/* * #%L * ImgLib2: a general-purpose, multidimensional image processing library. * %% * Copyright (C) 2009 - 2016 Tobias Pietzsch, Stephan Preibisch, Stephan Saalfeld, * John Bogovic, Albert Cardona, Barry DeZonia, Christian Dietz, Jan Funke, * Aivar Grislis, Jonathan Hale, Grant Harris, Stefan Helfrich, Mark Hiner, * Martin Horn, Steffen Jaensch, Lee Kamentsky, Larry Lindsey, Melissa Linkert, * Mark Longair, Brian Northan, Nick Perry, Curtis Rueden, Johannes Schindelin, * Jean-Yves Tinevez and Michael Zinsmaier. * %% * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * #L% */ import ij.ImageJ; import io.scif.img.IO; import io.scif.img.ImgIOException; import java.util.Random; import net.imglib2.Interval; import net.imglib2.IterableRealInterval; import net.imglib2.KDTree; import net.imglib2.RandomAccessible; import net.imglib2.RandomAccessibleInterval; import net.imglib2.RealInterval; import net.imglib2.RealPoint; import net.imglib2.RealPointSampleList; import net.imglib2.RealRandomAccess; import net.imglib2.RealRandomAccessible; import net.imglib2.img.Img; import net.imglib2.img.display.imagej.ImageJFunctions; import net.imglib2.interpolation.neighborsearch.InverseDistanceWeightingInterpolatorFactory; import net.imglib2.interpolation.neighborsearch.NearestNeighborSearchInterpolatorFactory; import net.imglib2.interpolation.randomaccess.NLinearInterpolatorFactory; import net.imglib2.neighborsearch.KNearestNeighborSearch; import net.imglib2.neighborsearch.KNearestNeighborSearchOnKDTree; import net.imglib2.neighborsearch.NearestNeighborSearch; import net.imglib2.neighborsearch.NearestNeighborSearchOnKDTree; import net.imglib2.type.Type; import net.imglib2.type.numeric.RealType; import net.imglib2.type.numeric.real.FloatType; import net.imglib2.view.Views; /** * Working with sparse data, sample an existing image at random locations * and render it again using an increasing number of samples */ public class Example8b { public Example8b() throws ImgIOException { // open with SCIFIO using a FloatType Img< FloatType > img = IO.openImgs( "DrosophilaWingSmall.tif", new FloatType() ).get( 0 ); // show the image ImageJFunctions.show( img ); // use linear interpolation to convert the input into a RealRandomAccessible RealRandomAccessible< FloatType > realRandomAccessible = Views.interpolate( Views.extendMirrorSingle( img ), new NLinearInterpolatorFactory< FloatType >() ); // sample the image with an increasing number of random points and display the result for ( int numPoints = 2; numPoints <= 32768; numPoints = numPoints * 4 ) { // the result when we use nearest neighbor interpolation ImageJFunctions.show( randomSampling( realRandomAccessible, img, numPoints ), numPoints +" points (NN)" ); // the result when use a distance weighted interpolation of the 20 nearest neighbors ImageJFunctions.show( randomSamplingKNearest( realRandomAccessible, img, numPoints ), numPoints + " points (KNN)" ); } } /** * Sample randomly n points from the input and display the interpolated result * using nearest neighbors * * @param input - the input data * @param interval - the size of the input (where to collect random samples) * @param numPoints - how many points to sample * * @return - a RandomAccessibleInterval of the same size as the input, * rendered from the sparse data */ public < T extends Type< T > > RandomAccessibleInterval< T > randomSampling( RealRandomAccessible< T > input, Interval interval, int numPoints ) { // create an IterableRealInterval IterableRealInterval< T > realInterval = sampleRandomPoints( input, interval, numPoints ); // using nearest neighbor search we will be able to return a value an any position in space NearestNeighborSearch< T > search = new NearestNeighborSearchOnKDTree<>( new KDTree<>( realInterval ) ); // make it into RealRandomAccessible using nearest neighbor search RealRandomAccessible< T > realRandomAccessible = Views.interpolate( search, new NearestNeighborSearchInterpolatorFactory< T >() ); // convert it into a RandomAccessible which can be displayed RandomAccessible< T > randomAccessible = Views.raster( realRandomAccessible ); // set the initial interval as area to view return Views.interval( randomAccessible, interval ); } /** * Sample randomly n points from the input and display the interpolated result using * distance-weighted interpolation of 20 nearest neighbors * * @param input - the input data * @param interval - the size of the input (where to collect random samples) * @param numPoints - how many points to sample * * @return - a RandomAccessibleInterval of the same size as the input, * rendered from the sparse data */ public < T extends RealType< T > > RandomAccessibleInterval< T > randomSamplingKNearest( RealRandomAccessible< T > input, Interval interval, int numPoints ) { // create an IterableRealInterval IterableRealInterval< T > realInterval = sampleRandomPoints( input, interval, numPoints ); // using nearest neighbor search we will be able to return a value an any position in space KNearestNeighborSearch< T > search = new KNearestNeighborSearchOnKDTree< >( new KDTree<>( realInterval ), Math.min( 20, (int)realInterval.size() ) ); // make it into RealRandomAccessible using nearest neighbor search RealRandomAccessible< T > realRandomAccessible = Views.interpolate( search, new InverseDistanceWeightingInterpolatorFactory< T >() ); // convert it into a RandomAccessible which can be displayed RandomAccessible< T > randomAccessible = Views.raster( realRandomAccessible ); // set the initial interval as area to view return Views.interval( randomAccessible, interval ); } /** * Sample a number of n-dimensional random points in a certain interval having a * random intensity 0...1 * * @param interval - the interval in which points are created * @param numPoints - the amount of points * * @return a RealPointSampleList (which is an IterableRealInterval) */ public static < T extends Type< T > > RealPointSampleList< T > sampleRandomPoints( RealRandomAccessible< T > input, RealInterval interval, int numPoints ) { // the number of dimensions int numDimensions = interval.numDimensions(); // a random number generator Random rnd = new Random( 1332441549191l ); // a list of Samples with coordinates RealPointSampleList< T > elements = new RealPointSampleList<>( numDimensions ); // a random accessible in the image data to grep the right value RealRandomAccess< T > realRandomAccess = input.realRandomAccess(); for ( int i = 0; i < numPoints; ++i ) { RealPoint point = new RealPoint( numDimensions ); for ( int d = 0; d < numDimensions; ++d ) point.setPosition( rnd.nextDouble() * ( interval.realMax( d ) - interval.realMin( d ) ) + interval.realMin( d ), d ); realRandomAccess.setPosition( point ); // add a new element with a random intensity in the range 0...1 elements.add( point, realRandomAccess.get().copy() ); } return elements; } public static void main( String[] args ) throws ImgIOException { // open an ImageJ window new ImageJ(); // run the example new Example8b(); } }