= Test: adoc :description: Test description \ description line1 wrap \ description line2 wrap {description} This page should look pretty much similar to the other test pages. link:blog/test%20with%20spaces.html[md] | link:topics/tech/test.html[rst] toc::[] == Link check Link from adoc link:blog/test%20with%20spaces.html#_link-check[to md] Link from adoc link:topics/tech/test.html#_link-check[to rst] === Internal link check Link to this <>. [latexmath#fourier-transform] ++++ (\mathcal{F}f)(y) = \frac{1}{\sqrt{2\pi}^{\ n}} \int_{\mathbb{R}^n} f(x)\, e^{-\mathrm{i} y \cdot x} \,\mathrm{d} x ++++ Complex math example, the <>. Inline: latexmath:[\sqrt{a}^{b} \&]. == Link check test section with duplicate heading === Test: adoc test section with duplicate heading as the document title == Very complex math [latexmath] ++++ \begin{align} & \quad\,\, {}^{GL}_{x_0}\mathbb{D}^b_x {}^{GL}_{x_0}\mathbb{D}^a_x f(x) \\ & = \lim_{\delta \to 0} \frac{1}{\delta^b} \sum_{k=0}^{\lfloor \frac{x-x_0}{\delta} \rfloor} (-1)^k {b \choose k} {}^{GL}_{x_0}\mathbb{D}^a_x f(x-k\delta) & \text{expand ${}^{GL}_{x_0}\mathbb{D}^b_x$} \\ & = \lim_{\delta \to 0} \frac{1}{\delta^b} \sum_{k=0}^{\lfloor \frac{x-x_0}{\delta} \rfloor} (-1)^k {b \choose k} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^a} \sum_{j=0}^{\lfloor \frac{x-k\delta-x_0}{\varepsilon} \rfloor} (-1)^j {a \choose j} f(x-k\delta-j\varepsilon) & \text{expand ${}^{GL}_{x_0}\mathbb{D}^a_x$} \\ & = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \frac{1}{\delta^b} \frac{1}{\varepsilon^a} \sum_{k=0}^{\lfloor \frac{x-x_0}{\delta} \rfloor} \sum_{j=0}^{\lfloor \frac{x-k\delta-x_0}{\varepsilon} \rfloor} (-1)^k (-1)^j {b \choose k} {a \choose j} f(x-k\delta-j\varepsilon) & \text{push constants into $\lim$ and $\sum$} \\ & = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{b+a}} \sum_{k=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor} \sum_{j=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor - k} (-1)^{k+j} {b \choose k} {a \choose j} f(x-(k+j)\varepsilon) & \text{(1), unify $\delta$ and $\varepsilon$} \\ & = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{b+a}} \sum_{i=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor} \sum_{k=0}^{i} (-1)^i {b \choose k} {a \choose i-k} f(x-i\varepsilon) & \text{rearrange triangle-sum, over $i = k+j$} \\ & = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{b+a}} \sum_{i=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor} (-1)^i {b+a \choose i} f(x-i\varepsilon) & \text{Vandermonde's identity} \\ & = {}^{GL}_{x_0}\mathbb{D}^{b+a}_x f(x) \end{align} ++++