{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Checking Rank Estimates" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import numpy.linalg as la\n", "import matplotlib.pyplot as pt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's make two particle collections: `sources` and `targets`" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3W1sHNd5L/D/w+WuzZVkKVyxRWKZS7dW0wpWnFRE615dFGnYApLsWInRoglWCuukICT1RS56kdjlB8MfCFw0RSECt4pAxHIIceE0cO00L0prW26R1GiCUkka2VUaG4lIq3FtisqVLVEQKfLph9khd4fzunt2Z3b2/wMW5K5mZ87SxjNnn/Occ0RVQURE6dEVdwOIiMgsBnYiopRhYCciShkGdiKilGFgJyJKGQZ2IqKUYWAnIkoZBnYiopRhYCciSpnuOC66detWHRgYiOPSRERt6+zZs5dUtS/ouFgC+8DAAKanp+O4NBFR2xKRmTDHMRVDRJQyDOxERCnDwE5ElDIM7EREKcPATkSUMgzsRJQO5TIwMAB0dVk/y+W4WxSbWModiYiMKpeBkRFgYcF6PjNjPQeAUim+dsWEPXYian+jo2tB3bawYL3egRjYiaj9zc5Gez3lGNiJqP3190d7PeUY2Imo/Y2NAfl87Wv5vPV6B2JgJ6JkaKSqpVQCJiaAYhEQsX5OTHTkwCnAqhgiSgITVS2lUscGcif22IloTdRes6nacVa1GBU6sIvISRF5S0RernrtsyLyQxH5gYg8KyJbmtNMImo6u9c8MwOorvWavYJ11OP9sKrFqCg99i8A2ON47XkAd6vq+wD8CMCjhtpFRK0WtddsspfNqhajQgd2Vf0mgMuO155T1ZuVp98GsM1g24iolaL2mk32slnVYpTJHPsnAXzD4PmIqJWi9ppN9rKjVLVwTZhARgK7iIwCuAnA8y8sIiMiMi0i03NzcyYuS0QmRe01m+5ll0rAhQvAyor10yuom8rrp1jDgV1EhgHcD6Ckqup1nKpOqOqgqg729QXuxUpErRa1FjyO2nFWz4TSUGAXkT0APgPgAVVdCDqeiBLO7jWfOmU9P3jQP90RppddLWwa5cgRoLvbumF0d1vPgWRUz7RDKkhVQz0APAXgDQBLAC4C+BSA1wC8DuD7lceJMOfatWuXElFCTU2p5vOqVrLDeuTz1uth3lssqopYPw8fXnteKKjmcsHnPXy49hj7YZ/L7d+KReN/Bs/PV+/fxgAA0xomXoc5yPSDgZ0oweoNnm5BL8zDed5Mxv04kWiB1XmTMRF8Y76xhA3snHlKRLW80hozM/6pB7f8dxgzM7XPl5fdj7OH8MLk9Y8csdJIpgdZk5AKCoGBnYhq+ZUrOgNkdb7ZGaDDymRqz+VndDQ4r18uAydOrN0IbEGDrGFy5+0ykSpMt970g6kYogQLk1KxUxv1pF68HiLhjgnilS7xe3/YFE+b5NjZYyeiWqUSMDy81pN2Mztbf+rFi7OH7XVMUCWKX1rEq2cdtoyyTZYHZmAnolrlMjA56Z3rBqwAGTavvGGDFQQLBSCXa7x9MzPAQw8BW7eulUOKrAV8v7TI1avuqZYoufOoJZ4xYGAnolpBPXERK7h2hQwf164Bvb3A+Dhw8uRabzcMr28NS0vA/Lz1u30DsvP/+/atnxFrm593H0xtl9x5SAzsRFTLrycuspYy8evRO83Pr22cYfd2w7DfE9bCAnD6tJUeKRSCj7VTLSlbhIyBnYhqefVSM5lweXAvzpx1UOAF1mbARjE7a6VHNm4MPtYu4Tx4EOjpsdoUNXeewJmoDOxEVGtsDMhma1/LZv176MViuHPbgdRO4wSlc65eDXfeavaNKWz5pV3rPj8PXL9u3UzGxqybUFCwjrIoWQtvAAzsRLSeMwduD366sV8XsQZKg1QH0rB5+rDyeSvHHlQP72VhATh6dH2wtgdrnUE5bDVNi1elFG3kq1WdBgcHdXp6uuXXJaIQBgbce7vV+XVbLme9trTUkqb56uoCfuu3gG99C1hcbO618nkrVXPwoHt6SqR2HMHrb1osWmMOIYnIWVUdDDyOgZ2IanR1hc+lb9hgVb10Ijv9FCZge/1NnTeAAGEDO1MxRFQrSolfpwZ1wBqkDVtN0+JySgZ2IqrlFqxovf7+8DNRW1xO2d2UsxJR+7KD0uho/Qt7pV11UC6Vgssiq/+ms7PWTWFsrGmzVhnYiahWubwW1N0GTP1EPb5dFApWXXwjQTnMDcCQ0KkYETkpIm+JyMtVr/WKyPMi8mrl57ua00wiaonqsjwgWpAuFq0acDst4beIWBKIAENDwcfl89ZyCAlfH6ZalBz7FwDscbz2CIAzqrodwJnKcyJqV42s2DgzU5tqiLLkgJewa8pEZd+EXnst+LgErt4YJHRgV9VvArjseHk/gMnK75MAPmKoXUQUh0Z3AqqegGMiKDcjrbNjh/XT3mHJTxPz4M3UaFXMz6vqGwBQ+flzjTeJiGJjsvwuibn2HTusVIp9AwpS7+zQmNePaVm5o4iMiMi0iEzPzc216rJEFEUaSx2LRWBqygrkb74ZLdUUtJ2emxYvH+Cm0cD+poi8GwAqP9/yOlBVJ1R1UFUH+/r6GrwsETWFXZcdZuVF0+wNOaIKuhHZa70cObK2hnsUUdNTYdePaaJGA/tXAAxXfh8G8PcNno+IkuD69WjHm6iAuXYtevomkwnexg+w1rI5caK+dkVNT0XZjalJopQ7PgXgXwG8V0QuisinAPxfAL8jIq8C+J3KcyJqZ2ErY+xgWijEV9q4vGxt4/fBDwYfW0/Ov57ZoQnYjSlKVczHVfXdqppV1W2q+oSqzqvqkKpur/x0Vs0QUbsJ07MUsQJqoWClN5q9mqKfhQWrbPHwYfM3mHpKHROwGxPXiiGiWmF6lqrAgQP15aybYWbGSrVs2xZu5yRbPu89nlAsBgd1t+qXUslKD1WvNd+senwPDOxEVBugrl611llvN3YFyo0bQHfI1VImJqxZpfX0sL2qX44cAZ54onY53mvXrAHcFlXGMLATdTpngJqft37a+38WCvFUydRraQnYvDn4uOoeeU/P2uuFQrgUjFf1y8SEe2pqaalllTFcBIyo07kFqKUlK6Vx6dLaa1E24GiGfN4KwGHSP/PzVr7da1mDbNbqkds3terPH7YiyGsswm8phRZVxrDHTtTpwpbntbCqw1VPD/D+94fLV4t4B9gNG4Ann7R65I3UnHv9PfwGcFv0N2RgJ+p0Ycvz4p6VOj8PnDkT7luD2zGZjDUD9erVtTRLIzXnXtUvIyPuYxT2t4QWYGAn6nRhy/OqdwsKw6/iJA4rK7V583K5tnKlWpietdfuScePAydP1n72QmHtW0IrqGrLH7t27VIiarGpKdViUVXE+jk1Fe7f3M6Tzapa/WL3h32OqSnrnH7HtupRLNZ+hnze/bh83v/zxwjAtIaIsaIxDIYMDg7q9PR0y69L1LHcBgnz+fom4AwM+C93WyxaKyjaWlzD7cr5Wb0+QyZjTbxK6FK9InJWVQeDjmMqhqgTmFyYKij/7EzhhE3dNNPwcG2w9voMznRNm2JgJ+oEJhem8ss/FwrrA2OYQVcTvfqhIe/znD5d+zwB67k0EwM7UScwGcjGxqwKD6dczprF6RRm0DVqSjiXWysrzGSsdWJeeMH7PLOzwbNrW7yeSzMxsBN1ApMLU5VKVoWHs+rj5EnvNEapZOXdTeXbFxetXLgqcPOmVYkCeN88env9Z9e26d6mXhjYiTqBV2levYGsVLJmpdq1JJcurS8ldNsazmSqw15oq/r8XjcwwHt27cqKddNJSVAHwHJHIqqIUvIYdB5nKaFdQuhXZtjIo7pE0e1zeJVcipj527UIWO5IRKGZLIfcutV9PRe7DLJctqpx7IFbUzHIWWZZzau80e89CcRyRyIKz1Q5ZLnsvUiXHcjtfPupU+6DsE4bNoRbRtitwsdOCc3MrM/vp2iw1MlIYBeRPxORV0TkZRF5SkRuNXFeImoRU+WQfjcCZ359dDTczktbt1oDs/b4gNciW87zVy9HDFjfDOzgnrLBUqeGA7uI3A7gTwEMqurdADIAPtboeYmoheoth3QOkvrNSHX2jsPeNGZna3v5W7asP8at9+32LUR1Lf2S0qAOmEvFdAPoEZFuAHkAPzV0XiJqhXrKId12EPIqZ3SbuBS2QsY+zr6eM9XjtTGGyUlZbabhwK6q/wXgrwDMAngDwBVVfc55nIiMiMi0iEzPzc01elkiMqmeckivHrFbLttt4lKYGanVNxe36wFWoB8dXb/tXMpnl/oKUzrj9wDwLgAvAugDkAXwZQAH/N7DckeiFPBbtTHKSpHVxx4+7P3eoFUinasy+pVdtim0qtxRRH4PwB5V/VTl+ScA3KuqR7zew3JHohRodQlhUA7f7drVpZX9/Vbvv41z660sd5wFcK+I5EVEAAwBOG/gvESUZCaXKaj3ek7O/Lk96JrG2aU+TOTYvwPgaQDfBXCucs6JRs9LRAlnepmCKNfz0gn58xA485SI2o/JmbJthDNPiSi9Wv1toc10x90AIqK6lEoM5B7YYyciShkGdiKilGFgJyJKGQZ2IqKUYWAnIkoZBnYiopRhYCciShkGdiKilGFgJyJKGQZ2IqKUYWAnIkoZBnYiopRhYCciShkGdiKilDES2EVki4g8LSI/FJHzIvIbJs5LRETRmVqPfRzAP6jq74pIDkDAxoRERNQsDQd2EbkNwG8C+AMAUNVFAIuNnpeIiOpjIhXzCwDmADwpIt8Tkc+LyAYD5yUiojqYCOzdAH4VwOdU9QMArgF4xHmQiIyIyLSITM/NzRm4LBERuTER2C8CuKiq36k8fxpWoK+hqhOqOqiqg319fQYuS0REbhoO7Kr63wBeF5H3Vl4aAvAfjZ6XiIjqY6oq5k8AlCsVMT8G8JCh8xIRUURGAruqfh/AoIlzERFRYzjzlIgoZRjYiYhShoGdiChlGNiJiFKGgZ2IKGUY2ImIUoaBnYgoZRjYiYhShoGdiChlGNiJiFKGgZ2IKGUY2ImIUoaBnYgoZRjYiYhShoGdiChlGNiJiFLGWGAXkYyIfE9EvmbqnEREFJ3JHvtRAOcNno+IiOpgJLCLyDYA9wH4vInzERFR/Uz12I8B+DSAFUPnIyKiOjUc2EXkfgBvqerZgONGRGRaRKbn5uYavSwREXkw0WPfDeABEbkA4IsAPiQiU86DVHVCVQdVdbCvr8/AZYmIyE3DgV1VH1XVbao6AOBjAF5U1QMNt4yIiOrCOnYiopTpNnkyVf1nAP9s8pxERBQNe+xERCnDwE5ElDIM7EREKcPATkSUMgzsREQpw8BORJQyDOxERCnDwE5ElDIM7CGVz5UxcGwAXY93YeDYAMrnynE3iYjIldGZp2lVPlfGyFdHsLC0AACYuTKDka+OAABKO0txNo2IaB322EMYPTO6GtRtC0sLGD0zGlOLiIi8MbCHMHtlNtLrRERxYmAPoX9zf6TXiYjixMBe4Tc4OjY0hnw2X3N8PpvH2NBY5HPV2wYiorA4eIrgwVF7gHT0zChmr8yif3M/xobGXAdO6x1o9XrfS7Mv4fSrpwOvS0RkE1Vt+UUHBwd1enq65df1MnBsADNXZta9XtxcxIWHL7TkXF7vEwgUa/+N8tk8Jj48weBO1IFE5KyqDgYdx1QMzA6O1nsur3+vDuoAq3GIKFjDgV1E7hCRfxKR8yLyiogcNdGwVjI5OBrmXG659CjXYjUOEfkx0WO/CeDPVfVXANwL4I9EZIeB87ZM1MHRRs5l59JnrsxAoau59Lt674JAat7nfG5jNQ4R+Wk4sKvqG6r63crv7wA4D+D2Rs/bSqWdJUx8eALFzUUIBMXNxbrz2NXnAoCMZFbTJ+VzZc/JTi/+5MWatItA8KE7P2TshtMqrOwhip/RwVMRGQDwTQB3q+rbjn8bATACAP39/btmZtYPFKaJs8oFsIKyM6j7KW4uYmxoDKNnRjFzZQYZyWBZl1dfT9oAqtdn5mAvkRktHzwVkY0A/g7Aw86gDgCqOqGqg6o62NfXZ+qyieXVM89IJvQ5Zq/MorSztJreWdZlAGulkOVz5bp6yM3qVXPpBaJkMFLHLiJZWEG9rKrPmDhnu/Ma4FzW5XU9d2dJo61/cz/K58oYfnZ4NajbFpYWcOhrh3Bt8drqe8PUzDdzQTMuvUCUDCaqYgTAEwDOq+pfN96k9mb3ht0CNYDV/H11Pv/Q4CHXXPq+7fsw8tWRdUHddnXxauRyyGb2qrn0AlEymEjF7AZwEMCHROT7lcc+A+dtO9UVL27sgc/SzhIuPHwBK4+t4MLDF3D8vuOug7enXz0dKSdv8+shN7NXbbK6iIjqZ6Iq5l9UVVT1far6/srjtInGRdFo3thE3tmtN2wLqrRxBvvSzlLdwdavh9zMXrXJ6iIiql8q1oppNG9sKu/sFYgFEmppArsc0l4XprenF/PX59cdl5EMtty6xfXfAPj2kMeGxlwrV0z1qqvX1iGieKRiSYGoeWNn7/zoN476vj9sb76R3rDbxKV3Ft9Bl+M/UbYri8mPTmJ87zhymZzruQ48c8CznexVE6Vf2wV2tyAbJW/sFkC9er6zV2Zx5OtHcPCZg+tmiroFTb8cc9DNwe3mtLi8iBWs1LxmjVVbAXpTbpNruwH4ttMt7WMCJycRJUNbre7oNQGmp7vHNTi7rajotYqim0JPAZevX3atcPFardGZTrFTHM52Z7uyuO2W23D5+mX0b+4P3abqa3c93uVZfWPLSAaTH51seo+ck5OImi/sBKW2CuxeQXljbmNNPTewVhvunKUZJhgC/jcM+/wrj624/lvYdtfLvnbY8woEhwYP4fh9x421wcnk0sdE5C6Vy/Z6pVzc6rmdk3bstIBXvrvQU1iXd758/bJnW6JUkZgM6tXX3rc9XFWpQnFi+kRTUyNen5GTk4har20Ce/lcGV1SX3OrB0K98uDje8fX5Z29grdAalZr9Msrl8+VPVdprNfMlRkMHBvAl175Uuj3KLRpU/v9PiMnJxG1XluUO9r5W68ZmGHYPUevbe4AK51gv7Zv+z5cXby67jx2WqO0sxSqTHL0zGio1E9U9XwLaFbv2eszVt8Aiah12iLH7pW/DarnruaX63Ub+HNT6ClgfO/4atAOk1cOm9NvhWblu/0+oz6WjM9OlAapyrF79TRXdAXje8fXpVbc+PUc/WaMVtuY2wgAq6mXMHnlVqci8tk8hu4cWpcaaebUfq/PaK9JT0St1RaB3W/ij3NjCzeFnoJvyV3YFIWdarFr2r0oFPK4YODYAPZt3xfqxlNvHt5t0PeFT7yAUw+ecp2EFGZMIGotOteIIUqWtkjFhK2RrreWOmzZoL3RRRT5bB7D9wzj9KunA69R6CmESitVnztKnXjQ36eRWnS3+n3WrxOZlbo69rCBo54AUz5XxsFnDvr2wrNdWSytLEVqs21jbiNuydziG7SLm4u4q/cunPnJmdDnnXpwyvWzHfn6EUycncCyLiMjGYzsGsHx+44HjgmwFp0o2VIX2JvtyNeP4MT0Cc/gnsvksCm3KVKPOor3bHwPfnr1p6GP9wq2R75+BJ+b/lyka9sTnrwGQaNMxiKi5gkb2Nui3LEVjt93HLv7d6/uL+q0uLzY1OtHCerV68/Y3056e3oBoK4bj0IxcGzAczVJ1qITtZe2GDxtFudAIQBcePiC50Dm5euXMXTnUAtbuF6XdGHiwxN4afalmsXJ5q/PN/RtYubKDN6+8fa6FSM5CErUfowEdhHZIyL/KSKvicgjJs7ZbG6rPNpLD/hV4bzwiRdwePBw3bNgG2WnzvzSRvVaWlnCptwmLulL1OZM7HmaAfA3APYC2AHg4yKyo9HzNpvfGu5ea7DYU/l39+/GHbfd0YpmrtO/uR9Hv3G0aZOeLl+/HHlJXy7XS5QsJrqdvwbgNVX9saouAvgigP0GzttUfmu4n37Ve2e/6lr2Vst2ZbFv+76mDeAC3vl0r+AdZb16ImoNE4H9dgCvVz2/WHkt0fzSLUETlurZYDrIxtzG1ZmtXpZWliJXvEThlU/3Slt5VRL57V5FRM1nIrC7jTSuyxOIyIiITIvI9NzcnIHLNsZttqRAMHNlpuX583w2j1+//ddxbfGakfNFaX9GMoH5dK+01cTZCc+UEJfrJYqPiQh2EUB1wnkbgHW1e6o6oaqDqjrY19dn4LKNcS5FYG/MASDS7NKMZOq6fnVAHb5nGC/+5EUjeXOBYEXD1Zzns3lMfnQSK4+tYGxoDKNnRl3z5F5B2u/vxBJJoviYCOz/BmC7iNwpIjkAHwPwFQPnbVjQoJ6992dxc7HuoLqsy5h6cCryWi8rurI6QHn61dPGgnrY82Qkg+F7hmuWEvDKk3sFaa+bGpfrJYpXw4FdVW8C+GMA/wjgPIAvqeorjZ63UUHBqppf2iDblfW9TkYyKO0sRQ7MvT29gatERhH15rSsy5j898nVSU5eFUKA9yJfI7tGXNNZ9nr1RBQPI8lkVT2tqr+kqr+oqonoqgUFq2r2rE2n4uYibrvlNt/r2OmIKEvUCgTz1+cDV4mMYt/2fSj0FCK9x/57+FUIVQd+u4du5+OP33d8NZ1lp5VOPXiqqXurElGw1K4VE3bdk/K5Mh768kPrFvjKZXI4uf9k4OJg9pot5XNlHHjmQGC76lkhMowom45UEwj6N/e7fmso9BRw/eb1ulZ7JCLzUrXRRj38yhmrjZ4ZdV21cVNuk+++p0BtLjlsoGtGULfP67f5tlc+3F4B0y3VAqwv7WQpI1HypTawh938wSsNYQdJv0FAhdYE9Lh3DPJLKU1+dNLz71FdIVRd+uh1o2ApI1GypTawewUrZ886qGdf2lnyzF0LBPK49dj6l1s9lyJopajB2/572BVC1UsJhP3WQ0TJktoce1hhdg0Ku9l1LpNDtiuLa0vRJxrdkrkFN5ZvRH6f09SDU8Z2MmpkRyUiMq/jc+xhhenZl3aWMHzPcGCt+uLyIm7tvhVdEf+sG7Ib8MT+J0LtjerHLr30WsQr6mJdYb/1EFGydHyPvZrftnph90UViOeGFV7sLe7s6zdS166Puf/3ZO+bqP2xxx5R0ISmsAOG/Zv7fatT3Lw0+xKAtTz31INTvsd7rQVT6Cl49sqj1PUTUXtLbY896qbWXj3yQk8BG3MbQ/ei7YHWKD12geDUg6dq2iePe6d9NmQ34MbyDdxcuVnzehe60J3prtnGz+6Ve9Xjcz9TovbR0ZtZ15N28JrQVI8u6Qq9EJctIxms6MrqTWj42WFjNe92GabbzclrU2wiSp6OTsXUk3YwWcIXNagD1gQjOwX00JcfQneXuX3GZ6/Mhq7rJ6L2l8rA7pUPn7ky41kJ4hb44rK0smSk9NHWv7mfFS5EHcRctzBBvNY+AYCRr44AWL8EgP28Oi9/dfFqYK68WWu/hOFcpjfblYWIrMuxVy97wEBOlH6p7LH79b79UjLOGvDxveO+1/FaujYsgdS9UUc+m8ehwUM1PfAnP/IkTu4/yV45UYdL5eApAN/VFqNUgvhVpwDW4KO9+9DslVn09vTiZ9d/hhX4n98eLO3t6cXbN952XYjMS6GngPG94wzYRB2mo6tibF4ljFEqQbb+5VbfdIzbTSLoPU65TA6bcptw+fpl9Pb04p3Fd2rSKU5ek5CIKN1aUhUjIp8VkR+KyA9E5FkR2dLI+UwzUQkyvnfcdxclt2qaqGuiLy4vYmNuI1YeW8GlT1/Cyf0nPVM0ca8gSUTJ12iO/XkAd6vq+wD8CMCjjTfJHBOVIKWdJTz5kSddV3h0u0mUz5Uj738K1FbylHaWMLJrZN15WJ5IRGE0FNhV9bnKnqcA8G0A2xpvkll+i2JFOcelT1/C1INTgTeJ0TOjdU10qu75l8+VMfnvkzXnEcjq5tOmRV0cjIiSzWS54ycB/K3B8yVOmHLBoKUHgkoSAfcJVgrFxNkJ7O7fbTS4O2fp2mvkAOF3hSKiZAnssYvICyLysstjf9UxowBuAvDs6onIiIhMi8j03NycmdYnkF/5YtiSRK8JVsu6XLMwmQlcHIwofRquihGRYQCHAAypqv9OFBVJXbbXBL/yyLDVLEFVNSbXdwm76TcRxa9VVTF7AHwGwANhg3raeVWthK1mKZ8r453Fd3yPMbnnKLe/I0qfRqti/h+ATQCeF5Hvi8gJA21qa42WWI6eGfWtYQfMBl0uDkaUPg0NnqrqXaYakhZua85E2Xc0qDee7coaDbqNtpeIkieVi4DFrZHFtvwWMAMAkeg18kG4OBhRuqRyEbB2FrR88OLyIitWiMgXA3vCVM+W9WJy8JSI0oepmASy0yJe2+OxYoWI/LDHnkD2bFC3oM6KFSIKwsCeQG6zQQFrVis3ziCiIAzsCeSVQ1/RFQZ1IgrEwJ5AnA1KRI1gYE8gzgYlokYwsCeQiQ1CiKhzpXrPUyKiNGnJ6o5ERJQ8DOxERCnDwE5ElDIM7EREKcPATkSUMrFUxYjIHADvRcebayuASzFdO0iS2wYku31sW/2S3L4ktw1offuKqtoXdFAsgT1OIjIdplwoDkluG5Ds9rFt9Uty+5LcNiC57WMqhogoZRjYiYhSphMD+0TcDfCR5LYByW4f21a/JLcvyW0DEtq+jsuxExGlXSf22ImIUq0jA7uIfFZEfigiPxCRZ0VkSwLatEdE/lNEXhORR+Juj01E7hCRfxKR8yLyiogcjbtNTiKSEZHvicjX4m6Lk4hsEZGnK/+/nReR34i7TTYR+bPKf9OXReQpEbk15vacFJG3ROTlqtd6ReR5EXm18vNdCWpb4uKIrSMDO4DnAdytqu8D8CMAj8bZGBHJAPgbAHsB7ADwcRHZEWebqtwE8Oeq+isA7gXwRwlqm+0ogPNxN8LDOIB/UNVfBnAPEtJOEbkdwJ8CGFTVuwFkAHws3lbhCwD2OF57BMAZVd0O4EzleRy+gPVtS1QcqdaRgV1Vn1PVm5Wn3wawLc72APg1AK+p6o9VdRHAFwHsj7lNAABVfUNVv1v5/R1Ygen2eFu1RkS2AbhmSWdcAAACpklEQVQPwOfjbouTiNwG4DcBPAEAqrqoqv8/3lbV6AbQIyLdAPIAfhpnY1T1mwAuO17eD2Cy8vskgI+0tFEVbm1LYBxZ1ZGB3eGTAL4RcxtuB/B61fOLSFDwtInIAIAPAPhOvC2pcQzApwGsxN0QF78AYA7Ak5VU0edFZEPcjQIAVf0vAH8FYBbAGwCuqOpz8bbK1c+r6huA1ckA8HMxt8dLEuLIqtQGdhF5oZI7dD72Vx0zCivVUI6vpVZTXF5LVLmSiGwE8HcAHlbVt+NuDwCIyP0A3lLVs3G3xUM3gF8F8DlV/QCAa4gvlVCjkqveD+BOAO8BsEFEDsTbqvaUoDiyqjvuBjSLqv6237+LyDCA+wEMafw1nxcB3FH1fBti/lpcTUSysIJ6WVWfibs9VXYDeEBE9gG4FcBtIjKlqkkJUBcBXFRV+xvO00hIYAfw2wB+oqpzACAizwD4XwCmYm3Vem+KyLtV9Q0ReTeAt+JuULWExZFVqe2x+xGRPQA+A+ABVV2Iuz0A/g3AdhG5U0RysAaxvhJzmwAAIiKwcsTnVfWv425PNVV9VFW3qeoArL/ZiwkK6lDV/wbwuoi8t/LSEID/iLFJ1WYB3Csi+cp/4yEkZGDX4SsAhiu/DwP4+xjbUiOBcWRVR05QEpHXANwCYL7y0rdV9VCMTUKl13kMVnXCSVUdi7M9NhH53wC+BeAc1vLYf6Gqp+Nr1Xoi8kEA/0dV74+7LdVE5P2wBnZzAH4M4CFV/Vm8rbKIyOMAfh9WGuF7AP5QVW/E2J6nAHwQ1oqJbwJ4DMCXAXwJQD+sm9HvqapzgDWutj2KhMURW0cGdiKiNOvIVAwRUZoxsBMRpQwDOxFRyjCwExGlDAM7EVHKMLATEaUMAzsRUcowsBMRpcz/ANmxxKhveHtCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sources = np.random.randn(2, 200)\n", "targets = np.random.randn(2, 200) + 10\n", "\n", "pt.plot(sources[0], sources[1], \"go\")\n", "pt.plot(targets[0], targets[1], \"ro\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's our convergence ratio $\\rho$:\n", "$$\n", "\\rho=\\frac{d(c,\\text{furthest target})}{d(c,\\text{closest source})}?\n", "$$\n", "\n", "Well, what should $c$ be, really? (Technically, we can use any $c$, so we're free to choose whichever we think is best.)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 9.98878098, 10.02648225])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c = np.sum(targets, axis=1) / targets.shape[1]\n", "\n", "c" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3W1sXNd5J/D/w+GMzZFkKRyxRWKZQ7fWZitYcVIRrbtaFG7YApLsWImxRWOMFK6TlpDUbuWii8QOPxj+wGLRFIUJbBWBjeUI4sBp4NppXpTWttwgWWMTlErSyK6S2IhFWo1qU1RWtkRBpMhnP9y55MzlfZ05M/fOnf8PGEgzujz3kDaee/ic55wjqgoiIkqPrrg7QEREZjGwExGlDAM7EVHKMLATEaUMAzsRUcowsBMRpQwDOxFRyjCwExGlDAM7EVHKdMdx082bN+vAwEActyYialunT5++qKp9QdfFEtgHBgYwNTUVx62JiNqWiEyHuY6pGCKilGFgJyJKGQZ2IqKUYWAnIkoZBnYiopRhYCeidCiXgYEBoKvL+rNcjrtHsYml3JGIyKhyGRgZAebnrffT09Z7ACiV4utXTDhiJ6L2Nzq6GtRt8/PW5x2IgZ2I2t/MTLTPU46BnYjaX39/tM9TjoGdiNrf2BiQz9d+ls9bn3cgBnYiSoZGqlpKJWBiAigWARHrz4mJjpw4BVgVQ0RJYKKqpVTq2EDuxBE7Ea2KOmo2VTvOqhajQgd2ETkmIm+LyCtVn31ORH4sIj8SkedEZFNzuklETWePmqenAdXVUbNXsI56vR9WtRgVZcT+RQC7HJ+9AOBOVf0AgJ8CeNRQv4io1aKOmk2OslnVYlTowK6q3wZwyfHZ86p6o/L2uwC2GOwbEbVS1FGzyVE2q1qMMplj/ySAbxpsj4haKeqo2eQoO0pVC/eECWQksIvIKIAbADx/wiIyIiJTIjI1Oztr4rZEZFLUUbPpUXapBJw7BywvW396BXVTef0Uaziwi8gwgPsAlFRVva5T1QlVHVTVwb6+wLNYiajVotaCx1E7zuqZUBoK7CKyC8BnANyvqvNB1xNRwtmj5hMnrPf79/unO8KMsquFTaMcOgR0d1sPjO5u6z2QjOqZdkgFqWqoF4CnAVwAsAjgPIBPAXgdwJsAflh5HQ3T1o4dO5SIEmpyUjWfV7WSHdYrn7c+D/O1xaKqiPXnwYOr7wsF1VwuuN2DB2uvsV92W27/Viwa/zF4fn/1/mwMADClYeJ1mItMvxjYiRKs3uDpFvTCvJztZjLu14lEC6zOh4yJ4BvzgyVsYOfKUyKq5ZXWmJ72Tz245b/DmJ6ufb+05H6dPYUXJq9/6JCVRjI9yZqEVFAIDOxEVMuvXNEZIKvzzc4AHVYmU9uWn9HR4Lx+uQwcPbr6ILAFTbKGyZ23y0KqMMN60y+mYogSLExKxU5t1JN68XqJhLsmiFe6xO/rw6Z42iTHzhE7EdUqlYDh4dWRtJuZmfpTL16cI2yva4IqUfzSIl4j67BllG2yPTADOxHVKpeB48e9c92AFSDD5pXXrbOCYKEA5HKN9296GnjoIWDz5tVySJHVgO+XFrlyxT3VEiV3HrXEMwYM7ERUK2gkLmIF166Q4ePqVaC3FxgfB44dWx3thuH1W8PiIjA3Z/3dfgDZ+f89e9auiLXNzblPprZL7jwkBnYiquU3EhdZTZn4jeid5uZWD86wR7th2F8T1vw8cPKklR4pFIKvtVMtKduEjIGdiGp5jVIzmXB5cC/OnHVQ4AVWV8BGMTNjpUfWrw++1i7h3L8f6Omx+hQ1d57AlagM7ERUa2wMyGZrP8tm/UfoxWK4tu1AaqdxgtI5V66Ea7ea/WAKW35p17rPzQHXrlkPk7Ex6yEUFKyjbErWwgcAAzsRreXMgduTn27sz0WsidIg1YE0bJ4+rHzeyrEH1cN7mZ8HDh9eG6ztyVpnUA5bTdPiXSlFG/nVqk6Dg4M6NTXV8vsSUQgDA+6j3er8ui2Xsz5bXGxJ13x1dQG/8zvAd74DLCw09175vJWq2b/fPT0lUjuP4PUzLRatOYeQROS0qg4GXsfATkQ1urrC59LXrbOqXjqRnX4KE7C9fqbOB0CAsIGdqRgiqhWlxK9TgzpgTdKGraZpcTklAzsR1XILVrRWf3/4lagtLqfsbkqrRNS+7KA0Olr/xl5pVx2US6Xgssjqn+nMjPVQGBtr2qpVBnYiqlUurwZ1twlTP1GvbxeFglUX30hQDvMAMCR0KkZEjonI2yLyStVnvSLygoi8VvnzPc3pJhG1RHVZHhAtSBeLVg24nZbw20QsCUSAoaHg6/J5azuEhO8PUy1Kjv2LAHY5PnsEwClV3QrgVOU9EbWrRnZsnJ6uTTVE2XLAoYwHMYA30IUlDOANlPFg3W25sh9Cr78efF0Cd28MEqncUUQGAHxdVe+svP8JgHtU9YKIvBfAt1T1/UHtsNyRKKGilDoGqTMtU8aDGMHfYh6ri53yuIoJ/BFKeLrxfm3bZlXzzMwE929yMlFBvVXljr+sqhcAoPLnLzXYHhHFyWT5XZ0PiFH8RU1QB4B5rMMo/qLxPm3bZqVS7BWgQepdHRrz/jEtK3cUkRERmRKRqdnZ2VbdloiiSECp4wzcHy5enwcqFq2Rtyrw1lvRUk1Bx+m5afH2AW4aDexvVVIwqPz5tteFqjqhqoOqOtjX19fgbYmoKey67DA7L5pWOZCjH+7bBnt9Hvggsvd6OXRodQ/3KKIeVB12/5gmajSwfxXAcOXvwwD+ocH2iCgJrl2Ldr2JCpirVwFVjOGzyKN2RWseVzGGz7rfN+gYP8Day+bo0fr6FTU9FeU0piaJUu74NID/C+D9InJeRD4F4H8B+D0ReQ3A71XeE1E7C1sZYwfTQsFoaWMJT2MCf4QizkGwjCLOeU+cLi1Zx/jdc09ww/Xk/OtZHZqA05i4CRgR1QpTGSNilQsePlxfesO0YtHarndioqEyyzXqqYqxc+zVD0d7N8gGK2y4CRgR1SfMyFIV2LcvGUEdsPLoR48CW7aEOznJls97zycUi8GB2K36pVSy0kPVe82HPePVEAZ2IqoNUFeuWPustxu7AuX6daA75G4pExPWqtJ6Nujyqn45dAh48sna7XivXrUmcFtUGcPATtTpnAFqbs760z7/s1CIp0qmXouLwMaNwddVj8h7elY/LxTCpU28ql8mJtwP+lhcbFllDDcBI+p0bgFqcdFKaVy8uPqZyVWp9cjnrQAcJv0zN2dN6Hrl27NZa0Tulg8PWxHkVeXil+NvUWUMR+xEnS5seV4Lqzpc9fQAH/xguHy1iHeAXbcOeOopa0TeSM2518/Dr0KoRT9DBnaiThe2PC/uValzc8CpU+F+a3C7JpOxqlyuXFlNszRSc+51eMbIiPschf1bQgswsBN1urCn+1SfFhSGX8VJHJaXa/Pm5XJt5Uq1MCNrr9OTjhwBjh2r/d4LhdXfElpBVVv+2rFjhxJRi01OqhaLqiLWn5OT4f7NrZ1sVtUaF7u/7DYmJ602/a5t1atYrP0e8nn36/J5/+8/RgCmNESM5QIlok5gctHMwID/kXnForWDoq3FNdyunN+r1/eQyVgrWRO0VW81LlAiolUmN6YKyj87UzhhUzfNNDxcG6y9vgdnuqZNMbATdQKTG1P55Z8LhbWBMcykq4lR/dCQdzsnT9a+T8B+Ls3EwE7UCUwGsrExq8LDKZezVnE6hZl0jZoSzuVWywozGeDgQeDFF73bmZkJXl1bz4ZfCcXATtQJwla+hFEqWRUezqqPY8e80xilkpV3N5VvX1iwcuGqwI0bViUK4P3w6O31X13bpmebemFgJ+oEXqV59QayUslalWrXkly8uLaU0O1oOJOpDnujrer2vR5ggPfq2uVl66GTkqAOgOWORFQRpeQxqB1nKaFdQuhXZtjIq7pE0e378Cq5FDHzs2sRsNyRiEIzWQ65ebP7fi52GWS5bFXj2BO3pmKQs8yymld5o9/XJBDLHYkoPFPlkOWy9yZddiC38+0nTrhPwjqtWxduG2G3Ch87JTQ9vTa/n6LJUicjgV1E/kxEXhWRV0TkaRG52US7RNQipsoh/R4Ezvz66Kj79rZOmzdbE7P2/IDXJlvO9qu3Iwas3wzs4J6yyVKnhgO7iNwK4E8BDKrqnQAyAD7eaLtE1EL1lkM6J0n9VqQ6R8dhHxozM7Wj/E2b1l7jNvp2+y1EdTX9ktKgDphLxXQD6BGRbgB5AD831C4RtUI95ZBuJwh5lTO6LVwKWyFjX2ffz5nq8ToYw+SirDbTcGBX1X8H8FcAZgBcAHBZVZ93XiciIyIyJSJTs7Ozjd6WiEyqpxzSa0Tslst2W7gUZkVq9cPF7X6AFehHR9ceO5fy1aW+wpTO+L0AvAfASwD6AGQBfAXAPr+vYbkjUQr47doYZafI6msPHvT+2qBdIp27MvqVXbYptKrcUUR+H8AuVf1U5f0nANytqoe8vobljkQp0OoSwqAcvtu9q0sr+/ut0X8b59ZbWe44A+BuEcmLiAAYAnDWQLtElGQmtymo935Ozvy5PemaxtWlPkzk2L8H4BkA3wdwptLmRKPtElHCmd6mIMr9vHRC/jwErjwlovZjcqVsG+HKUyJKr1b/ttBmuuPuABFRXUolBnIPHLETEaUMAzsRUcowsBMRpQwDOxFRyjCwExGlDAM7EVHKMLATEaUMAzsRUcowsBMRpQwDOxFRyjCwExGlDAM7EVHKMLATEaUMAzsRUcoYCewisklEnhGRH4vIWRH5LRPtEhFRdKb2Yx8H8I+q+t9EJAcg4GBCIiJqloYDu4jcAuC3Afx3AFDVBQALjbZLRET1MZGK+RUAswCeEpEfiMgXRGSdgXaJiKgOJgJ7N4BfB/B5Vf0QgKsAHnFeJCIjIjIlIlOzs7MGbktERG5MBPbzAM6r6vcq75+BFehrqOqEqg6q6mBfX5+B2xIRkZuGA7uq/geAN0Xk/ZWPhgD8W6PtEhFRfUxVxfwPAOVKRczPADxkqF0iIorISGBX1R8CGDTRFhERNYYrT4mIUoaBnYgoZRjYiYhShoGdiChlGNiJiFKGgZ2IKGUY2ImIUoaBnYgoZRjYiYhShoGdiChlGNiJiFKGgZ2IKGUY2ImIUoaBnYgoZRjYiYhShoGdiChljAV2EcmIyA9E5Oum2iQiouhMjtgPAzhrsD0iIqqDkcAuIlsA3AvgCybaIyKi+pkasT8B4NMAlg21R0REdWo4sIvIfQDeVtXTAdeNiMiUiEzNzs42elsiIvJgYsS+E8D9InIOwJcAfFhEJp0XqeqEqg6q6mBfX5+B2xIRkZuGA7uqPqqqW1R1AMDHAbykqvsa7hkREdWFdexERCnTbbIxVf0WgG+ZbJOIiKLhiJ2IKGUY2ImIUoaBnYgoZRjYiYhShoGdiChlGNiJiFKGgZ2IKGUY2ImIUoaBPaTymTIGnhhA1+NdGHhiAOUz5bi7RETkyujK07Qqnylj5GsjmF+cBwBMX57GyNdGAACl7aU4u0ZEtAZH7CGMnhpdCeq2+cV5jJ4ajalHRETeGNhDmLk8E+lzIqI4MbCH0L+xP9LnRERxYmCv8JscHRsaQz6br7k+n81jbGgsclv19oGIKCxOniJ4ctSeIB09NYqZyzPo39iPsaEx14nTeidavb7u5ZmXcfK1k4H3JSKyiaq2/KaDg4M6NTXV8vt6GXhiANOXp9d8XtxYxLmHz7WkLa+vEwgUq/+N8tk8Jj4yweBO1IFE5LSqDgZdx1QMzE6O1tuW179XB3WA1ThEFKzhwC4it4nIP4vIWRF5VUQOm+hYK5mcHA3TllsuPcq9WI1DRH5MjNhvAPhzVf01AHcD+GMR2Wag3ZaJOjnaSFt2Ln368jQUupJLv6P3Dgik5uuc722sxiEiPw0HdlW9oKrfr/z9XQBnAdzaaLutVNpewsRHJlDcWIRAUNxYrDuPXd0WAGQks5I+KZ8pey52eumNl2rSLgLBh2//sLEHTquwsocofkYnT0VkAMC3Adypqu84/m0EwAgA9Pf375ieXjtRmCbOKhfACsrOoO6nuLGIsaExjJ4axfTlaWQkgyVdWvk8aROoXt8zJ3uJzGj55KmIrAfw9wAedgZ1AFDVCVUdVNXBvr4+U7dNLK+ReUYyoduYuTyD0vbSSnpnSZcArJZCls+U6xohN2tUza0XiJLBSB27iGRhBfWyqj5ros125zXBuaRLa0buzpJGW//GfpTPlDH83PBKULfNL87jwNcP4OrC1ZWvDVMz38wNzbj1AlEymKiKEQBPAjirqn/deJfamz0adgvUAFby99X5/AODB1xz6Xu27sHI10bWBHXblYUrkcshmzmq5tYLRMlgIhWzE8B+AB8WkR9WXnsMtNt2qite3NgTn6XtJZx7+ByWH1vGuYfP4ci9R1wnb0++djJSTt7mN0Ju5qjaZHUREdXPRFXM/1FVUdUPqOoHK6+TJjoXRaN5YxN5Z7fRsC2o0sYZ7EvbS3UHW78RcjNH1Sari4iofqnYK6bRvLGpvLNXIBZIqK0J7HJIe1+Y3p5ezF2bW3NdRjLYdPMm138D4DtCHhsac61cMTWqrt5bh4jikYotBaLmjZ2j88PfPOz79WFH842Mht0WLr278C66HP+Jsl1ZHP/YcYzvHkcuk3Nta9+z+zz7yVE1Ufq1XWB3C7JR8sZuAdRr5DtzeQaHvnEI+5/dv2alqFvQ9MsxBz0c3B5OC0sLWMZyzWfWXLUVoDfkNrj2G4BvP93SPiZwcRJRMrTV7o5eC2B6untcg7Pbjopeuyi6KfQUcOnaJdcKF6/dGp3pFDvF4ex3tiuLW266BZeuXUL/xv7Qfaq+d9fjXZ7VN7aMZHD8Y8ebPiLn4iSi5gu7QKmtArtXUF6fW19Tzw2s1oY7V2mGCYaA/wPDbn/5sWXXfwvb73rZ9w7brkBwYPAAjtx7xFgfnExufUxE7lK5ba9XysWtntu5aMdOC3jluws9hTV550vXLnn2JUoVicmgXn3vPVvDVZUqFEenjjY1NeL1PXJxElHrtU1gL58po0vq6271RKhXHnx89/iavLNX8BZIzW6Nfnnl8pmy5y6N9Zq+PI2BJwbw5Ve/HPprFNq0pf1+3yMXJxG1XluUO9r5W68VmGHYI0evY+4AK51gf7Zn6x5cWbiyph07rVHaXgpVJjl6ajRU6ieqen4LaNbo2et7rH4AElHrtEWO3St/G1TPXc0v1+s28eem0FPA+O7xlaAdJq8cNqffCs3Kd/t9j/pYMr53ojRIVY7da6S5rMsY3z2+JrXixm/k6LditNr63HoAWEm9hMkrtzoVkc/mMXT70JrUSDOX9nt9j/ae9ETUWm0R2P0W/jgPtnBT6Cn4ltyFTVHYqRa7pt2LQiGPCwaeGMCerXtCPXjqzcO7Tfq++IkXceKBE66LkMLMCUStReceMUTJ0hapmLA10vXWUoctG7QPuogin81j+K5hnHztZOA9Cj2FUGml6raj1IkH/XwaqUV3q99n/TqRWamrYw8bOOoJMOUzZex/dr/vKDzblcXi8mKkPtvW59bjpsxNvkG7uLGIO3rvwKk3ToVud/KBSdfv7dA3DmHi9ASWdAkZyWBkxwiO3HskcE6AtehEyZa6wN5sh75xCEenjnoG91wmhw25DZFG1FG8b/378PMrPw99vVewPfSNQ/j81Ocj3dte8OQ1CRplMRYRNU/YwN4W5Y6tcOTeI9jZv3PlfFGnhaWFpt4/SlCv3n/G/u2kt6cXAOp68CgUA08MeO4myVp0ovbSFpOnzeKcKASAcw+f85zIvHTtEoZuH2phD9fqki5MfGQCL8+8XLM52dy1uYZ+m5i+PI13rr+zZsdIToIStR8jgV1EdonIT0TkdRF5xESbzea2y6O99YBfFc6Ln3gRBwcP1r0KtlF26swvbVSvxeVFbMht4Ja+RG3OxJmnGQB/A2A3gG0AHhSRbY2222x+e7h77cFiL+Xf2b8Tt91yWyu6uUb/xn4c/ubhpi16unTtUuQtfbldL1GymBh2/gaA11X1Z6q6AOBLAPYaaLep/PZwP/ma98l+1bXsrZbtymLP1j1Nm8AFvPPpXsE7yn71RNQaJgL7rQDerHp/vvJZovmlW4IWLNVzwHSQ9bn1KytbvSwuL0aueInCK5/ulbbyqiTyO72KiJrPRGB3m2lckycQkRERmRKRqdnZWQO3bYzbakmBYPrydMvz5/lsHr9562/i6sJVI+1F6X9GMoH5dK+01cTpCc+UELfrJYqPiQh2HkB1wnkLgDW1e6o6oaqDqjrY19dn4LaNcW5FYB/MASDS6tKMZOq6f3VAHb5rGC+98ZKRvLlAsKzhas7z2TyOf+w4lh9bxtjQGEZPjbrmyb2CtN/PiSWSRPExEdj/BcBWEbldRHIAPg7gqwbabVjQpJ599mdxY7HuoLqkS5h8YDLyXi/LurwyQXnytZPGgnrYdjKSwfBdwzVbCXjlyb2CtNdDjdv1EsWr4cCuqjcA/AmAfwJwFsCXVfXVRtttVFCwquaXNsh2ZX3vk5EMSttLkQNzb09v4C6RUUR9OC3pEo7/6/GVRU5eFUKA9yZfIztGXNNZ9n71RBQPI8lkVT2pqv9JVX9VVRMxVAsKVtXsVZtOxY1F3HLTLb73sdMRUbaoFQjmrs0F7hIZxZ6te1DoKUT6Gvvn4VchVB347RG6nY8/cu+RlXSWnVY68cCJpp6tSkTBUrtXTNh9T8pnynjoKw+t2eArl8nh2N5jgZuD2Xu2lM+Use/ZfYH9qmeHyDCiHDpSTSDo39jv+ltDoaeAazeu1bXbIxGZl6qDNurhV85YbfTUqOuujRtyG3zPPQVqc8lhA10zgrrdrt/h2175cHsHTLdUC7C2tJOljETJl9rAHvbwB680hB0k/SYBFVoT0OM+McgvpXT8Y8c9fx7VFULVpY9eDwqWMhIlW2oDu1ewco6sg0b2pe0lz9y1QCCPW6/Nf7nZcyuCVooavO2fh10hVL2VQNjfeogoWVKbYw8rzKlBYQ+7zmVyyHZlcXUx+kKjmzI34frS9chf5zT5wKSxk4waOVGJiMzr+Bx7WGFG9qXtJQzfNRxYq76wtICbu29GV8Qf67rsOjy598lQZ6P6sUsvvTbxirpZV9jfeogoWTp+xF7N71i9sOeiCsTzwAov9hF39v0bqWvXx9z/e3L0TdT+OGKPKGhBU9gJw/6N/b7VKW5ennkZwGqee/KBSd/rvfaCKfQUPEflUer6iai9pXbEHvVQa68ReaGngPW59aFH0fZEa5QRu0Bw4oETNf2Tx73TPuuy63B96TpuLN+o+bwLXejOdNcc42ePyr3q8XmeKVH76OjDrOtJO3gtaKpHl3SF3ojLlpEMlnV55SE0/NywsZp3uwzT7eHkdSg2ESVPR6di6kk7mCzhixrUAWuBkZ0CeugrD6G7y9w54zOXZ0LX9RNR+0tlYPfKh09fnvasBHELfHFZXF40Uvpo69/YzwoXog5ibliYIF57nwDAyNdGAKzdAsB+X52Xv7JwJTBX3qy9X8JwbtOb7cpCRNbk2Ku3PWAgJ0q/VI7Y/UbffikZZw34+O5x3/t4bV0blkDqPqgjn83jwOCBmhH4Ux99Csf2HuOonKjDpXLyFIDvbotRKkH8qlMAa/LRPn1o5vIMent68Ytrv8Ay/Nu3J0t7e3rxzvV3XDci81LoKWB89zgDNlGH6eiqGJtXCWOUSpDNf7nZNx3j9pAI+hqnXCaHDbkNuHTtEnp7evHuwrs16RQnr0VIRJRuLamKEZHPiciPReRHIvKciGxqpD3TTFSCjO8e9z1Fya2aJuqe6AtLC1ifW4/lx5Zx8dMXcWzvMc8UTdw7SBJR8jWaY38BwJ2q+gEAPwXwaONdMsdEJUhpewlPffQp1x0e3R4S5TPlyOefArWVPKXtJYzsGFnTDssTiSiMhgK7qj5fOfMUAL4LYEvjXTLLb1OsKG1c/PRFTD4wGfiQGD01WtdCp+qRf/lMGcf/9XhNOwJZOXzatKibgxFRspksd/wkgL8z2F7ihCkXDNp6IKgkEXBfYKVQTJyewM7+nUaDu3OVrr1HDhD+VCgiSpbAEbuIvCgir7i89lZdMwrgBgDPoZ6IjIjIlIhMzc7Omul9AvmVL4YtSfRaYLWkSzUbk5nAzcGI0qfhqhgRGQZwAMCQqvqfRFGR1G17TfArjwxbzRJUVWNyf5ewh34TUfxaVRWzC8BnANwfNqinnVfVSthqlvKZMt5deNf3GpNnjvL4O6L0abQq5n8D2ADgBRH5oYgcNdCnttZoieXoqVHfGnbAbNDl5mBE6dPQ5Kmq3mGqI2nhtudMlHNHg0bj2a6s0aDbaH+JKHlSuQlY3BrZbMtvAzMAEIleIx+Em4MRpUsqNwFrZ0HbBy8sLbBihYh8MbAnTPVqWS8mJ0+JKH2YikkgOy3idTweK1aIyA9H7AlkrwZ1C+qsWCGiIAzsCeS2GhSwVrXy4AwiCsLAnkBeOfRlXWZQJ6JADOwJxNWgRNQIBvYE4mpQImoEA3sCmTgghIg6V6rPPCUiSpOW7O5IRETJw8BORJQyDOxERCnDwE5ElDIM7EREKRNLVYyIzALw3nS8uTYDuBjTvYMkuW9AsvvHvtUvyf1Lct+A1vevqKp9QRfFEtjjJCJTYcqF4pDkvgHJ7h/7Vr8k9y/JfQOS2z+mYoiIUoaBnYgoZToxsE/E3QEfSe4bkOz+sW/1S3L/ktw3IKH967gcOxFR2nXiiJ2IKNU6MrCLyOdE5Mci8iMReU5ENiWgT7tE5Cci8rqIPBJ3f2wicpuI/LOInBWRV0XkcNx9chKRjIj8QES+HndfnERkk4g8U/n/7ayI/FbcfbKJyJ9V/pu+IiJPi8jNMffnmIi8LSKvVH3WKyIviMhrlT/fk6C+JS6O2DoysAN4AcCdqvoBAD8F8GicnRGRDIC/AbAbwDYAD4rItjj7VOUGgD9X1V8DcDeAP05Q32yHAZyNuxMexgH8o6r+ZwB3ISH9FJFbAfwpgEFVvRNABsDH4+0Vvghgl+OzRwCcUtWtAE5V3sfhi1jbt0QHnB4+AAAC4klEQVTFkWodGdhV9XlVvVF5+10AW+LsD4DfAPC6qv5MVRcAfAnA3pj7BABQ1Quq+v3K39+FFZhujbdXq0RkC4B7AXwh7r44icgtAH4bwJMAoKoLqvr/4u1VjW4APSLSDSAP4OdxdkZVvw3gkuPjvQCOV/5+HMBHW9qpCre+JTCOrOjIwO7wSQDfjLkPtwJ4s+r9eSQoeNpEZADAhwB8L96e1HgCwKcBLMfdERe/AmAWwFOVVNEXRGRd3J0CAFX9dwB/BWAGwAUAl1X1+Xh75eqXVfUCYA0yAPxSzP3xkoQ4siK1gV1EXqzkDp2vvVXXjMJKNZTj66nVFZfPElWuJCLrAfw9gIdV9Z24+wMAInIfgLdV9XTcffHQDeDXAXxeVT8E4CriSyXUqOSq9wK4HcD7AKwTkX3x9qo9JSiOrOiOuwPNoqq/6/fvIjIM4D4AQxp/zed5ALdVvd+CmH8triYiWVhBvayqz8bdnyo7AdwvInsA3AzgFhGZVNWkBKjzAM6rqv0bzjNISGAH8LsA3lDVWQAQkWcB/BcAk7H2aq23ROS9qnpBRN4L4O24O1QtYXFkRWpH7H5EZBeAzwC4X1Xn4+4PgH8BsFVEbheRHKxJrK/G3CcAgIgIrBzxWVX967j7U01VH1XVLao6AOtn9lKCgjpU9T8AvCki7698NATg32LsUrUZAHeLSL7y33gICZnYdfgqgOHK34cB/EOMfamRwDiyoiMXKInI6wBuAjBX+ei7qnogxi6hMup8AlZ1wjFVHYuzPzYR+a8AvgPgDFbz2J9V1ZPx9WotEbkHwP9U1fvi7ks1EfkgrIndHICfAXhIVX8Rb68sIvI4gD+AlUb4AYA/VNXrMfbnaQD3wNox8S0AjwH4CoAvA+iH9TD6fVV1TrDG1bdHkbA4YuvIwE5ElGYdmYohIkozBnYiopRhYCciShkGdiKilGFgJyJKGQZ2IqKUYWAnIkoZBnYiopT5/+5r3fz02R3eAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pt.plot(sources[0], sources[1], \"go\")\n", "pt.plot(targets[0], targets[1], \"ro\")\n", "pt.plot(c[0], c[1], \"bo\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Assemble the interaction matrix" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "all_distvecs = sources.reshape(2, 1, -1) - targets.reshape(2, -1, 1)\n", "dists = np.sqrt(np.sum(all_distvecs**2, axis=0))\n", "interaction_mat = np.log(dists)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimate the rank depending on precision $\\varepsilon$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, obtain an idea of what $\\rho$ is:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.2537137489568833" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dist_tgt_to_c = np.sqrt(np.sum((c.reshape(2, 1) - targets)**2, axis=0))\n", "dist_src_to_c = np.sqrt(np.sum((c.reshape(2, 1) - sources)**2, axis=0))\n", "\n", "rho = np.max(dist_tgt_to_c) / np.min(dist_src_to_c)\n", "rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then plot the numerical rank depending on epsilon:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGHZJREFUeJzt3XuQXOV95vHvM5ceaaYlIU0PF908AmRhOV4DmRDHi6/BiXAU5MTeXWFnYwc5MinDJrW7tRZlb5zaTRVrUvGWWeNgsWgxu0SEkItlLBu74tjENsYSmItACAaB0SCBRiOhy+g64rd/zBloxtNDz3RPn54+z6dqiu53uvv8eLvVz7znPee8igjMzMya0i7AzMzqgwPBzMwAB4KZmSUcCGZmBjgQzMws4UAwMzPAgWBmZgkHgpmZAQ4EMzNLtKRdwEQUCoXo7u5Ouwwzs2nlwQcf3BcRXW/0uGkVCN3d3WzdujXtMszMphVJPy/ncd5lZGZmgAPBzMwSDgQzMwMcCGZmlnAgmJkZ4EAwM7OEA8HMzICMBMJLh47zxe/soHfv4bRLMTOrW5kIhJePnuLG7/Wy48UjaZdiZla3MhEIHW3NAAyeGEq5EjOz+pWJQMi3DV+h44gDwcyspEwEQkcSCB4hmJmVlolAaG1uItfSxJGTDgQzs1JSDQRJH5J0i6SvS/qNqdxWvq3FIwQzs3FUPRAkbZC0V9K2Ue0rJO2Q1CtpHUBE/GNE/CHwCeDfVbuWYh1tzQyeOD2VmzAzm9amYoRwG7CiuEFSM3ATcDmwHLhS0vKih3wu+f2U6ci1eFLZzGwcVQ+EiLgP2D+q+RKgNyJ2RsRJ4E5glYZ9AfhWRDxU7VqKeZeRmdn4ajWHsADYVXS/L2m7FrgM+Iikq8d6oqS1krZK2trf3z/pAjocCGZm46rVEpoaoy0i4kbgxvGeGBHrgfUAPT09MdkC8jNa2HXg6GSfbmbW8Go1QugDFhXdXwjsrtG2AcjnPEIwMxtPrQJhC7BU0hJJOWA1sKlG2wZGdhn5KCMzs1Km4rDTjcD9wDJJfZLWRMQQcA1wL7AduCsiHq/2tseTb2tm8OQQEZPe62Rm1tCqPocQEVeWaN8MbK729srV0dZCBBw9efrVS1mYmdlrMnHpCvD1jMzM3khmAsFXPDUzG19mAuG1EYInls3MxpKhQBheJMcjBDOzsWUmEPKeQzAzG1dmAuHVXUZeE8HMbEyZCQRPKpuZjS97gXDcgWBmNpbMBEJ7rhnJcwhmZqVkJhAkJYvk+LBTM7OxZCYQYGQZTY8QzMzGkrFAaOGIjzIyMxtTpgLBy2iamZWWqUDo8CI5ZmYlZSsQ2lo47MNOzczGlKlAeOv82Tz54mG+8UhNV+80M5sWMhUIn37f+fxK91z+y92PsrP/SNrlmJnVlUwFQq6lib/4yNs5duo0P3pmIO1yzMzqSqYCAeDsOTMAOHTsVMqVmJnVl8wFwozWZtpamjjoQDAze53MBQLAnJmtHDzqQDAzK5bJQDijvdUjBDOzUTIZCHNmtvLysZNpl2FmVlcyGwgHj/kENTOzYpkMhNkzW32UkZnZKKkGgqRzJd0q6e5abveMmTnPIZiZjTLpQJC0QdJeSdtGta+QtENSr6R1471GROyMiDWTrWGy5sxs5ciJIU6dfqXWmzYzq1uVjBBuA1YUN0hqBm4CLgeWA1dKWi7pbZLuGfVzZgXbrsicmcPrK3u3kZnZa1om+8SIuE9S96jmS4DeiNgJIOlOYFVEXA+snMx2JK0F1gIsXrx4suW+zpz2VgAOHjtFZ76tKq9pZjbdVXsOYQGwq+h+X9I2Jkmdkm4GLpJ03ViPiYj1EdETET1dXV1VKfKMmTkAzyOYmRWZ9AihBI3RFqUeHBEDwNVVruENzZ45PEJ42YFgZvaqao8Q+oBFRfcXAnW3+MCcJBA8h2Bm9ppqB8IWYKmkJZJywGpgU5W3UbGRQPAuIzOz11Ry2OlG4H5gmaQ+SWsiYgi4BrgX2A7cFRGPV6fU6nk1EHyBOzOzV1VylNGVJdo3A5snXVEN5FqaaM81ew7BzKxIJi9dASPXM3IgmJmNcCCYmRmQ4UCY7UAwM3udzAbCGV41zczsdTIbCHPbczw7MMh/+8YT7B/0YjlmZtU+U3nauOrSJbx87CQbfvQs88+YwSffdW7aJZmZpSqzI4RlZ8/i5t/7ZXLNTew74hGCmVlmAwFAEnM7Wtk/eCLtUszMUpfpQACY19HG/kFPLpuZORA8QjAzAxwIzOto44APPzUzcyDMa29l4IhHCGZmmQ+EuR05Dh0f4tTpV9IuxcwsVZkPhM6O4eU0Dxz1oadmlm2ZD4S5I4HgI43MLOMyHwjzkkAY8JFGZpZxDgSPEMzMAAfCq4HgcxHMLOsyHwhz20cCwSMEM8u2zAdCa3MTs2e0+CgjM8u8zAcCDO82GvCaCGaWcQ4EhgPhgAPBzDLOgYBHCGZm4EAAPEIwM4M6CARJHZIelLQyrRoWz2vnpcPH+Zen+9MqwcwsdZMOBEkbJO2VtG1U+wpJOyT1SlpXxkt9BrhrsnVUw1WXLmHZWbO4duPP2LX/aJqlmJmlppIRwm3AiuIGSc3ATcDlwHLgSknLJb1N0j2jfs6UdBnwBPBSBXVUrD3Xwlf//S9z6Ngp/vbBvjRLMTNLTctknxgR90nqHtV8CdAbETsBJN0JrIqI64Ff2CUk6X1AB8PhcUzS5ohI5TrUb+rsYF5Hjv7DPmPZzLJp0oFQwgJgV9H9PuBXSz04Ij4LIOkTwL6xwkDSWmAtwOLFi6tZ6y+Y15HzJSzMLLOqPamsMdrijZ4UEbdFxD0lfrc+Inoioqerq6viAsfT2dHGwBEfbWRm2VTtQOgDFhXdXwjsrvI2psy8fI79PvzUzDKq2oGwBVgqaYmkHLAa2FTlbUyZQkeOfV5f2cwyqpLDTjcC9wPLJPVJWhMRQ8A1wL3AduCuiHi8OqVOvXkdbRw6PsTJIa+vbGbZU8lRRleWaN8MbJ50RSnqzL+2vvJZs2ekXI2ZWW2lfqZyPekcWU7TE8tmlkEOhCKd+TbA6yubWTY5EIqM7DLykUZmlkUOhCIju4z2eZeRmWWQA6HI7BmttDTJZyubWSY5EIo0NYm5HTlPKptZJjkQRun06mlmllEOhFE68zkGfLaymWWQA2GUzo42H2VkZpnkQBhlnucQzCyjHAijdHe2c/jEEB/f8FP2HDyWdjlmZjXjQBjlo7/6JtZdfgE/fmYf6+/bmXY5ZmY140AYJdfSxNXvOY9Fc9vZ6+U0zSxDHAgl+GgjM8saB0IJXk7TzLLGgVBCZ94nqJlZtjgQSujMt3Hg6EmGTnv1NDPLBgdCCYV8jgg4cPRU2qWYmdWEA6GEzg4vlmNm2eJAKGFksRxPLJtZVjgQSijkRxbL8QjBzLLBgVBCYWR9ZY8QzCwjHAgljKye5jkEM8sKB0IJTU3ylU/NLFMcCOPozLexz4FgZhnRkubGJb0L+FhSx/KIeGea9YxWyOe8y8jMMmPSIwRJGyTtlbRtVPsKSTsk9UpaN95rRMS/RMTVwD3A1yZby1Tp9C4jM8uQSkYItwFfBm4faZDUDNwEfADoA7ZI2gQ0A9ePev5VEbE3uf1R4JMV1DIlOvNtvuKpmWXGpAMhIu6T1D2q+RKgNyJ2Aki6E1gVEdcDK8d6HUmLgYMRcWiytUyVznyOwZOnOTB4krkdubTLMTObUtWeVF4A7Cq635e0jWcN8H9K/VLSWklbJW3t7++vQonle+d5BVqbxSdv38rgiaGabtvMrNaqHQgaoy3Ge0JEfD4ifjzO79dHRE9E9HR1dVVc4ERcuOgMblx9ET97/gBf+qena7ptM7Naq3Yg9AGLiu4vBHZXeRs1dfnbzuHNZ81iZ/9g2qWYmU2pagfCFmCppCWScsBqYFOVt1FzhXybr2lkZg2vksNONwL3A8sk9UlaExFDwDXAvcB24K6IeLw6paankM85EMys4VVylNGVJdo3A5snXVEdGhkhRATSWNMkZmbTny9dUYbCrDaOn3qFwZOn0y7FzGzKOBDKMHIp7H2HvdvIzBqXA6EMI4vl+LpGZtbIHAhlGBkh9B/2dY3MrHE5EMrQNSvZZeQjjcysgTkQyjCvw+srm1njcyCUobW5ibntrQ4EM2toDoQyFfJt7PMcgpk1MAdCmXz5CjNrdA6EMhVmORDMrLE5EMo0fD0j7zIys8blQChTId/GkRNDHD/ly1eYWWNyIJRp5FyEZ/qPpFyJmdnUcCCU6f0XnMmsthZu+PYOIsZdBM7MbFpyIJSpkG/jjy9byg+e6ud7T+5Nuxwzs6pzIEzA7/9aN+fMmcFdW3elXYqZWdU5ECYg19LEuV0d7PVlsM2sATkQJsgnqJlZo3IgTJAvYWFmjcqBMEGFfBvHTp3m6MmhtEsxM6sqB8IEjaye5lGCmTUaB8IEvbp6mucRzKzBOBAmaCQQPLFsZo3GgTBBhVlePc3MGpMDYYI6O5IRgucQzKzB1CwQJJ0r6VZJdxe1dUj6mqRbJH2sVrVUItfSxJyZXk7TzBpPWYEgaYOkvZK2jWpfIWmHpF5J68Z7jYjYGRFrRjX/LnB3RPwhcMWEKk9RIZ9jYNCBYGaNpaXMx90GfBm4faRBUjNwE/ABoA/YImkT0AxcP+r5V0XEWFeEWwg8ltyeNgsN+OQ0M2tEZQVCRNwnqXtU8yVAb0TsBJB0J7AqIq4HVpa5/T6GQ+FhptF8RmFWG9t3H0q7DDOzqqrkS3gBUHzZz76kbUySOiXdDFwk6bqk+e+BD0v6K+AbJZ63VtJWSVv7+/srKLd6Ch05n4dgZg2n3F1GY9EYbSVXjomIAeDqUW2DwB+Mt5GIWA+sB+jp6amLlWkK+TYOHx9eTnNGa3Pa5ZiZVUUlI4Q+YFHR/YXA7srKmR4KyXKaA4OeRzCzxlFJIGwBlkpaIikHrAY2Vaes+rZ4XjsAX/nnXk6/UheDFjOzipV72OlG4H5gmaQ+SWsiYgi4BrgX2A7cFRGPT12p9eOd53XyqXefyx0PPM8N334y7XLMzKqi3KOMrizRvhnYXNWKpgFJXPfBt/BI38v8ZOdA2uWYmVXFtDnUsx7NnzOTfUc8j2BmjcGBUIHCrDb6j5wgwvMIZjb9ORAqUMjnODn0CkdOePU0M5v+HAgVeG1tBO82MrPpz4FQAS+WY2aNxIFQgVcD4bADwcymPwdCBQp5r55mZo3DgVCBeR05JOj3HIKZNQAHQgVampuY255jwCMEM2sADoQKFfI57zIys4bgQKhQId/mw07NrCE4ECo0HAgeIZjZ9OdAqNDw+soOBDOb/hwIFerM5xg8eZpjJ0+nXYqZWUUcCBXq8tnKZtYgHAgVKswaPjmt34FgZtOcA6FCF5w9G4Af9+5LuRIzs8o4ECo0/4yZXNI9j398eLfXRTCzac2BUAVXXDif3r1HeGLPobRLMTObNAdCFfzW286hpUlsenh32qWYmU2aA6EK5nbkeM+bu9j0yG5eecW7jcxsenIgVMmqixaw5+BxHnh2f9qlmJlNigOhSi57y5m055rZ9MgLaZdiZjYpDoQqac+18JtvPZtvPrqHE0M+a9nMph8HQhWtunA+h44P8dUf7Ey7FDOzCatZIEg6V9Ktku4uanuLpJsl3S3pj2pVy1R599IuVl04ny9+9ylu+PaT7D10PO2SzMzK1lLOgyRtAFYCeyPil4raVwBfApqB/x0R/6PUa0TETmBNcSBExHbgaklNwC2T+1+oH01N4i//zdsB+Mr3n+Er33+GQj7H2XNmcPbsmZw9p40LF83lwxcvQFLK1ZqZvV5ZgQDcBnwZuH2kQVIzcBPwAaAP2CJpE8PhcP2o518VEXvHemFJVwDrktef9lqam/jS6ou49v1L+c4TL7Jr/1H2HDxO34GjbHluP//vJ8+z7YWD/OnK5TQ1ORTMrH6UFQgRcZ+k7lHNlwC9yV/+SLoTWBUR1zM8mihLRGwCNkn6JvDXo38vaS2wFmDx4sXlvmzqzj8zz/lnnv+6tojgz7+5nVt/+Cz9h09ww0f+FR1t5WaymdnUqmQOYQGwq+h+X9I2Jkmdkm4GLpJ0XdL2Xkk3SvoqsHms50XE+ojoiYierq6uCspNnyQ+91tv4brLL+Bb2/bwO1/5Ec/uG0y7LDMzoPxdRmMZa39HydN0I2IAuHpU2/eB71dQw7QjiU+95zzeOn8O1258iCv+1w9Z+fb5FPI5zuvKM6e9Ne0SzSwFZ82awfL5s1OtoZJA6AMWFd1fCPhiPmW6dGmBb1x7KZ/5u0f57hMvcuDoKU77shdmmfZfVy5nzaVLUtt+JYGwBVgqaQnwArAa+GhVqsqIhXPbueOT7wDg5NAr/HxgkCMnhlKuysxqLYBb7tvJf7/nCR7te5lr37+U88/M17yOcg873Qi8FyhI6gM+HxG3SroGuJfhI4s2RMTjU1Zpg8u1NLH0rFlpl2FmKfnyRy/mf373KW794bN8/eHdXHp+gU+/73x+7bzOmtWg6bSoS09PT2zdujXtMszMpszAkRPc8cDzbPzp8+w5eJxPvLObz//28orOXZL0YET0vNHjfOkKM7M60plv4z/8+lK+95/ey+pfWcRtP36Ox144WJNtOxDMzOrQzFwzn3rPeQA8uedwTbbpQDAzq1OL57Uzo7WJJ190IJiZZVpzk3jzWbPY8VJt1mt3IJiZ1bFlZ83yLiMzM4MLzpnNwOBJ+g+fmPJtORDMzOrYBWcPn5+0owbzCA4EM7M6tiwJhCdfnPp5BAeCmVkdK+TbKORzNTnSyBfjNzOrcx+6cAFnzm6b8u04EMzM6tznVi6vyXa8y8jMzAAHgpmZJRwIZmYGOBDMzCzhQDAzM8CBYGZmCQeCmZkBDgQzM0tMqzWVJfUDP6/gJQrAviqVU02ua2LqtS6o39pc18Q0Wl1vioiuN3rQtAqESknaWs5C07XmuiamXuuC+q3NdU1MVuvyLiMzMwMcCGZmlshaIKxPu4ASXNfE1GtdUL+1ua6JyWRdmZpDMDOz0rI2QjAzsxIyEQiSVkjaIalX0roU61gk6Z8lbZf0uKQ/Ttr/TNILkh5Ofj6YUn3PSXosqWFr0jZP0nclPZ38d26Na1pW1C8PSzok6U/S6DNJGyTtlbStqG3M/tGwG5PP3KOSLq5xXX8h6clk2/8g6YykvVvSsaJ+u3mq6hqntpLvnaTrkj7bIek3a1zX3xTV9Jykh5P2mvXZON8RtfmcRURD/wDNwDPAuUAOeARYnlIt5wAXJ7dnAU8By4E/A/5zHfTVc0BhVNsNwLrk9jrgCym/ly8Cb0qjz4B3AxcD296of4APAt8CBLwDeKDGdf0G0JLc/kJRXd3Fj0upz8Z875J/C48AbcCS5N9tc63qGvX7vwT+tNZ9Ns53RE0+Z1kYIVwC9EbEzog4CdwJrEqjkIjYExEPJbcPA9uBBWnUMgGrgK8lt78GfCjFWn4deCYiKjk5cdIi4j5g/6jmUv2zCrg9hv0EOEPSObWqKyK+ExFDyd2fAAunYttvpESflbIKuDMiTkTEs0Avw/9+a1qXJAH/Ftg4FdsezzjfETX5nGUhEBYAu4ru91EHX8KSuoGLgAeSpmuSId+GWu+WKRLAdyQ9KGlt0nZWROyB4Q8rcGZKtQGs5vX/SOuhz0r1Tz197q5i+K/IEUsk/UzSDyS9K6Waxnrv6qXP3gW8FBFPF7XVvM9GfUfU5HOWhUDQGG2pHlolKQ/8HfAnEXEI+CvgPOBCYA/Dw9U0/OuIuBi4HPi0pHenVMcvkJQDrgD+Nmmqlz4rpS4+d5I+CwwBdyRNe4DFEXER8B+Bv5Y0u8ZllXrv6qLPgCt5/R8eNe+zMb4jSj50jLZJ91kWAqEPWFR0fyGwO6VakNTK8Bt9R0T8PUBEvBQRpyPiFeAWpmiY/EYiYnfy373APyR1vDQyBE3+uzeN2hgOqYci4qWkxrroM0r3T+qfO0kfB1YCH4tkh3OyO2Yguf0gw/vp31zLusZ57+qhz1qA3wX+ZqSt1n021ncENfqcZSEQtgBLJS1J/spcDWxKo5Bk3+StwPaI+GJRe/E+v98Bto1+bg1q65A0a+Q2w5OS2xjuq48nD/s48PVa15Z43V9t9dBniVL9swn4/eQokHcAB0eG/LUgaQXwGeCKiDha1N4lqTm5fS6wFNhZq7qS7ZZ67zYBqyW1SVqS1PbTWtYGXAY8GRF9Iw217LNS3xHU6nNWi5nztH8Ynol/iuFk/2yKdVzK8HDuUeDh5OeDwP8FHkvaNwHnpFDbuQwf4fEI8PhIPwGdwD8BTyf/nZdCbe3AADCnqK3mfcZwIO0BTjH8l9maUv3D8FD+puQz9xjQU+O6ehnetzzyObs5eeyHk/f3EeAh4LdT6LOS7x3w2aTPdgCX17KupP024OpRj61Zn43zHVGTz5nPVDYzMyAbu4zMzKwMDgQzMwMcCGZmlnAgmJkZ4EAwM7OEA8HMzAAHgpmZJRwIZmYGwP8H2vmsU5QV3DoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "_, sigma, V = la.svd(interaction_mat)\n", "pt.semilogy(sigma)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "eps_values = 10**(-np.linspace(1, 12))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the given precisions $\\varepsilon$, find the associated numerical rank:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGCdJREFUeJzt3XtwVvd95/HPV3qQBAJJgMRNjy5AMJggucYyEvGapnacksa149wWIyXu1C3jzG423Zltm0xmt9nZ2STTdLZpNzt1mNjOBQx1GCdx3TSJ7dRxmpiLsDEXg28EgYSFxFXcBEj67h+IFMsCXZ5znvM853m/Zhiso4PO52fhj4/O75zzM3cXACD75UUdAAAQDAodAGKCQgeAmKDQASAmKHQAiAkKHQBigkIHgJig0AEgJih0AIgJCh0AYiKRzoOVl5d7bW1tOg8JAFlv+/btR929YqT90lrotbW1am1tTechASDrmVnbaPbjkgsAxASFDgAxQaEDQExQ6AAQEyMWupk9amZdZrZ7yPbPmtlrZrbHzP46vIgAgNEYzRn6tyWtvHqDmf2epHsl1bv7eyX9TfDRAABjMWKhu/sLko4P2fwZSV919wuD+3SFkO23Dp88r2dfPRLmIQAg6433GvoNkm43sy1m9gszu/VaO5rZGjNrNbPW7u7ucR3sb595XZ/b+LLOXOgbZ1wAiL/xFnpC0lRJTZL+XNITZmbD7ejua929wd0bKipGfNBpWM1NNTp7sV8/eLljnHEBIP7GW+jtkp70y7ZKGpBUHlysd7opWar3zinR+s1tcvewDgMAWW28hf5DSXdIkpndIKlA0tGgQg1lZmppqtG+ztN66eCJsA4DAFltNLctbpD0oqSFZtZuZg9KelTSvMFbGTdKesBDPnW+56Y5mlyY0PrNB8M8DABkrRFfzuXu91/jUy0BZ7mu4sKEPrq0Uhu3HdJ/v3uxphYXpPPwAJDxsupJ0ebGGl3sG9D3tx+KOgoAZJysKvSFs6bo1tqpenzLQQ0MMDkKAFfLqkKXLp+lHzh2Tr96K7Q5WADISllX6B+qm6VpxQVMjgLAEFlX6IWJfH3ilqSe2XtEnad6o44DABkj6wpdklY3Vqt/wPWP25gcBYArsrLQa6YX6/YF5dqw9aD6+geijgMAGSErC12SWppq1NnTq+f2hfqiRwDIGiM+WJSp7lw0Q7NKivS9F9v0O1VlkWQompCv0okTIjk2AAyVtYWeyM/TqmVV+vqzb6jxy89FkiE/z/T0Z/+DbpxdEsnxAeBqWVvokrRmxTzNKZuovv70P2Q04K7/9fSr+t7mNn35vrq0Hx8AhsrqQp9UkNAnG6oiO/6OQyf1w5c79IUPLdKUIi69AIhW1k6KZoKWphqdu9ivH+44HHUUAKDQU3FTslRLKll4A0BmoNBTYGZqbry88Mb2NhbeABAtCj1F99w0R1MKE1q/hXfLAIgWhZ6i4sKE7ltaqX/e+baOn70YdRwAOYxCD0BzY40u9g9oEwtvAIgQhR6AKwtvrGfhDQARotAD0tJUo7Zj5/Rvb7LwBoBoUOgBWblkcOGNLW1RRwGQo0YsdDN71My6zGz3MJ/7b2bmZlYeTrzsUZjI1ycaknp2bxcLbwCIxGjO0L8taeXQjWZWJekuSdyvN6h5WY36B1wbt/GvBED6jVjo7v6CpOPDfOpvJf2FJGYBB1VPn6QVN1Ro49ZDLLwBIO3GdQ3dzO6R1OHurwScJ+u1NFars6dXz+5l4Q0A6TXmQjezSZK+KOl/jHL/NWbWamat3d3dYz1c1rlj0QzNLi1ichRA2o3nDH2+pLmSXjGzA5KSkl4ys1nD7ezua929wd0bKioqxp80SyTy87Tq1mr98o2jOnD0bNRxAOSQMRe6u+9y9xnuXuvutZLaJS11987A02Wp/3hrlfLzTBu2MjkKIH1Gc9viBkkvSlpoZu1m9mD4sbLbrNIi3XXjTD3Reki9l/qjjgMgR4zmLpf73X22u09w96S7PzLk87XuzuORQzQ3VevEuUv6yW5+cAGQHjwpGpLb5perdvokrdvM5CiA9KDQQ5KXd3nxi9a2E9rX2RN1HAA5gEIP0cdvSaogkaf1m5kcBRA+Cj1EU4sLdHfdbP3g5Q6dvdAXdRwAMUehh6y5qVpnLvTpRzsORx0FQMxR6CFbWj1Vi2ZN0brNbXLntTcAwkOhh8zM1NxUo1ff7tGOQyejjgMgxij0NLjv5koVF+RrHZOjAEJEoafB5MKE7r25Uk/vPKyT5y5GHQdATCWiDpArWhpr9PiWg3rgsW2qmFwYSYaPLq3UH9TNjuTYAMJHoafJ4jklWt1YrR0HT+rwyfNpP/6Rnl7t6jipDy6eqUQ+P5gBcUShp9GX76uL7NjPvHpEf/rdVj27t0srlwz7pmMAWY5TtRzxewsrWHgDiDkKPUck8vN0/zIW3gDijELPIVcW3nichTeAWKLQc8jMkiJ9cPFMfZ+FN4BYotBzTHNjjU6cu6R/2f121FEABIxCzzHvmz9dc8uLeaUvEEMUeo7JyzOtXlbNwhtADFHoOYiFN4B4otBzEAtvAPE0YqGb2aNm1mVmu6/a9jUz22dmO83sB2ZWFm5MBK25qYaFN4CYGc0Z+rclrRyy7RlJS9y9XtLrkr4QcC6EbGl1GQtvADEzYqG7+wuSjg/Z9jN3v/Kz+mZJyRCyIURmppbBhTdeZuENIBaCeDnXH0v6xwC+DtLsIzdX6is/3quv/nifbl9Q/q7Pl08p1Kpbq2RmEaQDMFYpFbqZfVFSn6T119lnjaQ1klRdXZ3K4RCwyYUJfWp5rR7+xVvaeuD4sPvMLS9W07zpaU4GYDxsNNdPzaxW0tPuvuSqbQ9IekjSne5+bjQHa2ho8NbW1vElRWj6+gfeta23b0Dv+8pzWnFDhb6xemkEqQBcYWbb3b1hpP3Gdduima2U9JeS7hltmSNzJfLz3vVrcmFCH7slqZ/u6VT36QtRRwQwCqO5bXGDpBclLTSzdjN7UNI3JE2R9IyZ7TCzh0POiQg0N9boUr/ridZDUUcBMAojXkN39/uH2fxICFmQYd4zY7KWz5uuDVsP6qHfna/8PCZHgUzGk6K4ruamarWfOK8XXu+OOgqAEVDouK4PLp6l8smFLF0HZAEKHddVkMjTqlur9PN9Xeo4eT7qOACug0LHiFYtq5JL2sjSdUBGo9AxouTUSbpj4Qxt3HZIl4a5Zx1AZqDQMSrNTdXqPn1Bz7x6JOooAK6BQseo/O4NM1RZNlHrNjM5CmQqCh2jkp9nWt1YrV+/dUxvdZ+JOg6AYVDoGLVPNlRpQr7p8S1MjgKZKIjX5yJHVEwp1O+/d5Y2bW/X7QvKI3mt7oQ807K505TI51wEGIpCx5h8enmtnt75tv7osW2RZfjSHy7WH902N7LjA5mKQseYLJs7TT/9sxU6E9Hi0l96ao/WbTmoB95Xy8IbwBAUOsZs4awpkR3708tr9Oebdmrz/uNaPp+FN4CrcSESWeXu+jkqKUrwbhlgGBQ6ssrEgnx9/JYqFt4AhkGhI+usbqxm4Q1gGBQ6ss6VhTce33JQ/QMjr4kL5AoKHVmppalGHSdZeAO4GoWOrHTX4pkqn1zIu2WAq1DoyEq/XXjjtS61nzgXdRwgI1DoyFqrllVJkjZuZXIUkCh0ZLGrF9642MfCG8CIhW5mj5pZl5ntvmrbNDN7xszeGPx9argxgeE1N1Xr6BkW3gCk0Z2hf1vSyiHbPi/pOXdfIOm5wY+BtGPhDeDfjVjo7v6CpONDNt8r6TuD//wdSR8JOBcwKlcW3nhx/zG92cXCG8ht472GPtPd35akwd9nBBcJGBsW3gAuC31S1MzWmFmrmbV2d/MQCIL37wtvHFLvpf6o4wCRGW+hHzGz2ZI0+HvXtXZ097Xu3uDuDRUVFeM8HHB9zY016unt0z+9cjjqKEBkxlvoT0l6YPCfH5D0o2DiAOPTNG+a5lcUaz2XXZDDRnPb4gZJL0paaGbtZvagpK9KusvM3pB01+DHQGTMTM2NNdpx6KR2d5yKOg4QidHc5XK/u8929wnunnT3R9z9mLvf6e4LBn8fehcMkHYfuyWpogl5LH6BnMWTooiN0okTdM9Nc/SjHYfV03sp6jhA2lHoiJXmxhqdu9ivH77cEXUUIO0odMTKTVVlqqss1frNB+XO4hfILRQ6YqelqVqvHTmt1rYTUUcB0opCR+z84U1zNKUoofW83wU5hkJH7EwqSOhjS5P68a5OHTtzIeo4QNpQ6Iil1Y3Vutg/oE3b26OOAqQNhY5YumHmFC2bO02Pbz2ogQEmR5EbKHTEVktTjdqOndMv3zwadRQgLRJRBwDC8vvvnanpxQX6z4+/pLJJE6KO8w5zSidq3Z80akI+51QIDoWO2CpM5Ot/31enn+3pjDrKOxw53atfvXlMr3We1pLK0qjjIEYodMTayiWztHLJrKhjvMPBY+e04mv/ql0dpyh0BIqf94A0q5o2UaUTJ2hnO2+FRLAodCDNzEz1yVLtbD8ZdRTEDIUORKCuslSvdZ5myTwEikIHIlCfLFPfgGtf5+mooyBGKHQgAvXJy5Ohu7jsggBR6EAEZpcWqXxygV5hYhQBotCBCFyeGC3TLgodAaLQgYjUVZbqja7TOnexL+ooiAkKHYhIfbJUAy7tOdwTdRTEREqFbmb/1cz2mNluM9tgZkVBBQPirm5wYpQHjBCUcRe6mVVK+i+SGtx9iaR8SauCCgbE3YwpRZpdWsSdLghMqpdcEpImmllC0iRJh1OPBOSOuspSztARmHEXurt3SPobSQclvS3plLv/LKhgQC6oT5Zq/9Gz6um9FHUUxEAql1ymSrpX0lxJcyQVm1nLMPutMbNWM2vt7u4ef1IghuqSZZKk3R2cpSN1qVxy+YCk37h7t7tfkvSkpPcN3cnd17p7g7s3VFRUpHA4IH7qK688MUqhI3WpFPpBSU1mNsnMTNKdkvYGEwvIDVOLC1Q1bSLX0RGIVK6hb5G0SdJLknYNfq21AeUCckZ9ZZl2dnCnC1KX0l0u7v5X7r7I3Ze4+6fc/UJQwYBcUZcs1aHj53Xi7MWooyDL8aQoELErb17cycQoUkShAxFbUsmrdBEMCh2IWEnRBM0rL2ZiFCmj0IEMUJfkiVGkjkIHMkB9skydPb3q6umNOgqyGIUOZIDfLknHxChSQKEDGWDx7BLlmViSDimh0IEMUFyY0HtmTOZOF6SEQgcyRH2yTLs6Tsndo46CLJWIOgCAy+qTpdq0vV1/99wbmjghP+o4v2Umfbh+jirLJkYdBSOg0IEMsXzedBXk5+nrz74RdZR3eantpB7+1C1Rx8AIKHQgQyyYOUW7/ucH1T+QWZdc/s/PXtdjvz6gIz29mlnCssGZjEIHMkhhInMutVzxqeU1+ta//UYbtx7S5z6wIOo4uA4mRQFcV830Yt2+oFwbth5UX/9A1HFwHRQ6gBG1NNWos6dXP9/XFXUUXAeFDmBEdy6aoVklRVq35WDUUXAdFDqAESXy87RqWZVeeL1bB4+dizoOroFCBzAqq26tVn6eaf3Wtqij4BoodACjMqu0SB+4cYa+39quC339UcfBMCh0AKPW0lSj42cv6ie7O6OOgmFQ6ABG7bb55aqZPknrNnPZJRNR6ABGLS/P1NxYrW0HTui1ztNRx8EQKRW6mZWZ2SYz22dme81seVDBAGSmj99SpYJEntZv4Sw906R6hv53kn7i7osk3SRpb+qRAGSyacUF+nDdbD35UofOXuiLOg6uMu5CN7MSSSskPSJJ7n7R3Xk7P5ADWpqqdeZCn5565XDUUXCVVM7Q50nqlvSYmb1sZt8ys+KhO5nZGjNrNbPW7u7uFA4HIFMsrZ6qRbOmaN3mNhbkyCCpFHpC0lJJ/+DuN0s6K+nzQ3dy97Xu3uDuDRUVFSkcDkCmMDM1N9Voz+Ee1kHNIKkUerukdnffMvjxJl0ueAA54L6bK1VckM8tjBlk3IXu7p2SDpnZwsFNd0p6NZBUADLe5MKE7r25Uv/0ymGdOncp6jhQ6ne5fFbSejPbKel3JH059UgAskVLY40u9A1o00vtUUeBUix0d98xeH283t0/4u4nggoGIPMtnlOim6vLtH4Lk6OZgCdFAaSkpbFG+7vP6sX9x6KOkvModAAp+XD9bJVOnKD1m1n8ImoUOoCUFE3I1yduSeqnezrVdbo36jg5jUIHkLLVjdXqG3A9se1Q1FFyGoUOIGXzKibrtvdM14ath9Q/wORoVCh0AIFoaaxRx8nzev61rqij5CwKHUAgPrB4pmZMKeTJ0QhR6AACMSE/T6turdLzr3fr0PFzUcfJSYmoAwCIj1XLqvWNf31T67a06XN3Log6zjsk8vJUkIj3OSyFDiAwc8om6o5FM/XNX+zXN3+xP+o471CQn6d/+bPbNb9ictRRQkOhAwjUl+5ZrGVzpyqT3gRw9mK//v65N7R5/zEKHQBGKzl1ktasmB91jHdwd333xQPa1X5Kaow6TXjifUEJAHR5QY66ytLYL8ZBoQPICfXJUr1+5LR6L/VHHSU0FDqAnFCfLFP/gOvVt3uijhIaCh1ATqhPlkrS5evoMUWhA8gJs0qKVD65UK+0n4w6SmgodAA5wcxUnyzlDB0A4qA+Wao3u8/o7IW+qKOEgkIHkDPqk6Vyl/YcjufEKIUOIGfUVZZJknbG9Dp6yoVuZvlm9rKZPR1EIAAIS8WUQs0pLdLOmF5HD+IM/XOS9gbwdQAgdHXJUu3qoNDfxcySkj4s6VvBxAGAcNUny/Sbo2d16vylqKMELtUz9K9L+gtJAwFkAYDQ1VVefsBodwzP0sdd6GZ2t6Qud98+wn5rzKzVzFq7u7vHezgACMSVJ0bjeB09lTP02yTdY2YHJG2UdIeZrRu6k7uvdfcGd2+oqKhI4XAAkLqySQWqnjZJuzrid6fLuAvd3b/g7kl3r5W0StLP3b0lsGQAEJK6ZCln6AAQB/WVpWo/cV7HzlyIOkqgAil0d3/e3e8O4msBQNjqk5cfMIrb7YucoQPIOUsqSyTF71W6FDqAnDOlaILmVRRrJ2foAJD96itLY/dOFwodQE6qT5bpSM8FHenpjTpKYCh0ADkpjkvSUegActLiOSXKs3i9SpdCB5CTJhUkdMPMKbGaGKXQAeSsusrLa4y6e9RRAkGhA8hZ9clSHTt7UYdPxWNiNBF1AACISt3gE6N/uWmnZkwpDPVYf7pinm6cXRLqMSh0ADlr8ewSLaudprbjZ9V2/Gyox/rk+apQv75EoQPIYQWJPD3x0PKoYwSGa+gAEBMUOgDEBIUOADFBoQNATFDoABATFDoAxASFDgAxQaEDQExYOl9KY2bdktrSdsDUlEs6GnWIkMR5bFK8x8fYslcq46tx94qRdkproWcTM2t194aoc4QhzmOT4j0+xpa90jE+LrkAQExQ6AAQExT6ta2NOkCI4jw2Kd7jY2zZK/TxcQ0dAGKCM3QAiAkKHQBigkIHgJig0EfJzOaZ2SNmtul627KdmS02syfM7B/M7ONR5wmSmd1uZg+b2bfM7NdR5wmamb3fzH45OMb3R50nSGZ24+C4NpnZZ6LOE6QgeyQnCt3MHjWzLjPbPWT7SjN7zczeNLPPX+9ruPt+d39wpG1RCmKckj4k6f+6+2ckfTq0sGMU0Pfwl+7+kKSnJX0nzLxjFdD3ziWdkVQkqT2srGMV0Pdu7+D37pOSMubho7C6ZdzcPfa/JK2QtFTS7qu25Ut6S9I8SQWSXpG0WFKdLv8Hf/WvGVf9uU3DfP13bcvWcQ7++n+SvibpV1GPKaTv4ROSSqIeUwjfu7zBPzdT0vqoxxT0907SPZJ+LWl11GMK6e9lyj2SE4tEu/sLZlY7ZPMySW+6+35JMrONku51969Iuju9CYMR4Dj/k5nlS3oyrKxjFdTYzKxa0il37wkx7pgF/Hf0hKTCMHKOR1Bjc/enJD1lZv8s6fHwEo9epnVLTlxyuYZKSYeu+rh9cNuwzGy6mT0s6WYz+8K1tmWgsY6z1szWSvquLp+lZ7IxjW3Qg5IeCy1RsMb6vfuomX1T0vckfSPkbKka69jeb2Z/Pzi+H4cdLkUpd8t45cQZ+jXYMNuu+ZSVux+T9NBI2zLQWMd5QNKa0NIEa0xjkyR3/6uQsoRhrN+7J5VBP1WNYKxje17S82GFCVjK3TJeuXyG3i6p6qqPk5IOR5QlTHEeZ5zHJsV7fIwtBLlc6NskLTCzuWZWIGmVpKcizhSGOI8zzmOT4j0+xhaGqGeJ0zQTvUHS25Iu6fL/PR8c3P4Hkl7X5RnpL0adk3Hm5tjiPj7Glr6x8XIuAIiJXL7kAgCxQqEDQExQ6AAQExQ6AMQEhQ4AMUGhA0BMUOgAEBMUOgDEBIUOADHx/wEcM2Y2DtkHKQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "def numrank(eps):\n", " return np.sum(sigma > eps)\n", "\n", "ranks = [numrank(e) for e in eps_values]\n", "pt.semilogx(eps_values, ranks)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now compare with our estimate:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX9//HXJ5OFJSAEAiKLKAKCrSJGpPjVuhdwwQ0ErWKLUrdq+7Xf1ta237a/+q2tW0tdEbWgCG5YqEUUUSzuBIusRRAVIgECsiNJSM7vj3NjU41kQmZyZ+68n4/HPGbmzp2Zz3kE3nPnzLnnmHMOERGJrqywCxARkeRS0IuIRJyCXkQk4hT0IiIRp6AXEYk4Bb2ISMQp6EVEIk5BLyIScQp6EZGIU9CLiERcdtgFALRv395179497DJERNLKggULNjnnCuvbLyWCvnv37hQXF4ddhohIWjGzj+PZT103IiIRp6AXEYk4Bb2ISMQp6EVEIk5BLyIScQp6EZGIS++g31sB700FLYcoIvKV0jvo35sCz34P3nkw7EpERFJWegf90ZdC76Ew6yb4cF7Y1YiIpKT0DvqsLDjvAWjXA54aDVvXhl2RiEjKSe+gB2jWGkZOgapKmHoxVOwOuyIRkZSS/kEP0P4wuGACrF8Mf7teP86KiNQSjaAH6PUtOOXnsPgpePPusKsREUkZ9Qa9mTUzs3fM7D0zW2pmvw62/8XMPjSzhcGlX7DdzGycma0ys0Vm1j/ZjfjcCTdC32Ew+5fwwctN9rYiIqksniP6cuAU59xRQD9gsJkNDB77H+dcv+CyMNg2BOgZXMYC9yW66K9kBsPuhcLD4anvwKerm+ytRURSVb1B77ydwd2c4LKvTvBhwKTgeW8BbcysU+NLjVNePoyc7G9PuRj2bG+ytxYRSUVx9dGbWczMFgIbgdnOubeDh24JumfuMrO8YFtnoPY4x5Jg2xdfc6yZFZtZcVlZWSOaUIeCQ2HERNj0PkwbC9XViX19EZE0ElfQO+eqnHP9gC7AADP7GvBT4HDgWKAA+Emwu9X1EnW85njnXJFzrqiwsN6VsBru0JNg8K3w/vPwym8T//oiImmiQaNunHNbgbnAYOdcadA9Uw48AgwIdisButZ6WhdgXQJqbbgBV8Ixl8O8O2Dx06GUICIStnhG3RSaWZvgdnPgNOBfNf3uZmbAucCS4CkzgMuC0TcDgW3OudKkVF8fMxhyG3QbBNOvhU/eDaUMEZEwxXNE3wl4xcwWAfPxffTPAZPNbDGwGGgP1PSPzARWA6uAB4FrEl51Q2TnwkWPQssOMPUS2LE+1HJERJqauRQ4i7SoqMgVFxcn903WL4GHzoAOfeDyv0NOs+S+n4hIkpnZAudcUX37RefM2Poc+DU4/wH4pBj+doOmSRCRjJE5QQ/Q52w4+eewaCq8dmfY1YiINInssAtocif+CDatgDm/gXY9oe85YVckIpJUmXVED34kzjl3Q5dj/epUpe+FXZGISFJlXtCD/yF25OPQvAAeHwnbwxn9KSLSFDIz6AHyO8DFT8CebTB1lBYsEZHIytygBz8S54IJsG4hTL9Gc+KISCRldtADHD4UTv81LH0WXr017GpERBIu80bd1GXQ9X6my1d/DwU94KiLwq5IRCRhFPTgR+KceRds+djPiXNAF+h+fNhViYgkhLpuatTMidO2OzxxCWz+IOyKREQSQkFfW/O2cMmTYFkw+ULY/WnYFYmINJqC/osKDoWRU2DbJ362y73lYVckItIoCvq6dDsOzr0X1rwBM76vCdBEJK3px9iv8vUL4dMP/TKEBYfCSTeFXZGIyH5R0O/LiT+CT1fD3N9Bm4Oh36iwKxIRaTAF/b6Ywdl/gm1rYcZ10LqTX3RcRCSNqI++Ptm5cNFjfkrjJy6FDcvCrkhEpEHiWRy8mZm9Y2bvmdlSM/t1sP0QM3vbzFaa2RNmlhtszwvurwoe757cJjSB5m3gkqcgp4Ufdrl9XdgViYjELZ4j+nLgFOfcUUA/YLCZDQR+D9zlnOsJbAHGBPuPAbY45w4D7gr2S39tuvox9nu2weQRUL4j7IpEROJSb9A7b2dwNye4OOAU4Olg+0Tg3OD2sOA+weOnmpklrOIwdToKhk+EjcvgydFQVRl2RSIi9Yqrj97MYma2ENgIzAY+ALY65/YGu5QAnYPbnYG1AMHj24B2dbzmWDMrNrPisrKyxrWiKfU8Dc66Cz6YA8/9QGPsRSTlxRX0zrkq51w/oAswAOhT127BdV1H719KQ+fceOdckXOuqLCwMN56U8Mxo+HE/4F/PuZnvBQRSWENGl7pnNtqZnOBgUAbM8sOjtq7ADW/UJYAXYESM8sGDgCiN2nMyTf7aRLm/g5adfLhLyKSguIZdVNoZm2C282B04DlwCvAhcFuo4Hpwe0ZwX2Cx192LoL9G2Zwzjg47DR47oewYlbYFYmI1CmerptOwCtmtgiYD8x2zj0H/AT4bzNbhe+DfyjY/yGgXbD9v4Hozh0Qy/E/znY6Ep66HNbOD7siEZEvsVQ42C4qKnLFxcVhl7H/dpbBQ6f7oZdjZkP7w8KuSEQygJktcM4V1befzoxNhPxC+PYzfh77x86DHRvCrkhE5HMK+kRp18OfULVrkz97ds/2sCsSEQEU9InV+RgYMQk2LIUnvq1FS0QkJSjoE63n6TDsHvjwVZh2JVRXhV2RiGQ4BX0y9BsFZ9wCy6bDzB/p7FkRCZXmo0+WQdfBrjJ4/Y/QshBO/lnYFYlIhlLQJ9Npv4Ldm/w0CS3aw3Fjw65IRDKQgj6ZzOCsP8HuLfD8j6FFgV+LVkSkCamPPtli2XDhQ3DwIHj2Klj1UtgViUiGUdA3hZzmMGoKFB7ulyNc83bYFYlIBlHQN5VmB8Cl06DVgfD4cFi/OOyKRCRDKOibUn4HuGw65ObDo+fB5g/CrkhEMoCCvqm16QaX/hVcNUwaBttKwq5IRCJOQR+Gwl7w7Wl+tstJ5/r5cUREkkRBH5aD+sGoqbBtLTx2vg99EZEkUNCHqfvxMOJRPwna4yOhYnfYFYlIBCnow9brDDh/PKx9C564RDNeikjCKehTwdcugHPuhg9e9ksSVlWGXZGIREg8i4N3NbNXzGy5mS01sxuC7b8ys0/MbGFwGVrrOT81s1VmtsLMvpXMBkTG0ZfA0NthxUyYNlbTG4tIwsQz181e4Ebn3Ltm1gpYYGazg8fucs7dXntnM+sLjASOAA4CXjKzXs45JVd9BlwJlbth9i/92bTn3A1Z+tIlIo1Tb9A750qB0uD2DjNbDnTex1OGAVOdc+XAh2a2ChgAvJmAeqPv+BugYpef8TKnuT/KNwu7KhFJYw06XDSz7sDRQM1kLdeZ2SIze9jM2gbbOgNraz2thDo+GMxsrJkVm1lxWVlZgwuPtJN+Ct+4DuZP8Ef3WrhERBoh7qA3s3zgGeAHzrntwH1AD6Af/oj/jppd63j6l5LKOTfeOVfknCsqLCxscOGRZgZn/BaKxsAb4+CVW8KuSETSWFzz0ZtZDj7kJzvnpgE45zbUevxB4LngbgnQtdbTuwDrElJtJjHz3TZVFfCP2yArB076SdhViUgaimfUjQEPAcudc3fW2t6p1m7nAUuC2zOAkWaWZ2aHAD2BdxJXcgbJyoKzx8FRo2Du/8G8O+p/jojIF8RzRH88cCmw2MwWBtt+Bowys374bpmPgO8BOOeWmtmTwDL8iJ1rNeKmEbKyYNg9UL0X5vzGH9kff33YVYlIGoln1M1r1N3vPnMfz7kFUMdyomTF4Nz7fdjP/gXEcmDg1WFXJSJpQmvGpotYNpz/oA/7WTdBVrYfdy8iUg+djZNOYjlwwcPQeyjM/BHMfyjsikQkDSjo0012Lgz/C/QaDH//b3jnwbArEpEUp6BPR9l5MGIS9Brij+wV9iKyDwr6dFUT9jXdOAp7EfkKCvp0lp0LwydC7zN92L/9QNgViUgKUtCnu5o++8PPgud/DG/dH3ZFIpJiFPRRUDvsZ/0E3rwn7IpEJIUo6KMiluPDvs858MLPYN6d9T5FRDKDgj5KYjlw4SPw9eEw59cw91ZNcSwiOjM2cmLZcN4DEMuFub/zi42f+kstXiKSwRT0UZQV88sQxnLhtTt92H/rFoW9SIZS0EdVVhacdZcfb//WPbB3j5/fXmvQimQcBX2UmcHgW/2R/RvjoKrcz2+fFQu7MhFpQgr6qDOD03/jFxp/9fd+4fHzxvshmSKSERT0mcAMTv4Z5Ob7+ewrdsOIiT78RSTy1GGbSY6/3vfbr3wRJg+H8h1hVyQiTUBBn2mKvgvnj4eP34BJw2D3p2FXJCJJFs/i4F3N7BUzW25mS83shmB7gZnNNrOVwXXbYLuZ2TgzW2Vmi8ysf7IbIQ105Ai46FFYvxgmng07N4ZdkYgkUTxH9HuBG51zfYCBwLVm1he4CZjjnOsJzAnuAwwBegaXscB9Ca9aGu/wM+HiJ+HT1fDwYNjycdgViUiS1Bv0zrlS59y7we0dwHKgMzAMmBjsNhE4N7g9DJjkvLeANmbWKeGVS+P1OBku/Svs3uTDfuPysCsSkSRoUB+9mXUHjgbeBjo650rBfxgAHYLdOgNraz2tJNj2xdcaa2bFZlZcVlbW8MolMbodB995Hly1D/u188OuSEQSLO6gN7N84BngB8657fvatY5tX5pZyzk33jlX5JwrKiwsjLcMSYaOR8B3Z0HztjDpHFj1UtgViUgCxRX0ZpaDD/nJzrlpweYNNV0ywXXNL3olQNdaT+8CrEtMuZI0BYfAd1+Agh7w+EhY8kzYFYlIgsQz6saAh4Dlzrnak5zPAEYHt0cD02ttvywYfTMQ2FbTxSMprlVHuPw56HIsPD0G5k8IuyIRSYB4juiPBy4FTjGzhcFlKHArcLqZrQROD+4DzARWA6uAB4FrEl+2JE3zNnDpNOg1GP5+I7zyf5rTXiTN1TsFgnPuNerudwc4tY79HXBtI+uSMOU0h4seg+du8PPj7CiFM+/yc92LSNrR/1ypWyzbz2mffyDMux12lsGFD0Nui7ArE5EG0hQI8tXM4NRfwJl3wPuz/IgcTZkgknYU9FK/Y6+AEZOgdBE8dIbOohVJMwp6iU/fc+Cyv8KujT7sSxeFXZGIxElBL/E7eJAfa58Vg0eG6MQqkTShoJeG6dAHrpjjT7CaPAIWTKz/OSISKgW9NFzrTn5+nB4nw9+uhzm/0Vh7kRSmoJf9k9cKRj0B/UfDvDtg2pWwtzzsqkSkDhpHL/svlg1n/wnaHuyP6rev8ydatSgIuzIRqUVH9NI4ZnDCjXD+BCiZDw+dDps/CLsqEalFQS+JceRwuGy6P6Fqwqnw0ethVyQiAQW9JM7Bg+CKl6BFe7/w+MLHw65IRFDQS6K16wFXzPah/9er4aVfQ3V12FWJZDQFvSRe87bw7WfgmMvhtTvhqdFQsTvsqkQylkbdSHLEcuCsP0K7nvDiz2HrGhg1BVofFHZlIhlHR/SSPGYw6Dof8JtXwfiToKQ47KpEMo6CXpKv9xAYMxuym8EjQ+G9qWFXJJJRFPTSNDr2hbFzoesAePZ78OIvoLoq7KpEMkI8i4M/bGYbzWxJrW2/MrNPvrCGbM1jPzWzVWa2wsy+lazCJQ21KIBLn/Xz278xDqaMhD3bwq5KJPLiOaL/CzC4ju13Oef6BZeZAGbWFxgJHBE8514ziyWqWImAWI5fserMO+GDl2HCabBpZdhViURavUHvnPsHEO/6ccOAqc65cufch8AqYEAj6pOoOnZMcCbtZnjwFPjXzLArEomsxvTRX2dmi4KunbbBts7A2lr7lATbvsTMxppZsZkVl5WVNaIMSVvd/wvGvgoFh8LUUTD3Vp1cJZIE+xv09wE9gH5AKXBHsN3q2LfOicqdc+Odc0XOuaLCwsL9LEPSXpuu8N1ZcNQomPs7mHqx+u1FEmy/gt45t8E5V+WcqwYe5N/dMyVA11q7dgHWNa5Eibyc5nDufTDkNlg123fllK0IuyqRyNivoDezTrXungfUjMiZAYw0szwzOwToCbzTuBIlI5jBcWPhshn+iP7BU2HZ9LCrEomEeIZXTgHeBHqbWYmZjQH+YGaLzWwRcDLwQwDn3FLgSWAZMAu41jmnwdISv+7H+377wt7w5GXwws1QVRl2VSJpzVwKrPVZVFTkiot1arzUsrcCXrwZ3hkP3QbB8Eeg1YFhVyWSUsxsgXOuqL79dGaspKbsXBh6m1+5qnQh3H8CfPRa2FWJpCUFvaS2I4fDlS9DswNg4jnw+p8gBb6FiqQTBb2kvg59YOwr0OcsmP1LPwRzd7zn8ImIgl7SQ14rGD4RBt8KK2fDAyfC2vlhVyWSFhT0kj7MYODVMOYFf/uRwfDG3erKEamHgl7ST+dj4Hvz/Dz3L94MU0apK0dkHxT0kp6at4ERj8KQP8Cql/yonDVvh12VSEpS0Ev6MoPjvgdjXoSsGDwyBF79gxY0EfkCBb2kv8794ap5cMR58MotfhjmtpKwqxJJGQp6iYZmB8AFE/zkaOv+CfcdD8v/FnZVIilBQS/RYQb9LvZH9227wxPfhr/9ACp2h12ZSKgU9BI97XrAmNkw6HpY8AiMPwnWLQy7KpHQKOglmrJz4Yz/5xcjL9/u16add4d+qJWMpKCXaOtxClz9Bhx+Jsz5DfzlTNjyUdhViTQpBb1EX4sCGP4XOG88bFgK9/0X/HOyzqiVjKGgl8xgBkddBFe/Dp2OgunXwJOXwq5NYVcmknQKesksbbrB6Blw+m/g/RfgnuNg2YywqxJJKgW9ZJ6sGBx/g1+y8IDO/sj+mSs0X45EVjxrxj5sZhvNbEmtbQVmNtvMVgbXbYPtZmbjzGyVmS0ys/7JLF6kUTr2hSvmwMk3w9Jn4d6BsGJW2FWJJFw8R/R/AQZ/YdtNwBznXE9gTnAfYAjQM7iMBe5LTJkiSRLLgW/+GK58BVoWwpSL4Nmr4bMtYVcmkjD1Br1z7h/AF7/TDgMmBrcnAufW2j7JeW8BbcysU6KKFUmaTkf6sD/xx7DoCd93rykUJCL2t4++o3OuFCC47hBs7wysrbVfSbDtS8xsrJkVm1lxWVnZfpYhkkDZuXDKzX6N2vwOfgqFJ0fDzo1hVybSKIn+Mdbq2FbnYGXn3HjnXJFzrqiwsDDBZYg0wkH9/NH9qb+EFc/D3cfCwikady9pa3+DfkNNl0xwXXPIUwJ0rbVfF2Dd/pcnEpJYDpxwI1z1GhT2hr9eBY9dAFvXhF2ZSIPtb9DPAEYHt0cD02ttvywYfTMQ2FbTxSOSlgp7wXdmwZDbYM1bvu/+9XFQtTfsykTiFs/wyinAm0BvMysxszHArcDpZrYSOD24DzATWA2sAh4ErklK1SJNKSsLjhsL174Nh3wTZv/Cz4hZUhx2ZSJxMZcC/Y5FRUWuuFj/aSQNOAf/eg5m/hh2lMKxV8Cpv/ALn4g0MTNb4Jwrqm8/nRkr0hBm0Odsf3R/3Pdg/gS4ewAsmaYfayVlKehF9kez1jDk934oZquO8PR34NFzoez9sCsT+RIFvUhjdO7vh2IOvT1Yq3YQzP5fKN8ZdmUin1PQizRWVgwGXAnXLYAjL4LX/wj3DPDz56g7R1KAgl4kUfIL4dx7/Hq1LQrgqcth0jDYsCzsyiTDKehFEq3rAD8F8tDbofQ9uP94+PuNsGtz2JVJhlLQiyRDTXfO9f/0QzCLH4E/Hw1v3QdVlWFXJxlGQS+STC0KYOhtfgnDg/rDrJv8D7YrZ4ddmWQQBb1IU+jQBy59FkZNheq9MPlCmHQurF8cdmWSART0Ik3FDHoPgWvegm/9zg/HvP8Ev9DJtk/Crk4iTEEv0tSy8+Ab18ANC2HQdbDkafhzf3jp17Bne9jVSQQp6EXC0rwtnPFbuK7YT6vw2p0wrh+8eS9U7gm7OokQBb1I2NoeDBdMgLFzoePX4IWfwp+PgXcf1XTIkhAKepFUcdDRMHoGXDbdz58z4zq4d6A/w7a6OuzqJI0p6EVSzaEnwRVz4KLJkJXtz7B98CR4/0VNqSD7RUEvkorMoM9Zfvz9eQ/AZ1vh8eEw4VQ/Bl+BLw2goBdJZVkxOGokfH8BnPNn2FXmx+Ar8KUBFPQi6SCWA/0v8zNknj0OdtYE/mnq0pF6NSrozewjM1tsZgvNrDjYVmBms81sZXDdNjGligjZuXDMaH+Ef/afYOdG36XzwAl+lavqqrArlBSUiCP6k51z/WqtW3gTMMc51xOYE9wXkUTKzoVjLveBP+xeqPzMr3J197F+WObeirArlBSSjK6bYcDE4PZE4NwkvIeIgA/8oy+Ba9+B4RMht6Ufljmun58pUytdCWCuEX17ZvYhsAVwwAPOufFmttU516bWPlucc1/qvjGzscBYgG7duh3z8ccf73cdIhJwDlbNgXm3w5o3odkBUDTGL2Te6sCwq5MEM7MFtXpTvnq/Rgb9Qc65dWbWAZgNfB+YEU/Q11ZUVOSKi4v3uw4RqcPad+CNP8Pyv/nx+EeOgG9cBx37hl2ZJEi8Qd+orhvn3LrgeiPwLDAA2GBmnYIiOgEbG/MeIrKfug6Aix6F69/1/flLn4X7vgGPnu+HZups24yx30FvZi3NrFXNbeAMYAkwAxgd7DYamN7YIkWkEQoOhTNvhx8uhVN+DhuW+KGZdxfBW/drxswMsN9dN2Z2KP4oHiAbeNw5d4uZtQOeBLoBa4DhzrlP9/Va6roRaUJ7K2DZdHjnASiZD7n50O9iGDAW2vcMuzppgCbpo08UBb1ISD5ZAG+Ph6XToKoCDjkRjvkOHH6WH9EjKU1BLyLx27kRFkyEdyfCtrXQshCO/jb0Hw0Fh4RdnXwFBb2INFx1FXzwMhQ/Au8/D64aepzip1/oPdSvjiUpI96gz26KYkQkTWTFoOfp/rJ9nT/L9t1Jfqrk5m3h68Oh3yXQ6Sg/w6akBR3Ri8i+VVfB6rmwcDIsfw6qyqHDEf6M3K+PgPzCsCvMWOq6EZHE+2wLLHkG/jkZ1r0LFoMeJ/sj/cPPhLxWYVeYURT0IpJcG5fDoidh8dOwbQ1kN4feQ3zoH3aaRu00AQW9iDSN6mooeceH/tJn4bNPoVkbf4Tfd5hfGlE/4iaFgl5Eml5VpR+1s2QarHgeyrdBXmt/pN93GPQ4FXKahV1lZGjUjYg0vVgO9PqWv+wth9Wv+rNwV/wdFj3hz8LtcYofqtnzDGjZLuyKM4KCXkSSIzsPep3hL1V/hI/mwbIZ8P4sWD4DLAu6DoTeg33wa/qFpFHXjYg0repqKF3oA3/FTFi/2G9v29137Rx2GhxygkbwxCEj+ugr9lbjcORlx5JQlYg0ia1rfeivmgMf/gMqd0FWDnQ9Dg47BQ492Z+glaX/51+UEUE/a8l6rnpsAa2bZdM+P492+bm0a5lH+1a5FLTMIycrvDP3DmiRQ7uWvqb2+Xm0z8+ldbMcskKsSSTl7S2HtW/Dqpdg1cuwITjazzsAuh8P3U/wR/sdjoCsZKyEml4yIuhXbtjBrCXr2bSznE27Kti8s5zNOyvYvKuCLbsrSIGm/YfsLKOgZe7nH0o1HwDt8vPIz8sO7YzynFgW7fNr6sqjXctcmuXo6ElSwI718OE8+Ogf/nrLh3578wI4eBB0G+j7+TsdmZFDODMi6PelutpRHVLbqh1s+6ySzbv8B8+mneVsCq5rPoxqPpg27SxnT2XqrfSTn5fNAc1ziNXxDcQM2jTP+fxDoV3wgdU+P4+87PCOslrmZX/+AVrQMpecmI74ImdbSRD88+Dj12HLR357LA869/fdPV2P87czYI3cjA/6dOGcY3dFFbvK94ZWw57K6s8/lDbv+veH0rbdldT1r6PaObbsrqz1Daqcyqrw/x19UZsWOZ9/EBXW6trzHwa5tG6eQ1aKTcwVyzIObteCwvw8LMVqS0k7NviunrVvw5q3oPQ9qK70j7XqBAf1h4OOhs5HQ6ejIzecU0EvTcY5x/Y9e9m0s5zKqnC+nTgHO8v3Bt+Sar49BR9cOyrYFHyQbfusMpT6Gqptixx6H9iKww9sTa+Oreh9YD6tm+WEXdaXNMuJ0S4/lxa5KTJSu/IzH/br/gmfvOuvN6/89+OtDoIDvwYdj4COwXW7w/z4/zSkoBepQ8XearbsDr6xpGDoV1Y5Vpft5P0NO/jX+h28v34Huyqqwi6rXi1yY/8eDJGf+x+DI/79e1QebVs0/YAEK99O9oZFZK9fSGzTMrLLlhHbvBILjvxdLBfaHYa17wntewWXntCuJ+TlN2mtDRV60JvZYOBPQAyY4Jy79av2VdCL1K262vHJ1s9YuXEHu1Mw8HdXVPlvTjvL2bzrP3+P+nRXBVXV4R9I1iWHvRxq6+hjazg8aw29YqX0jpXSqXo9Wfz7W6nL7+jH97c5GNoeHFx3hzZdfddQLDETt+1vN12oUyCYWQy4BzgdKAHmm9kM59yyZLyfSFRlZRldC1rQtaBF2KU0WHW1Y/ueys/Df/POmtFwqRL+RwFQVe147dPPeGjDdlaXbqHl7jX0sHX0sHUcvHUj3bZtpGvWy3RiMzH7z9rLXGs2uAJKXQEbXFs2uLZ8Sms2u9Z86lqxGX+9lXwcdQ8OuOqbPbhpyOFJbWmyOtYGAKucc6sBzGwqMAxQ0ItkiKwso02LXNq0yOWwDmFXE7/NO8tZsX4HKzbsoPSzSkqBt4Gs6kpalW/ggD2f0Kq8lPyKMvLLN5JfUUa/io3kl39A873b6nxNh1ERa0l5dv5/XFfE8nHZZwLpGfSdgbW17pcAx9XewczGAmMBunXrlqQyREQapl1+HoMOy2PQYe3rePSIfT95bwXs3gy7N8GuTf72rk3Y7s3klW8nr3wH7NkG5TugfDuUb4TmW5PSjtqSFfR1dTj9x3ce59x4YDz4Pvok1SEi0nSyc6F1J39JIck6o6QE6FrrfhdgXZLeS0RE9iFZQT8f6Glmh5hZLjASmJGk9xIRkX1ISteNc26vmV0HvIAfXvmwc25pMt5LRET2LWmnsznnZgIzk/X6IiISH836JCIScQp6EZGIU9CLiEScgl5EJOJSYvZKMyvozZmxAAADDElEQVQDPg67jji1BzaFXUSSRLltEO32qW3pqzHtO9g5V1jfTikR9OnEzIrjmS0uHUW5bRDt9qlt6asp2qeuGxGRiFPQi4hEnIK+4caHXUASRbltEO32qW3pK+ntUx+9iEjE6YheRCTiFPQiIhGnoBcRiTgFfQKY2aFm9pCZPb2vbenMzPqa2ZNmdp+ZXRh2PYlkZieY2f1mNsHM3gi7nkQzs5PMbF7QxpPCrieRzKxP0K6nzezqsOtJtETlSMYHvZk9bGYbzWzJF7YPNrMVZrbKzG7a12s451Y758bUty0siWgjMAT4s3PuauCypBXbQAn6+81zzl0FPAdMTGa9DZWgv50DdgLN8Ku/pYQE/e2WB3+7EUBKnVSVrGzZL865jL4AJwL9gSW1tsWAD4BDgVzgPaAv8HV8GNS+dKj1vKfreP0vbUvHNgaXe4DbgNfDblOS/n5PAq3DblMS/nZZwfM6ApPDblOi/3bAOcAbwMVhtymJ/zYblSNJW3gkXTjn/mFm3b+weQCwyjm3GsDMpgLDnHO/A85q2gobL4FtvNbMYsC0ZNXaUIlqm5l1A7Y557YnsdwGS/C/zy1AXjLq3B+JaptzbgYww8z+DjyevIobJpWyJeO7br5CZ2BtrfslwbY6mVk7M7sfONrMfvpV21JMQ9vY3czGA5PwR/WprEFtC4wBHklaRYnV0L/d+Wb2APAocHeSa2ushrbtJDMbF7QvHVa0a3S27I+MP6L/ClbHtq88s8w5txm4qr5tKaahbfwIGJu0ahKrQW0DcM79b5JqSYaG/u2mkULfwurR0LbNBeYmq5gkaHS27A8d0detBOha634XYF1ItSRLlNsY5bZBtNsX5bZBSO1T0NdtPtDTzA4xs1xgJDAj5JoSLcptjHLbINrti3LbIKz2hf3LdNgXYApQClTiP23HBNuHAu/jfyG/Oew61cbMa1vU2xfltqVa+zSpmYhIxKnrRkQk4hT0IiIRp6AXEYk4Bb2ISMQp6EVEIk5BLyIScQp6EZGIU9CLiEScgl5EJOL+P9PuwTy8OLVqAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pt.semilogx(eps_values, ranks)\n", "pt.semilogx(eps_values, (np.log(eps_values)/np.log(rho)-1)**2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* We estimated that the rank would grow *quadratically*.\n", "* Comments on how good our estimate is?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4+" } }, "nbformat": 4, "nbformat_minor": 2 }