{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
| Option | Default | Predefined values | Description |
|---|---|---|---|
| V | \n", "False | \n", "- | \n", "Verbose flag | \n", "
| Color | \n", "True | \n", "- | \n", "Flag for colored output | \n", "
| Transformations | \n", "\"\" | \n", "- | \n", "List of transformations to test. For example with \"I;D;P;U;G\" string identity, decorrelation, PCA, uniform and Gaussian transformations will be applied | \n", "
| Silent | \n", "False | \n", "- | \n", "Batch mode: boolean silent flag inhibiting\n", "any output from TMVA after\n", "the creation of the factory class object | \n", "
| DrawProgressBar | \n", "True | \n", "- | \n", "Draw progress bar to display training,\n", "testing and evaluation schedule (default:\n", "True) | \n", "
| AnalysisType | \n", "Auto | \n", "Classification,\n", "Regression,\n", "Multiclass, Auto | \n", "Set the analysis type | \n", "
| Keyword | Can be used as positional argument | Default | Predefined values | Description |
|---|---|---|---|---|
| JobName | \n", "yes, 1. | \n", "not optional | \n", "- | \n", "Name of job | \n", "
| TargetFile | \n", "yes, 2. | \n", "if not passed histograms won't be saved | \n", "- | \n", "File to write control and performance histograms histograms | \n", "
| V | \n", "no | \n", "False | \n", "- | \n", "Verbose flag | \n", "
| Color | \n", "no | \n", "\n", "True | \n", "- | \n", "Flag for colored output | \n", "
| Transformations | \n", "no | \n", "\n", "\"\" | \n", "- | \n", "List of transformations to test. For example with \"I;D;P;U;G\" string identity, decorrelation, PCA, uniform and Gaussian transformations will be applied | \n", "
| Silent | \n", "no | \n", "\n", "False | \n", "\n", "- | \n", "Batch mode: boolean silent flag inhibiting\n", "any output from TMVA after\n", "the creation of the factory class object | \n", "
| DrawProgressBar | \n", "no | \n", "\n", "True | \n", "- | \n", "Draw progress bar to display training,\n", "testing and evaluation schedule (default:\n", "True) | \n", "
| AnalysisType | \n", "no | \n", "\n", "Auto | \n", "Classification,\n", "Regression,\n", "Multiclass, Auto | \n", "Set the analysis type | \n", "
| DataSetInfo |
| |||
| Add Tree TreeS of type Signal with 6000 events | ||||
| DataSetInfo |
| |||
| Add Tree TreeB of type Background with 6000 events |
| Keyword | \n", "Can be used as positional argument | \n", "Default | \n", "Predefined values | \n", "Description | \n", "
|---|---|---|---|---|
| SigCut | \n", "yes, 1. | \n", "- | \n", "- | \n", "TCut object for signal cut | \n", "
| Bkg | \n", "yes, 2. | \n", "- | \n", "- | \n", "TCut object for background cut | \n", "
| SplitMode | \n", "no | \n", "Random | \n", "Random,\n", "Alternate,\n", "Block | \n", "Method of picking training and testing\n", "events | \n", "
| MixMode | \n", "no | \n", "SameAsSplitMode | \n", "SameAsSplitMode,\n", "Random,\n", "Alternate,\n", "Block | \n", "Method of mixing events of differnt\n", "classes into one dataset | \n", "
| SplitSeed | \n", "no | \n", "100 | \n", "- | \n", "Seed for random event shuffling | \n", "
| NormMode | \n", "no | \n", "EqualNumEvents | \n", "None, NumEvents,\n", "EqualNumEvents | \n", "Overall renormalisation of event-by-event\n", "weights used in the training (NumEvents:\n", "average weight of 1 per\n", "event, independently for signal and\n", "background; EqualNumEvents: average\n", "weight of 1 per event for signal,\n", "and sum of weights for background\n", "equal to sum of weights for signal) | \n", "
| nTrain_Signal | \n", "no | \n", "0 (all) | \n", "- | \n", "Number of training events of class Signal | \n", "
| nTest_Signal | \n", "no | \n", "0 (all) | \n", "- | \n", "Number of test events of class Signal | \n", "
| nTrain_Background | \n", "no | \n", "0 (all) | \n", "- | \n", "Number of training events of class\n", "Background | \n", "
| nTest_Background | \n", "no | \n", "0 (all) | \n", "- | \n", "Number of test events of class Background | \n", "
| V | \n", "no | \n", "False | \n", "- | \n", "Verbosity | \n", "
| VerboseLevel | \n", "no | \n", "Info | \n", "Debug, Verbose,\n", "Info | \n", "Verbosity level | \n", "
| DataSetFactory |
| ||||||||||||||||||||||
| |||||||||||||||||||||||
| DataSetInfo | Correlation matrix (Signal) | ||||||||||||||||||||||
| DataSetInfo | Correlation matrix (Background) | ||||||||||||||||||||||
| DataSetFactory |
| ||||||||||||||||||||||
| DataLoader |
| ||||||||||||||||||||||||||||||
| Transformation, Variable selection : | |||||||||||||||||||||||||||||||
| Input : variable 'myvar1' <---> Output : variable 'myvar1' | |||||||||||||||||||||||||||||||
| Input : variable 'myvar2' <---> Output : variable 'myvar2' | |||||||||||||||||||||||||||||||
| Input : variable 'var3' <---> Output : variable 'var3' | |||||||||||||||||||||||||||||||
| Input : variable 'var4' <---> Output : variable 'var4' | |||||||||||||||||||||||||||||||
| DataLoader |
| ||||||||||||||||||||||||||||||
| Transformation, Variable selection : | |||||||||||||||||||||||||||||||
| Input : variable 'myvar1' <---> Output : variable 'myvar1' | |||||||||||||||||||||||||||||||
| Input : variable 'myvar2' <---> Output : variable 'myvar2' | |||||||||||||||||||||||||||||||
| Input : variable 'var3' <---> Output : variable 'var3' | |||||||||||||||||||||||||||||||
| Input : variable 'var4' <---> Output : variable 'var4' | |||||||||||||||||||||||||||||||
| Preparing the Decorrelation transformation... | |||||||||||||||||||||||||||||||
| TFHandler_DataLoader |
| ||||||||||||||||||||||||||||||
| TFHandler_DataLoader |
| ||||||||||||||||||||||||||||||
| DataLoader |
| ||||||||||||||||||||||||||||||
| Transformation, Variable selection : | |||||||||||||||||||||||||||||||
| Input : variable 'myvar1' <---> Output : variable 'myvar1' | |||||||||||||||||||||||||||||||
| Input : variable 'myvar2' <---> Output : variable 'myvar2' | |||||||||||||||||||||||||||||||
| Input : variable 'var3' <---> Output : variable 'var3' | |||||||||||||||||||||||||||||||
| Input : variable 'var4' <---> Output : variable 'var4' | |||||||||||||||||||||||||||||||
| DataLoader |
| ||||||||||||||||||||||||||||||
| Transformation, Variable selection : | |||||||||||||||||||||||||||||||
| Input : variable 'myvar1' <---> Output : variable 'myvar1' | |||||||||||||||||||||||||||||||
| Input : variable 'myvar2' <---> Output : variable 'myvar2' | |||||||||||||||||||||||||||||||
| Input : variable 'var3' <---> Output : variable 'var3' | |||||||||||||||||||||||||||||||
| Input : variable 'var4' <---> Output : variable 'var4' | |||||||||||||||||||||||||||||||
| Preparing the Decorrelation transformation... | |||||||||||||||||||||||||||||||
| TFHandler_DataLoader |
| ||||||||||||||||||||||||||||||
| TFHandler_DataLoader |
|
| Keyword | \n", "Can be used as positional argument | \n", "Default | \n", "Predefined values | \n", "Description | \n", "
|---|---|---|---|---|
| DataLoader | \n", "yes, 1. | \n", "- | \n", "- | \n", "Pointer to DataLoader object | \n", "
| Method | \n", "yes, 2. | \n", "- | \n", "kVariable\n", " kCuts ,\n", " kLikelihood ,\n", " kPDERS ,\n", " kHMatrix ,\n", " kFisher ,\n", " kKNN ,\n", " kCFMlpANN ,\n", " kTMlpANN ,\n", " kBDT ,\n", " kDT ,\n", " kRuleFit ,\n", " kSVM ,\n", " kMLP ,\n", " kBayesClassifier,\n", " kFDA ,\n", " kBoost ,\n", " kPDEFoam ,\n", " kLD ,\n", " kPlugins ,\n", " kCategory ,\n", " kDNN ,\n", " kPyRandomForest ,\n", " kPyAdaBoost ,\n", " kPyGTB ,\n", " kC50 ,\n", " kRSNNS ,\n", " kRSVM ,\n", " kRXGB ,\n", " kMaxMethod | \n", "Selected method number, method numbers defined in TMVA.Types | \n", "
| MethodTitle | \n", "yes, 3. | \n", "- | \n", "- | \n", "Label for method | \n", "
| * | \n", "no | \n", "- | \n", "- | \n", "Other named arguments which are the options for selected method. | \n", "
| Factory | Booking method: SVM\u001b | |||
| SVM |
| |||
| Transformation, Variable selection : | ||||
| Input : variable 'myvar1' <---> Output : variable 'myvar1' | ||||
| Input : variable 'myvar2' <---> Output : variable 'myvar2' | ||||
| Input : variable 'var3' <---> Output : variable 'var3' | ||||
| Input : variable 'var4' <---> Output : variable 'var4' | ||||
| Factory | Booking method: MLP\u001b | |||
| MLP |
| |||
| Transformation, Variable selection : | ||||
| Input : variable 'myvar1' <---> Output : variable 'myvar1' | ||||
| Input : variable 'myvar2' <---> Output : variable 'myvar2' | ||||
| Input : variable 'var3' <---> Output : variable 'var3' | ||||
| Input : variable 'var4' <---> Output : variable 'var4' | ||||
| MLP | Building Network. | |||
| Initializing weights | ||||
| Factory | Booking method: LD\u001b | |||
| Factory | Booking method: Likelihood\u001b | |||
| Factory | Booking method: BDT\u001b | |||
| Factory | Booking method: DNN\u001b | |||
| DNN |
| |||
| Transformation, Variable selection : | ||||
| Input : variable 'myvar1' <---> Output : variable 'myvar1' | ||||
| Input : variable 'myvar2' <---> Output : variable 'myvar2' | ||||
| Input : variable 'var3' <---> Output : variable 'var3' | ||||
| Input : variable 'var4' <---> Output : variable 'var4' |
| TFHandler_SVM |
| ||||||||||||||||||||||||||||||
| Building SVM Working Set...with 6000 event instances | |||||||||||||||||||||||||||||||
| Elapsed time for Working Set build : 1.24 sec | |||||||||||||||||||||||||||||||
| Sorry, no computing time forecast available for SVM, please wait ... | |||||||||||||||||||||||||||||||
| Elapsed time : 1.68 sec | |||||||||||||||||||||||||||||||
| Elapsed time for training with 6000 events : 2.94 sec | |||||||||||||||||||||||||||||||
| SVM |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 1.03 sec | |||||||||||||||||||||||||||||||
| Creating xml weight file: tmva_class_example/weights/TMVAClassification_SVM.weights.xml\u001b | |||||||||||||||||||||||||||||||
| Creating standalone class: tmva_class_example/weights/TMVAClassification_SVM.class.C\u001b | |||||||||||||||||||||||||||||||
| TFHandler_MLP |
| ||||||||||||||||||||||||||||||
| Training Network | |||||||||||||||||||||||||||||||
| Elapsed time for training with 6000 events : 1.43 sec | |||||||||||||||||||||||||||||||
| MLP |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.00932 sec | |||||||||||||||||||||||||||||||
| Creating xml weight file: tmva_class_example/weights/TMVAClassification_MLP.weights.xml\u001b | |||||||||||||||||||||||||||||||
| Creating standalone class: tmva_class_example/weights/TMVAClassification_MLP.class.C\u001b | |||||||||||||||||||||||||||||||
| Write special histos to file: TMVA.root:/tmva_class_example/Method_MLP/MLP | |||||||||||||||||||||||||||||||
| LD | Results for LD coefficients: | ||||||||||||||||||||||||||||||
| Variable: Coefficient: | |||||||||||||||||||||||||||||||
| myvar1: -0.359 | |||||||||||||||||||||||||||||||
| myvar2: -0.109 | |||||||||||||||||||||||||||||||
| var3: -0.211 | |||||||||||||||||||||||||||||||
| var4: +0.722 | |||||||||||||||||||||||||||||||
| (offset): -0.054 | |||||||||||||||||||||||||||||||
| Elapsed time for training with 6000 events : 0.00231 sec | |||||||||||||||||||||||||||||||
| LD |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.000759 sec | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| Creating xml weight file: tmva_class_example/weights/TMVAClassification_LD.weights.xml\u001b | |||||||||||||||||||||||||||||||
| Creating standalone class: tmva_class_example/weights/TMVAClassification_LD.class.C\u001b | |||||||||||||||||||||||||||||||
| ================================================================\u001b | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| --- Short description:\u001b | |||||||||||||||||||||||||||||||
| The maximum-likelihood classifier models the data with probability | |||||||||||||||||||||||||||||||
| density functions (PDF) reproducing the signal and background | |||||||||||||||||||||||||||||||
| distributions of the input variables. Correlations among the | |||||||||||||||||||||||||||||||
| variables are ignored. | |||||||||||||||||||||||||||||||
| --- Performance optimisation:\u001b | |||||||||||||||||||||||||||||||
| Required for good performance are decorrelated input variables | |||||||||||||||||||||||||||||||
| (PCA transformation via the option \"VarTransform=Decorrelate\" | |||||||||||||||||||||||||||||||
| may be tried). Irreducible non-linear correlations may be reduced | |||||||||||||||||||||||||||||||
| by precombining strongly correlated input variables, or by simply | |||||||||||||||||||||||||||||||
| removing one of the variables. | |||||||||||||||||||||||||||||||
| --- Performance tuning via configuration options:\u001b | |||||||||||||||||||||||||||||||
| High fidelity PDF estimates are mandatory, i.e., sufficient training | |||||||||||||||||||||||||||||||
| statistics is required to populate the tails of the distributions | |||||||||||||||||||||||||||||||
| It would be a surprise if the default Spline or KDE kernel parameters | |||||||||||||||||||||||||||||||
| provide a satisfying fit to the data. The user is advised to properly | |||||||||||||||||||||||||||||||
| tune the events per bin and smooth options in the spline cases | |||||||||||||||||||||||||||||||
| individually per variable. If the KDE kernel is used, the adaptive | |||||||||||||||||||||||||||||||
| Gaussian kernel may lead to artefacts, so please always also try | |||||||||||||||||||||||||||||||
| the non-adaptive one. | |||||||||||||||||||||||||||||||
| All tuning parameters must be adjusted individually for each input | |||||||||||||||||||||||||||||||
| variable! | |||||||||||||||||||||||||||||||
| ================================================================\u001b | |||||||||||||||||||||||||||||||
| Filling reference histograms | |||||||||||||||||||||||||||||||
| Building PDF out of reference histograms | |||||||||||||||||||||||||||||||
| Elapsed time for training with 6000 events : 0.0304 sec | |||||||||||||||||||||||||||||||
| Likelihood |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.00743 sec | |||||||||||||||||||||||||||||||
| Creating xml weight file: tmva_class_example/weights/TMVAClassification_Likelihood.weights.xml\u001b | |||||||||||||||||||||||||||||||
| Creating standalone class: tmva_class_example/weights/TMVAClassification_Likelihood.class.C\u001b | |||||||||||||||||||||||||||||||
| Write monitoring histograms to file: TMVA.root:/tmva_class_example/Method_Likelihood/Likelihood | |||||||||||||||||||||||||||||||
| BDT | #events: (reweighted) sig: 3000 bkg: 3000 | ||||||||||||||||||||||||||||||
| #events: (unweighted) sig: 3000 bkg: 3000 | |||||||||||||||||||||||||||||||
| Training 850 Decision Trees ... patience please | |||||||||||||||||||||||||||||||
| Elapsed time for training with 6000 events : 1.54 sec | |||||||||||||||||||||||||||||||
| BDT |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.443 sec | |||||||||||||||||||||||||||||||
| Creating xml weight file: tmva_class_example/weights/TMVAClassification_BDT.weights.xml\u001b | |||||||||||||||||||||||||||||||
| Creating standalone class: tmva_class_example/weights/TMVAClassification_BDT.class.C\u001b | |||||||||||||||||||||||||||||||
| TFHandler_DNN |
| ||||||||||||||||||||||||||||||
| TFHandler_DNN |
| ||||||||||||||||||||||||||||||
| TFHandler_DNN |
| ||||||||||||||||||||||||||||||
| Using Standard Implementation.Training with learning rate = 0.1, momentum = 0, repetitions = 1 | |||||||||||||||||||||||||||||||
| Training with learning rate = 0.01, momentum = 0.5, repetitions = 1 | |||||||||||||||||||||||||||||||
| Training with learning rate = 0.01, momentum = 0.3, repetitions = 1 | |||||||||||||||||||||||||||||||
| Training with learning rate = 0.001, momentum = 0.1, repetitions = 1 | |||||||||||||||||||||||||||||||
| Training with learning rate = 0.001, momentum = 0.1, repetitions = 1 | |||||||||||||||||||||||||||||||
| Elapsed time for training with 6000 events : 4.53 sec | |||||||||||||||||||||||||||||||
| DNN |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.212 sec | |||||||||||||||||||||||||||||||
| Creating xml weight file: tmva_class_example/weights/TMVAClassification_DNN.weights.xml\u001b | |||||||||||||||||||||||||||||||
| Creating standalone class: tmva_class_example/weights/TMVAClassification_DNN.class.C\u001b |
| Factory | Test all methods\u001b | ||||||||||||||||||||||||||||||
| Factory | Test method: SVM for Classification performance | ||||||||||||||||||||||||||||||
| SVM |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.983 sec | |||||||||||||||||||||||||||||||
| Factory | Test method: MLP for Classification performance | ||||||||||||||||||||||||||||||
| MLP |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.00927 sec | |||||||||||||||||||||||||||||||
| Factory | Test method: LD for Classification performance | ||||||||||||||||||||||||||||||
| LD |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.00108 sec | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| Factory | Test method: Likelihood for Classification performance | ||||||||||||||||||||||||||||||
| Likelihood |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.00623 sec | |||||||||||||||||||||||||||||||
| Factory | Test method: BDT for Classification performance | ||||||||||||||||||||||||||||||
| BDT |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.367 sec | |||||||||||||||||||||||||||||||
| Factory | Test method: DNN for Classification performance | ||||||||||||||||||||||||||||||
| DNN |
| ||||||||||||||||||||||||||||||
| Elapsed time for evaluation of 6000 events : 0.193 sec | |||||||||||||||||||||||||||||||
| Factory | Evaluate all methods\u001b | ||||||||||||||||||||||||||||||
| Factory | Evaluate classifier: SVM | ||||||||||||||||||||||||||||||
| TFHandler_SVM |
| ||||||||||||||||||||||||||||||
| SVM |
| ||||||||||||||||||||||||||||||
| TFHandler_SVM |
| ||||||||||||||||||||||||||||||
| Factory | Evaluate classifier: MLP | ||||||||||||||||||||||||||||||
| TFHandler_MLP |
| ||||||||||||||||||||||||||||||
| MLP |
| ||||||||||||||||||||||||||||||
| TFHandler_MLP |
| ||||||||||||||||||||||||||||||
| Factory | Evaluate classifier: LD | ||||||||||||||||||||||||||||||
| LD |
| ||||||||||||||||||||||||||||||
| Also filling probability and rarity histograms (on request)... | |||||||||||||||||||||||||||||||
| TFHandler_LD |
| ||||||||||||||||||||||||||||||
| Factory | Evaluate classifier: Likelihood | ||||||||||||||||||||||||||||||
| Likelihood |
| ||||||||||||||||||||||||||||||
| TFHandler_Likelihood |
| ||||||||||||||||||||||||||||||
| Factory | Evaluate classifier: BDT | ||||||||||||||||||||||||||||||
| BDT |
| ||||||||||||||||||||||||||||||
| TFHandler_BDT |
| ||||||||||||||||||||||||||||||
| Factory | Evaluate classifier: DNN | ||||||||||||||||||||||||||||||
| DNN |
| ||||||||||||||||||||||||||||||
| TFHandler_DNN |
| ||||||||||||||||||||||||||||||
| Evaluation results ranked by best signal efficiency and purity (area) | |||||||||||||||||||||||||||||||
| DataSet MVA | |||||||||||||||||||||||||||||||
| Name: Method: ROC-integ | |||||||||||||||||||||||||||||||
| tmva_class_example DNN : 0.940 | |||||||||||||||||||||||||||||||
| tmva_class_example MLP : 0.939 | |||||||||||||||||||||||||||||||
| tmva_class_example SVM : 0.937 | |||||||||||||||||||||||||||||||
| tmva_class_example BDT : 0.931 | |||||||||||||||||||||||||||||||
| tmva_class_example LD : 0.895 | |||||||||||||||||||||||||||||||
| tmva_class_example Likelihood : 0.827 | |||||||||||||||||||||||||||||||
| Testing efficiency compared to training efficiency (overtraining check) | |||||||||||||||||||||||||||||||
| DataSet MVA Signal efficiency: from test sample (from training sample) | |||||||||||||||||||||||||||||||
| Name: Method: @B=0.01 @B=0.10 @B=0.30 | |||||||||||||||||||||||||||||||
| tmva_class_example DNN : 0.390 (0.345) 0.804 (0.798) 0.962 (0.963) | |||||||||||||||||||||||||||||||
| tmva_class_example MLP : 0.365 (0.345) 0.806 (0.797) 0.962 (0.964) | |||||||||||||||||||||||||||||||
| tmva_class_example SVM : 0.400 (0.322) 0.802 (0.791) 0.961 (0.961) | |||||||||||||||||||||||||||||||
| tmva_class_example BDT : 0.350 (0.380) 0.778 (0.805) 0.955 (0.959) | |||||||||||||||||||||||||||||||
| tmva_class_example LD : 0.261 (0.242) 0.679 (0.662) 0.901 (0.903) | |||||||||||||||||||||||||||||||
| tmva_class_example Likelihood : 0.106 (0.101) 0.400 (0.371) 0.812 (0.813) | |||||||||||||||||||||||||||||||
| Dataset:tmva_class_exa...: Created tree 'TestTree' with 6000 events | |||||||||||||||||||||||||||||||
| Dataset:tmva_class_exa...: Created tree 'TrainTree' with 6000 events | |||||||||||||||||||||||||||||||
| Factory | Thank you for using TMVA!\u001b | ||||||||||||||||||||||||||||||
| For citation information, please visit: http://tmva.sf.net/citeTMVA.html\u001b |
| Keyword | Can be used as positional argument | Default | Predefined values | Description |
|---|---|---|---|---|
| datasetName | \n", "yes, 1. | \n", "- | \n", "- | \n", "The name of dataset | \n", "
| methodName | \n", "yes, 2. | \n", "- | \n", "- | \n", "The name of method | \n", "
| Keyword | Can be used as positional argument | Default | Predefined values | Description |
|---|---|---|---|---|
| datasetName | \n", "yes, 1. | \n", "- | \n", "- | \n", "The name of dataset | \n", "
| Keyword | Can be used as positional argument | Default | Predefined values | Description |
|---|---|---|---|---|
| datasetName | \n", "yes, 1. | \n", "- | \n", "- | \n", "The name of dataset | \n", "
| Keyword | Can be used as positional argument | Default | Predefined values | Description |
|---|---|---|---|---|
| datasetName | \n", "yes, 1. | \n", "- | \n", "- | \n", "The name of dataset | \n", "
| methodName | \n", "yes, 2. | \n", "- | \n", "- | \n", "The name of method | \n", "
| Keyword | Can be used as positional argument | Default | Predefined values | Description |
|---|---|---|---|---|
| datasetName | \n", "yes, 1. | \n", "- | \n", "- | \n", "The name of dataset | \n", "
| methodName | \n", "yes, 2. | \n", "- | \n", "- | \n", "The name of method | \n", "
| Keyword | Can be used as positional argument | Default | Predefined values | Description |
|---|---|---|---|---|
| datasetName | \n", "yes, 1. | \n", "- | \n", "- | \n", "The name of dataset | \n", "
| methodName | \n", "yes, 2. | \n", "- | \n", "- | \n", "The name of method | \n", "