{"cells":[{"metadata":{},"cell_type":"markdown","source":"## COVID-19 Daily Analysis Table \n - This-document: https://github.com/infchg/COVID-19/JH-calculate-daily.ipynb\n - HOW-TO-USE: see results or re-calculate on your own Notebook (Jupyter, Mybinder, Azure, ... )\n - RESULTS: WARNING ON COUNTRIES BY COVID DAILY DEATH RATES\n - rankings and trends on the worst daily deaths by country evaluating last 7 days\n - References:\n - Web charts: https://dasn.herokuapp.com/covidzoom and https://dasn.herokuapp.com/covid19\n - wolfram & azure notebooks \n - Data-source: John Hopkins, Stats by Country, https://github.com/CSSEGISandData/\n - LOOKING FOR REGIONAL SOURCES (Estado, Staat, CCAA, Canton, ...) IN ORDER TO CALCULATE BY AREA"},{"metadata":{"trusted":true},"cell_type":"code","source":"try: ## This table sumarizes the daily deaths by country (calculations below) %store df9 \n display(df9.transpose().tail(3) )\n print(\"worst daily deaths by country evaluating last 7 days:\")\n display(df9.transpose().tail(9).head(9).mean(axis=0).sort_values(ascending=False).head(7) )\nexcept NameError:\n print(\"Click Run on this cell only after the RUN ALL completes all calculations\")","execution_count":16,"outputs":[{"output_type":"display_data","data":{"text/plain":"Country/Region US Brazil United Kingdom Mexico Italy Peru Russia \\\n5/14/20 1779 759 428 257 262 98 93 \n5/15/20 1632 963 384 290 242 125 113 \n5/16/20 1224 700 468 278 153 131 119 \n\nCountry/Region India Spain Ecuador Canada Belgium Germany Turkey \\\n5/14/20 98 217 4 131 60 23 55 \n5/15/20 104 138 256 50 56 13 48 \n5/16/20 118 104 94 82 46 41 41 \n\nCountry/Region Canada Iran \n5/14/20 32 71 \n5/15/20 24 48 \n5/16/20 37 35 ","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th>Country/Region</th>\n <th>US</th>\n <th>Brazil</th>\n <th>United Kingdom</th>\n <th>Mexico</th>\n <th>Italy</th>\n <th>Peru</th>\n <th>Russia</th>\n <th>India</th>\n <th>Spain</th>\n <th>Ecuador</th>\n <th>Canada</th>\n <th>Belgium</th>\n <th>Germany</th>\n <th>Turkey</th>\n <th>Canada</th>\n <th>Iran</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>5/14/20</th>\n <td>1779</td>\n <td>759</td>\n <td>428</td>\n <td>257</td>\n <td>262</td>\n <td>98</td>\n <td>93</td>\n <td>98</td>\n <td>217</td>\n <td>4</td>\n <td>131</td>\n <td>60</td>\n <td>23</td>\n <td>55</td>\n <td>32</td>\n <td>71</td>\n </tr>\n <tr>\n <th>5/15/20</th>\n <td>1632</td>\n <td>963</td>\n <td>384</td>\n <td>290</td>\n <td>242</td>\n <td>125</td>\n <td>113</td>\n <td>104</td>\n <td>138</td>\n <td>256</td>\n <td>50</td>\n <td>56</td>\n <td>13</td>\n <td>48</td>\n <td>24</td>\n <td>48</td>\n </tr>\n <tr>\n <th>5/16/20</th>\n <td>1224</td>\n <td>700</td>\n <td>468</td>\n <td>278</td>\n <td>153</td>\n <td>131</td>\n <td>119</td>\n <td>118</td>\n <td>104</td>\n <td>94</td>\n <td>82</td>\n <td>46</td>\n <td>41</td>\n <td>41</td>\n <td>37</td>\n <td>35</td>\n </tr>\n </tbody>\n</table>\n</div>"},"metadata":{}},{"output_type":"stream","text":"worst daily deaths by country evaluating last 7 days:\n","name":"stdout"},{"output_type":"display_data","data":{"text/plain":"Country/Region\nUS 1454.666667\nBrazil 719.111111\nUnited Kingdom 427.888889\nMexico 231.555556\nItaly 200.555556\nSpain 165.888889\nEcuador 114.888889\ndtype: float64"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### How is this daily Calculus performed : https://github.com/infchg/COVID-19\n - calculations in iPython at https://github.com/infchg/COVID-19/JH-calculate-daily.ipynb\n - data source: John Hopkins https://github.com/CSSEGISandData/COVID-19/\n - thanks to resources by http://Jupyter.org http://MyBinder.org http://Heroku.com and above\n - LOOKING FOR REGIONAL SOURCES (Estado, Staat, CCAA, Canton, ...) IN ORDER TO CALCULATE BY AREA"},{"metadata":{"trusted":true},"cell_type":"code","source":"!pip install pandas seaborn\n# initial installations ","execution_count":2,"outputs":[{"output_type":"stream","text":"WARNING: pip is being invoked by an old script wrapper. This will fail in a future version of pip.\nPlease see https://github.com/pypa/pip/issues/5599 for advice on fixing the underlying issue.\nTo avoid this problem you can invoke Python with '-m pip' instead of running pip directly.\nCollecting pandas\n Downloading pandas-1.0.3-cp37-cp37m-manylinux1_x86_64.whl (10.0 MB)\n\u001b[K |████████████████████████████████| 10.0 MB 3.6 MB/s eta 0:00:01\n\u001b[?25hCollecting seaborn\n Downloading seaborn-0.10.1-py3-none-any.whl (215 kB)\n\u001b[K |████████████████████████████████| 215 kB 25.4 MB/s eta 0:00:01\n\u001b[?25hCollecting pytz>=2017.2\n Downloading pytz-2020.1-py2.py3-none-any.whl (510 kB)\n\u001b[K |████████████████████████████████| 510 kB 32.1 MB/s eta 0:00:01\n\u001b[?25hRequirement already satisfied: python-dateutil>=2.6.1 in /srv/conda/envs/notebook/lib/python3.7/site-packages (from pandas) (2.8.1)\nCollecting numpy>=1.13.3\n Downloading numpy-1.18.4-cp37-cp37m-manylinux1_x86_64.whl (20.2 MB)\n\u001b[K |████████████████████████████████| 20.2 MB 38 kB/s s eta 0:00:01 | 7.8 MB 22.7 MB/s eta 0:00:01\n\u001b[?25hCollecting matplotlib>=2.1.2\n Downloading matplotlib-3.2.1-cp37-cp37m-manylinux1_x86_64.whl (12.4 MB)\n\u001b[K |████████████████████████████████| 12.4 MB 46.9 MB/s eta 0:00:01 |█████████████████████████████▋ | 11.5 MB 46.9 MB/s eta 0:00:01\n\u001b[?25hCollecting scipy>=1.0.1\n Downloading scipy-1.4.1-cp37-cp37m-manylinux1_x86_64.whl (26.1 MB)\n\u001b[K |████████████████████████████████| 26.1 MB 121 kB/s eta 0:00:01\n\u001b[?25hRequirement already satisfied: six>=1.5 in /srv/conda/envs/notebook/lib/python3.7/site-packages (from python-dateutil>=2.6.1->pandas) (1.14.0)\nCollecting kiwisolver>=1.0.1\n Downloading kiwisolver-1.2.0-cp37-cp37m-manylinux1_x86_64.whl (88 kB)\n\u001b[K |████████████████████████████████| 88 kB 11.7 MB/s eta 0:00:01\n\u001b[?25hCollecting cycler>=0.10\n Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)\nCollecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1\n Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)\n\u001b[K |████████████████████████████████| 67 kB 8.5 MB/s eta 0:00:01\n\u001b[?25hInstalling collected packages: pytz, numpy, pandas, kiwisolver, cycler, pyparsing, matplotlib, scipy, seaborn\nSuccessfully installed cycler-0.10.0 kiwisolver-1.2.0 matplotlib-3.2.1 numpy-1.18.4 pandas-1.0.3 pyparsing-2.4.7 pytz-2020.1 scipy-1.4.1 seaborn-0.10.1\n","name":"stdout"}]},{"metadata":{"trusted":true},"cell_type":"code","source":" ##JH Source THIS IS THE SOURCE OF ALL CALCULATIONS IN THIS PAGE\n! curl -OL https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv","execution_count":3,"outputs":[{"output_type":"stream","text":" % Total % Received % Xferd Average Speed Time Time Time Current\n Dload Upload Total Spent Left Speed\n100 213 100 213 0 0 1704 0 --:--:-- --:--:-- --:--:-- 1704\n100 79863 100 79863 0 0 301k 0 --:--:-- --:--:-- --:--:-- 4306k\n","name":"stdout"}]},{"metadata":{"trusted":true},"cell_type":"code","source":"# ! egrep -e ',[0-9]{3,}$' -e ^Provi -e ',[6-9].$' tim*dea*csv > over50.csv\n! egrep -e ',[^,][^,][^,]+$' -e ^Provi tim*dea*csv > over50.csv\nimport pandas as pd\ndf=pd.read_csv('over50.csv')\ndf.set_index('Country/Region',inplace=True) # .T\ntype(df)","execution_count":4,"outputs":[{"output_type":"execute_result","execution_count":4,"data":{"text/plain":"pandas.core.frame.DataFrame"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"cols20 = df.columns[-13:].tolist()\nidx = cols20 # cols21 = df.columns[-14:-1].tolist()\n#display( )idx=['Country/Region']+cols20 #no need with set index\ndisplay(df.sort_values(by=[df.columns[-1]],ascending=False)[cols20] )","execution_count":5,"outputs":[{"output_type":"display_data","data":{"text/plain":" 5/4/20 5/5/20 5/6/20 5/7/20 5/8/20 5/9/20 5/10/20 \\\nCountry/Region \nUS 68922 71064 73455 75662 77180 78795 79526 \nUnited Kingdom 28734 29427 30076 30615 31241 31587 31855 \nItaly 29079 29315 29684 29958 30201 30395 30560 \nSpain 25428 25613 25857 26070 26299 26478 26621 \nFrance 25168 25498 25772 25949 26192 26271 26341 \n... ... ... ... ... ... ... ... \nMalaysia 105 106 107 107 107 108 108 \nKuwait 40 40 42 44 47 49 58 \nBulgaria 78 80 84 84 86 90 91 \nLuxembourg 96 96 98 100 100 101 101 \nSlovenia 97 98 99 99 100 101 102 \n\n 5/11/20 5/12/20 5/13/20 5/14/20 5/15/20 5/16/20 \nCountry/Region \nUS 80682 82356 84119 85898 87530 88754 \nUnited Kingdom 32065 32692 33186 33614 33998 34466 \nItaly 30739 30911 31106 31368 31610 31763 \nSpain 26744 26920 27104 27321 27459 27563 \nFrance 26604 26951 27032 27381 27485 27483 \n... ... ... ... ... ... ... \nMalaysia 109 109 111 112 112 113 \nKuwait 65 75 82 88 96 107 \nBulgaria 93 95 96 99 102 105 \nLuxembourg 101 102 103 103 104 104 \nSlovenia 102 102 103 103 103 103 \n\n[68 rows x 13 columns]","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>5/4/20</th>\n <th>5/5/20</th>\n <th>5/6/20</th>\n <th>5/7/20</th>\n <th>5/8/20</th>\n <th>5/9/20</th>\n <th>5/10/20</th>\n <th>5/11/20</th>\n <th>5/12/20</th>\n <th>5/13/20</th>\n <th>5/14/20</th>\n <th>5/15/20</th>\n <th>5/16/20</th>\n </tr>\n <tr>\n <th>Country/Region</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>US</th>\n <td>68922</td>\n <td>71064</td>\n <td>73455</td>\n <td>75662</td>\n <td>77180</td>\n <td>78795</td>\n <td>79526</td>\n <td>80682</td>\n <td>82356</td>\n <td>84119</td>\n <td>85898</td>\n <td>87530</td>\n <td>88754</td>\n </tr>\n <tr>\n <th>United Kingdom</th>\n <td>28734</td>\n <td>29427</td>\n <td>30076</td>\n <td>30615</td>\n <td>31241</td>\n <td>31587</td>\n <td>31855</td>\n <td>32065</td>\n <td>32692</td>\n <td>33186</td>\n <td>33614</td>\n <td>33998</td>\n <td>34466</td>\n </tr>\n <tr>\n <th>Italy</th>\n <td>29079</td>\n <td>29315</td>\n <td>29684</td>\n <td>29958</td>\n <td>30201</td>\n <td>30395</td>\n <td>30560</td>\n <td>30739</td>\n <td>30911</td>\n <td>31106</td>\n <td>31368</td>\n <td>31610</td>\n <td>31763</td>\n </tr>\n <tr>\n <th>Spain</th>\n <td>25428</td>\n <td>25613</td>\n <td>25857</td>\n <td>26070</td>\n <td>26299</td>\n <td>26478</td>\n <td>26621</td>\n <td>26744</td>\n <td>26920</td>\n <td>27104</td>\n <td>27321</td>\n <td>27459</td>\n <td>27563</td>\n </tr>\n <tr>\n <th>France</th>\n <td>25168</td>\n <td>25498</td>\n <td>25772</td>\n <td>25949</td>\n <td>26192</td>\n <td>26271</td>\n <td>26341</td>\n <td>26604</td>\n <td>26951</td>\n <td>27032</td>\n <td>27381</td>\n <td>27485</td>\n <td>27483</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>Malaysia</th>\n <td>105</td>\n <td>106</td>\n <td>107</td>\n <td>107</td>\n <td>107</td>\n <td>108</td>\n <td>108</td>\n <td>109</td>\n <td>109</td>\n <td>111</td>\n <td>112</td>\n <td>112</td>\n <td>113</td>\n </tr>\n <tr>\n <th>Kuwait</th>\n <td>40</td>\n <td>40</td>\n <td>42</td>\n <td>44</td>\n <td>47</td>\n <td>49</td>\n <td>58</td>\n <td>65</td>\n <td>75</td>\n <td>82</td>\n <td>88</td>\n <td>96</td>\n <td>107</td>\n </tr>\n <tr>\n <th>Bulgaria</th>\n <td>78</td>\n <td>80</td>\n <td>84</td>\n <td>84</td>\n <td>86</td>\n <td>90</td>\n <td>91</td>\n <td>93</td>\n <td>95</td>\n <td>96</td>\n <td>99</td>\n <td>102</td>\n <td>105</td>\n </tr>\n <tr>\n <th>Luxembourg</th>\n <td>96</td>\n <td>96</td>\n <td>98</td>\n <td>100</td>\n <td>100</td>\n <td>101</td>\n <td>101</td>\n <td>101</td>\n <td>102</td>\n <td>103</td>\n <td>103</td>\n <td>104</td>\n <td>104</td>\n </tr>\n <tr>\n <th>Slovenia</th>\n <td>97</td>\n <td>98</td>\n <td>99</td>\n <td>99</td>\n <td>100</td>\n <td>101</td>\n <td>102</td>\n <td>102</td>\n <td>102</td>\n <td>103</td>\n <td>103</td>\n <td>103</td>\n <td>103</td>\n </tr>\n </tbody>\n</table>\n<p>68 rows × 13 columns</p>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"#df['LastDay']=df[df.columns[-1]]-df[df.columns[-2]] \ndf0=df[idx].copy() #()\ntype(df)\n#for (coln, cold) in df.iteritems():\n# print(coln, '->', cold)\nfor i in range(1,13):\n df0[df0.columns[-i]] = (df0[df.columns[-i]]-df0[df0.columns[-i-1]]) # casualties last day","execution_count":6,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"## COVID Daily deaths \nMay 9th warning on Brazil Mexico in addition to cited March-30th: US UK Italy Spain France "},{"metadata":{"scrolled":true,"trusted":true},"cell_type":"code","source":"df0.pop( df0.columns[0] ) # 0 \ndf9=df0.sort_values(by=[df.columns[-1]],ascending=False).head(16)\ndisplay(df9) ","execution_count":7,"outputs":[{"output_type":"display_data","data":{"text/plain":" 5/5/20 5/6/20 5/7/20 5/8/20 5/9/20 5/10/20 5/11/20 \\\nCountry/Region \nUS 2142 2391 2207 1518 1615 731 1156 \nBrazil 571 650 602 827 639 467 530 \nUnited Kingdom 693 649 539 626 346 268 210 \nMexico 236 197 257 199 193 112 108 \nItaly 236 369 274 243 194 165 179 \nPeru 100 89 94 87 100 75 72 \nRussia 95 86 88 98 104 88 94 \nIndia 127 92 104 96 116 111 82 \nSpain 185 244 213 229 179 143 123 \nEcuador 0 49 36 50 13 410 18 \nCanada 118 112 121 94 61 142 85 \nBelgium 92 323 76 106 60 75 51 \nGermany 0 282 117 118 39 20 92 \nTurkey 59 64 57 48 50 47 55 \nCanada 59 55 47 58 61 25 37 \nIran 63 78 68 55 48 51 45 \n\n 5/12/20 5/13/20 5/14/20 5/15/20 5/16/20 \nCountry/Region \nUS 1674 1763 1779 1632 1224 \nBrazil 808 779 759 963 700 \nUnited Kingdom 627 494 428 384 468 \nMexico 353 294 257 290 278 \nItaly 172 195 262 242 153 \nPeru 96 112 98 125 131 \nRussia 107 96 93 113 119 \nIndia 121 136 98 104 118 \nSpain 176 184 217 138 104 \nEcuador 182 7 4 256 94 \nCanada 118 89 131 50 82 \nBelgium 54 82 60 56 46 \nGermany 77 123 23 13 41 \nTurkey 53 58 55 48 41 \nCanada 64 31 32 24 37 \nIran 48 50 71 48 35 ","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>5/5/20</th>\n <th>5/6/20</th>\n <th>5/7/20</th>\n <th>5/8/20</th>\n <th>5/9/20</th>\n <th>5/10/20</th>\n <th>5/11/20</th>\n <th>5/12/20</th>\n <th>5/13/20</th>\n <th>5/14/20</th>\n <th>5/15/20</th>\n <th>5/16/20</th>\n </tr>\n <tr>\n <th>Country/Region</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>US</th>\n <td>2142</td>\n <td>2391</td>\n <td>2207</td>\n <td>1518</td>\n <td>1615</td>\n <td>731</td>\n <td>1156</td>\n <td>1674</td>\n <td>1763</td>\n <td>1779</td>\n <td>1632</td>\n <td>1224</td>\n </tr>\n <tr>\n <th>Brazil</th>\n <td>571</td>\n <td>650</td>\n <td>602</td>\n <td>827</td>\n <td>639</td>\n <td>467</td>\n <td>530</td>\n <td>808</td>\n <td>779</td>\n <td>759</td>\n <td>963</td>\n <td>700</td>\n </tr>\n <tr>\n <th>United Kingdom</th>\n <td>693</td>\n <td>649</td>\n <td>539</td>\n <td>626</td>\n <td>346</td>\n <td>268</td>\n <td>210</td>\n <td>627</td>\n <td>494</td>\n <td>428</td>\n <td>384</td>\n <td>468</td>\n </tr>\n <tr>\n <th>Mexico</th>\n <td>236</td>\n <td>197</td>\n <td>257</td>\n <td>199</td>\n <td>193</td>\n <td>112</td>\n <td>108</td>\n <td>353</td>\n <td>294</td>\n <td>257</td>\n <td>290</td>\n <td>278</td>\n </tr>\n <tr>\n <th>Italy</th>\n <td>236</td>\n <td>369</td>\n <td>274</td>\n <td>243</td>\n <td>194</td>\n <td>165</td>\n <td>179</td>\n <td>172</td>\n <td>195</td>\n <td>262</td>\n <td>242</td>\n <td>153</td>\n </tr>\n <tr>\n <th>Peru</th>\n <td>100</td>\n <td>89</td>\n <td>94</td>\n <td>87</td>\n <td>100</td>\n <td>75</td>\n <td>72</td>\n <td>96</td>\n <td>112</td>\n <td>98</td>\n <td>125</td>\n <td>131</td>\n </tr>\n <tr>\n <th>Russia</th>\n <td>95</td>\n <td>86</td>\n <td>88</td>\n <td>98</td>\n <td>104</td>\n <td>88</td>\n <td>94</td>\n <td>107</td>\n <td>96</td>\n <td>93</td>\n <td>113</td>\n <td>119</td>\n </tr>\n <tr>\n <th>India</th>\n <td>127</td>\n <td>92</td>\n <td>104</td>\n <td>96</td>\n <td>116</td>\n <td>111</td>\n <td>82</td>\n <td>121</td>\n <td>136</td>\n <td>98</td>\n <td>104</td>\n <td>118</td>\n </tr>\n <tr>\n <th>Spain</th>\n <td>185</td>\n <td>244</td>\n <td>213</td>\n <td>229</td>\n <td>179</td>\n <td>143</td>\n <td>123</td>\n <td>176</td>\n <td>184</td>\n <td>217</td>\n <td>138</td>\n <td>104</td>\n </tr>\n <tr>\n <th>Ecuador</th>\n <td>0</td>\n <td>49</td>\n <td>36</td>\n <td>50</td>\n <td>13</td>\n <td>410</td>\n <td>18</td>\n <td>182</td>\n <td>7</td>\n <td>4</td>\n <td>256</td>\n <td>94</td>\n </tr>\n <tr>\n <th>Canada</th>\n <td>118</td>\n <td>112</td>\n <td>121</td>\n <td>94</td>\n <td>61</td>\n <td>142</td>\n <td>85</td>\n <td>118</td>\n <td>89</td>\n <td>131</td>\n <td>50</td>\n <td>82</td>\n </tr>\n <tr>\n <th>Belgium</th>\n <td>92</td>\n <td>323</td>\n <td>76</td>\n <td>106</td>\n <td>60</td>\n <td>75</td>\n <td>51</td>\n <td>54</td>\n <td>82</td>\n <td>60</td>\n <td>56</td>\n <td>46</td>\n </tr>\n <tr>\n <th>Germany</th>\n <td>0</td>\n <td>282</td>\n <td>117</td>\n <td>118</td>\n <td>39</td>\n <td>20</td>\n <td>92</td>\n <td>77</td>\n <td>123</td>\n <td>23</td>\n <td>13</td>\n <td>41</td>\n </tr>\n <tr>\n <th>Turkey</th>\n <td>59</td>\n <td>64</td>\n <td>57</td>\n <td>48</td>\n <td>50</td>\n <td>47</td>\n <td>55</td>\n <td>53</td>\n <td>58</td>\n <td>55</td>\n <td>48</td>\n <td>41</td>\n </tr>\n <tr>\n <th>Canada</th>\n <td>59</td>\n <td>55</td>\n <td>47</td>\n <td>58</td>\n <td>61</td>\n <td>25</td>\n <td>37</td>\n <td>64</td>\n <td>31</td>\n <td>32</td>\n <td>24</td>\n <td>37</td>\n </tr>\n <tr>\n <th>Iran</th>\n <td>63</td>\n <td>78</td>\n <td>68</td>\n <td>55</td>\n <td>48</td>\n <td>51</td>\n <td>45</td>\n <td>48</td>\n <td>50</td>\n <td>71</td>\n <td>48</td>\n <td>35</td>\n </tr>\n </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"print(','.join('Mr%.0f' %x for x in range(18,30+1)) ,'\\ndata-datasets=\"')\nprint('\"\\ndata-datasets=\"'.join(','.join('%.0f' %x for x in y) for y in df9.values) )","execution_count":8,"outputs":[{"output_type":"stream","text":"Mr18,Mr19,Mr20,Mr21,Mr22,Mr23,Mr24,Mr25,Mr26,Mr27,Mr28,Mr29,Mr30 \ndata-datasets=\"\n2142,2391,2207,1518,1615,731,1156,1674,1763,1779,1632,1224\"\ndata-datasets=\"571,650,602,827,639,467,530,808,779,759,963,700\"\ndata-datasets=\"693,649,539,626,346,268,210,627,494,428,384,468\"\ndata-datasets=\"236,197,257,199,193,112,108,353,294,257,290,278\"\ndata-datasets=\"236,369,274,243,194,165,179,172,195,262,242,153\"\ndata-datasets=\"100,89,94,87,100,75,72,96,112,98,125,131\"\ndata-datasets=\"95,86,88,98,104,88,94,107,96,93,113,119\"\ndata-datasets=\"127,92,104,96,116,111,82,121,136,98,104,118\"\ndata-datasets=\"185,244,213,229,179,143,123,176,184,217,138,104\"\ndata-datasets=\"0,49,36,50,13,410,18,182,7,4,256,94\"\ndata-datasets=\"118,112,121,94,61,142,85,118,89,131,50,82\"\ndata-datasets=\"92,323,76,106,60,75,51,54,82,60,56,46\"\ndata-datasets=\"0,282,117,118,39,20,92,77,123,23,13,41\"\ndata-datasets=\"59,64,57,48,50,47,55,53,58,55,48,41\"\ndata-datasets=\"59,55,47,58,61,25,37,64,31,32,24,37\"\ndata-datasets=\"63,78,68,55,48,51,45,48,50,71,48,35\n","name":"stdout"}]},{"metadata":{"trusted":true},"cell_type":"code","source":"dxy=df0.transpose()\ndisplay(dxy.tail(4)) #pivot('Country/Region')","execution_count":9,"outputs":[{"output_type":"display_data","data":{"text/plain":"Country/Region Afghanistan Algeria Argentina Austria Bangladesh Belarus \\\n5/13/20 5 7 10 1 19 4 \n5/14/20 4 7 24 2 14 5 \n5/15/20 17 7 3 2 15 5 \n5/16/20 15 6 7 1 16 4 \n\nCountry/Region Belgium Bolivia Bosnia and Herzegovina Brazil ... \\\n5/13/20 82 14 3 779 ... \n5/14/20 60 10 2 759 ... \n5/15/20 56 12 6 963 ... \n5/16/20 46 1 1 700 ... \n\nCountry/Region Slovenia South Africa Spain Sweden Switzerland Turkey \\\n5/13/20 1 13 184 147 3 58 \n5/14/20 0 19 217 69 2 55 \n5/15/20 0 9 138 117 6 48 \n5/16/20 0 14 104 28 1 41 \n\nCountry/Region Ukraine United Arab Emirates United Kingdom US \n5/13/20 14 3 494 1763 \n5/14/20 17 2 428 1779 \n5/15/20 20 2 384 1632 \n5/16/20 21 4 468 1224 \n\n[4 rows x 68 columns]","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th>Country/Region</th>\n <th>Afghanistan</th>\n <th>Algeria</th>\n <th>Argentina</th>\n <th>Austria</th>\n <th>Bangladesh</th>\n <th>Belarus</th>\n <th>Belgium</th>\n <th>Bolivia</th>\n <th>Bosnia and Herzegovina</th>\n <th>Brazil</th>\n <th>...</th>\n <th>Slovenia</th>\n <th>South Africa</th>\n <th>Spain</th>\n <th>Sweden</th>\n <th>Switzerland</th>\n <th>Turkey</th>\n <th>Ukraine</th>\n <th>United Arab Emirates</th>\n <th>United Kingdom</th>\n <th>US</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>5/13/20</th>\n <td>5</td>\n <td>7</td>\n <td>10</td>\n <td>1</td>\n <td>19</td>\n <td>4</td>\n <td>82</td>\n <td>14</td>\n <td>3</td>\n <td>779</td>\n <td>...</td>\n <td>1</td>\n <td>13</td>\n <td>184</td>\n <td>147</td>\n <td>3</td>\n <td>58</td>\n <td>14</td>\n <td>3</td>\n <td>494</td>\n <td>1763</td>\n </tr>\n <tr>\n <th>5/14/20</th>\n <td>4</td>\n <td>7</td>\n <td>24</td>\n <td>2</td>\n <td>14</td>\n <td>5</td>\n <td>60</td>\n <td>10</td>\n <td>2</td>\n <td>759</td>\n <td>...</td>\n <td>0</td>\n <td>19</td>\n <td>217</td>\n <td>69</td>\n <td>2</td>\n <td>55</td>\n <td>17</td>\n <td>2</td>\n <td>428</td>\n <td>1779</td>\n </tr>\n <tr>\n <th>5/15/20</th>\n <td>17</td>\n <td>7</td>\n <td>3</td>\n <td>2</td>\n <td>15</td>\n <td>5</td>\n <td>56</td>\n <td>12</td>\n <td>6</td>\n <td>963</td>\n <td>...</td>\n <td>0</td>\n <td>9</td>\n <td>138</td>\n <td>117</td>\n <td>6</td>\n <td>48</td>\n <td>20</td>\n <td>2</td>\n <td>384</td>\n <td>1632</td>\n </tr>\n <tr>\n <th>5/16/20</th>\n <td>15</td>\n <td>6</td>\n <td>7</td>\n <td>1</td>\n <td>16</td>\n <td>4</td>\n <td>46</td>\n <td>1</td>\n <td>1</td>\n <td>700</td>\n <td>...</td>\n <td>0</td>\n <td>14</td>\n <td>104</td>\n <td>28</td>\n <td>1</td>\n <td>41</td>\n <td>21</td>\n <td>4</td>\n <td>468</td>\n <td>1224</td>\n </tr>\n </tbody>\n</table>\n<p>4 rows × 68 columns</p>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"#Worst 7 countries in daily deaths last week \ndf9.transpose().tail(8).head(7).mean(axis=0).sort_values(ascending=False).head(7) #1 Average for each row :","execution_count":10,"outputs":[{"output_type":"execute_result","execution_count":10,"data":{"text/plain":"Country/Region\nUS 1478.571429\nBrazil 706.428571\nUnited Kingdom 393.857143\nMexico 229.571429\nItaly 201.285714\nSpain 165.714286\nEcuador 127.142857\ndtype: float64"},"metadata":{}}]},{"metadata":{"scrolled":true,"trusted":true},"cell_type":"code","source":"import seaborn as sns\n%matplotlib inline\nsns.heatmap(df0)#, annot=True","execution_count":11,"outputs":[{"output_type":"execute_result","execution_count":11,"data":{"text/plain":"<matplotlib.axes._subplots.AxesSubplot at 0x7f3da041b890>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 2 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAeQAAAEXCAYAAAB8qDdOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO2deZwcVdW/n+9MEhJICKsYFgmyiIAQIIAgqyCLG6CIAgqoP6KvL7jwouALL4KK4gaKCMpmANllC8gOsm8JW0LYRAhLZF8CIevMnN8f93am0vTM1Ez3nanqOc986jPVt26dOn27uk/dc+89R2aG4ziO4zgDS8tAK+A4juM4jhtkx3EcxykEbpAdx3EcpwC4QXYcx3GcAuAG2XEcx3EKgBtkx3EcxykAbpATIGkPSSZp3fh6RUn3SXpI0jbdnDdR0l4N0uGnknbqQcf1GnEtx3Ecp37cIKdhH+DO+B9gR2CamW1sZnf0hwJmdrSZ3dRNlT0AN8iO4zgFQR4YpLFIGgk8CewAXAV8GZgEjABmAlsC+wKHA28DjwDzzexgSROBd4DxwAeBH5nZ36PMK4FlgaHAUWZ2paSxwLUE479VlL+7mc2Nsq6O5x8PfB5oA24ALgOuBmbF7YvAJ4EJwDDgaeBrZjanK526a4Ohw1Yp3U1VNoU10Ar0gVRtXMa2SIVUvtZYMP/FupVe+PozuW+voSt8uLCN5D3kxrM7cJ2ZPQW8AbQCRwMXmdk4glH9P+DjwCeAdavOHwNsDXwWOD6WzQP2NLNNCIb+d+r85q0N/MnM1icY+C9mhUlaHtgTWN/MNgR+bmZ3Ex4Sfmhm48zs38BlZraZmW0EPA58swedFkPSBElTJE3p6Hgvb1s5juPUT0d7/q3AuEFuPPsAF8b9C+l0W1fYHLjNzN40s4XAJVXHrzCzDjN7DFgplgn4haSpwE3AKpljz5rZw3H/AWBslbxZBIN+pqQvAHO60HsDSXdImgbsB6zfg06LYWanmdl4Mxvf0rJUF5dwHMdJgHXk3wrMkIFWoJmQtBzB9fsxSUboHRswvRdi5mdFxv/7ASsCm5rZQkkzgOE16rcTXOOLMLM2SZsTxrH3Ag6OOlYzEdjDzB6RdCCwfQ86NRVN+aYKhrdxegbtEGRHsQ1tXryH3Fj2As41s9XNbKyZrQY8C6yWqTMZ2E7SspKGUOVi7oLRwKvRGO8ArJ5XoTj+PNrMrgF+AGwUD70LjMpUHQW8JGko4QHAcRynFJh15N6KjBvkxrIPcHlV2aXAjysvzGwm8AvgfuAuYAbBrdwd5wHjozt5f+CJXug0Crg6urvvBA6N5RcCP4xLsdYkjGvfF3XqjXzHcZyBpb0t/1ZgfJb1ACBppJnNjj3ky4GzzKzakJeWMs6ydpz+pKUlTV+oPZHrNuVww8IFM+sWv+C5B3P/5gxbfZPCjp74GPLAcEwM2jGcsAzpigHWx3Ecp7wU3BWdFzfIA4CZHTbQOjiO4zQNTTKpyw2yUxrK6AdP5RsrY1s4naRyLaei6Pdb0Sdr5cUNsuM4jlNuSvaA0xU+yzoBktolPSzpEUkPStoqwTW2l3R1L8+5VdL4PlyrYUkvHMdxGk77wvxbgfEechrmxjCZSNoF+CWw3cCq1H8U3b1Vi5ZEMYBTrWJIOU00VTzkMq7oKGNs6EFJk7isvYecnqWBtyAsd5J0c+w1T5O0eywfK+lxSadLmi7pBkkj4rHNJE2NPe7fSHq0+gKSNpd0T1xTfLekj8TyEZIujLIvJxPFS9LO8ZwHJV0SA4gg6XhJj8Vr/jZzmW2j7Ge8t+w4TqHo6Mi/FRjvIadhhKSHCcuaxtAZqrKSJOIdSSsA90qaFI+tDexjZgdJupgQwetvwF+Bg8zsnpi1qRZPANvEMJk7EQKPfBH4L2COmX1U0obAgwDx2kcBO5nZe5IOBw6V9CdCIop1zcwkLZO5RiXBxLqExBSLZXySNIGQLQq1jsbjWTuO0280SQ/ZDXIasi7rLYFzJG1AZ5KIbYEOekgSEQ3iKDO7J5afT8i4VM1o4GxJaxM8xkNj+bbASQBmNjVG64KQaWo94K7okhsG3MPiiSiuJqRorHCFhamMj0l6X4IJMzsNOA3KGRikjO7UVHhbdOJtURIK3vPNixvkxMSe7QqE5BCfpo9JInrgZ8A/zWzPmCP51h7qC7jRzKozUdFNIoqmTzDhOE45sY5iT9bKi48hJ0bSuoSsT2/QyyQRZvY28K6kLWLRV7qoOhqYGfcPzJTfDuwb9dgA2DCW3wt8QtJa8dhSktbpJhGF4zhOcfExZKcbKmPIEHqTB5hZu6TzgKtikogp5Evi8E3gdEkdwG3UTkTxa4LL+ijgH5nyU4G/SnoceJzgCsfMXospFi+QtESsexQhA9SVkoZHvQ/FcRyn6DTJGLInlyg4lUQUcf8IYIyZfW+A1eqWZUeuleSmWmvplVOIBeDJWS8mkTukpTWJ3AUJs9akWgLWXsIfzVSfX6pIXZZo0WFHQjsxd+5zdd9w8yZfmlvB4Zt9sbBDbt5DLj6fkfRjwmf1HIu7pB3HcZwSPuzVwg1ywTGzi4CLBloPx3GcwlLwseG8uEF2Gs7sBXOTyH349X8nkes4XbFQaYYGyjZUWHhtEw7h9CdukB3HcZxy0yQ95GTLnlInWJD0bUn7N1JmD9c7UNLJecr7msShv5G0sqS/91zTcRynuJi1596KTMoectIEC2b250bJGmgktdoA3Clm9h9CAJDGym20wEhhp0Y6TUvK2cUpGLTfEe8h94psggVVkiTEBAtfjuVjJN0ee9WPStomls+WdFzsad9bCdso6RhJh8X9gyRNjnUulbRktQLdJGA4UNJlkq6T9C9Jv86c83VJT0m6H/hEX954N0kcZkj6laQHgS/H913Z2iWtLmnF+H4mx+0T8dwVJd2okIjiDEnPxWhgSDo0tt+jkr4fy46X9N8ZnY6RdJhCUotHc7TDqZKmxOsd25d2cBzHSYZ15N8KTEqDPCIalyeAMwjhHQG+AIwjRIHaCfiNpDGEiFLXx171RkAlsMZSwL1mthEh8tRBNa51mZltFus8TgimUU0lAcPGwNGEBAwVxgFfBj5GMI6rRZ2OJRjirQmxn7tiMYMKjIf3JXHYhBAMJBts4w0z28TMzjezcfG9nw5cambPAX8ATjSzzQjJIs6I5/0EuMXM1ickefhQvN6mwNeBLQjxqg+StDFhlvbemevuTe2Z2+9rh1h+pJmNJ0T62k4hUcViSJoQjfaUjo73umkqx3GcBuORunqkqwQLWwMXRBftK5JuAzYDJgNnSRpKSGRQMcgL6Exy8ADwqRrX2kDSz4FlgJHA9TXqdJWAAeBmM5sVdX2MENJyBeBWM3stll8ErNPFe73IzA6uvJB0a9ztKonDovOyQmIP+CBCG0F4YFlPnYEalo497K0JWZkws+skvRWPbw1cbmbvRXmXER5CTpL0AUkrE2Jpv2VmLyjEvc5Sqx1eAPZWyOY0hJD1aT1gavbEbHKJr63+hSR+vtEa2nOlPjKHNCMG69rwniv1gWe1IIlcgBcSPVAtlejzG8fIJHIBFiYagGlL5FteZ0EawQ8PK/bYq8+y7gVVCRa6qnO7QhakzwATJZ1gZucAC61zjUA7tXWeCOxhZo8ohITcvkad7hIwVCd2aFS7dJnEIbLoly/2yM8EPl+JzEXwYHzczOYtJrRvkZQuIYwXf5Cu1zW/rx0krQEcBmxmZm9JmkhnQgzHcZyBp+Cu6Lz0yxiyFk+wcAfBHdoqaUVCisD7Ja0OvGJmpxNcs5v04hKjgJdi73q/Lup0lYChK+4juGeXj3K/1At9KtRM4lBdKcq/BDjczJ7KHLoBOCRTb1zcvYvogpa0M7BsLL8D2EPSkpKWIvSi74jHLiIkp9grXisvSxMeHGbF8fvdenGu4zhOetxl3SNdJVi4HNgSeITgOv6Rmb0s6QDgh5IWArOB3ixp+j+CAX0t/h9Vo05XCRhqYmYvSTqG4GJ+m84x7dx0k8ThqaqqWxHGnY/NTJr6NPBd4E8KeYyHEMbQv00Y275A0teifi8D75rZg7EHe3+UcYaZPRR1mS5pFDDTzF7qxXt4RNJDhDH4FwgPA91ywUv35RXfK1LOIC3XXFpviyyXDrQCTl38thFCCm5o8+LJJUpINO7tZtYWx+dPrYzXF4Ehw1ZJclO5EerE28JpFtoWzKz7dp579Qm5b9sRnz202+vFyaznACsRvg6nmdkfJC1H8DSOBWYAe8dhPBEm4H4amAMcaGYPRlkHEDphAD83s7O7u7ZH6ionHwIultRCmPRWa+a54zjO4KCxk7ragP+JHsdRwAOSbiQMdd5sZscrZN47AjicMIy3dty2IKS93SIa8J8QvJ8W5Uwys7fed8WIG+QSYmb/AjYeaD0cx3EKQQNd1nFI76W4/65CPvlVgN3pnDB8NmFi8OGx/Jw4+fheScvESbrbEyb1vgkQjfquwAVdXdsNslMahrSmu10XlmzZREq3ctmiPZWxLXxYoMH0YpZ1XMI5IVN0Wly2WavuWELn5z5gpcz8m5cJLm0IxvqFzGkvxrKuyrvEDbLjOI5TbnrRQ87GTOiOGPPhUuD7ZvZOdrmpmZmkhj9X9VfoTKdOJH1Q0oWS/i3pAUnX1FpC1cDrze65luM4TgFo8LKnuBT1UuA8M7ssFr8SXdGVuBGvxvKZwGqZ01eNZV2Vd4n3kEtAnMV3OXC2mX0llm1EcJlUL6FqWtpK5lYuK+5O7aRsbTFoXewNXC0Uf2/PBB43sxMyhyYBBwDHx/9XZsoPlnQhYVLXrLhs9nrgF5IqcSJ2Bn7c3bXdIJeDHQgRyxZluIrrg0dKupkQGGQocJSZXRnHPa4F7iSscZ4J7G5mcyUdRBg/GQY8DXzNzObEiFznE0KPVm60itvmyuprpH7DjuM4uWlr6MP6J4CvAdMysTT+l2CIL5b0TeA5OvMDXENY8vQ0YdnT1wHM7E1JPyOEhQb4aWWCV1f4OuQSIOm7wBpm9oOq8iHAknF8YwVCZLC1CTGonwbGm9nDki4GJpnZ3yQtb2ZvxPN/ToiO9kdJk4C/m9k5CpmhfmVmI7u6hlXdONmJEmodvWlLy1KNb4eGS+zEvwVOM1DGHnJD1iH/7cj865C/elxh5y16D7nciOAS2RboIMzgq8z8ezaToOMBwmJ26DoRxycIGaUAzgV+1cM1Xs4qkp0oMTRRYBA3mo7j1KRJInW5QS4H0wkxqKvZj5CwY1MzWyhpBp2JH6oTRYyI+xPpOhFHLZvX3TUcx3EGnibx9Pos63JwC7BEdAsDoJCTeHXg1Wgod4ive6KrRBx3EZJPUFU+ug/XcBzH6T88uYTTX8Q1b3sCv5d0ODCPEEv1GOAkSdOAKYQEED3RVSKO7wHnR/nZSVvnAVf15hrDhqTLW5yKjkRP2C19S5XZI0o4or6wI81s9lQ6D2lpTSIXytcWlmhgJ+X91hAKbmjz4pO6nIaz1JJjS3dTuUHupGxGyA1yJ2U0yPPmPV+38Dmn/SD3G19ywomFfbrwHrLjOI5Tbpqkh+wG2Wk4Sw5doudKfSClN0eJerJt7e1J5C7sSCMXYNnhI5PIndu2IIncYQljnA9tT9P7TqXzOwvmJpGbso0bQi9iWReZgrey4ziO4/RAR+lGyWris6ybmC7iX0+QdHUX9c+QtF7cnxEDgTiO4xQbn2XtFJlu4l9/vqtzzOz/9ZN6juM4jSPR0FB/4wa5eekq/vWywI6S/g5sQIji9dW4tOpW4DAzm5IVJOmrwHcJ8a/vA75jZl1+A96e64miysz8RGO9qZgz0Ar0gVRzFlLJnVf0e6LgPd+8uMu6eakY21psDHwfWA/4MCFsZk0kfRT4MvAJMxtHiPq1X1f1Hcdx+p0Oy78VGO8hD07uN7MXAWI2k7GEzFC12BHYFJgcn75H0JkHdBHZ5BItraNJkVzCcRynJj7L2ik4XcW/hvfHue7uPhBhHLrbPJ7Z5BJDhq3i4WYcpxuSLeEbrN+8gvd88+Iu6+alq/jX2/RSzs3AXpI+EGUsJ8njWTuOUxisoyP3VmTcIDcpMV/xnsBOcdnTdOCXVKVNzCHnMeAo4AZJU4EbgTGN1tdxHKfPtLfn3wqMx7J2Gs6wJVYt3U2V6nuQatar4zQLC+a/WPeX5L2f7pf7C7zU0ecV9kvpY8iO4zhOuSm4KzovbpAdx3GcctMkk7rcIDsNx4dBOkmV1jElqfx55WsJb4vS4MueHMdxHKcAeA/ZaSSS2oFpwFCgDTgHONGsGI9+kmabWZq8fI7jOHVgbcWePZ0XN8jFYW4MTUlc83s+sDTwk4FUKiapKMSsxJTPwKneYCEarpekamd3/3ZStrYo/H3cJD1kX4dcQMzsVUIYyoMVaJX0G0mTJU2V9C0ASdtLulXS3yU9Iem8aEAr6RN/KelhSVMkbSLp+rgm+duxzkhJN0t6UNI0SbvH8rGSnpR0DvAosFpFN0krSLpH0mf6u10cx3FqYh35twLjPeSCYmbPSGoFPgDsDswys80kLQHcJemGWHVjYH3gP8BdhEQRlbjUz5vZOEknAhPjseEEI/tnYB6wp5m9E3Mf3ytpUjx3beAAM7sXwnpaSSsBk4CjzOzGrL4ey9pxnAGjSXrIbpDLwc7AhpIqsalHEwzmArpPFFExrtOAkWb2LvCupPmSlgHeA34haVugA1gFWCme81zFGEeGEsJo/reZ3VatYDaW9dBhqzTHt8NxnFJgbpCdlEj6MCHxw6uEIZxDzOz6qjrb032iiMqxjqp6HbHefsCKwKZmtlDSDEIPGoKxztJGSOe4C/A+g9wfFH4cyxkQynhfpIrgNmiXHDbJpC4fQy4gklYkuJRPjjGprwf+S9LQeHwdSY3wCY8GXo3GeAegu6QRBnwDWFfS4Q24tuM4TmPwfMhOgxkRXc6VZU/nAifEY2cQXNEPxklbrwF7NOCa5wFXSZoGTAGe6K6ymbVL2geYJOldMzulATo4juPUR8ENbV48uYTTcIYkGkMe2pru+bFsySXaO9K56LZZcb0kcu947bEkcseMXC6JXID/vPtGMtkpWGuZVZLIfXnOm0nkArw1++m6vyTvfGuX3F/gpf9yfWFHObyH7DiO45SbJukhu0F2HMdxys1gM8hxTexK2XPM7PkUSjnlpqWEbtpkJPqdSDnUdPur05PJTkHZ3MqQbijj37P+k0Ru0bG2Ygf8yEsugyzpEEIIx1cIS2Yg/NRsmEgvx3Ecx8lHc9jj3D3k7wEfMbPyPYo2EZkEFBX2AM43s616OO9W4DAzm9IAHWYA483s9XplOY7jNILBFhjkBWBWSkWcXCxKQJGhW2M8EJRx5v6gDcpfA2+L9KTKkz1o27hJDHLewCDPALdK+rGkQytbSsWcfEiaHf93mWiiqv6pMdnEdEnHZspnSDo2k2hi3Vi+vKQbYv0zGMTfecdxCkpHL7YekHSWpFclPZopO0bSzJis52FJn84c+7Gkp2NCnl0y5bvGsqclHZHnbeQ1yM8DNwLDgFGZzelfRmRuiMtrHN8Y+D6wHvBhQjKJao40s/GE8f/tJGXnAbxuZpsApwKHxbKfAHea2frA5cCHaikmaUI09FM6OqqjbjqO46TDOiz3loOJwK41yk80s3FxuwZA0nrAVwgJfnYFTonZ+VqBPwG7EX6P94l1uyWXy9rMjo0XHxlfz85zntNwarmss3SXaKLC3jEz0xBgDOFmmRqPXRb/PwB8Ie5vW9k3s39IeqvWhbPJJTZbedsk/qO57QtSiAXgnYVpHiKWHDK850p94KWEgRpSDTmsNnLFJHJHtY5IIhfg8XdeSCL3o0uv1nOlPvDUuzOTyH1n/pwkchuFtTXunjWz2yWNzVl9d+BCM5sPPCvpaWDzeOxpM3sGQNKFsW630XFy9ZAlbSDpIWA6MF3SA5LWz6mw0390l2gCSWsQer47mtmGwD/oTCaRPf995zqO4xSWBrqsu+FghXz0Z0laNpatQphjVeHFWNZVebfkdVmfBhxqZqub2erA/wCn5zzXKQ5LE7I4zYq5jXfLcc7twL4AknYDlu2+uuM4Tv9iHfm37PBa3CbkuMSpwJrAOOAl4Hcp3kfeXtBSZvbPygszu7VB2YacfsTMHomejicIT2935TjtWOACSdOBuwnzCRzHcYpDL3q+2eG1XpzzSmVf0unA1fHlTCA7/rBqLKOb8i7JlVwiTiB6kJCBCOCrhBy6e/Z4sjPoSJVcYr3las4nawgvzU03JpuCd+fPTSa7w9JEWVhqaJrx9PZE+gIsMWRoErmpxmRTjf+3trQmkQswd+5zda/ceH237XK/8RWuva3H68Ux5KvNbIP4eoyZvRT3fwBsYWZfiUO35xPGjVcGbgbWJqxGeQrYkWCIJwP7mlm3YfDy9pC/QegpVSb93BHLHMdxHGdAsbbGyZJ0AbA9sIKkFwkrTbaXNI6wTH8G8C0AM5su6WLCZK024L/NrD3KOZiQy74VOKsnYwyeftFJgPeQ0+M95E68h9zJYO0hv7pj/h7yB27uuYc8UHTbQ5b0ezP7vqSrqBHAx8w+n0wzx6nisTd9+LrMvLsg3UNEKuYsnN9zpQKRytIsbG9gFzQBCZ/J+pWeXNaVMePfplbEcRzHcfqEFbbT2yu6Nchm9kD8f1v/qDO4kDTbzEZmXh9ISNxwcANkTyRMSvh7vbIcx3GKzGDpIQMgaRrvd1nPAqYAP/csUOVH0hCzxkyNaI5n1cbgMzQ6KeN9UbZEG2XTt1FYR9E1zEfewCDXEqI67Re3qwjG+GVC3E+nwUgaK+mWGBnmZkkfiuUTJZ0k6W5Jz0jaK5ZL0skxmPlNwAcysmZIWiHuj4/pGCsB08+VdBdwbrzmHTHBxIOStor1xki6PcbQflTSNv3cHI7jOF3S0a7cW5HJu+xpp5h0oMI0SQ+a2SaSvppCsUHCiBhzusJywKS4/0fgbDM7W9I3gJMI+Y8hxKDeGlg31v87sCfwEUJs6pUI0/DPyqHDesDWZjZX0pLAp8xsnqS1gQuA8YRIXdeb2XExaPqS1UJitJsJAC2to2lp8bgxjuP0D4PKZQ20StrczO4HkLQZYW0VhLVXTt9YLFlEZQw5vtySzgQP5wK/zpx3hZl1AI/FEJgQkkBcENfA/UfSLTl1mGRmlemvQ4GT43q7dmCdWD4ZOEvS0Hjth6uFZKPfDE207KmMpHoe1/szazYMXwrZSbH7U++nbPo2imZxWec1yP+P8INcmYD0LvD/YvjMXybRzOmO7FqMPHdiG53DE9WLQbNpjn4AvAJsFOvPg0XZT7YFPgNMlHSCmZ3TF8Udx3EaTbM8Q+YaQzazyWb2MUJg7XFmtqGZ3W9m75nZxWlVHLTcTcizCWHc/o4e6t8OfDnm4hwD7JA5NgPYNO5/sRsZo4GXYu/7a0QviKTVgVfM7HTgDGCTrkU4juP0L9ah3FuRyTvLeiXgF8DKZrZbTLS8pZmdmVS7wc0hwF8l/RB4Dfh6D/UvBz5JGDt+Hrgnc+xY4ExJPwNu7UbGKcClkvYHrqOz97w98ENJC4HZwP7dKbLciFE9qNo3FiQMTpDKBZzK/TukNV3kpFQ6L+xoTyJ3WGu6TKGtyjvvtXekvJdT0NqSph0aRdEna+Ulb3KJa4G/Akea2UaShgAPxV6z4yzGSqPXTfKL7ga5EzfInbhBTk9Kg/zarCfr/vI987Gdc9+0H552Q2Gtd95WXiG6pjsA4nrVNN8ux3Ecx+kFZsq9FZm8j5bvSVqeuO5c0scJgUEc5328OffdZLJbEj2pK9H81FSJGliYRmwZmVuyeNMpaUnUo4eE93IDKLBqvSKvQT6UsN51zRhEYkVgr2RaOU4NUhljx3G6p8jGGKCj4D3fvOQyyGb2oKTtCIEnBDxJSMjsOI7jOANK0V3Reekp/WIrsDewCnBtTMb8WUIAiBHAxulVdBpJdUILx3GcstMss6x76iGfCawG3A/8UdJ/COtZf2xmV6RWzukfGplYAmCJIcMaJWoxWhJGp+pINLPYcs+b7B2p9IV07ZxS57IxtCXNLPlUM9lbEt3HjaLo64vz0pNBHg9saGYdkoYTkkms6dmdyo+k7YGfAW8RYmKvI+kKwgPYcOAPMRwmkmYDfwA+C8wFdjezVwZCb8dxnGqaZQy5p8eeBTFqE2Y2D3jGjXFTsQnwPTOrxKz+hpltSngQ+26cWQ+wFHCvmW1EiAh2ULUgSRMkTZE0ZWFbulnWjuM41QyWZU/rSpoa90WYZT017puZbZhUOyc195vZs5nX35W0Z9xfDVgbeANYAFwdyx8APlUtqDq5xPy2BQ1X1h2eTrOwsGSBQYptxponlnVPBvmj/aKFM1AsSiwRXdg7EUKizok5kyuJKBZaZ/imdvIvl3Mcx0lOs7ise/phPY0Q0/haM3uiH/RxBo7RwFvRGK8LfHygFXIcx8lDxyCZ1HUAsCtwjKR1gPsIBvomM3uv2zOdsnEd8G1JjxPWmd/bV0Gp4kKniisMYCVziKfMWVy2fMieGzo9Kdu4ETRLDzlXcgkASS3AFsBuwI6E2bY3mNmv06nnlJFhS6ya5FcsZVhAN8j9IzsFbpDTk7KNF8x/sW7hk1fZM/cHtdnMywtrvfOmX1w+zq6+J25HS1oB2CWlco7jOI7TE83SQ847OedeSQ8TUjBea4HXgfPSqeaUlVQBIDqsfAnGUv1MpOy3le2nLWXAkTJ+fikouqeg2NrlJ68PcB3CBK+vAf+S9Is4puw4juM4A0p7R0vurcjk0i72iG80s30IQSEOAO6XdJukLZNq6DSEGG0LSWMl7Zuj/lhJj6bXzHEcpz46erEVmdxjyMBXCT3kV4BDCOkYxwGXAGukUtBpOGOBfYHzU13gw6PHJJG70rDRSeQCvNWWZtFAWyI3+/z2xgdeqbAwkc4tpXOGp5vZv+SQ4T1X6gPtCdMkzlpQ3IU1VsJ7qxZ577Z7gKWBPczsM2Z2mZm1mdkU4M/p1HMScDywjaSHJf0g9oTvkPRg3LaqPkHS7ZLGZV7fKWmjftXacZwBo8jGGKDD8m9FpsceckzBeJWZ/azWcTP7VcO1cja7OzEAACAASURBVFJyBHCYmX0WQNKSwKfMbJ6ktYELCLGss5wJHAh8P84dGG5mj/Sjzo7jOF3SMVh6yGbWDryv1+Q0DUOB0yVNIww/rFejziXAZyUNBb4BTKyukE0uMWveayn1dRzHWQxDubcik3fZ08OSJhF+mBf5LszssiRaOf3JDwjzAjYiPKDNq64Qw2neCOwO7E3IiV1dZ1FyiWFLrGpvLXi54Yo+Yy81XGaFlLmWnUCqpTMtLQkDxhR8uU9/UfR2aC+4oc1LXoM8nJD155OZMgPcIJePd4FRmdejgRdjzusDgK4yp58BXAXcYWZvJdbRcRwnN0WfPZ2XvAb5DDO7K1sg6RMJ9HHSMxVol/QIwfV8CnCppP0J8axrzt4wswckvUMIDuM4jlMYBptB/iMhmX1PZU5BMbOR8f9CFvd0AGTzWh8e680ANqgUSlqZ4NK+oadrpYyclIoy6uwE2jua5efY6StFHxvOS7cGOQb92ApYUdKhmUNL07Vr02kyYu/5OOBQs4QLHR3HcfpAk2Rf7HGW9TBgJMFwj8ps7wB7pVXNKQpmdo6ZrWZmlwy0Lo7jONV0oNxbT0g6S9Kr2UiFkpaTdKOkf8X/y8ZySTpJ0tOSpkraJHPOAbH+v+L8nB7ptodsZrcBt0maaGbP5RHoOE65aZLOhjOIaHBsuYnAycA5mbIjgJvN7HhJR8TXhxPSEa8dty2AU4EtJC0H/IQQ08GAByRN6mlCbN4x5CUknUYIu7joHDOrHot0HMdxnH6lo4HLFs3sdkljq4p3B7aP+2cDtxIM8u7AORbWhd0raRlJY2LdG83sTYC4bHRXQuClLslrkC8hhMg8g4Y/jJQfSbMrk6YGsw6O4zgDQW+mZEqaAEzIFJ0W4yh0x0pmiwIhvAysFPdXAV7I1HsxlnVV3i15DXKbmZ2as67TJEgaYmZtA62H07/4fHOnbPRmpmk2iFFfMDOTlORrkjfEzVWSviNpTBzcXi76yJ0ukHSrpPFxfwVJM+L+DySdFfc/JulRSUtKWlPSdZIeiMke1o11Jko6VdK9kp6RtH2cdPC4pIlV1zxR0nRJN0taMZaNi+dOlXR5ZjJCV/odKGmSpFuAm6NuF0t6LJ5/X+U8x3GcItCh/FsfeSW6oon/X43lM4HVMvVWjWVdlXdLXoN8APBD4G7ggbhNyXmuszh/ANaStCchyMa3zGwO4YntEDPbFDiMELCjwrLAloQwl5OAE4H1gY9lsjAtBUwxs/WB2wgTCiBMTDjczDYEpmXKu2MTYC8z2w74DvCWma0H/B81wmbC4rGsOzqKnRnGcZzmoh3l3vrIJIIdJP6/MlO+f5xt/XFgVnRtXw/sLGnZ2AnaOZZ1Sy6XtZl5vuMGEUNUHkiImPUXM7tL0kjCeu9L1Dk5YYnMaVdFN8k04BUzmwYgaTphot3DBK/NRbH+34DLJI0Glomz5SFMRsizdGnRZARga8JDBGb2qKSpXbyvRW6gIcNWca+n4zj9RiPXIUu6gDApawVJLxI6MccDF0v6JvAcIaY/wDXAp4GngTnA1wHM7E1JPwMmx3o/zfymdkkugxwDQ7wPMzunVrkDQBudHojqbORrA7OBlePrFuBtMxtHbebH/x2Z/crrrj7Dnoxid/p5F9dxnNLQyGhFZrZPF4d2rFHXgP/uQs5ZwFm9uXZel/VmmW0b4Bjg87250CBkBp3u3UVBVGKv9SRgW2B5SXuZ2TvAs5K+FOtI0ka9vF5L5jr7Anea2SzgLUnbxPKvEdzZXepXg7uIT4OS1gM+1ku9HMdxkmK92IpMXpf1IdnXkpYBLkyiUTlZMro2KpwA/Jbg4pgA/CNz7ETgT2b2VHR//FPS7cB+wKmSjiLkKL4QeKQXOrwHbB7PfxX4ciw/APizpCWBZ4gulW70q+YU4GxJjwFPANOBWb3Qy3EcJynNEjpTfclzqZCo/lEz+0jjVXKKhKRWYKiZzZO0JnAT8BEzW9DVOeusOD7Jg+jCjoUpxAKw5JBqr31jmNP2vvTShefdhXMHWoVesfaoHpd39pl57V3e5nWxINFqwiFKk2LAEvYtp758T93m9PRVv5pbwYNe/FthzXfeMeSr6OzttwIfBS5OpZRTKJYk9OKHEqIqfqc7Y+w4jtPftBfWxPaOvIFBfpvZbwOeM7MXu6rsNA9m9i4hHqvjOE4haZYUdHnHkG+TtBJhUhfAv9Kp5JSdZ2e91HOlgpHKIdckD+6FZsq8p5LJ9vuiHDSLQc41y1rS3sD9wJcIM27vk+TpFx3HcZwBZ1DNsgaOBDYzs1cBYljGm4C/p1JssBNjpZ5nZl+Nr4cALwH3mdlnB1Q5x3GcAtEss6zzGuSWijGOvEH+NcxO33gP2EDSCDObC3yKHLFQswxUcoiiP4X2J94WTi38vmgsg8plDVwn6fqYeOBAwrrVa9Kp5USuAT4T9/chk0szJvi4IiaNuFfShrH8GEnnSroLOFfSWEm3xHo3S/pQrLdSTBbxSNy2iuX7x7qPSDo3ltWU4TiOUwTae7EVmW4NsqS1JH3CzH4I/AXYMG73UEf6Kic3FwJfkTSc0O73ZY4dCzwUk0b8LyGJRIX1gJ1iCLg/AmfHeucRooQR/99mZhsRkklMl7Q+cBTwyVj+vVi3KxmL8OQSjuMMFP2Q7alf6Mll/XvgxwBmdhlwGYS0gfHY55JqN8gxs6mSxhJ6x9Ueia2BL8Z6t0haXtLS8dik6OaGkCXqC3H/XODXcf+TwP7x/HZgVoxZfomZvR7L3+xBRlbXRcklRo9cM4lHbn5busAgSwwZmkRuXwLv5KEjkVyABe3p2jkFQ1vzjrwVh7aONH21IS1pAoOk0rdRNIvLuqc7eaVKZqEsZjYtGgonPZMI68C3B5bPeY53UR3HGTQ0y5h8T2PIy3RzbEQjFXG65Czg2BoPRncQ4l8jaXvg9Zikopq7ga/E/f3ieQA3A/8Vz2+NSS9uAb4kaflYvlwPMhzHcQacDiz3VmR66iFPkXSQmZ2eLZT0/4AH0qnlVIgR0d43ZkvIuHVWzE88h87k2dUcAvxV0g+B1+hMLvE94LSY4KId+C8zu0fSccBtktqBh4ADu5FRkzkLyhe/ec6CYrvk+pNMTu6Gksp9vyDhUEYqUpmFjo5mcd72jmb59nabXCJG57ocWECnAR4PDAP2NLOXk2volI6hw1Yp9mOo0y1lM8hlxCOAdbJwwcy61T5m9f1yN+kxz51X2GbqtodsZq8AW0naAdggFv/DzG5JrpnjOI7j5KDos6fzkjeW9T+BfybWxXEcx3F6TdHHhvNSvvUCTuFpjq/G4CWVa7mMnZiy3ctl07dRNMv7doPsOI7jlJpmmcrm8agLiqR2SQ9LelTSJZKW7KbuMZIOq1H+U0k7dXPeHpLWa5TOjuM4A0E7lnsrMt5DLi5zzWwcgKTzgG8DJ/RGgJkd3UOVPYCrgcf6pGEXpIoWlGr2L0B7wSMRVdOidM/SluhHK5XOHVa+/lGq5UlLDBmWRO68tgVJ5DaK8t0BtfEecjm4A1hL0uck3SfpIUk3xWVpiyHpIEnXShohaWIlb7Wk4yU9FhNE/DYmk/g88JvYE18znjs5Jpa4tNIrj3JOknS3pGc8F7bjOEWiWQKDuEEuODEP8m7ANOBO4ONmtjEh8cSPquoeDHwW2CMTy5oYeWtPYP2YIOLnZnY3ISznD81snJn9G7jMzDaLiSUeB76ZET+GED/7s8DxNfRclFyivX12o96+4zhOj1gvtiLjLuviMkLSw3H/DuBM4CPARZLGEIKzPJupvz/wAsEYV4cumgXMA86UdDXBTV2LDST9nBAydSRwfebYFWbWATxWq2eeTS4xdNgqVjYXcNlot/K1b0cix2LKH9myzQyfX3DXcircZe2kZm7suY4zs0PMbAEhDeLJZvYx4FvA8Ez9acBYYNVqQWbWBmwO/J3Qw72ui2tOBA6O8o+tkj8/s1+23ynHcZqYZpnU5Qa5XIwGZsb96tjVDxGM9CRJK2cPSBoJjDaza4AfABvFQ+8CozJVRwEvSRpKTFzhOI5TdJplDNld1uXiGOASSW8RMjOtkT1oZnfG5U//kPSpzKFRwJWShhN6t4fG8guB0yV9F9gL+D/gPkICiftY3FjnZtQSXa7QqosyxkJO9QPQmnCWddFz31aTsi1aW1LNDE90XyTSt6XgTrHy/TLUptvkEo7TF5YbtXaSm6qM96ob5PS4Qe6kjAb5lVlP1C38W2O/lLtB/zLjksI+XXgP2XEcxyk1zTKpyw2y03BmL5jbc6WCkSroSBnz05Yt/WJLol4hlNMrk4oit0WqYDb9jRtkx3Ecp1uKbIyBws+ezovPsi4pvYx1faCkkxt03Zpxsx3HcQaKjl5sRcYNcnmprFPeAFhAiHXtOI4z6Ogwy70VGXdZNwd3ABtKWg44C/gwMAeYYGZTsxUlfQ44ihDp6w1gPzN7RdIxwIfiuR8Cfm9mJ8VzjiSse36VEA3sgf54U/1JshzAJRuPdcrNYL3fiq1dfryHXHKqYl0fCzwU41X/L3BOjVO6i4e9LrALIarXTyQNlbQp8BVgHPBpYLNU78VxHKcveGAQZ6CpFev6PuCLAGZ2i6TlJS1ddd6qdB0P+x9mNh+YL+lVYCVgG+ByM5sDIGlSLWUkTQAmALS2LkNL61KNeI+O4zg90uhZ1pJmECIZtgNtZjY+eiAvIoQongHsbWZvKbgl/kDosMwBDjSzB/tyXTfI5WVRvuQKOd1VfwROMLNJkrYnRP+qkI1X3U4v7o/q5BIpXFwp8yGnouiuvlqUTeeU+npbBIr+3WtL0/Pdwcxez7w+ArjZzI6XdER8fTjBQ7l23LYATo3/e427rJuLO4gxqKOxfd3M3qmq01087FrcDuwR8yuPAj7XIF0dx3EagvXirw52B86O+2cDe2TKz7HAvcAy0QPZa9wgNxfHAJtKmkrIWVzL4B5DiIf9APB6jeOLEV0vFwGPANcCkxulrOM4TiPozbKnbO72uE2oIdKAGyQ9kDm+kpm9FPdfJgzpAaxCmOxa4cVY1mvcZV1SzGxkjbI36Xxqy5ZPJKRWxMyuBK6sUeeYqtcbZPaPA47Lq1vKyElloyVRnOUOK/qKyuagtaU1idyyfX5Fd1n3xlWfHV7rhq3NbKakDwA3SnqiSoZJarif3H85HcdxnFLT6FnWZjYz/n8VuJyw8uSViis6/n81Vp8JrJY5fVU6hwV7hRtkx3Ecp9S0Y7m3npC0VJwvg6SlgJ2BR4FJdA4DHkCnp3ESsL8CHwdmZVzbvcJd1k7DWXLIEknkplxDmCq9XNFdfbUo28ziVCkHAdpLlhwkVVsU/T5u8G/DSsDl8T0PAc43s+skTQYulvRN4Dlg71j/GsKSp6cJy56+3tcLu0F2HMdxSk0jHyLN7BlgoxrlbwA71ig34L8bcW13WdeJpCMlTZc0NSZ76NP6sxpyb5U0Pu5fI2mZLuqNk2SSdu3jdWZIWqFG+bcl7d8XmY7jOP1JsySX8B5yHUjaEvgssImZzY+GbVijr2Nmn+7m8D6EcJj7ANfV0FGAzHo3rdPM/twrJTOUMR+y4zjlpVnyIXsPuT7GEIJvzAcws9fN7D8Ako6WNDmmRzwtGsbqnu8KMUQbMfDGhZIel3Q5MKJykW56sQK+BBwIfErS8Fg+VtKTks4hTEZYTdKpcc3ddEnHVon6kaRpku6XtFaUsSjNoqSD4nt5RNKl3aV6dBzH6W+aJZa1G+T6uIFg7J6SdIqk7TLHTjazzeJ63hGEnnR3/Bcwx8w+CvwE2DTH9bcCnjWzfwO3Ap/JHFsbOMXM1jez54AjzWw8sCGwnaQNM3VnmdnHgJOB39e4zmXxvWwEPA58M4dujuM4/UK7deTeiowb5Dows9kEwzkBeI2QtOHAeHgHSfdJmgZ8Eli/B3HbAn+LcqcCU7uvDgQ39YVx/8L4usJzMYxbhb0lPQg8FHVZL3Psgsz/LWtcZwNJd8T3sl+t95KNftPR8V4O1R3HcRpDP4XOTI6PIdeJmbUTeqe3RoN1gKQLgVOA8Wb2Qsw1PDye0kbng9Bw+oikVkJmp91jvmIBy1fWzwHvZequARwGbBazk0ysurZ1sV9hIrCHmT0SHzi2r66QjX4zZNgqJVs4Uz5SLkLxz84pGx1N8ovjPeQ6kPQRSWtnisYR1qdVjN3rkkYCe2XqzKDTHZ0tvx3YN8rdgOBa7o4dgalmtpqZjTWz1YFLgT1r1F2aYKBnSVqJkJ0ky5cz/++pcf4o4CVJQ4nJKxzHcYqC9WIrMt5Dro+RwB/jkqQ2wsLwCWb2tqTTCROqXmbxhAy/JSwunwD8I1N+KvBXSY8Txmkf6OHa+xBCumW5lDAWfXu2MPZsHwKeIARBv6vqvGVjQor5LO72rvB/hFzLr8X/o2rUcRzHGRCKPlkrLypbVB6n+AwZtorfVI7j5KJtwcy6R2C2XGWH3L8598z8Z2HDjnkP2XEcxyk1RZ89nRc3yI7jOE6pKfrs6by4QXYaTmH9QQNAqqD8PtTUScqWaCl4UoVqUt0XRU8u0SzfBzfIjuM4TqlplkldvuypyWhEsgtJn5d0RAr9HMdxGo2Z5d6KjPeQm4hGJbsws0mEpNt9YuVRy/f11G4Z0ZomzzLAwo72JHJbleaZd177/CRyARZ0tCWRm2rizYjWhudzWUQqV+0Qpfnpfa8tTWKXBe1p7olG0V74PE758B5yc1Ez2UVMTvHrGgkkPhfDez4k6aYYNARJB0o6Oe5PlHSSpLslPSNpry6v7jiOMwB0mOXeiowb5Oaiu2QXtRJI3Al83Mw2JsTC/lEXcscAWxN638fXqpCNZT173puNeC+O4zi58FjWTuEws9mSNgW2AXYgJLuojAVnE0icGPdXjXXGEFzbz3Yh+oqYT/mxSi+6xrUXxbIePXJNe3t+4xNMvE26pBWpXMvDWtN8xWbNn5NELkBbIvdkS0uaNp7Tks59v/SwNJlG31o4O4ncJYYMTSK3taWFdxLec/VS9J5vXtwgNxm1kl1UDmWrxf9/BE4ws0mStgeO6UJs9hev2OsfHMdpOEU2xtA865DdZd1EdJPsAmonkBgNzIz7B+A4jlNCmmUM2XvIzUXNZBeEsd9aCSSOAS6R9BZwC7BGv2vsOI5TJ80SOtOTSwwCJM0g5GZ+vT+uN9STSyyijJG6UklONdaRMopU0XtU1aRqiZSt0IjkEh9eYePcKj7z+kOFHXbzHrLjOI5TaqxJeshukAcBZjZ2oHVwHMdJRbOEznSD7DScYYmWXijhBO9UszTL5vJMSdkSNZSRwXq/NcvQqxtkx3Ecp9Q0Sw/Zlz2VAEljJT1aVXaMpMMk3SppfB2yfyppp/q1dBzHGRjaOzpyb0XGe8iDAEmtMWDI+zCzoxt9vYWJIj2ldEsVPd9rM5AmfYfjeGAQp2BIaomJIH4eX8+W9DtJjwBbSjpa0mRJj0o6TdECxXP2ivszJB0r6cGYiGLdWL6UpLNiYoqHJO0+YG/UcRynimZJv+gGuTkYApwH/MvMjoplSwH3mdlGZnYncLKZbWZmGwAjCMFCavG6mW0CnAocFsuOBG4xs80JMbJ/I2mp7EnZ5BId7eliTjuO41TTgeXeioy7rMtBV3dRpfwvwMVmdlzmWDtwaeb1DpJ+BCwJLAdMB66qIfOy+P8B4Atxf2fg85IqBno48CHg8UWKZJJLDB22ihX9SbSasumbklTu+8E6A7gZKPqATrN8f90gl4M3gGWrypajMzvT3QSD+zszmxfL5lXGjSUNB04hROt6QdIxBKNai0oiiXY67w8BXzSzJ+t+J47jOA2m6JO18uIu6xJgZrOBlyR9EkDScsCuhHzGAGcC1wAXS6r1kFUxvq9LGgns1UsVrgcOyYw7b9zL8x3HcZLhLmunv9kf+JOkE+LrY83s3xX3opmdIGk0cK6k/bInmtnbkk4HHgVeBib38to/A34PTJXUQuiZdzUGzSErb9NL8fmYR7qn4LdsQRK5SytNkJRHFryWRC7A7PZ5PVfqA3Pb07TxTiPXTCIX4NWONG3xni1MIndeRxq5AEu3duVUG3iaxWXtySWchnPo2K8kuancIHfiBrkTN8idpDLIKY3x1c//o+4h6pFLrpH7N2f2nGcLOyTuPWTHcRyn1Pg6ZMdxHMcpAB1mubc8SNpV0pOSnpZ0RGL1F+E9ZKfh/OK8zyWR2/qRLZPIBWh/8bEkcucc+5skcod8IJ0L8ZfXr5xE7ufmz++5Uh/Y8Atp5AJomaXTCG5tTSK244VXk8j997Vp9G0UHQ1MvyipFfgT8CngRWCypElmluZHIoP3kB3HcZxS0+BIXZsDT5vZM2a2ALgQ6JfohN5DdhzHcUpNgycnrwK8kHn9IrBFIy/QJb15svDNtxQbMMHlllNnb4vyyi2rzo3QDZiS2SZUHd8LOCPz+muE0MPJdXOXtVMEJrjc5LLLJjelbJebXnZKnevCzE4zs/GZ7bSqKjOB1TKvV41lyXGD7DiO4zidTAbWlrSGpGHAV4BJ/XFhH0N2HMdxnIiZtUk6mBAyuBU4y8ym98e13SA7RaDaZTRY5aaUXTa5KWW73PSyU+qcHDO7hpAfoF/x0JmO4ziOUwB8DNlxHMdxCoAbZMdxHMcpAG6QHcdxHKcAuEF2HMdxnALgs6ydfkXSaGBXQng6CAvurzezt4sqO6FcEeLmZuXebw2YaZlQ512AParkXmlm19Ujt4ykagtv48GLz7J2+g1J+wM/AW6gM/LNqoSsKsea2TlFk51Q7s7AKcC/quSuBXzHzG7oi9zEOv8eWAc4hxDftyJ3f+BfZva9PsodAnwT2BOopJqaCVwJnGlmC/siN6XshG2RRG6Unaotkn1+gw03yE6/IelJYIvqXpqkZYH7zGydoslOKPdxYDczm1FVvgZwjZl9tC9yo4xUOj9V69zY03/KzNbuo9wLgLeBs1ncCB0ALGdmX+6L3JSyE7ZFErlRRqq2SPb5DTbcZe30JwJqPQF2xGNFlJ1K7hA6f7yyzASG1iEX0uk8T9JmZja5qnwzYF4dcjetYYReBO6V9FQdclPKTtUWqeRCurZI+fkNKtwgO/3JccCDkm6gM73Zhwiu1J8VVHYquWcREp9fmJG7GiFu7pl1yIV0Oh8InCppFJ0PE6sBs+KxvvKmpC8Bl5qFTPOSWoAvAW/VITel7ANJ0xap5EK6tkj5+Q0q3GXt9CvRbboL759sVPcXN5XshHLXAz5fJXeSmT1Wj9woO2U7fzAr18xerlPeWOBXwCfp/AFfBvgncISZPVtE2VF+Q9sipdxUbZG6jQcTbpAdx+kVkoZWT9SRtIKZvd4A2csDmNkb9crqD9mp2iJlG0dZSdo55ec3GPB1yE6/IWk1SRdKukPS/0oamjl2RRFlJ5S7tKRfSjpX0j5Vx07pq9zEOu8g6UXgJUk3xJ5RhT7PCo+yl5a0ppm9kf0xl7RhPXJTyU7VFinbOMpP0s4pP7/BhBtkpz85C7gVOAQYA9xWeaIGVi+o7FRy/0qYYHUpsI+kSyUtEY99vA65kE7nXwO7mNkKhGw+N0qq6NrnyWKS9gaeAC6VNF3SZpnDE/sqN7HsJG2RUG6ytkj5+Q06zMw33/plAx6uev1VYDqwJvBgEWX3o9wjgbuA5QvcFo9UvV4feJIQxKKutgDGxP3NCT/ue8bXD9XbFilkJ2yLJHITt0Wyz2+wbT7L2ulPhkoabmbzAMzsb5JeJiQCX6qgslPJXUJSi8VZqWZ2nKSZwO3AyDrkptR5oaQPWpxgZGbTJe0IXE0w9n2l1cxeijLvl7QDcLWk1ai9fKsIslO1RSq5kK4tUn5+gwp3WTv9yRnAFtkCM7uJsDzi0YLKTiX3KsKs1KzcicD/AAvqkAvpdD4CWKlK7ovAdsDxdch9V9IiYxN/3LcHdif0EOshlexUbZFKLqRri5Sf36DCZ1k7/UacvHSDpZlBm0R2QrlbAvdagi9gQp1PA64FbjKzdxsodyPgPTN7uqp8KLC3mZ1XNNkJ2yKJ3Cg7VVsk+/wGG26QnX5D0uGEtbFDgZsJPzyNSqaQRHZCuacSerFPAdcB11nj1rCm0nkLYDdgR0Iv/gaC3o/UKfd6Qhtca2ZP1COrv2QnbIskcqPsVG2R7PMbbLhBdvodhShEOxGyEW0OPE74Ql9vZq8UUXZCuesSfoB3AUYTgilcB9xlZu19lZtS5yh7eWBngu4bAg8SDMfFfZD1wajjroTECvdFPW8ys/fq1DOZ7Mw1GtYW3cj9GPBQPXJTtUV/tPFgwQ2yM+AoRKzaDdjZzHYpg+wUciWNAHaIcrc0s/GNkJuRn7KdNwV2NbPj6pTTQvAcVHqJcwnu9183QMdksquu05C2SCk3VVv0Vxs3K26QnQFD0kjCE/UzVn+e3mHAwopbNs703AR4zMyurUPuhmY2tR7dupH9IeAdM3s7BoAYDzxhZvVOcKvIH0+Ig9xOyBRUtztRtXP1XmFm19cru4vrrUBYl9vwcch6ZEsSYZKcAX8nTNDbneCF+Etl9nyD9LzFzD7Zc826rpGknVN+fs2IG2Sn35B0ipl9J+5vDZwP/JuQA/hbZnZNHbIfAbY3s7ck/ZCQm/UawuzUKWb24z7KbQeeAS4ELrAGxJmOco8AvgXMB34LHEZYh/xxQg7ZE+qQvR3wO0JKvE2j3GWBhcDXzOyFbk7vTm6yXL3dXPNoM/tpnTJ2Ieh5s2XSXUr6hpmd1UeZpwAfAIYB7wBLAJOAzwCv9LUtJFU//InQ5k8CmFk90cUWC70p6auEoYxpwBl9nWMgaU/gNjN7U9IHCPfzxsBjwP/EWeJOHqwAi6F9GxwbmcAGhLHSTeL+hwlGsx7Zj2b2pwAj4v4QYGodch8CNiBkUHoaeISwNGVsnfpOB0YQAoG8C6wYy5fKvpc6dK7IWwO4SQAYQgAABaZJREFUPO5/iuA+7Kvcp7ooF8Egp7hnnq/z/F8Q1nb/nvDwd0it+7EPcqfF/0OBN4BhDbrfJgF/A9YlRFUbS8jYtTqwep1tkf3+HUVYl34AcAlwYh1yH8vsXwT8gPAAdCBwY4r7olk3X4fsDBRLm9mDAGb2DPWviX9H0gZx/3VgeNwfUqdsM7NHzexIM1sLOIjQM7pT0t11yG03s7mEXuxcwo861phJMK1m9lrcf54YLtPMbqTT1dwX5lWFRaxQV65eSe90sb0LrNxnbQOfAz5pZt8neAt2k3Ri5dJ1yG0DsJAAYrKZLYiv2wh5p/uEmX2eEE71NGAjCz36hWb2nJk9V4e+sPj7/QLwBTM7G9iXMPmvr7Rm9tcysxPN7EUL6+pXrEPuoMMjdTn9ybrRJSdgrKRlLbiYWwiuv3r4NnBedF2/CkyRdDthduov6pC72I+2md0P3C/pf4Bt65D7oKTzCT3im4GzJV1HGIus1y0+RdKZwC2E9I63AkhaksV/PHvLgaTJ1fs2sJnVmPktqU/u9QxDopHEwlj954DTJF1Cfffcy5JGmtlsM9s1o+8HqTOwi5ldrpDL+meSvlmnnllGSNqY8IDaWnn4M7OFcWimr9wq6afAL+P+nvE97EC4N5yc+Biy029Iqk5s8JKZLYgTP7Y1s8vqlN9KWCayDuFh80XCEp8+TxiTtK+ZnV+PXl3IHcLik4I2J/RUngf+VE9POQZkOAhYj+BiP8vM2uMs7g/U29NS4/Mh/5yQB/r+Gsd+ZWaH1yH7auA3ZnZbjWv+r5k11EsoaSlgKTN7tUHyNiLMuP9zA2T9s6poXzN7KS6vut76OKs/3m9HAt+IRasC7xGi0R1hZs/3VefBhhtkp9+Q9Bc61yc2OgpRqSInJW6LZLK7uea6VsCgEPEhhDg8UH1sFTObmeCaSdoiodxWYAkzm9MAWaMJXgnPh9wH3CA7/UbiKESlipxUxrbo4ZrPm9mHEshNZugTGrhUbZFEbpRdqoeIZsUNsjMgNDoKUX/ILpvcRsuWdFJXh4ADzGzpPiva9TVTGqE+y07VFgPRxvG6pXuIaEZ8UpczIJjZG3HCziPAeYSZ0bt2f9bAyi6b3ASyv07IRjW/xrF9+iizJyO0TF/lJpadpC0Syk3WFik/v8GG95CdfkPS/Wa2edw/CPgOcAWhB3eVmfU5vVwq2WWTm1jnW4CjzOx9y70kPWtma/RR7rt0bYR+Z2Yr9EVuStkJ2yKJ3Hh+qrZI9vkNOrpaoOybb43egIcy+5NZPBjGtCLKLpvcxDovRwy40uD74hZgqy6OPVtE2QnbIoncxG2R7PMbbJu7rJ3+pEXSsoR1kLIYvMLM3pPUVlDZZZObUvYvgeskNXr29l6E4Cjvw+roESaWnaotUsmFdG2R8vMbVHikLqc/GQ08QAhtuZykMUAlyUQ9UZNSyi6b3JSyzwI2Aq6RdLOkw+M62Xr5JbBrDDjSaFLJTtUWqeRCurZI+fkNKnwM2RlwFCJIrWRmz5ZFdtnkNlp2g2dvl3oJWFlm35dxCd9gww2y4zh9QiFj1xbAo8TZ21Z/PuRSLAGrIbvhbZFYbikeIgYb7rJ2HCcXku7P7B8E/BEYCRwNfKoRhsJChKfKMq0jgD8Ba9crt9GyU7VFf7QxpGvnlJ/fYMANsuM4eRma2Z8A7GxmxxJ6RPv1VWhKI5RQdpK2SCi39A8RgwE3yI7j5KVF0rLRLbnY7G1iOsI+kswIJZSdqi1SyYUSPkQMNnzZk+M4eanM3hZgksZYyBZU7+ztMi4BS9UWqeRCOZfwDSrcIDuOkwszG9vFoQ5gzzpEpzRCSWSnaouEbQzlfIgYVPgsa8dxCklZloCVnTIu4WtW3CA7juM4TgHwSV2O4ziOUwDcIDuO4zhOAXCD7DiO4zgFwA2y4ziO4xSA/w8+89wJ+2s/qgAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"### Daily casualties Heat Map \n in order of daily casualties : Italy Spain US France UK Iran Netherlands "},{"metadata":{"trusted":true},"cell_type":"code","source":"print( len(dxy.columns) ,dxy['Austria'].tail(20).mean() ) # with () sns.heatmap(dxy)\ndrel=dxy.copy()\nfor r in drel.columns:\n #print (r, drel[r].tail(5).mean() )\n drel[r] = drel[r] / drel[r].tail(11).mean()\n \ndinc=df0.copy() #increase \nDays2 = dxy.tail(2).mean() \nDays4 = dxy.tail(5).head(2).mean() \nincreaserate=round(Days2/Days4,1)\n#display( increaserate )\n \nfor i in range(1,6):\n dinc[df0.columns[-i]] = (df0[df0.columns[-i]]+df0[df0.columns[-i-1]]) / (df0[df0.columns[-i-4]]+df0[df0.columns[-i-3]]) \n \nsns.heatmap(dinc.transpose().tail(2)) ","execution_count":12,"outputs":[{"output_type":"stream","text":"68 2.4166666666666665\n","name":"stdout"},{"output_type":"execute_result","execution_count":12,"data":{"text/plain":"<matplotlib.axes._subplots.AxesSubplot at 0x7f3d86f1e090>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 2 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXIAAAFkCAYAAAA9q7CPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO2debwcVbW2n5cwjzKJSBAQUMQBFBkUUJBZhQgyihoQRRQ/p3uvgnoZ9YrgdUC9aGQQEBkEgYjIDIoDQwJhEpAYUIIMQgARmZK83x97d1KnT/VQ53Sfc7rPevKrX1ftWrVr9Un1qr3XXntt2SYIgiDoXRYZbQWCIAiC4RGGPAiCoMcJQx4EQdDjhCEPgiDoccKQB0EQ9DhhyIMgCHqcMORBEAQNkLSzpHslzZR0WMn5d0i6RdJcSXvWnZss6b68TS6UbyLpjlzniZI0XD3DkAdBEJQgaQLwA2AXYENgP0kb1on9DTgA+FndtSsBRwKbA5sBR0paMZ8+CfgYsH7edh6urmHIgyAIytkMmGl7lu0XgXOASUUB2w/Yvh2YX3ftTsCVtufYfhK4EthZ0urA8rZvcJqNeQbwvuEqGoY8CIKgnDWABwvHs3PZcK5dI+8Ppc6GLDrcClrx0uOzIgdAgcVWefWC/Zcen9VQbqlXbj3g+Lm/X981nYLBtPv/1IuM5e+22CqvHra/uIrNWXzVdT8OHFwommJ7ynB1GGm6bsiDIAhGlPnz2hbNRruR4X4IWLNwPDGXtcNDwDZ1116XyycOsc6GhGslCIL+wvPb35pzM7C+pHUkLQ7sC0xtU4vLgR0lrZgHOXcELrf9MPBPSVvkaJUPAxcP7YsuJAx5EAT9xfz57W9NsD0X+BTJKN8NnGf7LknHSNoNQNKmkmYDewE/knRXvnYOcCzpZXAzcEwuA/gkcDIwE/gL8OvhfuVwrQRB0Fe4dUu7Ql2+FLi0ruyIwv7NDHSVFOVOBU4tKZ8GvKFjShKGPAiCfqNFS7sfCUMeBEF/0cEWea8QhjwIgv5i3kujrcGIE4Y8CIL+IlwrQRAEvU0nBzt7hTDkQRD0F9EiD4Ig6HGiRR4EQdDjxGBnEARBjxOulSAIgh4nXCtBEAQ9TrTIgyAIehu7/TS2/UIY8iAI+otwrQRBEPQ48+aOtgYjThjyIAj6iworBPULYciDIOgvwrUSBEHQ40TUShAEQY8zDlvksWZnEAT9RYfW7ASQtLOkeyXNlHRYyfklJJ2bz98oae1cvr+kGYVtvqSN87nrcp21cy8f7leOFnkQBH2FO5RrRdIE4AfADsBs4GZJU23/qSB2EPCk7fUk7Qt8A9jH9lnAWbmeNwIX2Z5RuG7/vHZnR4gWeRAE/UXnWuSbATNtz7L9InAOMKlOZhJwet4/H9hOkupk9svXdo0w5EEQ9Bee3/7WnDWABwvHs3NZqYztucDTwMp1MvsAZ9eVnZbdKv9dYvgrE4Y8CIL+okKLXNLBkqYVtoM7qYqkzYF/276zULy/7TcCW+ftQ8O9T/jIgyDoLypErdieAkxpcPohYM3C8cRcViYzW9KiwArAE4Xz+1LXGrf9UP58RtLPSC6cM9pWuoRokQdB0F/Mm9v+1pybgfUlrSNpcZJRnlonMxWYnPf3BK6xbQBJiwB7U/CPS1pU0ip5fzHgvcCdDJNokQdB0F90aEKQ7bmSPgVcDkwATrV9l6RjgGm2pwKnAGdKmgnMIRn7Gu8AHrQ9q1C2BHB5NuITgKuAHw9X1zDkQRD0Fx2c2Wn7UuDSurIjCvvPA3s1uPY6YIu6smeBTTqmYCYMeRAE/cU4nNkZhjwIgv4icq0EQRD0ONEiD4Ig6HFiYYkgCIIeJ1wrQRAEPU4Y8iAIgh4nzccZV4QhD4Kgv4gWeRAEQY8ThjwIgqDHiaiVIAiCHid85EEQBD1OuFaCIAh6nDDkQRAEPU5M0Q+CIOhtPHfeaKsw4oQhD4Kgv4gWeRAEQY8zP6JWgiAIepsY7AyCIOhxxqEhX2S0FQiCIOgodvtbCyTtLOleSTMlHVZyfglJ5+bzN0paO5evLek5STPy9sPCNZtIuiNfc6IkDfcrR4s8CIL+okNRK5ImAD8AdgBmAzdLmmr7TwWxg4Anba8naV/gG8A++dxfbG9cUvVJwMeAG0kLO+8M/Ho4ujZtkUtaVNLHJV0m6fa8/VrSIZIWG86NgyAIuoLnt781ZzNgpu1Ztl8EzgEm1clMAk7P++cD2zVrYUtaHVje9g22DZwBvG8oX7NIK9fKmcDGwFHAu/N2NLAR8NMmyh4saZqkaSefcfZwdQyCIGif+W57K9qqvB1cqGkN4MHC8excRpmM7bnA08DK+dw6km6V9BtJWxfkZ7eoszKtXCub2H5NXdls4AZJf250ke0pwBSAlx6fNf5igYIgGDVcYbCzaKs6zMPAq2w/IWkT4CJJr+/CfYDWLfI5kvaStEBO0iKS9gGe7JZSQRAEQ6ZCi7wFDwFrFo4n5rJSGUmLAisAT9h+wfYTALanA38BXpPlJ7aoszKtDPm+wJ7Ao5L+nFvhjwB75HNBEARji875yG8G1pe0jqTFSTZvap3MVGBy3t8TuMa2Ja2aB0uR9GpgfWCW7YeBf0raIvvSPwxcPNyv3NS1YvsB8gispJVz2RPDvWkQBEHX6FDUiu25kj4FXA5MAE61fZekY4BptqcCpwBnSpoJzGFhA/cdwDGSXgLmA4fYnpPPfRL4CbAUKVplWBEr0Eb4oaTlgVVt/6Wu/E22bx+uAkEQBB2lg1P0bV9KChEslh1R2H8e2KvkuguACxrUOQ14Q8eUpHX44d7APcAFku6StGnh9E86qUgQBEFH6JxrpWdo5SP/EilyZWPgQFIXYvd8btizkYIgCDpO5wY7e4ZWrpUJ2TmP7ZskbQtcImlNoH/+CkEQ9A1Vwg/7hVaG/BlJ69b847YflrQNcBHQtZjIIAiCITM3DHk9n6DOhWL7GUk7A3t3TasgCIKh0ke+73Zp5SM/HthV0gbFQtsv2T6re2oFQRAMkXHoI29lyCeTZnAeJekWSSdJmiRpmRHQLQiCoDKe77a3fqHVhKBHSGGGP8nT9DcHdgG+IOk54Arbx3ddyyAIgnbpIwPdLm3nI7c9H/hj3o6QtAqwU7cUC4IgGBIRtTIQSavYfrxw/EFSjt47gJPDTx4EwZhjHEattPKRX1HbkfQV4EPAdGBH4Ftd1CsIgmBI2G576xdauVaKoYd7AFvbflbSz4BbuqdWEATBEAkf+SCWkvRmUst9gu1nIYUfSupMirEgCIJOEoZ8EA+z0IUyR9LqeXbnysDc7qoWBEFQnX4KK2yXVuGH2zY49RQp324QBMHYIgx5e9ieJ+lVpBS3QRAEYwbPHX+GvFXUSjOuaC0SBEEwwozDKfqt4shPbHQKeFnn1QmCIBgm4y+MvGWL/EDgTlLseHGbBrzYXdWCIAiq08lcK5J2lnSvpJmSDis5v4Skc/P5GyWtnct3kDRd0h35812Fa67Ldc7I28uH+51b+chvBu60/YeSL3DUcG8eBEHQcTrUIpc0AfgBsAMwG7hZ0lTbfyqIHQQ8aXs9SfsC3yAtWP84sKvtv0t6A2kB5zUK1+2f1+7sCK0M+Z7Ac2UnbK/TKSWCIAg6RQcHOzcDZtqeBSDpHGASUDTkk4Cj8v75wPclyfatBZm7SHNylrD9QqeUK9LKtfJ1YGdJy3Xj5kEQBJ2mg2svrwE8WDiezcBW9QAZ23OBp4GV62TeD9xSZ8RPy26V/5Y07PWPWxnyU4GNgEslXS3pi5I2Gu5NgyAIusb89jdJB0uaVtgO7qQqkl5Pcrd8vFC8v+03Alvn7UPDvU+rCUE3AjeSFpZYmZQs6z8kvRG4FbjM9nnDVSIIgqBTVFnpzfYUYEqD0w8BaxaOJ+ayMpnZkhYFVgCeAJA0EbgQ+HBt3eN8z4fy5zM5b9VmwBntaz2YtuPIbT9B6kLcBhxGGgRYfzg3D4Ig6DgVWuQtuBlYX9I6khYH9gWm1slMJa2kBmlM8RrblvQy4FfAYbZ/XxOWtGheywFJiwHvJUUGDoumhlzSTYX9jwHfA5YFjgB2sP214SoQBEHQSTrlI88+70+RIk7uBs6zfZekYyTtlsVOAVaWNBP4PKmRS75uPdIiPMUwwyWAyyXdDswgteh/PNzv3CpqZbHC/sHAjrb/IembwA3AccNVIAiCoJPM72A6P9uXApfWlR1R2H8e2Kvkuq8CX21Q7Sad0zDRypAvImlFUstdtv8BkHOSR/bDIAjGHh52EEjP0cqQr0CaySnAhTS2yzJw0YkgCIIxQZXBzn6hVdTK2g1OzQd277g2QRAEw8Tzx18bc6hpbP8N3N9hXYIgCIZNtMiDIAh6nPnzokUeBEHQ04RrJQiCoMdx/6wX0TZhyIMg6CuiRR4EQdDjhCEPgiDoccK1EgRB0OPMnzecNeV7kzDkQRD0FRFHHgRB0OPMj1wrQRAEvY3DkAdBEPQ2EbUSBEHQ40TUShAEQY8zL6JWgiAIepvx6CMff6+uIAj6Grv9rRWSdpZ0r6SZkg4rOb+EpHPz+RslrV04d3guv1fSTu3WORTCkAdB0FfMt9remiFpAvADYBdgQ2A/SRvWiR0EPGl7PeDbwDfytRsC+wKvB3YG/k/ShDbrrEwY8iAI+gpbbW8t2AyYaXuW7ReBc4BJdTKTgNPz/vnAdpKUy8+x/YLt+4GZub526qxM+MgLzH/ykQHHi6z4ilHSBJ77+/Us9cqtR+3+QfvctvHnBxxvNONbo6RJa3pJ16Eyr3Phh2sADxaOZwObN5KxPVfS08DKufyGumvXyPut6qxMGPIxzNwXH1qw/9Ljs0ZRkyDoHaoMdko6GDi4UDTF9pSOK9VlwpAHQdBXVJmin412I8P9ELBm4XhiLiuTmS1pUWAF4IkW17aqszLhIw+CoK9wha0FNwPrS1pH0uKkwcupdTJTgcl5f0/gGtvO5fvmqJZ1gPWBm9qsszLRIg+CoK/oVNKs7PP+FHA5MAE41fZdko4BptmeCpwCnClpJjCHZJjJcucBfwLmAofangdQVudwdQ1DHgRBX9HJCUG2LwUurSs7orD/PLBXg2u/BnytnTqHSxjyIAj6inmMv5mdYciDIOgr5kfSrCAIgt5mfrTIgyAIehuHIQ+CIOhtxuGSnWHIgyDoL6JFHgRB0OPMHW0FRoEw5EEQ9BXRIg+CIOhxxuHay2HIgyDoLyL8MAiCoMcZh/OBwpAHQdBfzFW0yIMgCHqaaJEHQRD0ODEhKAiCoMeJqJUgCIIeJ6JWgiAIepzwkQdBEPQ4c8dfgzwWXw6CoL/o4OLLTZG0kqQrJd2XP1dsIDc5y9wnaXIuW1rSryTdI+kuSccV5A+Q9A9JM/L20Va6hCEPgqCvmK/2t2FyGHC17fWBq/PxACStBBwJbA5sBhxZMPjftL0B8GZgS0m7FC491/bGeTu5lSJhyIMg6CvmV9iGySTg9Lx/OvC+EpmdgCttz7H9JHAlsLPtf9u+FsD2i8AtwMShKhKGPAiCvmIEDflqth/O+48Aq5XIrAE8WDiencsWIOllwK6kVn2N90u6XdL5ktZspUgMdgZB0Fe4gstE0sHAwYWiKbanFM5fBbyi5NIvD7inbUmV3e6SFgXOBk60PSsX/xI42/YLkj5Oau2/q1k9YciDIOgrqiwskY32lCbnt290TtKjkla3/bCk1YHHSsQeArYpHE8EriscTwHus/2dwj2fKJw/GTi+2XeAcK0EQdBnjFTUCjAVmJz3JwMXl8hcDuwoacU8yLljLkPSV4EVgM8WL8gvhRq7AXe3UiRa5EEQ9BUjOEX/OOA8SQcBfwX2BpD0VuAQ2x+1PUfSscDN+ZpjctlEknvmHuAWpYyN388RKp+WtBupczEHOKCVImHIgyDoK0YqaVZ2gWxXUj4N+Gjh+FTg1DqZ2VCeS8D24cDhVXQJQx4EQV8R2Q+DIAh6nHnjcIp+GPIgCPqKaJEHQRD0OJH9MAiCoMeZPw5NeRjyIAj6inCtBEEQ9Djjrz0ehjwIgj5jPC4sEYY8CIK+InzkQRAEPc74M+NhyIMg6DNisDMIgqDHCddKEARBjzNvtBUYBcKQB0HQV0SLPAiCoMcZf2Y8DHkQBH1GDHYGQRD0OB6HbfIw5EEQ9BXjsUUeiy8HQdBXzMNtb8NB0kqSrpR0X/5csYHc5Cxzn6TJhfLrJN0raUbeXp7Ll5B0rqSZkm6UtHYrXcKQB0HQV8zHbW/D5DDgatvrA1fn4wFIWgk4Etgc2Aw4ss7g729747w9lssOAp60vR7wbeAbrRQJQx4EQV8xv8I2TCYBp+f904H3lcjsBFxpe47tJ4ErgZ0r1Hs+sJ2kpqnAmvrIJS1KejvsDrwyFz8EXAycYvulFgoFQRCMKCM42Lma7Yfz/iPAaiUyawAPFo5n57Iap0maB1wAfNW2i9fYnivpaWBl4PFGirRqkZ8JbAwcBbw7b0cDGwE/bXSRpIMlTZM07eQzzm5xiyAIgs5RpUVetFV5O7hYl6SrJN1Zsk0qymUDXPUNsr/tNwJb5+1D1b9tolXUyia2X1NXNhu4QdKfG11kewowBeClx2eNv1igIAhGjSot8qKtanB++0bnJD0qaXXbD0taHXisROwhYJvC8UTgulz3Q/nzGUk/I/nQz8jXrAnMzl6RFYAnmn2PVi3yOZL2krRATtIikvYBnmxxbRAEwYgz1257GyZTgVoUymSSy7mey4EdJa2YBzl3BC6XtKikVQAkLQa8F7izpN49gWtyi78hrVrk+5JGTP9PUs1wvwy4Np8LgiAYU4ygC+A44DxJBwF/BfYGkPRW4BDbH7U9R9KxwM35mmNy2TIkg74YMAG4CvhxljkFOFPSTGAObdjapobc9gPAPlm5lXNZ0yZ+EATBaDJSSbOyLdyupHwa8NHC8anAqXUyzwKbNKj3eWCvKrq0DD+UtLykdW0/UTTikt5U5UZBEAQjgSv86xeaGnJJewP3ABdIukvSpoXTP+mmYkEQBENhBOPIxwytWuRfIkWubAwcSPLb7J7PjcO1qoMgGOvMY37bW7/QarBzQi3g3fZNkrYFLpG0JuMz7W8QBGOc/jHP7dOqRf6MpHVrB9mob0OaQvr6LuoVBEEwJGy3vfULrVrkn6DOhZKD13cmh9oEQRCMJcbjUm+tWuTHA7tK2qBYaPsl22d1T60gCIKhEYOdg5lMmsF5lKRbJJ0kaVIOZg+CIBhzjMfww1YTgh4hhRn+JE/T3xzYBfiCpOeAK2wf33UtgyAI2mSe+6mt3R5tL/Vmez7wx7wdkfME7NQtxYIgCIbC+DPjrScE7Z5XuEDSyyWdIekOSecCS4afPAiCscZ4dK208pF/zfacvP894FaSa+XXwGndVCwIgmAojOBSb2OGVoZ8QmF/Pdvftj3b9k+AVbunVhAEwdAYj3HkrQz5dZKOkbRU3t8dIM/wfLrr2gVBEFRkPLbIWw12fgr4MnBvPv6cpGeBXzKMZYmCIAi6RUSt1JEXVz6KFEe+ArBo5CMPgmAs0z/t7PapEn44wJUiaQPb93RepSAIgqHTTy6Tdmm5sEQTruiYFkEQBB0ifOR1SDqx0SnS2p1BEARjipGKRslzbM4F1gYeAPa2PWhRekmTga/kw6/aPl3ScsD1BbGJwE9tf1bSAcAJwEP53Pdtn9xMl1aulQOB/wBeKDm3X4trgyAIRpwRXDDiMOBq28dJOiwff7EokI39kcBbSe776ZKmZoO/cUFuOvCLwqXn2v5Uu4q0MuQ3A3fa/kP9CUlHtXuTIAiCkWIE48MnkdZnADgduI46Q05KY3JlbWKlpCuBnYGzawKSXgO8nIEt9Eq08pHvSZrNOQjb6wz1pkEQBN1iBH3kq9VWUAMeAVYrkVkDeLBwPDuXFdmX1AIvKvR+SbdLOj+vyNaUVob868DO2Z8TBEEw5qkys1PSwZKmFbaDi3VJukrSnSXbpLp7mqFHPu5LoYVOmqeztu03AVeSWvtNaeVaOZWUW+Xzkl4kRapcZvu2oekbBEHQXaq0tG1PAaY0Ob99o3OSHpW0uu2HJa0OPFYi9hAL3S+QBjWvK9SxEWl+zvTCPYtzdU4mLfDTlKYtcts32j7K9takpd3+BvyHpFslnSoplnsLgmBMMYLZD6eSFt8hf15cInM5sKOkFSWtCOyYy2rsx8DWOPmlUGM34O5WilSZEPSEpAeB24CzgMdJTvsgCIIxwwhO0T8OOE/SQcBfyesYS3orcIjtj9qeI+lYUuAIwDGFjLLka95dV++nJe0GzAXmAAe0UqRVHPlNtjfL+x8DPglcBBwB/NL211rdIAiCYCSZP0JRK9kFsl1J+TTgo4XjU0lu6rI6Xl1SdjhweBVdWg12LlbYPxjY0fbRpO7B/lVuFARBMBKMx4UlWrlWFsl+nUUA2f4HgO1nJc3tunZBEAQVGakW+ViilSFfAZhOmpLvwgjtsrksCIJgTNFPLe12aZXGdu0Gp+YDu3dcmyAIgmESLfI2sf1v4P4O6xIEQTBs5nveaKsw4gzJkAdBEIxV+ik9bbuEIQ+CoK/op0WV2yUMeRAEfUW0yIMgCHqcaJEHQRD0OCM4RX/MEIY8CIK+IlrkQRAEPU74yIMgCHqcaJEHQRD0ODGzMwiCoMeJFnkQBEGPE1ErQRAEPU64VoIgCHqcSGMbBEHQ44zHFnmrpd6CIAh6Ctttb8NB0kqSrpR0X/5csYHcZZKeknRJXfk6km6UNFPSuZIWz+VL5OOZ+fzarXQJQx4EQV8x3/Pb3obJYcDVttcHrs7HZZwAfKik/BvAt22vBzwJHJTLDwKezOXfznJNCUMeBEFfMVItcmAScHrePx14XwN9rgaeKZZJEvAu4PyS64v1ng9sl+UbEoY8CIK+whW2YbKa7Yfz/iPAahWuXRl4ynZtEfvZwBp5fw3gQYB8/uks35gqb6/hbMDBvSo/lnQZa/JjSZf4rv37Xbu1AQcD0wrbwXXnrwLuLNkmZUNclH2yyX22AS4pHK8CzCwcrwncmffvBCYWzv0FWKXp9xjBP9i0XpUfS7qMNfmxpEt81/79rmNxA+4FVs/7qwP3NpGtN+QCHgcWzcdvAy7P+5cDb8v7i2Y5NdMlXCtBEARDYyowOe9PBi5u90InK30tsGfJ9cV69wSuyfINCUMeBEEwNI4DdpB0H7B9PkbSWyWdXBOSdD3wc9Kg5WxJO+VTXwQ+L2kmyQd+Si4/BVg5l3+extEwCxjJCUFTelh+LOky1uTHki7dlh9LunRbfizpMiax/QSwXUn5NOCjheOtG1w/C9ispPx5YK8quqhFiz0IgiAY44RrJQiCoMcJQx4EQWUkTRhtHYKFhCHvASQdKullheMVJX1yNHXqJpLeWFF+nXbKgo5yn6QTJG3YjrCkCZJ2k/RpSZ+vbd1WcrwwZnzkkpYk5Rh4PbBkrdz2R1pc9yZgbQoDt7Z/USezUrM6bM9pUv/L6/T5Wwt92pKXtCpp1HrDOvl3lcjOsL1xXdmttt9cIlv5u0p6DXASaabaG/LfdDfbXx2u7ln+xBY6fbpO/npgCeAnwFm2n252vaRbbL+lrmy67U2aXLMasGk+vMn2Yw3ktgRm2H5W0geBtwDftf3XZjq1S9X6q/xOJK0PfJ3B/0+v7oDeywH7AgeSGoSnAufY/mcD+UuB54E7gAVJTmwfPVxdgi62yCXtkbOCPS3pn5KekVT6n5w5E3gFsBPwG2AidfkJSu5xKukBej+wa97eWyI6nTRra3rJNq1B3bvlsKL7sz4PAL9uoksleeAs4G5gHeDoLH9zA9kJxVwLuVu7eAPZ4nf9B/Bn4L68P73BNT8GDgdeArB9O+lH2gndIRmRt2Q97gM2zvrX/g8GkEf59yfNdpsu6WeSdqiXk7SBpPcDK+TnrbYdQMFwlVy3N3ATKTJgb+BGSXs2ED8J+LekjYD/IM2yO6NJ3VWf+0r1U+13clqufy6wba73p53Q3fYztn9s++2kl/qRwMOSTpe0XsklE23vYftI20fXtibfM6hCF2c9zQReV0H+1vx5e/5cDLihxTV/6qL+t5FiO2t6bQuc0kH56cXvm/dvbiB7AnAeKdRpu7z/vy30/zHw7sLxLsCPGsjeXPw/yPszOqF7PncDeQZbu/+3WW4C6SX9EOnFcQ+wR+H8JJKxeiJ/1rYTgbe3+L96eeF4VeC2BrK35M8jgIOKZR167qvW3/bvpPD/dEd92XB1z/83uwEXAreS4p1XI01g+XOJ/DeAHdv9u8RWbetmHPmjtu+uIP9S/nxK0htISWhe3uKaP0ra0PafmglJ2sD2PZLeUnbe9i1l+th+QtIikhaxfa2k7zTTv6p8/nxY0nuAvwON3CJfBD4OfCIfXwmc3EC2xha2P1Y7sP1rScc3kH1c0rrkPEK5dfpwA9mqugOsCCwP1Nw6y+ayUrJr50DgPaTvuqvtWyS9Evgj8Iv8nS4GLpb0Ntt/bHL/ehbxQFfKEzTunT4j6XDgg8A7JC1CMp6NqPrc1+r/ELB1G/VX+Z28kOu7T9KnSC/EZTuk+32kmYkn2P5Dofx8Se8okb8BuDDr8xJpirptL9/m/YImdNOQT5N0LnAR8EKt0HX+6wJTlBKz/zdpiuqypFZKM84gGfNH8j1qD8eb6uQ+T0qO878ldZiUTrKepyQtC/wWOEvSY8CzTXSpKv9VSSuQutPfIxm6z5UJ2p5P6iKf1KS+ev4u6Sss7ErvTzK4ZRxKmqCxgaSHSO6hD3ZC98xxwK2SriX9H70DOKqJ/PdIs9u+ZPu5WqHt2ncCQNIXbB8PfEDSfvWVuM73XuAySZcDZ+fjfWjsBtsH+ACptfyIpFeRekiNqPrc1+r/SJv1V/mdfAZYGvg0cCzpOZ/cQLaq7m+y/a+yShr83b9Fyidyh3MTPegcXRvslHRaSbHdYvCy4j1qU1jrB1CGPRAlaRnS4IxIRnAF0sDbE52Qb1OH82zvLekOSrJulrywiteuRPJb1lpHvwWOdvOB3WVIrdWmYxNDQdIrgM3z4Y22H+lAnbva/qWkUuNk+/Sy8nztHsBW+fB62xcOV59cb+XnXtJawPq2r2YOByIAACAASURBVJK0NDChG/8Hraii+xAGyH8LbJMbJUGHGfWoFUkftP1TNQhFsv2tJtf+0fbbKtzrL6Su4A8LZZfYLhsg7Qq1VqSk71FunD9dkF3d9sP5hz6ITryw8n3+Bzje9lP5eEXgP2x/pU6ubd1L7rEisD4Doyd+WydT+sKicU9rSCiFJj7sNBUaSUuRDNIDBZlnGugCSZmOuAQkfYzUW1zJ9rpKkSY/tL1dnVzbvxNJ37H9WUm/LPsOtnfrgN6/Af6LNO7y5lx2p+03NJD/CfBqUs+n2Npv+PsO2qdrrhW1Hya1TP5cbgi3uVXSz4Bf0l439iVgW0mbAx+3/SILk7nX9K70Ax7CD77mgyyNlqm79uH8Wdlg5xbTfzI4NLPMjbSL7S8VZJ6U9G7gK3Vybetep8tHSd38icAMYAuSr7telyG9UFUxHJKUwOjtheN5uawWjojt5XLdx5LGC85kYW9r9Sa6VA2jPZSUb+PGLHefUghrPVV+J2fmz2+2ITvUF/TStm/SwIVr5pbI1bg/b4vTOOIqGCLd9JGfSYoy2Ak4hvQDGDSQYvtHSuF0/7T97Yr3WIpkwHcsVkkeDCvh37b3kfQF4HpJe1H34Fb9AQ9B/pf58/R83fLpcHBXuuQloXzczkDRz4EfkgZF5zWRgxTeuITtF/J9lyLFcTfVvQKfIRnJG2xvK2kD4H9K6h9qD+Ms4FzS4OghJD/wP5rIL5pf4rX7vqi88G0Ju9neqHB8kqTbaOyXbuu5L/BCvj8Akhal3Jj+KH+2DNmzPT1//iZ/rw1ynfcWv3eBobygKw2Q1/TO40g08q8HQ8RdCoehYjghaVJGV0N0GBhetz3pB/dYA9lB4WhlZcOQfyvJt/8A8FdSSNwmHfyuDcPMSmS/CPyO1JI8KO9/oUTul6QBttKtSf218MYZwBJ5/64m8luQ4tL/BbxIehH9s9V3pf1wyCtJBrp2PIm0iG6Z7B9IxngCKbJlf+APrZ6xCs/98cCX8rO4Aymc72tN5FfN8lNIcyhOBU5tIPse0pJh15Fizv9G6n114vl6NWn1nH+TomF+B6zVRP4NpDDFv+ZtOvD6Tj3v433rZou8ajjh7yV9n9SyWhDt4fLQQGDB4ExZ66VRN/aIgsxVknYEDmgg+6yk/YFz8j32o3kUSlX5U4FP2r4+f5etSDHQpX5gpdDJrXLdv7N9a5O6AX6pNI3/Qga6nQYNdtr+Rm5lbp+LjrV9eUmdta76HqRJKbWImP2AR5voMlspxcBFwJWSniT9mBvxfdKEpJ+TXngfBl7TRL5qOOQhpMii75N6Nw/me5TxAeC7eTPw+1zWSpd2n/vDSC/PO0ghppfSPLT0YuB6khFt1dP6X2Bb2zMBcgv6VzSI0KnoolrR9vbFAXJJ76Xx/+sU4PO2r8332oY01+HtDeSDKnTrDUHKx7siKWpiFvAYyS/dSP7aku2aFvd4f2Hbn7Ti9IktrlmR5JN8R21rILc26UfzOKmbfhGwdpN6q8rfWlJWOhGE9AK6gzSL8mhS6/0rLb7n/SXbrCbyawHb5/2lgeWayA5apqusrMG17yRNJFm8Vf0MbGEP+nsVzr2XFCX0hvzcTKfQ4m5y3bLAsqP53A+h/oYTtUpkb647Vn1Z3fkrSC+Vu/P/06nANxrI3gK8oXC8LykaqVHdlXqssVXbuhl+uI7t+1uVFc692inRetOyFvdchNRaLX3LNxp0c+NBsY6jhZOSPkzy8Z9NauntAzxve1BUgqR7gY08MMpihu3XdkintiInCvJ3A++p/d/kKJBLbb+uRHYCyY2yQQV9fkvqHZxMatE+DBzggb7qovyStb9Ni3orR0jlVurHGDxoXNrrG8JzvyUppn6tXH9t/KM0H4qkr5JcO5eWnc8ye+TdHXK955Gesb2Av9kuTbimnJ9G0u3OEUKSbra9aYnsq0kNpw8AW5Oe5/e6QV4cSReSjH9tIPaDJFfi7o2+R9A+3XStXEDKr1HkfKBRIqPzS+R/3kS+jPVp3o1ta9ANqkcfVJCvn5R0ZGG/0Vv177nOmrFaguSXbEru2td3k8vyeLQbOVHjc8B1kmaRDM9aJLfAIGzPk3SvpFe5RcKxAh8i+aM/le+1Jsmd04g7JT1KcjlcT3qZlxmUoURIVXFlQPXn/hTSd5zeZv2fAb4k6QUaz5DctbD/KKl1Damn2DAHDRVcVLZnSdqX1PP8G2n6/XNlspmPkHqTtUCE63NZ0AE6bsizcXw9OZFR4dTylDxEVeXrrq1FddSiOR4h+fga8bzt5yWRozTukdSoVVs1+qDdKJ1tm32nIoVwsKeBuyRdmY93ICV9anbtkaSVuzck+V13IQ1IlRnytiInCt/hstxqr7Wy73GOeGnAiln/mxg4/tEonvl9tr9LenHVoh0+Q/JTl+mzntKMyK1JA3w/kPSU6zJGuknkR5OolaVtN3umatcP9Tl+2naz5GoDcI6SaiFzYO4JfdrVIsFaztjV4Fj/lUgDwTdKwg1i/W0/SZphGnSBbrTIX0vyWb6MgS2DZ0hd1OHKL6Cdh7qOKoNu69neS9Ik26fnePXrm9RdST7r8WEGd9mLD3stHGw6adCyxnVN9KixJ7ARybd8oFLa1kaZ734j6UvAUkpZBj9JilBpxiYF3TfKP+JGWfv+uw19i0xmsNE+oKQMAEkTgS1Jhnwj4C7SS6sUSdeRXDUP5ONNSW6cMtfNJZLe3cyVkRnqc3ytpBNILdXioHSzQf6Wk6tyT2g/oG1DbvuSvPs0KelbGZVi/dVgUlLhnsOenBR0d4p+pURGVeQ1tCRY9XW8kzRAdplLYmsl3WR7s+yv/SSptX9TE99lVfk/kBIJ1acXqBqjXUpBn+mkH+UzwN1lvuo8tnAQKR5fwOXAyW7wcEg6E1iXNM5QcwfYTWZ2tqnzfiSf61YMfAkuB8xv4rOfTwpX/B+nRFqt7rMT6aVwImlC2C7AR8uem9zrW4ZkZFsmexrCc39tSbEbjdtUGeeR9G1S+GNbkWDZ7/1dUk6U+aRJW58rGbtqe9wj/86gQaST7WY5eoJ26cYIav79H0/qmi0GXE3yz32wE/LAlPzZdqQLqft3TwX9a9EH72Rh9MEhHZRvmKq0RPb+XOeArcU1/0dqHR5CylR3K3BaE/mlgNe2qc/d5EZAC7lngH+WbM9QEhdO8rVvQzIg7yxsb6GQBrfkuo1Ifv5z87VnkFPCNrlmG5Jhfhh4xWg990Oo/w5SS3xGPt4A+EUD2UqRYKSGxYdIvaxFSQOSpZEopLGDV1XQe8iRTrG18fftWsULH7TdSQM6K9B8gkwl+SHqVOnh6+ofPvkeP0aa/blSbWsgu3JhWwP4LHBMhXutTcpW1+j8bsC9wP35eGOaT/D5ObD6aP8N63RaFtgZ+Bp50kkT2f/OBvFtpEHae0hROI3k2wpZzbJtPcc1405K+jZoa1J/pclVFf+Gt5eUNcrT/lvSC/lq2psUdjfw6sLxOqQe4qg/O/2wdTNqpZZT+T3Az20/rYF5GYYrXwyzKvI0KVVm2dJdbQ+6SVqCFJ++NgN92Mc00KWSPGnG4gnAl1noQzRpxtwAPDiD4neyy2TQNPFG7qbaOZd3q48kGarr8v1mqPmal6sAf8p/x6Jfd1j+TjXOW9PKnTGNFMnzB5JL5h1uPt1/ZWAzpyiLP0q6jOQj/1VJ3e3mianR7nM81BxDbY/z5HGR/wFeaXsXpfU132b7lAZ1/1rSYSyc1LYPcKny8oEeOJms6rhH25FOQXW66SM/Dngf8BzJSLwMuMT25p2Qz9f8itSqqvkZtyENDK5DarGeWSf/Tkqw/ZuSui8jvRQGhIXZLstpPhT5WSRj8nj5txsgWzTOi5BmO37CJXHVDXyuBXVKfak32N5ChXVAi7HEJfJt/x1HAkmr2m6WW6XsmqVIvbN7W8jdwcKQ1Y1rIau2S8Mhh/IcD5U2xnl+TZot/GXbG+VopFttly5uLakW614zCsU3kD3MtT5zY6fdSKegAl1NY5vf5E87jaAvDSzvJnmohyB/OfBh24/m49VI/tH9gN+6QUrNLLsK8IQb/AHUJCVnh+SvIIXZ/bsN2aJxnkvKz/LNVkaogi6nkLrIh5F6FZ8GFrN9SCfq7zaSShNYNek97UpKN7C47XUkbUx68Zf1zG62vamkGcDmtl+QdJft1zfRp+3nuDDAuAXJgJYOMNZdsyIptr7Y8ysbqK3pXnxBly3kvSnwYE1Hpfzu7yc9Z0e5fMHuYu9pcVJP5NkmvaaqveegAt2II3+X7WuK/3F1XcvSzISSPlzYL55qthDtmjUjnnksl82RVJvcgKQtSKvUzCGtlHImyT2wiKQP276spO4/SHqj7Tua3H848s8CM7KRLronBkV+uELseRFJb2ewq6fs7/n/SC6eF4CfkaJWBi0QMFTXxwhQzGmzJClErlnM/1EMdiU1am225coY6nNP+nv/gORThzTV/WwWLsJRf59jSaGYs1gY7WTKXT3PSlqZhRkKtyAZz3p+RM6zo7RM29dJz8TGpBwpgxamdiH0V+mLTiK9jBpxEKn3fA3pedmG3HuWNKj3HFSjGz7yd5L+s3YtOWcaP9DFacBLkhYZvoXmhvw6SZeQBt8gtSKuU0rk81RB7vukjHErZN12sX1D7iafDZQZ8q2AA3J3s9kyckOVvyhvLck/xiMpJM0itSAbrj7UKESQur9nDiX7VX5ZfLmZHq4etz8i1LuvJH2T9DJqxEslvuvSlWu8cAr5UfmluwLlz8tQn/ul64zYTyX9VxPd9wbWLXOllPB50iDkupJ+T8qcOMgok1YkqrW69yFFhV0AXJB7IguQtKjtAXnHc6/2IqVJaIc10GVR0sLO9b3nzUkDp2HIh0HHDbntI/PngRWv+3/F49wKOqfFZYeSjPeW+fgM4IL8YBVbsYvaviLXe4ztG/I972kyoLpLFf2ryjtNGlqchVn97rX9UgPxc0gP+/vz8f6kULvtG8hD8qNv2Mh1VNBjnqT5klZwgzwZPcjSpMHJRtwl6QOkPOzrk1xJxQWEa+6Remq9rWVZuJA0sPC5J4WcDvD9NqirRpUBRoA7SX73hu6IgqvkluxH/zjp2bkCmF1yyYSCgd6OlHenRr2NuAl4S52rpDZu0yzfTVu952BodHOFoKpRHPU8S0kER5FspM7PWzOKra36fBClhq4W9aCUc6RpqoChyCul8Tyd5IcUsKakya6boZdZ3faxheOvStqnxS3uJE3AaJjsv8C/gDuUUgAUo3l6Ykq1Bk4bn0BqeTZ7zoqupLNJrfdj62SmszD9Q43acWl0UeYXSrN752bdXkGKhmmUa2Xv/FkfwbFvg/t8nbQy1p00jhha4CohpYn9Ms1dJWeTZvc+Tvp91FIrr0e5KwZSz6P2N6+N2zSLWmq39xwMgW5GrVSN4ihO5Z0AvA44z/agrlpVX62keSQDJdLEl38X5Je0vRh1SNqNlODqlaTWw1qkuNfSQa4hyE8HPlAbsFRamu1s24N+8JK+RWoJnZeL9iRFvPxnWd35mmtJP9yWIYIauHjxgogFd2iWabeQtKbtBzVwTdO5pERRO3vhlPOh1i9Sq7HdZF8oZZJ8N+n/aE2Sa+M/az3C4SLpLpKhrp8R/JuCzG3OEU2SfgD8w/ZR+XjQYGcu34I0p+EK28/msteQ0vzeUpCbDXyLgS84yM+NG6zBmf+Wxd7z71nYew6GSTcNedUojmJI21ySMd/H9qEdV649fW4jDSBdZfvNkrYlTeI4qEPyg8L7yspyeW2a+HzSD2YCC1vOpYOMaiNEUNIkYKLtH+Tjm0itWQNftP3zsjrGCpLuIRnsB+rKDyTla1+3rnxqs/oavOTucINwvSZ6HUqanLQ2KRf5H5rILklK6VAb/7ielEK41E2hBmll62TuBDa2PTf/jQ6u9fSq/i5L6n4YOInBhhwoT0gWdJ9uTgiqFMXhtL7gm0m5NvYiTUu/oNV1SivrrG/7NKWQwuXcIPdzRV6y/YSkRSQtYvtaSd/poPw0SSezMPfE/jRYM3Eog4xuL6b7C6QufI3FSS6AZUnxx2PakJMG866Q9B7b9wFIOpz0DJW9yN5GWg3obFLK3uYzzhK3SNrU9s3NhDQwx7mAV5EnEEnaolFLlTSu8wwp2yBZ9zNJv4Eyrpf0dVJLv1GSraG4Strl4Qru0QVkn/o3SGmmxehHOvUV3TTkbUVx5O7bfnl7nDSIJ7cRcpdHyd9Kyjx3GskQ/ZSF3bfh8JTSQrG/JS0L9hjNl26rKv8J0mBtzQ99PSk/yiByt3R/YB3bx0pak+Q3H5TKVtLvbG9V4n4q++EsbvvBwvHv8uDanOy7HNPYvlQpL/evJb2PlO9mM9LMzidLLnkFKQVwLTnXr0jurLua3GZzYH9Jf2Whe27Qc8zgGZq/aFBezxtsb1g4vlbSn5rIvzl/FkP9BoQf2v6apKtZ6CqpPQeLkHzlw6Gdl18ZxwO72m4WFhoMkW66VtYqK3fd1GmlzHXXk5Ic1dYWnOU2ZpEphUa9mZSAquWMxDb1Xg9YjdSaeo6FC+6uRQrTmz4c+SHqdBLJrfIu269TmhByRVkXW9Ja9X/jJvXOtL1eg3N/qXdNjFUkbU1K8/sHYO9Gbom6a5YgGfQTgKNtf7+BXFvP8VCR9FPg+86RVJI2Bw613WgN0VFF0kolkTTtXPd7251oYAUldK1FXiGKYw9S9/7aPEB6Du2/9V+0bUm1CQ+daEV+Bzi8NuBDMqCnS3ojKW9FfZxwJXkNTsw/gAYvoc1tv0XSrVnmSTVeCOFC8go1ki6w/f4GcpAWA/iY7R/X6fhxWixcMRbQwIVFliCFzj2WezCNxg6WIOVB2Y/kwz6RgbneB2D7r3Xuu1VJrqdGOq1KclnVrxTVKDfLJiQ3ZG1A9VXAvbXnpKQHuwJpTsE7ctFvSHMKRiR0dChGPDNN0rmkuRNFl1Cj+PqgAt0MPyyN4iA94AuwfRFpMsEypNlhnwVenluhF7YY7T9P0o+Al+VogY+QVuYeDquV+fVt3yFp7Q7IV0rMn3lJaeJO7YW1Kg0msDDwJdiqV/M50t/+A6TJV5AMyxKkfCFjmqpjB5LOIC3QfCmpFX5nG9fUu+8Wo7n77iySe/C9pBTCk0mpbBuxc7v6Z04lhZbWwhY/lPVqthTeWGB5UrTYjoWyZhOlggp007VSKYqj7toVSYM9+7jBYgIF2R0oLIhg+8ph6n2f7fUbnBvkiqgqX3d+NRbOaL3JDXJOSNqfNFHkLaTY8z2B/7Z9XonsLbbfUr/fDEnvYuEL9i7b17S6phfJbrwF0T7FUzRuwVdy36nNBYwlLW/7n2owWahRy1fluVJKQwqD8UM3BzurRnEsIA9UTclbK9krSTkwVgEaTlmvwLQG7oaPkmLihytfO783yT97HcmQfE/Sf9keNLnJ9llKcefbZdn3kRa8LWMjSf/MckvlfWhirLLh7kvjXcT2IkO4rKr7rt0FjH9GarU3mnjUqDf1nKStbP8u67Mlgye5jRkkfcH28Vq4/uwA3COTzsY63TTkVaM42kZDS4LVLp8FLsyt4JohfispImb3DsjX+DKwaa0Vnt0lV1E3S1XSGqTog9udUgq8PN/zAJLbagC2J7TxHYP2qeq+a7mAMYDt9+bPZnnfy/gEaQxmBZLxn0Ny34xValEqpaG1QWfopmtlGVLuhVro3ArAWW6S6KlC3dNYmARrCnVJsGpd4GHeY1uSPxXacDcMQX7ARBOldTNvqyv7LMngzyT5rf+PFIt7BnC87Xam3wfDpB33ndLEnkOA9UizLk9xXXKpOvmmLi+3WHdWUq1n9Sywr+2zmn6JUULSRrZva3DuE7ZPGmmd+pGu5iPvFkWfoKS7bb+ucO7WThjybqO0cvqbSJM3IPnAb7f9xYLMn4CtnBILvQr4M7BlJ0Iag86SIzJeIoXS7kJaau4zTeQrLQCSDfehpKX+Lib13g4ltfxvtz1peN+gOygtoLJXSdju0aS48pZjOEFruhm10s2ZXJWTYI0VlOPObf9X/httlU/9kRTxUOT52qCX7b9JujeM+MhS4TnesNabUlqoo2n4pqvnmD8TeJL0nHyM1FMTsLvtGc0uHGX2An4uaX/bf8yhoSeRooC2GVXN+ohuulZm0qWZXBpCEqyxglIGuMPrQxZrcee2dy2UPcbAVL77Fo9joKj7tPsc10cItYoYUslCFEXq46uLrrgcivowaam6lpOfRhtJbyLF6h9KeglBShgXS711iG4Odj7aDSMOPT+gVyXuvH6BgWiNjzztPse1aCEYGDHUqAVfdSGKBTm7nXLIz+4RI74SKQf6ZNJkoKuATwHLSFpmGBOMggIdb5EXWhjvJOW2iJlcBYYTdx6MHGPtOS70QmFgT3RMJ59SyrVUv5jzgrzuHuaCzkGiG4b8tCanbfsjHb1hjyHpbOCaBnHnO9hutWBEMAKM1HOs4S/AEgS9GbXSy+TZnBcCL1ISd+4Gq60Ho4OkLW3/vlXZMOqvtABLEJTRzcHOE0uKnwam2b64KzftIarGnQejQ9mgZbupD9qsf1gLPQQBdHewc0lgAwau0Xc/aVBoW9uf7eK9xzy2rwWaxRIvIM/6/BiDu9/j2k3VTSS9jbTe5aoauGjE8qQVmjpFpQVYgqCMbhryN5Emr8wDajm1ryfFTcdDW42LSX+7qyh0v4OusjgpXe2iDFwc4p8MXry4MlqYznhR4MA8cabhAiy9SqOkYDUiaqUzdNOQr0j6IdTyJC8DrJRDpyJ+tBpLF2d8Bt3Haam830j6iVNO8qVt/7vlhe0zlHTGvUgxKdirSJOaBLyMlPitaq6ZoIShZINrl+OBGZJOk/QT4FbghJyD5aou3rcfuUTSu0dbiXHKK3OqhHsg5Q6RVLokX0UeJSVV+y9STvKHbP+1tnWg/jGB7XVyiOFVpIlVq9hemfQia7bWQFCBboQfbmn79zmsaiXSGooAN9v+e0dvNk5QWglnGVLX+yXGeOxwPyHpRpIrZaoX5iMf9gBl1dwsvU59krhGZcHQ6IZr5UTSKjN/zCP74z5CZbi44ko4QWex/WBKEbKAToxTVMrN0gf8XdJXSKsrQcqIGg27DtENQ/6SpCnAxJIQRPdzq6ObKK2atD4D14H87ehpNG54UNLbAUtaDPgMC3NsD4filPu5dS+KfmQ/0lqjF5J85r/NZUEH6IZrZRVge1LGuCMKp14FHGa7EwskjyvyrM/PABOBGcAWpB5PowV9gw6Rn+fvkp5pkfy6n/Ew8+r36pT74ZLzq3RkgZlgId2cELQRaTD1A6RUlg8AF9j+Xldu2MfkULVNgRtsb5wX0Pgf22N9wd0gACD3ak4GlrX9qmwfPm77k6OsWl/QcdeKpNeQukz7AY+TVhSX7W06fa9xxPO2n5eEpCWclnx77Wgr1c9IOqLJads+dsSU6Q++DewETAWwfZukd4yuSv1DN3zk95BG4t9reyaApEFrFgaVmC3pZaQMfFdKehLomxC1MUpZ938Z4CBgZdJasUEFujRoHNAdQ74HaQGEa3NCoHMYuEJ4UBHbtUWcj8pLhK0ADGeB6aAFxaRVkpYjjVEcSHqeI6FVdbo1aBzQ/cWXJ5FcLO8iLRh8oe2YBFARSVuQEms9k4+XB15n+8bR1ay/ydPLP08KlTsd+K7tJ0dXq96kwaDxp2OKfmcYkTS2OXRuL2Af29t1/YZ9hqRbgbc4/2dJWoSURTIWru0SeXHsPYApwA9s/2uUVeppup0OeLwT+ch7AEkzbG9cV3Z7vyRWGotImk+aSTuXgQt693V4YLfodjrg8U43k2YFnWOWpE+TVh8H+CQwaxT16XtsdzMP0bhhBNMBj2viYe0NDiH9GB4iLWS7OXDwqGoUBO1Rnw64tnUkHXCQCNdKEARdR9Ja/ZTVcawRhnwMI+kLto+X9D0G+mkBsP3pUVArCNpG0ndsf1bSLyl/hncbBbX6jvCRj21qcbbTRlWLIBg6Z+bPb46qFn1OtMiDIAh6nGiR9wA5f81/Mnjx5ch+GPQEkrYEjgLWIj3DtTDOV4+mXv1CtMh7AEm3AT8krX+4ID+F7emjplQQVEDSPcDnGPwMDysdcJCIFnlvMNf2Sa3FgmDM8rTtX4+2Ev1KtMh7AElHAY+RVld5oVYeeSqCXkHScaQJQL9g4DN8y6gp1UeEIe8BJN1fUhz+xaBnyFk763GM83SGMORBEAQ9TvjIxzCS3mX7GkmlS7rZ/sVI6xQEVajLrwJpUtDjwO9sl/U0gyEQhnxs807gGmDXknMm+RuDYCyzXEnZ2sCXJR1l+5wR1qcvCddKEAQjTl6046pIY9sZokXeA+T1Oj/M4AlBkWsl6Elsz1HdAp7B0AlD3htcCtwA3AHMH2VdgmDYSNoWiGXzOkQY8t5gSdv1g0ZBMOaRdAeDsx6uBPyd1MsMOkD4yHsASZ8D/gVcQkwICnoISWvVFRl4wvazo6FPvxKGvAeQdCjwNeApFrZuYkJQEARAGPKeQNIsYDPbj4+2LkEQjD1izc7eYCbw79FWIgiCsUkMdvYGzwIzcr6Koo88wg+DIAhD3iNclLcgCIJBhI+8R5C0OPCafHiv7ZdGU58gCMYOYch7AEnbAKcDD5CWyFoTmGz7t6OoVhAEY4Qw5D2ApOnAB2zfm49fA5xte5PR1SwIgrFARK30BovVjDiA7T8Di42iPkEQjCFisLM3mCbpZOCn+Xh/YNoo6hMEwRgiXCs9gKQlgEOBrXLR9cD/2X6h8VVBEIwXwpD3CJJWBbD9j9HWJQiCsUX4yMcwShwl6XHgXuBeSf+QdMRo6xYEwdghDPnY5nPAlsCmtleyvRKwObBlzogYBEEQrpWxjKRbgR3qk2VlN8sVtt88OpoFQTCWiBb52GaxsoyH2U8e4YdBEABhyMc6Lw7xXBAE44hwrYxhSK08YAAAA7BJREFUJM0jZT4cdIq0/Fu0yoMgCEMeBEHQ64RrJQiCoMcJQx4EQdDjhCEPgiDoccKQjwMkvULSOZL+Imm6pEtzKtxO1b+NpLcP8drVJV0haW1Jz0maIelPks6QNKTBXElvlXTiUK4Ngl4kDHmfI0nAhcB1ttfNOcwPB1br4G22AUoNuaRWGTZ3Bi7P+3+xvTHwRmAisPdQlLE9LdYzDcYTYcj7n22Bl2z/sFZg+zbgd5JOkHSnpDsk7QMLWteX1GQlfV/SAXn/AUlHS7olX7OBpLWBQ4DP5db01pJ+IumHkm4Ejpd0Xy3pl6RFJM2sHZMM+a+LCtueB9wErJGv2UTSb3Jv4nJJq+fyTSXdnu97gqQ767+DpJUkXZTlbpD0plx+lKRTJV0naZakMPxBzxKGvP95AzC9pHwPYGNgI2B74ISagWzB47bfApwE/KftB4AfAt+2vbHt67PcRODttj9PyqO+fy7fHrjN9j8kTQBea/tPxRtIWpKUU+ay7F75HrBn7k2cCnwti54GfDy34uc10Pdo4FbbbwK+BJxROLcBsBOwGXDkUF05QTDahCEfv2xFWi5unu1Hgd8Am7Zx3S/y53Rg7SZyP88ta0jG98N5/yMkAwzJWN9YuGZdSTOAR4GHbd8OvJb0Mroyn/sKMFHSy4DlbP8xX/uzBnpsBZwJYPsaYGVJy+dzv7L9Qk6D8BiddTcFwYgRKwT1P3cBe1aQn8vAF/ySdedri1nMo/nzs2BGqu0HJT0q6V2k1m+tdb4LcFnhmr/Y3ljSKsDvJe0G3A/cZfttxcqzIR8uxYU5Wn2fIBizRIu8/7kGWELSwbWC7Cd+CthH0oTsr34HyS/9V2BDSUtkY7ldG/d4BliuhUxtqbpiS3074Kp6wdxCPow0KHsvsKqkt2XdF5P0ettPAc9I2jxftm+D+15PfnFI2obkGvpnG98pCHqGMOR9jlMOht2B7XP44V3A10muiNuB20jG/gu2H7H9IHAecGf+vLWN2/wS2L022NlAZiqwLNmtkl8ez9t+poH8RcDSJPfLnsA3JN0GzGBhhMxBwI+zy2UZ4OmSeo4CNpF0O3AcMLmN7xMEPUXkWglGBElvJQ2Ibp2PPwhMtH3cMOpc1va/8v5hwOq2P9MRhYOghwifYNB1spH9BAt949j+aQeqfo+kw0nP8V+BAzpQZxD0HNEiD4Ig6HHCRx4EQdDjhCEPgiDoccKQB0EQ9DhhyIMgCHqcMORBEAQ9ThjyIAiCHuf/A6yLhTofJjyLAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"print(\"By worst aspect due exponential increase: Sweden UK US Belgium Germany \\n Strangely constant : Iran , Recovered: China \")\n#drel.loc[['3/27/20']].transpose().sort_values(by=[df.columns[-1]],ascending=False)\ndrel.iloc[[-1]].transpose().sort_values(by=[df.columns[-1]],ascending=False)","execution_count":13,"outputs":[{"output_type":"stream","text":"By worst aspect due exponential increase: Sweden UK US Belgium Germany \n Strangely constant : Iran , Recovered: China \n","name":"stdout"},{"output_type":"execute_result","execution_count":13,"data":{"text/plain":" 5/16/20\nCountry/Region \nIraq 2.315789\nAfghanistan 2.260274\nChile 2.034247\nMorocco 2.000000\nKuwait 1.805970\n... ...\nLuxembourg 0.000000\nPakistan 0.000000\nNorway 0.000000\nFrance -0.011083\nChina NaN\n\n[68 rows x 1 columns]","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>5/16/20</th>\n </tr>\n <tr>\n <th>Country/Region</th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Iraq</th>\n <td>2.315789</td>\n </tr>\n <tr>\n <th>Afghanistan</th>\n <td>2.260274</td>\n </tr>\n <tr>\n <th>Chile</th>\n <td>2.034247</td>\n </tr>\n <tr>\n <th>Morocco</th>\n <td>2.000000</td>\n </tr>\n <tr>\n <th>Kuwait</th>\n <td>1.805970</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n </tr>\n <tr>\n <th>Luxembourg</th>\n <td>0.000000</td>\n </tr>\n <tr>\n <th>Pakistan</th>\n <td>0.000000</td>\n </tr>\n <tr>\n <th>Norway</th>\n <td>0.000000</td>\n </tr>\n <tr>\n <th>France</th>\n <td>-0.011083</td>\n </tr>\n <tr>\n <th>China</th>\n <td>NaN</td>\n </tr>\n </tbody>\n</table>\n<p>68 rows × 1 columns</p>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"%matplotlib inline\n#dxy.plot(xticks=dxy.index,yticks=dxy.Austria)","execution_count":14,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"!pip install chart-studio urllib3 # plotly","execution_count":15,"outputs":[{"output_type":"stream","text":"WARNING: pip is being invoked by an old script wrapper. This will fail in a future version of pip.\nPlease see https://github.com/pypa/pip/issues/5599 for advice on fixing the underlying issue.\nTo avoid this problem you can invoke Python with '-m pip' instead of running pip directly.\nCollecting chart-studio\n Downloading chart_studio-1.1.0-py3-none-any.whl (64 kB)\n\u001b[K |████████████████████████████████| 64 kB 1.4 MB/s eta 0:00:011\n\u001b[?25hRequirement already satisfied: urllib3 in /srv/conda/envs/notebook/lib/python3.7/site-packages (1.25.7)\nCollecting retrying>=1.3.3\n Downloading retrying-1.3.3.tar.gz (10 kB)\nRequirement already satisfied: requests in /srv/conda/envs/notebook/lib/python3.7/site-packages (from chart-studio) (2.22.0)\nRequirement already satisfied: six in /srv/conda/envs/notebook/lib/python3.7/site-packages (from chart-studio) (1.14.0)\nCollecting plotly\n Downloading plotly-4.7.1-py2.py3-none-any.whl (11.5 MB)\n\u001b[K |████████████████████████████████| 11.5 MB 3.6 MB/s eta 0:00:01\n\u001b[?25hRequirement already satisfied: idna<2.9,>=2.5 in /srv/conda/envs/notebook/lib/python3.7/site-packages (from requests->chart-studio) (2.8)\nRequirement already satisfied: chardet<3.1.0,>=3.0.2 in /srv/conda/envs/notebook/lib/python3.7/site-packages (from requests->chart-studio) (3.0.4)\nRequirement already satisfied: certifi>=2017.4.17 in /srv/conda/envs/notebook/lib/python3.7/site-packages (from requests->chart-studio) (2019.11.28)\nBuilding wheels for collected packages: retrying\n Building wheel for retrying (setup.py) ... \u001b[?25ldone\n\u001b[?25h Created wheel for retrying: filename=retrying-1.3.3-py3-none-any.whl size=11429 sha256=24398a50acb956a3d99a6021d0bc7fed90f4ae43c6f4cf5d7b2439adc564515c\n Stored in directory: /home/jovyan/.cache/pip/wheels/f9/8d/8d/f6af3f7f9eea3553bc2fe6d53e4b287dad18b06a861ac56ddf\nSuccessfully built retrying\nInstalling collected packages: retrying, plotly, chart-studio\nSuccessfully installed chart-studio-1.1.0 plotly-4.7.1 retrying-1.3.3\n","name":"stdout"}]},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.7.6","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat":4,"nbformat_minor":2}