€ SYCL Academy
‘S CL.
WHAT IS SYCL?

'__\\ IEEE
e (&) cLusTER2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
GyeL.
LEARNING OBJECTIVES

e Heterogeneous parallel programming

Learn about the SYCL specification and its implementations
Learn about the components of a SYCL implementation
Learn about how a SYCL source file is compiled

Learn where to find useful resources for SYCL

IEEE

) J
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
‘ESYTDLM
SUPERCOMPUTING LANDSCAPE AT EXASCALE

» Need for high levels of performance driving use of accelerators
e Many, but not all, large supercomputers using GPUs:

LUMI at EuroHPC JU: AMD Trento CPU and AMD MI250X GPUs (4 per node)
Perlmutter at NERSC: AMD EPYC Milan CPUs and NVIDIA A100 GPUs
Frontier at ORNL: AMD EPYC custom CPUs and Radeon Instinct GPUs (4
per node)

Aurora at ALCF: Intel Xeon Sapphire Rapids CPUs and Xe Ponte Vecchio
GPUs (6 per node)

El Capitan at LLNL: AMD EPYC Genoa CPUs and Radeon Instinct GPUs (4
per node)

Multiple vendor solutions to get to Exascale

1111111111111111111111

'_.\\’ 1IEEE
(© GiusTer2022

€ SYCL Academy
(SYCLW
PERFORMANCE PORTABLE HETEROGENEOUS PROGRAMMING

 Scientific applications need to be performant across a range of processors
» Need to write applications in (heterogeneous) parallel programming model
= Open Standards: SYCL, OpenMP, ...
= DSLs and abstractions: Kokkos, Raja, ...
= Language parallelism: ISO C++, Fortran, ...

- '_.\\ IEEE
ﬁ]‘){e%;ﬁio:;hgi‘;gilfgo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
‘S CL.
WHAT IS SYCL?

GycL

SYCL is a single source, high-level, standard C++ programming model, that can target a
range of heterogeneous platforms

AN\ EEE
e (&) cLusTER2022

Heidelberg, Germany » 6-9 Septembs

€ SYCL Academy

SYCL.

WHAT IS SYCL?
A first example of SYCL code. Elements will be explained in coming sections!

1 #include <CL/sycl.hpp>

3 int main(int argc, char *argv([]) {
4 std::vector<float> dA{2.3}, dB{3.2}, d0{7.9}:

b Lry {
7 auto asyncHandler = [&](sycl::exception list eL) {
B for {(auto &e : el)
9 std: :rethrow exception(e);
10 }:
11 sycl::queue gpuQueue{sycl::default selector{}, asyncHandler};
12
13 sycl::buffer bufA{dA.data(), sycl::range{dA.size()}};
14 sycl::buffer bufB{dB.data(), sycl::range{dB.size()}}; Managing the data
15 sycl::buffer bufo{d0.data(), sycl::range{d0.size()}};
16
17 gpuQueue . submit([&] {sycl::handler &cgh) {
18 sycl::accessor inA{bufA, cgh, sycl::read only);
19 sycl::accessor inB(bufB, cgh, sycl::read only); Work unit
20 sycl::accessor out(buf0, cgh, sycl::write only);
21
22 cgh.parallel for(sycl::range{dA.size(}}, De:
23 [=](sycl::id<1> i) { out[i] = inA[i] + inB[i]; }): o
24 }):
25
26 gpuQueue.wait and throw();
27
28 } catch (sycl::exception &e) {
oo~ YCL exception */ AN lEEE
L (&) cLusTER2022
A Heidelberg, Germany « 6-9 September

31 }

€L SYCL Academy @CL
SYCLIS...
e SYCL extends C++in two key ways:
= heterogeneous memory
= heterogeneous parallel compute
e SYCL is modern C++, with APIs for
» device discovery (and information)
= device control (kernels of work, memory)
e SYCL doesn't add extensions to the core language

e SYCLis an open standard
» multivendor and multiarchitecture support

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

© SYCLAcademy @CL
WHAT IS SYCL? m
SYCL is a single source, high-level, standard C++ programming model, that can target
a range of heterogeneous platforms

Host compiler Device compiler

| |
Applications e SYCL allows you to write both host

= == CPU and device code in the same
SYCL template library .
C++ source file

|
o e ‘ e This requires two compilation
Backend (e.g. OpenCL) Device IR / ISA passes; one for the host code and
(e.g. SPIR)

A 4

one for the device code

N\ IEEE

o
A
el evatules (&) CLusTER2022
“ Heidelberg, Germany = 6-9 September

€ SYCL Academy

(SYCLW
WHAT IS SYCL?
SYCL is a single source, high-level, standard C++ programming model, that can target
a range of heterogeneous platforms

e SYCL provides high-level abstractions over common boilerplate code
= Platform/device selection
= Buffer creation and data movement
= Kernel function compilation
= Dependency management and scheduling
e High-level abstractions are good for productivity
» SYCL has layers of abstractions when control is needed

IEEE

) 3
ﬁ;%;ﬁiolhgi‘;gi?go are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy

(SYCLW
WHAT IS SYCL?
SYCL is a single source, high-level standard C++ programming model, that can target a
range of heterogeneous platforms

arrav view<float> a, b, c;

e SYCL allows you to write standard

. ;
<2> idx) weebeiet-tampd | C++

std: :vector<fleoat> a, b, c;

#LJL:IHILI& pararicr " TULD
for(int i = 0; i < a.size(); i++) |

. m SYCL 2020 is based on C++17

—_ebad— vec_add(float *a, float *b, float *c) {

return c[i] = a[i] + bIlil];

} e Unlike the other implementations
o e e b o) shown on the left there are:

= No language extensions
cgh.paraliel_{for(range,} [:].(cl::sycl::id<2> idx) { " NO pragmas .
g T e = No mandatory attributes

=\ [EEE
e ’ " SO\
et (&) CLUSTER2022
“ Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCL.
SYCL AND ISO C++

e |SO C++ has some notion of concurrency via threads and futures
and data parallelism via algorithm and numeric libraries
Assumes single execution space and single memory

No control of where to run (yet)

No asynchrony of algorithms (yet)

SYCL is aligning with and helping shape the future for heterogeneous compute in
C++

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

(SYCLW
WHAT IS SYCL?
SYCL is a single source, high-level standard C++ programming model, that can target a
range of heterogeneous platforms

e SYCL can target any device
supported by its backend

e SYCL can target a number of different
backends

SYCL has been designed to be
implemented on top of a variety of

| backends. Current implementations
support backends such as OpenCL, CUDA,
HIP, OpenMP and others.

IEEE

) 3
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

SYCL SPECIFICATION
SYCL 1.2
» Released Apr
2014
SYCL1.2.1
* Released Dec
2017

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL 2020
(provisional)

e Released Jun
2020

GyeL

SYCL 2020
(final)

®* Released Feb
2021

(&) ClusTER2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy

SYCL.

SYCL IMPLEMENTATIONS

SYCL, OpenCL and SPIR-V, as open industry (SYC: L SYCL enables Khronos to influence
standards, enable flexible integration and) ISO C++ to (eventually) support
deployment of multiple acceleration technologies Source Code heterogeneous compute

UNIVERSITAT
HEIDELBERG

(codeplay’ € ComputeCpp
| ComputeCpp
Multiple
Backends

Uses LLVM/Clang
Part of oneAPI

hipSYCL
Multiple Backends

o >
penCL nvipia. —_— X
NVIDIA GPUs OpenMP "

77~-
RO| OpenCL _ Any CPU
Cm ‘SPIR.
p— AMD GPUs Intel CPUs
SPIR. Intel FPGAs
Intel GPUs AMD GPUs i
Intel CPUs (depends on driver stack) RO Level Zero
Intel GPUs Arm Mali Cm
Intel FPGAs IMG PowerVR Intel GPUs

Renesas R-Car AMD GPUs

=\ [EEE

A
e (&) cLusTER2022

Heidelberg, Germany + 6-9 September

© SYCL Academy

SYCL.

SYCL IMPLEMENTATIONS

SYCL, OpenCL and SPIR-V, as open industry SYCL SYCL enables Khronos to influence
standards, enable flexible integration and ’ ISO C++ to (eventually) support
deployment of multiple acceleration technologies Source Code heterogeneous compute

~

AMDQ

=
a9
Lok
T : b
TOH oA HUAWEI

neoSYCL SYCL/DPC++
SX-AURORA

triSYCL Inteon

Huawei Celerity Open source MotorSYCL Poligeist

SYCLops SYCL

Huawei

test bed SYCL TSUBASA Ascend Al
7 |\
OpenMP # \ g §
ar : :
Any CPU 7, T \
V4 £ \
Vulkan f g VEO
) C 2 Intel CPU A d 910
conct (GPIR. nte s scen
o Je8 \ NEC VEs Al processor
XILINX FPGAs Any CPU X
i F’C"(:lape = XILINX Versal
oparJourcs Spen ACAP LLVM IR " .
B e L el FPGA LLVM IR Multiple Backends in Development
HLS SYCL on even more low-level framewaorks.
m For more information: http://sycl.tech

AN\ EEE
e (&) cLusTER2022

Heidelberg, Germany + 6-9 September

€ SYCL Academy
(SYCLW
IMPLEMENTATIONS OF A STANDARD

e SYCLis astandard
e Document defines behaviour of API:
= Platform, device model
= Memory and execution model
= What the APIs are and what they do
e Implementations (like DPC++, hipSYCL, etc) implement the standard
= Once conformant, guarenteed all APIs are supported by the
implementation

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

{sycL.
WHAT A SYCL IMPLEMENTATION LOOKS LIKE

SYCL interface

SYCL Runtime

(optional)

| CPU device

Backend interface(s)
(e.g., OpenCL, Level Zero, OpenMP, CUDA)

SYCL device
compiler

e The SYCL interface is a C++ template
library that developers can use to
access the features of SYCL

e The same interface is used for both
the host and device code

e The hostis generally the CPU and is used to dispatch the parallel execution of

kernels

e The deviceis the parallel unit used to execute the kernels, such as a GPU

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

:.\\‘ 1IEEE
(© GiusTer2022

€ SYCL Academy
(SYCLW
WHERE TO GET STARTED WITH SYCL

 Visit https://sycl.tech to find out about all the SYCL book, implementations,
tutorials, news, and videos

e Visit https://www.khronos.org/sycl/ to find the latest SYCL specifications
e Checkout the documentation provided with one of the SYCL implementations.

- '_.\\ IEEE
ﬁ]‘){e%;ﬁio:;hgi‘;gilfgo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

https://sycl.tech/
https://www.khronos.org/sycl/

€ SYCL Academy
GyeL.
QUESTIONS

'__\\ IEEE
ﬁﬁ%: aé:nclﬂslhé i‘lt:gll-nl:go are trademarks of .&(gj_.//. CI.U STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
(SYCLW
EXERCISE

Code_Exercises/Exercise_1_Compiling_with_SYCL/source.cpp

Configure your environment for using SYCL and compile a source file with the SYCL
compiler.

Task: Include the SYCL header and successfully build and run a binary.

IEEE

) 3
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCL.
INTEL DEVCLOUD

1. Register for the Intel DevCloud
2. Follow instructions to set up SSH

https://devcloud.intel.com/oneapi/documentation/

IEEE

) 3
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

https://devcloud.intel.com/oneapi/documentation/

€ SYCL Academy

SYCL.

DEVCLOUD DEMO

ssh devcloud

git clone https://github.com/illuhad/syclacademy -b cluster22 --recursive

cd syclacademy

mkdir build

dpcpp -fsycl -o sycl-ex-1 ../Code_Exercises/Exercise_01_Compiling_with_SYCL/source.cpp
gsub -I -1 nodes=1:gpu:ppn=2 -d

./sycl-ex-1

P PH PO PP

. '__\\ IEEE
If‘;:);'l’i(l]_lr aé;dﬂlshé i‘lt:glfnlfgo are trademarks of .L&)//. CLU STE R 2022

Heidelberg, Germany + 6-9 September

€ SYCL Academy
‘S CL.
ENQUEUING A KERNEL

. '__\\ IEEE
If‘;:);'l’i(l]_lr aé;dﬂlshé i‘lt:glfnlfgo are trademarks of .L(k)//. CLU STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
GyeL.
LEARNING OBJECTIVES

Learn about queues and how to submit work to them

Learn how to compose command groups

Learn how to define kernel functions

Learn about the rules and restrictions on kernel functions
Learn how to stream text from a kernel function to the console.

Wi
f{}e%uéﬁio:;hgiﬁl.‘g_nlfgo are trademarks of @o c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

@& SYCL Academy @C L -

THE QUEUE

e In SYCL all work is submitted via commands to a queue.

The queue has an associated device that any commands enqueued to it will
target.

There are several different ways to construct a queue.

The most straight forward is to default construct one.

This will have the SYCL runtime choose a device for you.

Wi
f{}e%u?nd the SY Ci_nlct?go are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

onos Group

€ SYCL Academy @CL
PRECURSOR m
e In SYCL there are two models for managing data:
= The buffer/accessor model.
= The USM (unified shared memory) model.
e Which model you choose can have an effect on how you enqueue kernel

functions.
e For now we are going to focus on the buffer/accessor model.

IEEE

) J
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

COMMAND GROUPS

Command group

Wait for previous command

l

Copy data

l

Target device

Copy data

l

Invoke kernel function

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

GyeL

e In the buffer/accessor model
commands must be enqueued via
command groups.

e Acommand group represents a
series of commands to be executed
by a device.

e These commands include:

= Invoking kernel functions on
a device.

» Copying data to and from a
device.

= Waiting on other commands
to complete.

(&) cLusTER2022

€ SYCL Academy

COMPOSING COMMAND GROUPS

Jv Command group function

Command group
handler

g Define Dependencies

Define Kernel function

L

> Define accessors

Command group

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

L J

GyeL

Command groups are composed by
calling the submit member
function on a queue.

The submit function takes a
command group function which acts
as a factory for composing the
command group.

The submit function creates a
handler and passes it into the
command group function.

The handler then composes the
command group.

:.\\' 1IEEE

€ SYCL Academy
(SYCLW
COMPOSING COMMAND GROUPS

e The submit member function
takes a C++ function object, which
takes a reference to a handler.

e The function objectcan be a
lambda expression or a class with
a function call operator.

e The body of the function object

represents the command group
function.

gpuQueue.submit([&](handler &cgh){

/* Command group function */

});

Wi
f{}e%uéﬁio:;hgiﬁl.‘g_nlfgo are trademarks of @o c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
COMPOSING COMMAND GROUPS

e The command group function is
processed exactly once when
submit is called.

e At this point all the commands

gpuqueue. submit([&](handler &cgh){ and requirements declared inside

/7 Command group function */ the command group function are

D processed to produce a command
group.

e The command group is then
submitted asynchronously to the
scheduler.

- '_.\\ IEEE
f{:a%u?ﬁioglgi‘;gi?go are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
COMPOSING COMMAND GROUPS

e The queue will not wait for
commands to complete on
destruction.

e However submit returns an
event to allow you to

gpuQueue. submit([&](handler &cgh){ synchronize with the completion

/* Command group function */ Of the Commands.

e Herewe callwait ontheevent
to immediately wait for it
complete.

e There are other ways to do this,
that will be covered in later
lectures.

}).wait();

Khronos Group Inc.

o . ',.\\ IEEE
f{:a(L and the SYCL logo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
SCHEDULING

Clueue —» CG E— Scheduler ——» Target device

e Once submit has created acommand group it will submit it to the scheduler.
e The scheduler will then execute the commands on the target device once all
dependencies and requirements are satisfied.

- ’,.\\ IEEE
f{:ar%uiﬁ?o:;hg ri;s)‘;g_nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€ SYCL Academy

SCHEDULING

CPUquete =

GPU queug ———— =

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

CG

CG

GyeL

Scheduler

~_ P P device
" T

GFPL device

e The same scheduleris used for all queues.
e This allows sharing dependency information.

(&) ClusTer2022

€ SYCL Academy

SYCL.

e The kernel functio oke
APIs take a function object
representing the kernel
function.

| e Thiscan be alambda

cgh.single_task<my_kernel>([=]() { . .

5 I expression or a class with a

}) wait(); function call operator.

e Thisis the entry point to the
code that is compiled to

execute on the device.

class my_kernel;

gpuQueue.submit([&] (handler &cgh){

=\ [EEE
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

class my_kernel;
gpuQueue.submit([&] (handler &cgh){

cgh.single_task<my_kernel>([=]() {
/* kernel code */
1)
}).wait();

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL.

e Different kernel in APls

take different parameters
describing the iteration
space to be invoked in.
Different kernel invoke APlIs
can also expect different
arguments to be passed to
the function object.
Thesingle task
function describes a kernel
function that is invoked
exactly once, so there are no
additional parameters or
arguments.

(&) cLusTER2022

€ SYCL Academy

class my_kernel;
gpuQueue.submit([&] (handler &cgh){

cgh.single_task<my_kernel>([=]() {
/* kernel code */
1)
}).wait();

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

SYCL.

e The template paraifieter

passedto single taskis
used to name the kernel
function.

This is necessary when
defining kernel functions
with lambdas to allow the
host and device compilers to
communicate.

SYCL 2020 allows kernel
lambdas to be unnamed,
but not all implementations
support that yet.

(&) cLusTER2022

@& SYCL Academy @C L -

SYCL KERNEL FUNCTION RULES

Must be defined using a C++ lambda or function object, they cannot be a
function pointer or std::function.

Must always capture or store members by-value.

SYCL kernel functions declared with a lambda must be named using a forward

declarable C++ type, declared in global scope.
SYCL kernel function names follow C++ ODR rules, which means you cannot have

two kernels with the same name.

IEEE

) 3
ﬁ}e%;ﬁiolhe 5Y Ci_nlct?go are trademarks of .(\',"/'. cl-u STE R 2022
= Heidelberg, Germany » 6-9 September

s Group

€ SYCL Academy
(SYCLW
SYCL KERNEL FUNCTION RESTRICTIONS

No dynamic allocation

No dynamic polymorphism
No function pointers

No recursion

IEEE

PR
Lo st (&) CLUSTER2022
q Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCLW
KERNELS AS FUNCTION OBJECTS

class my_kernel;

gueue gpuQueue;
SpuQuens . submit([&] (handler &cgh)q e All the examples of SYCL kernel
cgh.single_task<my kernel>([=]() { functions up until now have been
/* k 1 de */ . . .
ST defined using lambda expressions.
}).wait();

=\ [EEE
Lo st (&) CLUSTER2022
q Heidelberg, Germany « 6-9 September

€ SYCL Academy

(SYCLW
KERNELS AS FUNCTION OBJECTS

Ctruct e As well as defining SYCL kernels
_ y_kernel {

vord operaror 0L using lambda expressions, You can
. also define a SYCL kernel using a

regular C++ function object.

SYCL and the SYCL logo are trademarks of
the

.’ =\ IEEE
Khronos Group Inc. @. EI;[!STESR[2022

€ SYCL Academy
(SYCLW
KERNELS AS FUNCTION OBJECTS

struct my_kernel {
void operator()(){

, /" ernel function */ e To use a C++ function object

}i you simply construct an
instance of the type and
passittosingle task.

queue gpuQueue;

gpuQueue.submit ([&] (handler &cgh){ e Notice you no longer need to
cgh.single_task(my_kernel{}); name the SYCL kernel.
}).-wait();

=\ [EEE
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€. SYCL Academy @CL
STREAMS m
e Astreamcan be usedin akernel function to print text to the console from the
device, similarly to how you would with std: : cout.
e The streamis a buffered output stream so the output may not appear until the
kernel function is complete.

e The streamis useful for debugging, but should not be relied on in performance
critical code.

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCLW
STREAMS

stream: :stream(size_t bufferSize, size_t workItemBufferSize, handler é&cgh);

A stream must be constructed in the command group function, asa handler
Is required.

e The constructor also takes a size t parameter specifying the total size of the
buffer that will store the text.

e Italsotakes asecond size t parameter specifying the work-item buffer size.

» The work-item buffer size represents the cache that each invocation of the

kernel function (in the case of single task 1) has for composing a stream of
text.

- '_.\\ IEEE
ﬁ]‘){e%;ﬁio:;hgi‘;gilfgo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy

STREAMS

class my_kernel;

queue gpuQueue;
gpuQueue.submit([&] (handler &cgh){

auto os = sycl::stream(1024, 128, cgh);

cgh.single_task<my_kernel>([=]() {
/* kernel code */

1)
}).wait();

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

item size of 128.

GyeL

e Here we constructa streamin
our command group function with
a buffer size of 1024 and a work-

e This means that the total text that
the stream can receive is 1024

bytes.

IEEE

O

€ SYCL Academy
(SYCLW
STREAMS
e Next we capturethe streamin
the kernel function's lambda

class my_kernel; eXpreSSion.
Q ; M 11
ggsgﬁegggsﬂgrﬁt([&](handler &cgh) { ° Then We can prlnt He-L-LO
n .
AUto 05 = sycl::stream(1024, 128, cgh); World!" tothe console using the
cgh.single_task<my_kernel>([=]() { << Operator.
0s << "Hello world'!\n";

1) e Thisis where the work-item size

}).wait();

comes in, this is the cache
available to store text on the right-
hand-size of the << operator.

=\ [EEE
i ’ " SO\
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCLW
ENQUEUING SYCL KERNEL FUNCTIONS

e SYCL kernel functions are defined
using one of the kernel function
invoke APIs provided by the

class my_kernel; l1
andler.
gpuQueue.submit([&] (handler &cgh){ .
. e These add a SYCL kernel function
cgh.single_task<my_kernel>([=]() {
/" kernel code / command to the command group.
})-wait(); e There can only be one SYCL kernel
function command in a command
group.

 Hereweusesingle task.

Khronos Group Inc.

o . ',.\\ IEEE
f{:a(L and the SYCL logo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
GyeL.
QUESTIONS

'__\\ IEEE
ﬁﬁ%: aé:nclﬂslhé i‘lt:gll-nl:go are trademarks of .&(gj_.//. CI.U STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
(SYCLW
EXERCISE
Code_Exercises/Exercise_2_Hello_World/source

Implement a SYCL application which enqueues a kernel function to a device and
streams "Hello world!" to the console.

- ’,.\\ IEEE
f{:ar%uiﬁ?o:;hg ri;s)‘l:g_nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
‘S CL.
MANAGING DATA

’ ',.\\ IEEE
ﬁ)‘);’(kll_n a::olsh(ez i‘lt:gll-nl;go are trademarks of .L(kj_.//. CI.U STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
GyeL.
LEARNING OBJECTIVES

e Learn about the buffer/accessor model and USM for managing data
e Learn how to use these

e Learn how to use data in a kernel function

e Learn how to synchronize data

- ’,.\\ IEEE
f{:ar%uiﬁ?o:;hg ri;s)‘;g_nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCL.
MEMORY MODELS

e In SYCL there are two models for managing data:
= The buffer/accessor model.
= The USM (unified shared memory) model.
e Which model you choose can have an effect on how you enqueue kernel
functions.

IEEE

) J
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
‘ SYCL.
SYCL BUFFERS & ACCESSORS

\ IEEE

)
If‘;:);'l’i(l]_lr aé;dﬂlshé IE::[::CII_nlfgo are trademarks of .L@' c Lu STE R 2 022
p < ‘/ Heidelberg, Germany » 6-9 September

© SYCL Academy @C L -

e SYCL separates the storage and access of data
= A SYCL buffer manages data across the host and any number of devices
= A SYCL accessor requests access to data on the host or on a device for a
specific SYCL kernel function
e Accessors are also used to access data within a SYCL kernel function
= This means they are declared in the host code but captured by and then
accessed within a SYCL kernel function

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCL.
SYCL BUFFERS & ACCESSORS

e A SYCL buffer can be constructed
with a pointer to host memory
e For the lifetime of the buffer this
memory is owned by the SYCL
runtime
e When a buffer object is constructed it T |
will not allocate or copy to device e
memory at first
e This will only happen once the SYCL
runtime knows the data needs to be
accessed and where it needs to be
accessed

Host

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCL.
SYCL BUFFERS & ACCESSORS

e Constructing an accessor specifies a
request to access the data managed Accessor
by the buffer

e There are a range of different types
of accessor which provide different Buffer P | memory
ways to access data

-) ’,.\\ IEEE
Ifi:ke’(L and the SYCL logo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

Khronos Group Inc.

€ SYCL Academy
(SYCL.
SYCL BUFFERS & ACCESSORS

e When an accessor is constructed itis
associated with a command group

via the handler object Accessor @ S
e This connects the buffer thatis being

accessed, the way in which it’s being
accessed and the device that the . o _____ o et
command group is being submitted

to

IEEE

) J
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCL.
SYCL BUFFERS & ACCESSORS

e Once the SYCL scheduler selects the
command group to be executed it
must first satisfy its data

dependencies _ (- > o pevce
. . . memory
e This means allocating and copying /

data to the device the data is being /

accessed on if necessary [memory
e |f the most recent copy of the data is

already on the device then the

runtime will not copy again

IEEE

) 3
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

© SYCL Academy @C L -

SYCL BUFFERS & ACCESSORS

e Data will remain in device memory
after kernels finish executing until
another command group requests
access in a different device or on the Device

memory

host
e When the buffer object is destroyed pPx7# /
it will wait for any outstanding work x ________________________

thatis accessing the data to
complete and then copy back to the

original host memory

. Wi
f{}e%u?nd the SY Ci_nlct?go are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

onos Group

€ SYCL Academy

‘(S?Y()Lm
BUFFER CLASS

template <typename dataT, int dimensions>
sycl: :buffer;

e Abuffer manages data across the host application and kernel functions
executing on device(s).
It has a typename which specifies the type of the elements of data it manages.

|t has a dimensionality which specifies the dimensionality that the elements of
data are represented in.

SYCL and the SYCL logo are trademarks of
the Khron Inc.

:7\\' 1IEEE

€ SYCL Academy
(SYCLW
CONSTRUCTING A BUFFER

int var = 42;
auto buf = sycl::buffer{&var, sycl::range{l}};

e« Abuffer can be constructed from a pointer to data for it to manage and a
range which describes the number of elements of data.
e Using CTAD the type and the dimensionality can be inferred.

=\ [EEE

f{:ar%uiﬁ?o:;hg ri;s)‘;g_nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€ SYCL Academy

ACCESSOR CLASS

SYCL.

accessor<elementT,

dimensions,

access: :mode,

access: :placeholder>

access::target,

A 4

Element type

The element type of
an accessor can be
any non-pointer type
that is standard
layout and trivially
copyable

Dimensions

The dimensionality of
an accessor can be 0,
1,2o0r3

Access mode

The access mode of
an accessor can be
read, write,
read write,
discard write,
discard read write
or atomic

Access target

The access target of
an accessor can be
host buffer,
global buffer,
constant_buffer or
local

Placeholder

An accessor can
optionally be a
placeholder accessor,
which allows it to be
constructed in
advance outside of a
command group

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

(&) ClusTER2022

Heidelberg, Germany + 6-9 September

€ SYCL Academy
(SYCLW
ACCESSOR CLASS
e There are many different ways to use the accessor class.
= Accessing data on a device.
= Accessing data immediately in the host application.

= Allocating local memory.
e For now we are going to focus on accessing data on a device.

=\ [EEE

f{:a%uiﬁ?o:;hg i‘;g.nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

© SYCL Academy @C L .

CONSTRUCTING AN ACCESSOR

auto acc = sycl::accessor{bufA, cgh};

e There are many ways to construct anaccessor.
e Theaccessor class supports CTAD so it's not nessesary to specify all of the
template arguments.
e The most common way to construct an accessorisfromabufferanda
handler associated with the command group function you are within.
= The element type and dimensionality are infered from the buffer.
» Theaccess: :targetisdefaulted to
access::target::global buffer.
= Theaccess::modeisdefaultedtoaccess: :mode::read write.

- . ',.\\ IEEE
ﬁ}e%uand the SY Ci_nlct?go are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

nos Group

€ SYCL Academy
(SYCLW
SPECIFYING THE ACCESS MODE

auto readAcc = sycl::accessor{bufA, cgh, sycl::read_only};
auto writeAcc = sycl::accessor{bufB, cgh, sycl::write_only};

e When constructing an accessor you will likely also want to specify the
access::mode
* You can do this by passing one of the CTAD tags:
» read onlywillresultinaccess: :mode: : read.
= write onlywillresultinaccess: :mode: :write.

=\ [EEE

f{:a%uiﬁ?o:;hgihg_n]c?go are trademarks of @o c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
SPECIFYING NO INITIALIZATION

auto acc = sycl::accessor{buf, cgh, sycl::no_init};

e When constructing an accessor you may also want to discard the original
dataofabuffer.
e You can do this by passing the no_init property.

=\ [EEE

f{:ar%uiﬁ?o:;hg ri;s)‘;g_nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€. SYCL Academy @:L
ACCESS MODES
e Aread accessor instructs the SYCL runtime that the SYCL kernel function will
read the data - cannot be written to within a SYCL kernel function.
e Awriteaccessor instructs the SYCL runtime that the SYCL kernel function will
modify the data - creating a dependency for future command groups.
e Ano_initaccessorinstructs the SYCL runtime that the SYCL kernel function

does not need the initial values of the data - removing the dependency on
previous command groups.

IEEE

) 3
ﬁ;%;ﬁiolhgi‘;gi?go are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
ACCESSOR RESOLUTION

e Ifacommand group has more than one accessor to the same buffer with
conflicting access: :mode they are resolved into one:
= read & write => read_write.
e Ifacommand group has more than one accessor to the same bufferall
must have the no _1nit property forit to apply.
e Within the SYCL kernel function there are still multiple accessors, but they
alias to the same memory address.

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

© SYCL Academy @C L -

ACCESSOR RESOLUTION
e Here in and out both point to
buf butoneis
access: :mode: : readandone
isaccess::mode: :write.
e So the SYCL runtime will treat
gpuQueue. submit ([&] (handler &cgh){ them both as
})ZEES 335:255?%22225?3&nghSZ%JS?Z’EZH access: 'mode: ‘read write.

e Both will pointto a single
allocation of global memory on the
device(s).

e The runtime will resolve the data
dependency into
access::mode::read write.

Khronos Group Inc.

o . ',.\\ IEEE
f{:a(L and the SYCL logo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy C
SYCL.
OPERATOR]]

gpuQueue.submit([&] (handler &cgh){
auto inA = sycl::accessor{bufA, cgh, sycl::read_only};
auto inB sycl::accessor{bufB, cgh, sycl::read_only};
auto out sycl: :accessor{buf0, cgh, sycl::write_only};
cgh.single_task<add>([=]{

out[0] = inA[0] + inB[0O];

1)

1)

e As well as specifying data dependencies an accessor can also be used to
access the data from within a kernel function.
e You can do this by callingoperator[] ontheaccessor.
= This operator cantakeanidorasize t.

=\ [EEE
i ’ " SO\
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCLW
USM MODEL
e There are different ways USM memory can be allocated; host, device and

shared.
e We're going to focus on shared and device allocations.

- ’,.\\ IEEE
;z%ua‘ﬁ:io;hg i‘;g%ﬂlfgo are trademarks of @ ° c I-u STE R 2 02 2
. Heidelberg, Germany » 6-9 September

€ SYCL Academy
‘SYCLW
USM ALLOCATION TYPES

Type Description Accessible Accessible Located on
on host? on device?
device | Allocations in device memory x v device
host Allocations in host memory v v host
shared | Allocations shared between v 4 Can migrate
host and device between host
and device

Figure 6-1. USM allocation types

(from book)

onos Group Inc.

f;:z(kll-;nd the SYCL logo are trademarks of (\‘.:o//'o CLU STE R 2022
g Heidelberg, Germany » 6-9 September

€. SYCL Academy @CL
MALLOC_DEVICE
void* malloc device(size t numBytes, const queue& syclQueue, const property list &propList = {});

template <typename T>
T* malloc device(size t count, const queue& syclQueue, const property list &proplList = {});

A USM device allocation is performed by calling one of themalloc device

functions.

e Both of these functions allocate the specified region of memory on the device
associated with the specified queue.

e The pointer returned is only accessible in a kernel function running on that
device.

e Synchronous exception if the device does not have
aspect::usm_device_allocations.

e Thisis a blocking operation.

e Callsthe underlying cudaMalloc if using CUDA backend.

o . ',.\\ IEEE
ﬁ]‘){e%;ﬁio:;hgi‘;gilfgo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€. SYCL Academy @:L
MALLOC_SHARED
void* malloc shared(size t numBytes, const queue& syclQueue, const property list &propList = {});

template <typename T>
T* malloc shared(size t count, const queue& syclQueue, const property list &proplList = {});

e Both of these functions allocate the specified region of memory on the device
associated with the specified queue, as well as host.

e The pointer returned is accessible in CPU code as well as device kernel code,
for the device attached to the queue.

e Synchronous exception if the device does not have
aspect::usm_device_allocations

e Thisis a blocking operation.

e Callsthe underlying cudaMallocManaged if using CUDA backend.

e Convenient API but potentially slower thanmalloc device with explicit
memcpys.

=\ [EEE

e . , 2\
ﬁ;%;ﬁiolhgi‘;gi?go are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

@& SYCL Academy @C L -

FREE

void free(void* ptr, queue& syclQueue);

e Inorderto prevent memory leaks USM device allocations must be free by calling

the T ree function.
 The queue must be the same as was used to allocate the memory.

e Thisis a blocking operation.

- ’,.\\ IEEE
f{:ar%uiﬁ?o:;hg ri;s)‘;g_nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

@& SYCL Academy @C L -

MEMCPY

event queue::memcpy(void* dest, const void* src, size t numBytes, const std::vector &depEvents);

e Data can be copied to and from a USM device allocation by calling the queue's
memcpy member function.

e The source and destination can be either a host application pointer or a USM
device allocation.

e Thisis an asynchronous operation enqueued to the queue.

e Anevent isreturned which can be used to synchronize with the completion of
copy operation.

e May depend on other events via depEvents

o . ',.\\ IEEE
I5]‘);(L and the SYCL logo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

he Khronos Group Inc.

€. SYCL Academy @CL
MEMSET & FILL
event queue::memset(void* ptr, int value, size t numBytes, const std::vector &depEvents);

event queue::fill(void* ptr, const T& pattern, size t count, const std::vector &depEvents);

e The additional gueue member functions memset and fill provide
operations for initializing the data of a USM device allocation.

e The member function memset initializes each byte of the data with the value
interpreted as an unsigned char.

e The member function f1 11 initializes the data with a recurring pattern.

e These are also asynchronous operations.

=\ [EEE
e ’ " SO\
et (&) CLUSTER2022
“ Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
EXERCISE

Code_Exercises/Exercise_03_Scalar_Add

Implement a SYCL application that adds two variables and returns the result using
USM and Buffers.

IEEE

) 3
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
‘S CL.
ND RANGE KERNELS

’ ',.\\ IEEE
IS‘;:);'t’i(l]_lr a::olsh(ez i‘lt:g]fnlfgo are trademarks of .L(k)//. CLU STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
Greo
LEARNING OBJECTIVES

e Learn about the SYCL execution and memory model
e Learn how to enqueue an nd-range kernel functions

- ’,.\\ IEEE
;z%ua‘ﬁ:io;hg i‘;g%ﬂlfgo are trademarks of @ ° c I-u STE R 2 02 2
. Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
SYCL EXECUTION MODEL

e SYCL kernel functions are executed by work-items Work-item

e You can think of a work-item as a thread of execution

e Each work-item will execute a SYCL kernel function from start to
end

e Awork-item can run on CPU threads, SIMD lanes, GPU threads, or
any other kind of processing element

IEEE

) J
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
(SYCLW
SYCL EXECUTION MODEL

o Work-items are collected together

into work-groups o

e The size of work-groups is generally rereram
relative to what is optimal on the % — | % % % %
device being targeted

e |t can also be affected by the

resources used by each work-item

IEEE

) J
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

SYCL EXECUTION MODEL

e SYCL kernel functions are invoked
within an nd-range

e An nd-range has a number of work-
groups and subsequently a number
of work-items

o Work-groups always have the same
number of work-items

ND range

!
!

!
!

:.\\‘ 1IEEE

€ SYCL Academy
(SYCLW
SYCL EXECUTION MODEL

e The nd-range describes an iteration
space; how the work-items and
work-groups are composed

e Annd-rangecanbel,2or3
dimensions

e An nd-range has two components

= The global-range describes
the total number of
workitems in each dimension

= The local-range describes the
number of work-items in a
work-group in each
dimension

nd-range {{12, 12}, {4, 4}}

IEEE

) 3
ﬁ]‘){e%ua;ﬁiolshgi‘;g]fnlfgo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
SYCL EXECUTION MODEL

e Eachinvocation in the iteration nd-range {12, 12}, {4, 41}
space of an nd-range is a work-item
e Eachinvocation knows which work-
item itis on and can query certain
information about its position in the % ~—
nd-range ~1
e Each work-item has the following: ~L_
= Global range: {12, 12}
= Globalid: {5, 6}
= Group range: {3, 3}
= Groupid: {1, 1}
= Local range: {4, 4}
= Localid: {1, 2}

IEEE

) 3
ﬁ]‘){e%ua;ﬁiolshgi‘;g]fnlfgo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€. SYCL Academy
(SYCLW
SYCL EXECUTION MODEL

Typically an nd-range invocation SYCL will

execute the SYCL kernel function on a very

large number of work-items, often in the % % % % % % % %
thousands

-) ’,.\\ IEEE
;z%ua‘ﬁ:io;hg i‘;g%ﬂlfgo are trademarks of @ ° c I-u STE R 2 02 2
. Heidelberg, Germany « 6-9 September

€ SYCL Academy

SYCL EXECUTION MODEL

Multiple work-items will generally
execute concurrently

On vector hardware this is often
done in lock-step, which means the
same hardware instructions

The number of work-items that will
execute concurrently can vary from
one device to another

Work-items will be batched along
with other work-items in the same
work-group

The order work-items and
workgroups are executed in is
implementation defined

SYCL and the SYCL logo are trademarks of
the Khr Inc.

onos Group

.

IEEE

O

€ SYCL Academy

SYCL EXECUTION MODEL

e Work-itemsin a work-group can be
synchronized using a work-group
barrier

= All work-items within a work-
group must reach the barrier
before any can continue on

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

— o —— -,

IEEE

O

€ SYCL Academy
‘SYCLW
SYCL EXECUTION MODEL

work-group 0 work-group 1

e SYCL does not support synchronizing

across all work-items in the nd-range % % % % % % % %
e The only way to do this is to split the

computation into separate SYCL % % % % % % % %
kernel functions

IEEE

) 3
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

SYCL MEMORY MODEL

e Each work-item can access a
dedicated region of private memory

e A work-item cannot access the
private memory of another work-
item

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

Work-item

GyeL

Private
memory

:7\\' 1IEEE

€ SYCL Academy

SYCL MEMORY MODEL

Work-item

;

.| Private

memory

Work-group

ik

A

SYCL and the SYCL logo are trademarks of
the

he Khronos Group Inc.

Local
memory

GyeL

e Each work-item can access a
dedicated region of local
memory accessible to all
work-items in a work-group

e Awork-item cannot access
the local memory of another
workgroup

(&) cLusTER2022

€ SYCL Academy
(SYCLW
SYCL MEMORY MODEL

Work-item

% — % % % % 1 memory e Each work-item can access a
single region of global
memory that's accessible to
all work-items in a ND-range
e Each work-item can also

A A A A A A R (A AR RA (A RA(RA R access a region of global

THHRIRBARRRRRIRRRE memory reserved as

ND range

constant memory, which is
read-only

Global / constant memory

Wi
f{}e%uéﬁio:;hgiﬁl.‘g_nlfgo are trademarks of @o c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

© SYCL Academy @C L -

SYCL MEMORY MODEL

. . Global /
e Each memory region has a different constant

size and access latency S

e Global/constant memory is larger
than local memory and local
memory is larger than private
memory

e Private memory is faster than local
memory and local memory is faster
than global / constant memory Private

memaory

Local
memory

Memory region size

Access latency

=\ [EEE
SYCL and the SYCL logo are trademarks of (‘7}\ °

he Khronos Group Inc.

€ SYCL Academy

EXPRESSING PARALLELISM

cgh.parallel for<kernel>(range<i1>(1024),
[=](id<1> idx){
/* kernel function code */

1)

cgh.parallel for<kernel>(range<i1>(1024),
[=]1(item<1> item){
/* kernel function code */

1)

cgh.parallel for<kernel>(nd_range<l>(range<1>(1024),
range<1>(32)), [=](nd_item<1> ndItem){
. “inction code */

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

GyeL

Overload taking a range object
specifies the global range, runtime
decides local range

An id parameter represents the
index within the global range

Overload taking a range object
specifies the global range, runtime
decides local range

An item parameter represents the
global range and the index within
the global range

(& clusTer2022

€ SYCL Academy
(SYCL.
ACCESSING DATA WITH ACCESSORS

e There are a few different ways to access the data represented by an accessor
= The subscript operator can take an id
o Must be the same dimensionality of the accessor
o For dimensions > 1, linear address is calculated in row major
e Nested subscript operators can be called for each dimension taking a size_t
= E.g.a3-dimensional accessor: acc[x][y][z] =...
e A pointer to memory can be retrieved by calling get_pointer
= This returns a multi_ptr, which is a wrapper class for pointers to the
memory in the relevant memory space

IEEE

) 3
ﬁ]‘){e%ua;ﬁiolshgi‘ag_nlfgo are trademarks of @o cl-u STE R 2022
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
ACCESSING DATA WITH ACCESSORS

buffer<float, 1> bufA(dA.data(), range<l1>(dA.size()))
buffer<float, 1> bufB(dB.data(), range<l1>(dB.size()))
buffer<float, 1> buf0(dO.data(), range<1>(dO0.size()))

.
14
.
14
.

4

gpuQueue.submit([&] (handler &cgh){ * Here W€ access the data Of

auto inA = bufA.get_access<access::mode::read>(cgh); H
auto inB = bufB.get_access<access::mode::read>(cgh); the accessor by paSSIng
auto out = buf0O.get_access<access::mode::write>(cgh); . .
cgh.parallel_for<add>(range<i>(dA.size()), In the ld passed to the SYCL
[=](id<1> i){ .
out[i] = inA[i] + inB[i]; kernel function.
1)
3);

=\ [EEE
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy

ACCESSING DATA WITH ACCESSORS

buffer<float, 1> bufA(dA.data(), range<l>(dA.size()));
buffer<float, 1> bufB(dB.data(), range<l1>(dB.size()));
buffer<float, 1> buf0(dO.data(), range<1>(dO0.size()))

14

gpuQueue.submit([&] (handler &cgh){
auto inA = bufA.get_access<access::mode::read>(cgh);
auto inB = bufB.get_access<access::mode::read>(cgh);
auto out buf0.get_access<access::mode::write>(cgh);
cgh.parallel for<add>(rng, [=](1id<3> 1i){

auto ptrA = inA.get_pointer();
auto ptrB = inB.get_pointer();
auto ptrO = out.get_pointer();

auto linearId = i.get_linear_id();

ptrA[linearId] = ptrB[linearId] + ptrO[linearId];

1)
1)

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

GyeL

e Here we retrieve the
underlying pointer for each
of theaccessors.

e We then access the pointer
using the linearized id by
calling the
get linear id member
function on the 1tem.

e Again this linearization is
calculated in row-major
order.

(&) cLusTER2022

© SYCL Academy
GyeL.
QUESTIONS

'__\\ IEEE
ﬁﬁ%: aé:nclﬂslhé i‘lt:gll-nl:go are trademarks of .&(gj_.//. CI.U STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
(SYCLW
EXERCISE

Code_Exercises/Exercise_14_ND_Range_Kernel/source

Implement a SYCL application that will perform a vector add using parallel for,
adding multiple elements in parallel.

IEEE

) 3
o e i (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
‘S CL.
IMAGE CONVOLUTION

’ ',.\\ IEEE
IS‘;:);'t’i(l]_lr a::olsh(ez i‘lt:g]fnlfgo are trademarks of .L(k)//. CLU STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
Greo
LEARNING OBJECTIVES

e Learn about image convolutions and what makes them a good problem for
solving on a GPU
e Learn what a naive image convolution may look like

- ’,.\\ IEEE
f{:ar%uiﬁ?o:;hg ri;s)‘;g_nlfgo are trademarks of @ ° c I-U STE R 2 02 2
g Heidelberg, Germany » 6-9 September

€ SYCL Academy
(SYCLW
IMAGE CONVOLUTION

Over the next few lectures we will be looking at some common GPU optimizations
with an image convolution as the motivational example.

e A good problem to solve on a GPU.
Can take advantage of a number of common optimizations.

Convolution is a very powerful algorithm with many applications.
Deep neural networks.

Image processing.

IEEE

) J
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
‘kSYT:LM
WHY ARE IMAGE CONVOLUTIONS GOOD ON A GPU?

The algorithm is embarrassingly parallel.

Each work-item in the computation can be calculated entirely independently.
The algorithm is computation heavy.

A large number of operations are performed for each work-item in the
computation, particularly when using large filters.

The algorithm requires a large bandwidth.

A lot of data must be passed through the GPU to process an image, particularly if
the image is very high resolution.

:.\\‘ 1IEEE
(© GiusTer2022

SYCL.

€ SYCL Academy

IMAGE CONVOLUTION DEFINITION

1/16

Approximate gaussian blur 3x3

4

9

=

1k

2

2

6|

1

1

1] 5] 5| 4

Bl -3

3 7

11 & 7| 0O

6] 1} 6| 51 7| 8 5

A4 -5- 1L 9

7 5 4 2

6] 3] Of 51 0 7] O

of 4 4 2| 8 5 0

) 6] 0O g 3| 4 1

2l 8 7 0O

8 3] of 51 0] 2| Of 6

“H-8L 1] 7| 4

8l 3] 4 6] 2| 2| 4] 5] g 3

1 70 6 7] 7| 2

1| 8 4 5| 5

9] 8 2

20 4 7 1] 5 2| 0] 4] 5| 7

0] 6 1

" B ~H -5

|

7

3

21 4 3| 4 5

1|4

2] 5| 8| 2

1] 4] 4 2

8

710 4 O 3

1

3] O e 3| 4 6] O 4

8

2

“H~3

b6

2

1P 8

3

6

]

7

1} 7| 5| 8

1) 3| 4 3

9] 2

3| 6] 20O

1) 71 2| 2f & 4 6] 2| 4 7] 6] 8 3| 2] 4 1

4 9 9] 5

4 0

3 8 I 2 4 7

6 7 3| 4 3

1] 3| 4| 2
705 4 32

0] 9 9] 8 0O 2

6] 4] 0O 1f 39

1 3

3 3 0 5 S

1) 9| of 4 0Of 3

O

IEEE

SYCL and the SYCL logo are trademarks of

the Khronos Group Inc.

€ SYCL Academy

IMAGE CONVOLUTION DEFINITION

k k
G=h®F Gli,j| = Z Z hlu, v|F[i + u,j + v]
u=—k v=—k
8| o 3 B EEEE
3] o[4 1 LIEIE
AEEES - 4 7
o[ol 2 E B BT T .
2| 2] 8| 4 B IEE o . »
EEEE 5| g 4
6| 3| 6 o 2l 1 | oo
— 1/16
2| 4 7 o A
L
1| [4 Sy
EERE
BIEIR

Approximate gaussian blur 3x3

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

GyeL

Afilter of a given size is applied as a
stencil to the position of each pixel in
the input image.

Each pixel covered by the filter is
then multiples with the
corresponding element in the filter.
The result of these multiplications is
then summed to give the resulting
output pixel.

Here we have a 3x3 gaussian blur
approximation as an example.

(& clusTer2022

€ SYCL Academy

IMAGE CONVOLUTION EXAMPLE

\ IEEE

o
\
SYCL and the SYCL logo are trademarks of ‘ ":} Vo
the Khronos Group Inc. 'Q\-J/ &ky Cerr§nyT-EE SeRpien%rozz

€. SYCL Academy

IMAGE CONVOLUTION DATA FLOW

Input image Filter
GPU Jv

copy to GPU

l copy to GPU

Input Image Jv

Image
convolution (- Filter

kernel Il

A Output image

copy back to
host

Y

Cutput image

SYCL and the SYCL logo are trademarks of
the Khronos Group Inc.

GyeL

We have a single kernel function.

It must read from the input image
data and writes to the output image
data.

It must also read from the filter.

The input image data and the filter
don't need to be copied back to the
host.

The output image data can be
uninitialized.

:7\\' 1IEEE
(© GiusTer2022

€L SYCL Academy @CL
IMPLEMENTATION m
e We provide a naive implementation of a SYCL application which implements the
image convolution algorithm.
e This will be the basis for optimization in later lectures and exercises.
e The implementation uses the stb image library to allow us to visualize our
results.

e Theimplementation also uses a benchmark function to allow us to measure the
performance as we make optimizations.

IEEE

) 3
Lo st (&) CLUSTER2022
“ Heidelberg, Germany « 6-9 September

€ SYCL Academy
GyeL
REFERENCE IMAGE

» We provide a reference image to use in the exercise.

e Thisisin Code_Exercises/Images

e Thisimageisa512x512 RGBA png.

e Feel free to use your own image but we recommend keeping to this format.

AN\ EEE
pesR oottt (& CLusTER2022
g Heidelberg, Germany » 6-9 September

© SYCL Academy @C L -

INPUT/OUTPUT IMAGE LOCATIONS

auto inputImageFile = "../Code_Exercises/Images/dogs.png";
auto outputImageFile = ../Code_Exercises/Images/blurred_dogs.png";

e Thereference code and the solutions to the remaining exercises use these

strings to refernce the location of the input and output image.
» Before compiling these you will have to update this to point to the image in the

development environment.

=\ [EEE
SYCL and the SYCL logo are trademarks of (‘7}\ °

he Khronos Group Inc.

€ SYCL Academy

“S?Y()Lm
CONVOLUTION FILTERS

auto filter = util::generate_filter(util::filter_type filterType, int width);

e The utility for generating the filter data takesa filter type enum which can
be either 1identityorblur and a width.

e Feel free to experiment with different variations.
* Note that the filter width should always be an odd value.

SYCL and the SYCL logo are trademarks of
the Khron Inc.

:7\\' 1IEEE

€ SYCL Academy
‘SYCL,M
NAIVE IMAGE CONVOLUTION PERFORMANCE

Kernel time (ms) Image
12 conv
. 512x512
source
image
8
Intel HD
Graphics
° 530
4
2
0
33 5x5 7x7 9x9 11x11
- Naive

onos Group Inc.

i&;’cKr]_“ and the SYCL logo are trademarks of L‘:.// Ve CLU STE R 2022
. Heidelberg, Germany » 6-9 September

€ SYCL Academy
GyeL.
QUESTIONS

'__\\ IEEE
ﬁﬁ%: aé:nclﬂslhé i‘lt:gll-nl:go are trademarks of .&(gj_.//. CI.U STE R 2022

eeeeeeeeeeeeeeeeeeeeeeeeeeee

€ SYCL Academy
(SYCLW
EXERCISE

Code Walkthrough - \Code_Exercises\Exercise_05_Image_Convolution

Let's walk through the code together and understand how it works and uses SYCL.

IEEE

PR
Lo st (&) CLUSTER2022
q Heidelberg, Germany « 6-9 September

