive to provide a high degree of reliability. As
operating systems grow evermore complex (sometimes containing mil-
lions of lines of code), building a reliable operating system is quite a chal-

Some of you might object to calling C a high-level language. Remember this is an OS
course, though, where we're simply happy not to have to code in assembly all the time!
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lenge — and indeed, much of the on-going research in the field (including
some of our own work [BS+09, SS+10]) focuses on this exact problem.

Other goals make sense: energy-efficiency is important in our increas-
ingly green world; security (an extension of protection, really) against
malicious applications is critical, especially in these highly-networked
times; mobility is increasingly important as OSes are run on smaller and
smaller devices. Depending on how the system is used, the OS will have
different goals and thus likely be implemented in at least slightly differ-
ent ways. However, as we will see, many of the principles we will present
on how to build an OS are useful on a range of different devices.

Some History

Before closing this introduction, let us present a brief history of how
operating systems developed. Like any system built by humans, good
ideas accumulated in operating systems over time, as engineers learned
what was important in their design. Here, we discuss a few major devel-
opments. For a richer treatment, see Brinch Hansen’s excellent history of
operating systems [BHOO].

Early Operating Systems: Just Libraries

In the beginning, the operating system didn’t do too much. Basically,
it was just a set of libraries of commonly-used functions; for example,
instead of having each programmer of the system write low-level 1/O
handling code, the “OS” would provide such APIs, and thus make life
easier for the developer.

Usually, on these old mainframe systems, one program ran at a time,
as controlled by a human operator. Much of what you think a modern
OS would do (e.g., deciding what order to run jobs in) was performed by
this operator. If you were a smart developer, you would be nice to this
operator, so that they might move your job to the front of the queue.

This mode of computing was known as batch processing, as a number
of jobs were set up and then run in a “batch” by the operator. Computers,
as of that point, were not used in an interactive manner, because of cost:
it was simply too expensive to let a user sit in front of the computer and
use it, as most of the time it would just sit idle then, costing the facility
hundreds of thousands of dollars per hour [BHOO].

Beyond Libraries: Protection

In moving beyond being a simple library of commonly-used services, op-
erating systems took on a more central role in managing machines. One
important aspect of this was the realization that code run on behalf of the
OS was special; it had control of devices and thus should be treated dif-
ferently than normal application code. Why is this? Well, imagine if you
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allowed any application to read from anywhere on the disk; the notion of
privacy goes out the window, as any program could read any file. Thus,
implementing a file system (to manage your files) as a library makes little
sense. Instead, something else was needed.

Thus, the idea of a system call was invented, pioneered by the Atlas
computing system [K+61,L78]. Instead of providing OS routines as a li-
brary (where you just make a procedure call to access them), the idea here
was to add a special pair of hardware instructions and hardware state to
make the transition into the OS a more formal, controlled process.

The key difference between a system call and a procedure call is that
a system call transfers control (i.e., jumps) into the OS while simultane-
ously raising the hardware privilege level. User applications run in what
is referred to as user mode which means the hardware restricts what ap-
plications can do; for example, an application running in user mode can’t
typically initiate an I/ O request to the disk, access any physical memory
page, or send a packet on the network. When a system call is initiated
(usually through a special hardware instruction called a trap), the hard-
ware transfers control to a pre-specified trap handler (that the OS set up
previously) and simultaneously raises the privilege level to kernel mode.
In kernel mode, the OS has full access to the hardware of the system and
thus can do things like initiate an I/O request or make more memory
available to a program. When the OS is done servicing the request, it
passes control back to the user via a special return-from-trap instruction,
which reverts to user mode while simultaneously passing control back to
where the application left off.

The Era of Multiprogramming

Where operating systems really took off was in the era of computing be-
yond the mainframe, that of the minicomputer. Classic machines like
the PDP family from Digital Equipment made computers hugely more
affordable; thus, instead of having one mainframe per large organization,
now a smaller collection of people within an organization could likely
have their own computer. Not surprisingly, one of the major impacts of
this drop in cost was an increase in developer activity; more smart people
got their hands on computers and thus made computer systems do more
interesting and beautiful things.

In particular, multiprogramming became commonplace due to the de-
sire to make better use of machine resources. Instead of just running one
job at a time, the OS would load a number of jobs into memory and switch
rapidly between them, thus improving CPU utilization. This switching
was particularly important because I/O devices were slow; having a pro-
gram wait on the CPU while its I/O was being serviced was a waste of
CPU time. Instead, why not switch to another job and run it for a while?

The desire to support multiprogramming and overlap in the presence
of I/O and interrupts forced innovation in the conceptual development of
operating systems along a number of directions. Issues such as memory
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protection became important; we wouldn’t want one program to be able
to access the memory of another program. Understanding how to deal
with the concurrency issues introduced by multiprogramming was also
critical; making sure the OS was behaving correctly despite the presence
of interrupts is a great challenge. We will study these issues and related
topics later in the book.

One of the major practical advances of the time was the introduction
of the UNIX operating system, primarily thanks to Ken Thompson (and
Dennis Ritchie) at Bell Labs (yes, the phone company). UNIX took many
good ideas from different operating systems (particularly from Multics
[072], and some from systems like TENEX [B+72] and the Berkeley Time-
Sharing System [S+68]), but made them simpler and easier to use. Soon
this team was shipping tapes containing UNIX source code to people
around the world, many of whom then got involved and added to the

system themselves; see the Aside (next page) for more detail .

The Modern Era

Beyond the minicomputer came a new type of machine, cheaper, faster,
and for the masses: the personal computer, or PC as we call it today. Led
by Apple’s early machines (e.g., the Apple II) and the IBM PC, this new
breed of machine would soon become the dominant force in computing,
as their low-cost enabled one machine per desktop instead of a shared
minicomputer per workgroup.

Unfortunately, for operating systems, the PC at first represented a
great leap backwards, as early systems forgot (or never knew of) the
lessons learned in the era of minicomputers. For example, early operat-
ing systems such as DOS (the Disk Operating System, from Microsoft)
didn’t think memory protection was important; thus, a malicious (or per-
haps just a poorly-programmed) application could scribble all over mem-
ory. The first generations of the Mac OS (v9 and earlier) took a coopera-
tive approach to job scheduling; thus, a thread that accidentally got stuck
in an infinite loop could take over the entire system, forcing a reboot. The
painful list of OS features missing in this generation of systems is long,
too long for a full discussion here.

Fortunately, after some years of suffering, the old features of mini-
computer operating systems started to find their way onto the desktop.
For example, Mac OS X/macOS has UNIX at its core, including all of the
features one would expect from such a mature system. Windows has sim-
ilarly adopted many of the great ideas in computing history, starting in
particular with Windows NT, a great leap forward in Microsoft OS tech-
nology. Even today’s cell phones run operating systems (such as Linux)
that are much more like what a minicomputer ran in the 1970s than what

1OWe'll use asides and other related text boxes to call attention to various items that don’t
quite fit the main flow of the text. Sometimes, we'll even use them just to make a joke, because
why not have a little fun along the way? Yes, many of the jokes are bad.
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ASIDE: THE IMPORTANCE OF UNIX

It is difficult to overstate the importance of UNIX in the history of oper-
ating systems. Influenced by earlier systems (in particular, the famous
Multics system from MIT), UNIX brought together many great ideas and
made a system that was both simple and powerful.

Underlying the original “Bell Labs” UNIX was the unifying principle of
building small powerful programs that could be connected together to
form larger workflows. The shell, where you type commands, provided
primitives such as pipes to enable such meta-level programming, and
thus it became easy to string together programs to accomplish a big-
ger task. For example, to find lines of a text file that have the word
“foo” in them, and then to count how many such lines exist, you would
type: grep foo file.txt|wc -1, thus using the grep and we (word
count) programs to achieve your task.

The UNIX environment was friendly for programmers and developers
alike, also providing a compiler for the new C programming language.
Making it easy for programmers to write their own programs, as well as
share them, made UNIX enormously popular. And it probably helped a
lot that the authors gave out copies for free to anyone who asked, an early
form of open-source software.

Also of critical importance was the accessibility and readability of the
code. Having a beautiful, small kernel written in C invited others to play
with the kernel, adding new and cool features. For example, an enter-
prising group at Berkeley, led by Bill Joy, made a wonderful distribution
(the Berkeley Systems Distribution, or BSD) which had some advanced
virtual memory, file system, and networking subsystems. Joy later co-
founded Sun Microsystems.

Unfortunately, the spread of UNIX was slowed a bit as companies tried to
assert ownership and profit from it, an unfortunate (but common) result
of lawyers getting involved. Many companies had their own variants:
SunOS from Sun Microsystems, AIX from IBM, HPUX (a.k.a. “H-Pucks”)
from HP, and IRIX from SGI. The legal wrangling among AT&T/Bell
Labs and these other players cast a dark cloud over UNIX, and many
wondered if it would survive, especially as Windows was introduced and
took over much of the PC market...

a PC ran in the 1980s (thank goodness); it is good to see that the good
ideas developed in the heyday of OS development have found their way
into the modern world. Even better is that these ideas continue to de-
velop, providing more features and making modern systems even better
for users and applications.
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ASIDE: AND THEN CAME LINUX

Fortunately for UNIX, a young Finnish hacker named Linus Torvalds de-
cided to write his own version of UNIX which borrowed heavily on the
principles and ideas behind the original system, but not from the code
base, thus avoiding issues of legality. He enlisted help from many others
around the world, took advantage of the sophisticated GNU tools that
already existed [G85], and soon Linux was born (as well as the modern
open-source software movement).

As the internet era came into place, most companies (such as Google,
Amazon, Facebook, and others) chose to run Linux, as it was free and
could be readily modified to suit their needs; indeed, it is hard to imag-
ine the success of these new companies had such a system not existed.
As smart phones became a dominant user-facing platform, Linux found
a stronghold there too (via Android), for many of the same reasons. And
Steve Jobs took his UNIX-based NeXTStep operating environment with
him to Apple, thus making UNIX popular on desktops (though many
users of Apple technology are probably not even aware of this fact). Thus
UNIX lives on, more important today than ever before. The computing
gods, if you believe in them, should be thanked for this wonderful out-
come.

Summary

Thus, we have an introduction to the OS. Today’s operating systems
make systems relatively easy to use, and virtually all operating systems
you use today have been influenced by the developments we will discuss
throughout the book.

Unfortunately, due to time constraints, there are a number of parts of
the OS we won’t cover in the book. For example, there is a lot of net-
working code in the operating system; we leave it to you to take the net-
working class to learn more about that. Similarly, graphics devices are
particularly important; take the graphics course to expand your knowl-
edge in that direction. Finally, some operating system books talk a great
deal about security; we will do so in the sense that the OS must provide
protection between running programs and give users the ability to pro-
tect their files, but we won’t delve into deeper security issues that one
might find in a security course.

However, there are many important topics that we will cover, includ-
ing the basics of virtualization of the CPU and memory, concurrency, and
persistence via devices and file systems. Don’t worry! While there is a
lot of ground to cover, most of it is quite cool, and at the end of the road,
you’ll have a new appreciation for how computer systems really work.
Now get to work!

[VERSION 1.00] WWW.OSTEP.ORG



INTRODUCTION TO OPERATING SYSTEMS

19

References

[BS+09] “Tolerating File-System Mistakes with EnvyFS” by L. Bairavasundaram, S. Sundarara-
man, A. Arpaci-Dusseau, R. Arpaci-Dusseau. USENIX 09, San Diego, CA, June 2009. A fun
paper about using multiple file systems at once to tolerate a mistake in any one of them.

[BHOO0] “The Evolution of Operating Systems” by P. Brinch Hansen. In ‘Classic Operating
Systems: From Batch Processing to Distributed Systems.” Springer-Verlag, New York, 2000.
This essay provides an intro to a wonderful collection of papers about historically significant systems.

[B+72] “TENEX, A Paged Time Sharing System for the PDP-10” by D. Bobrow, J. Burchfiel, D.
Murphy, R. Tomlinson. CACM, Volume 15, Number 3, March 1972. TENEX has much of the
machinery found in modern operating systems; read more about it to see how much innovation was
already in place in the early 1970's.

[B75] “The Mythical Man-Month” by F. Brooks. Addison-Wesley, 1975. A classic text on software
engineering; well worth the read.

[BOH10] “Computer Systems: A Programmer’s Perspective” by R. Bryant and D. O’Hallaron.
Addison-Wesley, 2010. Another great intro to how computer systems work. Has a little bit of overlap
with this book — so if you'd like, you can skip the last few chapters of that book, or simply read them to
get a different perspective on some of the same material. After all, one good way to build up your own
knowledge is to hear as many other perspectives as possible, and then develop your own opinion and
thoughts on the matter. You know, by thinking!

[G85] “The GNU Manifesto” by R. Stallman. 1985. www.gnu.org/gnu/manifesto.html.
A huge part of Linux’s success was no doubt the presence of an excellent compiler, gcc, and other
relevant pieces of open software, thanks to the GNU effort headed by Stallman. Stallman is a visionary
when it comes to open source, and this manifesto lays out his thoughts as to why.

[K+61] “One-Level Storage System” by T. Kilburn, D.B.G. Edwards, M.J. Lanigan, EH. Sumner.
IRE Transactions on Electronic Computers, April 1962. The Atlas pioneered much of what you see
in modern systems. However, this paper is not the best read. If you were to only read one, you might
try the historical perspective below [L78].

[L78] “The Manchester Mark I and Atlas: A Historical Perspective” by S. H. Lavington. Com-
munications of the ACM, Volume 21:1, January 1978. A nice piece of history on the early devel-
opment of computer systems and the pioneering efforts of the Atlas. Of course, one could go back and
read the Atlas papers themselves, but this paper provides a great overview and adds some historical
perspective.

[O72] “The Multics System: An Examination of its Structure” by Elliott Organick. MIT Press,
1972. A great overview of Multics. So many good ideas, and yet it was an over-designed system,
shooting for too much, and thus never really worked. A classic example of what Fred Brooks would call
the “second-system effect” [B75].

[PP03] “Introduction to Computing Systems: From Bits and Gates to C and Beyond” by Yale
N. Patt, Sanjay J. Patel. McGraw-Hill, 2003. One of our favorite intro to computing systems books.
Starts at transistors and gets you all the way up to C; the early material is particularly great.

[RT74] “The UNIX Time-Sharing System” by Dennis M. Ritchie, Ken Thompson. CACM, Vol-
ume 17: 7, July 1974. A great summary of UNIX written as it was taking over the world of computing,
by the people who wrote it.

[S68] “SDS 940 Time-Sharing System” by Scientific Data Systems. TECHNICAL MANUAL,
SDS 90 11168, August 1968. Yes, a technical manual was the best we could find. But it is fascinating
to read these old system documents, and see how much was already in place in the late 1960’s. One of
the minds behind the Berkeley Time-Sharing System (which eventually became the SDS system) was
Butler Lampson, who later won a Turing award for his contributions in systems.

[SS+10] “Membrane: Operating System Support for Restartable File Systems” by S. Sundarara-
man, S. Subramanian, A. Rajimwale, A. Arpaci-Dusseau, R. Arpaci-Dusseau, M. Swift. FAST
"10, San Jose, CA, February 2010. The great thing about writing your own class notes: you can ad-
vertise your own research. But this paper is actually pretty neat — when a file system hits a bug and
crashes, Membrane auto-magically restarts it, all without applications or the rest of the system being
affected.

© 2008-18, ARPACI-DUSSEAU

THREE
EAsy
PIECES



20

INTRODUCTION TO OPERATING SYSTEMS

OPERATING
SYSTEMS

Homework

Most (and eventually, all) chapters of this book have homework sec-
tions at the end. Doing these homeworks is important, as each lets you,
the reader, gain more experience with the concepts presented within the
chapter.

There are two types of homeworks. The first is based on simulation. A
simulation of a computer system is just a simple program that pretends to
do some of the interesting parts of what a real system does, and then re-
port some output metrics to show how the system behaves. For example,
a hard drive simulator might take a series of requests, simulate how long
they would take to get serviced by a hard drive with certain performance
characteristics, and then report the average latency of the requests.

The cool thing about simulations is they let you easily explore how
systems behave without the difficulty of running a real system. Indeed,
they even let you create systems that cannot exist in the real world (for
example, a hard drive with unimaginably fast performance), and thus see
the potential impact of future technologies.

Of course, simulations are not without their downsides. By their very
nature, simulations are just approximations of how a real system behaves.
If an important aspect of real-world behavior is omitted, the simulation
will report bad results. Thus, results from a simulation should always be
treated with some suspicion. In the end, how a system behaves in the real
world is what matters.

The second type of homework requires interaction with real-world
code. Some of these homeworks are measurement focused, whereas oth-
ers just require some small-scale development and experimentation. Both
are just small forays into the larger world you should be getting into,
which is how to write systems code in C on UNIX-based systems. Indeed,
larger-scale projects, which go beyond these homeworks, are needed to
push you in this direction; thus, beyond just doing homeworks, we strongly
recommend you do projects to solidify your systems skills. See this page
(https://github.com/remzi-arpacidusseau/ostep-projects)
for some projects.

To do these homeworks, you likely have to be on a UNIX-based ma-
chine, running either Linux, macOS, or some similar system. It should
also have a C compiler installed (e.g., gcc) as well as Python. You should
also know how to edit code in a real code editor of some kind.
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A Dialogue on Virtualization

Professor: And thus we reach the first of our three pieces on operating systems:
virtualization.

Student: But what is virtualization, oh noble professor?

Professor: Imagine we have a peach.

Student: A peach? (incredulous)

Professor: Yes, a peach. Let us call that the physical peach. But we have many
eaters who would like to eat this peach. What we would like to present to each
eater is their own peach, so that they can be happy. We call the peach we give
eaters virtual peaches; we somehow create many of these virtual peaches out of
the one physical peach. And the important thing: in this illusion, it looks to each
eater like they have a physical peach, but in reality they don’t.

Student: So you are sharing the peach, but you don’t even know it?

Professor: Right! Exactly.

Student: But there’s only one peach.

Professor: Yes. And...?

Student: Well, if I was sharing a peach with somebody else, I think I would
notice.

Professor: Ah yes! Good point. But that is the thing with many eaters; most
of the time they are napping or doing something else, and thus, you can snatch
that peach away and give it to someone else for a while. And thus we create the
illusion of many virtual peaches, one peach for each person!

Student: Sounds like a bad campaign slogan. You are talking about computers,
right Professor?

Professor: Ah, young grasshopper, you wish to have a more concrete example.
Good idea! Let us take the most basic of resources, the CPU. Assume there is one
physical CPU in a system (though now there are often two or four or more). What
virtualization does is take that single CPU and make it look like many virtual
CPUs to the applications running on the system. Thus, while each application
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thinks it has its own CPU to use, there is really only one. And thus the OS has
created a beautiful illusion: it has virtualized the CPU.

Student: Wow! That sounds like magic. Tell me more! How does that work?
Professor: In time, young student, in good time. Sounds like you are ready to
begin.

Student: I am! Well, sort of. I must admit, I'm a little worried you are going to
start talking about peaches again.

Professor: Don't worry too much; I don’t even like peaches. And thus we be-

gin...
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The Abstraction: The Process

In this chapter, we discuss one of the most fundamental abstractions that
the OS provides to users: the process. The definition of a process, infor-
mally, is quite simple: it is a running program [V+65,BH70]. The program
itself is a lifeless thing: it just sits there on the disk, a bunch of instructions
(and maybe some static data), waiting to spring into action. It is the oper-
ating system that takes these bytes and gets them running, transforming
the program into something useful.

It turns out that one often wants to run more than one program at
once; for example, consider your desktop or laptop where you might like
to run a web browser, mail program, a game, a music player, and so forth.
In fact, a typical system may be seemingly running tens or even hundreds
of processes at the same time. Doing so makes the system easy to use, as
one never need be concerned with whether a CPU is available; one simply
runs programs. Hence our challenge:

THE CRUX OF THE PROBLEM:
How To PROVIDE THE ILLUSION OF MANY CPUS?
Although there are only a few physical CPUs available, how can the
OS provide the illusion of a nearly-endless supply of said CPUs?

The OS creates this illusion by virtualizing the CPU. By running one
process, then stopping it and running another, and so forth, the OS can
promote the illusion that many virtual CPUs exist when in fact there is
only one physical CPU (or a few). This basic technique, known as time
sharing of the CPU, allows users to run as many concurrent processes as
they would like; the potential cost is performance, as each will run more
slowly if the CPU(s) must be shared.

To implement virtualization of the CPU, and to implement it well, the
OS will need both some low-level machinery and some high-level in-
telligence. We call the low-level machinery mechanisms; mechanisms
are low-level methods or protocols that implement a needed piece of
functionality. For example, we'll learn later how to implement a context
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T1p: USE TIME SHARING (AND SPACE SHARING)

Time sharing is a basic technique used by an OS to share a resource. By
allowing the resource to be used for a little while by one entity, and then
a little while by another, and so forth, the resource in question (e.g., the
CPU, or a network link) can be shared by many. The counterpart of time
sharing is space sharing, where a resource is divided (in space) among
those who wish to use it. For example, disk space is naturally a space-
shared resource; once a block is assigned to a file, it is normally not as-
signed to another file until the user deletes the original file.

switch, which gives the OS the ability to stop running one program and
start running another on a given CPU; this time-sharing mechanism is
employed by all modern OSes.

On top of these mechanisms resides some of the intelligence in the
OS, in the form of policies. Policies are algorithms for making some
kind of decision within the OS. For example, given a number of possi-
ble programs to run on a CPU, which program should the OS run? A
scheduling policy in the OS will make this decision, likely using histori-
cal information (e.g., which program has run more over the last minute?),
workload knowledge (e.g., what types of programs are run), and perfor-
mance metrics (e.g., is the system optimizing for interactive performance,
or throughput?) to make its decision.

The Abstraction: A Process

The abstraction provided by the OS of a running program is something
we will call a process. As we said above, a process is simply a running
program; at any instant in time, we can summarize a process by taking an
inventory of the different pieces of the system it accesses or affects during
the course of its execution.

To understand what constitutes a process, we thus have to understand
its machine state: what a program can read or update when it is running.
At any given time, what parts of the machine are important to the execu-
tion of this program?

One obvious component of machine state that comprises a process is
its memory. Instructions lie in memory; the data that the running pro-
gram reads and writes sits in memory as well. Thus the memory that the
process can address (called its address space) is part of the process.

Also part of the process’s machine state are registers; many instructions
explicitly read or update registers and thus clearly they are important to
the execution of the process.

Note that there are some particularly special registers that form part
of this machine state. For example, the program counter (PC) (sometimes
called the instruction pointer or IP) tells us which instruction of the pro-
gram is currently being executed; similarly a stack pointer and associated
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TiP: SEPARATE POLICY AND MECHANISM

In many operating systems, a common design paradigm is to separate
high-level policies from their low-level mechanisms [L+75]. You can
think of the mechanism as providing the answer to a how question about
a system; for example, how does an operating system perform a context
switch? The policy provides the answer to a which question; for example,
which process should the operating system run right now? Separating the
two allows one easily to change policies without having to rethink the
mechanism and is thus a form of modularity, a general software design
principle.

frame pointer are used to manage the stack for function parameters, local
variables, and return addresses.

Finally, programs often access persistent storage devices too. Such I/O
information might include a list of the files the process currently has open.

Process API

Though we defer discussion of a real process API until a subsequent
chapter, here we first give some idea of what must be included in any
interface of an operating system. These APIs, in some form, are available
on any modern operating system.

e Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

e Destroy: As there is an interface for process creation, systems also
provide an interface to destroy processes forcefully. Of course, many
processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.

e Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.

e Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).

e Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.
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Figure 4.1: Loading: From Program To Process

Process Creation: A Little More Detail

One mystery that we should unmask a bit is how programs are trans-
formed into processes. Specifically, how does the OS get a program up
and running? How does process creation actually work?

The first thing that the OS must do to run a program is to load its code
and any static data (e.g., initialized variables) into memory, into the ad-
dress space of the process. Programs initially reside on disk (or, in some
modern systems, flash-based SSDs) in some kind of executable format;
thus, the process of loading a program and static data into memory re-
quires the OS to read those bytes from disk and place them in memory
somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done ea-
gerly, i.e., all at once before running the program; modern OSes perform
the process lazily, i.e., by loading pieces of code or data only as they are
needed during program execution. To truly understand how lazy loading
of pieces of code and data works, you'll have to understand more about
the machinery of paging and swapping, topics we’ll cover in the future
when we discuss the virtualization of memory. For now, just remember
that before running anything, the OS clearly must do some work to get
the important program bits from disk into memory.
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Once the code and static data are loaded into memory, there are a few
other things the OS needs to do before running the process. Some mem-
ory must be allocated for the program’s run-time stack (or just stack).
As you should likely already know, C programs use the stack for local
variables, function parameters, and return addresses; the OS allocates
this memory and gives it to the process. The OS will also likely initial-
ize the stack with arguments; specifically, it will fill in the parameters to
themain () function, i.e., argc and the argv array.

The OS may also allocate some memory for the program’s heap. In C
programs, the heap is used for explicitly requested dynamically-allocated
data; programs request such space by calling malloc () and free it ex-
plicitly by calling free (). The heap is needed for data structures such as
linked lists, hash tables, trees, and other interesting data structures. The
heap will be small at first; as the program runs, and requests more mem-
ory via themalloc () library API, the OS may get involved and allocate
more memory to the process to help satisfy such calls.

The OS will also do some other initialization tasks, particularly as re-
lated to input/output (I/O). For example, in UNIX systems, each process
by default has three open file descriptors, for standard input, output, and
error; these descriptors let programs easily read input from the terminal
and print output to the screen. We'll learn more about 1/0, file descrip-
tors, and the like in the third part of the book on persistence.

By loading the code and static data into memory, by creating and ini-
tializing a stack, and by doing other work as related to I/O setup, the OS
has now (finally) set the stage for program execution. It thus has one last
task: to start the program running at the entry point, namely main (). By
jumping to the main () routine (through a specialized mechanism that
we will discuss next chapter), the OS transfers control of the CPU to the
newly-created process, and thus the program begins its execution.

Process States

Now that we have some idea of what a process is (though we will
continue to refine this notion), and (roughly) how it is created, let us talk
about the different states a process can be in at a given time. The notion
that a process can be in one of these states arose in early computer systems
[DV66,V+65]. In a simplified view, a process can be in one of three states:

e Running: In the running state, a process is running on a processor.
This means it is executing instructions.

e Ready: In the ready state, a process is ready to run but for some
reason the OS has chosen not to run it at this given moment.

e Blocked: In the blocked state, a process has performed some kind
of operation that makes it not ready to run until some other event
takes place. A common example: when a process initiates an 1/0O
request to a disk, it becomes blocked and thus some other process
can use the processor.
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Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/0 operation), the OS will keep it as such until some event occurs (e.g.,
I/0 completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/0O). In this case, a trace of the state of each
process might look like this (Figure 4.3).

Time  Processg Processy Notes

1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready Processg now done
5 - Running

6 - Running

7 - Running

8 — Running  Process; now done

Figure 4.3: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Figure 4.4 shows a trace of this scenario.

More specifically, Processy initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-
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Time  Processg Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready Processy initiates I/O
4 Blocked  Running Processg is blocked,
5 Blocked Running so Process; runs
6 Blocked  Running
7 Ready Running 1/0 done
8 Ready Running Process; now done
9 Running -
10 Running - Processo now done

Figure 4.4: Tracing Process State: CPU and I/0

ing from a disk or waiting for a packet from a network. The OS recog-
nizes Processy is not using the CPU and starts running Process;. While
Process; is running, the I/O completes, moving Processg back to ready.
Finally, Process; finishes, and Processy runs and then is done.

Note that there are many decisions the OS must make, even in this
simple example. First, the system had to decide to run Process; while
Processy issued an I/O; doing so improves resource utilization by keep-
ing the CPU busy. Second, the system decided not to switch back to
Processp when its I/O completed; it is not clear if this is a good deci-
sion or not. What do you think? These types of decisions are made by the
OS scheduler, a topic we will discuss a few chapters in the future.

Data Structures

The OS is a program, and like any program, it has some key data struc-
tures that track various relevant pieces of information. To track the state
of each process, for example, the OS likely will keep some kind of pro-
cess list for all processes that are ready and some additional informa-
tion to track which process is currently running. The OS must also track,
in some way, blocked processes; when an I/O event completes, the OS
should make sure to wake the correct process and ready it to run again.

Figure 4.5 shows what type of information an OS needs to track about
each process in the xv6 kernel [CK+08]. Similar process structures exist
in “real” operating systems such as Linux, Mac OS X, or Windows; look
them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of informa-
tion the OS tracks about a process. The register context will hold, for a
stopped process, the contents of its registers. When a process is stopped,
its registers will be saved to this memory location; by restoring these reg-
isters (i.e., placing their values back into the actual physical registers), the
OS can resume running the process. We’ll learn more about this technique
known as a context switch in future chapters.
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// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip;

int esp;

int ebx;

int ecx;

int edx;

int esi;

int edi;

int ebp;
bi

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char xkstack; // Bottom of kernel stack
// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void =xchan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt

Figure 4.5: The xv6 Proc Structure

You can also see from the figure that there are some other states a pro-
cess can be in, beyond running, ready, and blocked. Sometimes a system
will have an initial state that the process is in when it is being created.
Also, a process could be placed in a final state where it has exited but
has not yet been cleaned up (in UNIX-based systems, this is called the
zombie state'). This final state can be useful as it allows other processes
(usually the parent that created the process) to examine the return code
of the process and see if the just-finished process executed successfully
(usually, programs return zero in UNIX-based systems when they have
accomplished a task successfully, and non-zero otherwise). When fin-
ished, the parent will make one final call (e.g., wait ()) to wait for the
completion of the child, and to also indicate to the OS that it can clean up
any relevant data structures that referred to the now-extinct process.

Yes, the zombie state. Just like real zombies, these zombies are relatively easy to kill.
However, different techniques are usually recommended.
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ASIDE: DATA STRUCTURE — THE PROCESS LIST

Operating systems are replete with various important data structures
that we will discuss in these notes. The process list (also called the task
list) is the first such structure. It is one of the simpler ones, but certainly
any OS that has the ability to run multiple programs at once will have
something akin to this structure in order to keep track of all the running
programs in the system. Sometimes people refer to the individual struc-
ture that stores information about a process as a Process Control Block
(PCB), a fancy way of talking about a C structure that contains informa-
tion about each process (also sometimes called a process descriptor).

ASIDE: KEY PROCESS TERMS

e The process is the major OS abstraction of a running program. At
any point in time, the process can be described by its state: the con-
tents of memory in its address space, the contents of CPU registers
(including the program counter and stack pointer, among others),
and information about I/O (such as open files which can be read or
written).

o The process API consists of calls programs can make related to pro-
cesses. Typically, this includes creation, destruction, and other use-
ful calls.

e Processes exist in one of many different process states, including
running, ready to run, and blocked. Different events (e.g., getting
scheduled or descheduled, or waiting for an I/O to complete) tran-
sition a process from one of these states to the other.

e A process list contains information about all processes in the sys-
tem. Each entry is found in what is sometimes called a process
control block (PCB), which is really just a structure that contains
information about a specific process.

Summary

We have introduced the most basic abstraction of the OS: the process.
It is quite simply viewed as a running program. With this conceptual
view in mind, we will now move on to the nitty-gritty: the low-level
mechanisms needed to implement processes, and the higher-level poli-
cies required to schedule them in an intelligent way. By combining mech-
anisms and policies, we will build up our understanding of how an oper-
ating system virtualizes the CPU.
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Homework (Simulation)

This program, process-run.py, allows you to see how process states
change as programs run and either use the CPU (e.g., perform an add
instruction) or do I/O (e.g., send a request to a disk and wait for it to
complete). See the README for details.

Questions

1.

Run process-run.py with the following flags: -1 5:100,5:100. What
should the CPU utilization be (e.g., the percent of time the CPU is in use?)
Why do you know this? Use the ~c and -p flags to see if you were right.

. Now run with these flags: ./process-run.py -1 4:100,1:0. These

flags specify one process with 4 instructions (all to use the CPU), and one
that simply issues an I/O and waits for it to be done. How long does it take
to complete both processes? Use ~c and —p to find out if you were right.

. Switch the order of the processes: ./process-run.py -1 1:0,4:100.

What happens now? Does switching the order matter? Why? (As always,
use —c and -p to see if you were right)

. We'll now explore some of the other flags. One important flag is —S, which

determines how the system reacts when a process issues an 1/0O. With the
flag set to SWITCH_ON_END, the system will NOT switch to another pro-
cess while one is doing I/0, instead waiting until the process is completely
finished. What happens when you run the following two processes (-1
1:0,4:100 -¢c -S SWITCH.ON_END), one doing I/O and the other doing
CPU work?

. Now, run the same processes, but with the switching behavior set to switch

to another process whenever one is WAITING forI/O (-1 1:0,4:100 -c
-S SWITCH-ON.IO). What happens now? Use -c and -p to confirm that
you are right.

. One other important behavior is what to do when an I/O completes. With

—-I TO-RUN_LATER, when an I/O completes, the process that issued it is not
necessarily run right away; rather, whatever was running at the time keeps
running. What happens when you run this combination of processes? (Run
./process-run.py -1 3:0,5:100,5:100,5:100 -S SWITCH_ON_IO
-I IO-RUN.LATER -c -p)Aresystem resources being effectively utilized?

. Now run the same processes, but with - TO_RUN_IMMEDIATE set, which

immediately runs the process that issued the I/O. How does this behavior
differ? Why might running a process that just completed an I/O again be a
good idea?

. Now run with some randomly generated processes: -s 1 -1 3:50,3:50

or -s 2 -1 3:50,3:50 0r -s 3 -1 3:50,3:50. See if you can pre-
dict how the trace will turn out. What happens when you use the flag —I
IO_RUN_IMMEDIATE vs. -I IO_RUN_LATER? What happens when you use
-S SWITCH.ON.IOVS. -S SWITCH.ON_END?
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ASIDE: INTERLUDES
Interludes will cover more practical aspects of systems, including a par-
ticular focus on operating system APIs and how to use them. If you don’t
like practical things, you could skip these interludes. But you should like
practical things, because, well, they are generally useful in real life; com-
panies, for example, don’t usually hire you for your non-practical skills.

In this interlude, we discuss process creation in UNIX systems. UNIX
presents one of the most intriguing ways to create a new process with
a pair of system calls: fork () and exec (). A third routine, wait (),
can be used by a process wishing to wait for a process it has created to
complete. We now present these interfaces in more detail, with a few
simple examples to motivate us. And thus, our problem:

CRUX: HOW TO CREATE AND CONTROL PROCESSES
What interfaces should the OS present for process creation and con-
trol? How should these interfaces be designed to enable powerful func-
tionality, ease of use, and high performance?

The fork () System Call

The fork () system call is used to create a new process [C63]. How-
ever, be forewarned: it is certainly the strangest routine you will ever
call'. More specifically, you have a running program whose code looks
like what you see in Figure 5.1; examine the code, or better yet, type it in
and run it yourself!

Well, OK, we admit that we don’t know that for sure; who knows what routines you
call when no one is looking? But fork () is pretty odd, no matter how unusual your routine-
calling patterns are.
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#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char xargv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);
} else if (rc == 0) { // child (new process)
printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)
printf ("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());
}

return 0;

Figure 5.1: Calling fork () (pl.c)

When you run this program (called p1 . c), you'll see the following;:

prompt> ./pl

hello world (pid:29146

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

Let us understand what happened in more detail in p1.c. When it
first started running, the process prints out a hello world message; in-
cluded in that message is its process identifier, also known as a PID. The
process has a PID of 29146; in UNIX systems, the PID is used to name
the process if one wants to do something with the process, such as (for
example) stop it from running. So far, so good.

Now the interesting part begins. The process calls the fork () system
call, which the OS provides as a way to create a new process. The odd
part: the process that is created is an (almost) exact copy of the calling pro-
cess. That means that to the OS, it now looks like there are two copies of
the program p1 running, and both are about to return from the fork ()
system call. The newly-created process (called the child, in contrast to the
creating parent) doesn’t start running at main (), like you might expect
(note, the “hello, world” message only got printed out once); rather, it
just comes into life as if it had called fork () itself.

You might have noticed: the child isn’t an exact copy. Specifically, al-
though it now has its own copy of the address space (i.e., its own private
memory), its own registers, its own PC, and so forth, the value it returns
to the caller of fork() is different. Specifically, while the parent receives
the PID of the newly-created child, the child receives a return code of
zero. This differentiation is useful, because it is simple then to write the
code that handles the two different cases (as above).
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#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char =xargv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);
} else if (rc == 0) { // child (new process)
printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)
int rc_wait = wait (NULL);
printf ("hello, I am parent of %d (rc_wait:%d) (pid:%d)\n",
rc, rc_wait, (int) getpid());

}

return 0;

Figure 5.2: Calling fork () And wait () (p2.c)

You might also have noticed: the output (of p1 . c) is not deterministic.
When the child process is created, there are now two active processes in
the system that we care about: the parent and the child. Assuming we
are running on a system with a single CPU (for simplicity), then either
the child or the parent might run at that point. In our example (above),
the parent did and thus printed out its message first. In other cases, the
opposite might happen, as we show in this output trace:

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146
prompt>

The CPU scheduler, a topic we'll discuss in great detail soon, deter-
mines which process runs at a given moment in time; because the sched-
uler is complex, we cannot usually make strong assumptions about what
it will choose to do, and hence which process will run first. This non-
determinism, as it turns out, leads to some interesting problems, par-
ticularly in multi-threaded programs; hence, we'll see a lot more non-
determinism when we study concurrency in the second part of the book.

The wait () System Call

So far, we haven’t done much: just created a child that prints out a
message and exits. Sometimes, as it turns out, it is quite useful for a
parent to wait for a child process to finish what it has been doing. This
task is accomplished with the wait () system call (or its more complete
sibling waitpid ()); see Figure 5.2 for details.

THREE
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In this example (p2.c), the parent process calls wait () to delay its
execution until the child finishes executing. When the child is done,
wait () returns to the parent.

Adding a wait () call to the code above makes the output determin-
istic. Can you see why? Go ahead, think about it.

(waiting for you to think .... and done)
Now that you have thought a bit, here is the output:

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (rc_wait:29267) (pid:29266)
prompt>

With this code, we now know that the child will always print first.
Why do we know that? Well, it might simply run first, as before, and
thus print before the parent. However, if the parent does happen to run
first, it will immediately call wait () ; this system call won’t return until
the child has run and exited’. Thus, even when the parent runs first, it
politely waits for the child to finish running, then wait () returns, and
then the parent prints its message.

Finally, The exec () System Call

A final and important piece of the process creation APl is the exec ()
system call’. This system call is useful when you want to run a program
that is different from the calling program. For example, calling fork ()
in p2.c is only useful if you want to keep running copies of the same
program. However, often you want to run a different program; exec ()
does just that (Figure 5.3, page 41).

In this example, the child process calls execvp () in order to run the
program wc, which is the word counting program. In fact, it runs wc on
the source file p3. ¢, thus telling us how many lines, words, and bytes are
found in the file:

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (rc_wait:29384) (pid:29383)
prompt>

There are a few cases where wait () returns before the child exits; read the man page
for more details, as always. And beware of any absolute and unqualified statements this book
makes, such as “the child will always print first” or “UNIX is the best thing in the world, even
better than ice cream.”

30n Linux, there are six variants of exec(): execl, execlp(), execle(),
execv (), execvp(),and execvpe (). Read the man pages to learn more.
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#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char =xargv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);

} else if (rc == 0) { // child (new process)
printf ("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs([3];
myargs[0] = strdup ("wc"); // program: "wc" (word count)
myargs[1l] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array

execvp (myargs[0], myargs); // runs word count
printf ("this shouldn’t print out");
} else { // parent goes down this path (main)
int rc_wait = wait (NULL);
printf ("hello, I am parent of %d (rc_wait:%d) (pid:%d)\n",
rc, rc_wait, (int) getpid());
}

return 0;

Figure 5.3: Calling fork (), wait (), And exec () (p3.c)

The fork () system call is strange; its partner in crime, exec (), is not
so normal either. What it does: given the name of an executable (e.g., wc),
and some arguments (e.g., p3. c), it loads code (and static data) from that
executable and overwrites its current code segment (and current static
data) with it; the heap and stack and other parts of the memory space of
the program are re-initialized. Then the OS simply runs that program,
passing in any arguments as the argv of that process. Thus, it does not
create a new process; rather, it transforms the currently running program
(formerly p3) into a different running program (wc). After the exec ()
in the child, it is almost as if p3 . ¢ never ran; a successful call to exec ()
never returns.

Why? Motivating The API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork () and exec () is
essential in building a UNIX shell, because it lets the shell run code after
the call to fork () but before the call to exec (); this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.
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T1P: GETTING IT RIGHT (LAMPSON’S LAW)

As Lampson states in his well-regarded “Hints for Computer Systems
Design” [L83], “Get it right. Neither abstraction nor simplicity is a sub-
stitute for getting it right.” Sometimes, you just have to do the right thing,
and when you do, it is way better than the alternatives. There are lots
of ways to design APIs for process creation; however, the combination
of fork () and exec () are simple and immensely powerful. Here, the
UNIX designers simply got it right. And because Lampson so often “got
it right”, we name the law in his honor.

The shell is just a user program”. It shows you a prompt and then
waits for you to type something into it. You then type a command (i.e.,
the name of an executable program, plus any arguments) into it; in most
cases, the shell then figures out where in the file system the executable
resides, calls fork () to create a new child process to run the command,
calls some variant of exec () to run the command, and then waits for the
command to complete by calling wait (). When the child completes, the
shell returns from wait () and prints out a prompt again, ready for your
next command.

The separation of fork () and exec () allows the shell to do a whole
bunch of useful things rather easily. For example:

prompt> wc p3.c > newfile.txt

In the example above, the output of the program wc is redirected into
the output file newfile.txt (the greater-than sign is how said redirec-
tion is indicated). The way the shell accomplishes this task is quite sim-
ple: when the child is created, before calling exec (), the shell closes
standard output and opens the file newfile.txt. By doing so, any out-
put from the soon-to-be-running program wc are sent to the file instead
of the screen.

Figure 5.4 (page 43) shows a program that does exactly this. The rea-
son this redirection works is due to an assumption about how the oper-
ating system manages file descriptors. Specifically, UNIX systems start
looking for free file descriptors at zero. In this case, STDOUT_FILENO
will be the first available one and thus get assigned when open () is
called. Subsequent writes by the child process to the standard output
file descriptor, for example by routines such as printf (), will then be
routed transparently to the newly-opened file instead of the screen.

Here is the output of running the p4 . c program:

prompt> ./p4
prompt> cat p4.output

32 109 846 pd.c
prompt>

*And there are lots of shells; t csh, bash, and zsh to name a few. You should pick one,
read its man pages, and learn more about it; all UNIX experts do.
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#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int main(int argc, char xargv[]) {
int rc = fork();
if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1);
} else if (rc == 0) { // child: redirect standard output to a file

close (STDOUT_FILENO) ;
open ("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

// now exec "wc"...
char myargs|[3];

myargs[0] = strdup ("wc"); // program: "wc" (word count)
myargs[l] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp (myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)

int rc_wait = wait (NULL);
}

return 0;

Figure 5.4: All Of The Above With Redirection (p4 . c)

You'll notice (at least) two interesting tidbits about this output. First,
when p4 is run, it looks as if nothing has happened; the shell just prints
the command prompt and is immediately ready for your next command.
However, that is not the case; the program p4 did indeed call fork () to
create a new child, and then run the wc program via a call to execvp ().
You don’t see any output printed to the screen because it has been redi-
rected to the file p4 . output. Second, you can see that when we cat the
output file, all the expected output from running wc is found. Cool, right?

UNIX pipes are implemented in a similar way, but with the pipe ()
system call. In this case, the output of one process is connected to an in-
kernel pipe (i.e., queue), and the input of another process is connected
to that same pipe; thus, the output of one process seamlessly is used as
input to the next, and long and useful chains of commands can be strung
together. As a simple example, consider looking for a word in a file, and
then counting how many times said word occurs; with pipes and the util-
ities grep and wc, it is easy — just type grep -o foo file | wc -1
into the command prompt and marvel at the result.

Finally, while we just have sketched out the process API at a high level,
there is a lot more detail about these calls out there to be learned and
digested; we’ll learn more, for example, about file descriptors when we
talk about file systems in the third part of the book. For now, suffice it
to say that the fork () /exec () combination is a powerful way to create
and manipulate processes.
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ASIDE: RTFM — READ THE MAN PAGES
Many times in this book, when referring to a particular system call or
library call, we'll tell you to read the manual pages, or man pages for
short. Man pages are the original form of documentation that exist on
UNIX systems; realize that they were created before the thing called the
web existed.
Spending some time reading man pages is a key step in the growth of
a systems programmer; there are tons of useful tidbits hidden in those
pages. Some particularly useful pages to read are the man pages for
whichever shell you are using (e.g., tesh, or bash), and certainly for any
system calls your program makes (in order to see what return values and
error conditions exist).
Finally, reading the man pages can save you some embarrassment. When
you ask colleagues about some intricacy of fork (), they may simply
reply: “RTEM.” This is your colleagues’ way of gently urging you to Read
The Man pages. The F in RTFM just adds a little color to the phrase...

Process Control And Users

Beyond fork (), exec (), and wait (), there are a lot of other inter-
faces for interacting with processes in UNIX systems. For example, the
kill () system call is used to send signals to a process, including di-
rectives to pause, die, and other useful imperatives. For convenience,
in most UNIX shells, certain keystroke combinations are configured to
deliver a specific signal to the currently running process; for example,
control-c sends a SIGINT (interrupt) to the process (normally terminating
it) and control-z sends a SIGTSTP (stop) signal thus pausing the process
in mid-execution (you can resume it later with a command, e.g., the fg
built-in command found in many shells).

The entire signals subsystem provides a rich infrastructure to deliver
external events to processes, including ways to receive and process those
signals within individual processes, and ways to send signals to individ-
ual processes as well as entire process groups. To use this form of com-
munication, a process should use the signal () system call to “catch”
various signals; doing so ensures that when a particular signal is deliv-
ered to a process, it will suspend its normal execution and run a particu-
lar piece of code in response to the signal. Read elsewhere [SR05] to learn
more about signals and their many intricacies.

This naturally raises the question: who can send a signal to a process,
and who cannot? Generally, the systems we use can have multiple people
using them at the same time; if one of these people can arbitrarily send
signals such as SIGINT (to interrupt a process, likely terminating it), the
usability and security of the system will be compromised. As a result,
modern systems include a strong conception of the notion of a user. The
user, after entering a password to establish credentials, logs in to gain
access to system resources. The user may then launch one or many pro-
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ASIDE: THE SUPERUSER (ROOT)

A system generally needs a user who can administer the system, and is
not limited in the way most users are. Such a user should be able to kill
an arbitrary process (e.g., if it is abusing the system in some way), even
though that process was not started by this user. Such a user should also
be able to run powerful commands such as shut down (which, unsurpris-
ingly, shuts down the system). In UNIX-based systems, these special abil-
ities are given to the superuser (sometimes called root). While most users
can’t kill other users processes, the superuser can. Being root is much like
being Spider-Man: with great power comes great responsibility [QI15].
Thus, to increase security (and avoid costly mistakes), it’s usually better
to be a regular user; if you do need to be root, tread carefully, as all of the
destructive powers of the computing world are now at your fingertips.

cesses, and exercise full control over them (pause them, kill them, etc.).
Users generally can only control their own processes; it is the job of the
operating system to parcel out resources (such as CPU, memory, and disk)
to each user (and their processes) to meet overall system goals.

Useful Tools

There are many command-line tools that are useful as well. For exam-
ple, using the ps command allows you to see which processes are run-
ning; read the man pages for some useful flags to pass to ps. The tool top
is also quite helpful, as it displays the processes of the system and how
much CPU and other resources they are eating up. Humorously, many
times when you run it, t op claims it is the top resource hog; perhaps it is
a bit of an egomaniac. The command ki11 can be used to send arbitrary
signals to processes, as can the slightly more user friendly killall. Be
sure to use these carefully; if you accidentally kill your window manager,
the computer you are sitting in front of may become quite difficult to use.

Finally, there are many different kinds of CPU meters you can use to
get a quick glance understanding of the load on your system; for example,
we always keep MenuMeters (from Raging Menace software) running on
our Macintosh toolbars, so we can see how much CPU is being utilized
at any moment in time. In general, the more information about what is
going on, the better.

Summary

We have introduced some of the APIs dealing with UNIX process cre-
ation: fork (), exec (), and wait (). However, we have just skimmed
the surface. For more detail, read Stevens and Rago [SR05], of course,
particularly the chapters on Process Control, Process Relationships, and
Signals. There is much to extract from the wisdom therein.
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ASIDE: KEY PROCESS API TERMS

Each process has a name; in most systems, that name is a number
known as a process ID (PID).

The fork() system call is used in UNIX systems to create a new pro-
cess. The creator is called the parent; the newly created process is
called the child. As sometimes occurs in real life [J16], the child
process is a nearly identical copy of the parent.

The wait() system call allows a parent to wait for its child to com-
plete execution.

The exec() family of system calls allows a child to break free from
its similarity to its parent and execute an entirely new program.

A UNIX shell commonly uses fork (), wait (), and exec () to
launch user commands; the separation of fork and exec enables fea-
tures like input/output redirection, pipes, and other cool features,
all without changing anything about the programs being run.

Process control is available in the form of signals, which can cause
jobs to stop, continue, or even terminate.

Which processes can be controlled by a particular person is encap-
sulated in the notion of a user; the operating system allows multiple
users onto the system, and ensures users can only control their own
processes.

A superuser can control all processes (and indeed do many other
things); this role should be assumed infrequently and with caution
for security reasons.
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ASIDE: CODING HOMEWORKS

Coding homeworks are small exercises where you write code to run
on a real machine to get some experience with some basic operating sys-
tem APIs. After all, you are (probably) a computer scientist, and there-
fore should like to code, right? (if you don’t, there is always CS theory,
but that’s pretty hard) Of course, to truly become an expert, you have to
spend more than a little time hacking away at the machine; indeed, find
every excuse you can to write some code and see how it works. Spend
the time, and become the wise master you know you can be.

Homework (Code)

In this homework, you are to gain some familiarity with the process
management APIs about which you just read. Don’t worry — it's even
more fun than it sounds! You’ll in general be much better off if you find
as much time as you can to write some code, so why not start now?

Questions

1. Write a program that calls fork (). Before calling fork (), have the main
process access a variable (e.g., x) and set its value to something (e.g., 100).
What value is the variable in the child process? What happens to the vari-
able when both the child and parent change the value of x?

2. Write a program that opens a file (with the open () system call) and then
calls fork () to create a new process. Can both the child and parent ac-
cess the file descriptor returned by open () ? What happens when they are
writing to the file concurrently, i.e., at the same time?

3. Write another program using fork () . The child process should print “hello”;
the parent process should print “goodbye”. You should try to ensure that
the child process always prints first; can you do this without calling wait() in
the parent?

4. Write a program that calls fork () and then calls some form of exec () to
run the program /bin/1s. See if you can try all of the variants of exec (),
including (on Linux) execl (), execle(), execlp(), execv(), execvp(),
and execvpe (). Why do you think there are so many variants of the same
basic call?

5. Now write a program that uses wait () to wait for the child process to finish
in the parent. What does wait () return? What happens if you use wait ()
in the child?

6. Write a slight modification of the previous program, this time using waitpid ()
instead of wait (). When would waitpid () be useful?

7. Write a program that creates a child process, and then in the child closes
standard output (STDOUT-FILENO). What happens if the child calls print £ ()
to print some output after closing the descriptor?

8. Write a program that creates two children, and connects the standard output
of one to the standard input of the other, using the pipe () system call.

OPERATING
SYSTEMS
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Mechanism: Limited Direct Execution

In order to virtualize the CPU, the operating system needs to somehow
share the physical CPU among many jobs running seemingly at the same
time. The basic idea is simple: run one process for a little while, then
run another one, and so forth. By time sharing the CPU in this manner,
virtualization is achieved.

There are a few challenges, however, in building such virtualization
machinery. The first is performance: how can we implement virtualiza-
tion without adding excessive overhead to the system? The second is
control: how can we run processes efficiently while retaining control over
the CPU? Control is particularly important to the OS, as it is in charge of
resources; without control, a process could simply run forever and take
over the machine, or access information that it should not be allowed to
access. Obtaining high performance while maintaining control is thus
one of the central challenges in building an operating system.

THE CRUX:
How To EFFICIENTLY VIRTUALIZE THE CPU WITH CONTROL
The OS must virtualize the CPU in an efficient manner while retaining
control over the system. To do so, both hardware and operating-system
support will be required. The OS will often use a judicious bit of hard-
ware support in order to accomplish its work effectively.

Basic Technique: Limited Direct Execution

To make a program run as fast as one might expect, not surprisingly
OS developers came up with a technique, which we call limited direct
execution. The “direct execution” part of the idea is simple: just run the
program directly on the CPU. Thus, when the OS wishes to start a pro-
gram running, it creates a process entry for it in a process list, allocates
some memory for it, loads the program code into memory (from disk), lo-
cates its entry point (i.e., themain () routine or something similar), jumps

49



50

MECHANISM: LIMITED DIRECT EXECUTION

6.2

OPERATING
SYSTEMS

(O8] Program
Create entry for process list

Allocate memory for program

Load program into memory

Set up stack with argc/argv

Clear registers

Execute call main()

Run main()

Execute return from main
Free memory of process
Remove from process list

Figure 6.1: Direct Execution Protocol (Without Limits)

to it, and starts running the user’s code. Figure 6.1 shows this basic di-
rect execution protocol (without any limits, yet), using a normal call and
return to jump to the program’s main () and later to get back into the
kernel.

Sounds simple, no? But this approach gives rise to a few problems
in our quest to virtualize the CPU. The first is simple: if we just run a
program, how can the OS make sure the program doesn’t do anything
that we don’t want it to do, while still running it efficiently? The second:
when we are running a process, how does the operating system stop it
from running and switch to another process, thus implementing the time
sharing we require to virtualize the CPU?

In answering these questions below, we’ll get a much better sense of
what is needed to virtualize the CPU. In developing these techniques,
we’ll also see where the “limited” part of the name arises from; without
limits on running programs, the OS wouldn’t be in control of anything
and thus would be “just a library” — a very sad state of affairs for an
aspiring operating system!

Problem #1: Restricted Operations

Direct execution has the obvious advantage of being fast; the program
runs natively on the hardware CPU and thus executes as quickly as one
would expect. But running on the CPU introduces a problem: what if
the process wishes to perform some kind of restricted operation, such
as issuing an I/O request to a disk, or gaining access to more system
resources such as CPU or memory?

THE CRUX: HOW TO PERFORM RESTRICTED OPERATIONS
A process must be able to perform I/O and some other restricted oper-
ations, but without giving the process complete control over the system.
How can the OS and hardware work together to do so?
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ASIDE: WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

You may wonder why a call to a system call, such as open () or read (),
looks exactly like a typical procedure call in C; that is, if it looks just like
a procedure call, how does the system know it’s a system call, and do all
the right stuff? The simple reason: it is a procedure call, but hidden in-
side that procedure call is the famous trap instruction. More specifically,
when you call open () (for example), you are executing a procedure call
into the C library. Therein, whether for open () or any of the other sys-
tem calls provided, the library uses an agreed-upon calling convention
with the kernel to put the arguments to open in well-known locations
(e.g., on the stack, or in specific registers), puts the system-call number
into a well-known location as well (again, onto the stack or a register),
and then executes the aforementioned trap instruction. The code in the
library after the trap unpacks return values and returns control to the
program that issued the system call. Thus, the parts of the C library that
make system calls are hand-coded in assembly, as they need to carefully
follow convention in order to process arguments and return values cor-
rectly, as well as execute the hardware-specific trap instruction. And now
you know why you personally don’t have to write assembly code to trap
into an OS; somebody has already written that assembly for you.

One approach would simply be to let any process do whatever it wants
in terms of I/O and other related operations. However, doing so would
prevent the construction of many kinds of systems that are desirable. For
example, if we wish to build a file system that checks permissions before
granting access to a file, we can’t simply let any user process issue I/Os
to the disk; if we did, a process could simply read or write the entire disk
and thus all protections would be lost.

Thus, the approach we take is to introduce a new processor mode,
known as user mode; code that runs in user mode is restricted in what it
can do. For example, when running in user mode, a process can’t issue
I/0 requests; doing so would result in the processor raising an exception;
the OS would then likely kill the process.

In contrast to user mode is kernel mode, which the operating system
(or kernel) runs in. In this mode, code that runs can do what it likes, in-
cluding privileged operations such as issuing I/O requests and executing
all types of restricted instructions.

We are still left with a challenge, however: what should a user pro-
cess do when it wishes to perform some kind of privileged operation,
such as reading from disk? To enable this, virtually all modern hard-
ware provides the ability for user programs to perform a system call.
Pioneered on ancient machines such as the Atlas [K+61,L78], system calls
allow the kernel to carefully expose certain key pieces of functionality to
user programs, such as accessing the file system, creating and destroy-
ing processes, communicating with other processes, and allocating more
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Tr1pP: USE PROTECTED CONTROL TRANSFER
The hardware assists the OS by providing different modes of execution.
In user mode, applications do not have full access to hardware resources.
In kernel mode, the OS has access to the full resources of the machine.
Special instructions to trap into the kernel and return-from-trap back to
user-mode programs are also provided, as well as instructions that allow
the OS to tell the hardware where the trap table resides in memory.

memory. Most operating systems provide a few hundred calls (see the
POSIX standard for details [P10]); early Unix systems exposed a more
concise subset of around twenty calls.

To execute a system call, a program must execute a special trap instruc-
tion. This instruction simultaneously jumps into the kernel and raises the
privilege level to kernel mode; once in the kernel, the system can now per-
form whatever privileged operations are needed (if allowed), and thus do
the required work for the calling process. When finished, the OS calls a
special return-from-trap instruction, which, as you might expect, returns
into the calling user program while simultaneously reducing the privi-
lege level back to user mode.

The hardware needs to be a bit careful when executing a trap, in that it
must make sure to save enough of the caller’s registers in order to be able
to return correctly when the OS issues the return-from-trap instruction.
On x86, for example, the processor will push the program counter, flags,
and a few other registers onto a per-process kernel stack; the return-from-
trap will pop these values off the stack and resume execution of the user-
mode program (see the Intel systems manuals [I11] for details). Other
hardware systems use different conventions, but the basic concepts are
similar across platforms.

There is one important detail left out of this discussion: how does the
trap know which code to run inside the OS? Clearly, the calling process
can’t specify an address to jump to (as you would when making a pro-
cedure call); doing so would allow programs to jump anywhere into the
kernel which clearly is a Very Bad Idea'. Thus the kernel must carefully
control what code executes upon a trap.

The kernel does so by setting up a trap table at boot time. When the
machine boots up, it does so in privileged (kernel) mode, and thus is free
to configure machine hardware as need be. One of the first things the OS
thus does is to tell the hardware what code to run when certain excep-
tional events occur. For example, what code should run when a hard-
disk interrupt takes place, when a keyboard interrupt occurs, or when
a program makes a system call? The OS informs the hardware of the
locations of these trap handlers, usually with some kind of special in-

!'Imagine jumping into code to access a file, but just after a permission check; in fact, it is
likely such an ability would enable a wily programmer to get the kernel to run arbitrary code
sequences [S07]. In general, try to avoid Very Bad Ideas like this one.
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OS @ boot Hardware
(kernel mode)
initialize trap table

remember address of...
syscall handler

OS @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list

Allocate memory for program

Load program into memory

Setup user stack with argv

Fill kernel stack with reg/PC

return-from-trap

restore regs from kernel stack
move to user mode
jump to main
Run main()

Call system call
trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
Do work of syscall
return-from-trap
restore regs from kernel stack
move to user mode
jump to PC after trap

return from main
trap (via exit ())
Free memory of process
Remove from process list

Figure 6.2: Limited Direct Execution Protocol

struction. Once the hardware is informed, it remembers the location of
these handlers until the machine is next rebooted, and thus the hardware
knows what to do (i.e., what code to jump to) when system calls and other
exceptional events take place.

To specify the exact system call, a system-call number is usually as-
signed to each system call. The user code is thus responsible for placing
the desired system-call number in a register or at a specified location on
the stack; the OS, when handling the system call inside the trap handler,
examines this number, ensures it is valid, and, if it is, executes the corre-
sponding code. This level of indirection serves as a form of protection;
user code cannot specify an exact address to jump to, but rather must
request a particular service via number.

One last aside: being able to execute the instruction to tell the hard-
ware where the trap tables are is a very powerful capability. Thus, as you
might have guessed, it is also a privileged operation. If you try to exe-
cute this instruction in user mode, the hardware won't let you, and you
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Tip: BE WARY OF USER INPUTS IN SECURE SYSTEMS

Even though we have taken great pains to protect the OS during system
calls (by adding a hardware trapping mechanism, and ensuring all calls to
the OS are routed through it), there are still many other aspects to imple-
menting a secure operating system that we must consider. One of these
is the handling of arguments at the system call boundary; the OS must
check what the user passes in and ensure that arguments are properly
specified, or otherwise reject the call.

For example, with a write () system call, the user specifies an address
of a buffer as a source of the write call. If the user (either accidentally
or maliciously) passes in a “bad” address (e.g., one inside the kernel’s
portion of the address space), the OS must detect this and reject the call.
Otherwise, it would be possible for a user to read all of kernel memory;
given that kernel (virtual) memory also usually includes all of the physi-
cal memory of the system, this small slip would enable a program to read
the memory of any other process in the system.

In general, a secure system must treat user inputs with great suspicion.
Not doing so will undoubtedly lead to easily hacked software, a despair-
ing sense that the world is an unsafe and scary place, and the loss of job
security for the all-too-trusting OS developer.

can probably guess what will happen (hint: adios, offending program).
Point to ponder: what horrible things could you do to a system if you
could install your own trap table? Could you take over the machine?

The timeline (with time increasing downward, in Figure 6.2) summa-
rizes the protocol. We assume each process has a kernel stack where reg-
isters (including general purpose registers and the program counter) are
saved to and restored from (by the hardware) when transitioning into and
out of the kernel.

There are two phases in the limited direct execution (LDE) protocol.
In the first (at boot time), the kernel initializes the trap table, and the
CPU remembers its location for subsequent use. The kernel does so via a
privileged instruction (all privileged instructions are highlighted in bold).

In the second (when running a process), the kernel sets up a few things
(e.g., allocating a node on the process list, allocating memory) before us-
ing a return-from-trap instruction to start the execution of the process;
this switches the CPU to user mode and begins running the process.
When the process wishes to issue a system call, it traps back into the OS,
which handles it and once again returns control via a return-from-trap
to the process. The process then completes its work, and returns from
main (); this usually will return into some stub code which will properly
exit the program (say, by calling the exit () system call, which traps into
the OS). At this point, the OS cleans up and we are done.
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Problem #2: Switching Between Processes

The next problem with direct execution is achieving a switch between
processes. Switching between processes should be simple, right? The
OS should just decide to stop one process and start another. What's the
big deal? But it actually is a little bit tricky: specifically, if a process is
running on the CPU, this by definition means the OS is not running. If
the OS is not running, how can it do anything at all? (hint: it can’t) While
this sounds almost philosophical, it is a real problem: there is clearly no
way for the OS to take an action if it is not running on the CPU. Thus we
arrive at the crux of the problem.

THE CRUX: HOW TO REGAIN CONTROL OF THE CPU
How can the operating system regain control of the CPU so that it can
switch between processes?

A Cooperative Approach: Wait For System Calls

One approach that some systems have taken in the past (for example,
early versions of the Macintosh operating system [M11], or the old Xerox
Alto system [A79]) is known as the cooperative approach. In this style,
the OS trusts the processes of the system to behave reasonably. Processes
that run for too long are assumed to periodically give up the CPU so that
the OS can decide to run some other task.

Thus, you might ask, how does a friendly process give up the CPU in
this utopian world? Most processes, as it turns out, transfer control of
the CPU to the OS quite frequently by making system calls, for example,
to open a file and subsequently read it, or to send a message to another
machine, or to create a new process. Systems like this often include an
explicit yield system call, which does nothing except to transfer control
to the OS so it can run other processes.

Applications also transfer control to the OS when they do something
illegal. For example, if an application divides by zero, or tries to access
memory that it shouldn’t be able to access, it will generate a trap to the
OS. The OS will then have control of the CPU again (and likely terminate
the offending process).

TiP: DEALING WITH APPLICATION MISBEHAVIOR
Operating systems often have to deal with misbehaving processes, those
that either through design (maliciousness) or accident (bugs) attempt to
do something that they shouldn’t. In modern systems, the way the OS
tries to handle such malfeasance is to simply terminate the offender. One
strike and you're out! Perhaps brutal, but what else should the OS do
when you try to access memory illegally or execute an illegal instruction?
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Thus, in a cooperative scheduling system, the OS regains control of
the CPU by waiting for a system call or an illegal operation of some kind
to take place. You might also be thinking: isn’t this passive approach less
than ideal? What happens, for example, if a process (wWhether malicious,
or just full of bugs) ends up in an infinite loop, and never makes a system
call? What can the OS do then?

A Non-Cooperative Approach: The OS Takes Control

Without some additional help from the hardware, it turns out the OS can’t
do much at all when a process refuses to make system calls (or mistakes)
and thus return control to the OS. In fact, in the cooperative approach,
your only recourse when a process gets stuck in an infinite loop is to
resort to the age-old solution to all problems in computer systems: reboot
the machine. Thus, we again arrive at a subproblem of our general quest
to gain control of the CPU.

THE CRUX: HOW TO GAIN CONTROL WITHOUT COOPERATION
How can the OS gain control of the CPU even if processes are not being
cooperative? What can the OS do to ensure a rogue process does not take
over the machine?

The answer turns out to be simple and was discovered by a number
of people building computer systems many years ago: a timer interrupt
[M+63]. A timer device can be programmed to raise an interrupt every
so many milliseconds; when the interrupt is raised, the currently running
process is halted, and a pre-configured interrupt handler in the OS runs.
At this point, the OS has regained control of the CPU, and thus can do
what it pleases: stop the current process, and start a different one.

As we discussed before with system calls, the OS must inform the
hardware of which code to run when the timer interrupt occurs; thus,
at boot time, the OS does exactly that. Second, also during the boot
sequence, the OS must start the timer, which is of course a privileged
operation. Once the timer has begun, the OS can thus feel safe in that
control will eventually be returned to it, and thus the OS is free to run
user programs. The timer can also be turned off (also a privileged opera-
tion), something we will discuss later when we understand concurrency
in more detail.

Trp: USE THE TIMER INTERRUPT TO REGAIN CONTROL
The addition of a timer interrupt gives the OS the ability to run again
on a CPU even if processes act in a non-cooperative fashion. Thus, this
hardware feature is essential in helping the OS maintain control of the
machine.
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Tir: REBOOT Is USEFUL
Earlier on, we noted that the only solution to infinite loops (and similar
behaviors) under cooperative preemption is to reboot the machine. While
you may scoff at this hack, researchers have shown that reboot (or in gen-
eral, starting over some piece of software) can be a hugely useful tool in
building robust systems [C+04].

Specifically, reboot is useful because it moves software back to a known
and likely more tested state. Reboots also reclaim stale or leaked re-
sources (e.g., memory) which may otherwise be hard to handle. Finally,
reboots are easy to automate. For all of these reasons, it is not uncommon
in large-scale cluster Internet services for system management software
to periodically reboot sets of machines in order to reset them and thus
obtain the advantages listed above.

Thus, next time you reboot, you are not just enacting some ugly hack.
Rather, you are using a time-tested approach to improving the behavior
of a computer system. Well done!

Note that the hardware has some responsibility when an interrupt oc-
curs, in particular to save enough of the state of the program that was
running when the interrupt occurred such that a subsequent return-from-
trap instruction will be able to resume the running program correctly.
This set of actions is quite similar to the behavior of the hardware during
an explicit system-call trap into the kernel, with various registers thus
getting saved (e.g., onto a kernel stack) and thus easily restored by the
return-from-trap instruction.

Saving and Restoring Context

Now that the OS has regained control, whether cooperatively via a sys-
tem call, or more forcefully via a timer interrupt, a decision has to be
made: whether to continue running the currently-running process, or
switch to a different one. This decision is made by a part of the operating
system known as the scheduler; we will discuss scheduling policies in
great detail in the next few chapters.

If the decision is made to switch, the OS then executes a low-level
piece of code which we refer to as a context switch. A context switch is
conceptually simple: all the OS has to do is save a few register values
for the currently-executing process (onto its kernel stack, for example)
and restore a few for the soon-to-be-executing process (from its kernel
stack). By doing so, the OS thus ensures that when the return-from-trap
instruction is finally executed, instead of returning to the process that was
running, the system resumes execution of another process.

To save the context of the currently-running process, the OS will ex-
ecute some low-level assembly code to save the general purpose regis-
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OS @ boot Hardware
(kernel mode)
initialize trap table

remember addresses of...
syscall handler
timer handler
start interrupt timer
start timer
interrupt CPU in X ms

OS @ run Hardware Program
(kernel mode) (user mode)
Process A

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC
Process B

Figure 6.3: Limited Direct Execution Protocol (Timer Interrupt)

ters, PC, and the kernel stack pointer of the currently-running process,
and then restore said registers, PC, and switch to the kernel stack for the
soon-to-be-executing process. By switching stacks, the kernel enters the
call to the switch code in the context of one process (the one that was in-
terrupted) and returns in the context of another (the soon-to-be-executing
one). When the OS then finally executes a return-from-trap instruction,
the soon-to-be-executing process becomes the currently-running process.
And thus the context switch is complete.

A timeline of the entire process is shown in Figure 6.3. In this example,
Process A is running and then is interrupted by the timer interrupt. The
hardware saves its registers (onto its kernel stack) and enters the kernel
(switching to kernel mode). In the timer interrupt handler, the OS decides
to switch from running Process A to Process B. At that point, it calls the
switch () routine, which carefully saves current register values (into the
process structure of A), restores the registers of Process B (from its process
structure entry), and then switches contexts, specifically by changing the
stack pointer to use B’s kernel stack (and not A’s). Finally, the OS returns-
from-trap, which restores B’s registers and starts running it.

Note that there are two types of register saves/restores that happen
during this protocol. The first is when the timer interrupt occurs; in this
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# void swtch(struct context **o0ld, struct context xnew);
#
# Save current register context in old
# and then load register context from new.
.globl swtch
swtch:
# Save old registers
movl 4 (%esp), %$eax # put old ptr into eax
popl 0 (%eax) # save the old IP
movl %esp, 4(%eax) # and stack
movl %$ebx, 8(%eax) # and other registers
movl %ecx, 12 (%eax)
movl %edx, 16 (%eax)
movl %esi, 20 (%eax)
movl %edi, 24 (%eax)
movl %$ebp, 28 (%eax)

# Load new registers
movl 4 (%esp), %eax # put new ptr into eax
movl 28 (%eax), %ebp # restore other registers

movl 24 (%eax), %edi
movl 20 (%eax), %esi
movl 16 (%eax), %edx
movl 12 (%eax), %ecx

movl 8 (%eax), %ebx

movl 4 (%eax), %esp # stack is switched here

pushl 0 (%eax) # return addr put in place

ret # finally return into new ctxt

Figure 6.4: The xv6 Context Switch Code

case, the user registers of the running process are implicitly saved by the
hardware, using the kernel stack of that process. The second is when the
OS decides to switch from A to B; in this case, the kernel registers are ex-
plicitly saved by the software (i.e., the OS), but this time into memory in
the process structure of the process. The latter action moves the system
from running as if it just trapped into the kernel from A to as if it just
trapped into the kernel from B.

To give you a better sense of how such a switch is enacted, Figure 6.4
shows the context switch code for xv6. See if you can make sense of it
(you'll have to know a bit of x86, as well as some xv6, to do so). The
context structures o1d and new are found in the old and new process’s
process structures, respectively.

Worried About Concurrency?

Some of you, as attentive and thoughtful readers, may be now think-
ing: “Hmm... what happens when, during a system call, a timer interrupt
occurs?” or “What happens when you're handling one interrupt and an-
other one happens? Doesn’t that get hard to handle in the kernel?” Good
questions — we really have some hope for you yet!

The answer is yes, the OS does indeed need to be concerned as to what
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ASIDE: HOW LONG CONTEXT SWITCHES TAKE
A natural question you might have is: how long does something like a
context switch take? Or even a system call? For those of you that are cu-
rious, there is a tool called Imbench [MS96] that measures exactly those
things, as well as a few other performance measures that might be rele-
vant.

Results have improved quite a bit over time, roughly tracking processor
performance. For example, in 1996 running Linux 1.3.37 on a 200-MHz
P6 CPU, system calls took roughly 4 microseconds, and a context switch
roughly 6 microseconds [MS96]. Modern systems perform almost an or-
der of magnitude better, with sub-microsecond results on systems with
2- or 3-GHz processors.

It should be noted that not all operating-system actions track CPU per-
formance. As Ousterhout observed, many OS operations are memory
intensive, and memory bandwidth has not improved as dramatically as
processor speed over time [090]. Thus, depending on your workload,
buying the latest and greatest processor may not speed up your OS as
much as you might hope.

happens if, during interrupt or trap handling, another interrupt occurs.
This, in fact, is the exact topic of the entire second piece of this book, on
concurrency; we'll defer a detailed discussion until then.

To whet your appetite, we'll just sketch some basics of how the OS
handles these tricky situations. One simple thing an OS might do is dis-
able interrupts during interrupt processing; doing so ensures that when
one interrupt is being handled, no other one will be delivered to the CPU.
Of course, the OS has to be careful in doing so; disabling interrupts for
too long could lead to lost interrupts, which is (in technical terms) bad.

Operating systems also have developed a number of sophisticated
locking schemes to protect concurrent access to internal data structures.
This enables multiple activities to be on-going within the kernel at the
same time, particularly useful on multiprocessors. As we’ll see in the
next piece of this book on concurrency, though, such locking can be com-
plicated and lead to a variety of interesting and hard-to-find bugs.

Summary

We have described some key low-level mechanisms to implement CPU
virtualization, a set of techniques which we collectively refer to as limited
direct execution. The basic idea is straightforward: just run the program
you want to run on the CPU, but first make sure to set up the hardware
so as to limit what the process can do without OS assistance.

This general approach is taken in real life as well. For example, those
of you who have children, or, at least, have heard of children, may be
familiar with the concept of baby proofing a room: locking cabinets con-
taining dangerous stuff and covering electrical sockets. When the room is
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ASIDE: KEY CPU VIRTUALIZATION TERMS (MECHANISMS)

e The CPU should support at least two modes of execution: a re-
stricted user mode and a privileged (non-restricted) kernel mode.

e Typical user applications run in user mode, and use a system call
to trap into the kernel to request operating system services.

o The trap instruction saves register state carefully, changes the hard-
ware status to kernel mode, and jumps into the OS to a pre-specified
destination: the trap table.

e When the OS finishes servicing a system call, it returns to the user
program via another special return-from-trap instruction, which re-
duces privilege and returns control to the instruction after the trap
that jumped into the OS.

e The trap tables must be set up by the OS at boot time, and make
sure that they cannot be readily modified by user programs. All
of this is part of the limited direct execution protocol which runs
programs efficiently but without loss of OS control.

e Once a program is running, the OS must use hardware mechanisms
to ensure the user program does not run forever, namely the timer
interrupt. This approach is a non-cooperative approach to CPU
scheduling.

e Sometimes the OS, during a timer interrupt or system call, might
wish to switch from running the current process to a different one,
a low-level technique known as a context switch.

thus readied, you can let your baby roam freely, secure in the knowledge
that the most dangerous aspects of the room have been restricted.

In an analogous manner, the OS “baby proofs” the CPU, by first (dur-
ing boot time) setting up the trap handlers and starting an interrupt timer,
and then by only running processes in a restricted mode. By doing so, the
OS can feel quite assured that processes can run efficiently, only requir-
ing OS intervention to perform privileged operations or when they have
monopolized the CPU for too long and thus need to be switched out.

We thus have the basic mechanisms for virtualizing the CPU in place.
But a major question is left unanswered: which process should we run at
a given time? It is this question that the scheduler must answer, and thus
the next topic of our study.
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the paper for the details. The technique makes it even harder to defend against malicious attacks, alas.
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Homework (Measurement)

ASIDE: MEASUREMENT HOMEWORKS
Measurement homeworks are small exercises where you write code to
run on a real machine, in order to measure some aspect of OS or hardware
performance. The idea behind such homeworks is to give you a little bit
of hands-on experience with a real operating system.

In this homework, you'll measure the costs of a system call and context
switch. Measuring the cost of a system call is relatively easy. For example,
you could repeatedly call a simple system call (e.g., performing a 0-byte
read), and time how long it takes; dividing the time by the number of
iterations gives you an estimate of the cost of a system call.

One thing you’ll have to take into account is the precision and accu-
racy of your timer. A typical timer that you can use is gettimeofday ();

read the man page for details. What you'll see there is that get t imeofday ()

returns the time in microseconds since 1970; however, this does not mean
that the timer is precise to the microsecond. Measure back-to-back calls
to gettimeofday () tolearn something about how precise the timer re-
ally is; this will tell you how many iterations of your null system-call
test you'll have to run in order to get a good measurement result. If
gettimeofday () is not precise enough for you, you might look into
using the rdt sc instruction available on x86 machines.

Measuring the cost of a context switch is a little trickier. The Imbench
benchmark does so by running two processes on a single CPU, and set-
ting up two UNIX pipes between them; a pipe is just one of many ways
processes in a UNIX system can communicate with one another. The first
process then issues a write to the first pipe, and waits for a read on the
second; upon seeing the first process waiting for something to read from
the second pipe, the OS puts the first process in the blocked state, and
switches to the other process, which reads from the first pipe and then
writes to the second. When the second process tries to read from the first
pipe again, it blocks, and thus the back-and-forth cycle of communication
continues. By measuring the cost of communicating like this repeatedly,
Imbench can make a good estimate of the cost of a context switch. You
can try to re-create something similar here, using pipes, or perhaps some
other communication mechanism such as UNIX sockets.

One difficulty in measuring context-switch cost arises in systems with
more than one CPU; what you need to do on such a system is ensure that
your context-switching processes are located on the same processor. For-
tunately, most operating systems have calls to bind a process to a partic-
ular processor; on Linux, for example, the sched_setaffinity () call
is what you're looking for. By ensuring both processes are on the same
processor, you are making sure to measure the cost of the OS stopping
one process and restoring another on the same CPU.
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7.1

Scheduling: Introduction

By now low-level mechanisms of running processes (e.g., context switch-
ing) should be clear; if they are not, go back a chapter or two, and read the
description of how that stuff works again. However, we have yet to un-
derstand the high-level policies that an OS scheduler employs. We will
now do just that, presenting a series of scheduling policies (sometimes
called disciplines) that various smart and hard-working people have de-
veloped over the years.

The origins of scheduling, in fact, predate computer systems; early
approaches were taken from the field of operations management and ap-
plied to computers. This reality should be no surprise: assembly lines
and many other human endeavors also require scheduling, and many of
the same concerns exist therein, including a laser-like desire for efficiency.
And thus, our problem:

THE CRUX: HOW TO DEVELOP SCHEDULING POLICY
How should we develop a basic framework for thinking about
scheduling policies? What are the key assumptions? What metrics are
important? What basic approaches have been used in the earliest of com-
puter systems?

Workload Assumptions

Before getting into the range of possible policies, let us first make a
number of simplifying assumptions about the processes running in the
system, sometimes collectively called the workload. Determining the
workload is a critical part of building policies, and the more you know
about workload, the more fine-tuned your policy can be.

The workload assumptions we make here are mostly unrealistic, but
that is alright (for now), because we will relax them as we go, and even-
tually develop what we will refer to as ... (dramatic pause) ...
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a fully-operational scheduling discipline’.
We will make the following assumptions about the processes, some-
times called jobs, that are running in the system:

Each job runs for the same amount of time.

All jobs arrive at the same time.

Once started, each job runs to completion.

All jobs only use the CPU (i.e., they perform no I/O)
The run-time of each job is known.

Ol LN

We said many of these assumptions were unrealistic, but just as some
animals are more equal than others in Orwell’s Animal Farm [O45], some
assumptions are more unrealistic than others in this chapter. In particu-
lar, it might bother you that the run-time of each job is known: this would
make the scheduler omniscient, which, although it would be great (prob-
ably), is not likely to happen anytime soon.

Scheduling Metrics

Beyond making workload assumptions, we also need one more thing
to enable us to compare different scheduling policies: a scheduling met-
ric. A metric is just something that we use to measure something, and
there are a number of different metrics that make sense in scheduling.

For now, however, let us also simplify our life by simply having a sin-
gle metric: turnaround time. The turnaround time of a job is defined
as the time at which the job completes minus the time at which the job
arrived in the system. More formally, the turnaround time Tiurnaround iS:

Tturna’r‘ound - Tcompletion - Ta'rrival (71)

Because we have assumed that all jobs arrive at the same time, for now
Tarrivar = 0 and hence Tturnaround = Teompietion- This fact will change
as we relax the aforementioned assumptions.

You should note that turnaround time is a performance metric, which
will be our primary focus this chapter. Another metric of interest is fair-
ness, as measured (for example) by Jain’s Fairness Index [J91]. Perfor-
mance and fairness are often at odds in scheduling; a scheduler, for ex-
ample, may optimize performance but at the cost of preventing a few jobs
from running, thus decreasing fairness. This conundrum shows us that
life isn’t always perfect.

First In, First Out (FIFO)

The most basic algorithm we can implement is known as First In, First
Out (FIFO) scheduling or sometimes First Come, First Served (FCFS).

1Said in the same way you would say “A fully-operational Death Star.”
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FIFO has a number of positive properties: it is clearly simple and thus
easy to implement. And, given our assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (I4rrivat = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a hair
before C. Assume also that each job runs for 10 seconds. What will the
average turnaround time be for these jobs?

A B C

T 1
0 20 40 60 80 100 120
Time

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C at 30.
Thus, the average turnaround time for the three jobs is simply 10+20+30 —
20. Computing turnaround time is as easy as that.

Now let’s relax one of our assumptions. In particular, let’s relax as-
sumption 1, and thus no longer assume that each job runs for the same
amount of time. How does FIFO perform now? What kind of workload
could you construct to make FIFO perform poorly?

(think about this before reading on ... keep thinking ... got it?!)

Presumably you've figured this out by now, but just in case, let’s do
an example to show how jobs of different lengths can lead to trouble for
FIFO scheduling. In particular, let’s again assume three jobs (A, B, and
C), but this time A runs for 100 seconds while B and C run for 10 each.

A B C

0 20 40 60 80 100 120
Time

Figure 7.2: Why FIFO Is Not That Great

As you can see in Figure 7.2, Job A runs first for the full 100 seconds
before B or C even get a chance to run. Thus, the average turnaround
time for the system is high: a painful 110 seconds (1221104120 — 170).

This problem is generally referred to as the convoy effect [B+79], where
anumber of relatively-short potential consumers of a resource get queued
behind a heavyweight resource consumer. This scheduling scenario might
remind you of a single line at a grocery store and what you feel like when
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Trp: THE PRINCIPLE OF SJF

Shortest Job First represents a general scheduling principle that can be
applied to any system where the perceived turnaround time per customer
(or, in our case, a job) matters. Think of any line you have waited in: if
the establishment in question cares about customer satisfaction, it is likely
they have taken SJF into account. For example, grocery stores commonly
have a “ten-items-or-less” line to ensure that shoppers with only a few
things to purchase don’t get stuck behind the family preparing for some
upcoming nuclear winter.

you see the person in front of you with three carts full of provisions and
a checkbook out; it’s going to be a while’.

So what should we do? How can we develop a better algorithm to
deal with our new reality of jobs that run for different amounts of time?
Think about it first; then read on.

Shortest Job First (SJF)

It turns out that a very simple approach solves this problem; in fact
it is an idea stolen from operations research [C54,PV56] and applied to
scheduling of jobs in computer systems. This new scheduling discipline
is known as Shortest Job First (SJF), and the name should be easy to
remember because it describes the policy quite completely: it runs the
shortest job first, then the next shortest, and so on.

B C A

0 20 40 60 80 100 120
Time

Figure 7.3: SJF Simple Example

Let’s take our example above but with SJF as our scheduling policy.
Figure 7.3 shows the results of running A, B, and C. Hopefully the dia-
gram makes it clear why SJF performs much better with regards to aver-
age turnaround time. Simply by running B and C before A, SJF reduces
average turnaround from 110 seconds to 50 (*2£23+120 = 50), more than
a factor of two improvement.

In fact, given our assumptions about jobs all arriving at the same time,
we could prove that SJF is indeed an optimal scheduling algorithm. How-
ever, you are in a systems class, not theory or operations research; no
proofs are allowed.

*Recommended action in this case: either quickly switch to a different line, or take a long,
deep, and relaxing breath. That’s right, breathe in, breathe out. It will be OK, don’t worry.
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ASIDE: PREEMPTIVE SCHEDULERS

In the old days of batch computing, a number of non-preemptive sched-
ulers were developed; such systems would run each job to completion
before considering whether to run a new job. Virtually all modern sched-
ulers are preemptive, and quite willing to stop one process from run-
ning in order to run another. This implies that the scheduler employs the
mechanisms we learned about previously; in particular, the scheduler can
perform a context switch, stopping one running process temporarily and
resuming (or starting) another.

Thus we arrive upon a good approach to scheduling with SJF, but our
assumptions are still fairly unrealistic. Let’s relax another. In particular,
we can target assumption 2, and now assume that jobs can arrive at any
time instead of all at once. What problems does this lead to?

(Another pause to think ... are you thinking? Come on, you can do it)

Here we can illustrate the problem again with an example. This time,
assume A arrives at t = 0 and needs to run for 100 seconds, whereas B
and C arrive at ¢ = 10 and each need to run for 10 seconds. With pure
SJF, we’d get the schedule seen in Figure 7.4.

[B,C arrive] A B G

0 20 40 60 80 100 120
Time

Figure 7.4: SJF With Late Arrivals From B and C

As you can see from the figure, even though B and C arrived shortly
after A, they still are forced to wait until A has completed, and thus suffer
the same convoy problem. Average turnaround time for these three jobs

is 103.33 seconds (10(]+(110_1§)+<120_10> ). What can a scheduler do?

Shortest Time-to-Completion First (STCF)

To address this concern, we need to relax assumption 3 (that jobs must
run to completion), so let’s do that. We also need some machinery within
the scheduler itself. As you might have guessed, given our previous dis-
cussion about timer interrupts and context switching, the scheduler can
certainly do something else when B and C arrive: it can preempt job A
and decide to run another job, perhaps continuing A later. SJF by our defi-
nition is a non-preemptive scheduler, and thus suffers from the problems
described above.

Fortunately, there is a scheduler which does exactly that: add preemp-
tion to SJF, known as the Shortest Time-to-Completion First (STCF) or
Preemptive Shortest Job First (PSJF) scheduler [CK68]. Any time a new
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[B,C arrive]
A|/B C

0 20 40 60 80 100 120
Time

Figure 7.5: STCF Simple Example

job enters the system, the STCF scheduler determines which of the re-
maining jobs (including the new job) has the least time left, and schedules
that one. Thus, in our example, STCF would preempt A and run B and C
to completion; only when they are finished would A’s remaining time be
scheduled. Figure 7.5 shows an example.

The result is a much-improved average turnaround time: 50 seconds

(120— O)+(2O 10)+(30— 10>) And as before, glven our new assumptlons,
STCEF is provably optimal; given that SJF is optimal if all jobs arrive at
the same time, you should probably be able to see the intuition behind
the optimality of STCF.

A New Metric: Response Time

Thus, if we knew job lengths, and that jobs only used the CPU, and our
only metric was turnaround time, STCF would be a great policy. In fact,
for a number of early batch computing systems, these types of scheduling
algorithms made some sense. However, the introduction of time-shared
machines changed all that. Now users would sit at a terminal and de-
mand interactive performance from the system as well. And thus, a new
metric was born: response time.

We define response time as the time from when the job arrives in a
system to the first time it is scheduled’. More formally:

arrival (72)

Tresponse - Tfi'rstv"un

For example, if we had the schedule above (with A arriving at time 0,
and B and C at time 10), the response time of each job is as follows: 0 for
job A, 0 for B, and 10 for C (average: 3.33).

As you might be thinking, STCF and related disciplines are not par-
ticularly good for response time. If three jobs arrive at the same time,
for example, the third job has to wait for the previous two jobs to run in
their entirety before being scheduled just once. While great for turnaround
time, this approach is quite bad for response time and interactivity. In-
deed, imagine sitting at a terminal, typing, and having to wait 10 seconds

Some define it slightly differently, e.g., to also include the time until the job produces
some kind of “response”; our definition is the best-case version of this, essentially assuming
that the job produces a response instantaneously.

[VERsION 1.00] WWW.OSTEP.ORG



7.7

SCHEDULING: INTRODUCTION

71

0 5 10 1I5 20 25 30
Time
Figure 7.6: SJF Again (Bad for Response Time)

ABCABCABCABCABC

0 5 10 1I5 20 25 30
Time
Figure 7.7: Round Robin (Good For Response Time)

to see a response from the system just because some other job got sched-
uled in front of yours: not too pleasant.

Thus, we are left with another problem: how can we build a scheduler
that is sensitive to response time?

Round Robin

To solve this problem, we will introduce a new scheduling algorithm,
classically referred to as Round-Robin (RR) scheduling [K64]. The basic
idea is simple: instead of running jobs to completion, RR runs a job for a
time slice (sometimes called a scheduling quantum) and then switches
to the next job in the run queue. It repeatedly does so until the jobs are
finished. For this reason, RR is sometimes called time-slicing. Note that
the length of a time slice must be a multiple of the timer-interrupt period;
thus if the timer interrupts every 10 milliseconds, the time slice could be
10, 20, or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. Assume
three jobs A, B, and C arrive at the same time in the system, and that
they each wish to run for 5 seconds. An SJF scheduler runs each job to
completion before running another (Figure 7.6). In contrast, RR with a
time-slice of 1 second would cycle through the jobs quickly (Figure 7.7).

The average response time of RR is: 0*.7?2 = 1, for SJF, average re-
sponse time is: &5H0 — 5.

As you can see, the length of the time slice is critical for RR. The shorter
it is, the better the performance of RR under the response-time metric.
However, making the time slice too short is problematic: suddenly the
cost of context switching will dominate overall performance. Thus, de-
ciding on the length of the time slice presents a trade-off to a system de-
signer, making it long enough to amortize the cost of switching without
making it so long that the system is no longer responsive.
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T1pP: AMORTIZATION CAN REDUCE COSTS

The general technique of amortization is commonly used in systems
when there is a fixed cost to some operation. By incurring that cost less
often (i.e., by performing the operation fewer times), the total cost to the
system is reduced. For example, if the time slice is set to 10 ms, and the
context-switch cost is 1 ms, roughly 10% of time is spent context switch-
ing and is thus wasted. If we want to amortize this cost, we can increase
the time slice, e.g., to 100 ms. In this case, less than 1% of time is spent
context switching, and thus the cost of time-slicing has been amortized.

Note that the cost of context switching does not arise solely from the
OS actions of saving and restoring a few registers. When programs run,
they build up a great deal of state in CPU caches, TLBs, branch predictors,
and other on-chip hardware. Switching to another job causes this state
to be flushed and new state relevant to the currently-running job to be
brought in, which may exact a noticeable performance cost [MB91].

RR, with a reasonable time slice, is thus an excellent scheduler if re-
sponse time is our only metric. But what about our old friend turnaround
time? Let’s look at our example above again. A, B, and C, each with run-
ning times of 5 seconds, arrive at the same time, and RR is the scheduler
with a (long) 1-second time slice. We can see from the picture above that
A finishes at 13, B at 14, and C at 15, for an average of 14. Pretty awful!

It is not surprising, then, that RR is indeed one of the worst policies if
turnaround time is our metric. Intuitively, this should make sense: what
RR is doing is stretching out each job as long as it can, by only running
each job for a short bit before moving to the next. Because turnaround
time only cares about when jobs finish, RR is nearly pessimal, even worse
than simple FIFO in many cases.

More generally, any policy (such as RR) that is fair, i.e., that evenly di-
vides the CPU among active processes on a small time scale, will perform
poorly on metrics such as turnaround time. Indeed, this is an inherent
trade-off: if you are willing to be unfair, you can run shorter jobs to com-
pletion, but at the cost of response time; if you instead value fairness,
response time is lowered, but at the cost of turnaround time. This type of
trade-off is common in systems; you can’t have your cake and eat it too™.

We have developed two types of schedulers. The first type (SJF, STCF)
optimizes turnaround time, but is bad for response time. The second type
(RR) optimizes response time but is bad for turnaround. And we still
have two assumptions which need to be relaxed: assumption 4 (that jobs
do no I/0), and assumption 5 (that the run-time of each job is known).
Let’s tackle those assumptions next.

*A saying that confuses people, because it should be “You can’t keep your cake and eat it
too” (which is kind of obvious, no?). Amazingly, there is a wikipedia page about this saying;
even more amazingly, it is kind of fun to read [W15]. As they say in Italian, you can’t Avere la
botte piena e la moglie ubriaca.
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TiP: OVERLAP ENABLES HIGHER UTILIZATION
When possible, overlap operations to maximize the utilization of sys-
tems. Overlap is useful in many different domains, including when per-
forming disk I/O or sending messages to remote machines; in either case,
starting the operation and then switching to other work is a good idea,
and improves the overall utilization and efficiency of the system.

Incorporating I/O

First we will relax assumption 4 — of course all programs perform
I/0. Imagine a program that didn’t take any input: it would produce the
same output each time. Imagine one without output: it is the proverbial
tree falling in the forest, with no one to see it; it doesn’t matter that it ran.

A scheduler clearly has a decision to make when a job initiates an I/O
request, because the currently-running job won’t be using the CPU dur-
ing the I/O; it is blocked waiting for I/O completion. If the I/O is sent to
a hard disk drive, the process might be blocked for a few milliseconds or
longer, depending on the current I/O load of the drive. Thus, the sched-
uler should probably schedule another job on the CPU at that time.

The scheduler also has to make a decision when the I/O completes.
When that occurs, an interrupt is raised, and the OS runs and moves
the process that issued the I/O from blocked back to the ready state. Of
course, it could even decide to run the job at that point. How should the
OS treat each job?

To understand this issue better, let us assume we have two jobs, A and
B, which each need 50 ms of CPU time. However, there is one obvious
difference: A runs for 10 ms and then issues an I/O request (assume here
that I/Os each take 10 ms), whereas B simply uses the CPU for 50 ms and
performs no I/O. The scheduler runs A first, then B after (Figure 7.8).

A A A A A BBBBB

Disk

0 20 40 60 80 100 120 140
Time

Figure 7.8: Poor Use Of Resources

Assume we are trying to build a STCF scheduler. How should such a
scheduler account for the fact that A is broken up into 5 10-ms sub-jobs,
whereas B is just a single 50-ms CPU demand? Clearly, just running one
job and then the other without considering how to take I/O into account
makes little sense.

A common approach is to treat each 10-ms sub-job of A as an indepen-
dent job. Thus, when the system starts, its choice is whether to schedule
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0 20 40 60 80 100 120 140
Time

Figure 7.9: Overlap Allows Better Use Of Resources

a 10-ms A or a 50-ms B. With STCEF, the choice is clear: choose the shorter
one, in this case A. Then, when the first sub-job of A has completed, only
B is left, and it begins running. Then a new sub-job of A is submitted,
and it preempts B and runs for 10 ms. Doing so allows for overlap, with
the CPU being used by one process while waiting for the I/O of another
process to complete; the system is thus better utilized (see Figure 7.9).
And thus we see how a scheduler might incorporate I/O. By treating
each CPU burst as a job, the scheduler makes sure processes that are “in-
teractive” get run frequently. While those interactive jobs are performing
I/0, other CPU-intensive jobs run, thus better utilizing the processor.

No More Oracle

With a basic approach to I/O in place, we come to our final assump-
tion: that the scheduler knows the length of each job. As we said before,
this is likely the worst assumption we could make. In fact, in a general-
purpose OS (like the ones we care about), the OS usually knows very little
about the length of each job. Thus, how can we build an approach that be-
haves like SJF/STCF without such a priori knowledge? Further, how can
we incorporate some of the ideas we have seen with the RR scheduler so
that response time is also quite good?

Summary

We have introduced the basic ideas behind scheduling and developed
two families of approaches. The first runs the shortest job remaining and
thus optimizes turnaround time; the second alternates between all jobs
and thus optimizes response time. Both are bad where the other is good,
alas, an inherent trade-off common in systems. We have also seen how we
might incorporate I/O into the picture, but have still not solved the prob-
lem of the fundamental inability of the OS to see into the future. Shortly,
we will see how to overcome this problem, by building a scheduler that
uses the recent past to predict the future. This scheduler is known as the
multi-level feedback queue, and it is the topic of the next chapter.
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Homework (Simulation)

This program, scheduler. py, allows you to see how different sched-
ulers perform under scheduling metrics such as response time, turnaround
time, and total wait time. See the README for details.

Questions

1.

(e8]

OPERATING
SYSTEMS
[VERSION 1.00]

Compute the response time and turnaround time when running three jobs
of length 200 with the SJF and FIFO schedulers.

. Now do the same but with jobs of different lengths: 100, 200, and 300.
. Now do the same, but also with the RR scheduler and a time-slice of 1.
. For what types of workloads does SJF deliver the same turnaround times as

FIFO?

. For what types of workloads and quantum lengths does SJF deliver the

same response times as RR?

. What happens to response time with SJF as job lengths increase? Can you

use the simulator to demonstrate the trend?

. What happens to response time with RR as quantum lengths increase? Can

you write an equation that gives the worst-case response time, given N jobs?
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Scheduling:
The Multi-Level Feedback Queue

In this chapter, we’ll tackle the problem of developing one of the most
well-known approaches to scheduling, known as the Multi-level Feed-
back Queue (MLFQ). The Multi-level Feedback Queue (MLFQ) sched-
uler was first described by Corbato et al. in 1962 [C+62] in a system
known as the Compatible Time-Sharing System (CTSS), and this work,
along with later work on Multics, led the ACM to award Corbato its
highest honor, the Turing Award. The scheduler has subsequently been
refined throughout the years to the implementations you will encounter
in some modern systems.

The fundamental problem MLFQ tries to address is two-fold. First, it
would like to optimize turnaround time, which, as we saw in the previous
note, is done by running shorter jobs first; unfortunately, the OS doesn’t
generally know how long a job will run for, exactly the knowledge that
algorithms like SJF (or STCF) require. Second, MLFQ would like to make
a system feel responsive to interactive users (i.e., users sitting and staring
at the screen, waiting for a process to finish), and thus minimize response
time; unfortunately, algorithms like Round Robin reduce response time
but are terrible for turnaround time. Thus, our problem: given that we
in general do not know anything about a process, how can we build a
scheduler to achieve these goals? How can the scheduler learn, as the
system runs, the characteristics of the jobs it is running, and thus make
better scheduling decisions?

THE CRUX:
How TO SCHEDULE WITHOUT PERFECT KNOWLEDGE?
How can we design a scheduler that both minimizes response time for
interactive jobs while also minimizing turnaround time without a priori
knowledge of job length?
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Tir: LEARN FROM HISTORY

The multi-level feedback queue is an excellent example of a system that
learns from the past to predict the future. Such approaches are com-
mon in operating systems (and many other places in Computer Science,
including hardware branch predictors and caching algorithms). Such
approaches work when jobs have phases of behavior and are thus pre-
dictable; of course, one must be careful with such techniques, as they can
easily be wrong and drive a system to make worse decisions than they
would have with no knowledge at all.

MLFQ: Basic Rules

To build such a scheduler, in this chapter we will describe the basic
algorithms behind a multi-level feedback queue; although the specifics of
many implemented MLFQs differ [E95], most approaches are similar.

In our treatment, the MLFQ has a number of distinct queues, each
assigned a different priority level. At any given time, a job that is ready
to run is on a single queue. MLFQ uses priorities to decide which job
should run at a given time: a job with higher priority (i.e., a job on a
higher queue) is chosen to run.

Of course, more than one job may be on a given queue, and thus have
the same priority. In this case, we will just use round-robin scheduling
among those jobs.

Thus, we arrive at the first two basic rules for MLFQ:

e Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
e Rule 2: If Priority(A) = Priority(B), A & B run in RR.

The key to MLFQ scheduling therefore lies in how the scheduler sets
priorities. Rather than giving a fixed priority to each job, MLFQ wvaries
the priority of a job based on its observed behavior. If, for example, a job
repeatedly relinquishes the CPU while waiting for input from the key-
board, MLFQ will keep its priority high, as this is how an interactive
process might behave. If, instead, a job uses the CPU intensively for long
periods of time, MLFQ will reduce its priority. In this way, MLFQ will try
to learn about processes as they run, and thus use the history of the job to
predict its future behavior.

If we were to put forth a picture of what the queues might look like at
a given instant, we might see something like the following (Figure 8.1).
In the figure, two jobs (A and B) are at the highest priority level, while job
C is in the middle and Job D is at the lowest priority. Given our current
knowledge of how MLFQ works, the scheduler would just alternate time
slices between A and B because they are the highest priority jobs in the
system; poor jobs C and D would never even get to run — an outrage!

Of course, just showing a static snapshot of some queues does not re-
ally give you an idea of how MLFQ works. What we need is to under-
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Figure 8.1: MLFQ Example
stand how job priority changes over time. And that, in a surprise only
to those who are reading a chapter from this book for the first time, is
exactly what we will do next.
Attempt #1: How To Change Priority
We now must decide how MLFQ is going to change the priority level
of a job (and thus which queue it is on) over the lifetime of a job. To do
this, we must keep in mind our workload: a mix of interactive jobs that
are short-running (and may frequently relinquish the CPU), and some
longer-running “CPU-bound” jobs that need a lot of CPU time but where
response time isn’t important. Here is our first attempt at a priority-
adjustment algorithm:
e Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).
e Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).
e Rule 4b: If a job gives up the CPU before the time slice is up, it stays
at the same priority level.
Example 1: A Single Long-Running Job
Let’s look at some examples. First, we’ll look at what happens when there
has been a long running job in the system. Figure 8.2 shows what happens
to this job over time in a three-queue scheduler.
THREE
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Figure 8.2: Long-running Job Over Time

As you can see in the example, the job enters at the highest priority
(Q2). After a single time-slice of 10 ms, the scheduler reduces the job’s
priority by one, and thus the job is on Q1. After running at Q1 for a time
slice, the job is finally lowered to the lowest priority in the system (QO0),
where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see how
MLEQ tries to approximate SJF. In this example, there are two jobs: A,
which is a long-running CPU-intensive job, and B, which is a short-running
interactive job. Assume A has been running for some time, and then B ar-
rives. What will happen? Will MLFQ approximate SJF for B?

Figure 8.3 plots the results of this scenario. A (shown in black) is run-
ning along in the lowest-priority queue (as would any long-running CPU-
intensive jobs); B (shown in gray) arrives at time 7' = 100, and thus is

(UMD
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Figure 8.3: Along Came An Interactive Job
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Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload

inserted into the highest queue; as its run-time is short (only 20 ms), B
completes before reaching the bottom queue, in two time slices; then A
resumes running (at low priority).

From this example, you can hopefully understand one of the major
goals of the algorithm: because it doesn’t know whether a job will be a
short job or a long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run quickly
and complete; if it is not a short job, it will slowly move down the queues,
and thus soon prove itself to be a long-running more batch-like process.
In this manner, MLFQ approximates SJF.

Example 3: What About I/0?

Let’s now look at an example with some I/O. As Rule 4b states above, if a
process gives up the processor before using up its time slice, we keep it at
the same priority level. The intent of this rule is simple: if an interactive
job, for example, is doing a lot of I/O (say by waiting for user input from
the keyboard or mouse), it will relinquish the CPU before its time slice is
complete; in such case, we don’t wish to penalize the job and thus simply
keep it at the same level.

Figure 8.4 shows an example of how this works, with an interactive job
B (shown in gray) that needs the CPU only for 1 ms before performing an
I/0 competing for the CPU with a long-running batch job A (shown in
black). The MLFQ approach keeps B at the highest priority because B
keeps releasing the CPU; if B is an interactive job, MLFQ further achieves
its goal of running interactive jobs quickly.

Problems With Our Current MLFQ

We thus have a basic MLFQ. It seems to do a fairly good job, sharing the
CPU fairly between long-running jobs, and letting short or I/O-intensive
interactive jobs run quickly. Unfortunately, the approach we have devel-
oped thus far contains serious flaws. Can you think of any?

(This is where you pause and think as deviously as you can)

© 2008-18, ARPACI-DUSSEAU

THREE
EAsy
PIECES



82

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE

OPERATING
SYSTEMS

Q2 Q2
I 0N
| I

Qo0 Qo0
Wm0 mm
0 50 100 150 200 0 50 100 150 200

Figure 8.5: Without (Left) and With (Right) Priority Boost

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
the following attack: before the time slice is over, issue an I/O operation
(to some file you don’t care about) and thus relinquish the CPU; doing so
allows you to remain in the same queue, and thus gain a higher percent-
age of CPU time. When done right (e.g., by running for 99% of a time slice
before relinquishing the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

TIP: SCHEDULING MUST BE SECURE FROM ATTACK

You might think that a scheduling policy, whether inside the OS itself
(as discussed herein), or in a broader context (e.g., in a distributed stor-
age system’s I/O request handling [Y+18]), is not a security concern, but
in increasingly many cases, it is exactly that. Consider the modern dat-
acenter, in which users from around the world share CPUs, memories,
networks, and storage systems; without care in policy design and en-
forcement, a single user may be able to adversely harm others and gain
advantage for itself. Thus, scheduling policy forms an important part of
the security of a system, and should be carefully constructed.
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Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

e Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU
with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.5 (page 82). On the
left, there is no priority boost, and thus the long-running job gets starved
once the two short jobs arrive; on the right, there is a priority boost every
50 ms (which is likely too small of a value, but used here for the example),
and thus we at least guarantee that the long-running job will make some
progress, getting boosted to the highest priority every 50 ms and thus
getting to run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU.
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Figure 8.7: Lower Priority, Longer Quanta

Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before the time slice expires. So what should we do?

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of a time slice a pro-
cess used at a given level, the scheduler should keep track; once a process
has used its allotment, it is demoted to the next priority queue. Whether
it uses the time slice in one long burst or many small ones does not matter.
We thus rewrite Rules 4a and 4b to the following single rule:

e Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU)), its priority is
reduced (i.e., it moves down one queue).

Let’s look at an example. Figure 8.6 (page 83) shows what happens
when a workload tries to game the scheduler with the old Rules 4a and 4b
(on the left) as well the new anti-gaming Rule 4. Without any protection
from gaming, a process can issue an I/O just before a time slice ends and
thus dominate CPU time. With such protections in place, regardless of
the I/O behavior of the process, it slowly moves down the queues, and
thus cannot gain an unfair share of the CPU.

Tuning MLFQ And Other Issues

A few other issues arise with MLFQ scheduling. One big question is
how to parameterize such a scheduler. For example, how many queues
should there be? How big should the time slice be per queue? How often
should priority be boosted in order to avoid starvation and account for
changes in behavior? There are no easy answers to these questions, and
thus only some experience with workloads and subsequent tuning of the
scheduler will lead to a satisfactory balance.
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Tip: AVOID VOO-DOO CONSTANTS (OUSTERHOUT’S LAW)
Avoiding voo-doo constants is a good idea whenever possible. Unfor-
tunately, as in the example above, it is often difficult. One could try to
make the system learn a good value, but that too is not straightforward.
The frequent result: a configuration file filled with default parameter val-
ues that a seasoned administrator can tweak when something isn’t quite
working correctly. As you can imagine, these are often left unmodified,
and thus we are left to hope that the defaults work well in the field. This
tip brought to you by our old OS professor, John Ousterhout, and hence
we call it Ousterhout’s Law.

For example, most MLFQ variants allow for varying time-slice length
across different queues. The high-priority queues are usually given short
time slices; they are comprised of interactive jobs, after all, and thus
quickly alternating between them makes sense (e.g., 10 or fewer millisec-
onds). The low-priority queues, in contrast, contain long-running jobs
that are CPU-bound; hence, longer time slices work well (e.g., 100s of
ms). Figure 8.7 (page 84) shows an example in which two jobs run for
20 ms at the highest queue (with a 10-ms time slice), 40 ms in the middle
(20-ms time slice), and with a 40-ms time slice at the lowest.

The Solaris MLFQ implementation — the Time-Sharing scheduling
class, or TS — is particularly easy to configure; it provides a set of tables
that determine exactly how the priority of a process is altered through-
out its lifetime, how long each time slice is, and how often to boost the
priority of a job [ADO00]; an administrator can muck with this table in or-
der to make the scheduler behave in different ways. Default values for
the table are 60 queues, with slowly increasing time-slice lengths from
20 milliseconds (highest priority) to a few hundred milliseconds (lowest),
and priorities boosted around every 1 second or so.

Other MLFQ schedulers don’t use a table or the exact rules described
in this chapter; rather they adjust priorities using mathematical formu-
lae. For example, the FreeBSD scheduler (version 4.3) uses a formula to
calculate the current priority level of a job, basing it on how much CPU
the process has used [LM+89]; in addition, usage is decayed over time,
providing the desired priority boost in a different manner than described
herein. See Epema’s paper for an excellent overview of such decay-usage
algorithms and their properties [E95].

Finally, many schedulers have a few other features that you might en-
counter. For example, some schedulers reserve the highest priority levels
for operating system work; thus typical user jobs can never obtain the
highest levels of priority in the system. Some systems also allow some
user advice to help set priorities; for example, by using the command-line
utility nice you can increase or decrease the priority of a job (somewhat)
and thus increase or decrease its chances of running at any given time.
See the man page for more.
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Tip: USE ADVICE WHERE POSSIBLE

As the operating system rarely knows what is best for each and every
process of the system, it is often useful to provide interfaces to allow users
or administrators to provide some hints to the OS. We often call such
hints advice, as the OS need not necessarily pay attention to it, but rather
might take the advice into account in order to make a better decision.
Such hints are useful in many parts of the OS, including the scheduler
(e.g., with nice), memory manager (e.g., madvise), and file system (e.g.,
informed prefetching and caching [P+95]).

MLFQ: Summary

We have described a scheduling approach known as the Multi-Level
Feedback Queue (MLFQ). Hopefully you can now see why it is called
that: it has multiple levels of queues, and uses feedback to determine the
priority of a given job. History is its guide: pay attention to how jobs
behave over time and treat them accordingly.

The refined set of MLFQ rules, spread throughout the chapter, are re-
produced here for your viewing pleasure:

e Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

e Rule 2: If Priority(A) = Priority(B), A & B run in round-robin fash-
ion using the time slice (quantum length) of the given queue.

e Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

e Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU)), its priority is
reduced (i.e., it moves down one queue).

e Rule 5: After some time period .S, move all the jobs in the system
to the topmost queue.

MLEQ is interesting for the following reason: instead of demanding
a priori knowledge of the nature of a job, it observes the execution of a
job and prioritizes it accordingly. In this way, it manages to achieve the
best of both worlds: it can deliver excellent overall performance (similar
to SJE/STCF) for short-running interactive jobs, and is fair and makes
progress for long-running CPU-intensive workloads. For this reason,
many systems, including BSD UNIX derivatives [LM+89, B86], Solaris
[MO06], and Windows NT and subsequent Windows operating systems
[CS97] use a form of MLFQ as their base scheduler.
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Homework (Simulation)

This program, m1fq.py, allows you to see how the MLFQ scheduler
presented in this chapter behaves. See the README for details.

Questions

OPERATING
SYSTEMS
[VERSION 1.00]

1.

Run a few randomly-generated problems with just two jobs and two queues;
compute the MLFQ execution trace for each. Make your life easier by limit-
ing the length of each job and turning off I/Os.

. How would you run the scheduler to reproduce each of the examples in the

chapter?

. How would you configure the scheduler parameters to behave just like a

round-robin scheduler?

. Craft a workload with two jobs and scheduler parameters so that one job

takes advantage of the older Rules 4a and 4b (turned on with the -s flag)
to game the scheduler and obtain 99% of the CPU over a particular time
interval.

. Given a system with a quantum length of 10 ms in its highest queue, how of-

ten would you have to boost jobs back to the highest priority level (with the
-B flag) in order to guarantee that a single long-running (and potentially-
starving) job gets at least 5% of the CPU?

. One question that arises in scheduling is which end of a queue to add a job

that just finished I/O; the - I flag changes this behavior for this scheduling
simulator. Play around with some workloads and see if you can see the
effect of this flag.
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Scheduling: Proportional Share

In this chapter, we’ll examine a different type of scheduler known as a
proportional-share scheduler, also sometimes referred to as a fair-share
scheduler. Proportional-share is based around a simple concept: instead
of optimizing for turnaround or response time, a scheduler might instead
try to guarantee that each job obtain a certain percentage of CPU time.

An excellent early example of proportional-share scheduling is found
in research by Waldspurger and Weihl [WW94], and is known as lottery
scheduling; however, the idea is certainly older [KL88]. The basic idea
is quite simple: every so often, hold a lottery to determine which process
should get to run next; processes that should run more often should be
given more chances to win the lottery. Easy, no? Now, onto the details!
But not before our crux:

CRUX: HOW TO SHARE THE CPU PROPORTIONALLY
How can we design a scheduler to share the CPU in a proportional
manner? What are the key mechanisms for doing so? How effective are
they?

Basic Concept: Tickets Represent Your Share

Underlying lottery scheduling is one very basic concept: tickets, which
are used to represent the share of a resource that a process (or user or
whatever) should receive. The percent of tickets that a process has repre-
sents its share of the system resource in question.

Let’s look at an example. Imagine two processes, A and B, and further
that A has 75 tickets while B has only 25. Thus, what we would like is for
A to receive 75% of the CPU and B the remaining 25%.

Lottery scheduling achieves this probabilistically (but not determinis-
tically) by holding a lottery every so often (say, every time slice). Holding
a lottery is straightforward: the scheduler must know how many total
tickets there are (in our example, there are 100). The scheduler then picks
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Tir: USE RANDOMNESS
One of the most beautiful aspects of lottery scheduling is its use of ran-
domness. When you have to make a decision, using such a randomized
approach is often a robust and simple way of doing so.

Random approaches has at least three advantages over more traditional
decisions. First, random often avoids strange corner-case behaviors that
a more traditional algorithm may have trouble handling. For example,
consider the LRU replacement policy (studied in more detail in a future
chapter on virtual memory); while often a good replacement algorithm,
LRU attains worst-case performance for some cyclic-sequential work-
loads. Random, on the other hand, has no such worst case.

Second, random also is lightweight, requiring little state to track alter-
natives. In a traditional fair-share scheduling algorithm, tracking how
much CPU each process has received requires per-process accounting,
which must be updated after running each process. Doing so randomly
necessitates only the most minimal of per-process state (e.g., the number
of tickets each has).

Finally, random can be quite fast. As long as generating a random num-
ber is quick, making the decision is also, and thus random can be used
in a number of places where speed is required. Of course, the faster the
need, the more random tends towards pseudo-random.

a winning ticket, which is a number from 0 to 99'. Assuming A holds
tickets 0 through 74 and B 75 through 99, the winning ticket simply de-
termines whether A or B runs. The scheduler then loads the state of that
winning process and runs it.

Here is an example output of a lottery scheduler’s winning tickets:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 49

Here is the resulting schedule:

A A A A A A A A A A A A A A A A
B B B B

As you can see from the example, the use of randomness in lottery
scheduling leads to a probabilistic correctness in meeting the desired pro-
portion, but no guarantee. In our example above, B only gets to run 4 out
of 20 time slices (20%), instead of the desired 25% allocation. However,
the longer these two jobs compete, the more likely they are to achieve the
desired percentages.

!Computer Scientists always start counting at 0. It is so odd to non-computer-types that
famous people have felt obliged to write about why we do it this way [D82].
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Trp: USE TICKETS TO REPRESENT SHARES

One of the most powerful (and basic) mechanisms in the design of lottery
(and stride) scheduling is that of the ticket. The ticket is used to represent
a process’s share of the CPU in these examples, but can be applied much
more broadly. For example, in more recent work on virtual memory man-
agement for hypervisors, Waldspurger shows how tickets can be used to
represent a guest operating system'’s share of memory [W02]. Thus, if you
are ever in need of a mechanism to represent a proportion of ownership,
this concept just might be ... (wait for it) ... the ticket.

Ticket Mechanisms

Lottery scheduling also provides a number of mechanisms to manip-
ulate tickets in different and sometimes useful ways. One way is with
the concept of ticket currency. Currency allows a user with a set of tick-
ets to allocate tickets among their own jobs in whatever currency they
would like; the system then automatically converts said currency into the
correct global value.

For example, assume users A and B have each been given 100 tickets.
User A is running two jobs, Al and A2, and gives them each 500 tickets
(out of 1000 total) in User A’s own currency. User B is running only 1 job
and gives it 10 tickets (out of 10 total). The system will convert Al’s and
A2’s allocation from 500 each in A’s currency to 50 each in the global cur-
rency; similarly, B1’s 10 tickets will be converted to 100 tickets. The lottery
will then be held over the global ticket currency (200 total) to determine
which job runs.

User A —-> 500 (A’s currency) to Al -> 50 (global currency)

-> 500 (A’s currency) to A2 -> 50 (global currency)
User B -> 10 (B’s currency) to Bl -> 100 (global currency)

Another useful mechanism is ticket transfer. With transfers, a process
can temporarily hand off its tickets to another process. This ability is
especially useful in a client/server setting, where a client process sends
a message to a server asking it to do some work on the client’s behalf.
To speed up the work, the client can pass the tickets to the server and
thus try to maximize the performance of the server while the server is
handling the client’s request. When finished, the server then transfers the
tickets back to the client and all is as before.

Finally, ticket inflation can sometimes be a useful technique. With
inflation, a process can temporarily raise or lower the number of tickets
it owns. Of course, in a competitive scenario with processes that do not
trust one another, this makes little sense; one greedy process could give
itself a vast number of tickets and take over the machine. Rather, inflation
can be applied in an environment where a group of processes trust one
another; in such a case, if any one process knows it needs more CPU time,
it can boost its ticket value as a way to reflect that need to the system, all
without communicating with any other processes.
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// counter: used to track if we’ve found the winner yet
int counter = 0;

// winner: use some call to a random number generator to
// get a value, between 0 and the total # of tickets
int winner = getrandom(0, totaltickets);

// current: use this to walk through the list of jobs
node_t xcurrent = head;

// loop until the sum of ticket values is > the winner
while (current) {
counter = counter + current->tickets;
if (counter > winner)
break; // found the winner
current = current->next;

}

// 'current’ 1is the winner: schedule it...
Figure 9.1: Lottery Scheduling Decision Code
Implementation

Probably the most amazing thing about lottery scheduling is the sim-
plicity of its implementation. All you need is a good random number
generator to pick the winning ticket, a data structure to track the pro-
cesses of the system (e.g., a list), and the total number of tickets.

Let’s assume we keep the processes in a list. Here is an example com-
prised of three processes, A, B, and C, each with some number of tickets.

Job:A

Job:B N Job:C
Tix:100

Tix:50 Tix:es0 — > NULL

head —» —>

To make a scheduling decision, we first have to pick a random number

(the winner) from the total number of tickets (400)” Let’s say we pick the
number 300. Then, we simply traverse the list, with a simple counter
used to help us find the winner (Figure 9.1).

The code walks the list of processes, adding each ticket value to counter
until the value exceeds winner. Once that is the case, the current list el-
ement is the winner. With our example of the winning ticket being 300,
the following takes place. First, counter is incremented to 100 to ac-
count for A’s tickets; because 100 is less than 300, the loop continues.
Then counter would be updated to 150 (B’s tickets), still less than 300
and thus again we continue. Finally, counter is updated to 400 (clearly
greater than 300), and thus we break out of the loop with current point-
ing at C (the winner).

To make this process most efficient, it might generally be best to or-
ganize the list in sorted order, from the highest number of tickets to the

*Surprisingly, as pointed out by Bjorn Lindberg, this can be challenging to do
correctly; for more details, see http://stackoverflow.com/questions/2509679/
how-to-generate-a-random-number-from-within-a-range.
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Figure 9.2: Lottery Fairness Study

lowest. The ordering does not affect the correctness of the algorithm;
however, it does ensure in general that the fewest number of list itera-
tions are taken, especially if there are a few processes that possess most
of the tickets.

An Example

To make the dynamics of lottery scheduling more understandable, we
now perform a brief study of the completion time of two jobs competing
against one another, each with the same number of tickets (100) and same
run time (R, which we will vary).

In this scenario, we’d like for each job to finish at roughly the same
time, but due to the randomness of lottery scheduling, sometimes one
job finishes before the other. To quantify this difference, we define a
simple unfairness metric, U which is simply the time the first job com-
pletes divided by the time that the second job completes. For example,
if R = 10, and the first job finishes at time 10 (and the second job at 20),
U = 12 = 0.5. When both jobs finish at nearly the same time, U will be
quite close to 1. In this scenario, that is our goal: a perfectly fair scheduler
would achieve U = 1.

Figure 9.2 plots the average unfairness as the length of the two jobs
(R) is varied from 1 to 1000 over thirty trials (results are generated via the
simulator provided at the end of the chapter). As you can see from the
graph, when the job length is not very long, average unfairness can be
quite severe. Only as the jobs run for a significant number of time slices
does the lottery scheduler approach the desired outcome.

© 2008-18, ARPACI-DUSSEAU

THREE
EAsy
PIECES



94

SCHEDULING: PROPORTIONAL SHARE

9.5

9.6

OPERATING
SYSTEMS

How To Assign Tickets?

One problem we have not addressed with lottery scheduling is: how
to assign tickets to jobs? This problem is a tough one, because of course
how the system behaves is strongly dependent on how tickets are allo-
cated. One approach is to assume that the users know best; in such a
case, each user is handed some number of tickets, and a user can allocate
tickets to any jobs they run as desired. However, this solution is a non-
solution: it really doesn’t tell you what to do. Thus, given a set of jobs,
the “ticket-assignment problem” remains open.

Why Not Deterministic?

You might also be wondering: why use randomness at all? As we saw
above, while randomness gets us a simple (and approximately correct)
scheduler, it occasionally will not deliver the exact right proportions, es-
pecially over short time scales. For this reason, Waldspurger invented
stride scheduling, a deterministic fair-share scheduler [W95].

Stride scheduling is also straightforward. Each job in the system has
a stride, which is inverse in proportion to the number of tickets it has. In
our example above, with jobs A, B, and C, with 100, 50, and 250 tickets,
respectively, we can compute the stride of each by dividing some large
number by the number of tickets each process has been assigned. For
example, if we divide 10,000 by each of those ticket values, we obtain
the following stride values for A, B, and C: 100, 200, and 40. We call
this value the stride of each process; every time a process runs, we will
increment a counter for it (called its pass value) by its stride to track its
global progress.

The scheduler then uses the stride and pass to determine which pro-
cess should run next. The basic idea is simple: at any given time, pick
the process to run that has the lowest pass value so far; when you run
a process, increment its pass counter by its stride. A pseudocode imple-
mentation is provided by Waldspurger [W95]:

current = remove_min (queue); // pick client with minimum pass
schedule (current) ; // use resource for quantum
current->pass += current->stride; // compute next pass using stride
insert (queue, current); // put back into the queue

In our example, we start with three processes (A, B, and C), with stride
values of 100, 200, and 40, and all with pass values initially at 0. Thus, at
first, any of the processes might run, as their pass values are equally low.
Assume we pick A (arbitrarily; any of the processes with equal low pass
values can be chosen). A runs; when finished with the time slice, we
update its pass value to 100. Then we run B, whose pass value is then
set to 200. Finally, we run C, whose pass value is incremented to 40. At
this point, the algorithm will pick the lowest pass value, which is C’s, and
run it, updating its pass to 80 (C’s stride is 40, as you recall). Then C will
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Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100)  (stride=200)  (stride=40)
0 0 0
100 0 0
100 200 0
100 200 40
100 200 80
100 200 120
200 200 120
200 200 160
200 200 200

Figure 9.3: Stride Scheduling: A Trace

POOP000W >

run again (still the lowest pass value), raising its pass to 120. A will run
now, updating its pass to 200 (now equal to B’s). Then C will run twice
more, updating its pass to 160 then 200. At this point, all pass values are
equal again, and the process will repeat, ad infinitum. Figure 9.3 traces
the behavior of the scheduler over time.

As we can see from the figure, C ran five times, A twice, and B just
once, exactly in proportion to their ticket values of 250, 100, and 50. Lot-
tery scheduling achieves the proportions probabilistically over time; stride
scheduling gets them exactly right at the end of each scheduling cycle.

So you might be wondering: given the precision of stride scheduling,
why use lottery scheduling at all? Well, lottery scheduling has one nice
property that stride scheduling does not: no global state. Imagine a new
job enters in the middle of our stride scheduling example above; what
should its pass value be? Should it be set to 0? If so, it will monopolize
the CPU. With lottery scheduling, there is no global state per process;
we simply add a new process with whatever tickets it has, update the
single global variable to track how many total tickets we have, and go
from there. In this way, lottery makes it much easier to incorporate new
processes in a sensible manner.

The Linux Completely Fair Scheduler (CFS)

Despite these earlier works in fair-share scheduling, the current Linux
approach achieves similar goals in an alternate manner. The scheduler,
entitled the Completely Fair Scheduler (or CFS) [J09], implements fair-
share scheduling, but does so in a highly efficient and scalable manner.

To achieve its efficiency goals, CFS aims to spend very little time mak-
ing scheduling decisions, through both its inherent design and its clever
use of data structures well-suited to the task. Recent studies have shown
that scheduler efficiency is surprisingly important; specifically, in a study
of Google datacenters, Kanev et al. show that even after aggressive opti-
mization, scheduling uses about 5% of overall datacenter CPU time. Re-
ducing that overhead as much as possible is thus a key goal in modern
scheduler architecture.
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Figure 9.4: CFS Simple Example

Basic Operation

Whereas most schedulers are based around the concept of a fixed time
slice, CFS operates a bit differently. Its goal is simple: to fairly divide a
CPU evenly among all competing processes. It does so through a simple
counting-based technique known as virtual runtime (vruntime).

As each process runs, it accumulates vruntime. In the most basic
case, each process’s vruntime increases at the same rate, in proportion
with physical (real) time. When a scheduling decision occurs, CFS will
pick the process with the lowest vrunt ime to run next.

This raises a question: how does the scheduler know when to stop
the currently running process, and run the next one? The tension here is
clear: if CFS switches too often, fairness is increased, as CFS will ensure
that each process receives its share of CPU even over miniscule time win-
dows, but at the cost of performance (too much context switching); if CFS
switches less often, performance is increased (reduced context switching),
but at the cost of near-term fairness.

CFS manages this tension through various control parameters. The
first is sched_latency. CFS uses this value to determine how long one
process should run before considering a switch (effectively determining
its time slice but in a dynamic fashion). A typical sched_latency value
is 48 (milliseconds); CFS divides this value by the number (n) of processes
running on the CPU to determine the time slice for a process, and thus
ensures that over this period of time, CFS will be completely fair.

For example, if there are n = 4 processes running, CFS divides the
value of sched_latency by n to arrive at a per-process time slice of 12
ms. CFS then schedules the first job and runs it until it has used 12 ms
of (virtual) runtime, and then checks to see if there is a job with lower
vruntime to run instead. In this case, there is, and CFS would switch
to one of the three other jobs, and so forth. Figure 9.4 shows an example
where the four jobs (A, B, C, D) each run for two time slices in this fashion;
two of them (C, D) then complete, leaving just two remaining, which then
each run for 24 ms in round-robin fashion.

But what if there are “too many” processes running? Wouldn't that
lead to too small of a time slice, and thus too many context switches?
Good question! And the answer is yes.
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To address this issue, CFS adds another parameter, min_granularity,
which is usually set to a value like 6 ms. CFS will never set the time slice
of a process to less than this value, ensuring that not too much time is
spent in scheduling overhead.

For example, if there are ten processes running, our original calcula-
tion would divide sched_latency by ten to determine the time slice
(result: 4.8 ms). However, because of min_granularity, CFS will set
the time slice of each process to 6 ms instead. Although CFS won’t (quite)
be perfectly fair over the target scheduling latency (sched_latency) of
48 ms, it will be close, while still achieving high CPU efficiency.

Note that CFS utilizes a periodic timer interrupt, which means it can
only make decisions at fixed time intervals. This interrupt goes off fre-
quently (e.g., every 1 ms), giving CFS a chance to wake up and determine
if the current job has reached the end of its run. If a job has a time slice
that is not a perfect multiple of the timer interrupt interval, that is OK;
CFS tracks vrunt ime precisely, which means that over the long haul, it
will eventually approximate ideal sharing of the CPU.

Weighting (Niceness)

CFS also enables controls over process priority, enabling users or admin-
istrators to give some processes a higher share of the CPU. It does this
not with tickets, but through a classic UNIX mechanism known as the
nice level of a process. The nice parameter can be set anywhere from -
20 to +19 for a process, with a default of 0. A little oddly, positive nice
values imply lower priority, and negative values imply higher priority, just
another random thing you have to remember.

CFS maps the nice value of each process to a weight, as shown here:

static const int prio_to_weight[40] = {

/* =20 x/ 88761, 71755, 56483, 46273, 36291,
/% =15 x/ 29154, 23254, 18705, 14949, 11916,
/% =10 %/ 9548, 7620, 6100, 4904, 3906,
/*x =5 %/ 3121, 2501, 1991, 1586, 1277,
/* 0 =/ 1024, 820, 655, 526, 423,
/* 5 %/ 335, 272, 215, 172, 137,
/* 10 =/ 110, 87, 70, 56, 45,
/% 15 %/ 36, 29, 23, 18, 15,
bi

These weights allow us to compute the effective time slice of each pro-
cess (as we did before), but now accounting for their priority differences.
The formula used to do so is as follows:

eight
time_slicex = # - sched_latency 9.1)
Z _,weilght,
n=0 g
Let’s do an example to see how this works. Assume there are two jobs,
A and B. A, because its our most precious job, is given a higher priority by
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assigning it a nice value of -5; B, because we hates it’, just has the default
priority (nice value equal to 0). This means weight 4 (from the table)
is 3121, whereas weightp is 1024. If you then compute the time slice
of each job, you'll find that A’s time slice is about 2 of sched_latency

(hence, 36 ms), and B’s about % (hence, 12 ms).

In addition to generalizing the time slice calculation, the way CFS cal-
culates vrunt ime must also be adapted. Here is the new formula, which
takes the actual run time that process ¢ has accrued (runt ime;) and scales
it inversely by the weight of the process. In our running example, A’s
vrunt ime will accumulate at one-third the rate of B's.

weighty

vruntime; = vruntime; + - runtime; 9.2)

weight;

One smart aspect of the construction of the table of weights above is
that the table preserves CPU proportionality ratios when the difference in
nice values is constant. For example, if process A instead had a nice value
of 5 (not -5), and process B had a nice value of 10 (not 0), CFS would
schedule them in exactly the same manner as before. Run through the
math yourself to see why.

Using Red-Black Trees

One major focus of CFS is efficiency, as stated above. For a scheduler,
there are many facets of efficiency, but one of them is as simple as this:
when the scheduler has to find the next job to run, it should do so as
quickly as possible. Simple data structures like lists don’t scale: modern
systems sometimes are comprised of 1000s of processes, and thus search-
ing through a long-list every so many milliseconds is wasteful.

CFS addresses this by keeping processes in a red-black tree [B72]. A
red-black tree is one of many types of balanced trees; in contrast to a
simple binary tree (which can degenerate to list-like performance un-
der worst-case insertion patterns), balanced trees do a little extra work
to maintain low depths, and thus ensure that operations are logarithmic
(and not linear) in time.

CFS does not keep all process in this structure; rather, only running
(or runnable) processes are kept therein. If a process goes to sleep (say,
waiting on an I/O to complete, or for a network packet to arrive), it is
removed from the tree and kept track of elsewhere.

Let’s look at an example to make this more clear. Assume there are ten
jobs, and that they have the following values of vruntime: 1,5,9, 10, 14,
18,17, 21, 22, and 24. If we kept these jobs in an ordered list, finding the
next job to run would be simple: just remove the first element. However,
when placing that job back into the list (in order), we would have to scan

*Yes, yes, we are using bad grammar here on purpose, please don’t send in a bug fix.
Why? Well, just a most mild of references to the Lord of the Rings, and our favorite anti-hero
Gollum, nothing to get too excited about.

[VERsION 1.00] WWW.OSTEP.ORG



SCHEDULING: PROPORTIONAL SHARE

99

FON
®

Figure 9.5: CFS Red-Black Tree

the list, looking for the right spot to insert it, an O(n) operation. Any
search is also quite inefficient, also taking linear time on average.

Keeping the same values in a red-black tree makes most operations
more efficient, as depicted in Figure 9.5. Processes are ordered in the tree
by vruntime, and most operations (such as insertion and deletion) are
logarithmic in time, i.e., O(logn). When n is in the thousands, logarith-
mic is noticeably more efficient than linear.

Dealing With I/O And Sleeping Processes

One problem with picking the lowest vrunt ime to run next arises with
jobs that have gone to sleep for a long period of time. Imagine two pro-
cesses, A and B, one of which (A) runs continuously, and the other (B)
which has gone to sleep for a long period of time (say, 10 seconds). When
B wakes up, its vruntime will be 10 seconds behind A’s, and thus (if
we’re not careful), B will now monopolize the CPU for the next 10 sec-
onds while it catches up, effectively starving A.

CFS handles this case by altering the vrunt ime of a job when it wakes
up. Specifically, CFS sets the vrunt ime of that job to the minimum value
found in the tree (remember, the tree only contains running jobs) [B+18].
In this way, CFS avoids starvation, but not without a cost: jobs that sleep
for short periods of time frequently do not ever get their fair share of the
CPU [ACY7].

Other CFS Fun

CFS has many other features, too many to discuss at this point in the
book. It includes numerous heuristics to improve cache performance, has
strategies for handling multiple CPUs effectively (as discussed later in the
book), can schedule across large groups of processes (instead of treating
each process as an independent entity), and many other interesting fea-
tures. Read recent research, starting with Bouron [B+18], to learn more.
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Tip: USE EFFICIENT DATA STRUCTURES WHEN APPROPRIATE

In many cases, a list will do. In many cases, it will not. Knowing which
data structure to use when is a hallmark of good engineering. In the case
discussed herein, simple lists found in earlier schedulers simply do not
work well on modern systems, particular in the heavily loaded servers
found in datacenters. Such systems contain thousands of active pro-
cesses; searching through a long list to find the next job to run on each
core every few milliseconds would waste precious CPU cycles. A better
structure was needed, and CFS provided one by adding an excellent im-
plementation of a red-black tree. More generally, when picking a data
structure for a system you are building, carefully consider its access pat-
terns and its frequency of usage; by understanding these, you will be able
to implement the right structure for the task at hand.

Summary

We have introduced the concept of proportional-share scheduling and
briefly discussed three approaches: lottery scheduling, stride scheduling,
and the Completely Fair Scheduler (CFS) of Linux. Lottery uses random-
ness in a clever way to achieve proportional share; stride does so deter-
ministically. CFS, the only “real” scheduler discussed in this chapter, is a
bit like weighted round-robin with dynamic time slices, but built to scale
and perform well under load; to our knowledge, it is the most widely
used fair-share scheduler in existence today.

No scheduler is a panacea, and fair-share schedulers have their fair
share of problems. One issue is that such approaches do not particularly
mesh well with I/O [AC97]; as mentioned above, jobs that perform I/O
occasionally may not to get their fair share of CPU. Another issue is that
they leave open the hard problem of ticket or priority assignment, i.e.,
how do you know how many tickets your browser should be allocated, or
to what nice value to set your text editor? Other general-purpose sched-
ulers (such as the MLFQ we discussed previously, and other similar Linux
schedulers) handle these issues automatically and thus may be more eas-
ily deployed.

The good news is that there are many domains in which these prob-
lems are not the dominant concern, and proportional-share schedulers
are used to great effect. For example, in a virtualized data center (or
cloud), where you might like to assign one-quarter of your CPU cycles
to the Windows VM and the rest to your base Linux installation, propor-
tional sharing can be simple and effective. The idea can also be extended
to other resources; see Waldspurger [WO02] for further details on how to
proportionally share memory in VMWare’s ESX Server.
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SCHEDULING: PROPORTIONAL SHARE

Homework (Simulation)

This program, lottery . py, allows you to see how a lottery scheduler
works. See the README for details.

Questions

OPERATING
SYSTEMS
[VERSION 1.00]

1.

2.

Compute the solutions for simulations with 3 jobs and random seeds of 1,
2,and 3.

Now run with two specific jobs: each of length 10, but one (job 0) with
just 1 ticket and the other (job 1) with 100 (e.g., -1 10:1,10:100). What
happens when the number of tickets is so imbalanced? Will job 0 ever run
before job 1 completes? How often? In general, what does such a ticket
imbalance do to the behavior of lottery scheduling?

. When running with two jobs of length 100 and equal ticket allocations of 100

(-1 100:100,100:100), how unfair is the scheduler? Run with some dif-
ferent random seeds to determine the (probabilistic) answer; let unfairness
be determined by how much earlier one job finishes than the other.

. How does your answer to the previous question change as the quantum size

(-q) gets larger?

. Can you make a version of the graph that is found in the chapter? What

else would be worth exploring? How would the graph look with a stride
scheduler?

WWW.OSTEP.ORG
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Multiprocessor Scheduling (Advanced)

This chapter will introduce the basics of multiprocessor scheduling. As
this topic is relatively advanced, it may be best to cover it after you have
studied the topic of concurrency in some detail (i.e., the second major
“easy piece” of the book).

After years of existence only in the high-end of the computing spec-
trum, multiprocessor systems are increasingly commonplace, and have
found their way into desktop machines, laptops, and even mobile de-
vices. The rise of the multicore processor, in which multiple CPU cores
are packed onto a single chip, is the source of this proliferation; these
chips have become popular as computer architects have had a difficult
time making a single CPU much faster without using (way) too much
power. And thus we all now have a few CPUs available to us, which is a
good thing, right?

Of course, there are many difficulties that arise with the arrival of more
than a single CPU. A primary one is that a typical application (i.e., some C
program you wrote) only uses a single CPU; adding more CPUs does not
make that single application run faster. To remedy this problem, you'll
have to rewrite your application to run in parallel, perhaps using threads
(as discussed in great detail in the second piece of this book). Multi-
threaded applications can spread work across multiple CPUs and thus
run faster when given more CPU resources.

ASIDE: ADVANCED CHAPTERS

Advanced chapters require material from a broad swath of the book to
truly understand, while logically fitting into a section that is earlier than
said set of prerequisite materials. For example, this chapter on multipro-
cessor scheduling makes much more sense if you've first read the middle
piece on concurrency; however, it logically fits into the part of the book
on virtualization (generally) and CPU scheduling (specifically). Thus, it
is recommended such chapters be covered out of order; in this case, after
the second piece of the book.
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CPU
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Memory

Figure 10.1: Single CPU With Cache

Beyond applications, a new problem that arises for the operating sys-
tem is (not surprisingly!) that of multiprocessor scheduling. Thus far
we’ve discussed a number of principles behind single-processor schedul-
ing; how can we extend those ideas to work on multiple CPUs? What
new problems must we overcome? And thus, our problem:

CRrRUX: HOW TO SCHEDULE JOBS ON MULTIPLE CPUs
How should the OS schedule jobs on multiple CPUs? What new prob-
lems arise? Do the same old techniques work, or are new ideas required?

Background: Multiprocessor Architecture

To understand the new issues surrounding multiprocessor schedul-
ing, we have to understand a new and fundamental difference between
single-CPU hardware and multi-CPU hardware. This difference centers
around the use of hardware caches (e.g., Figure 10.1), and exactly how
data is shared across multiple processors. We now discuss this issue fur-
ther, at a high level. Details are available elsewhere [CSG99], in particular
in an upper-level or perhaps graduate computer architecture course.

In a system with a single CPU, there are a hierarchy of hardware
caches that in general help the processor run programs faster. Caches
are small, fast memories that (in general) hold copies of popular data that
is found in the main memory of the system. Main memory, in contrast,
holds all of the data, but access to this larger memory is slower. By keep-
ing frequently accessed data in a cache, the system can make the large,
slow memory appear to be a fast one.

As an example, consider a program that issues an explicit load instruc-
tion to fetch a value from memory, and a simple system with only a single
CPU; the CPU has a small cache (say 64 KB) and a large main memory.

[VERSION 1.00] WWW.OSTEP.ORG
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Figure 10.2: Two CPUs With Caches Sharing Memory

The first time a program issues this load, the data resides in main mem-
ory, and thus takes a long time to fetch (perhaps in the tens of nanosec-
onds, or even hundreds). The processor, anticipating that the data may be
reused, puts a copy of the loaded data into the CPU cache. If the program
later fetches this same data item again, the CPU first checks for it in the
cache; if it finds it there, the data is fetched much more quickly (say, just
a few nanoseconds), and thus the program runs faster.

Caches are thus based on the notion of locality, of which there are
two kinds: temporal locality and spatial locality. The idea behind tem-
poral locality is that when a piece of data is accessed, it is likely to be
accessed again in the near future; imagine variables or even instructions
themselves being accessed over and over again in a loop. The idea be-
hind spatial locality is that if a program accesses a data item at address
x, it is likely to access data items near x as well; here, think of a program
streaming through an array, or instructions being executed one after the
other. Because locality of these types exist in many programs, hardware
systems can make good guesses about which data to put in a cache and
thus work well.

Now for the tricky part: what happens when you have multiple pro-
cessors in a single system, with a single shared main memory, as we see
in Figure 10.2?

As it turns out, caching with multiple CPUs is much more compli-
cated. Imagine, for example, that a program running on CPU 1 reads
a data item (with value D) at address A; because the data is not in the
cache on CPU 1, the system fetches it from main memory, and gets the
value D. The program then modifies the value at address A, just updat-
ing its cache with the new value D’; writing the data through all the way
to main memory is slow, so the system will (usually) do that later. Then
assume the OS decides to stop running the program and move it to CPU
2. The program then re-reads the value at address A; there is no such data
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CPU 2’s cache, and thus the system fetches the value from main memory,
and gets the old value D instead of the correct value D’. Oops!

This general problem is called the problem of cache coherence, and
there is a vast research literature that describes many different subtleties
involved with solving the problem [SHW11]. Here, we will skip all of the
nuance and make some major points; take a computer architecture class
(or three) to learn more.

The basic solution is provided by the hardware: by monitoring mem-
ory accesses, hardware can ensure that basically the “right thing” hap-
pens and that the view of a single shared memory is preserved. One way
to do this on a bus-based system (as described above) is to use an old
technique known as bus snooping [G83]; each cache pays attention to
memory updates by observing the bus that connects them to main mem-
ory. When a CPU then sees an update for a data item it holds in its cache,
it will notice the change and either invalidate its copy (i.e., remove it
from its own cache) or update it (i.e., put the new value into its cache
too). Write-back caches, as hinted at above, make this more complicated
(because the write to main memory isn’t visible until later), but you can
imagine how the basic scheme might work.

Don’t Forget Synchronization

Given that the caches do all of this work to provide coherence, do pro-
grams (or the OS itself) have to worry about anything when they access
shared data? The answer, unfortunately, is yes, and is documented in
great detail in the second piece of this book on the topic of concurrency.
While we won't get into the details here, we'll sketch/review some of the
basic ideas here (assuming you're familiar with concurrency).

When accessing (and in particular, updating) shared data items or
structures across CPUs, mutual exclusion primitives (such as locks) should
likely be used to guarantee correctness (other approaches, such as build-
ing lock-free data structures, are complex and only used on occasion;
see the chapter on deadlock in the piece on concurrency for details). For
example, assume we have a shared queue being accessed on multiple
CPUs concurrently. Without locks, adding or removing elements from
the queue concurrently will not work as expected, even with the under-
lying coherence protocols; one needs locks to atomically update the data
structure to its new state.

To make this more concrete, imagine this code sequence, which is used
to remove an element from a shared linked list, as we see in Figure 10.3.
Imagine if threads on two CPUs enter this routine at the same time. If
Thread 1 executes the first line, it will have the current value of head
stored in its tmp variable; if Thread 2 then executes the first line as well,
it also will have the same value of head stored in its own private tmp
variable (tmp is allocated on the stack, and thus each thread will have
its own private storage for it). Thus, instead of each thread removing
an element from the head of the list, each thread will try to remove the
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typedef struct _ Node_t {

1

2 int value;

3 struct __Node_t #next;

4 } Node_t;

5

6 int List_Pop () {

7 Node_t *tmp = head; // remember old head ...
8 int value = head->value; // ... and its value

9 head = head->next; // advance head to next pointer
10 free (tmp) ; // free old head

11 return value; // return value at head

Figure 10.3: Simple List Delete Code

same head element, leading to all sorts of problems (such as an attempted
double free of the head element at line 4, as well as potentially returning
the same data value twice).

The solution, of course, is to make such routines correct via lock-
ing. In this case, allocating a simple mutex (e.g., pthreadmutex_t
m;) and then adding a lock (&m) at the beginning of the routine and
anunlock (&m) at the end will solve the problem, ensuring that the code
will execute as desired. Unfortunately, as we will see, such an approach is
not without problems, in particular with regards to performance. Specifi-
cally, as the number of CPUs grows, access to a synchronized shared data
structure becomes quite slow.

10.3  One Final Issue: Cache Affinity

One final issue arises in building a multiprocessor cache scheduler,
known as cache affinity [TTG95]. This notion is simple: a process, when
run on a particular CPU, builds up a fair bit of state in the caches (and
TLBs) of the CPU. The next time the process runs, it is often advanta-
geous to run it on the same CPU, as it will run faster if some of its state
is already present in the caches on that CPU. If, instead, one runs a pro-
cess on a different CPU each time, the performance of the process will be
worse, as it will have to reload the state each time it runs (note it will run
correctly on a different CPU thanks to the cache coherence protocols of
the hardware). Thus, a multiprocessor scheduler should consider cache
affinity when making its scheduling decisions, perhaps preferring to keep
a process on the same CPU if at all possible.

10.4 Single-Queue Scheduling

With this background in place, we now discuss how to build a sched-
uler for a multiprocessor system. The most basic approach is to simply
reuse the basic framework for single processor scheduling, by putting all
jobs that need to be scheduled into a single queue; we call this single-
queue multiprocessor scheduling or SQMS for short. This approach
has the advantage of simplicity; it does not require much work to take an
existing policy that picks the best job to run next and adapt it to work on
more than one CPU (where it might pick the best two jobs to run, if there
are two CPUs, for example).
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However, SOMS has obvious shortcomings. The first problem is a lack
of scalability. To ensure the scheduler works correctly on multiple CPUs,
the developers will have inserted some form of locking into the code, as
described above. Locks ensure that when SQMS code accesses the single
queue (say, to find the next job to run), the proper outcome arises.

Locks, unfortunately, can greatly reduce performance, particularly as
the number of CPUs in the systems grows [A91]. As contention for such
a single lock increases, the system spends more and more time in lock
overhead and less time doing the work the system should be doing (note:
it would be great to include a real measurement of this in here someday).

The second main problem with SQMS is cache affinity. For example,
let us assume we have five jobs to run (A, B, C, D, F) and four processors.
Our scheduling queue thus looks like this:

Queue—> A —& B — C — D — E —»NULL

Over time, assuming each job runs for a time slice and then another
job is chosen, here is a possible job schedule across CPUs:

cruo [+ JEIRN
CPU 1 A nz ... (repeat) ...
A m ... (repeat) ...
A . ... (repeat) ...

Because each CPU simply picks the next job to run from the globally-
shared queue, each job ends up bouncing around from CPU to CPU, thus
doing exactly the opposite of what would make sense from the stand-
point of cache affinity.

To handle this problem, most SQMS schedulers include some kind of
affinity mechanism to try to make it more likely that process will continue
to run on the same CPU if possible. Specifically, one might provide affin-
ity for some jobs, but move others around to balance load. For example,
imagine the same five jobs scheduled as follows:

CPUO | A . A
cu 1 (OIS

CPU2 |C|C|C . C ... (repeat) ...

oV D D D D

... (repeat) ...

Al A ... (repeat) ...

... (repeat) ...

... (repeat) ...
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In this arrangement, jobs A through D are not moved across proces-
sors, with only job E migrating from CPU to CPU, thus preserving affin-
ity for most. You could then decide to migrate a different job the next
time through, thus achieving some kind of affinity fairness as well. Im-
plementing such a scheme, however, can be complex.

Thus, we can see the SOMS approach has its strengths and weak-
nesses. It is straightforward to implement given an existing single-CPU
scheduler, which by definition has only a single queue. However, it does
not scale well (due to synchronization overheads), and it does not readily
preserve cache affinity.

Multi-Queue Scheduling

Because of the problems caused in single-queue schedulers, some sys-
tems opt for multiple queues, e.g., one per CPU. We call this approach
multi-queue multiprocessor scheduling (or MQMS).

In MQMS, our basic scheduling framework consists of multiple schedul-
ing queues. Each queue will likely follow a particular scheduling disci-
pline, such as round robin, though of course any algorithm can be used.
When a job enters the system, it is placed on exactly one scheduling
queue, according to some heuristic (e.g., random, or picking one with
fewer jobs than others). Then it is scheduled essentially independently,
thus avoiding the problems of information sharing and synchronization
found in the single-queue approach.

For example, assume we have a system where there are just two CPUs
(labeled CPU 0 and CPU 1), and some number of jobs enter the system:
A, B, C,and D for example. Given that each CPU has a scheduling queue
now, the OS has to decide into which queue to place each job. It might do
something like this:

Q—+ A & C Qt— B — D

Depending on the queue scheduling policy, each CPU now has two
jobs to choose from when deciding what should run. For example, with
round robin, the system might produce a schedule that looks like this:

CPUO |A|A|C|C|A|A|C|IC|A|A|C|C

MQMS has a distinct advantage of SQMS in that it should be inher-
ently more scalable. As the number of CPUs grows, so too does the num-
ber of queues, and thus lock and cache contention should not become a
central problem. In addition, MQMS intrinsically provides cache affinity;
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jobs stay on the same CPU and thus reap the advantage of reusing cached
contents therein.

But, if you've been paying attention, you might see that we have a new
problem, which is fundamental in the multi-queue based approach: load
imbalance. Let’s assume we have the same set up as above (four jobs,
two CPUs), but then one of the jobs (say C) finishes. We now have the
following scheduling queues:

Qo — A Q1 — B — D

If we then run our round-robin policy on each queue of the system, we
will see this resulting schedule:

CPUO |A|A|JA|A|JA|IA|A|IA|A|A]|A|A

As you can see from this diagram, A gets twice as much CPU as B and
D, which is not the desired outcome. Even worse, let’s imagine that both
A and C finish, leaving just jobs B and D in the system. The scheduling
queues will look like this:

Qo — Qat— B — D

As a result, CPU 0 will be left idle! (insert dramatic and sinister music here)
And hence our CPU usage timeline looks sad:

CPUO

So what should a poor multi-queue multiprocessor scheduler do? How
can we overcome the insidious problem of load imbalance and defeat the
evil forces of ... the Decepticons1 ? How do we stop asking questions that
are hardly relevant to this otherwise wonderful book?

!Little known fact is that the home planet of Cybertron was destroyed by bad CPU
scheduling decisions. And now let that be the first and last reference to Transformers in this
book, for which we sincerely apologize.
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CRrRUX: HoOw To DEAL WITH LOAD IMBALANCE
How should a multi-queue multiprocessor scheduler handle load im-
balance, so as to better achieve its desired scheduling goals?

The obvious answer to this query is to move jobs around, a technique
which we (once again) refer to as migration. By migrating a job from one
CPU to another, true load balance can be achieved.

Let’s look at a couple of examples to add some clarity. Once again, we
have a situation where one CPU is idle and the other has some jobs.

Qo — Qat—+ B — D

In this case, the desired migration is easy to understand: the OS should
simply move one of B or D to CPU 0. The result of this single job migra-
tion is evenly balanced load and everyone is happy.

A more tricky case arises in our earlier example, where A was left
alone on CPU 0 and B and D were alternating on CPU 1:

Qo — A Q— B — D

In this case, a single migration does not solve the problem. What
would you do in this case? The answer, alas, is continuous migration
of one or more jobs. One possible solution is to keep switching jobs, as
we see in the following timeline. In the figure, first A is alone on CPU 0,
and B and D alternate on CPU 1. After a few time slices, B is moved to
compete with A on CPU 0, while D enjoys a few time slices alone on CPU
1. And thus load is balanced:

CPUO |A|A|A|A A

CPU 1 D.DDDDD.

Of course, many other possible migration patterns exist. But now for
the tricky part: how should the system decide to enact such a migration?

One basic approach is to use a technique known as work stealing
[FLR98]. With a work-stealing approach, a (source) queue that is low
on jobs will occasionally peek at another (target) queue, to see how full
it is. If the target queue is (notably) more full than the source queue, the
source will “steal” one or more jobs from the target to help balance load.

Of course, there is a natural tension in such an approach. If you look
around at other queues too often, you will suffer from high overhead
and have trouble scaling, which was the entire purpose of implementing
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the multiple queue scheduling in the first place! If, on the other hand,
you don’t look at other queues very often, you are in danger of suffering
from severe load imbalances. Finding the right threshold remains, as is
common in system policy design, a black art.

Linux Multiprocessor Schedulers

Interestingly, in the Linux community, no common solution has ap-
proached to building a multiprocessor scheduler. Over time, three dif-
ferent schedulers arose: the O(1) scheduler, the Completely Fair Sched-
uler (CFS), and the BF Scheduler (BFS)’. See Meehean'’s dissertation for
an excellent overview of the strengths and weaknesses of said schedulers
[M11]; here we just summarize a few of the basics.

Both O(1) and CFS use multiple queues, whereas BFS uses a single
queue, showing that both approaches can be successful. Of course, there
are many other details which separate these schedulers. For example, the
O(1) scheduler is a priority-based scheduler (similar to the MLFQ dis-
cussed before), changing a process’s priority over time and then schedul-
ing those with highest priority in order to meet various scheduling objec-
tives; interactivity is a particular focus. CFS, in contrast, is a deterministic
proportional-share approach (more like Stride scheduling, as discussed
earlier). BFS, the only single-queue approach among the three, is also
proportional-share, but based on a more complicated scheme known as
Earliest Eligible Virtual Deadline First (EEVDF) [SA96]. Read more about
these modern algorithms on your own; you should be able to understand
how they work now!

Summary

We have seen various approaches to multiprocessor scheduling. The
single-queue approach (SQMS) is rather straightforward to build and bal-
ances load well but inherently has difficulty with scaling to many pro-
cessors and cache affinity. The multiple-queue approach (MQMS) scales
better and handles cache affinity well, but has trouble with load imbal-
ance and is more complicated. Whichever approach you take, there is no
simple answer: building a general purpose scheduler remains a daunting
task, as small code changes can lead to large behavioral differences. Only
undertake such an exercise if you know exactly what you are doing, or,
at least, are getting paid a large amount of money to do so.

2Look up what BF stands for on your own; be forewarned, it is not for the faint of heart.
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Homework (Simulation)

In this homework, we’ll use multi.py to simulate a multi-processor
CPU scheduler, and learn about some of its details. Read the related
README for more information about the simulator and its options.

Questions

1. To start things off, let’s learn how to use the simulator to study how to build
an effective multi-processor scheduler. The first simulation will run just one
job, which has a run-time of 30, and a working-set size of 200. Run this job
(called job “a” here) on one simulated CPU as follows: . /multi.py -n 1
-L a:30:200. How long will it take to complete? Turn on the -c flag to
see a final answer, and the -t flag to see a tick-by-tick trace of the job and
how it is scheduled.

2. Now increase the cache size so as to make the job’s working set (size=200) fit
into the cache (which, by default, is size=100); for example, run . /multi.py
-n 1 -L a:30:200 -M 300. Can you predict how fast the job will run
once it fits in cache? (hint: remember the key parameter of the warm_rate,
which is set by the -r flag) Check your answer by running with the solve
flag (-c) enabled.

3. One cool thing about multi.py is that you can see more detail about what
is going on with different tracing flags. Run the same simulation as above,
but this time with time_left tracing enabled (-T). This flag shows both the
job that was scheduled on a CPU at each time step, as well as how much
run-time that job has left after each tick has run. What do you notice about
how that second column decreases?

4. Now add one more bit of tracing, to show the status of each CPU cache for
each job, with the -C flag. For each job, each cache will either show a blank
space (if the cache is cold for that job) or a ‘'w” (if the cache is warm for that
job). At what point does the cache become warm for job ‘a” in this simple
example? What happens as you change the warmup_time parameter (-w)
to lower or higher values than the default?

5. At this point, you should have a good idea of how the simulator works for
a single job running on a single CPU. But hey, isn’t this a multi-processor
CPU scheduling chapter? Oh yeah! So let’s start working with multiple jobs.
Specifically, let’s run the following three jobs on a two-CPU system (i.e., type
./multi.py -n 2 -L a:100:100,b:100:50,c:100:50)Canyou pre-
dict how long this will take, given a round-robin centralized scheduler? Use
—c to see if you were right, and then dive down into details with -t to see a
step-by-step and then -C to see whether caches got warmed effectively for
these jobs. What do you notice?

6. Now we’ll apply some explicit controls to study cache affinity, as described
in the chapter. To do this, you'll need the -A flag. This flag can be used
to limit which CPUs the scheduler can place a particular job upon. In this
case, let’s use it to place jobs 'b” and ‘¢’ on CPU 1, while restricting ‘a” to
CPU 0. This magic is accomplished by typing this . /multi.py -n 2 -L
a:100:100,b:100:50, ¢:100:50 -A a:0,b:1,c:1; don’t forget to
turn on various tracing options to see what is really happening! Can you
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predict how fast this version will run? Why does it do better? Will other
combinations of ‘a’, 'b’, and "¢’ onto the two processors run faster or slower?

7. One interesting aspect of caching multiprocessors is the opportunity for
better-than-expected speed up of jobs when using multiple CPUs (and their
caches) as compared to running jobs on a single processor. Specifically,
when you run on N CPUs, sometimes you can speed up by more than a fac-
tor of IV, a situation entitled super-linear speedup. To experiment with this,
use the job description here (-1 a:100:100,b:100:100,¢c:100:100) with
asmall cache (-M 50) to create three jobs. Run this on systems with 1, 2, and
3CPUs (-n 1, -n 2,-n 3). Now, do the same, but with a larger per-CPU
cache of size 100. What do you notice about performance as the number
of CPUs scales? Use —c to confirm your guesses, and other tracing flags to
dive even deeper.

8. One other aspect of the simulator worth studying is the per-CPU scheduling
option, the —p flag. Run with two CPUs again, and this three job configu-
ration (-1 a:100:100,b:100:50,c:100:50). How does this option do,
as opposed to the hand-controlled affinity limits you put in place above?
How does performance change as you alter the ‘peek interval’ (-P) to lower
or higher values? How does this per-CPU approach work as the number of
CPUs scales?

9. Finally, feel free to just generate random workloads and see if you can pre-
dict their performance on different numbers of processors, cache sizes, and
scheduling options. If you do this, you'll soon be a multi-processor schedul-
ing master, which is a pretty awesome thing to be. Good luck!

THREE
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Summary Dialogue on CPU Virtualization

Professor: So, Student, did you learn anything?

Student: Well, Professor, that seems like a loaded question. I think you only
want me to say “yes.”

Professor: That’s true. But it’s also still an honest question. Come on, give a
professor a break, will you?

Student: OK, OK. I think I did learn a few things. First, I learned a little about
how the OS virtualizes the CPU. There are a bunch of important mechanisms
that I had to understand to make sense of this: traps and trap handlers, timer
interrupts, and how the OS and the hardware have to carefully save and restore
state when switching between processes.

Professor: Good, good!

Student: All those interactions do seem a little complicated though; how can I
learn more?

Professor: Well, that’s a good question. I think there is no substitute for doing;
just reading about these things doesn’t quite give you the proper sense. Do the
class projects and I bet by the end it will all kind of make sense.

Student: Sounds good. What else can I tell you?

Professor: Well, did you get some sense of the philosophy of the OS in your
quest to understand its basic machinery?

Student: Hmm... I think so. It seems like the OS is fairly paranoid. It wants
to make sure it stays in charge of the machine. While it wants a program to run
as efficiently as possible (and hence the whole reasoning behind limited direct
execution), the OS also wants to be able to say “Ah! Not so fast my friend”
in case of an errant or malicious process. Paranoia rules the day, and certainly
keeps the OS in charge of the machine. Perhaps that is why we think of the OS
as a resource manager.

Professor: Yes indeed — sounds like you are starting to put it together! Nice.
Student: Thanks.
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Professor: And what about the policies on top of those mechanisms — any
interesting lessons there?

Student: Some lessons to be learned there for sure. Perhaps a little obvious, but
obvious can be good. Like the notion of bumping short jobs to the front of the
queue — I knew that was a good idea ever since the one time I was buying some
qum at the store, and the quy in front of me had a credit card that wouldn’t work.
He was no short job, let me tell you.

Professor: That sounds oddly rude to that poor fellow. What else?

Student: Well, that you can build a smart scheduler that tries to be like SJF
and RR all at once — that MLFQ was pretty neat. Building up a real scheduler
seems difficult.

Professor: Indeed it is. That's why there is still controversy to this day over
which scheduler to use; see the Linux battles between CFS, BFS, and the O(1)
scheduler, for example. And no, I will not spell out the full name of BFS.

Student: And I won't ask you to! These policy battles seem like they could rage
forever; is there really a right answer?

Professor: Probably not. After all, even our own metrics are at odds: if your
scheduler is good at turnaround time, it’s bad at response time, and vice versa.
As Lampson said, perhaps the goal isn’t to find the best solution, but rather to
avoid disaster.

Student: That’s a little depressing.

Professor: Good engineering can be that way. And it can also be uplifting!
It’s just your perspective on it, really. I personally think being pragmatic is a
good thing, and pragmatists realize that not all problems have clean and easy
solutions. Anything else that caught your fancy?

Student: [ really liked the notion of gaming the scheduler; it seems like that
might be something to look into when I'm next running a job on Amazon’s EC2
service. Maybe I can steal some cycles from some other unsuspecting (and more
importantly, OS-ignorant) customer!

Professor: It looks like I might have created a monster! Professor Frankenstein
is not what 1'd like to be called, you know.

Student: But isn’t that the idea? To get us excited about something, so much so
that we look into it on our own? Lighting fires and all that?

Professor: I guess so. But I didn’t think it would work!

[VERSION 1.00] WWW.OSTEP.ORG



12

A Dialogue on Memory Virtualization

Student: So, are we done with virtualization?
Professor: No!

Student: Hey, no reason to get so excited; I was just asking a question. Students
are supposed to do that, right?

Professor: Well, professors do always say that, but really they mean this: ask
questions, if they are good questions, and you have actually put a little thought
into them.

Student: Well, that sure takes the wind out of my sails.

Professor: Mission accomplished. In any case, we are not nearly done with
virtualization! Rather, you have just seen how to virtualize the CPU, but really
there is a big monster waiting in the closet: memory. Virtualizing memory is
complicated and requires us to understand many more intricate details about
how the hardware and OS interact.

Student: That sounds cool. Why is it so hard?

Professor: Well, there are a lot of details, and you have to keep them straight
in your head to really develop a mental model of what is going on. We'll start
simple, with very basic techniques like base/bounds, and slowly add complexity
to tackle new challenges, including fun topics like TLBs and multi-level page
tables. Eventually, we’ll be able to describe the workings of a fully-functional
modern virtual memory manager.

Student: Neat! Any tips for the poor student, inundated with all of this infor-
mation and generally sleep-deprived?

Professor: For the sleep deprivation, that's easy: sleep more (and party less).
For understanding virtual memory, start with this: every address generated
by a user program is a virtual address. The OS is just providing an illusion
to each process, specifically that it has its own large and private memory; with
some hardware help, the OS will turn these pretend virtual addresses into real
physical addresses, and thus be able to locate the desired information.
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Student: OK, I think I can remember that... (to self) every address from a user
program is virtual, every address from a user program is virtual, every ...

Professor: What are you mumbling about?

Student: Oh nothing.... (awkward pause) ... Anyway, why does the OS want
to provide this illusion again?

Professor: Mostly ease of use: the OS will give each program the view that it
has a large contiguous address space to put its code and data into; thus, as a
programmer, you never have to worry about things like “where should I store this
variable?” because the virtual address space of the program is large and has lots
of room for that sort of thing. Life, for a programmer, becomes much more tricky
if you have to worry about fitting all of your code data into a small, crowded
memory.

Student: Why else?

Professor: Well, isolation and protection are big deals, too. We don’t want
one errant program to be able to read, or worse, overwrite, some other program’s
memory, do we?

Student: Probably not. Unless it’s a program written by someone you don’t
like.

Professor: Hmmm.... I think we might need to add a class on morals and ethics
to your schedule for next semester. Perhaps OS class isn’t getting the right mes-
sage across.

Student: Maybe we should. But remember, it's not me who taught us that the
proper OS response to errant process behavior is to kill the offending process!
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The Abstraction: Address Spaces

In the early days, building computer systems was easy. Why, you ask?
Because users didn’t expect much. It is those darned users with their
expectations of “ease of use”, “high performance”, “reliability”, etc., that
really have led to all these headaches. Next time you meet one of those
computer users, thank them for all the problems they have caused.

Early Systems

From the perspective of memory, early machines didn’t provide much
of an abstraction to users. Basically, the physical memory of the machine
looked something like what you see in Figure 13.1.

The OS was a set of routines (a library, really) that sat in memory (start-
ing at physical address 0 in this example), and there would be one run-
ning program (a process) that currently sat in physical memory (starting
at physical address 64k in this example) and used the rest of memory.
There were few illusions here, and the user didn’t expect much from the
OS. Life was sure easy for OS developers in those days, wasn’t it?

0KB

Operating System
(code, data, etc.)

64KB

Current Program
(code, data, etc.)

max

Figure 13.1: Operating Systems: The Early Days
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0KB
Operating System
(code, data, etc.)
64KB
(free)
128KB
Process C
(code, data, etc.)
192KB
Process B
(code, data, etc.)
256KB
(free)
320KB
Process A
(code, data, etc.)
384KB
(free)
448KB
(free)
512KB

Figure 13.2: Three Processes: Sharing Memory

Multiprogramming and Time Sharing

After a time, because machines were expensive, people began to share
machines more effectively. Thus the era of multiprogramming was born
[DV66], in which multiple processes were ready to run at a given time,
and the OS would switch between them, for example when one decided
to perform an I/O. Doing so increased the effective utilization of the
CPU. Such increases in efficiency were particularly important in those
days where each machine cost hundreds of thousands or even millions of
dollars (and you thought your Mac was expensive!).

Soon enough, however, people began demanding more of machines,
and the era of time sharing was born [S59, L60, M62, M83]. Specifically,
many realized the limitations of batch computing, particularly on pro-
grammers themselves [CV65], who were tired of long (and hence ineffec-
tive) program-debug cycles. The notion of interactivity became impor-
tant, as many users might be concurrently using a machine, each waiting
for (or hoping for) a timely response from their currently-executing tasks.

One way to implement time sharing would be to run one process for
a short while, giving it full access to all memory (Figure 13.1, page 121),
then stop it, save all of its state to some kind of disk (including all of
physical memory), load some other process’s state, run it for a while, and
thus implement some kind of crude sharing of the machine [M+63].

Unfortunately, this approach has a big problem: it is way too slow,
particularly as memory grows. While saving and restoring register-level
state (the PC, general-purpose registers, etc.) is relatively fast, saving the
entire contents of memory to disk is brutally non-performant. Thus, what
we’d rather do is leave processes in memory while switching between
them, allowing the OS to implement time sharing efficiently (Figure 13.2).

[VERSION 1.00] WWW.OSTEP.ORG



13.3

THE ABSTRACTION: ADDRESS SPACES

123

0KB

the code segment:

Program Code where instructions live

1KB
the heap segment:
Heap contains malloc'd data
2KB dynamic data structures
(it grows downward)

(free)

(it grows upward)
the stack segment:
15KB contains local variables
Stack arguments to routines,

ac return values, etc.

16KB

Figure 13.3: An Example Address Space

In the diagram, there are three processes (A, B, and C) and each of
them have a small part of the 512KB physical memory carved out for
them. Assuming a single CPU, the OS chooses to run one of the processes
(say A), while the others (B and C) sit in the ready queue waiting to run.

As time sharing became more popular, you can probably guess that
new demands were placed on the operating system. In particular, allow-
ing multiple programs to reside concurrently in memory makes protec-
tion an important issue; you don’t want a process to be able to read, or
worse, write some other process’s memory.

The Address Space

However, we have to keep those pesky users in mind, and doing so
requires the OS to create an easy to use abstraction of physical memory.
We call this abstraction the address space, and it is the running program’s
view of memory in the system. Understanding this fundamental OS ab-
straction of memory is key to understanding how memory is virtualized.

The address space of a process contains all of the memory state of the
running program. For example, the code of the program (the instruc-
tions) have to live in memory somewhere, and thus they are in the ad-
dress space. The program, while it is running, uses a stack to keep track
of where it is in the function call chain as well as to allocate local variables
and pass parameters and return values to and from routines. Finally, the
heap is used for dynamically-allocated, user-managed memory, such as
that you might receive from a call tomalloc () in C or new in an object-
oriented language such as C++ or Java. Of course, there are other things
in there too (e.g., statically-initialized variables), but for now let us just
assume those three components: code, stack, and heap.
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In the example in Figure 13.3 (page 123), we have a tiny address space

(only 16KB)'. The program code lives at the top of the address space
(starting at 0 in this example, and is packed into the first 1K of the ad-
dress space). Code is static (and thus easy to place in memory), so we can
place it at the top of the address space and know that it won’t need any
more space as the program runs.

Next, we have the two regions of the address space that may grow
(and shrink) while the program runs. Those are the heap (at the top) and
the stack (at the bottom). We place them like this because each wishes to
be able to grow, and by putting them at opposite ends of the address
space, we can allow such growth: they just have to grow in opposite
directions. The heap thus starts just after the code (at 1KB) and grows
downward (say when a user requests more memory viamalloc ()); the
stack starts at 16KB and grows upward (say when a user makes a proce-
dure call). However, this placement of stack and heap is just a convention;
you could arrange the address space in a different way if you'd like (as
we’ll see later, when multiple threads co-exist in an address space, no
nice way to divide the address space like this works anymore, alas).

Of course, when we describe the address space, what we are describ-
ing is the abstraction that the OS is providing to the running program.
The program really isn’t in memory at physical addresses 0 through 16KB;
rather it is loaded at some arbitrary physical address(es). Examine pro-
cesses A, B, and C in Figure 13.2; there you can see how each process is
loaded into memory at a different address. And hence the problem:

THE CRUX: HOW TO VIRTUALIZE MEMORY
How can the OS build this abstraction of a private, potentially large
address space for multiple running processes (all sharing memory) on
top of a single, physical memory?

When the OS does this, we say the OS is virtualizing memory, because
the running program thinks it is loaded into memory at a particular ad-
dress (say 0) and has a potentially very large address space (say 32-bits or
64-bits); the reality is quite different.

When, for example, process A in Figure 13.2 tries to perform a load
at address 0 (which we will call a virtual address), somehow the OS, in
tandem with some hardware support, will have to make sure the load
doesn’t actually go to physical address 0 but rather to physical address
320KB (where A is loaded into memory). This is the key to virtualization
of memory, which underlies every modern computer system in the world.

'We will often use small examples like this because (a) it is a pain to represent a 32-bit
address space and (b) the math is harder. We like simple math.

[VERSION 1.00] WWW.OSTEP.ORG



13.4

THE ABSTRACTION: ADDRESS SPACES

125

Tir: THE PRINCIPLE OF ISOLATION

Isolation is a key principle in building reliable systems. If two entities are
properly isolated from one another, this implies that one can fail with-
out affecting the other. Operating systems strive to isolate processes from
each other and in this way prevent one from harming the other. By using
memory isolation, the OS further ensures that running programs cannot
affect the operation of the underlying OS. Some modern OS’s take iso-
lation even further, by walling off pieces of the OS from other pieces of
the OS. Such microkernels [BH70, R+89, S+03] thus may provide greater
reliability than typical monolithic kernel designs.

Goals

Thus we arrive at the job of the OS in this set of notes: to virtualize
memory. The OS will not only virtualize memory, though; it will do so
with style. To make sure the OS does so, we need some goals to guide us.
We have seen these goals before (think of the Introduction), and we’ll see
them again, but they are certainly worth repeating.

One major goal of a virtual memory (VM) system is transparency’.
The OS should implement virtual memory in a way that is invisible to
the running program. Thus, the program shouldn’t be aware of the fact
that memory is virtualized; rather, the program behaves as if it has its
own private physical memory. Behind the scenes, the OS (and hardware)
does all the work to multiplex memory among many different jobs, and
hence implements the illusion.

Another goal of VM is efficiency. The OS should strive to make the
virtualization as efficient as possible, both in terms of time (i.e., not mak-
ing programs run much more slowly) and space (i.e., not using too much
memory for structures needed to support virtualization). In implement-
ing time-efficient virtualization, the OS will have to rely on hardware
support, including hardware features such as TLBs (which we will learn
about in due course).

Finally, a third VM goal is protection. The OS should make sure to
protect processes from one another as well as the OS itself from pro-
cesses. When one process performs a load, a store, or an instruction fetch,
it should not be able to access or affect in any way the memory contents
of any other process or the OS itself (that is, anything outside its address
space). Protection thus enables us to deliver the property of isolation
among processes; each process should be running in its own isolated co-
coon, safe from the ravages of other faulty or even malicious processes.

This usage of transparency is sometimes confusing; some students think that “being
transparent” means keeping everything out in the open, i.e., what government should be like.
Here, it means the opposite: that the illusion provided by the OS should not be visible to ap-
plications. Thus, in common usage, a transparent system is one that is hard to notice, not one
that responds to requests as stipulated by the Freedom of Information Act.
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ASIDE: EVERY ADDRESS YOU SEE IS VIRTUAL

Ever write a C program that prints out a pointer? The value you see
(some large number, often printed in hexadecimal), is a virtual address.
Ever wonder where the code of your program is found? You can print
that out too, and yes, if you can print it, it also is a virtual address. In
fact, any address you can see as a programmer of a user-level program
is a virtual address. It’s only the OS, through its tricky techniques of
virtualizing memory, that knows where in the physical memory of the
machine these instructions and data values lie. So never forget: if you
print out an address in a program, it’s a virtual one, an illusion of how
things are laid out in memory; only the OS (and the hardware) knows the
real truth.

Here’s a little program (va . c) that prints out the locations of the main ()
routine (where code lives), the value of a heap-allocated value returned
frommalloc (), and the location of an integer on the stack:

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char xargv[]) {

printf ("location of code : %p\n", (void %) main);
printf ("location of heap : $p\n", (void x) malloc(l));
int x = 3;

printf ("location of stack : %p\n", (void x) &x);
return x;

}

When run on a 64-bit Mac, we get the following output:

location of code : 0x1095afe50
location of heap : 0x1096008c0
location of stack : 0x7fffé69laeat4d

From this, you can see that code comes first in the address space, then
the heap, and the stack is all the way at the other end of this large virtual
space. All of these addresses are virtual, and will be translated by the OS
and hardware in order to fetch values from their true physical locations.

In the next chapters, we’ll focus our exploration on the basic mecha-
nisms needed to virtualize memory, including hardware and operating
systems support. We'll also investigate some of the more relevant poli-
cies that you'll encounter in operating systems, including how to manage
free space and which pages to kick out of memory when you run low on
space. In doing so, we’ll build up your understanding of how a modern

virtual memory system really works’.

*Or, we'll convince you to drop the course. But hold on; if you make it through VM, you’ll
likely make it all the way!
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Summary

We have seen the introduction of a major OS subsystem: virtual mem-
ory. The VM system is responsible for providing the illusion of a large,
sparse, private address space to programs, which hold all of their instruc-
tions and data therein. The OS, with some serious hardware help, will
take each of these virtual memory references, and turn them into physi-
cal addresses, which can be presented to the physical memory in order to
fetch the desired information. The OS will do this for many processes at
once, making sure to protect programs from one another, as well as pro-
tect the OS. The entire approach requires a great deal of mechanism (lots
of low-level machinery) as well as some critical policies to work; we’ll
start from the bottom up, describing the critical mechanisms first. And
thus we proceed!
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Homework (Code)

In this homework, we’ll just learn about a few useful tools to examine
virtual memory usage on Linux-based systems. This will only be a brief
hint at what is possible; you'll have to dive deeper on your own to truly
become an expert (as always!).

Questions

1.

2.

The first Linux tool you should check out is the very simple tool free. First,
type man free and read its entire manual page; it’s short, don’t worry!
Now, run free, perhaps using some of the arguments that might be useful
(e.g., —m, to display memory totals in megabytes). How much memory is in
your system? How much is free? Do these numbers match your intuition?

. Next, create a little program that uses a certain amount of memory, called

memory-user.c. This program should take one command-line argument:
the number of megabytes of memory it will use. When run, it should allo-
cate an array, and constantly stream through the array, touching each entry.
The program should do this indefinitely, or, perhaps, for a certain amount
of time also specified at the command line.

. Now, while running your memory-user program, also (in a different ter-

minal window, but on the same machine) run the free tool. How do the
memory usage totals change when your program is running? How about
when you kill the memory-user program? Do the numbers match your ex-
pectations? Try this for different amounts of memory usage. What happens
when you use really large amounts of memory?

. Let’s try one more tool, known as pmap. Spend some time, and read the

pmap manual page in detail.

. To use pmap, you have to know the process ID of the process you're inter-

ested in. Thus, first run ps auxw to see a list of all processes; then, pick
an interesting one, such as a browser. You can also use your memory-user
program in this case (indeed, you can even have that program call get pid ()
and print out its PID for your convenience).

. Now run pmap on some of these processes, using various flags (like -x)

to reveal many details about the process. What do you see? How many
different entities make up a modern address space, as opposed to our simple
conception of code/stack/heap?

. Finally, let’s run pmap on your your memory-user program, with different

amounts of used memory. What do you see here? Does the output from
pmap match your expectations?
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Interlude: Memory API

In this interlude, we discuss the memory allocation interfaces in UNIX
systems. The interfaces provided are quite simple, and hence the chapter
is short and to the point'. The main problem we address is this:

CRrRUX: HOW TO ALLOCATE AND MANAGE MEMORY
In UNIX/C programs, understanding how to allocate and manage
memory is critical in building robust and reliable software. What inter-
faces are commonly used? What mistakes should be avoided?

Types of Memory

In running a C program, there are two types of memory that are allo-
cated. The first is called stack memory, and allocations and deallocations
of it are managed implicitly by the compiler for you, the programmer; for
this reason it is sometimes called automatic memory.

Declaring memory on the stack in C is easy. For example, let’s say you
need some space in a function func () for an integer, called x. To declare
such a piece of memory, you just do something like this:

void func () {
int x; // declares an integer on the stack

The compiler does the rest, making sure to make space on the stack
when you call into func (). When you return from the function, the com-
piler deallocates the memory for you; thus, if you want some information
to live beyond the call invocation, you had better not leave that informa-
tion on the stack.

It is this need for long-lived memory that gets us to the second type
of memory, called heap memory, where all allocations and deallocations

Indeed, we hope all chapters are! But this one is shorter and pointier, we think.
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are explicitly handled by you, the programmer. A heavy responsibility,
no doubt! And certainly the cause of many bugs. But if you are careful
and pay attention, you will use such interfaces correctly and without too
much trouble. Here is an example of how one might allocate an integer
on the heap:

void func () {
int *x = (int *) malloc(sizeof (int));

A couple of notes about this small code snippet. First, you might no-
tice that both stack and heap allocation occur on this line: first the com-
piler knows to make room for a pointer to an integer when it sees your
declaration of said pointer (int «x); subsequently, when the program
callsmalloc (), it requests space for an integer on the heap; the routine
returns the address of such an integer (upon success, or NULL on failure),
which is then stored on the stack for use by the program.

Because of its explicit nature, and because of its more varied usage,
heap memory presents more challenges to both users and systems. Thus,
it is the focus of the remainder of our discussion.

The malloc () Call

Themalloc () call is quite simple: you pass it a size asking for some
room on the heap, and it either succeeds and gives you back a pointer to
the newly-allocated space, or fails and returns NUL.L".

The manual page shows what you need to do to use malloc; type man
malloc at the command line and you will see:

#include <stdlib.h>
void *malloc(size_t size);

From this information, you can see that all you need to do is include
the header file std1ib.h to use malloc. In fact, you don’t really need to
even do this, as the C library, which all C programs link with by default,
has the code for malloc () inside of it; adding the header just lets the
compiler check whether you are callingmalloc () correctly (e.g., passing
the right number of arguments to it, of the right type).

The single parameter malloc () takes is of type size_t which sim-
ply describes how many bytes you need. However, most programmers
do not type in a number here directly (such as 10); indeed, it would be
considered poor form to do so. Instead, various routines and macros are
utilized. For example, to allocate space for a double-precision floating
point value, you simply do this:

double xd = (double %) malloc(sizeof (double));

“Note that NULL in C isn’t really anything special at all, just a macro for the value zero.
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Tip: WHEN IN DOUBT, TRY IT OUT

If you aren’t sure how some routine or operator you are using behaves,
there is no substitute for simply trying it out and making sure it behaves
as you expect. While reading the manual pages or other documentation
is useful, how it works in practice is what matters. Write some code and
test it! That is no doubt the best way to make sure your code behaves as
you desire. Indeed, that is what we did to double-check the things we
were saying about sizeof () were actually true!

Wow, that’s lot of double-ing! This invocation of malloc () uses the
sizeof () operator to request the right amount of space; in C, this is
generally thought of as a compile-time operator, meaning that the actual
size is known at compile time and thus a number (in this case, 8, for a
double) is substituted as the argument to malloc (). For this reason,
sizeof () is correctly thought of as an operator and not a function call
(a function call would take place at run time).

You can also pass in the name of a variable (and not just a type) to
sizeof (), but in some cases you may not get the desired results, so be
careful. For example, let’s look at the following code snippet:

int *x = malloc (10 * sizeof (int));
printf ("$d\n", sizeof (x));

In the first line, we’ve declared space for an array of 10 integers, which
is fine and dandy. However, when we use sizeof () in the next line,
it returns a small value, such as 4 (on 32-bit machines) or 8 (on 64-bit
machines). The reason is that in this case, sizeof () thinks we are sim-
ply asking how big a pointer to an integer is, not how much memory we
have dynamically allocated. However, sometimes sizeof () does work
as you might expect:

int x[10];
printf ("$d\n", sizeof(x));

In this case, there is enough static information for the compiler to
know that 40 bytes have been allocated.

Another place to be careful is with strings. When declaring space for a
string, use the following idiom: malloc (strlen(s) + 1), which gets
the length of the string using the function strlen (), and adds 1 to it
in order to make room for the end-of-string character. Using sizeof ()
may lead to trouble here.

You might also notice that malloc () returns a pointer to type void.
Doing so is just the way in C to pass back an address and let the pro-
grammer decide what to do with it. The programmer further helps out
by using what is called a cast; in our example above, the programmer
casts the return type of malloc () to a pointer to a double. Casting
doesn’t really accomplish anything, other than tell the compiler and other
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programmers who might be reading your code: “yeah, I know what I'm
doing.” By casting the result of malloc (), the programmer is just giving
some reassurance; the cast is not needed for the correctness.

The free () Call

As it turns out, allocating memory is the easy part of the equation;
knowing when, how, and even if to free memory is the hard part. To free
heap memory that is no longer in use, programmers simply call £ree ():

int *x = malloc (10 % sizeof (int));
free (x);
The routine takes one argument, a pointer returned by malloc ().

Thus, you might notice, the size of the allocated region is not passed in
by the user, and must be tracked by the memory-allocation library itself.

Common Errors

There are a number of common errors that arise in the use of malloc ()
and free (). Here are some we’ve seen over and over again in teaching
the undergraduate operating systems course. All of these examples com-
pile and run with nary a peep from the compiler; while compiling a C
program is necessary to build a correct C program, it is far from suffi-
cient, as you will learn (often in the hard way).

Correct memory management has been such a problem, in fact, that
many newer languages have support for automatic memory manage-
ment. In such languages, while you call something akin to malloc ()
to allocate memory (usually new or something similar to allocate a new
object), you never have to call something to free space; rather, a garbage
collector runs and figures out what memory you no longer have refer-
ences to and frees it for you.

Forgetting To Allocate Memory

Many routines expect memory to be allocated before you call them. For
example, the routine strcpy (dst, src) copies a string from a source
pointer to a destination pointer. However, if you are not careful, you
might do this:

char xsrc = "hello";

char =*dst; // oops! unallocated
strcpy (dst, src); // segfault and die

When you run this code, it will likely lead to a segmentation fault’,
which is a fancy term for YOU DID SOMETHING WRONG WITH
MEMORY YOU FOOLISH PROGRAMMER AND I AM ANGRY.

® Although it sounds arcane, you will soon learn why such an illegal memory access is
called a segmentation fault; if that isn’t incentive to read on, what is?
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Tr1p: IT COMPILED OR IT RAN # IT IS CORRECT

Just because a program compiled(!) or even ran once or many times cor-
rectly does not mean the program is correct. Many events may have con-
spired to get you to a point where you believe it works, but then some-
thing changes and it stops. A common student reaction is to say (or yell)
“But it worked before!” and then blame the compiler, operating system,
hardware, or even (dare we say it) the professor. But the problem is usu-
ally right where you think it would be, in your code. Get to work and
debug it before you blame those other components.

In this case, the proper code might instead look like this:

char xsrc = "hello";
char xdst = (char *) malloc(strlen(src) + 1);
strcpy (dst, src); // work properly

Alternately, you could use st rdup () and make your life even easier.
Read the st rdup man page for more information.

Not Allocating Enough Memory

A related error is not allocating enough memory, sometimes called a buffer
overflow. In the example above, a common error is to make almost enough
room for the destination buffer.

char *src "hello";
char *dst (char *) malloc(strlen(src)); // too small!
strcpy (dst, src); // work properly

Oddly enough, depending on how malloc is implemented and many
other details, this program will often run seemingly correctly. In some
cases, when the string copy executes, it writes one byte too far past the
end of the allocated space, but in some cases this is harmless, perhaps
overwriting a variable that isn’t used anymore. In some cases, these over-
flows can be incredibly harmful, and in fact are the source of many secu-
rity vulnerabilities in systems [WO06]. In other cases, the malloc library
allocated a little extra space anyhow, and thus your program actually
doesn’t scribble on some other variable’s value and works quite fine. In
even other cases, the program will indeed fault and crash. And thus we
learn another valuable lesson: even though it ran correctly once, doesn’t
mean it’s correct.

Forgetting to Initialize Allocated Memory

With this error, you callmalloc () properly, but forget to fill in some val-
ues into your newly-allocated data type. Don’t do this! If you do forget,
your program will eventually encounter an uninitialized read, where it
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reads from the heap some data of unknown value. Who knows what
might be in there? If you're lucky, some value such that the program still
works (e.g., zero). If you're not lucky, something random and harmful.

Forgetting To Free Memory

Another common error is known as a memory leak, and it occurs when
you forget to free memory. In long-running applications or systems (such
as the OS itself), this is a huge problem, as slowly leaking memory even-
tually leads one to run out of memory, at which point a restart is required.
Thus, in general, when you are done with a chunk of memory, you should
make sure to free it. Note that using a garbage-collected language doesn’t
help here: if you still have a reference to some chunk of memory, no
garbage collector will ever free it, and thus memory leaks remain a prob-
lem even in more modern languages.

In some cases, it may seem like not calling free () is reasonable. For
example, your program is short-lived, and will soon exit; in this case,
when the process dies, the OS will clean up all of its allocated pages and
thus no memory leak will take place per se. While this certainly “works”
(see the aside on page 137), it is probably a bad habit to develop, so be
wary of choosing such a strategy. In the long run, one of your goals as a
programmer is to develop good habits; one of those habits is understand-
ing how you are managing memory, and (in languages like C), freeing the
blocks you have allocated. Even if you can get away with not doing so,
it is probably good to get in the habit of freeing each and every byte you
explicitly allocate.

Freeing Memory Before You Are Done With It

Sometimes a program will free memory before it is finished using it; such
a mistake is called a dangling pointer, and it, as you can guess, is also a
bad thing. The subsequent use can crash the program, or overwrite valid
memory (e.g., you called free (), but then called malloc () again to
allocate something else, which then recycles the errantly-freed memory).

Freeing Memory Repeatedly

Programs also sometimes free memory more than once; this is known as
the double free. The result of doing so is undefined. As you can imag-
ine, the memory-allocation library might get confused and do all sorts of
weird things; crashes are a common outcome.

Calling free () Incorrectly

One last problem we discuss is the call of free () incorrectly. After all,
free () expects you only to pass to it one of the pointers you received
frommalloc () earlier. When you pass in some other value, bad things
can (and do) happen. Thus, such invalid frees are dangerous and of
course should also be avoided.
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ASIDE: WHY NO MEMORY Is LEAKED ONCE YOUR PROCESS EXITS

When you write a short-lived program, you might allocate some space
using malloc (). The program runs and is about to complete: is there
need to call free () a bunch of times just before exiting? While it seems
wrong not to, no memory will be “lost” in any real sense. The reason is
simple: there are really two levels of memory management in the system.

The first level of memory management is performed by the OS, which
hands out memory to processes when they run, and takes it back when
processes exit (or otherwise die). The second level of management
is within each process, for example within the heap when you call
malloc () and free (). Evenif you fail to call free () (and thus leak
memory in the heap), the operating system will reclaim all the memory of
the process (including those pages for code, stack, and, as relevant here,
heap) when the program is finished running. No matter what the state
of your heap in your address space, the OS takes back all of those pages
when the process dies, thus ensuring that no memory is lost despite the
fact that you didn't free it.

Thus, for short-lived programs, leaking memory often does not cause any
operational problems (though it may be considered poor form). When
you write a long-running server (such as a web server or database man-
agement system, which never exit), leaked memory is a much bigger is-
sue, and will eventually lead to a crash when the application runs out of
memory. And of course, leaking memory is an even larger issue inside
one particular program: the operating system itself. Showing us once
again: those who write the kernel code have the toughest job of all...

Summary

As you can see, there are lots of ways to abuse memory. Because of fre-
quent errors with memory, a whole ecosphere of tools have developed to
help find such problems in your code. Check out both purify [H]J92] and
valgrind [SNO5]; both are excellent at helping you locate the source of
your memory-related problems. Once you become accustomed to using
these powerful tools, you will wonder how you survived without them.

Underlying OS Support

You might have noticed that we haven’t been talking about system
calls when discussingmalloc () and free (). The reason for this is sim-
ple: they are not system calls, but rather library calls. Thus the malloc li-
brary manages space within your virtual address space, but itself is built
on top of some system calls which call into the OS to ask for more mem-
ory or release some back to the system.
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One such system call is called brk, which is used to change the loca-
tion of the program’s break: the location of the end of the heap. It takes
one argument (the address of the new break), and thus either increases or
decreases the size of the heap based on whether the new break is larger
or smaller than the current break. An additional call sbrk is passed an
increment but otherwise serves a similar purpose.

Note that you should never directly call either brk or sbrk. They
are used by the memory-allocation library; if you try to use them, you
will likely make something go (horribly) wrong. Stick to malloc () and
free () instead.

Finally, you can also obtain memory from the operating system via the
mmap () call. By passing in the correct arguments, mmap () can create an
anonymous memory region within your program — a region which is not
associated with any particular file but rather with swap space, something
we’ll discuss in detail later on in virtual memory. This memory can then
also be treated like a heap and managed as such. Read the manual page
of mmap () for more details.

Other Calls

There are a few other calls that the memory-allocation library sup-
ports. For example, calloc () allocates memory and also zeroes it be-
fore returning; this prevents some errors where you assume that memory
is zeroed and forget to initialize it yourself (see the paragraph on “unini-
tialized reads” above). The routine realloc () can also be useful, when
you've allocated space for something (say, an array), and then need to
add something to it: realloc () makes a new larger region of memory,
copies the old region into it, and returns the pointer to the new region.

Summary

We have introduced some of the APIs dealing with memory allocation.
As always, we have just covered the basics; more details are available
elsewhere. Read the C book [KR88] and Stevens [SR05] (Chapter 7) for
more information. For a cool modern paper on how to detect and correct
many of these problems automatically, see Novark et al. [N+07]; this
paper also contains a nice summary of common problems and some neat
ideas on how to find and fix them.
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Homework (Code)

In this homework, you will gain some familiarity with memory allo-
cation. First, you'll write some buggy programs (fun!). Then, you'll use
some tools to help you find the bugs you inserted. Then, you will realize
how awesome these tools are and use them in the future, thus making
yourself more happy and productive. The tools are the debugger (e.g.,
gdb), and a memory-bug detector called valgrind [SNO5].

Questions

1.

OPERATING
SYSTEMS
[VERSION 1.00]

First, write a simple program called null.c that creates a pointer to an
integer, sets it to NULL, and then tries to dereference it. Compile this into an
executable called null. What happens when you run this program?

. Next, compile this program with symbol information included (with the -g

flag). Doing so let’s put more information into the executable, enabling the
debugger to access more useful information about variable names and the
like. Run the program under the debugger by typing gdb null and then,
once gdb is running, typing run. What does gdb show you?

. Finally, use the valgrind tool on this program. We’ll use the memcheck

tool thatis a part of valgrind to analyze what happens. Run this by typing
in the following: valgrind --leak-check=yes null. What happens
when you run this? Can you interpret the output from the tool?

. Write a simple program that allocates memory using malloc () but forgets

to free it before exiting. What happens when this program runs? Can you
use gdb to find any problems with it? How about valgrind (again with
the -—leak-check=yes flag)?

. Write a program that creates an array of integers called data of size 100

using malloc; then, set data[100] to zero. What happens when you run
this program? What happens when you run this program using valgrind?
Is the program correct?

. Create a program that allocates an array of integers (as above), frees them,

and then tries to print the value of one of the elements of the array. Does the
program run? What happens when you use valgrind on it?

. Now pass a funny value to free (e.g., a pointer in the middle of the array

you allocated above). What happens? Do you need tools to find this type of
problem?

. Try out some of the other interfaces to memory allocation. For example, cre-

ate a simple vector-like data structure and related routines that use realloc ()
to manage the vector. Use an array to store the vectors elements; when a
user adds an entry to the vector, use realloc () to allocate more space for
it. How well does such a vector perform? How does it compare to a linked
list? Use valgrind to help you find bugs.

. Spend more time and read about using gdb and valgrind. Knowing your

tools is critical; spend the time and learn how to become an expert debugger
in the UNIX and C environment.

WWW.OSTEP.ORG



15

Mechanism: Address Translation

In developing the virtualization of the CPU, we focused on a general
mechanism known as limited direct execution (or LDE). The idea be-
hind LDE is simple: for the most part, let the program run directly on the
hardware; however, at certain key points in time (such as when a process
issues a system call, or a timer interrupt occurs), arrange so that the OS
gets involved and makes sure the “right” thing happens. Thus, the OS,
with a little hardware support, tries its best to get out of the way of the
running program, to deliver an efficient virtualization; however, by inter-
posing at those critical points in time, the OS ensures that it maintains
control over the hardware. Efficiency and control together are two of the
main goals of any modern operating system.

In virtualizing memory, we will pursue a similar strategy, attaining
both efficiency and control while providing the desired virtualization. Ef-
ficiency dictates that we make use of hardware support, which at first
will be quite rudimentary (e.g., just a few registers) but will grow to be
fairly complex (e.g., TLBs, page-table support, and so forth, as you will
see). Control implies that the OS ensures that no application is allowed
to access any memory but its own; thus, to protect applications from one
another, and the OS from applications, we will need help from the hard-
ware here too. Finally, we will need a little more from the VM system, in
terms of flexibility; specifically, we’d like for programs to be able to use
their address spaces in whatever way they would like, thus making the
system easier to program. And thus we arrive at the refined crux:

THE CRUX:
How To EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY
How can we build an efficient virtualization of memory? How do
we provide the flexibility needed by applications? How do we maintain
control over which memory locations an application can access, and thus
ensure that application memory accesses are properly restricted? How
do we do all of this efficiently?
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The generic technique we will use, which you can consider an addition
to our general approach of limited direct execution, is something that is
referred to as hardware-based address translation, or just address trans-
lation for short. With address translation, the hardware transforms each
memory access (e.g., an instruction fetch, load, or store), changing the vir-
tual address provided by the instruction to a physical address where the
desired information is actually located. Thus, on each and every memory
reference, an address translation is performed by the hardware to redirect
application memory references to their actual locations in memory.

Of course, the hardware alone cannot virtualize memory, as it just pro-
vides the low-level mechanism for doing so efficiently. The OS must get
involved at key points to set up the hardware so that the correct trans-
lations take place; it must thus manage memory, keeping track of which
locations are free and which are in use, and judiciously intervening to
maintain control over how memory is used.

Once again the goal of all of this work is to create a beautiful illu-
sion: that the program has its own private memory, where its own code
and data reside. Behind that virtual reality lies the ugly physical truth:
that many programs are actually sharing memory at the same time, as
the CPU (or CPUs) switches between running one program and the next.
Through virtualization, the OS (with the hardware’s help) turns the ugly
machine reality into something that is a useful, powerful, and easy to use
abstraction.

Assumptions

Our first attempts at virtualizing memory will be very simple, almost
laughably so. Go ahead, laugh all you want; pretty soon it will be the OS
laughing at you, when you try to understand the ins and outs of TLBs,
multi-level page tables, and other technical wonders. Don’t like the idea
of the OS laughing at you? Well, you may be out of luck then; that’s just
how the OS rolls.

Specifically, we will assume for now that the user’s address space must
be placed contiguously in physical memory. We will also assume, for sim-
plicity, that the size of the address space is not too big; specifically, that
it is less than the size of physical memory. Finally, we will also assume that
each address space is exactly the same size. Don’t worry if these assump-
tions sound unrealistic; we will relax them as we go, thus achieving a
realistic virtualization of memory.

An Example

To understand better what we need to do to implement address trans-
lation, and why we need such a mechanism, let’s look at a simple exam-
ple. Imagine there is a process whose address space is as indicated in
Figure 15.1. What we are going to examine here is a short code sequence
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Tipr: INTERPOSITION IS POWERFUL

Interposition is a generic and powerful technique that is often used to
great effect in computer systems. In virtualizing memory, the hardware
will interpose on each memory access, and translate each virtual address
issued by the process to a physical address where the desired informa-
tion is actually stored. However, the general technique of interposition is
much more broadly applicable; indeed, almost any well-defined interface
can be interposed upon, to add new functionality or improve some other
aspect of the system. One of the usual benefits of such an approach is
transparency; the interposition often is done without changing the client
of the interface, thus requiring no changes to said client.

that loads a value from memory, increments it by three, and then stores

the value back into memory. You can imagine the C-language represen-

tation of this code might look like this:

void func(
int x

) o
= 3000; // thanks, Perry.
x =x+ 3

; // this is the line of code we are interested in

The compiler turns this line of code into assembly, which might look
something like this (in x86 assembly). Use ob jdump on Linux or otool
on a Mac to disassemble it:

128: movl 0x0 (%ebx), %eax ;load O+ebx into eax

132: addl $0x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem

This code snippet is relatively straightforward; it presumes that the
address of x has been placed in the register ebx, and then loads the value
at that address into the general-purpose register eax using the mov1l in-
struction (for “longword” move). The next instruction adds 3 to eax,
and the final instruction stores the value in eax back into memory at that
same location.

In Figure 15.1 (page 144), observe how both the code and data are laid
out in the process’s address space; the three-instruction code sequence is
located at address 128 (in the code section near the top), and the value
of the variable x at address 15 KB (in the stack near the bottom). In the
figure, the initial value of x is 3000, as shown in its location on the stack.

When these instructions run, from the perspective of the process, the
following memory accesses take place.

Fetch instruction at address 128

Execute this instruction (load from address 15 KB)
Fetch instruction at address 132

Execute this instruction (no memory reference)
Fetch the instruction at address 135

Execute this instruction (store to address 15 KB)
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0KB

1KB

2KB

3KB

4KB

14KB

15KB

16KB

128
132
135

movl 0x0(%ebx),%eax
addl 0x03, %eax
movl %eax,0x0(%ebx)

Program Code

Heap

(free)

3000
Stack

Figure 15.1: A Process And Its Address Space

From the program’s perspective, its address space starts at address 0
and grows to a maximum of 16 KB; all memory references it generates
should be within these bounds. However, to virtualize memory, the OS
wants to place the process somewhere else in physical memory, not nec-
essarily at address 0. Thus, we have the problem: how can we relocate
this process in memory in a way that is transparent to the process? How
can we provide the illusion of a virtual address space starting at 0, when
in reality the address space is located at some other physical address?

OPERATING
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OKB

Operating System

16KB

(not in use)

32KB Code

Heap
¥

(allocated but not in use)

Relocated Process

48KB Sl;ck

(not in use)

64KB
Figure 15.2: Physical Memory with a Single Relocated Process

An example of what physical memory might look like once this pro-
cess’s address space has been placed in memory is found in Figure 15.2.
In the figure, you can see the OS using the first slot of physical memory
for itself, and that it has relocated the process from the example above
into the slot starting at physical memory address 32 KB. The other two
slots are free (16 KB-32 KB and 48 KB-64 KB).

Dynamic (Hardware-based) Relocation

To gain some understanding of hardware-based address translation,
we'll first discuss its first incarnation. Introduced in the first time-sharing
machines of the late 1950s is a simple idea referred to as base and bounds;
the technique is also referred to as dynamic relocation; we’ll use both
terms interchangeably [SS74].

Specifically, we’ll need two hardware registers within each CPU: one
is called the base register, and the other the bounds (sometimes called a
limit register). This base-and-bounds pair is going to allow us to place the
address space anywhere we’d like in physical memory, and do so while
ensuring that the process can only access its own address space.

In this setup, each program is written and compiled as if it is loaded at
address zero. However, when a program starts running, the OS decides
where in physical memory it should be loaded and sets the base register
to that value. In the example above, the OS decides to load the process at
physical address 32 KB and thus sets the base register to this value.

Interesting things start to happen when the process is running. Now,
when any memory reference is generated by the process, it is translated
by the processor in the following manner:

physical address = virtual address + base
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ASIDE: SOFTWARE-BASED RELOCATION
In the early days, before hardware support arose, some systems per-
formed a crude form of relocation purely via software methods. The
basic technique is referred to as static relocation, in which a piece of soft-
ware known as the loader takes an executable that is about to be run and
rewrites its addresses to the desired offset in physical memory.

For example, if an instruction was a load from address 1000 into a reg-
ister (e.g., movl 1000, %eax), and the address space of the program
was loaded starting at address 3000 (and not 0, as the program thinks),
the loader would rewrite the instruction to offset each address by 3000
(e.g., movl 4000, %eax). In this way, a simple static relocation of the
process’s address space is achieved.

However, static relocation has numerous problems. First and most im-
portantly, it does not provide protection, as processes can generate bad
addresses and thus illegally access other process’s or even OS memory; in
general, hardware support is likely needed for true protection [WL+93].
Another negative is that once placed, it is difficult to later relocate an ad-
dress space to another location [M65].

Each memory reference generated by the process is a virtual address;
the hardware in turn adds the contents of the base register to this address
and the result is a physical address that can be issued to the memory
system.

To understand this better, let’s trace through what happens when a
single instruction is executed. Specifically, let’s look at one instruction
from our earlier sequence:

128: movl 0x0 (%ebx), %eax

The program counter (PC) is set to 128; when the hardware needs to
fetch this instruction, it first adds the value to the base register value
of 32 KB (32768) to get a physical address of 32896; the hardware then
fetches the instruction from that physical address. Next, the processor
begins executing the instruction. At some point, the process then issues
the load from virtual address 15 KB, which the processor takes and again
adds to the base register (32 KB), getting the final physical address of
47 KB and thus the desired contents.

Transforming a virtual address into a physical address is exactly the
technique we refer to as address translation; that is, the hardware takes a
virtual address the process thinks it is referencing and transforms it into
a physical address which is where the data actually resides. Because this
relocation of the address happens at runtime, and because we can move
address spaces even after the process has started running, the technique
is often referred to as dynamic relocation [M65].
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Tir: HARDWARE-BASED DYNAMIC RELOCATION
With dynamic relocation, a little hardware goes a long way. Namely, a
base register is used to transform virtual addresses (generated by the pro-
gram) into physical addresses. A bounds (or limit) register ensures that
such addresses are within the confines of the address space. Together
they provide a simple and efficient virtualization of memory.

Now you might be asking: what happened to that bounds (limit) reg-
ister? After all, isn’t this the base and bounds approach? Indeed, it is. As
you might have guessed, the bounds register is there to help with protec-
tion. Specifically, the processor will first check that the memory reference
is within bounds to make sure it is legal; in the simple example above, the
bounds register would always be set to 16 KB. If a process generates a vir-
tual address that is greater than the bounds, or one that is negative, the
CPU will raise an exception, and the process will likely be terminated.
The point of the bounds is thus to make sure that all addresses generated
by the process are legal and within the “bounds” of the process.

We should note that the base and bounds registers are hardware struc-
tures kept on the chip (one pair per CPU). Sometimes people call the
part of the processor that helps with address translation the memory
management unit (MMU); as we develop more sophisticated memory-
management techniques, we will be adding more circuitry to the MMU.

A small aside about bound registers, which can be defined in one of
two ways. In one way (as above), it holds the size of the address space,
and thus the hardware checks the virtual address against it first before
adding the base. In the second way, it holds the physical address of the
end of the address space, and thus the hardware first adds the base and
then makes sure the address is within bounds. Both methods are logically
equivalent; for simplicity, we’ll usually assume the former method.

Example Translations

To understand address translation via base-and-bounds in more detail,
let’s take a look at an example. Imagine a process with an address space of
size 4 KB (yes, unrealistically small) has been loaded at physical address
16 KB. Here are the results of a number of address translations:

Virtual Address Physical Address
0 16 KB

1 KB 17 KB

3000 19384

4400 —  Fault (out of bounds)

AAANG

As you can see from the example, it is easy for you to simply add the
base address to the virtual address (which can rightly be viewed as an
offset into the address space) to get the resulting physical address. Only
if the virtual address is “too big” or negative will the result be a fault,
causing an exception to be raised.
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ASIDE: DATA STRUCTURE — THE FREE LIST
The OS must track which parts of free memory are not in use, so as to
be able to allocate memory to processes. Many different data structures
can of course be used for such a task; the simplest (which we will assume
here) is a free list, which simply is a list of the ranges of the physical
memory which are not currently in use.

Hardware Support: A Summary

Let us now summarize the support we need from the hardware (also
see Figure 15.3, page 149). First, as discussed in the chapter on CPU vir-
tualization, we require two different CPU modes. The OS runs in privi-
leged mode (or kernel mode), where it has access to the entire machine;
applications run in user mode, where they are limited in what they can
do. A single bit, perhaps stored in some kind of processor status word,
indicates which mode the CPU is currently running in; upon certain spe-
cial occasions (e.g., a system call or some other kind of exception or inter-
rupt), the CPU switches modes.

The hardware must also provide the base and bounds registers them-
selves; each CPU thus has an additional pair of registers, part of the mem-
ory management unit (MMU) of the CPU. When a user program is run-
ning, the hardware will translate each address, by adding the base value
to the virtual address generated by the user program. The hardware must
also be able to check whether the address is valid, which is accomplished
by using the bounds register and some circuitry within the CPU.

The hardware should provide special instructions to modify the base
and bounds registers, allowing the OS to change them when different
processes run. These instructions are privileged; only in kernel (or priv-
ileged) mode can the registers be modified. Imagine the havoc a user
process could wreak' if it could arbitrarily change the base register while
running. Imagine it! And then quickly flush such dark thoughts from
your mind, as they are the ghastly stuff of which nightmares are made.

Finally, the CPU must be able to generate exceptions in situations
where a user program tries to access memory illegally (with an address
that is “out of bounds”); in this case, the CPU should stop executing the
user program and arrange for the OS “out-of-bounds” exception handler
to run. The OS handler can then figure out how to react, in this case likely
terminating the process. Similarly, if a user program tries to change the
values of the (privileged) base and bounds registers, the CPU should raise
an exception and run the “tried to execute a privileged operation while
in user mode” handler. The CPU also must provide a method to inform
it of the location of these handlers; a few more privileged instructions are
thus needed.

!1s there anything other than “havoc” that can be “wreaked”? [W17]
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Hardware Requirements Notes
Privileged mode Needed to prevent user-mode processes
from executing privileged operations
Base/bounds registers Need pair of registers per CPU to support
address translation and bounds checks
Ability to translate virtual addresses  Circuitry to do translations and check
and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base/bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what
exception handlers code to run if exception occurs
Ability to raise exceptions When processes try to access privileged
instructions or out-of-bounds memory

Figure 15.3: Dynamic Relocation: Hardware Requirements

Operating System Issues

Just as the hardware provides new features to support dynamic relo-
cation, the OS now has new issues it must handle; the combination of
hardware support and OS management leads to the implementation of
a simple virtual memory. Specifically, there are a few critical junctures
where the OS must get involved to implement our base-and-bounds ver-
sion of virtual memory.

First, the OS must take action when a process is created, finding space
for its address space in memory. Fortunately, given our assumptions that
each address space is (a) smaller than the size of physical memory and
(b) the same size, this is quite easy for the OS; it can simply view physical
memory as an array of slots, and track whether each one is free or in
use. When a new process is created, the OS will have to search a data
structure (often called a free list) to find room for the new address space
and then mark it used. With variable-sized address spaces, life is more
complicated, but we will leave that concern for future chapters.

Let’s look at an example. In Figure 15.2 (page 145), you can see the
OS using the first slot of physical memory for itself, and that it has relo-
cated the process from the example above into the slot starting at physi-
cal memory address 32 KB. The other two slots are free (16 KB-32 KB and
48 KB-64 KB); thus, the free list should consist of these two entries.

Second, the OS must do some work when a process is terminated (i.e.,
when it exits gracefully, or is forcefully killed because it misbehaved),
reclaiming all of its memory for use in other processes or the OS. Upon
termination of a process, the OS thus puts its memory back on the free
list, and cleans up any associated data structures as need be.

Third, the OS must also perform a few additional steps when a context
switch occurs. There is only one base and bounds register pair on each
CPU, after all, and their values differ for each running program, as each
program is loaded at a different physical address in memory. Thus, the
OS must save and restore the base-and-bounds pair when it switches be-
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OS Requirements Notes
Memory management Need to allocate memory for new processes;
Reclaim memory from terminated processes;
Generally manage memory via free list
Base/bounds management  Must set base/bounds properly upon context switch
Exception handling Code to run when exceptions arise;
likely action is to terminate offending process

Figure 15.4: Dynamic Relocation: Operating System Responsibilities

tween processes. Specifically, when the OS decides to stop running a pro-
cess, it must save the values of the base and bounds registers to memory,
in some per-process structure such as the process structure or process
control block (PCB). Similarly, when the OS resumes a running process
(or runs it the first time), it must set the values of the base and bounds on
the CPU to the correct values for this process.

We should note that when a process is stopped (i.e., not running), it is
possible for the OS to move an address space from one location in mem-
ory to another rather easily. To move a process’s address space, the OS
first deschedules the process; then, the OS copies the address space from
the current location to the new location; finally, the OS updates the saved
base register (in the process structure) to point to the new location. When
the process is resumed, its (new) base register is restored, and it begins
running again, oblivious that its instructions and data are now in a com-
pletely new spot in memory.

Fourth, the OS must provide exception handlers, or functions to be
called, as discussed above; the OS installs these handlers at boot time (via
privileged instructions). For example, if a process tries to access mem-
ory outside its bounds, the CPU will raise an exception; the OS must be
prepared to take action when such an exception arises. The common reac-
tion of the OS will be one of hostility: it will likely terminate the offending
process. The OS should be highly protective of the machine it is running,
and thus it does not take kindly to a process trying to access memory or
execute instructions that it shouldn’t. Bye bye, misbehaving process; it’s
been nice knowing you.

Figure 15.5 (page 151) illustrates much of the hardware/OS interac-
tion in a timeline. The figure shows what the OS does at boot time to
ready the machine for use, and then what happens when a process (Pro-
cess A) starts running; note how its memory translations are handled by
the hardware with no OS intervention. At some point, a timer interrupt
occurs, and the OS switches to Process B, which executes a “bad load”
(to an illegal memory address); at that point, the OS must get involved,
terminating the process and cleaning up by freeing B’s memory and re-
moving its entry from the process table. As you can see from the diagram,
we are still following the basic approach of limited direct execution. In
most cases, the OS just sets up the hardware appropriately and lets the
process run directly on the CPU; only when the process misbehaves does
the OS have to become involved.
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OS @ boot Hardware
(kernel mode)
initialize trap table
remember addresses of...
system call handler
timer handler
illegal mem-access handler
illegal instruction handler
start interrupt timer
start timer; interrupt after X ms
initialize process table
initialize free list
OS @ run Hardware Program
(kernel mode) (user mode)
To start process A:
allocate entry in process table
allocate memory for process
set base/bounds registers
return-from-trap (into A)
restore registers of A
move to user mode
jump to A’s (initial) PC
Process A runs
Fetch instruction
Translate virtual address
and perform fetch
Execute instruction
If explicit load /store:
Ensure address is in-bounds;
Translate virtual address
and perform load/store
Timer interrupt
move to kernel mode
Jump to interrupt handler
Handle the trap
Call switch () routine
save regs(A) to proc-struct(A)
(including base /bounds)
restore regs(B) from proc-struct(B)
(including base /bounds)
return-from-trap (into B)
restore registers of B
move to user mode
jump to B’s PC
Process B runs
Execute bad load
Load is out-of-bounds;
move to kernel mode
jump to trap handler
Handle the trap
Decide to terminate process B
de-allocate B’s memory
free B’s entry in process table
Figure 15.5: Limited Direct Execution Protocol (Dynamic Relocation)
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Summary

In this chapter, we have extended the concept of limited direct exe-
cution with a specific mechanism used in virtual memory, known as ad-
dress translation. With address translation, the OS can control each and
every memory access from a process, ensuring the accesses stay within
the bounds of the address space. Key to the efficiency of this technique
is hardware support, which performs the translation quickly for each ac-
cess, turning virtual addresses (the process’s view of memory) into phys-
ical ones (the actual view). All of this is performed in a way that is trans-
parent to the process that has been relocated; the process has no idea its
memory references are being translated, making for a wonderful illusion.

We have also seen one particular form of virtualization, known as base
and bounds or dynamic relocation. Base-and-bounds virtualization is
quite efficient, as only a little more hardware logic is required to add a
base register to the virtual address and check that the address generated
by the process is in bounds. Base-and-bounds also offers protection; the
OS and hardware combine to ensure no process can generate memory
references outside its own address space. Protection is certainly one of
the most important goals of the OS; without it, the OS could not control
the machine (if processes were free to overwrite memory, they could eas-
ily do nasty things like overwrite the trap table and take over the system).

Unfortunately, this simple technique of dynamic relocation does have
its inefficiencies. For example, as you can see in Figure 15.2 (page 145),
the relocated process is using physical memory from 32 KB to 48 KB; how-
ever, because the process stack and heap are not too big, all of the space
between the two is simply wasted. This type of waste is usually called in-
ternal fragmentation, as the space inside the allocated unit is not all used
(i.e., is fragmented) and thus wasted. In our current approach, although
there might be enough physical memory for more processes, we are cur-
rently restricted to placing an address space in a fixed-sized slot and thus
internal fragmentation can arise’. Thus, we are going to need more so-
phisticated machinery, to try to better utilize physical memory and avoid
internal fragmentation. Our first attempt will be a slight generalization
of base and bounds known as segmentation, which we will discuss next.

2A different solution might instead place a fixed-sized stack within the address space,
just below the code region, and a growing heap below that. However, this limits flexibility
by making recursion and deeply-nested function calls challenging, and thus is something we
hope to avoid.
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Homework (Simulation)

The program relocation.py allows you to see how address trans-
lations are performed in a system with base and bounds registers. See the
READMEE for details.

Questions

1.

OPERATING
SYSTEMS
[VERSION 1.00]

Run with seeds 1, 2, and 3, and compute whether each virtual address gen-
erated by the process is in or out of bounds. If in bounds, compute the
translation.

. Run with these flags: -s 0 -n 10. What value do you have set -1 (the

bounds register) to in order to ensure that all the generated virtual addresses
are within bounds?

. Run with these flags: -~s 1 -n 10 -1 100. What is the maximum value

that base can be set to, such that the address space still fits into physical
memory in its entirety?

. Run some of the same problems above, but with larger address spaces (-a)

and physical memories (-p).

. What fraction of randomly-generated virtual addresses are valid, as a func-

tion of the value of the bounds register? Make a graph from running with
different random seeds, with limit values ranging from 0 up to the maxi-
mum size of the address space.
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Segmentation

So far we have been putting the entire address space of each process in
memory. With the base and bounds registers, the OS can easily relocate
processes to different parts of physical memory. However, you might
have noticed something interesting about these address spaces of ours:
there is a big chunk of “free” space right in the middle, between the stack
and the heap.

As you can imagine from Figure 16.1, although the space between the
stack and heap is not being used by the process, it is still taking up phys-
ical memory when we relocate the entire address space somewhere in
physical memory; thus, the simple approach of using a base and bounds
register pair to virtualize memory is wasteful. It also makes it quite hard
to run a program when the entire address space doesn’t fit into memory;
thus, base and bounds is not as flexible as we would like. And thus:

THE CRUX: HOW TO SUPPORT A LARGE ADDRESS SPACE
How do we support a large address space with (potentially) a lot of
free space between the stack and the heap? Note that in our examples,
with tiny (pretend) address spaces, the waste doesn’t seem too bad. Imag-
ine, however, a 32-bit address space (4 GB in size); a typical program will
only use megabytes of memory, but still would demand that the entire
address space be resident in memory.

Segmentation: Generalized Base/Bounds

To solve this problem, an idea was born, and it is called segmenta-
tion. It is quite an old idea, going at least as far back as the very early
1960’s [H61, G62]. The idea is simple: instead of having just one base
and bounds pair in our MMU, why not have a base and bounds pair per
logical segment of the address space? A segment is just a contiguous
portion of the address space of a particular length, and in our canonical
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OKB

1KB Program Code

2KB

3KB

4KB

5KB Heap

6KB 1

(free)

14KB I

15KB

Stack

16KB

Figure 16.1: An Address Space (Again)

address space, we have three logically-different segments: code, stack,
and heap. What segmentation allows the OS to do is to place each one
of those segments in different parts of physical memory, and thus avoid
filling physical memory with unused virtual address space.

Let’s look at an example. Assume we want to place the address space
from Figure 16.1 into physical memory. With a base and bounds pair per
segment, we can place each segment independently in physical memory.
For example, see Figure 16.2 (page 157); there you see a 64KB physical
memory with those three segments in it (and 16KB reserved for the OS).

OPERATING
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Operating System

16KB

(not in use)

t
Stack

(not in use)
32KB Codo
Heap

!

48KB \
(not in use)

64KB

Figure 16.2: Placing Segments In Physical Memory

As you can see in the diagram, only used memory is allocated space
in physical memory, and thus large address spaces with large amounts of
unused address space (which we sometimes call sparse address spaces)
can be accommodated.

The hardware structure in our MMU required to support segmenta-
tion is just what you’d expect: in this case, a set of three base and bounds
register pairs. Figure 16.3 below shows the register values for the exam-
ple above; each bounds register holds the size of a segment.

Segment Base Size
Code 32K 2K
Heap 34K 2K
Stack 28K 2K

Figure 16.3: Segment Register Values

You can see from the figure that the code segment is placed at physical
address 32KB and has a size of 2KB and the heap segment is placed at
34KB and also has a size of 2KB.

Let’s do an example translation, using the address space in Figure 16.1.
Assume a reference is made to virtual address 100 (which is in the code
segment). When the reference takes place (say, on an instruction fetch),
the hardware will add the base value to the offset into this segment (100 in
this case) to arrive at the desired physical address: 100 + 32KB, or 32868.
It will then check that the address is within bounds (100 is less than 2KB),
find that it is, and issue the reference to physical memory address 32868.
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ASIDE: THE SEGMENTATION FAULT
The term segmentation fault or violation arises from a memory access
on a segmented machine to an illegal address. Humorously, the term
persists, even on machines with no support for segmentation at all. Or
not so humorously, if you can’t figure out why your code keeps faulting.

Now let’s look at an address in the heap, virtual address 4200 (again
refer to Figure 16.1). If we just add the virtual address 4200 to the base
of the heap (34KB), we get a physical address of 39016, which is not the
correct physical address. What we need to first do is extract the offset into
the heap, i.e., which byte(s) in this segment the address refers to. Because
the heap starts at virtual address 4KB (4096), the offset of 4200 is actually
4200 minus 4096, or 104. We then take this offset (104) and add it to the
base register physical address (34K) to get the desired result: 34920.

What if we tried to refer to an illegal address, such as 7KB which is be-
yond the end of the heap? You can imagine what will happen: the hard-
ware detects that the address is out of bounds, traps into the OS, likely
leading to the termination of the offending process. And now you know
the origin of the famous term that all C programmers learn to dread: the
segmentation violation or segmentation fault.

Which Segment Are We Referring To?

The hardware uses segment registers during translation. How does it
know the offset into a segment, and to which segment an address refers?

One common approach, sometimes referred to as an explicit approach,
is to chop up the address space into segments based on the top few bits
of the virtual address; this technique was used in the VAX/VMS system
[LL82]. In our example above, we have three segments; thus we need two
bits to accomplish our task. If we use the top two bits of our 14-bit virtual
address to select the segment, our virtual address looks like this:

13121110 9 8 7 6 5 4 3 2 1 0
[E— . |
Segment Offset

In our example, then, if the top two bits are 00, the hardware knows
the virtual address is in the code segment, and thus uses the code base
and bounds pair to relocate the address to the correct physical location.
If the top two bits are 01, the hardware knows the address is in the heap,
and thus uses the heap base and bounds. Let’s take our example heap
virtual address from above (4200) and translate it, just to make sure this
is clear. The virtual address 4200, in binary form, can be seen here:

13121110 9 8 7 6 5 4 3 2 1 0
[ 100000110100 0]
[ . |
Segment Offset
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As you can see from the picture, the top two bits (01) tell the hardware
which segment we are referring to. The bottom 12 bits are the offset into
the segment: 0000 0110 1000, or hex 0x068, or 104 in decimal. Thus, the
hardware simply takes the first two bits to determine which segment reg-
ister to use, and then takes the next 12 bits as the offset into the segment.
By adding the base register to the offset, the hardware arrives at the fi-
nal physical address. Note the offset eases the bounds check too: we can
simply check if the offset is less than the bounds; if not, the address is ille-
gal. Thus, if base and bounds were arrays (with one entry per segment),
the hardware would be doing something like this to obtain the desired
physical address:

// get top 2 bits of l4-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
// now get offset
Offset = VirtualAddress & OFFSET_MASK
if (Offset >= Bounds[Segment])
RaiseException (PROTECTION_FAULT)
else
PhysAddr = Base[Segment] + Offset
Register = AccessMemory (PhysAddr)

In our running example, we can fill in values for the constants above.
Specifically, SEG_MASK would be set to 0x3000, SEG_SHIFT to 12, and
OFFSET_MASK to OxFFEF.

You may also have noticed that when we use the top two bits, and we
only have three segments (code, heap, stack), one segment of the address
space goes unused. Thus, some systems put code in the same segment as
the heap and thus use only one bit to select which segment to use [LL82].

There are other ways for the hardware to determine which segment
a particular address is in. In the implicit approach, the hardware deter-
mines the segment by noticing how the address was formed. If, for ex-
ample, the address was generated from the program counter (i.e., it was
an instruction fetch), then the address is within the code segment; if the
address is based off of the stack or base pointer, it must be in the stack
segment; any other address must be in the heap.

What About The Stack?

Thus far, we’ve left out one important component of the address space:
the stack. The stack has been relocated to physical address 28KB in the di-
agram above, but with one critical difference: it grows backwards. In phys-
ical memory, it starts at 28KB and grows back to 26KB, corresponding to
virtual addresses 16KB to 14KB; translation must proceed differently.

The first thing we need is a little extra hardware support. Instead of
just base and bounds values, the hardware also needs to know which way
the segment grows (a bit, for example, that is set to 1 when the segment
grows in the positive direction, and 0 for negative). Our updated view of
what the hardware tracks is seen in Figure 16.4.
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Segment Base Size Grows Positive?

Code 32K 2K 1
Heap 34K 2K 1
Stack 28K 2K 0

Figure 16.4: Segment Registers (With Negative-Growth Support)

With the hardware understanding that segments can grow in the neg-
ative direction, the hardware must now translate such virtual addresses
slightly differently. Let’s take an example stack virtual address and trans-
late it to understand the process.

In this example, assume we wish to access virtual address 15KB, which
should map to physical address 27KB. Our virtual address, in binary
form, thus looks like this: 11 1100 0000 0000 (hex 0x3C00). The hard-
ware uses the top two bits (11) to designate the segment, but then we are
left with an offset of 3KB. To obtain the correct negative offset, we must
subtract the maximum segment size from 3KB: in this example, a seg-
ment can be 4KB, and thus the correct negative offset is 3KB minus 4KB
which equals -1KB. We simply add the negative offset (-1KB) to the base
(28KB) to arrive at the correct physical address: 27KB. The bounds check
can be calculated by ensuring the absolute value of the negative offset is
less than the segment’s size.

Support for Sharing

As support for segmentation grew, system designers soon realized that
they could realize new types of efficiencies with a little more hardware
support. Specifically, to save memory, sometimes it is useful to share
certain memory segments between address spaces. In particular, code
sharing is common and still in use in systems today.

To support sharing, we need a little extra support from the hardware,
in the form of protection bits. Basic support adds a few bits per segment,
indicating whether or not a program can read or write a segment, or per-
haps execute code that lies within the segment. By setting a code segment
to read-only, the same code can be shared across multiple processes, with-
out worry of harming isolation; while each process still thinks that it is ac-
cessing its own private memory, the OS is secretly sharing memory which
cannot be modified by the process, and thus the illusion is preserved.

An example of the additional information tracked by the hardware
(and OS) is shown in Figure 16.5. As you can see, the code segment is
set to read and execute, and thus the same physical segment in memory
could be mapped into multiple virtual address spaces.

Segment Base Size Grows Positive? Protection
Code 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

Figure 16.5: Segment Register Values (with Protection)
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With protection bits, the hardware algorithm described earlier would
also have to change. In addition to checking whether a virtual address is
within bounds, the hardware also has to check whether a particular access
is permissible. If a user process tries to write to a read-only segment, or
execute from a non-executable segment, the hardware should raise an
exception, and thus let the OS deal with the offending process.

Fine-grained vs. Coarse-grained Segmentation

Most of our examples thus far have focused on systems with just a
few segments (i.e., code, stack, heap); we can think of this segmentation
as coarse-grained, as it chops up the address space into relatively large,
coarse chunks. However, some early systems (e.g., Multics [CV65,DD68])
were more flexible and allowed for address spaces to consist of a large
number of smaller segments, referred to as fine-grained segmentation.

Supporting many segments requires even further hardware support,
with a segment table of some kind stored in memory. Such segment ta-
bles usually support the creation of a very large number of segments, and
thus enable a system to use segments in more flexible ways than we have
thus far discussed. For example, early machines like the Burroughs B5000
had support for thousands of segments, and expected a compiler to chop
code and data into separate segments which the OS and hardware would
then support [RK68]. The thinking at the time was that by having fine-
grained segments, the OS could better learn about which segments are in
use and which are not and thus utilize main memory more effectively.

OS Support

You now should have a basic idea as to how segmentation works.
Pieces of the address space are relocated into physical memory as the
system runs, and thus a huge savings of physical memory is achieved
relative to our simpler approach with just a single base/bounds pair for
the entire address space. Specifically, all the unused space between the
stack and the heap need not be allocated in physical memory, allowing
us to fit more address spaces into physical memory.

However, segmentation raises a number of new issues. We'll first de-
scribe the new OS issues that must be addressed. The first is an old one:
what should the OS do on a context switch? You should have a good
guess by now: the segment registers must be saved and restored. Clearly,
each process has its own virtual address space, and the OS must make
sure to set up these registers correctly before letting the process run again.

The second, and more important, issue is managing free space in phys-
ical memory. When a new address space is created, the OS has to be
able to find space in physical memory for its segments. Previously, we
assumed that each address space was the same size, and thus physical
memory could be thought of as a bunch of slots where processes would
fitin. Now, we have a number of segments per process, and each segment
might be a different size.
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Figure 16.6: Non-compacted and Compacted Memory

The general problem that arises is that physical memory quickly be-
comes full of little holes of free space, making it difficult to allocate new
segments, or to grow existing ones. We call this problem external frag-
mentation [R69]; see Figure 16.6 (left).

In the example, a process comes along and wishes to allocate a 20KB
segment. In that example, there is 24KB free, but not in one contiguous
segment (rather, in three non-contiguous chunks). Thus, the OS cannot
satisfy the 20KB request.

One solution to this problem would be to compact physical memory
by rearranging the existing segments. For example, the OS could stop
whichever processes are running, copy their data to one contiguous re-
gion of memory, change their segment register values to point to the
new physical locations, and thus have a large free extent of memory with
which to work. By doing so, the OS enables the new allocation request
to succeed. However, compaction is expensive, as copying segments is
memory-intensive and generally uses a fair amount of processor time.
See Figure 16.6 (right) for a diagram of compacted physical memory.

A simpler approach is to use a free-list management algorithm that
tries to keep large extents of memory available for allocation. There are
literally hundreds of approaches that people have taken, including clas-
sic algorithms like best-fit (which keeps a list of free spaces and returns
the one closest in size that satisfies the desired allocation to the requester),
worst-fit, first-fit, and more complex schemes like buddy algorithm [K68].
An excellent survey by Wilson et al. is a good place to start if you want to
learn more about such algorithms [W+95], or you can wait until we cover
some of the basics ourselves in a later chapter. Unfortunately, though, no
matter how smart the algorithm, external fragmentation will still exist;
thus, a good algorithm simply attempts to minimize it.
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Trp: IF 1000 SOLUTIONS EXIST, NO GREAT ONE DOES
The fact that so many different algorithms exist to try to minimize exter-
nal fragmentation is indicative of a stronger underlying truth: there is no
one “best” way to solve the problem. Thus, we settle for something rea-
sonable and hope it is good enough. The only real solution (as we will
see in forthcoming chapters) is to avoid the problem altogether, by never
allocating memory in variable-sized chunks.

Summary

Segmentation solves a number of problems, and helps us build a more
effective virtualization of memory. Beyond just dynamic relocation, seg-
mentation can better support sparse address spaces, by avoiding the huge

potential waste of memory between logical segments of the address space.

It is also fast, as doing the arithmetic segmentation requires is easy and
well-suited to hardware; the overheads of translation are minimal. A
fringe benefit arises too: code sharing. If code is placed within a sepa-
rate segment, such a segment could potentially be shared across multiple
running programs.

However, as we learned, allocating variable-sized segments in mem-
ory leads to some problems that we’d like to overcome. The first, as dis-
cussed above, is external fragmentation. Because segments are variable-
sized, free memory gets chopped up into odd-sized pieces, and thus sat-
isfying a memory-allocation request can be difficult. One can try to use
smart algorithms [W+95] or periodically compact memory, but the prob-
lem is fundamental and hard to avoid.

The second and perhaps more important problem is that segmentation
still isn’t flexible enough to support our fully generalized, sparse address
space. For example, if we have a large but sparsely-used heap all in one
logical segment, the entire heap must still reside in memory in order to be
accessed. In other words, if our model of how the address space is being
used doesn’t exactly match how the underlying segmentation has been
designed to support it, segmentation doesn’t work very well. We thus
need to find some new solutions. Ready to find them?
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Homework (Simulation)

This program allows you to see how address translations are performed
in a system with segmentation. See the README for details.

Questions

1.

First let’s use a tiny address space to translate some addresses. Here’s a sim-
ple set of parameters with a few different random seeds; can you translate
the addresses?

segmentation.py -a 128 -p 512 -b 0 -1 20 -B 512 -L 20 -s O
segmentation.py -a 128 -p 512 -b 0 -1 20 -B 512 -L 20 -s 1
segmentation.py -a 128 -p 512 -b 0 -1 20 -B 512 -L 20 -s 2

. Now, let’s see if we understand this tiny address space we’ve constructed

(using the parameters from the question above). What is the highest legal
virtual address in segment 0? What about the lowest legal virtual address in
segment 1? What are the lowest and highest illegal addresses in this entire
address space? Finally, how would you run segmentation.py with the
-2 flag to test if you are right?

. Let’s say we have a tiny 16-byte address space in a 128-byte physical mem-

ory. What base and bounds would you set up so as to get the simulator to
generate the following translation results for the specified address stream:
valid, valid, violation, ..., violation, valid, valid? Assume the following pa-
rameters:
segmentation.py -a 16 -p 128
-A0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
-=b0 ? --10 ? --bl ? --11 2

. Assume we want to generate a problem where roughly 90% of the randomly-

generated virtual addresses are valid (not segmentation violations). How
should you configure the simulator to do so? Which parameters are impor-
tant to getting this outcome?

. Can you run the simulator such that no virtual addresses are valid? How?
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Free-Space Management

In this chapter, we take a small detour from our discussion of virtual-
izing memory to discuss a fundamental aspect of any memory manage-
ment system, whether it be a malloc library (managing pages of a pro-
cess’s heap) or the OS itself (managing portions of the address space of a
process). Specifically, we will discuss the issues surrounding free-space
management.

Let us make the problem more specific. Managing free space can cer-
tainly be easy, as we will see when we discuss the concept of paging. It is
easy when the space you are managing is divided into fixed-sized units;
in such a case, you just keep a list of these fixed-sized units; when a client
requests one of them, return the first entry.

Where free-space management becomes more difficult (and interest-
ing) is when the free space you are managing consists of variable-sized
units; this arises in a user-level memory-allocation library (asinmalloc ()
and free ()) and in an OS managing physical memory when using seg-
mentation to implement virtual memory. In either case, the problem that
exists is known as external fragmentation: the free space gets chopped
into little pieces of different sizes and is thus fragmented; subsequent re-
quests may fail because there is no single contiguous space that can sat-
isfy the request, even though the total amount of free space exceeds the
size of the request.

[ free | used I free ]
0 10 20 30

The figure shows an example of this problem. In this case, the total
free space available is 20 bytes; unfortunately, it is fragmented into two
chunks of size 10 each. As a result, a request for 15 bytes will fail even
though there are 20 bytes free. And thus we arrive at the problem ad-
dressed in this chapter.
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CRUX: HOW TO MANAGE FREE SPACE
How should free space be managed, when satisfying variable-sized re-
quests? What strategies can be used to minimize fragmentation? What
are the time and space overheads of alternate approaches?

Assumptions

Most of this discussion will focus on the great history of allocators
found in user-level memory-allocation libraries. We draw on Wilson’s
excellent survey [W+95] but encourage interested readers to go to the
source document itself for more details'.

We assume a basic interface such as that provided by malloc () and
free (). Specifically, void smalloc (size_t size) takes a single pa-
rameter, size, which is the number of bytes requested by the applica-
tion; it hands back a pointer (of no particular type, or a void pointer in
C lingo) to a region of that size (or greater). The complementary routine
void free(void «ptr) takes a pointer and frees the corresponding
chunk. Note the implication of the interface: the user, when freeing the
space, does not inform the library of its size; thus, the library must be able
to figure out how big a chunk of memory is when handed just a pointer
to it. We'll discuss how to do this a bit later on in the chapter.

The space that this library manages is known historically as the heap,
and the generic data structure used to manage free space in the heap is
some kind of free list. This structure contains references to all of the free
chunks of space in the managed region of memory. Of course, this data
structure need not be a list per se, but just some kind of data structure to
track free space.

We further assume that primarily we are concerned with external frag-
mentation, as described above. Allocators could of course also have the
problem of internal fragmentation; if an allocator hands out chunks of
memory bigger than that requested, any unasked for (and thus unused)
space in such a chunk is considered internal fragmentation (because the
waste occurs inside the allocated unit) and is another example of space
waste. However, for the sake of simplicity, and because it is the more in-
teresting of the two types of fragmentation, we’ll mostly focus on external
fragmentation.

We'll also assume that once memory is handed out to a client, it cannot
be relocated to another location in memory. For example, if a program
calls malloc () and is given a pointer to some space within the heap,
that memory region is essentially “owned” by the program (and cannot
be moved by the library) until the program returns it via a correspond-
ing call to free (). Thus, no compaction of free space is possible, which

't is nearly 80 pages long; thus, you really have to be interested!
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would be useful to combat fragmentationz. Compaction could, however,
be used in the OS to deal with fragmentation when implementing seg-
mentation (as discussed in said chapter on segmentation).

Finally, we’ll assume that the allocator manages a contiguous region
of bytes. In some cases, an allocator could ask for that region to grow;
for example, a user-level memory-allocation library might call into the
kernel to grow the heap (via a system call such as sbrk) when it runs out
of space. However, for simplicity, we'll just assume that the region is a
single fixed size throughout its life.

Low-level Mechanisms

Before delving into some policy details, we’ll first cover some com-
mon mechanisms used in most allocators. First, we’ll discuss the basics of
splitting and coalescing, common techniques in most any allocator. Sec-
ond, we’ll show how one can track the size of allocated regions quickly
and with relative ease. Finally, we’ll discuss how to build a simple list
inside the free space to keep track of what is free and what isn’t.

Splitting and Coalescing

A free list contains a set of elements that describe the free space still re-
maining in the heap. Thus, assume the following 30-byte heap:

[ free | used I free ]
0 10 20 30

The free list for this heap would have two elements on it. One entry de-
scribes the first 10-byte free segment (bytes 0-9), and one entry describes
the other free segment (bytes 20-29):

addr:0
len:10

addr:20

head — len:10

—> —» NULL

As described above, a request for anything greater than 10 bytes will
fail (returning NULL); there just isn’t a single contiguous chunk of mem-
ory of that size available. A request for exactly that size (10 bytes) could
be satisfied easily by either of the free chunks. But what happens if the
request is for something smaller than 10 bytes?

Assume we have a request for just a single byte of memory. In this
case, the allocator will perform an action known as splitting: it will find

2Once you hand a pointer to a chunk of memory to a C program, it is generally difficult
to determine all references (pointers) to that region, which may be stored in other variables
or even in registers at a given point in execution. This may not be the case in more strongly-
typed, garbage-collected languages, which would thus enable compaction as a technique to
combat fragmentation.
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a free chunk of memory that can satisfy the request and split it into two.
The first chunk it will return to the caller; the second chunk will remain
on the list. Thus, in our example above, if a request for 1 byte were made,
and the allocator decided to use the second of the two elements on the list
to satisfy the request, the call to malloc() would return 20 (the address of
the 1-byte allocated region) and the list would end up looking like this:

addr:0
len:10

addr:21

head len:9

—> —» NULL

In the picture, you can see the list basically stays intact; the only change
is that the free region now starts at 21 instead of 20, and the length of that
free region is now just 9°. Thus, the split is commonly used in allocators
when requests are smaller than the size of any particular free chunk.

A corollary mechanism found in many allocators is known as coalesc-
ing of free space. Take our example from above once more (free 10 bytes,
used 10 bytes, and another free 10 bytes).

Given this (tiny) heap, what happens when an application calls free(10),
thus returning the space in the middle of the heap? If we simply add this
free space back into our list without too much thinking, we might end up
with a list that looks like this:

addr:10
len:10

addr:0
len:10

addr:20

head —» len:10

—> —> —» NULL

Note the problem: while the entire heap is now free, it is seemingly
divided into three chunks of 10 bytes each. Thus, if a user requests 20
bytes, a simple list traversal will not find such a free chunk, and return
failure.

What allocators do in order to avoid this problem is coalesce free space
when a chunk of memory is freed. The idea is simple: when returning a
free chunk in memory, look carefully at the addresses of the chunk you
are returning as well as the nearby chunks of free space; if the newly-
freed space sits right next to one (or two, as in this example) existing free
chunks, merge them into a single larger free chunk. Thus, with coalesc-
ing, our final list should look like this:

addr:0

head — 5130

—» NULL

Indeed, this is what the heap list looked like at first, before any allo-
cations were made. With coalescing, an allocator can better ensure that
large free extents are available for the application.

*This discussion assumes that there are no headers, an unrealistic but simplifying assump-
tion we make for now.
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" The header used by malloc library
ptr —» -
= The 20 bytes returned to caller
Figure 17.1: An Allocated Region Plus Header
hptr —»
size: 20
magic: 1234567
ptr —»
The 20 bytes returned to caller
Figure 17.2: Specific Contents Of The Header
Tracking The Size Of Allocated Regions
You might have noticed that the interface to free (void xptr) does
not take a size parameter; thus it is assumed that given a pointer, the
malloc library can quickly determine the size of the region of memory
being freed and thus incorporate the space back into the free list.

To accomplish this task, most allocators store a little bit of extra infor-
mation in a header block which is kept in memory, usually just before
the handed-out chunk of memory. Let’s look at an example again (Fig-
ure 17.1). In this example, we are examining an allocated block of size 20
bytes, pointed to by pt r; imagine the user called malloc () and stored
the resultsinptr, e.g., ptr = malloc(20) ;.

The header minimally contains the size of the allocated region (in this
case, 20); it may also contain additional pointers to speed up dealloca-
tion, a magic number to provide additional integrity checking, and other
information. Let’s assume a simple header which contains the size of the
region and a magic number, like this:
typedef struct __header_t {

int size;
int magic;
} header_t;
The example above would look like what you see in Figure 17.2. When
THREE
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the user calls free (ptr), the library then uses simple pointer arithmetic
to figure out where the header begins:

void free(void #*ptr) {
header_t xhptr = (void *)ptr - sizeof (header_t);

After obtaining such a pointer to the header, the library can easily de-
termine whether the magic number matches the expected value as a san-
ity check (assert (hptr->magic == 1234567)) and calculate the to-
tal size of the newly-freed region via simple math (i.e., adding the size of
the header to size of the region). Note the small but critical detail in the
last sentence: the size of the free region is the size of the header plus the
size of the space allocated to the user. Thus, when a user requests N bytes
of memory, the library does not search for a free chunk of size N; rather,
it searches for a free chunk of size N plus the size of the header.

Embedding A Free List

Thus far we have treated our simple free list as a conceptual entity; it is
just a list describing the free chunks of memory in the heap. But how do
we build such a list inside the free space itself?

In a more typical list, when allocating a new node, you would just call
malloc () when you need space for the node. Unfortunately, within the
memory-allocation library, you can’t do this! Instead, you need to build
the list inside the free space itself. Don’t worry if this sounds a little weird;
it is, but not so weird that you can’t do it!

Assume we have a 4096-byte chunk of memory to manage (i.e., the
heap is 4KB). To manage this as a free list, we first have to initialize said
list; initially, the list should have one entry, of size 4096 (minus the header
size). Here is the description of a node of the list:

typedef struct __node_t {

int size;
struct __node_t xnext;
} node_t;

Now let’s look at some code that initializes the heap and puts the first
element of the free list inside that space. We are assuming that the heap is
built within some free space acquired via a call to the system call mmap () ;
this is not the only way to build such a heap but serves us well in this
example. Here is the code:

// mmap () returns a pointer to a chunk of free space
node_t xhead = mmap (NULL, 4096, PROT_READ|PROT_WRITE,
MAP_ANON |MAP_PRIVATE, -1, 0);

4096 - sizeof (node_t);
NULL;

head->size
head->next

After running this code, the status of the list is that it has a single entry,
of size 4088. Yes, this is a tiny heap, but it serves as a fine example for us
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head —» [virtual address: 16KB]
size: 4088 header: size field
next: 0 header: next field (NULL is 0)
e the rest of the 4KB chunk

]

Figure 17.3: A Heap With One Free Chunk

[virtual address: 16KB]
size: 100

magic: 1234567
ptr —» .

- = The 100 bytes now allocated

head —» -
size: 3980

next: 0

e = The free 3980 byte chunk

Figure 17.4: A Heap: After One Allocation

here. The head pointer contains the beginning address of this range; let’s
assume it is 16KB (though any virtual address would be fine). Visually,
the heap thus looks like what you see in Figure 17.3.

Now, let’s imagine that a chunk of memory is requested, say of size
100 bytes. To service this request, the library will first find a chunk that is
large enough to accommodate the request; because there is only one free
chunk (size: 4088), this chunk will be chosen. Then, the chunk will be
split into two: one chunk big enough to service the request (and header,
as described above), and the remaining free chunk. Assuming an 8-byte
header (an integer size and an integer magic number), the space in the
heap now looks like what you see in Figure 17.4.

Thus, upon the request for 100 bytes, the library allocated 108 bytes
out of the existing one free chunk, returns a pointer (marked ptr in the
figure above) to it, stashes the header information immediately before the

THREE
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sptr —»

head —»

100
magic: 1234567

size:

size: 100

magic: 1234567

size: 100
magic: 1234567

size: 3764

next: 0

]

[virtual address: 16KB]

= 100 bytes still allocated

= 100 bytes still allocated
(but about to be freed)

100-bytes still allocated

The free 3764-byte chunk

Figure 17.5: Free Space With Three Chunks Allocated

allocated space for later use upon free (), and shrinks the one free node
in the list to 3980 bytes (4088 minus 108).

Now let’s look at the heap when there are three allocated regions, each

of 100 bytes (or 108 including the header). A visualization of this heap is
shown in Figure 17.5.

As you can see therein, the first 324 bytes of the heap are now allo-

cated, and thus we see three headers in that space as well as three 100-
byte regions being used by the calling program. The free list remains
uninteresting: just a single node (pointed to by head), but now only 3764
bytes in size after the three splits. But what happens when the calling
program returns some memory via free () ?
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head —»

sptr —»

size: 100

magic: 1234567

size: 100

next: 16708

size: 100

magic: 1234567

size: 3764

next: 0

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of memory)

= 100-bytes still allocated

= The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

In this example, the application returns the middle chunk of allocated
memory, by calling free (16500) (the value 16500 is arrived upon by
adding the start of the memory region, 16384, to the 108 of the previous
chunk and the 8 bytes of the header for this chunk). This value is shown

in the previous diagram by the pointer sptr.

The library immediately figures out the size of the free region, and
then adds the free chunk back onto the free list. Assuming we insert at
the head of the free list, the space now looks like this (Figure 17.6).

And now we have a list that starts with a small free chunk (100 bytes,
pointed to by the head of the list) and a large free chunk (3764 bytes).
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[virtual address: 16KB]
size: 100
next: 16492
o (now free)
size: 100 | et
next: 16708
R (now free)
head —»
size: 100
next: 16384
-t (now free)
size: 3764
next: 0
e The free 3764-byte chunk

]

Figure 17.7: A Non-Coalesced Free List

Our list finally has more than one element on it! And yes, the free space
is fragmented, an unfortunate but common occurrence.

One last example: let’s assume now that the last two in-use chunks are
freed. Without coalescing, you might end up with a free list that is highly
fragmented (see Figure 17.7).

As you can see from the figure, we now have a big mess! Why? Simple,
we forgot to coalesce the list. Although all of the memory is free, it is
chopped up into pieces, thus appearing as a fragmented memory despite
not being one. The solution is simple: go through the list and merge
neighboring chunks; when finished, the heap will be whole again.
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Growing The Heap

We should discuss one last mechanism found within many allocation li-
braries. Specifically, what should you do if the heap runs out of space?
The simplest approach is just to fail. In some cases this is the only option,
and thus returning NULL is an honorable approach. Don’t feel bad! You
tried, and though you failed, you fought the good fight.

Most traditional allocators start with a small-sized heap and then re-
quest more memory from the OS when they run out. Typically, this means
they make some kind of system call (e.g., sbrk in most UNIX systems) to
grow the heap, and then allocate the new chunks from there. To service
the sbrk request, the OS finds free physical pages, maps them into the
address space of the requesting process, and then returns the value of
the end of the new heap; at that point, a larger heap is available, and the
request can be successfully serviced.

Basic Strategies

Now that we have some machinery under our belt, let’s go over some
basic strategies for managing free space. These approaches are mostly
based on pretty simple policies that you could think up yourself; try it
before reading and see if you come up with all of the alternatives (or
maybe some new ones!).

The ideal allocator is both fast and minimizes fragmentation. Unfortu-
nately, because the stream of allocation and free requests can be arbitrary
(after all, they are determined by the programmer), any particular strat-
egy can do quite badly given the wrong set of inputs. Thus, we will not
describe a “best” approach, but rather talk about some basics and discuss
their pros and cons.

Best Fit

The best fit strategy is quite simple: first, search through the free list and
find chunks of free memory that are as big or bigger than the requested
size. Then, return the one that is the smallest in that group of candidates;
this is the so called best-fit chunk (it could be called smallest fit too). One
pass through the free list is enough to find the correct block to return.

The intuition behind best fit is simple: by returning a block that is close
to what the user asks, best fit tries to reduce wasted space. However, there
is a cost; naive implementations pay a heavy performance penalty when
performing an exhaustive search for the correct free block.

Worst Fit

The worst fit approach is the opposite of best fit; find the largest chunk
and return the requested amount; keep the remaining (large) chunk on
the free list. Worst fit tries to thus leave big chunks free instead of lots of
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small chunks that can arise from a best-fit approach. Once again, how-
ever, a full search of free space is required, and thus this approach can be
costly. Worse, most studies show that it performs badly, leading to excess
fragmentation while still having high overheads.

First Fit

The first fit method simply finds the first block that is big enough and
returns the requested amount to the user. As before, the remaining free
space is kept free for subsequent requests.

First fit has the advantage of speed — no exhaustive search of all the
free spaces are necessary — but sometimes pollutes the beginning of the
free list with small objects. Thus, how the allocator manages the free list’s
order becomes an issue. One approach is to use address-based ordering;
by keeping the list ordered by the address of the free space, coalescing
becomes easier, and fragmentation tends to be reduced.

Next Fit

Instead of always beginning the first-fit search at the beginning of the list,
the next fit algorithm keeps an extra pointer to the location within the
list where one was looking last. The idea is to spread the searches for
free space throughout the list more uniformly, thus avoiding splintering
of the beginning of the list. The performance of such an approach is quite
similar to first fit, as an exhaustive search is once again avoided.

Examples

Here are a few examples of the above strategies. Envision a free list with
three elements on it, of sizes 10, 30, and 20 (we’ll ignore headers and other
details here, instead just focusing on how strategies operate):

head —» 10 —%» 30 —¥» 20 —>» NULL

Assume an allocation request of size 15. A best-fit approach would
search the entire list and find that 20 was the best fit, as it is the smallest
free space that can accommodate the request. The resulting free list:

head —» 10 —» 30 —» 5 —» NULL

As happens in this example, and often happens with a best-fit ap-
proach, a small free chunk is now left over. A worst-fit approach is similar
but instead finds the largest chunk, in this example 30. The resulting list:

head —» 10 —» 15 —>&» 20 —>» NULL
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The first-fit strategy, in this example, does the same thing as worst-fit,
also finding the first free block that can satisfy the request. The difference
is in the search cost; both best-fit and worst-fit look through the entire list;
first-fit only examines free chunks until it finds one that fits, thus reducing
search cost.

These examples just scratch the surface of allocation policies. More
detailed analysis with real workloads and more complex allocator behav-
iors (e.g., coalescing) are required for a deeper understanding. Perhaps
something for a homework section, you say?

Other Approaches

Beyond the basic approaches described above, there have been a host
of suggested techniques and algorithms to improve memory allocation in
some way. We list a few of them here for your consideration (i.e., to make
you think about a little more than just best-fit allocation).

Segregated Lists

One interesting approach that has been around for some time is the use
of segregated lists. The basic idea is simple: if a particular application
has one (or a few) popular-sized request that it makes, keep a separate
list just to manage objects of that size; all other requests are forwarded to
a more general memory allocator.

The benefits of such an approach are obvious. By having a chunk of
memory dedicated for one particular size of requests, fragmentation is
much less of a concern; moreover, allocation and free requests can be
served quite quickly when they are of the right size, as no complicated
search of a list is required.

Just like any good idea, this approach introduces new complications
into a system as well. For example, how much memory should one ded-
icate to the pool of memory that serves specialized requests of a given
size, as opposed to the general pool? One particular allocator, the slab
allocator by uber-engineer Jeff Bonwick (which was designed for use in
the Solaris kernel), handles this issue in a rather nice way [B94].

Specifically, when the kernel boots up, it allocates a number of object
caches for kernel objects that are likely to be requested frequently (such as
locks, file-system inodes, etc.); the object caches thus are each segregated
free lists of a given size and serve memory allocation and free requests
quickly. When a given cache is running low on free space, it requests
some slabs of memory from a more general memory allocator (the to-
tal amount requested being a multiple of the page size and the object in
question). Conversely, when the reference counts of the objects within
a given slab all go to zero, the general allocator can reclaim them from
the specialized allocator, which is often done when the VM system needs
more memory.
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ASIDE: GREAT ENGINEERS ARE REALLY GREAT

Engineers like Jeff Bonwick (who not only wrote the slab allocator men-
tioned herein but also was the lead of an amazing file system, ZFS) are
the heart of Silicon Valley. Behind almost any great product or technol-
ogy is a human (or small group of humans) who are way above average
in their talents, abilities, and dedication. As Mark Zuckerberg (of Face-
book) says: “Someone who is exceptional in their role is not just a little
better than someone who is pretty good. They are 100 times better.” This
is why, still today, one or two people can start a company that changes
the face of the world forever (think Google, Apple, or Facebook). Work
hard and you might become such a “100x” person as well. Failing that,
work with such a person; you'll learn more in a day than most learn in a
month. Failing that, feel sad.

The slab allocator also goes beyond most segregated list approaches
by keeping free objects on the lists in a pre-initialized state. Bonwick
shows that initialization and destruction of data structures is costly [B94];
by keeping freed objects in a particular list in their initialized state, the
slab allocator thus avoids frequent initialization and destruction cycles
per object and thus lowers overheads noticeably.

Buddy Allocation

Because coalescing is critical for an allocator, some approaches have been
designed around making coalescing simple. One good example is found
in the binary buddy allocator [K65].

In such a system, free memory is first conceptually thought of as one
big space of size 2". When a request for memory is made, the search for
free space recursively divides free space by two until a block that is big
enough to accommodate the request is found (and a further split into two
would result in a space that is too small). At this point, the requested
block is returned to the user. Here is an example of a 64KB free space
getting divided in the search for a 7KB block:

‘ 64 KB ‘
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In the example, the leftmost 8KB block is allocated (as indicated by the
darker shade of gray) and returned to the user; note that this scheme can
suffer from internal fragmentation, as you are only allowed to give out
power-of-two-sized blocks.

The beauty of buddy allocation is found in what happens when that
block is freed. When returning the 8KB block to the free list, the allocator
checks whether the “buddy” 8KB is free; if so, it coalesces the two blocks
into a 16KB block. The allocator then checks if the buddy of the 16KB
block is still free; if so, it coalesces those two blocks. This recursive coa-
lescing process continues up the tree, either restoring the entire free space
or stopping when a buddy is found to be in use.

The reason buddy allocation works so well is that it is simple to de-
termine the buddy of a particular block. How, you ask? Think about the
addresses of the blocks in the free space above. If you think carefully
enough, you'll see that the address of each buddy pair only differs by
a single bit; which bit is determined by the level in the buddy tree. And
thus you have a basic idea of how binary buddy allocation schemes work.
For more detail, as always, see the Wilson survey [W+95].

Other Ideas

One major problem with many of the approaches described above is their
lack of scaling. Specifically, searching lists can be quite slow. Thus,
advanced allocators use more complex data structures to address these
costs, trading simplicity for performance. Examples include balanced bi-
nary trees, splay trees, or partially-ordered trees [W+95].

Given that modern systems often have multiple processors and run
multi-threaded workloads (something you’ll learn about in great detail
in the section of the book on Concurrency), it is not surprising that a lot
of effort has been spent making allocators work well on multiprocessor-
based systems. Two wonderful examples are found in Berger et al. [B+00]
and Evans [E06]; check them out for the details.

These are but two of the thousands of ideas people have had over time
about memory allocators; read on your own if you are curious. Failing
that, read about how the glibc allocator works [S15], to give you a sense
of what the real world is like.

Summary

In this chapter, we've discussed the most rudimentary forms of mem-
ory allocators. Such allocators exist everywhere, linked into every C pro-
gram you write, as well as in the underlying OS which is managing mem-
ory for its own data structures. As with many systems, there are many
trade-offs to be made in building such a system, and the more you know
about the exact workload presented to an allocator, the more you could do
to tune it to work better for that workload. Making a fast, space-efficient,
scalable allocator that works well for a broad range of workloads remains
an on-going challenge in modern computer systems.
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Homework (Simulation)

The program, malloc.py, lets you explore the behavior of a simple
free-space allocator as described in the chapter. See the README for
details of its basic operation.

Questions

1.

First run with the flags -n 10 -H 0 -p BEST -s 0 to generate a few
random allocations and frees. Can you predict what alloc()/free() will re-
turn? Can you guess the state of the free list after each request? What do
you notice about the free list over time?

. How are the results different when using a WORST fit policy to search the

free list (-p WORST)? What changes?

. What about when using FIRST fit (-p FIRST)? What speeds up when you

use first fit?

. For the above questions, how the list is kept ordered can affect the time

it takes to find a free location for some of the policies. Use the different
free list orderings (-1 ADDRSORT, -1 SIZESORT+, -1 SIZESORT-)to see
how the policies and the list orderings interact.

. Coalescing of a free list can be quite important. Increase the number of

random allocations (say to -n 1000). What happens to larger allocation
requests over time? Run with and without coalescing (i.e., without and with
the -C flag). What differences in outcome do you see? How big is the free
list over time in each case? Does the ordering of the list matter in this case?

. What happens when you change the percent allocated fraction -P to higher

than 50? What happens to allocations as it nears 100? What about as the
percent nears 0?

. What kind of specific requests can you make to generate a highly-fragmented

free space? Use the -A flag to create fragmented free lists, and see how dif-
ferent policies and options change the organization of the free list.
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Paging: Introduction

Itis sometimes said that the operating system takes one of two approaches
when solving most any space-management problem. The first approach
is to chop things up into variable-sized pieces, as we saw with segmenta-
tion in virtual memory. Unfortunately, this solution has inherent difficul-
ties. In particular, when dividing a space into different-size chunks, the
space itself can become fragmented, and thus allocation becomes more
challenging over time.

Thus, it may be worth considering the second approach: to chop up
space into fixed-sized pieces. In virtual memory, we call this idea paging,
and it goes back to an early and important system, the Atlas [KE+62, L78].
Instead of splitting up a process’s address space into some number of
variable-sized logical segments (e.g., code, heap, stack), we divide it into
fixed-sized units, each of which we call a page. Correspondingly, we view
physical memory as an array of fixed-sized slots called page frames; each
of these frames can contain a single virtual-memory page. Our challenge:

THE CRUX:
How TO VIRTUALIZE MEMORY WITH PAGES
How can we virtualize memory with pages, so as to avoid the prob-
lems of segmentation? What are the basic techniques? How do we make
those techniques work well, with minimal space and time overheads?

A Simple Example And Overview

To help make this approach more clear, let’s illustrate it with a simple
example. Figure 18.1 (page 186) presents an example of a tiny address
space, only 64 bytes total in size, with four 16-byte pages (virtual pages
0, 1,2, and 3). Real address spaces are much bigger, of course, commonly
32 bits and thus 4-GB of address space, or even 64 bits'; in the book, we’ll
often use tiny examples to make them easier to digest.

A 64-bit address space is hard to imagine, it is so amazingly large. An analogy might
help: if you think of a 32-bit address space as the size of a tennis court, a 64-bit address space
is about the size of Europe(!).
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(page 0 of the address space)
16
(page 1)
32
(page 2)
48
(page 3)
64

Figure 18.1: A Simple 64-byte Address Space

Physical memory, as shown in Figure 18.2, also consists of a number
of fixed-sized slots, in this case eight page frames (making for a 128-byte
physical memory, also ridiculously small). As you can see in the diagram,
the pages of the virtual address space have been placed at different loca-
tions throughout physical memory; the diagram also shows the OS using
some of physical memory for itself.

Paging, as we will see, has a number of advantages over our previous
approaches. Probably the most important improvement will be flexibil-
ity: with a fully-developed paging approach, the system will be able to
support the abstraction of an address space effectively, regardless of how
a process uses the address space; we won't, for example, make assump-
tions about the direction the heap and stack grow and how they are used.

Another advantage is the simplicity of free-space management that pag-
ing affords. For example, when the OS wishes to place our tiny 64-byte
address space into our eight-page physical memory, it simply finds four
free pages; perhaps the OS keeps a free list of all free pages for this, and
just grabs the first four free pages off of this list. In the example, the OS

0
reserved for OS page frame 0 of physical memory
16
(unused) page frame 1
32
page 3 of AS page frame 2
48
page 0 of AS page frame 3
64
(unused) page frame 4
80
page 2 of AS page frame 5
96
(unused) page frame 6
112
page 1 of AS page frame 7
128

Figure 18.2: A 64-Byte Address Space In A 128-Byte Physical Memory
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has placed virtual page 0 of the address space (AS) in physical frame 3,
virtual page 1 of the AS in physical frame 7, page 2 in frame 5, and page
3 in frame 2. Page frames 1, 4, and 6 are currently free.

To record where each virtual page of the address space is placed in
physical memory, the operating system usually keeps a per-process data
structure known as a page table. The major role of the page table is to
store address translations for each of the virtual pages of the address
space, thus letting us know where in physical memory each page resides.
For our simple example (Figure 18.2, page 186), the page table would
thus have the following four entries: (Virtual Page 0 — Physical Frame
3),(VP1— PE7), (VP2 — PF5),and (VP 3 — PF 2).

It is important to remember that this page table is a per-process data
structure (most page table structures we discuss are per-process struc-
tures; an exception we’ll touch on is the inverted page table). If another
process were to run in our example above, the OS would have to manage
a different page table for it, as its virtual pages obviously map to different
physical pages (modulo any sharing going on).

Now, we know enough to perform an address-translation example.
Let’s imagine the process with that tiny address space (64 bytes) is per-
forming a memory access:

movl <virtual address>, %eax

Specifically, let’s pay attention to the explicit load of the data from
address <virtual address> into the register eax (and thus ignore the
instruction fetch that must have happened prior).

To translate this virtual address that the process generated, we have
to first split it into two components: the virtual page number (VPN), and
the offset within the page. For this example, because the virtual address
space of the process is 64 bytes, we need 6 bits total for our virtual address
(2% = 64). Thus, our virtual address can be conceptualized as follows:

Va5|Va4|Va3|Va2|Val | Va0

In this diagram, Va5 is the highest-order bit of the virtual address, and
Va0 the lowest-order bit. Because we know the page size (16 bytes), we
can further divide the virtual address as follows:

VPN offset

Va5|Va4|Va3|Va2|Val | Va0

The page size is 16 bytes in a 64-byte address space; thus we need to
be able to select 4 pages, and the top 2 bits of the address do just that.
Thus, we have a 2-bit virtual page number (VPN). The remaining bits tell
us which byte of the page we are interested in, 4 bits in this case; we call
this the offset.
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When a process generates a virtual address, the OS and hardware
must combine to translate it into a meaningful physical address. For ex-
ample, let us assume the load above was to virtual address 21:

movl 21, %eax

Turning “21” into binary form, we get “010101”, and thus we can ex-

amine this virtual address and see how it breaks down into a virtual page
number (VPN) and offset:

VPN offset

0 1 0 1 0 1

Thus, the virtual address “21” is on the 5th (“0101”th) byte of virtual
page “01” (or 1). With our virtual page number, we can now index our
page table and find which physical frame virtual page 1 resides within. In
the page table above the physical frame number (PFN) (also sometimes
called the physical page number or PPN) is 7 (binary 111). Thus, we can
translate this virtual address by replacing the VPN with the PFN and then
issue the load to physical memory (Figure 18.3).

Note the offset stays the same (i.e., it is not translated), because the
offset just tells us which byte within the page we want. Our final physical
address is 1110101 (117 in decimal), and is exactly where we want our
load to fetch data from (Figure 18.2, page 186).

With this basic overview in mind, we can now ask (and hopefully,
answer) a few basic questions you may have about paging. For example,
where are these page tables stored? What are the typical contents of the
page table, and how big are the tables? Does paging make the system
(too) slow? These and other beguiling questions are answered, at least in
part, in the text below. Read on!

VPN offset
Virtual
Address ! 0 ! 0 !
Address
Translation
Physical
Address | Tl Tl T [Oof o1
PFN offset

Figure 18.3: The Address Translation Process
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page table:

3752 page frame 0 of physical memory

(unused) page frame 1

32
page 3 of AS page frame 2
48

page 0 of AS page frame 3
64

(unused) page frame 4

80
page 2 of AS page frame 5
96

(unused) page frame 6
112

page 1 of AS page frame 7

128

Figure 18.4: Example: Page Table in Kernel Physical Memory

Where Are Page Tables Stored?

Page tables can get terribly large, much bigger than the small segment
table or base/bounds pair we have discussed previously. For example,
imagine a typical 32-bit address space, with 4KB pages. This virtual ad-
dress splits into a 20-bit VPN and 12-bit offset (recall that 10 bits would
be needed for a 1KB page size, and just add two more to get to 4KB).

A 20-bit VPN implies that there are 2%° translations that the OS would
have to manage for each process (that’s roughly a million); assuming we
need 4 bytes per page table entry (PTE) to hold the physical translation
plus any other useful stuff, we get an immense 4MB of memory needed
for each page table! That is pretty large. Now imagine there are 100
processes running: this means the OS would need 400MB of memory
just for all those address translations! Even in the modern era, where
machines have gigabytes of memory, it seems a little crazy to use a large
chunk of it just for translations, no? And we won’t even think about how
big such a page table would be for a 64-bit address space; that would be
too gruesome and perhaps scare you off entirely.

Because page tables are so big, we don’t keep any special on-chip hard-
ware in the MMU to store the page table of the currently-running process.
Instead, we store the page table for each process in memory somewhere.
Let’s assume for now that the page tables live in physical memory that
the OS manages; later we’ll see that much of OS memory itself can be vir-
tualized, and thus page tables can be stored in OS virtual memory (and
even swapped to disk), but that is too confusing right now, so we’ll ig-
nore it. In Figure 18.4 is a picture of a page table in OS memory; see the
tiny set of translations in there?
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Figure 18.5: An x86 Page Table Entry (PTE)

What’s Actually In The Page Table?

Let’s talk a little about page table organization. The page table is just
a data structure that is used to map virtual addresses (or really, virtual
page numbers) to physical addresses (physical frame numbers). Thus,
any data structure could work. The simplest form is called a linear page
table, which is just an array. The OS indexes the array by the virtual page
number (VPN), and looks up the page-table entry (PTE) at that index in
order to find the desired physical frame number (PFN). For now, we will
assume this simple linear structure; in later chapters, we will make use of
more advanced data structures to help solve some problems with paging.

As for the contents of each PTE, we have a number of different bits
in there worth understanding at some level. A valid bit is common to
indicate whether the particular translation is valid; for example, when
a program starts running, it will have code and heap at one end of its
address space, and the stack at the other. All the unused space in-between
will be marked invalid, and if the process tries to access such memory, it
will generate a trap to the OS which will likely terminate the process.
Thus, the valid bit is crucial for supporting a sparse address space; by
simply marking all the unused pages in the address space invalid, we
remove the need to allocate physical frames for those pages and thus save
a great deal of memory.

We also might have protection bits, indicating whether the page could
be read from, written to, or executed from. Again, accessing a page in a
way not allowed by these bits will generate a trap to the OS.

There are a couple of other bits that are important but we won't talk
about much for now. A present bit indicates whether this page is in phys-
ical memory or on disk (i.e., it has been swapped out). We will under-
stand this machinery further when we study how to swap parts of the
address space to disk to support address spaces that are larger than phys-
ical memory; swapping allows the OS to free up physical memory by
moving rarely-used pages to disk. A dirty bit is also common, indicating
whether the page has been modified since it was brought into memory.

A reference bit (a.k.a. accessed bit) is sometimes used to track whether
a page has been accessed, and is useful in determining which pages are
popular and thus should be kept in memory; such knowledge is critical
during page replacement, a topic we will study in great detail in subse-
quent chapters.

Figure 18.5 shows an example page table entry from the x86 architec-
ture [I09]. It contains a present bit (P); a read/write bit (R/W) which
determines if writes are allowed to this page; a user/supervisor bit (U/S)
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which determines if user-mode processes can access the page; a few bits
(PWT, PCD, PAT, and G) that determine how hardware caching works for
these pages; an accessed bit (A) and a dirty bit (D); and finally, the page
frame number (PFN) itself.

Read the Intel Architecture Manuals [I09] for more details on x86 pag-
ing support. Be forewarned, however; reading manuals such as these,
while quite informative (and certainly necessary for those who write code
to use such page tables in the OS), can be challenging at first. A little pa-
tience, and a lot of desire, is required.

Paging: Also Too Slow

With page tables in memory, we already know that they might be too
big. As it turns out, they can slow things down too. For example, take
our simple instruction:

movl 21, %eax

Again, let’s just examine the explicit reference to address 21 and not
worry about the instruction fetch. In this example, we’ll assume the hard-
ware performs the translation for us. To fetch the desired data, the system
must first translate the virtual address (21) into the correct physical ad-
dress (117). Thus, before fetching the data from address 117, the system
must first fetch the proper page table entry from the process’s page table,
perform the translation, and then load the data from physical memory.

To do so, the hardware must know where the page table is for the
currently-running process. Let’s assume for now that a single page-table
base register contains the physical address of the starting location of the
page table. To find the location of the desired PTE, the hardware will thus
perform the following functions:

VPN
PTEAddr

(VirtualAddress & VPN_MASK) >> SHIFT
PageTableBaseRegister + (VPN x sizeof (PTE))

In our example, VPN_MASK would be set to 0x30 (hex 30, or binary
110000) which picks out the VPN bits from the full virtual address; SHIFT
is set to 4 (the number of bits in the offset), such that we move the VPN
bits down to form the correct integer virtual page number. For exam-
ple, with virtual address 21 (010101), and masking turns this value into
010000; the shift turns it into 01, or virtual page 1, as desired. We then use
this value as an index into the array of PTEs pointed to by the page table
base register.

Once this physical address is known, the hardware can fetch the PTE
from memory, extract the PFN, and concatenate it with the offset from the
virtual address to form the desired physical address. Specifically, you can
think of the PFN being left-shifted by SHIFT, and then bitwise OR’d with
the offset to form the final address as follows:

offset
PhysAddr

VirtualAddress & OFFSET_MASK
(PFN << SHIFT) | offset
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1 // Extract the VPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
3
4 // Form the address of the page-table entry (PTE)
5 PTEAddr = PTBR + (VPN x sizeof (PTE))
6
7 // Fetch the PTE
8 PTE = AccessMemory (PTEAddr)
9
10 // Check if process can access the page
11 if (PTE.Valid == False)
12 RaiseException (SEGMENTATION_FAULT)
13 else if (CanAccess (PTE.ProtectBits) == False)
14 RaiseException (PROTECTION_FAULT)
15 else
16 // Access 1is OK: form physical address and fetch it
17 offset = VirtualAddress & OFFSET_MASK
18 PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19 Register = AccessMemory (PhysAddr)
Figure 18.6: Accessing Memory With Paging

Finally, the hardware can fetch the desired data from memory and put
it into register eax. The program has now succeeded at loading a value
from memory!

To summarize, we now describe the initial protocol for what happens
on each memory reference. Figure 18.6 shows the basic approach. For
every memory reference (whether an instruction fetch or an explicit load
or store), paging requires us to perform one extra memory reference in
order to first fetch the translation from the page table. That is a lot of
work! Extra memory references are costly, and in this case will likely
slow down the process by a factor of two or more.

And now you can hopefully see that there are two real problems that
we must solve. Without careful design of both hardware and software,
page tables will cause the system to run too slowly, as well as take up
too much memory. While seemingly a great solution for our memory
virtualization needs, these two crucial problems must first be overcome.

18.5 A Memory Trace

Before closing, we now trace through a simple memory access exam-
ple to demonstrate all of the resulting memory accesses that occur when
using paging. The code snippet (in C, in a file called array.c) that we
are interested in is as follows:
int array[1000];
for (i = 0; i < 1000; i++)

array[i] = 0;
We compile array . c and run it with the following commands:
OPERATING
SYSTEMS
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ASIDE: DATA STRUCTURE — THE PAGE TABLE
One of the most important data structures in the memory management
subsystem of a modern OS is the page table. In general, a page table
stores virtual-to-physical address translations, thus letting the system
know where each page of an address space actually resides in physical
memory. Because each address space requires such translations, in gen-
eral there is one page table per process in the system. The exact structure
of the page table is either determined by the hardware (older systems) or
can be more flexibly managed by the OS (modern systems).

prompt> gcc -o array array.c -Wall -O
prompt> ./array

Of course, to truly understand what memory accesses this code snip-
pet (which simply initializes an array) will make, we’ll have to know (or
assume) a few more things. First, we’ll have to disassemble the result-
ing binary (using objdump on Linux, or otool on a Mac) to see what
assembly instructions are used to initialize the array in a loop. Here is the
resulting assembly code:

1024 movl $0x0, (%$edi, %eax,4)
1028 incl %eax

1032 cmpl $0x03e8, $eax

1036 jne 0x1024

The code, if you know a little x86, is actually quite easy to understand’.
The first instruction moves the value zero (shown as $0x0) into the vir-
tual memory address of the location of the array; this address is computed
by taking the contents of $edi and adding $eax multiplied by four to it.
Thus, %edi holds the base address of the array, whereas $eax holds the
array index (1); we multiply by four because the array is an array of inte-
gers, each of size four bytes.

The second instruction increments the array index held in $eax, and
the third instruction compares the contents of that register to the hex
value 0x03e8, or decimal 1000. If the comparison shows that two val-
ues are not yet equal (which is what the jne instruction tests), the fourth
instruction jumps back to the top of the loop.

To understand which memory accesses this instruction sequence makes
(at both the virtual and physical levels), we’ll have to assume something
about where in virtual 