
WHAT IS SYCL?WHAT IS SYCL?



LEARNING OBJECTIVESLEARNING OBJECTIVES

Heterogeneous parallel programming
Learn about the SYCL specification and its implementations
Learn about the components of a SYCL implementation
Learn about how a SYCL source file is compiled
Learn where to find useful resources for SYCL



SUPERCOMPUTING LANDSCAPE AT EXASCALESUPERCOMPUTING LANDSCAPE AT EXASCALE

Need for high levels of performance driving use of accelerators
Many, but not all, large supercomputers using GPUs:

LUMI at EuroHPC JU: AMD Trento CPU and AMD MI250X GPUs (4 per node)
Perlmutter at NERSC: AMD EPYC Milan CPUs and NVIDIA A100 GPUs
Frontier at ORNL: AMD EPYC custom CPUs and Radeon Instinct GPUs (4
per node)
Aurora at ALCF: Intel Xeon Sapphire Rapids CPUs and Xe Ponte Vecchio
GPUs (6 per node)
El Capitan at LLNL: AMD EPYC Genoa CPUs and Radeon Instinct GPUs (4
per node)

Multiple vendor solutions to get to Exascale



PERFORMANCE PORTABLE HETEROGENEOUS PROGRAMMINGPERFORMANCE PORTABLE HETEROGENEOUS PROGRAMMING

Scientific applications need to be performant across a range of processors
Need to write applications in (heterogeneous) parallel programming model

Open Standards: SYCL, OpenMP, ...
DSLs and abstractions: Kokkos, Raja, ...
Language parallelism: ISO C++, Fortran, ...



WHAT IS SYCL?WHAT IS SYCL?

SYCL is a single source, high-level, standard C++ programming model, that can target a
range of heterogeneous platforms



WHAT IS SYCL?WHAT IS SYCL?

A first example of SYCL code. Elements will be explained in coming sections!



SYCL IS...SYCL IS...

SYCL extends C++ in two key ways:
heterogeneous memory
heterogeneous parallel compute

SYCL is modern C++, with APIs for
device discovery (and information)
device control (kernels of work, memory)

SYCL doesn't add extensions to the core language
SYCL is an open standard

multivendor and multiarchitecture support



WHAT IS SYCL?WHAT IS SYCL?

SYCL is a single source, high-level, standard C++ programming model, that can target
a range of heterogeneous platforms

SYCL allows you to write both host
CPU and device code in the same
C++ source file
This requires two compilation
passes; one for the host code and
one for the device code



WHAT IS SYCL?WHAT IS SYCL?

SYCL is a single source, high-level, standard C++ programming model, that can target
a range of heterogeneous platforms

SYCL provides high-level abstractions over common boilerplate code
Platform/device selection
Buffer creation and data movement
Kernel function compilation
Dependency management and scheduling

High-level abstractions are good for productivity
SYCL has layers of abstractions when control is needed



WHAT IS SYCL?WHAT IS SYCL?

SYCL is a single source, high-level standard C++ programming model, that can target a
range of heterogeneous platforms

SYCL allows you to write standard
C++

SYCL 2020 is based on C++17
Unlike the other implementations
shown on the left there are:

No language extensions
No pragmas
No mandatory attributes



SYCL AND ISO C++SYCL AND ISO C++

ISO C++ has some notion of concurrency via threads and futures
and data parallelism via algorithm and numeric libraries
Assumes single execution space and single memory
No control of where to run (yet)
No asynchrony of algorithms (yet)

SYCL is aligning with and helping shape the future for heterogeneous compute in
C++



WHAT IS SYCL?WHAT IS SYCL?

SYCL is a single source, high-level standard C++ programming model, that can target a
range of heterogeneous platforms

SYCL can target any device
supported by its backend
SYCL can target a number of different
backends

SYCL has been designed to be
implemented on top of a variety of
backends. Current implementations
support backends such as OpenCL, CUDA,
HIP, OpenMP and others.



SYCL SPECIFICATIONSYCL SPECIFICATION



SYCL IMPLEMENTATIONSSYCL IMPLEMENTATIONS



SYCL IMPLEMENTATIONSSYCL IMPLEMENTATIONS



IMPLEMENTATIONS OF A STANDARDIMPLEMENTATIONS OF A STANDARD

SYCL is a standard
Document defines behaviour of API:

Platform, device model
Memory and execution model
What the APIs are and what they do

Implementations (like DPC++, hipSYCL, etc) implement the standard
Once conformant, guarenteed all APIs are supported by the
implementation



WHAT A SYCL IMPLEMENTATION LOOKS LIKEWHAT A SYCL IMPLEMENTATION LOOKS LIKE

The SYCL interface is a C++ template
library that developers can use to
access the features of SYCL
The same interface is used for both
the host and device code

The host is generally the CPU and is used to dispatch the parallel execution of
kernels
The device is the parallel unit used to execute the kernels, such as a GPU



WHERE TO GET STARTED WITH SYCLWHERE TO GET STARTED WITH SYCL

Visit  to find out about all the SYCL book, implementations,
tutorials, news, and videos
Visit  to find the latest SYCL specifications
Checkout the documentation provided with one of the SYCL implementations.

https://sycl.tech

https://www.khronos.org/sycl/

https://sycl.tech/
https://www.khronos.org/sycl/


QUESTIONSQUESTIONS



EXERCISEEXERCISE

Code_Exercises/Exercise_1_Compiling_with_SYCL/source.cpp

Configure your environment for using SYCL and compile a source file with the SYCL
compiler.

Task: Include the SYCL header and successfully build and run a binary.



INTEL DEVCLOUDINTEL DEVCLOUD

1. Register for the Intel DevCloud
2. Follow instructions to set up SSH

https://devcloud.intel.com/oneapi/documentation/

https://devcloud.intel.com/oneapi/documentation/


DEVCLOUD DEMODEVCLOUD DEMO



$ ssh devcloud

$ git clone https://github.com/illuhad/syclacademy -b cluster22 --recursive

$ cd syclacademy

$ mkdir build

$ dpcpp -fsycl -o sycl-ex-1 ../Code_Exercises/Exercise_01_Compiling_with_SYCL/source.cpp

$ qsub -I -l nodes=1:gpu:ppn=2 -d .
$ ./sycl-ex-1

	 	 	 	 	



ENQUEUING A KERNELENQUEUING A KERNEL



LEARNING OBJECTIVESLEARNING OBJECTIVES

Learn about queues and how to submit work to them
Learn how to compose command groups
Learn how to define kernel functions
Learn about the rules and restrictions on kernel functions
Learn how to stream text from a kernel function to the console.



THE QUEUETHE QUEUE

In SYCL all work is submitted via commands to a queue.
The queue has an associated device that any commands enqueued to it will
target.
There are several different ways to construct a queue.
The most straight forward is to default construct one.
This will have the SYCL runtime choose a device for you.



PRECURSORPRECURSOR

In SYCL there are two models for managing data:
The buffer/accessor model.
The USM (unified shared memory) model.

Which model you choose can have an effect on how you enqueue kernel
functions.
For now we are going to focus on the buffer/accessor model.



COMMAND GROUPSCOMMAND GROUPS

In the buffer/accessor model
commands must be enqueued via
command groups.
A command group represents a
series of commands to be executed
by a device.
These commands include:

Invoking kernel functions on
a device.
Copying data to and from a
device.
Waiting on other commands
to complete.



COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS

Command groups are composed by
calling the submit member
function on a queue.
The submit function takes a
command group function which acts
as a factory for composing the
command group.
The submit function creates a
handler and passes it into the
command group function.
The handler then composes the
command group.



COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS

The submit member function
takes a C++ function object, which
takes a reference to a handler.
The function object can be a
lambda expression or a class with
a function call operator.
The body of the function object
represents the command group
function.

gpuQueue.submit([&](handler &cgh){

  

  /* Command group function */

  

});

	 	 	 	 	 	 	



COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS

The command group function is
processed exactly once when
submit is called.
At this point all the commands
and requirements declared inside
the command group function are
processed to produce a command
group.
The command group is then
submitted asynchronously to the
scheduler.

gpuQueue.submit([&](handler &cgh){

  

  /* Command group function */

  

});

	 	 	 	 	 	 	



COMPOSING COMMAND GROUPSCOMPOSING COMMAND GROUPS

The queue will not wait for
commands to complete on
destruction.
However submit returns an
event to allow you to
synchronize with the completion
of the commands.
Here we call wait on the event
to immediately wait for it
complete.
There are other ways to do this,
that will be covered in later
lectures.

gpuQueue.submit([&](handler &cgh){


  /* Command group function */

  

}).wait();

	 	 	 	 	 	 	



SCHEDULINGSCHEDULING

Once submit has created a command group it will submit it to the scheduler.
The scheduler will then execute the commands on the target device
once all
dependencies and requirements are satisfied.



SCHEDULINGSCHEDULING

The same scheduler is used for all queues.
This allows sharing dependency information.



The kernel function invoke
APIs take a function object
representing the kernel
function.
This can be a lambda
expression or a class with a
function call operator.
This is the entry point to the
code that is compiled to
execute on the device.

class my_kernel;


gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
  cgh.single_task<my_kernel>([=]() {

    /* kernel code */

  }); 

}).wait();

	 	 	 	 	 	 	



Different kernel invoke APIs
take different parameters
describing the iteration
space to be invoked in.
Different kernel invoke APIs
can also expect different
arguments to be passed to
the function object.
The single_task
function describes a kernel
function that is invoked
exactly once, so there are no
additional parameters or
arguments.

class my_kernel;


gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
  cgh.single_task<my_kernel>([=]() {

    /* kernel code */

  }); 

}).wait();

	 	 	 	 	 	 	



The template parameter
passed to single_task is
used to name the kernel
function.
This is necessary when
defining kernel functions
with lambdas to allow the
host and device compilers to
communicate.
SYCL 2020 allows kernel
lambdas to be unnamed,
but not all implementations
support that yet.

class my_kernel;


gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
  cgh.single_task<my_kernel>([=]() {

    /* kernel code */

  }); 

}).wait();

	 	 	 	 	 	 	



SYCL KERNEL FUNCTION RULESSYCL KERNEL FUNCTION RULES

Must be defined using a C++ lambda or function object, they cannot be a
function pointer or std::function.
Must always capture or store members by-value.
SYCL kernel functions declared with a lambda must be named using a forward
declarable C++ type, declared in global scope.
SYCL kernel function names follow C++ ODR rules, which means you cannot have
two kernels with the same name.



SYCL KERNEL FUNCTION RESTRICTIONSSYCL KERNEL FUNCTION RESTRICTIONS

No dynamic allocation
No dynamic polymorphism
No function pointers
No recursion



KERNELS AS FUNCTION OBJECTSKERNELS AS FUNCTION OBJECTS

All the examples of SYCL kernel
functions up until now have been
defined using lambda expressions.

class my_kernel;


queue gpuQueue;

gpuQueue.submit([&](handler &cgh){


  cgh.single_task<my_kernel>([=]() {

    /* kernel code */

  }); 

}).wait();

	 	 	 	 	 	 	



KERNELS AS FUNCTION OBJECTSKERNELS AS FUNCTION OBJECTS

As well as defining SYCL kernels
using lambda expressions,
You can
also define a SYCL kernel using a
regular C++ function object.

struct my_kernel { 

  void operator()(){ 

    /* kernel function */

  }

};

	 	 	 	 	 	 	



KERNELS AS FUNCTION OBJECTSKERNELS AS FUNCTION OBJECTS

To use a C++ function object
you simply construct an
instance of the type and
pass it to single_task.
Notice you no longer need to
name the SYCL kernel.

struct my_kernel { 

  void operator()(){ 

    /* kernel function */

  }

};

	 	 	 	 	 	 	

queue gpuQueue;

gpuQueue.submit([&](handler &cgh){

	 	 	 	 	 	 	 	
  cgh.single_task(my_kernel{}); 

}).wait();

	 	 	 	 	 	 	



STREAMSSTREAMS

A stream can be used in a kernel function to print text to the console from the
device, similarly to how you would with std::cout.
The stream is a buffered output stream so the output may not appear until the
kernel function is complete.
The stream is useful for debugging, but should not be relied on in performance
critical code.



STREAMSSTREAMS

A stream must be constructed in the command group function, as a handler
is required.
The constructor also takes a size_t parameter specifying the total size of the
buffer that will store the text.
It also takes a second size_t parameter specifying the work-item buffer size.
The work-item buffer size represents the cache that each invocation of the
kernel function (in the case of single_task 1) has for composing a stream of
text.

stream::stream(size_t bufferSize, size_t workItemBufferSize, handler &cgh);

	 	 	 	 	 	



STREAMSSTREAMS

Here we construct a stream in
our command group function with
a buffer size of 1024 and a work-
item size of 128.
This means that the total text that
the stream can receive is 1024
bytes.

class my_kernel;


queue gpuQueue;

gpuQueue.submit([&](handler &cgh){


  auto os = sycl::stream(1024, 128, cgh);


  cgh.single_task<my_kernel>([=]() {

    /* kernel code */

  }); 

}).wait();

	 	 	 	 	 	 	



STREAMSSTREAMS

Next we capture the stream in
the kernel function's lambda
expression.
Then we can print "Hello
World!" to the console using the
<< operator.
This is where the work-item size
comes in, this is the cache
available to store text on the right-
hand-size of the << operator.

class my_kernel;


queue gpuQueue;

gpuQueue.submit([&](handler &cgh){


  auto os = sycl::stream(1024, 128, cgh);


  cgh.single_task<my_kernel>([=]() {

    os << "Hello world!\n";

  }); 

}).wait();

	 	 	 	 	 	 	



ENQUEUING SYCL KERNEL FUNCTIONSENQUEUING SYCL KERNEL FUNCTIONS

SYCL kernel functions are defined
using one of the kernel function
invoke APIs provided by the
handler.
These add a SYCL kernel function
command to the command group.
There can only be one SYCL kernel
function command in a command
group.
Here we use single_task.

class my_kernel;


gpuQueue.submit([&](handler &cgh){


  cgh.single_task<my_kernel>([=]() {

    /* kernel code */

  });

}).wait();

	 	 	 	 	 	 	



QUESTIONSQUESTIONS



EXERCISEEXERCISE

Code_Exercises/Exercise_2_Hello_World/source

Implement a SYCL application which enqueues a kernel function to a device and
streams "Hello world!" to the console.



MANAGING DATAMANAGING DATA



LEARNING OBJECTIVESLEARNING OBJECTIVES

Learn about the buffer/accessor model and USM for managing data
Learn how to use these
Learn how to use data in a kernel function
Learn how to synchronize data



MEMORY MODELSMEMORY MODELS

In SYCL there are two models for managing data:
The buffer/accessor model.
The USM (unified shared memory) model.

Which model you choose can have an effect on how you enqueue kernel
functions.



SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS



SYCL separates the storage and access of data
A SYCL buffer manages data across the host and any number of devices
A SYCL accessor requests access to data on the host or on a device for a
specific SYCL kernel function

Accessors are also used to access data within a SYCL kernel function
This means they are declared in the host code but captured by and then
accessed within a SYCL kernel function



SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS

A SYCL buffer can be constructed
with a pointer to host memory
For the lifetime of the buffer this
memory is owned by the SYCL
runtime
When a buffer object is constructed it
will not allocate or copy to device
memory at first
This will only happen once the SYCL
runtime knows the data needs to be
accessed and where it needs to be
accessed



SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS

Constructing an accessor specifies a
request to access the data managed
by the buffer
There are a range of different types
of accessor which provide different
ways to access data



SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS

When an accessor is constructed it is
associated with a command group
via the handler object
This connects the buffer that is being
accessed, the way in which it’s being
accessed and the device that the
command group is being submitted
to



SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS

Once the SYCL scheduler selects the
command group to be executed it
must first satisfy its data
dependencies
This means allocating and copying
data to the device the data is being
accessed on if necessary
If the most recent copy of the data is
already on the device then the
runtime will not copy again



SYCL BUFFERS & ACCESSORSSYCL BUFFERS & ACCESSORS

Data will remain in device memory
after kernels finish executing until
another command group requests
access in a different device or on the
host
When the buffer object is destroyed
it will wait for any outstanding work
that is accessing the data to
complete and then copy back to the
original host memory



BUFFER CLASSBUFFER CLASS

A buffer manages data across the host application
and kernel functions
executing on device(s).
It has a typename which specifies the type of the
elements of data it manages.
It has a dimensionality which specifies the
dimensionality that the elements of
data are represented
in.

template <typename dataT, int dimensions>

sycl::buffer;

	 	 	 	 	 	



CONSTRUCTING A BUFFERCONSTRUCTING A BUFFER

A buffer can be constructed from a pointer to data
for it to manage and a
range which describes the
number of elements of data.
Using CTAD the type and the dimensionality can be
inferred.

int var = 42;

auto buf = sycl::buffer{&var, sycl::range{1}};

	 	 	 	 	 	



ACCESSOR CLASSACCESSOR CLASS



ACCESSOR CLASSACCESSOR CLASS

There are many different ways to use the accessor
class.
Accessing data on a device.
Accessing data immediately in the host application.
Allocating local memory.

For now we are going to focus on accessing data on a
device.



CONSTRUCTING AN ACCESSORCONSTRUCTING AN ACCESSOR

There are many ways to construct an accessor.
The accessor class supports CTAD so it's not
nessesary to specify all of the
template arguments.
The most common way to construct an accessor is from
a buffer and a
handler associated with the command
group function you are within.

The element type and dimensionality are infered from
the buffer.
The access::target is defaulted to
access::target::global_buffer.
The access::mode is defaulted to
access::mode::read_write.

auto acc = sycl::accessor{bufA, cgh};

	 	 	 	 	 	



SPECIFYING THE ACCESS MODESPECIFYING THE ACCESS MODE

When constructing an accessor you will likely also
want to specify the
access::mode

You can do this by passing one of the CTAD tags:
read_only will result in access::mode::read.
write_only will result in access::mode::write.

auto readAcc = sycl::accessor{bufA, cgh, sycl::read_only};

auto writeAcc = sycl::accessor{bufB, cgh, sycl::write_only};

	 	 	 	 	 	



SPECIFYING NO INITIALIZATIONSPECIFYING NO INITIALIZATION

When constructing an accessor you may also want to
discard the original
data of a buffer.
You can do this by passing the no_init property.

auto acc = sycl::accessor{buf, cgh, sycl::no_init};

	 	 	 	 	 	



ACCESS MODESACCESS MODES

A read accessor instructs the SYCL runtime that
the SYCL kernel function will
read the data – cannot be
written to within a SYCL kernel function.
A write accessor instructs the SYCL runtime that
the SYCL kernel function will
modify the data – creating
a dependency for future command groups.
A no_init accessor instructs the SYCL runtime
that the SYCL kernel function
does not need the initial
values of the data – removing the dependency on
previous
command groups.



ACCESSOR RESOLUTIONACCESSOR RESOLUTION

If a command group has more than one accessor to the
same buffer with
conflicting access::mode they are
resolved into one:

read & write => read_write.
If a command group has more than one accessor to the
same buffer all
must have the no_init property for
it to apply.
Within the SYCL kernel function there are still
multiple accessors, but they
alias to the same memory
address.



ACCESSOR RESOLUTIONACCESSOR RESOLUTION

Here in and out both point to
buf but one is
access::mode::read and one
is
access::mode::write.
So the SYCL runtime will treat
them both as
access::mode::read_write.
Both will point to a single
allocation of global
memory on the
device(s).
The runtime will resolve the data
dependency into
access::mode::read_write.

gpuQueue.submit([&](handler &cgh){

  auto in = sycl::accessor{buf, cgh, sycl::read_only}
  auto out = sycl::accessor{buf, cgh, sycl::write_onl
});

	 	 	 	 	 	 	



OPERATOR[]OPERATOR[]

As well as specifying data dependencies an accessor
can also be used to
access the data from within a kernel
function.
You can do this by calling operator[] on the
accessor.

This operator can take an id or a size_t.

gpuQueue.submit([&](handler &cgh){

  auto inA = sycl::accessor{bufA, cgh, sycl::read_only};

  auto inB = sycl::accessor{bufB, cgh, sycl::read_only};

  auto out = sycl::accessor{bufO, cgh, sycl::write_only};

  cgh.single_task<add>([=]{

    out[0] = inA[0] + inB[0];

  }); 

});

	 	 	 	 	 	



USM MODELUSM MODEL

There are different ways USM memory can be allocated; host, device and
shared.
We're going to focus on shared and device allocations.



USM ALLOCATION TYPESUSM ALLOCATION TYPES

(from book)



MALLOC_DEVICEMALLOC_DEVICE

A USM device allocation is performed by calling one of the malloc_device
functions.
Both of these functions allocate the specified region of memory on the device
associated with the specified queue.
The pointer returned is only accessible in a kernel function running on that
device.
Synchronous exception if the device does not have
aspect::usm_device_allocations.
This is a blocking operation.
Calls the underlying cudaMalloc if using CUDA backend.

void* malloc_device(size_t numBytes, const queue& syclQueue, const property_list &propList = {});





template <typename T>


T* malloc_device(size_t count, const queue& syclQueue,  const property_list &propList = {});


	 	 	 	 	 	



MALLOC_SHAREDMALLOC_SHARED

Both of these functions allocate the specified region of memory on the device
associated with the specified queue, as well as host.
The pointer returned is accessible in CPU code as well as device kernel code,
for the device attached to the queue.
Synchronous exception if the device does not have
aspect::usm_device_allocations
This is a blocking operation.
Calls the underlying cudaMallocManaged if using CUDA backend.
Convenient API but potentially slower than malloc_device with explicit
memcpys.

void* malloc_shared(size_t numBytes, const queue& syclQueue, const property_list &propList = {});





template <typename T>


T* malloc_shared(size_t count, const queue& syclQueue,  const property_list &propList = {});


	 	 	 	 	 	



FREEFREE

In order to prevent memory leaks USM device allocations must be free by calling
the free function.
The queue must be the same as was used to allocate the memory.
This is a blocking operation.

void free(void* ptr, queue& syclQueue);


	 	 	 	 	 	



MEMCPYMEMCPY

Data can be copied to and from a USM device allocation by calling the queue's
memcpy member function.
The source and destination can be either a host application pointer or a USM
device allocation.
This is an asynchronous operation enqueued to the queue.
An event is returned which can be used to synchronize with the completion of
copy operation.
May depend on other events via depEvents

event queue::memcpy(void* dest, const void* src, size_t numBytes, const std::vector &depEvents);


	 	 	 	 	 	



MEMSET & FILLMEMSET & FILL

The additional queue member functions memset and fill provide
operations for initializing the data of a USM device allocation.
The member function memset initializes each byte of the data with the value
interpreted as an unsigned char.
The member function fill initializes the data with a recurring pattern.
These are also asynchronous operations.

event queue::memset(void* ptr, int value, size_t numBytes, const std::vector &depEvents);





event queue::fill(void* ptr, const T& pattern, size_t count, const std::vector &depEvents);


	 	 	 	 	 	



EXERCISEEXERCISE

Code_Exercises/Exercise_03_Scalar_Add

Implement a SYCL application that adds two variables
and returns the result using
USM and Buffers.



ND RANGE KERNELSND RANGE KERNELS



LEARNING OBJECTIVESLEARNING OBJECTIVES

Learn about the SYCL execution and memory model
Learn how to enqueue an nd-range kernel functions



SYCL EXECUTION MODELSYCL EXECUTION MODEL

SYCL kernel functions are executed by work-items
You can think of a work-item as a thread of execution
Each work-item will execute a SYCL kernel function from start to
end
A work-item can run on CPU threads, SIMD lanes, GPU threads, or
any other kind of processing element



SYCL EXECUTION MODELSYCL EXECUTION MODEL

Work-items are collected together
into work-groups
The size of work-groups is generally
relative to what is optimal on the
device being targeted
It can also be affected by the
resources used by each work-item



SYCL EXECUTION MODELSYCL EXECUTION MODEL

SYCL kernel functions are invoked
within an nd-range
An nd-range has a number of work-
groups and subsequently a number
of work-items
Work-groups always have the same
number of work-items



SYCL EXECUTION MODELSYCL EXECUTION MODEL

The nd-range describes an iteration
space; how the work-items and
work-groups are composed
An nd-range can be 1, 2 or 3
dimensions
An nd-range has two components

The global-range describes
the total number of
workitems in each dimension
The local-range describes the
number of work-items in a
work-group in each
dimension



SYCL EXECUTION MODELSYCL EXECUTION MODEL

Each invocation in the iteration
space of an nd-range is a work-item
Each invocation knows which work-
item it is on and can query certain
information about its position in the
nd-range
Each work-item has the following:

Global range: {12, 12}
Global id: {5, 6}
Group range: {3, 3}
Group id: {1, 1}
Local range: {4, 4}
Local id: {1, 2}



SYCL EXECUTION MODELSYCL EXECUTION MODEL

Typically an nd-range invocation SYCL will
execute the SYCL kernel function on a very
large number of work-items, often in the
thousands



SYCL EXECUTION MODELSYCL EXECUTION MODEL

Multiple work-items will generally
execute concurrently
On vector hardware this is often
done in lock-step, which means the
same hardware instructions
The number of work-items that will
execute concurrently can vary from
one device to another
Work-items will be batched along
with other work-items in the same
work-group
The order work-items and
workgroups are executed in is
implementation defined



SYCL EXECUTION MODELSYCL EXECUTION MODEL

Work-items in a work-group can be
synchronized using a work-group
barrier

All work-items within a work-
group must reach the barrier
before any can continue on



SYCL EXECUTION MODELSYCL EXECUTION MODEL

SYCL does not support synchronizing
across all work-items in the nd-range
The only way to do this is to split the
computation into separate SYCL
kernel functions



SYCL MEMORY MODELSYCL MEMORY MODEL

Each work-item can access a
dedicated region of private memory
A work-item cannot access the
private memory of another work-
item



SYCL MEMORY MODELSYCL MEMORY MODEL

Each work-item can access a
dedicated region of local
memory accessible to all
work-items in a work-group
A work-item cannot access
the local memory of another
workgroup



SYCL MEMORY MODELSYCL MEMORY MODEL

Each work-item can access a
single region of global
memory that's accessible to
all work-items in a ND-range
Each work-item can also
access a region of global
memory reserved as
constant memory, which is
read-only



SYCL MEMORY MODELSYCL MEMORY MODEL

Each memory region has a different
size and access latency
Global / constant memory is larger
than local memory and local
memory is larger than private
memory
Private memory is faster than local
memory and local memory is faster
than global / constant memory



EXPRESSING PARALLELISMEXPRESSING PARALLELISM

Overload taking a range object
specifies the global range, runtime
decides local range
An id parameter represents the
index within the global range

Overload taking a range object
specifies the global range, runtime
decides local range
An item parameter represents the
global range and the index within
the global range

	 	 	 	 	 	 	
cgh.parallel_for<kernel>(range<1>(1024), 

  [=](id<1> idx){

    /* kernel function code */

});

	 	 	 	 	 	 	

	 	 	 	 	 	 	
cgh.parallel_for<kernel>(range<1>(1024), 

  [=](item<1> item){

    /* kernel function code */

});

	 	 	 	 	 	 	

	 	 	 	 	 	 	
cgh.parallel_for<kernel>(nd_range<1>(range<1>(1024), 
  range<1>(32)),[=](nd_item<1> ndItem){

    /* kernel function code */

});

	 	 	 	 	 	 	



ACCESSING DATA WITH ACCESSORSACCESSING DATA WITH ACCESSORS

There are a few different ways to access the data represented by an accessor
The subscript operator can take an id

Must be the same dimensionality of the accessor
For dimensions > 1, linear address is calculated in row major

Nested subscript operators can be called for each dimension taking a size_t
E.g. a 3-dimensional accessor: acc[x][y][z] = …

A pointer to memory can be retrieved by calling get_pointer
This returns a multi_ptr, which is a wrapper class for pointers to the
memory in the relevant memory space



ACCESSING DATA WITH ACCESSORSACCESSING DATA WITH ACCESSORS

Here we access the data of
the accessor by
passing
in the id passed to the SYCL
kernel
function.

buffer<float, 1> bufA(dA.data(), range<1>(dA.size())); 

buffer<float, 1> bufB(dB.data(), range<1>(dB.size())); 

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));


gpuQueue.submit([&](handler &cgh){

  auto inA = bufA.get_access<access::mode::read>(cgh);

  auto inB = bufB.get_access<access::mode::read>(cgh);

  auto out = bufO.get_access<access::mode::write>(cgh);

  cgh.parallel_for<add>(range<1>(dA.size()), 

    [=](id<1> i){ 

    out[i] = inA[i] + inB[i];

  });

});

	 	 	 	 	 	 	



ACCESSING DATA WITH ACCESSORSACCESSING DATA WITH ACCESSORS

Here we retrieve the
underlying pointer for each
of the accessors.
We then access the pointer
using the linearized
id by
calling the
get_linear_id member
function
on the item.
Again this linearization is
calculated in
row-major
order.

buffer<float, 1> bufA(dA.data(), range<1>(dA.size())); 

buffer<float, 1> bufB(dB.data(), range<1>(dB.size())); 

buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));


gpuQueue.submit([&](handler &cgh){

  auto inA = bufA.get_access<access::mode::read>(cgh);

  auto inB = bufB.get_access<access::mode::read>(cgh);

  auto out = bufO.get_access<access::mode::write>(cgh);

  cgh.parallel_for<add>(rng, [=](id<3> i){

    auto ptrA = inA.get_pointer();

    auto ptrB = inB.get_pointer();

    auto ptrO = out.get_pointer();

    auto linearId = i.get_linear_id();


    ptrA[linearId] = ptrB[linearId] + ptrO[linearId]; 

  });

});

	 	 	 	 	 	 	



QUESTIONSQUESTIONS



EXERCISEEXERCISE

Code_Exercises/Exercise_14_ND_Range_Kernel/source

Implement a SYCL application that will perform a vector add using parallel_for,
adding multiple elements in parallel.



IMAGE CONVOLUTIONIMAGE CONVOLUTION



LEARNING OBJECTIVESLEARNING OBJECTIVES

Learn about image convolutions and what makes them a good problem for
solving on a GPU
Learn what a naive image convolution may look like



IMAGE CONVOLUTIONIMAGE CONVOLUTION

Over the next few lectures we will be looking at some common GPU optimizations
with an image convolution as the motivational example.

A good problem to solve on a GPU.
Can take advantage of a number of common optimizations.
Convolution is a very powerful algorithm with many applications.
Deep neural networks.
Image processing.



WHY ARE IMAGE CONVOLUTIONS GOOD ON A GPU?WHY ARE IMAGE CONVOLUTIONS GOOD ON A GPU?

The algorithm is embarrassingly parallel.
Each work-item in the computation can be calculated entirely independently.
The algorithm is computation heavy.
A large number of operations are performed for each work-item in the
computation, particularly when using large filters.
The algorithm requires a large bandwidth.
A lot of data must be passed through the GPU to process an image, particularly if
the image is very high resolution.



IMAGE CONVOLUTION DEFINITIONIMAGE CONVOLUTION DEFINITION



IMAGE CONVOLUTION DEFINITIONIMAGE CONVOLUTION DEFINITION

A filter of a given size is applied as a
stencil to the position of each pixel in
the input image.
Each pixel covered by the filter is
then multiples with the
corresponding element in the filter.
The result of these multiplications is
then summed to give the resulting
output pixel.
Here we have a 3x3 gaussian blur
approximation as an example.



IMAGE CONVOLUTION EXAMPLEIMAGE CONVOLUTION EXAMPLE



IMAGE CONVOLUTION DATA FLOWIMAGE CONVOLUTION DATA FLOW

We have a single kernel function.
It must read from the input image
data and writes to the output image
data.
It must also read from the filter.
The input image data and the filter
don't need to be copied back to the
host.
The output image data can be
uninitialized.



IMPLEMENTATIONIMPLEMENTATION

We provide a naive implementation of a SYCL application which implements the
image convolution algorithm.
This will be the basis for optimization in later lectures and exercises.
The implementation uses the stb image library to allow us to visualize our
results.
The implementation also uses a benchmark function to allow us to measure the
performance as we make optimizations.



REFERENCE IMAGEREFERENCE IMAGE

We provide a reference image to use in the exercise.
This is in Code_Exercises/Images
This image is a 512x512 RGBA png.
Feel free to use your own image but we recommend
keeping to this format.



INPUT/OUTPUT IMAGE LOCATIONSINPUT/OUTPUT IMAGE LOCATIONS

The reference code and the solutions to the remaining
exercises use these
strings to refernce the location of
the input and output image.
Before compiling these you will have to update this to
point to the image in the
development environment.

auto inputImageFile = "../Code_Exercises/Images/dogs.png";

auto outputImageFile = ../Code_Exercises/Images/blurred_dogs.png";

	 	 	 	 	 	



CONVOLUTION FILTERSCONVOLUTION FILTERS

The utility for generating the filter data takes a
filter_type enum which can
be either identity or
blur and a width.
Feel free to experiment with different variations.
Note that the filter width should always be an odd
value.

auto filter = util::generate_filter(util::filter_type filterType, int width);

	 	 	 	 	 	



NAIVE IMAGE CONVOLUTION PERFORMANCENAIVE IMAGE CONVOLUTION PERFORMANCE



QUESTIONSQUESTIONS



EXERCISEEXERCISE

Code Walkthrough - \Code_Exercises\Exercise_05_Image_Convolution

Let's walk through the code together and understand how it works and uses SYCL.


