
Attractor Neural Networks for Modelling Associative Memory

Wael Al Jishi
wa910@imperial.ac.uk

Niklas Hambuechen
nh910@imperial.ac.uk

Razvan Marinescu
rvm10@imperial.ac.uk

Mihaela Rosca
mcr10@imperial.ac.uk

Lukasz Severyn
lk1110@imperial.ac.uk

Supervised by Prof. Abbas Edalat
ae@imperial.ac.uk

January 2013

Executive Summary

Attractor Neural networks have been a subject of intensive research in the past 30 years.
They have been proposed as a model of associative memory and have been used in ranging from
facial and speech recognition to modelling biological activities of the human brain.

The aim of our project was to attain a deeper understanding of these networks by running
various simulations and investigating their properties. For this purpose, we have demonstrated
their importance by implementing an image recognition software. Furthermore, we have also
used them as an aid for modelling a psychological concept known as Attachment Theory, in
order to better understand the human mind and how to cure various mental disorders.

Our project attempts to model, at a metaphorical level, an individual’s emotional mindset,
and how it is formed due to the influences of experiences, which manifest as memories, en-
countered in early life. We have implemented several mathematical models of neural networks,
that can simulate various functions of the brain. Amongst these, two of them are of uttermost
importance: learning and recalling information.

We have used our networks to analyse and quantify the influence of memories, analysing
factors affecting their probability of being recalled, or how they can be either forgotten or
reinforced. The latter is extremely important for the psychological studies, since it paves the
way for curing some mental disorders whose roots lie in negative experiences encountered early
in life.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 3
1.3 Our achievements . 4

2 Background Research 5
2.1 Attachment Theory . 5

2.1.1 Strange Situation Procedure . 5
2.2 Practical applications of Attractor Neural Networks 5
2.3 Hopfield Networks . 5

2.3.1 Updating the Hopfield Network . 6
2.3.2 Training using the Hebbian Rule . 6
2.3.3 Spurious Patterns . 6
2.3.4 Energy Landscape . 7
2.3.5 Stability and Capacity . 7
2.3.6 Training using the Pseudo-Inverse Rule 8
2.3.7 Training using the Storkey Rule . 8

2.4 Restricted Boltzmann Machines . 10
2.4.1 Probability of a state . 11
2.4.2 Training the network . 11
2.4.3 Using Restricted Boltzmann Machines for classification 12
2.4.4 Learning . 13
2.4.5 Classification . 13
2.4.6 New method . 14

3 Exploring The Hopfield Model 16
3.1 Facial Recognition for Police criminal records . 16
3.2 Further analysis . 17
3.3 Basins of Attraction . 17

3.3.1 Measuring the Basin Size using the Storkey-Valabregue technique 17
3.4 Generating Clusters of Attractors . 19

3.4.1 Generating Gaussian-Distributed Clusters 19
3.5 First experiments with basin sizes . 19

3.5.1 Basin Size for One Cluster using T1 . 20
3.5.2 Basin Size for Two Clusters using T1 . 21

3.6 Experiments with Gaussian-distributed patterns 22
3.6.1 Basin Size for Two Clusters using T2 . 23

3.7 Super Attractors . 23
3.7.1 Single super attractor . 23
3.7.2 Two super attractors . 25

3.8 Comparing Storkey and Hebbian learning . 27

1

3.8.1 T1 Method . 27
3.8.2 T2 Method . 29

4 Design and Implementation 31
4.1 Technologies used . 31
4.2 Recognition System . 32
4.3 Technical Challenges . 33

4.3.1 Computation Time . 33
4.3.2 Big Data . 33

4.4 Anticipated Risks . 33
4.4.1 Failure to match a pattern stored . 33
4.4.2 A stored pattern not a fixed point . 34
4.4.3 Floating point calculation . 34

5 Evaluation 35
5.1 Implementation . 35

5.1.1 Optimising for speed . 36
5.1.2 Unit Testing . 36

5.2 Evaluating our deliverables . 36

6 Conclusion and Future Extensions 37
6.1 Analogy with Attachment Theory . 37
6.2 Future Extensions . 37

6.2.1 Inconsistencies in the results . 37

7 Project Management 38
7.1 Project Organisation . 38
7.2 A story . 38

8 Bibliography 39

A Errors in Hopfield networks 41
A.1 Stability of stored states, given independence of all stored patterns 41
A.2 Stability of a super attractor, given independence of all other stored patterns . . 43
A.3 Computing network parameters given maximum accepted error 44
A.4 Measurements using the error of a network for independent patterns 44
A.5 Decreasing the error by using one super attractor 45

B Neuron Update Optimisation 46
B.1 Initial Method . 46
B.2 Optimisation . 46

C Recognition Software - Screenshots 47
C.1 Suspect Database . 47
C.2 Suspect Matching . 48
C.3 Understanding the Hopfield Model . 49

2

Chapter 1

Introduction

1.1 Motivation

The human brain is considered to be one of the most complex objects which have puzzled
scientists and philosophers alike throughout the centuries. To gain an understanding of how
this mysterious black box works, through experimentation and modelling, would be of great aid
to the furthering of science and humanity alike. A part of this includes developing cures for a
multitude of mental and brain-related disorders.

Several medical discoveries from the 20th century have enlightened our knowledge of the
human brain. One consequence of this was the development of different mathematical models
of artificial neural networks, inspired by the fields of biology and medicine.

Our motivation is to use some of these neural networks to explore the mathematics of a
developing theory called Self-Attachment. Part of Attachment theory, this strategy aims to
help cure various mental problems that people currently facing. Recent research has shown
that a mathematical methodology of analysing these disorders is starting to become feasible.
[13]

The subsequent chapters will introduce the Attachment Theory and the mathematical
model. We have mainly focused on the technical side, and have described psychological analogies
that place our technical results in context of the theory.

1.2 Objectives

Our main objective is to confirm the results of previous work done by Federico Mancinelli, who
has been analysing the attachment theory using neural networks. He has performed several
experiments regarding clusters of attractors, basin sizes, and Gaussian-distributed patterns.
Furthermore, we have been aiming at extending his results by exploring the following concepts:

• Using the network for performing image recognition

• Restricted Boltzmann machines

• Super-attractors

In addition to that, we were aiming to improve some of the methods that were used in
his experiments. This includes the technique for sampling Gaussian-distributed patterns or
for calculating basin sizes. Our final aims consisted of explaining some of the subsequent
inconsistencies that have been found in his results.

3

1.3 Our achievements

Since our project was related to exploring attractor-based neural networks, we have obtained
interesting results about their attractors. These attractors are analogous to learned memories
or experiences that an individual has learned.

Our main contributions are outlined below:

• Confirming Mancinelli’s results by reimplementing them in a completely different envi-
ronment (Haskell)

• Proving that the Hopfield network is capable of performing image recognition, by learning
image patterns and then recalling the closest image, when queried for an input. Further-
more, we have proven it’s associative memory properties, by successfully recalling some
of the learned images.

• We found out that training patterns are not guaranteed to become fixed points in the
Hopfield network. This is an aspect that was not mentioned in similar research papers,
and we first thought the the patterns are always fixed points.

• Extending the research to encompass the Boltzmann Machine, which provides a nice way
of overcoming some limitations of the Hopfield Network. Amongst other features, it can
prevent convergence to spurious patterns by using a stochastic update rule.

• A thorough analysis of Super-Attractors, which represent patterns that have been used
multiple times in the training process. They generally have greater basin sizes, and there-
fore patterns will have a greater chance of converging to them compared to normal at-
tractors.

4

Chapter 2

Background Research

This chapter details the background research we have done in order to understand the Hop-
field Neural Networks, realise their importance in various applications and to investigate the
feasibility of our project.

2.1 Attachment Theory

One of the most interesting applications of the Hopfield Networks and Boltzmann Machines is
related to modelling the Attachment Theory. This is a psychological study that describes the
dynamics of long-term relationships between humans[15]. It focuses primarily on the type of
attachment that an infant develops with the primary caregiver. There exist 2 main types of
attachment: secure and insecure. Insecure patterns are further divided into insecure-avoidant,
insecure-disorganised and insecure-resistant. The type of attachment developed by infants de-
pends on the quality of care they have received[15].

2.1.1 Strange Situation Procedure

The classification of infants into the corresponding attachment type is formulated in the Strange
Situation Procedure. The child is observed playing for 20 minutes while caregivers and strangers
enter and leave the room, recreating the environment of the familiar and unfamiliar presence in
most of the children’s lives.[14]

2.2 Practical applications of Attractor Neural Networks

Neural Networks have been successfully used in medical computing, in order to diagnose Parkin-
son’s disease[3]. Other applications include facial recognition, which we have implemented for
the purpose of this project, combinatorial problems such as the Travelling Salesman[5]. One
practical application of the attractor neural networks, such as the Boltzmann machine, is the
performance improvement of speech recognition software[1].

2.3 Hopfield Networks

The Hopfield Networks are a form of recurrent artificial neural networks invented by John
Hopfield in 1982 [17]. It aims to store and retrieve information like the human brain. It
basically consists of a complete graph of N neurons, each having a value of +1 or -1 associated
to it. Since the graph is complete, each pair of neurons (i,j) is connected by an edge, having an
associated weight wij .

5

2.3.1 Updating the Hopfield Network

The network is able to update the values associated to neurons by adhering to certain simple
rules. Updating can be performed in two different manners:

• Synchronous: All nodes are updated at a time. This requires a central clock to the system
in order to maintain synchronisation. This method is less realistic, since biological or
physical systems lack a global clock that keeps track of time.

• Asynchronous: Only one node is updated at a time. A random node can be chosen as the
next one to get updated, or otherwise a sequence of nodes can be imposed a-priori.

Assume N neurons = 1.. N, with values xi = ±1. The updating of an individual node i
is performed by first calculating a weighted sum of the neighbouring nodes, and then applying
the sign function:

xi = sgn(

N∑
j=1

wijxj + bi)

where bi is a bias that we will consider to be equal to 0 for the purpose of this project.
Suppose the weight wij between neurons i and j is positive. Then, if the value of xj is

positive, then the term wijxj will also be positive, and will drag the linear sum value to a
positive value. This would mean that the neuron xi would also be dragged towards a positive
value.

If updating is repeatedly performed, the network would eventually may converge to an
attractor pattern under asynchronous updating, or it might sometimes cycle under synchronous
updating.

2.3.2 Training using the Hebbian Rule

The Hebbian theory has been introduced by Donald Hebb in 1949, in order to explain ”associa-
tive learning”, in which simultaneous activation of neuron cells leads to pronounced increases in
synaptic strength between those cells [16]. It is often summarised as ”Neurons that fire together,
wire together”.

For the Hopfield Networks, this is implemented in the following manner, when learning p
patterns:

wij =
1

N

p∑
µ=1

εµi ε
µ
j

For pattern µ, if the bits corresponding to neurons i and j are equal, then the product εµi ε
µ
j

will be positive. This would, in turn, have a positive effect on the weight wij and the values of
i and j will tend to become equal. The opposite happens if the bits corresponding to neurons i
and j are different.

2.3.3 Spurious Patterns

Patterns that the network uses for training, called retrieval states, become attractors of the
system. Repeated updates would eventually lead to convergence to one of the retrieval states.
However, sometimes the network will converge to spurious patterns, that are different from the
training patterns.

A a linear combination of an odd number of stored patterns, in this case 3 patterns, would
give us a spurious state:

6

εmixi = ±sgn(±εµ1i ± ε
µ2
i ± ε

µ3
i)

However, we shall later on see that the probability of the network converging to these states
is small, because of the tiny basin size. Furthermore, the Boltzmann Machine has the capacity
of getting out of these spurious states, because of the probabilistic updating of the nodes.

2.3.4 Energy Landscape

One of Hopfield’s most important contributions was to associate a Lyapunov, or energy function
to the neural network. This is calculated as:

E = −1

2

N∑
i,j=1

wijxixj

The function decreases as the system gets updated until it reaches a local minimum, corre-
sponding to an attractor (see fig. 2.1).

Figure 2.1: Energy Landscape highlighting a current state of the network (up the hill), an
attractor to which it will eventually converge, a minimum energy level and a basin of attraction
filled in green. Note how the update of the Hopfield Network is always going down in Energy.
The basin of attraction concept will be introduced later on.

2.3.5 Stability and Capacity

Concepts of stability and capacity are important in the analysis of Hopfield Networks. A neuron
unit εµi is said to be stable if the update rule will not change its state. The mathematical
condition for this is:

xi = sgn(

N∑
j=1

wijxj)

Since we are using the Hebbian Rule, we can replace wij with
∑

ν ε
ν
i ε
ν
j , resulting in:

hµi =
1

N

∑
j

∑
ν

ενi ε
ν
j ε
µ
j

We will now isolate the contribution of neuron i, in order to get:

hµi = ενi +
1

N

∑
j

∑
ν 6=µ

ενi ε
ν
j ε
µ
j

7

Now, the input for node i is made of two components: the first component depends on the
node i itself, while the second component, called the crosstalk term, is directly dependent
upon the neighbours of the node.

If we multiply the crosstalk term by −ενi , we get a quantity that will help us study the
capacity:

Cνi = −ενi
1

N

∑
j

∑
ν 6=µ

ενi ε
ν
j ε
µ
j

If Cνi is negative, then the cross-talk term has the same sign as unit i, and thus this value will
not change [2]. However, if Cνi is positive and greater than 1, then ενi will change, so node i will
become unstable. This quantity can be used to show, with further analysis, that the capacity of
the Hopfield Network is revolving around the value 0.138 (approximately 138 random patterns
can be recalled for every 1000 neurons) (Hertz et al., 1991).

2.3.6 Training using the Pseudo-Inverse Rule

The pseudo-inverse rule makes use of the inverse of a matrix in order to perform the learning
process. In contrast to the Hebbian Learning, it offers a higher capacity and performs better
with correlated, linearly independent patterns. The weight matrix is computed as:

wij =
1

N

∑
µν

εµi Q
−1εµj

In this case, Q is the overlap matrix: Qµν = 1
N

∑
i ε
µ
i ε
ν
i

Now that we have introduced a second learning rule, it is worth mentioning a few desirable
properties that neural network learning rules should aim to have. In Artificial Neural Networks,
learning rules can be:

• Local: each weight is updated using information available to neurons on either side of the
connection.

• Incremental: new patterns can be learned without using information from the older pat-
terns. When a new pattern is used for training, the new values for the weights only depend
on the old values and on the bits of the pattern.

These properties are desirable, since learning becomes more biologically plausible. For exam-
ple, since our brain is always learning new concepts, we can reason that learning is incremental.
A learning system that would not be incremental would generally be trained only once, with a
huge batch of training data.

It is important to mention that Hebbian Learning is both local and incremental, whereas
the Pseudo-inverse learning rule is neither local nor incremental, since it depends upon the
computation of an inverse matrix that contains information about all the patterns together.

2.3.7 Training using the Storkey Rule

The weight matrix of an attractor neural network is said to follow the Storkey learning rule if
it obeys:

wν−1ij = wν−1ij + +
1

n
ενi ε

ν
j −

1

n
ενi h

ν
ji −

1

n
hνijε

ν
i

where hνji =
∑n

k=1,k 6=,j w
µ−1
ik εµk is a form of local field [10] at neuron i.

8

This rule is local, since the synapses take into account only neurons at their sides. This rule
is slightly more powerful than the generalised Hebb rule, since it makes use of more information.
Because of the action field, each neuron uses information from all the neighbours. As Storkey
has showed in 1997, the capacity of the network trained with this rule is greater than compared
to Hebbian rule [10].

9

2.4 Restricted Boltzmann Machines

Hopfield networks are deterministic: training a network with the same patterns will yield the
same weights, and matching a pattern against the network will always give the same result. This
has the advantage of simplicity and ease of testing. However, as mentioned before, there are
spurious attractors in the Hopfield network (linear combination of an odd number of training
patterns). Using stochastic updating rules will decrease the probability of being ’stuck’ in such
a state. This resembles simulated annealing, but ensuring we are not caught in a local minima
(in the energy landscape).

Restricted Boltzmann Machines have been used for various purposes in recent years [7] [12]
[9] , most of it conducted by Geoffrey E. Hinton at university of Toronto, Canada. They have a
simple structure: one layer of visible units and one layer of hidden units, which form a bipartite
graph, as in Figure. The patterns used to train the network correspond to the visible (exposed
units), while the hidden units correspond to the attributes of the features we would like to learn.
It is worth mentioning that in the most common and simple form, both the visible and hidden
units take binary values. This is the approach we also adopted for our implementation.

Figure 2.2: Restricted Boltzmann Machine

The connections between the neurons in the two layers is symmetrical, so it can be repre-
sented as a weight matrix which keeps the connection between hidden and visible layers. A
state of a Restricted Boltzmann machine is given by the values of both the visible and given
state. The corresponding Hopfield energy formula for a state is given by :

E(v, h) = −
∑
i∈V

aivi −
∑
j∈H

bjhi −
∑

i∈V,j∈H
vihjwij

where, wis the weight matrix, a and bare the vectors of biases corresponding to the visible,
respectively hidden layers. As expected, vis vector of visible units and h is the vector of hidden

10

units.
We denote by V = {1, .. length v} , the indices of a visible vector and by H = {1, .. length

h} the indices of a hidden vector.

2.4.1 Probability of a state

After training, the network assigns a probability to each possible state, as follows:

p (v, h) =
1

Z
e−E(v,h)

where Z is used to normalise the probabilities

Z =
∑
v,h

e−E(v,h)

Thus, the probability the network assigns for a visible vector v:

p (v) =
∑
h

1

Z
e−E(v,h) (2.1)

2.4.2 Training the network

The network can be trained such that one maximises the probability of a training pattern. The
derivative of the log probability of a training vector (given by (1)), is simple, as follows:

δ log p (v)

δwij
=< vihi >data − < vihi >model

Due to the fact that the Restricted Boltzmann Machine can be represented as a bipartite graph,
it is easy to attain an unbiased sample of the hidden units, given the visible units.

p (hj = 1 | v) = σ

(
bj +

∑
i∈V

viwij

)
(2.2)

For the visible units, the same formula gives a biased sample of the visible units.

p (vi = 1 | h) = σ

ai +
∑
j∈H

hjwij

 (2.3)

where σ = 1
1+e−x , is the logistic sigmoid function.

There are ways of getting an unbiased sample of the visible units, but they are very time
consuming. In practice, the contrastive divergence algorithm is used as a faster substitute. The
visible units are set to a training vector and the binary states of the hidden vector are computed
using (2). These binary units are used to reconstruct the states of the visible vector using (3).

The training rule then becomes:

∆wij = λ (< vihi >data − < vihi >reconstruction)

We note that the above training rule has the desired properties for modelling the biological
brain: it is both local and incremental. Angle brackets denote the expected value under the
given distribution by the following subscript.

11

Figure 2.3: Classification Boltzmann machine

2.4.3 Using Restricted Boltzmann Machines for classification

As suggested by Hinton in section 16 [4], there are various ways of using Restricted Boltzmann
Machines for classification. We have employed two methods, one which we developed ourselves
and another one described in the paper. The latter is adding another set of visible units, called
the classification units.

The vector of hidden units is used to model the joint distribution between a vector of inputs
v and a target (classification) vector y. The classification vector y corresponds to a class. It’s
length is given by the number of classes. y = ec, where c is the class the vector is modelling (ec
is a vector with all zeros, expect from the position c, where it is 1).

As seen from Figure 2, one now needs to weight matrices, which we will denote by W(the
weight matrix between the visible units and hidden ones) and U (the weight matrix and between
the classification units and hidden ones). Vectors b, c, d correspond to the vector of biases for
the visible units (training patterns), hidden units and classification units, respectively.

The energy function for this model is:

E (v, y, h) = −dT y − cTh− bT v − hTWv − hTUy

Which gives rise to the following formula for the probability of a configuration v, y.

p (v, y, h) =
e−E(v,y,h)

Z

12

where Z is the normalising constant. Thus,

p (v, y) =
∑
h

p (v, y, h) =
∑
h

e−E(v,y,h)

Z

The distribution used for the Classification Boltzmann Machine are the following:

p (hi = 1 |v, y) = σ (cj +Wjv + Ujy) (2.4)

p (vi = 1 |h) = σ
(
bj + hTW i

)
(2.5)

p (y = ec |h) =
ed
T ec+hTUec

N
(2.6)

where N is the normalising constant
∑

c e
dT ec+hTUec .

Note that we denote by Wi the row i of matrix W, and by W i the column i of matrix W.
Valuable reference for this was given to us from [7] and [6].

2.4.4 Learning

Contrastive divergence can be used to train the network, giving rise to the following update
rules:

b′ = b+ λ (v − vsampled)

c′ = c+ λ (hσ − hσ sampled)

d′ = d+ λ (y − ysampled)

W ′ = W + λ
(
hσv

T − hσ sampledv
T
sampled

)
U ′ = U + λ

(
hσy

T − hσ sampledy
T
sampled

)
where we denote by x′ the new value of parameter x. vsampledand ysampledare obtained by
sampling the distributions in (5) and (6).

hσ = σ (cj +Wjv + Ujy)

hσ sampled = σ (cj +Wjvsampled + Ujysampled)

2.4.5 Classification

p (y = ec |v) =
e−F (v,ec)∑
d e
−F (v,ed)

where F (v, ec)is the free energy function

F (v, ec) = −dT y −
H∑
j=1

s (cj +Wjv + Ujy)

where s (x) = log (1 + ex)
The implementation of the Classification Boltzmann Machine can be found in
ClassficationBoltzmannMachine.hs.

13

2.4.6 New method

Another method we have employed using Boltzmann Machines was created by us. We have
never seen this approach used somewhere else. Instead of creating 2 types of visible units, we
use the simple Restricted Boltzmann Machine, with one type of visible units (and hence a single
matrix). For each training vector we append the classification at the end. The classification is
represented as a binary vector, either as above, by using ec, where c is the classification of the
current pattern, or even in a more compressed manner, by creating the binary vector using the
representation in base 2 of class c.

Figure 2.4: Boltzmann machines according to our new method

The training is done in the usual way, but with the complete vectors (actual pattern and
classification). In our case, as different patterns ought to have different classifications, we use
as class the index of the pattern in the list (with removed duplicates) of training patterns.

When a pattern needs to be matched to one of the training patterns for recognition, one
uses the log probability to compute the probability of each of the classifications, and chooses
the one with maximum probability.

As given in [4], the log probability is given by:

log (class = c |v) =
e−Fc(v)∑
c′ e
−Fc′ (v)

14

Figure 2.5: The recognition process in the new Boltzmann machine.

F (v) = −
∑
i∈V

viai −
∑
j∈H

log (1 + exj)

where xj = bj +
∑

iwijvj
The implementation of this procedure can be found in RestrictedBoltzmannMachine.hs.

15

Chapter 3

Exploring The Hopfield Model

We started out the analysis by experimenting with converge of patterns. We shall present two
experiments, that provide some interesting insight for the reader into the Hopfield Model.

3.1 Facial Recognition for Police criminal records

This experiment describes how the Hopfield network might be used by a Police Office, in order
to identify criminals. Since the police has a big database that contains facial images of criminals,
the network can perform identify, given an image, which criminal is depicted.

Before being sent to the Hopfield model, the image suffers a few normalising transformations:

1. the background is completely removed

2. the image is scaled to 25x25 pixels.

3. conversion first to grayscale, and then to only black or white pixels takes place

In figure 3.1, we present the convergence series for the input image of a criminal. The
network used for this experiment had 400 neurons, running on images of 20x20 pixels. It clearly
illustrates the how efficient the networks can be in these scenarios. However, the network might
also convert to to spurious patterns, which might create problems in certain situations. See
section 2.3.3 for a more detailed description.

Figure 3.1: Convergence sequence for a criminal in the police database

Furthermore, we have developed a GUI, powered by the underlying recognition core, to
provide a friendly user experience, in addition to providing interactive facilities (figure 3.2). An
overview of our the recognition system can be found in figure 3.3.

16

Figure 3.2: GUI for a criminal record recognition system.

3.2 Further analysis

Our initial aim was to explore various properties of the attractors in a Hopfield Network. We
are interested in studying, testing or challenging several ideas about the neural network:

• Clusters of attractors: We are interested to see how the Hopfield network behaves when
learning similarly correlated patterns. This implies training the network with a cluster of
attractors, which will lower the capacity of the network. We believe that basin sizes will
get smaller as the patterns get closer to each other.

• Super-Attractors: Find out what happens if the network is trained several times with the
same pattern. We believe this super-attractor will have a larger basin size compared to
the other attractors.

• Convergence: We plan to train the network with different types of attractors and find out
to which ones patterns tend to converge.

3.3 Basins of Attraction

A basin of attraction for a particular attractor α is defined as the set of all states that will
eventually converge to α, under repeated update. Here, we are particularly interested in finding
a way to measure the size of such a basin of attraction. A large basin size would provide stability
for the attractor, since the states in the neighbourhood would converge to it. A small basin size
for an attractor would mean that the network might never recall the pattern corresponding to
that attractor.

3.3.1 Measuring the Basin Size using the Storkey-Valabregue technique

A large part of our experiments were thus dedicated to measuring basin sizes of different at-
tractors, clusters of attractors and a newly introduced concept of Super-Attractors, in section
3.7.

A recognised scientific method for calculating the basin size is the Storkey-Valabregue mea-
surement. This can be computed as follows:

1. Initially n = 1

17

Figure 3.3: Outline of the Recognition System demonstrating how the various system compo-
nents interact

2. Choose an initial fixed point corresponding to a stored pattern µ

3. Choose some initial normalised Hamming radius r = r0

4. Let the set A be all the states Hamming-distant nr from the fixed point

5. Sample 100 states from A

6. Calculate how many of these states are attracted to the fixed point. Denote this number
tµ(r)

7. If tµ(r) is smaller than 90, stop and return nr

8. Increment n by a suitable amount and repeat from (3)

9. Repeat for each attractor.

18

3.4 Generating Clusters of Attractors

There are various ways of generating clusters of attractors (i.e. attractors that have a low
Hamming distance between each other). We shall present two different methodologies that can
be used to generate them.

One way is to start with a root pattern and then reverse each bit with a probability p. The
new patterns can be interpreted as noisy versions of the root pattern. We shall denote this
procedure T1.

3.4.1 Generating Gaussian-Distributed Clusters

Another objective of this work was to analyse patterns that are extracted according to a Gaus-
sian distribution with a specific mean and variance.

Since the state space is 2N for a network of N neurons, the Gaussian Distribution will have
to be defined over a huge set of states. This is highly non-trivial, since we are dealing with
binary patterns, that cannot be ordered in an easy way.

In this case, we will use Mancinelli’s method for sampling Gaussian distributed patterns
[8, p. 33]. We tackle this issue using the simplest possible approach: to draw numbers from
a Normal Distribution and then translate them into patterns that will preserve the distance
between them. Formally, if x and y were drawn and |x − y| = δ, then the Hamming distance
between the encoded patterns x′ and y′ would also be d(x′, y′) = δ.

Encoding of the patterns

In order to encode a number into a binary pattern, we first round the number to the nearest
integer. Let k be the integer obtained as such. Now, from left to right, we set to 1 all the bits
in locations 1..k of our pattern. The remaining bits are set to -1.

For example, if the pattern size is 7 and the integer obtained is 4, we get the following
pattern: [1,1,1,1,-1,-1,-1].

Limitations of the encoding

Although the method has a big advantage for simplicity, we can only obtain N different patterns
out of all 2N patterns available in the state space. However, we can regain capacity if we start
flipping bits, while at the same time keeping constant the hamming distance to some certain
mean pattern µ.

Another idea would be to extend our distribution to a multi-variate distribution. In this
case, the capacity of the network would increase from N to n

k
k, where k is the number of

dimensions.
Unfortunately, we did not have enough time to implement these ideas, so we only experi-

mented with the naive encoding of patterns described above.

3.5 First experiments with basin sizes

In this section we shall introduce the experiments that we used to analyse various properties of
the Hopfield Network. We remind the reader about the two methods that we are going to use
for generating clusters of attractors:

• T1: We start with a root pattern µ, and generate patterns by flipping each bit from µ
with probability p.

• T2: This method is generating Gaussian-distributed patterns. We sample several numbers
from a normal distribution with a certain mean and variance, and then encode each number
into patterns of the form [1,1,1,-1,-1].

19

3.5.1 Basin Size for One Cluster using T1

Our first experiment is showing us the basin sizes for increasing values of p, the probability of
flipping a bit. Method T1 is used, for a Hopfield Network of N neurons.

I. We generate a random pattern µ

II. For all values of probability p from 0 to 0.5

1. Starting from µ we generate P patterns using T1, and give them to the Hopfield
network in order to be learned according to Hebb or Storkey rule.

2. We measure the basin size for all the patterns learned using the Storkey-Valabregue
measurement and take their mean.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

p-value

A
ve

ra
ge

B
as

in
S

iz
e

Figure 3.4: Average Basin size of patterns belonging to one cluster generated using T1

Comments

The results are displayed in figure 3.4. This initial experiment is confirming not only what
Mancinelli obtained [8], but also what we already know from theory: A Hopfield network that
is trained with similar patterns loses capacity. Although we are not measuring capacity here,
the basin size is strongly correlated to that.

Initially, when p is zero, we observe a huge value of 24 for the basin size. This is easily
explained, since all the patterns generated are the the same as the root pattern. Subsequently,
the network is trained with the same patterns that have the effect of creating a super-attractor
with a huge basin size.

When p is between 0 and a critical value of 0.35, the basin size is 0, since the patterns are
too close to each other and don’t have enough space to fit basins of attraction between them.
As soon as p goes over 0.35, the basins start to increase until a maximum size of 11.

Further explanation of the results

The results can also be easily understood and visualised in figure 3.5. For small p values, the
attractors formed in the network are too close to each other to allow room for any basins of
attraction (apart from the attractors lying at the edge of the cluster). When the p-value is high,
the attractors become more disperse, leaving room for larger basins. It is also worth mentioning
that the basin shapes are not necessarily hyper-spherical.

20

Figure 3.5: Illustration of clusters of attractors generated using T1, with different p-values.

3.5.2 Basin Size for Two Clusters using T1

This experiment is similar to the previous one, however it contains two clusters this time. The
value p1 for one cluster will stay the same (fixed at 0.45), while p2, corresponding to the second
cluster, will vary in the range [0-0.5]. Method T1 is used, for a Hopfield Network of N neurons.
The procedure is given below:

I. We generate 2 random patterns µ1 and µ2, corresponding to clusters C1 and C2.

II. We generate P patterns for C1, using T1 with associated probability p1 = 0.45.

III. For all values of probability p2 from 0 to 0.5

1. Starting from µ2 we generate P patterns using T1 with associated probability p2, and
give them to the Hopfield network in order to be learned according to Hebb or Storkey
rule.

2. For both sets of patterns, we measure the mean basin size using the Storkey-Valabregue
measurement and plot the values on the graph.

We will be interested to observe how can the probability p influences the basin sizes. For
this reason, we have run two experiments, in which we are outputting the basin sizes for cluster
1, in which p varies. The

Comments

This latter experiment seems to suggest that the probability p of flipping bits in the pattern
doesn’t actually influence the basin sizes of attractors in Cluster 1. The same behaviour has
been observed in the previous graph, and this is the case especially when the root images, that
are randomly generated, are far away from each other.

Link to attachment theory

A network having been trained with two clusters of patterns can be interpreted, in attachment
theory, with an infant that has been exposed to two different caregivers. The patterns can be
for example, visual or auditory memories describing the 2 caregivers.

21

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

p-value of cluster 2

A
ve

ra
g
e

B
a
si

n
S

iz
e

of
C

lu
st

er
2

Cluster 1 with p = 0.2
Cluster 1 with p = 0.4

Figure 3.6: Average Basin size of patterns belonging to Cluster 2, generated using T1

3.6 Experiments with Gaussian-distributed patterns

In this section we are testing clusters of patterns that have been generated using a normal
distribution. We are expecting to get similar results to the T1 method, since by the Central
Limit Theorem, the Binomial distribution B(N, p) is nicely approximated by a Gaussian
distribution with mean N(Np, Np(1-p)). Since in the previous experiments, we used to increase
the probability p of flipping a bit, this now translates to increasing the standard deviation of
the normal distribution.

Comments

0 2 4 6 8 10 12 14
0

10

20

30

40

50

Standard deviation

A
ve

ra
ge

B
as

in
S

iz
e

Figure 3.7: Average basin sizes of one cluster generated using T2

The results here are quite surprising. The experiment with Gaussian-distributed patterns
shows us that the basin sizes decrease exponentially as standard deviation increases. This might

22

be the case because at low standard deviation, the patterns would repeat themselves and create
small super-attractors that have big basin sizes. This is in contradiction with what we obtained
previously, when using method T1, and further details and possible explanations are given in
section 6.2.1.

3.6.1 Basin Size for Two Clusters using T2

Comments

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

Standard Deviation of Cluster 2

A
ve

ra
ge

B
a
si

n
S

iz
e

of
C

lu
st

er
2

Cluster 1 with σ = 5.0
Cluster 1 with σ = 10.0

Figure 3.8: Average basin size for two clusters generated using T2

This experiment has been run on a network of 100 nodes, with 2 clusters of patterns:C1,
with fixed standard deviation σ1, and C2, with varying standard deviation σ2. We have run
two different trials, with σ1 = 5 or 10.

As it can be easily noticed in the graph, the standard deviation does not have any effect on
the basin size of the clusters. This seems to suggest that a more disperse cluster will not be
affected by neighbouring attractors.

3.7 Super Attractors

In the context of learning models such as the Hopfield model, we define a super attractor as an
attractor resulting from training a model with multiple occurrences or instances of some stored
pattern. The degree of a super attractor denotes the number of occurrences of its corresponding
pattern in the training set.

In the context of modelling Attachment theory, a super attractor may represent repeated
interactions with the primary care giver. Clearly, it is of interest to investigate the properties of
such an attractor; in particular establishing the existence and, if existent, the type of relationship
between the degree of the super attractor and the extent of its dominance, or stability, over the
space of patterns.

3.7.1 Single super attractor

1. Fix N, the number of neurons.

23

2. Choose a random pattern psuper, which signifies the primary care giver.

3. Choose a number of random patterns −→p random, such that the Hamming distance between
psuperand each of −→p randomis between 25% and 75%.

The range forms a ball centred at 50% Hamming distance1 with an arbitrary radius,
chosen such that the probability of a −→p randomfalling into psuper’s basin of attraction is
small. This is done to avoid forming clusters of attractors, which we deal with separately
in Recall that the Hopfield network is sign blind, and as a result the inverse of psuper,
p−1super, forms a symmetric super attractor. It is for this reason that a symmetric range
about 50% is chosen.

4. Choose a degree d for psuperand train a Hopfield network using −→p dsuper (d instances of
psuper) and −→p random.

5. Measure the basin of attraction of psuperusing the Storkey-Valabregue method.

6. Repeat from (2) for various values of degree d.

In our experiment 100 neurons are used, and the network is trained with 16 random patterns
in addition to the super attractor. It is run with degree values [1, 2, 4, 8, 16, 32]. The entire
procedure is repeated 800 times for various randomly chosen psuperand −→p random. The average
results obtained are summarised in 3.9.

This experiment can be replicated by running Experiment.hs.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

Degree d

A
ve

ra
ge

B
as

in
S

iz
e

Figure 3.9: Average basin of attraction for a super attractor with varying degrees.

The results show that as the super attractor’s degree is increased, its basin of attraction also
increases. Also note that this increase appears to approach the singularity at 50% Hamming
distance, which is consistent with our knowledge of psuper’s symmetrical counterpart. The very
fast initial growth also indicates that super attractors in general very stable and demonstrate
strong dominance over the space of patterns.

Linking back to the Attachment theory model, this may be interpreted as depicting the
strong influence of repeated and consistent interaction with the child, represented by a super
attractor of increasing degree. In particular, it exhibits its dominance over distantly scattered,
unrelated influences, which are represented by the random patterns.

1The percentage Hamming distance is simply the Hamming distance divided by the number of bits N

24

3.7.2 Two super attractors

1. Fix N, the number of neurons.

2. Fix a degree dorigin, for all chosen poriginfrom (3).

3. Choose a random pattern porigin, which signifies the primary care giver.

4. Choose a random pattern pnew, such that the Hamming distance between poriginand each
of pnewis between 25% and 75%. This could symbolise the training due to either an
alternate and influential care giver, or that resulting from a retraining period.

5. Choose a number of random patterns −→p random, such that the Hamming distance between
poriginand each of −→p randomis between 25% and 75%.

Note that while this allows for the possibility of forming a cluster in the vicinity of pnew,
in practice the probability of this occurring is negligible.

6. Choose a degree dnewfor pnewand train a Hopfield network using −→p random, dorigininstances
of porigin, and dnewinstances of pnew

7. Measure the basins of attraction for each of poriginand pnewusing the Storkey-Valabregue
method.

8. Repeat from (3) for different value of degree dnew.

In our experiment 100 neurons are used, and the network was trained with 8 random patterns
in addition to the original and new super attractors, poriginand pnew, respectively. poriginis given
a fixed degree, dorigin, of 8. This value was chosen as being the smallest point of stability from
the previous experiment 3.9, beyond which increasing the degree further does not greatly
impact the basin of attraction. It is run with dnewdegree values [1, 2, 4, 8, 16, 32]. The entire
procedure is repeated 634 times for various randomly chosen porigin, pnewand −→p random. The
average results obtained are summarised in 3.10.

This experiment can be replicated by running Experiment2SuperAttractors.hs.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

Degree dnew

A
ve

ra
ge

B
a
si

n
S

iz
e

porigin
pnew

Figure 3.10: Average basin of attraction for the two super attractors, poriginhaving a fixed
degree, dorigin, of 8, and varying the degree, dnew, of pnew.

The results clearly reveal that increasing the degree of the new pattern increases its own
basin of attraction, and decreases that of the original pattern. This relationship is symmetrical,

25

as can be observed by the shape of the graph, in addition to the intersection point, which occurs
(roughly) near the point (8 , 8) where both patterns have the same degree of 8. By random
choice of original pattern, and random choice of new pattern (subject to a Hamming distance
of 25% to 75% from the original pattern), we can claim that the basin of attraction depends
solely on the relative degrees of the two patterns, and is independent of the actual patterns
themselves. This is also consistent with the symmetry observed.

This also fits in nicely nicely with in the Attachment theory interpretation. The original
pattern as before represents the consistent interactions with a primary care giver. The new
pattern may represent the consistent, yet significantly different, interactions with an alternate
and influential care giver, perhaps the other parent of the child or a relative with whom they
have developed a close relationship. Intuitively, the care giver which has more interactions would
exert a stronger influence, undermining the dominance of the other care giver, and indeed the
impact of any other interactions.

In relation to retraining, the new pattern may also be taken to represent the influences
arising due to the undertaken retraining phase. We find that, similar to the above, increasing
the number of interactions due to retraining further ingrains its dominance, and dilutes that of
the previous interactions due to the primary care giver or otherwise.

26

3.8 Comparing Storkey and Hebbian learning

When training a Hopfield network, we have employed two types of learning: the first one is the
Hebbian learning, while the second one is Storkey learning. The advantage of the latter is that
it increases the capacity of the network and the basin of attraction of the clusters. We will now
explain some experiments we did with both types of learning in order to see how the learning
type affects the basin of attraction for clusters.

We will now show how the learning determines the basin of attraction of a Gaussian dis-
tributed cluster. The generation was done using the T2 method described in section 3.5.

Learning N Cluster size µ σ Average size of basin of attraction

Hebbian 50 2 25 5 10.0

Storkey 50 2 25 5 18.0

Hebbian 50 4 25 5 1.5

Storkey 50 4 25 5 4

Hebbian 50 4 25 10 5.75

Storkey 50 4 25 10 8.0

Hebbian 50 5 25 5 4.4

Storkey 50 5 25 5 4.8

Hebbian 50 6 25 5 4.2

Storkey 50 6 25 5 4.4

Hebbian 50 6 25 10 4.45

Storkey 50 6 25 10 5.61

Table 3.1: Results comparing Storkey and Hebbian learning for various parameters

The results confirm what the mathematical theory showed us: Storkey learning increases
the average basin of attraction. We must note that this does not come without a price: training
the network using Storkey learning slowed down our experiments, as it is more expensive.
Depending to the application, this is an acceptable trade off. All our functions and experiments
can be performed with both types of learning, just by changing a parameter (the learning type),
which enables any user of our libraries to make the choice depending on the use case.

The following results show the difference between Storkey and Hebbian learning in the
experiments we talked about before. The aim of repeating the experiments with Storkey learning
was to see what kind of impact the learning type has in respect to the average basin size.
Both curves (given by Hebbian and Storkey learning) follow the same shape, which also gives
confidence in the initial results obtained with Hebbian learning: an initial fast drop in average
basin size, with a steadily increase afterwards.
The best way to express out results is by showing the two different trends, obtained with the 2
methods we have employed: T1 and T2.

3.8.1 T1 Method

For the T1 method, one can easily notice that Storkey learning gives bigger basin sizes. While
this was expected when experimenting with one cluster (3.11), the surprise comes from the
second chart (3.12): the increased basin size in the second cluster. Even though the network is
trained with 2 clusters and they affect each others basin sizes, both sizes increase with Storkey
learning, without it giving a different ration between the average.

27

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

p-value

A
ve

ra
ge

B
as

in
S

iz
e

Hebbian Learning
Storkey Learning

Figure 3.11: Comparing the impact of different learning methods on the average basin size of
patterns belonging to a cluster generated using T1.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

p-value of cluster 2

A
ve

ra
ge

B
as

in
S

iz
e

of
C

lu
st

er
2

Hebbian Learning
Storkey Learning

Figure 3.12: Comparing the impact of different learning methods on the average basin size of
patterns belonging to two clusters generated using T1. The first cluster has fixed p = 0.2

28

3.8.2 T2 Method

The results are different when looking at T2 type experiments: the difference between the two
learning methods is less straight forward. When training a Hopfield network with one cluster
(3.13) there is a critical point from which the Storkey learning clearly gives a bigger basin size
(at a standard deviation approximately 5.0), but before that it seems like the two methods give
very similar results.
Even more interesting results come from training the network with two clusters (as seen in
3.14): surprisingly, when the standard deviation of the second cluster is less than 9, the Hebbian
learning provides a bigger basin size. After that point, Storkey learning acts as expected, by
giving a bigger basin size when compared to Hebbian. Note that the threshold point of this
crossover is very close to the standard deviation of the first cluster, which was fixed to 10.
These results enables us to speculate that Storkey learning is more sensitive to non independent
patterns. Both the results from T1 experiments with 2 clusters and the T2 experiments show
this. However, we believe that more investigation needs to be done in order to have confidence
in these results.

0 5 10 15 20
0

10

20

30

40

50

Standard deviation

A
ve

ra
ge

B
as

in
S

iz
e

Hebbian Learning
Storkey Learning

Figure 3.13: Comparing the impact of different learning methods on the average basin size of
patterns belonging to a cluster generated using T2.

29

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

Standard Deviation of Cluster 2

A
ve

ra
ge

B
as

in
S

iz
e

of
C

lu
st

er
2

Hebbian Learning
Storkey Learning

Figure 3.14: Comparing the impact of different learning methods on the average basin size of
patterns belonging to two clusters generated using T2. The first cluster has fixed σ = 10

30

Chapter 4

Design and Implementation

4.1 Technologies used

Haskell

We have combined several technologies in order to create a nice workflow for our working
environment. First of all, it is worth mentioning that we implemented the core algorithms for
the neural network in Haskell. It is a very good candidate for solving mathematical problems,
and has a strong type system that helped us detect bugs early on, at compile time, and made
refactoring easy.

We also evaluated Python and Scala as our main implementation language for this project;
Haskell was eventually chosen because of its strong, static type system (compared to Python),
its easy integration with C (compared to Scala), and the personal learning interests of our team.

Image loading with C

The functions responsible for image preprocessing (loading, rescaling, converting to gray-scale
values, mapping pixels to binary patterns) were implemented in the C programming language,
using the MagickWand library which is part of ImageMagick. We used Haskell’s Foreign Func-
tion Interface for the communication between C and Haskell.

Git

Since this was a group project in which all of us has to implement various parts of the system,
we used Git as the version-control system that can keep track of our files, automatically merge
source code and backup our data.

Test-driven development with QuickCheck

Although Haskell as a programming language is already quite good at avoiding programming
errors, it is not a theorem prover. In our effort to keep our code correct and find errors early,
we therefore maintained an extensive test suite structured with Hspec, where we performed
both unit tests on lower level implementations and as well as behavioural tests testing the
functionality of the full program. We barely had to write tests in the example-driven style often
found in imperative and dynamically typed languages, as we used QuickCheck to express
the required functionality as lambda functions in first order logic. QuickCheck then generates
thousands of tests cases automatically, based on the types our functions take as input, and also
shrinks failing test cases to the smallest input that still fails. Using this technique, we found
many failing edge cases in our initial implementation, and managed to keep the code size of
our test suite small because most functions could be covered using only one or two first-order
predicates.

31

Code Reviews and Continuous Integration

With the third year project being the largest group effort in our course, we tried to set ourselves
new standards in using tools and techniques that help or benefit from the team. We set up
an instance of the ReviewBoard web-based code review review system and enforced that all
commits to our code base were reviewed by other team members before integration in the stable
branch. We could avoid a lot of bugs with this and it also had the positive effect that the whole
group agreed on the style and conceptual structure of the code. We also set up our own Jenkins
Continuous Integration server on a lab machine that pulled the code, built it and ran the test
suite as soon as a change had been made; using this, we could get rapid feedback on new changes
and whether they broke the build or introduced a correctness or performance regression. The
code always being in a build-able state after every single commit also saved us from wasting
time to manually find out afterwards what change broke it.

4.2 Recognition System

Figure 4.1: Outline of the Recognition System demonstrating how the various system compo-
nents interact

32

4.3 Technical Challenges

4.3.1 Computation Time

The common theme of our experiments is measuring and comparing basins of attractions over
a multitude of parameters, performed using the Storkey-Valabregue method (see 3.3.1). As we
know, this involves performing a very expensive computation: sampling 100 patterns for each
Hamming radius, a maximum of N steps, and for each of those patterns iterative updates are
run with the network until convergence is achieved. Though impossible due to properties of
Hopfield networks, we can approximate the worst case complexity of the latter as requiring 2N

iterations until convergence, 2N being the number of possible states. Thus we may cynically,
for the sake of quantifying it, approximate the worst case complexity of the Storkey-Valabregue
method to be O(N2N). While this is probably not an accurate representation of what occurs
in practice, it serves to demonstrate the sheer amount of computation performed.

Naturally, this posed a significant computational challenge which we had to be overcome,
as we typically obtain a large number of samples of basin measurements for our experiments,
in the order of hundreds of samples for a given experiment. One way in which we overcome
this limitation is by exploiting parallelism both at the process level (trivially achieved using
Haskell!) and at the machine level, running multiple experiments on several lab machines. We
also sought to improve the quality of our code itself, using profiling to identify hotspots.

4.3.2 Big Data

Another challenge which we have faced is dealing with the sheer amount of data generated
by our experiments. The data typically needs to be collected, processed, and presented in
a consistent manner. In order to address this issue, we attempted to automate such tasks.
Automation is key, as it saves time, is not prone to (low level) human error, and generally scales
well. Achieving this goal required the joint cooperation of three areas:

• Experiment executables should output data in a sensible and easy to parse format. Ideally,
the output data should not be heavily processed so as to allow flexible use of it.

• Writing scripts which format and aggregate data, typically calculating the mean value.

• Presentation of data in the form of graphs of tables ought to be consistent. Ideally, the
data should be kept separate from the format or design of its final presentation form. The
pgfplots package for LATEXwas very helpful for this.

4.4 Anticipated Risks

4.4.1 Failure to match a pattern stored

One of the risks associated with using the Hopfield model is that the converged pattern may
not be one of the stored patterns, but rather a spurious pattern, as explained in section 2.3.3.
This poses a problem for our recognition application, which needs to return as a result the
closest matched stored pattern. Another issue with similar repercussions is that even after a
large number of iterations are run, the pattern has not yet converged. One solution to this is
to simply output the closest stored pattern available. More precisely, the pattern that has the
smallest Hamming distance between it and the current state of the system. This makes our
image recognition robust to such unfortunate occurrences.

33

4.4.2 A stored pattern not a fixed point

It is possible that the given set of training patterns are such that some of the patterns simply
cannot be “stored” in the network, i.e. it is not a fixed point of the network. The probability of
this occurring increases as the relative number of training patterns with respect to the number
of neurons increases. The best way to deal with this problem is to perform a check (using
checkFixed) and, if detected, report it to the user and allow them to take action. The typical
remedy for this would be to increase the number of neurons in the network, at the expense of
increased resource usage in both space and time.

4.4.3 Floating point calculation

As we are dealing with extensive calculations of floating point value, we must be careful when
dealing with such quantities. In particular, equality comparisons are likely to yield unexpected
results. This has had an impact on some tests as well as functions such as validWeights.
We have taken care of this problem by replacing equality comparisons and similar with fuzzy
equality comparisons, with some accepted margin of error ε.

34

Chapter 5

Evaluation

5.1 Implementation

In a nutshell, we are content with the choice of our tools and with our implementation of the
neural network. Since our mathematical core of the algorithm does not contain much state
information, we chose to implement our project in Haskell. The strong types allowed us to have
confidence in the code we write. Since most of our experiments took a lot of computation time,
we had to make sure they run seamlessly and don’t crash in the middle of the execution because
of a pattern match failure.

There are a lot of advantages in using Haskell, including its clarity and correctness. The
type system enforces the programmer to have a clear understanding of the problem and the
various solutions available, which leads to high quality code. Using Haskell came with an initial
price: while all the group members were familiar with the language due to our course in first
year, we soon realised that we only played with Haskell before. Because of our project, we now
deeply appreciate its true beauty and power.

This early overhead turned out to be very small compared to the benefits and the satis-
factions we got back. The project enabled us to learn about neural networks and attachment
types, but we chose to exploit this opportunity in order to become better using a programming
language we like (see fig 5.1).

1

0 2 4 6 8 10 12 14
0

2,000

4,000

6,000

8,000

10,000

Week

H
as

ke
ll

P
ro

fi
ci

en
cy

In
d

ex
(H

P
I)

Figure 5.1: Average Haskell Proficiency Index over time.

35

5.1.1 Optimising for speed

While testing the recognition application, we realised that our implementation was not as fast
as we would have liked it to be, and imposed serious limitation on the size of the networks we
were able to try out. As a consequence, we invested a good amount of time in understanding
Haskell compiler optimisations, runtime characteristics, and profiling tools. Using time and
allocation profiling, we found that two inner loops in our numerical network updating code
were slowing us down significantly. By changing 12 lines to manually unroll the involved list
comprehensions into tail-recursive functions we were able to get an overall 4-times speedup of
our program. Additionally, Haskell being a purely functional programming language allows for
easy and efficient parallelism. By replacing a top-level map with a parallel map function, our
program immediately scaled up to the eight processes that were available on the lab machines
we used. Because our main processing time is spent in numerical, cache-local loops, we also got
almost 8-times improved performance from this. This final scaling success is an improvement
over an initial try in which we parallelised an inner loop, which turned out to be too fine-grained.

5.1.2 Unit Testing

Unit testing of our Haskell functions was performed using the HUnit framework. This allowed
us to heavily test the complex functions responsible for performing updates or calculating en-
ergy and capacity, thus making sure that important invariants always hold: energy is always
monotonically decreasing, capacity is following the theoretical trends and updates eventually
converge to an attractor.

5.2 Evaluating our deliverables

Our main task was twofold:

1. Implement the Hopfield model and a basic image recognition application to show its
functionality.

2. Support or reject Mancinelli’s claims about clustering and evaluate his results in the
context of Attachment Types.

We implemented both of these goals: We have a clear, concise Haskell implementation of
the Hopfield model with a public and well-tested API to train Hopfield networks and converge
patterns in them. To show that it works in the real world, we built a police-style suspect face
matching application with an accessible GUI, which in addition to performing image recognition
also has a functionality to introduce a layman to how Hopfield networks work using interactive
examples.

We implemented Mancinelli’s clustering experiments and checked the majority of his claims;
as described in the analysis above, our independent results largely support his claims.

Extending our initial goals, we additionally evaluated the influence of Super Attractors
and their relation to Attachment Theory; we can conclude that Mancinelli’s results concerning
clustering and our results concerning Super Attractors support the idea that Hopfield networks
are a good way to model the real world domain of Attachment Types.

Finally, we came up with some our own way to use the Boltzmann machine for pattern
matching, implemented the Storkey method as an alternative to Hebbian learning for increased
network capacity, and have proven various properties about it, see Appendix 1 for more details.

36

Chapter 6

Conclusion and Future Extensions

6.1 Analogy with Attachment Theory

The thorough analysis of the attractor neural networks (Hopfield network and Boltzmann ma-
chine) has clearly proven their capabilities, being able to model complex attachment types.
However, research done in linking the model with the real-life scenario is quite slim, and further
work needs to be dedicated especially in this area.

6.2 Future Extensions

We have introduced the reader with only a few flavours of what Attractor neural networks can
really do. Deep investigations should be done in order to further investigate their properties, and
really push them to the limit. These might provide a good source of inspiration for developing
even more biologically realistic models, that better simulate the human brain.

Another line of extension is about providing better visualisation tools for these highly ab-
stract models, that work on N-dimensional spaces. Parallel coordinates can be used for easily
visualising the N-dimensional attractors, or the convergence of the network to such an attractor.
Furthermore, plots can be done on the available number of neurons that can be updated at each
step in the convergence process.

The experiments we did on Hopfield networks should be reproduced using the Restricted
Boltzmann machine, which is a more powerful neural network. Furthermore, biological plausi-
bility also needs to be kept in mind, which would surely provide us with more efficient learning
systems.

6.2.1 Inconsistencies in the results

It is important mentioning a few apparent inconsistencies in the cluster experiments. For
examples, the experiments that have been done, using 1 cluster, display inconsistencies in the
results between methods T1 and T2. We believe the main reason for this inconsistency is the
limitation of the methodology for sampling Gaussian-distributed patterns and the poor use of
the state space. Another reason for this apparent inconsistency might also be the presence of
spurious attractors, that can interfere with the real attractors and “steal” part of their basins.

Another reason for the inconsistencies might also be the chaotic shape of the basins. Since
the Storkey-Valabregue measurement is only good for hyper-spherical basin shapes. A more
powerful method, such as a Monte Carlo sampling in the neighbourhood, is necessary for mea-
suring basins that don’t have hyperspherical shapes.

37

Chapter 7

Project Management

7.1 Project Organisation

We started out the project by thoroughly investigating the Hopfield model, reading important
research papers that were describing it in detail and showing the potential for other applications.

Once we had a firm understanding of the mathematical model, we assigned various tasks
to each members in order to create a simple image recognition application. Wael and Mihaela
started implementing the core algorithm in Haskell, based on information gathered from the
research papers. Razvan implemented the image preprocessing in C, while Niklas was integrating
the Haskell algorithmic core with the C programs. Lukasz worked on implementing the GUI
and image loading, GUI usability and correctness testing, as well as supplying much of the
artistic work, including that found throughout this report.

We heavily followed the advice that Dr. Chatley offered in the Software Engineering Lec-
tures. Therefore, we used to have regular weekly meetings and perform iterative development
in order to make sure we have a working version of our product at any time.

Although we did not use any popular software engineering methodology, such as Agile
development, we did make sure we are on track with the project requirements. We closely
collaborated in order to ensure timely delivery and were flexible to quick changes that came
across the progress of the project.

7.2 A story

It is in difficult times that the value of team work really flourishes, as the story of our experiments
shall show. As aforementioned, running our experiments posed as a formidable difficulty due the
hefty processing time it required. Such experiments would last long hours, sometimes overnight.
This was deemed unacceptable to us, and we sought a solution to this problem. Various members
of the team collaborated in subgroups, each focusing on a particular aspect of improvement.
These sub-groups were not rigid subdivisions of the team, quite the contrary, they were dynamic
and self-arranging. One task undertaken by a subgroup is the optimisation of the experiment,
in particular those arising from running the Storkey-Valabregue method. Iteratively optimising
the code and testing the results locally and at scale (by actually running the experiments).
Another subgroup worked on exploiting the resources available to us, developing the code and
writing scripts to parallelise the experiments to run on multiple cores and multiple machines.
Eventually, the experiments exhibited an improvement of at least 30 fold for some experiments
(the magic of parallelism!). So what can we conclude from this? Team work can perform
miracles!

38

Chapter 8

Bibliography

[1] G.E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. Audio, Speech, and Language Processing,
IEEE Transactions on, 20(1):30–42, 2012.

[2] Abbas Edalat. Hopfield networks. Part of Complex Systems course at Imperial College
London, 2012.

[3] D. Gil and D.J. Manuel. Diagnosing parkinson by using artificial neural networks and
support vector machines. Global Journal of Computer Science and Technology, 9(4), 2009.

[4] G. Hinton. A practical guide to training restricted boltzmann machines. Momentum, 9:1,
2010.

[5] Alice Julien Lafferiere. Hopfield network.

[6] H. Larochelle and Y. Bengio. Classification using discriminative restricted boltzmann ma-
chines. In Proceedings of the 25th international conference on Machine learning, pages
536–543. ACM, 2008.

[7] J. Louradour and H. Larochelle. Classification of sets using restricted boltzmann machines.
arXiv preprint arXiv:1103.4896, 2011.

[8] Federico Mancinelli. Modelling attachment types with hopfield neural network. Master
Thesys for Computing, Imperial College, 2012.

[9] V. Nair and G.E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proc. 27th International Conference on Machine Learning, pages 807–814. Omnipress
Madison, WI, 2010.

[10] A. Storkey. Increasing the capacity of a hopfield network without sacrificing functionality.
Artificial Neural NetworksICANN’97, pages 451–456, 1997.

[11] A.J. Storkey and R. Valabregue. The basins of attraction of a new Hopfield learning rule.
Neural Networks, 12(6):869–876, 1999.

[12] Y.W. Teh and G.E. Hinton. Rate-coded restricted boltzmann machines for face recognition.
Advances in neural information processing systems, pages 908–914, 2001.

[13] R.S. Wedemann, R. Donangelo, and L.A.V. de Carvalho. Generalized memory associativity
in a network model for the neuroses. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 19(1):015116–015116, 2009.

[14] Wikipedia. Attachment patterns.

39

[15] Wikipedia. Attachment theory.

[16] Wikipedia. Hebbian theory.

[17] Wikipedia. Hopfield network.

40

Appendix A

Errors in Hopfield networks

When a Hopfield network is trained using a list of patterns, it is desired that those patterns are
attractors, which requires that they are fixed points. In case one of the patterns is not a fixed
point, it is said that the network has an error.

We will now derive the equations for errors in Hopfield networks. Firstly, we shall derive the
probability of error for a pattern which was used for training, given that all the patterns were
independent. Secondly, we will derive the equation of error for a super attractor: a pattern
which was used to train the network, but which appeared in the training multiple times. The
assumption for this derivation is that the other training patterns are independent. In the context
of attachment types, we can assume that the super attractor is the primary care giver, which was
consistent in his/her behaviour, and that the other encounters of the child were independent.

A.1 Stability of stored states, given independence of all stored
patterns

Consider a pattern stored in the network xk. We want to find out the probability of error for
that pattern: how probable is that given that xk is stored in the network it is not a fixed point?

Given the update formulae for neuron i in pattern k (1) and the formulae for the weights,
according to the training of the network (2):

hki =
N∑
j=1

wijx
k
j

wij =
1

N

p∑
l=1

xlix
l
j (A.1)

we obtain by substitution:

hki =

N∑
j=1

(
1

N

p∑
l=1

xlix
l
j

)
· xkj =

1

N

N∑
j=1

p∑
l=1

xlix
l
jx
k
j =

=
1

N

N∑
j=1

xki x
k
jx

k
j +

1

N

N∑
j=1

p∑
l=1,l 6=k

xlix
l
jx
k
j

=
1

N

N∑
j=1

xki +
1

N

N∑
j=1

p∑
l=1,l 6=k

xlix
l
jx
k
j = xki +

1

N

N∑
j=1

p∑
l=1,l 6=k

xlix
l
jx
k
j

41

The new value of neuron i xk
′
i is given by the sign of hki , so:

hki x
k
i

{
> 0 if xki′ = xki
< 0 otherwise

⇒ −hki xki
{

6 0 if xki′ = xki
> 0 otherwise

(A.2)

− hki xki = −xki xki − xki ·

 1

N

N∑
j=1

p∑
l=1,l 6=k

xlix
l
jx
k
j

 = 1
− 1

N

N∑
j=1

p∑
l=1,l 6=k

xlix
l
jx
k
jx
k
i︸ ︷︷ ︸

Cki

(A.3)

From (3) and (4) we conclude that we get an error if Cki > 1 , so the probability of getting
an error is the given by the probability of Cki > 1.

We model Cki as follows. Each xlix
l
jx
k
jx
k can be modelled as a sample drawn from a random

variable X with E(X) = 0 and Var(X) = E(x2)− E(x)2 = 1.0
By using the central limit theorem and by approximating N (p - 1) to Np :

1

Np

Np∑
i=1

Xi ∼ N
(

0,
1

Np

)
Thus,

1

N

Np∑
i=1

Xi ∼ N
(

0,
p

N

)
Cki ∼ N

(
0,
p

N

)
By denoting p

N with σ :

P
(
Cki > 1

)
' 1√

2πσ

∫ ∞
1

e−
x2

2σ2 dx =
1√
2πσ

∫ ∞
1√
2σ

e−y
2√

2σ dy =

=
1√
π

∫ ∞
1√
2σ

e−y
2

dy =
1√
π

(∫ ∞
0

e−y
2

dy−
∫ 1√

2σ

0
e−y

2
dy

)
=

=
1√
π

∫ ∞
0

e−y
2

dy− 1√
π

∫ 1√
2σ

0
e−y

2
dy =

1√
π
∗
√
π

2
− 1

2
erf

(
1√
2σ

)
=

=
1

2

(
1− erf

(
1√
2σ

))
=

1

2

(
1− erf

(√
N

2p

))

where errx =
1√
2π

∫ x

0
e−x

2
dx

42

A.2 Stability of a super attractor, given independence of all
other stored patterns

By following the above way of reasoning, we compute the probability of error for a super
attractor.

Given that the super attractor has degree d (it appears d times in the list of patterns used
to train the network), we compute the probability that it is not a fixed point.

Let xk be the supper attractor with degree d.
Let S = {i | xi = xk , i ∈ {1 . . . p}}, be the set of indexes of occurrences of the supper

attractor xk.
We assumed that the super attractor has degree d⇒ |S |= d .

hki =
N∑
j=1

(
1

N

p∑
l=1

xlix
l
j

)
· xkj =

1

N

N∑
j=1

p∑
l=1

xlix
l
jx
k
j =

1

N

N∑
j=1

p∑
l∈S

xki x
k
jx

l
j +

1

N

N∑
j=1

p∑
l 6∈S

xlix
l
jx
k
j =

1

N

N∑
j=1

p∑
l∈S

xki x
k
jx

k
j +

1

N

N∑
j=1

p∑
l 6∈S

xlix
l
jx
k
j =

1

N

N∑
j=1

p∑
l∈S

xki +
1

N

N∑
j=1

p∑
l 6∈S

xlix
l
jx
k
j =

1

N
Ndxki +

1

N

N∑
j=1

p∑
l 6∈S

xlix
l
jx
k
j =

= dxki +
1

N

N∑
j=1

p∑
l 6∈S

xlix
l
jx
k
j

Thus

−hki xki = −dxki xki −
1

N

N∑
j=1

p∑
l 6∈S

xlix
l
jx
k
jx
k
i =

−d− 1

N

N∑
j=1

p∑
l 6∈S

xlix
l
jx
k
jx
k
i︸ ︷︷ ︸

Ski

In order to get an error, minushki x
k
i 6 0 , so Ski > d. By using the same reasoning as before,

1

N (p− d)

N(p−d)∑
i=1

Xi ∼ N
(

0,
1

N (p− d)

)

1

N

N(p−d)∑
i=1

Xi ∼ N
(

0,
p− d
N

)

Ski ∼ N
(

0,
p− d
N

)
By denoting p−d

N with σ :

P
(
Ski > d

)
' 1√

2πσ

∫ ∞
d

e−
x2

2σ2 dx =
1√
2πσ

∫ ∞
d√
2σ

e−y
2√

2σ dy =

43

=
1√
π

∫ ∞
d√
2σ

e−y
2

dy =
1√
π

(∫ ∞
0

e−y
2

dy−
∫ d√

2σ

0
e−y

2
dy

)
=

=
1√
π

∫ ∞
0

e−y
2

dy− 1√
π

∫ d√
2σ

0
e−y

2
dy =

1√
π

√
π

2
− 1

2
erf

(
d√
2σ

)
=

=
1

2

(
1− erf

(
1√
2σ

))
=

1

2

(
1− erf

(√
N

2 (p− d)

))

A.3 Computing network parameters given maximum accepted
error

Assuming all training patterns are independent, we can use the above results to determine the
minimum number of neurons which should be used for the network given the number of training
patterns we want to store. In the case of image recognition, this can provide to be useful as it
can give a guideline towards how to resize the images in order to bring them to the same size
(patterns which are stored in a Hopfield network need to have equal lengths). It also enables
us to compute the capacity of a network of given size, in order to minimise errors.

Given p and N, we deduced the probability of error for the network. Thus, conversely, we
can compute the maximum ratio of p and N to ensure that the probability of error does not
exceed a maximum accepted error probability.

Perror =
1

2

(
1− erf

(√
N

2p

))

⇒ erf

√
N

2p
= 1− 2Perror ⇒

√
N

2p
= inverf (1− 2Perror)

⇒ N

p
= 2 (inverf (1− 2Perror))

2

p

N
=

1

2 (inverf (1− 2Perror))
2 and N = 2p (inverf (1− 2Perror))

2

where inverf is the inverse of the erf function.

A.4 Measurements using the error of a network for independent
patterns

We will now give the reader an idea of how one should accommodate a fixed number of patterns
depending on the error accepted by the application, by creating networks of appropriate size.

The following table describes the capacity of the network in terms of the error accepted, by
fixing the size of the network.

The above results can be reproduced by using the Analysis module. For example, by using
ghci:

*Analysis > computeErrorSuperAttractor 10 100

The first argument of the function is p (the number of training patterns), and the sec-
ond one is N (the size of the network). A similar function can be used for a given network
computeErrorSuperAttractor, that given a network computes the probability of error of the
super attractor. The caller has to ensure that training patterns are independent in order for
the computation to be correct.

44

p error N

100 0.1 165

100 0.01 542

100 0.05 271

100 0.001 955

Table A.1: Getting the minimum numbers of neurons required by the network by fixing the
error and the number of patterns used to train the network.

N error p

1000 0.1 608

1000 0.01 184

1000 0.05 359

1000 0.001 104

Table A.2: Getting the capacity of a network by fixing the error and the size of a network.

A.5 Decreasing the error by using one super attractor

Above we described the derivation for obtaining the error of a super attractor, given its degree.
We remind the reader that we did this under the assumption that all other training patterns
are independent. We will now show how the error of a pattern decreases if it is made a super
attractor, by varying the number of times it is presented to the network during training.

degree p N error

1 20 100 1.08 *10−2

2 20 100 7.64*10−3

5 20 100 4.91*10−3

8 20 100 1.95 ∗ 10−3

11 20 100 4.29 ∗ 10−4

15 20 100 3.87 ∗ 10−6

degree p N error

1 50 100 7.65 ∗ 10
−2

5 50 100 6.80*10−2

10 50 100 5.69*10−2

20 50 100 3.39*10−2

30 50 100 1.26 ∗ 10−2

40 50 100 7.82 ∗ 10−4

Table A.3: Computing the network error when using a super attractor

Note that in the second table we are intentionally stressing the network so that we can
notice how super attractors also affect the capacity of the network.

The above results can be reproduced by using the Analysis module. For example, by using
ghci:

*Analysis > computeErrorSuperAttractorNumbers 40 50 100

The first argument of the function is the degree of the attractor, the second one is p and the
third one isN . A similar function can be used for a given network computeErrorSuperAttractor,
that given a network computes the probability of error of the super attractor. The caller of the
function has to ensure that the training patterns contain a super attractor and that the other
patterns are independent.

45

Appendix B

Neuron Update Optimisation

B.1 Initial Method

Originally, each update iteration of the Hopfield network involved scanning through all neurons
and computing the h value. As this involves scanning through all the neurons in every step, it
is clearly an O(n) operation.

B.2 Optimisation

First we shuffle the list of neurons1. We then select the first neuron. If it is updatable then we
are done. If not then continue with the second neuron, and so on. In the worst case, we will
perform as bad as the initial method described above. In general, however, we will always beat
or match the above algorithm as we avoid computing the h value for every node.

At the beginning of the convergence process, the patterns tend to undergo a lot of transfor-
mations, and have a large number of updatable neurons. Depending on the size of the basin of
attraction in which the pattern will land, and on the journey the pattern has to go trough until
it reaches the basin, the number of updatable neurons during the journey varies greatly.

As a pattern approaches convergence, the number of updatable neurons decreases (as for a
fixed point, there are no updatable neurons) so we slightly reach the old performance. In any
case our algorithm is still at least as good as the initial method.

1Although this is an extra O(n) operation, it has a negligible footprint to computing the h value

46

Appendix C

Recognition Software - Screenshots

C.1 Suspect Database

47

C.2 Suspect Matching

48

C.3 Understanding the Hopfield Model

49

	Introduction
	Motivation
	Objectives
	Our achievements

	Background Research
	Attachment Theory
	Strange Situation Procedure

	Practical applications of Attractor Neural Networks
	Hopfield Networks
	Updating the Hopfield Network
	Training using the Hebbian Rule
	Spurious Patterns
	Energy Landscape
	Stability and Capacity
	Training using the Pseudo-Inverse Rule
	Training using the Storkey Rule

	Restricted Boltzmann Machines
	Probability of a state
	Training the network
	Using Restricted Boltzmann Machines for classification
	Learning
	Classification
	New method

	Exploring The Hopfield Model
	Facial Recognition for Police criminal records
	Further analysis
	Basins of Attraction
	Measuring the Basin Size using the Storkey-Valabregue technique

	Generating Clusters of Attractors
	Generating Gaussian-Distributed Clusters

	First experiments with basin sizes
	Basin Size for One Cluster using T1
	Basin Size for Two Clusters using T1

	Experiments with Gaussian-distributed patterns
	Basin Size for Two Clusters using T2

	Super Attractors
	Single super attractor
	Two super attractors

	Comparing Storkey and Hebbian learning
	T1 Method
	T2 Method

	Design and Implementation
	Technologies used
	Recognition System
	Technical Challenges
	Computation Time
	Big Data

	Anticipated Risks
	Failure to match a pattern stored
	A stored pattern not a fixed point
	Floating point calculation

	Evaluation
	Implementation
	Optimising for speed
	Unit Testing

	Evaluating our deliverables

	Conclusion and Future Extensions
	Analogy with Attachment Theory
	Future Extensions
	Inconsistencies in the results

	Project Management
	Project Organisation
	A story

	Bibliography
	Errors in Hopfield networks
	Stability of stored states, given independence of all stored patterns
	Stability of a super attractor, given independence of all other stored patterns
	Computing network parameters given maximum accepted error
	Measurements using the error of a network for independent patterns
	Decreasing the error by using one super attractor

	Neuron Update Optimisation
	Initial Method
	Optimisation

	Recognition Software - Screenshots
	Suspect Database
	Suspect Matching
	Understanding the Hopfield Model

