apiVersion: influxdata.com/v2alpha1 kind: Label metadata: name: fervent-dijkstra-184001 spec: color: '#0b3a8d' name: ADS-B --- apiVersion: influxdata.com/v2alpha1 kind: Bucket metadata: name: endangered-haslett-184005 spec: associations: - kind: Label name: fervent-dijkstra-184001 name: ads-b --- apiVersion: influxdata.com/v2alpha1 kind: Dashboard metadata: name: loving-proskuriakova-984001 spec: associations: - kind: Label name: fervent-dijkstra-184001 charts: - colors: - hex: '#00C9FF' id: base name: laser type: text decimalPlaces: 0 height: 2 kind: Single_Stat name: Recent Aircraft Total queries: - query: |- from(bucket: v.bucket) |> range(start: v.timeRangeStart, stop: v.timeRangeStop) |> filter(fn: (r) => r["_measurement"] == "dump1090_recent_aircraft_observed") |> aggregateWindow(every: v.windowPeriod, fn: last, createEmpty: false) |> yield(name: "last") staticLegend: {} width: 2 - axes: - base: "10" name: x scale: linear - base: "10" label: '# of Aircraft' name: y scale: linear colors: - hex: '#31C0F6' id: 5ce5deb4-b018-4aba-b270-b2cf3f3648fd name: Nineteen Eighty Four type: scale - hex: '#A500A5' id: 9bf389b2-87cd-4489-9580-d8d9d1bf64ff name: Nineteen Eighty Four type: scale - hex: '#FF7E27' id: 402d2f6f-6d2c-4cec-ab68-6255f3aba755 name: Nineteen Eighty Four type: scale geom: line height: 6 hoverDimension: auto kind: Xy name: Aircraft position: overlaid queries: - query: |- from(bucket: v.bucket) |> range(start: v.timeRangeStart, stop: v.timeRangeStop) |> filter(fn: (r) => r["_measurement"] == "dump1090_recent_aircraft_observed" or r["_measurement"] == "dump1090_recent_aircraft_with_multilateration" or r["_measurement"] == "dump1090_recent_aircraft_with_position") |> aggregateWindow(every: v.windowPeriod, fn: last, createEmpty: false) |> yield(name: "last") staticLegend: {} width: 10 xCol: _time yCol: _value yPos: 2 - axes: - base: "10" name: x scale: linear - label: Distance name: y scale: linear suffix: m colors: - hex: '#31C0F6' id: 5ce5deb4-b018-4aba-b270-b2cf3f3648fd name: Nineteen Eighty Four type: scale - hex: '#A500A5' id: 9bf389b2-87cd-4489-9580-d8d9d1bf64ff name: Nineteen Eighty Four type: scale - hex: '#FF7E27' id: 402d2f6f-6d2c-4cec-ab68-6255f3aba755 name: Nineteen Eighty Four type: scale geom: line height: 5 kind: Xy name: Distance from receiver position: overlaid queries: - query: |- from(bucket: v.bucket) |> range(start: v.timeRangeStart, stop: v.timeRangeStop) |> filter(fn: (r) => r["_measurement"] == "dump1090_recent_aircraft_max_range") |> aggregateWindow(every: v.windowPeriod, fn: mean, createEmpty: false) |> yield(name: "mean") staticLegend: {} width: 10 xCol: _time yCol: _value yPos: 8 - colors: - hex: '#00C9FF' id: base name: laser type: text decimalPlaces: 0 height: 2 kind: Single_Stat name: Aircraft with Position queries: - query: |- from(bucket: v.bucket) |> range(start: v.timeRangeStart, stop: v.timeRangeStop) |> filter(fn: (r) => r["_measurement"] == "dump1090_recent_aircraft_with_position") |> aggregateWindow(every: v.windowPeriod, fn: last, createEmpty: false) |> yield(name: "last") staticLegend: {} width: 2 xPos: 2 - colors: - hex: '#00C9FF' id: base name: laser type: text decimalPlaces: 0 height: 2 kind: Single_Stat name: Max Range queries: - query: |- from(bucket: v.bucket) |> range(start: v.timeRangeStart, stop: v.timeRangeStop) |> filter(fn: (r) => r["_measurement"] == "dump1090_recent_aircraft_max_range") |> max() |> map(fn: (r) => ({ r with _value: r._value / 1000.0 }) ) staticLegend: {} suffix: ' km' width: 2 xPos: 4 - colors: - hex: '#00C9FF' id: base name: laser type: text decimalPlaces: 0 height: 2 kind: Single_Stat name: Messages per Second queries: - query: |- import "experimental/aggregate" from(bucket: v.bucket) |> range(start: -1m) |> filter(fn: (r) => r["_measurement"] == "dump1090_messages_total") |> aggregate.rate(every: 5s, unit: 1s) staticLegend: {} width: 2 xPos: 6 - axes: - base: "10" name: x scale: linear - base: "10" name: y scale: linear colors: - hex: '#00C9FF' id: base name: laser type: text decimalPlaces: 1 height: 2 kind: Single_Stat_Plus_Line name: Signal Mean position: overlaid queries: - query: |- from(bucket: v.bucket) |> range(start: v.timeRangeStart, stop: v.timeRangeStop) |> filter(fn: (r) => r["_measurement"] == "dump1090_stats_local_signal_strength_dbFS") |> aggregateWindow(every: v.windowPeriod, fn: mean, createEmpty: false) |> yield(name: "mean") staticLegend: {} width: 2 xCol: _time xPos: 8 yCol: _value - height: 13 kind: Markdown name: Name this Cell note: |- #### Recent Aircraft Total The most recent number of aircraft reported #### Aircraft with Position The number of recently reported aircraft with position data #### Max Range The farthest report received #### Messages per Second The current count of messages per second received and decoded #### Signal Mean Mean signal expressed in [dBFS](https://en.wikipedia.org/wiki/dBFS) #### Aircraft * Observed aircraft * Observed aircraft with position data * Observed aircraft with [MLAT](http://multilateration.com/ads-b.html) #### Distance from Receiver Aircraft distance from receiver over time staticLegend: {} width: 2 xPos: 10 description: Metrics gathered from dump1090exporter to visualize your ADS-B flight tracking station. name: ADS-B Flight Tracker --- apiVersion: influxdata.com/v2alpha1 kind: Telegraf metadata: name: sloppy-sinoussi-d84001 spec: associations: - kind: Label name: fervent-dijkstra-184001 config: |- # Configuration for telegraf agent [agent] ## Default data collection interval for all inputs interval = "10s" ## Rounds collection interval to 'interval' ## ie, if interval="10s" then always collect on :00, :10, :20, etc. round_interval = true ## Telegraf will send metrics to outputs in batches of at most ## metric_batch_size metrics. ## This controls the size of writes that Telegraf sends to output plugins. metric_batch_size = 1000 ## For failed writes, telegraf will cache metric_buffer_limit metrics for each ## output, and will flush this buffer on a successful write. Oldest metrics ## are dropped first when this buffer fills. ## This buffer only fills when writes fail to output plugin(s). metric_buffer_limit = 10000 ## Collection jitter is used to jitter the collection by a random amount. ## Each plugin will sleep for a random time within jitter before collecting. ## This can be used to avoid many plugins querying things like sysfs at the ## same time, which can have a measurable effect on the system. collection_jitter = "0s" ## Default flushing interval for all outputs. Maximum flush_interval will be ## flush_interval + flush_jitter flush_interval = "10s" ## Jitter the flush interval by a random amount. This is primarily to avoid ## large write spikes for users running a large number of telegraf instances. ## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s flush_jitter = "0s" ## By default or when set to "0s", precision will be set to the same ## timestamp order as the collection interval, with the maximum being 1s. ## ie, when interval = "10s", precision will be "1s" ## when interval = "250ms", precision will be "1ms" ## Precision will NOT be used for service inputs. It is up to each individual ## service input to set the timestamp at the appropriate precision. ## Valid time units are "ns", "us" (or "µs"), "ms", "s". precision = "" ## Logging configuration: ## Run telegraf with debug log messages. debug = false ## Run telegraf in quiet mode (error log messages only). quiet = false ## Specify the log file name. The empty string means to log to stderr. logfile = "" ## Override default hostname, if empty use os.Hostname() hostname = "" ## If set to true, do no set the "host" tag in the telegraf agent. omit_hostname = false [[outputs.influxdb_v2]] urls = ["$INFLUX_HOST"] token = "$INFLUX_TOKEN" organization = "$INFLUX_ORG" bucket = "$INFLUX_BUCKET" [[inputs.prometheus]] urls = ["http://localhost:9105/metrics"] description: Collect ADSB metrics from dump1090 Prometheus export name: ADS-B