{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Automated ML for time series predicion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We used one of the dataset in [Numenta Anomaly Benchmark (NAB)](https://github.com/numenta/NAB) for demo, i.e. NYC taxi passengers dataset, which contains 10320 records, each indicating the total number of taxi passengers in NYC at a corresonponding time spot. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 0. Helper function definations" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# plot the predicted values and actual values (for the test data)\n", "def plot_result(test_df, pred_df, dt_col=\"datetime\", value_col=\"value\", past_seq_len=1):\n", " # target column of dataframe is \"value\"\n", " # past sequence length is 50\n", " pred_value = pred_df[value_col].values\n", " true_value = test_df[value_col].values[past_seq_len:]\n", " fig, axs = plt.subplots(figsize=(12, 5))\n", "\n", " axs.plot(pred_df[dt_col], pred_value, color='red', label='predicted values')\n", " axs.plot(test_df[dt_col][past_seq_len:], true_value, color='blue', label='actual values')\n", " axs.set_title('the predicted values and actual values (for the test data)')\n", "\n", " plt.xlabel(dt_col)\n", " plt.xticks(rotation=45)\n", " plt.ylabel('number of taxi passengers')\n", " plt.legend(loc='upper left')\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# plot results of multi step forecasting\n", "# plot at most five values for better view\n", "# plot the predicted values and actual values (for the test data)\n", "def plot_less_five_step_result(test_df, pred_df, dt_col=\"datetime\", value_col=\"value\", past_seq_len=1):\n", " fig, axs = plt.subplots(figsize=(12, 5))\n", " target_value = test_df[value_col].values[past_seq_len:]\n", " axs.plot(test_df[dt_col][past_seq_len:], target_value, color='blue', label='actual values')\n", "\n", " value_cols=[\"{}_{}\".format(value_col, i) for i in range(min(pred_df.shape[1] - 1, 5))]\n", " time_delta = pred_df[dt_col][1] - pred_df[dt_col][0]\n", " plot_color = [\"g\", \"r\", \"c\", \"m\", \"y\"]\n", " for i in range(len(value_cols)):\n", " pred_value = pred_df[value_cols[i]].values\n", " pred_dt = pred_df[dt_col].values + time_delta * i\n", " axs.plot(pred_dt, pred_value, color=plot_color[i], label='predicted values' + str(i))\n", "\n", " axs.set_title('the predicted values and actual values (for the test data)')\n", "\n", " plt.xlabel(dt_col)\n", " plt.xticks(rotation=45)\n", " plt.ylabel('number of taxi passengers')\n", " plt.legend(loc='upper left')\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# plot results of multi step forecasting\n", "# plot result of multi step forecasting\n", "# plot the predicted values and actual values (for the test data)\n", "def plot_first_last_step_result(test_df, pred_df, dt_col=\"datetime\", value_col=\"value\", past_seq_len=1):\n", " fig, axs = plt.subplots(figsize=(12, 5))\n", " target_value = test_df[value_col].values[past_seq_len:]\n", " axs.plot(test_df[dt_col][past_seq_len:], target_value, color='blue', label='actual values')\n", "\n", " value_cols=[\"{}_{}\".format(value_col, i) for i in range(pred_df.shape[1] - 1)]\n", " time_delta = pred_df[dt_col][1] - pred_df[dt_col][0]\n", " \n", " pred_value_first = pred_df[value_cols[0]].values\n", " pred_dt_first = pred_df[dt_col].values\n", " axs.plot(pred_dt_first, pred_value_first, color=\"g\", label='first predicted values')\n", " \n", " pred_value_last = pred_df[value_cols[-1]].values\n", " pred_dt_last = pred_df[dt_col].values + time_delta * (len(value_cols)-1)\n", " axs.plot(pred_dt_last, pred_value_last, color=\"r\", label='last predicted values')\n", "\n", " axs.set_title('the predicted values and actual values (for the test data)')\n", "\n", " plt.xlabel(dt_col)\n", " plt.xticks(rotation=45)\n", " plt.ylabel('number of taxi passengers')\n", " plt.legend(loc='upper left')\n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. load data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "\n", "import matplotlib\n", "matplotlib.use('Agg')\n", "%pylab inline\n", "import matplotlib.dates as md\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# load nyc taxi data\n", "try:\n", " dataset_path = os.getenv(\"ANALYTICS_ZOO_HOME\")+\"/bin/data/NAB/nyc_taxi/nyc_taxi.csv\"\n", " df = pd.read_csv(dataset_path)\n", "except Exception as e:\n", " print(\"nyc_taxi.csv doesn't exist\")\n", " print(\"you can run $ANALYTICS_ZOO_HOME/bin/data/NAB/nyc_taxi/get_nyc_taxi.sh to download nyc_taxi.csv\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# download nyc_taxi.csv\n", "#! $ANALYTICS_ZOO_HOME/dist/bin/data/NAB/nyc_taxi/get_nyc_taxi.sh" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can use split_input_df to split the whole dataset into train/val/test sets. There will be two columns in the output dataframe: \"datetime\" and \"value\", where the data type of \"datetime\" column is datetime64." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "from zoo.automl.common.util import split_input_df\n", "train_df, val_df, test_df = split_input_df(df, val_split_ratio=0.1, test_split_ratio=0.1)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
value
count8256.000000
mean15421.585514
std6871.989592
min1431.000000
25%11040.000000
50%17014.500000
75%20032.250000
max39197.000000
\n", "
" ], "text/plain": [ " value\n", "count 8256.000000\n", "mean 15421.585514\n", "std 6871.989592\n", "min 1431.000000\n", "25% 11040.000000\n", "50% 17014.500000\n", "75% 20032.250000\n", "max 39197.000000" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_df.describe()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datetimevalue
02014-07-01 00:00:0010844
12014-07-01 00:30:008127
22014-07-01 01:00:006210
32014-07-01 01:30:004656
42014-07-01 02:00:003820
\n", "
" ], "text/plain": [ " datetime value\n", "0 2014-07-01 00:00:00 10844\n", "1 2014-07-01 00:30:00 8127\n", "2 2014-07-01 01:00:00 6210\n", "3 2014-07-01 01:30:00 4656\n", "4 2014-07-01 02:00:00 3820" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_df.head(5)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The shape of train_df is (8256, 2)\n", "The shape of val_df is (1032, 2)\n", "The shape of test_df is (1032, 2)\n" ] } ], "source": [ "# shape of the dataframe\n", "print(\"The shape of train_df is\", train_df.shape)\n", "print(\"The shape of val_df is\", val_df.shape)\n", "print(\"The shape of test_df is\", test_df.shape)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No handles with labels found to put in legend.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAFnCAYAAADng/z0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydebgdRbX233VOckgCYTAgU9Aweb2AgBoEReQKCgHFiCKiIogIDnBBAQecQBBFvYgToiBB4CqzSsQwiYByZQoYwTBISIKEKZEkkIQMJznr+6O6vl69dlV176HPlPV7nv3svXuoqq6urnpr1apqYmYYhmEYhmEYhtE/dA10AgzDMAzDMAxjbcIEuGEYhmEYhmH0IybADcMwDMMwDKMfMQFuGIZhGIZhGP2ICXDDMAzDMAzD6EdMgBuGYRiGYRhGP2IC3DAMowQiWkpE2wx0OoYTRDSXiN4x0OkAACK6nYg+MdDp8BDRTCL6r4FOh2EY9WEC3DCM2snE1nwiWlds+0QmfIiI/kxEp6lzjiCiJ4hoTPb/TUQ0jYgWE9FCIrqXiI6KxPcxIrqzU+ln5vWYeXanwlvbIKJfEtE3Bzod/Q0R/RcRzSs5piFvmHlHZr691sQZhjGgmAA3DKO/6AZwot7I7m1gnwDwOSLaEQCIaBMA5wD4BDO/TERvBvAnAHcA2A7AOACfBnBAP6XdEBDRiOEcn2EYRt2YADcMo7/4HoBTiGhDvYOZ/wngLAAXEVEXgB8BuJaZbxPnXsLM32Hmf7PjfmY+VIdFRP8J4GcA3py5jizOtr+LiP5GRC8R0VNEdLo454NENIeI1s/+H0BEz2UdARARE9F2oYvKrPjfzizyLxHRdUT0CrH/6iysFzNL/45i34FE9DARLSGip4nolGz7xkR0vbD2/yXLFxDRFkR0LREtyNJ8ggjvdCK6ioguzcKcSUQTxf43ZHmwJEvXldL6SkTvJqIZWbx/JaKdxb65RPRFInoQwDIiGpH9fzoL7zEi2jeQP8cC+AiAL2T34/di965E9GCWN1cS0ajsnP8ionlZ+M8BuDjbfgwRzcryZCoRbZFtn5DdoxEi3v/vVkJE3UR0DhH9O8uz4/XxAF5NRP+XXcvNRLSxCOs9WV4uzsL9T7GvUDa8RZvcaM8NALbIrnupT29Z3pBwz8nu6dVE9L9Z2h4iotcQ0ankRpWeIqL9RJgbENFFRPRsdm++SUTd+r4YhjGwmAA3DKO/mA7gdgCnRPZ/HwABuAbAngA+DwDkXFDenG0vhZkfAfApAHdlriNe8C8DcASADQG8C8Cniei92TlXAvgrgB8R0TgAF8FZ3xdUvLYjAHwcwOYAVsN1IDw3ANgewCsBPADgV2LfRQA+ycxjAewEZ+UHgJMBzAOwCYBNAXwZAGci/PcA/g5gSwD7AvgsEe0vwnwPgCuy65wK4CcAQEQ9AH4L4JcAXgHgcgAH+5OI6PUApgD4JNwIw88BTCWidUTYH4LLuw0BbAvgeAC7ZenfH8BcnTHMfEF2zd/N7sdBYvehACYB2BrAzgA+JvZtlqXz1QCOJaJ9AHw7O2dzAE9m11mFY+BGS3YF8AYA7w0c82EAR8Hdpx5k5ZSIXgOXV5+Fux/TAPw+y88ozLwsi/OZ7LrXY+Zn1DGpvJEcBOAyABsB+BuAm+Da7y0BnAF3rzy/hCuD2wF4PYD94EaYDMMYRJgANwyjP/k6gP+mzLIsYeY1cCL2YAD/zcxLsl0bwdVVz7YTMTPfzswPMXMfMz8IJ6r2FoccB2AfuE7C75n5+iaCv4yZ/5GJrq8BONRbHZl5CjMvYeaVAE4HsAsRbZCd1wtgByJan5kXMfMDYvvmAF7NzL3M/JfMVWc3AJsw8xnMvCrzS78QwGEiLXcy87QsPy8DsEu2fQ8AIwD8KAvzNwDuFecdC+DnzHwPM69h5ksArMzO8/yImZ9i5uUA1gBYJ0v/SGaey8xPNJFnPrxnmHkhXMdiV7GvD8BpzLwyi+8jAKYw8wNZXp4KN8oxoUI8hwL4ITPPY+ZFAM4OHHMxM/8zi+sqkZYPAvgDM9/CzL0A/gfAaABvafJa2+EvzHwTM68GcDVcR+DsLD1XAJhARBsS0aYADgTwWWZexszzAZyLYvkwDGMQYALcMIx+g5n/AeB6AF+K7J+Z/ZwpNi+CE2ObtxM3Ee1ORLdlrhsvwlnJ/7+bATMvhhM3O8H5nzfDU+L3kwBGAtg4c304m9xk0peQW4h9vO+HE0xPEtEd5HzdAedyMwvAzUQ0m4h8fr0azqVhsf/AWcc3FfE/J36/DGBU5mqxBYCnMyEfSverAZyswt4qO6/heGaeBWcVPh3AfCK6QrtYVECndT3xfwEzrxD/t4DLWx//UgAvwFmBy9gCxWt9KnBMLC063r7s/Crxdornxe/lAP6ddbD8f8Cl99VwZe9ZcQ9/DmfVNwxjEGEC3DCM/uY0OJeASgKGmV8GcBecWK0KB7b9Gs4lYytm3gDOT5z8TiLaFc4CfzmKLiRV2Er8fhWcBfvfcG4NkwG8A8AGACb46ACAme9j5slwAul3cJZXZBbzk5l5GziXkpMy/+qnAMxh5g3FZywzH1ghjc8C2JKISGyT6X4KwFkq7DHMfLk4ppCvzPxrZn4rnPBjAN+JxB26H2Xoc57J4gEAZD7W4wA8DedeBABjxPGbid/PAhgv/svrLkPHS9n5T2ebXk7EW+W6W8mbGE/BjVpsLO7h+sy8Y9mJhmH0LybADcPoVzLL6ZUATig7VvAFAB8jos9nPtogol2IKOYD/DyA8cpPdyyAhcy8gojeBCeOkYU1CsD/wlmTj4ITqp9pIn2HE9EOmb/6GQCuySyUY+EE0QtwIu1bIs4eIvoIEW2QuRK8BGfp95Mht8vE3otw7h59cC4jS7LJiaMzC/tORLRbhTTelYVzPLkJlJMBvEnsvxDAp7KRAiKidclNXB0bCoyI/oOI9sl8xFfAWWL7InE/D6DdddQvB3AUEe2axfktAPdkri8L4ATx4VmefBzOR91zFYATiWhLcpOAv9hEvFcBeBcR7UtEI+H881fCzRkAgBkAPpzFOwlFt6bnAYwTLkchOpE3AABmfhbAzQDOIaL1iaiLiLYlor3LzjUMo38xAW4YxkBwBoB1S4/KYOa/wvln7wNgNhEtBHAB3IS4EH+Cc2N5joj+nW37DIAziGgJnC/6VeL4bwN4ipnPz/yLDwfwTSLavmISL4Ob/PYcgFHIOxeXwrkvPA3gYQB3q/M+CmBu5p7yKTg/Z8BN2vwjgKVwwvmnzHxbJurfDeefPAfOyv4LOOt6EmZeBeB9AI4GsDi7xuvhxCSYeTrcyMRP4Nx+ZqE4KVKzDpwv9b+z634lnF92iIvgfMUXE9HvytIaSf8f4fzrr4WzaG+Lom/zMXATd18AsCNygQy4zsXNAB6Em8Q4DW6i4hqUwMyPweXVj+Gu9SAAB2X5CbilNQ+Cy9OPwI1k+HMfhes4zM6uPeSi03beKI6Am0T6MNx9vAZtum8ZhtF5qOgOaBiGYTQDEd0O4H+Z+RcDnZZmIaJ7APyMmS8e6LT0J0R0ANx1v7r0YMMwjBowC7hhGMZaAhHtTUSbZS4oR8It/XfjQKerbjJ3nQOz694Sbh7Cbwc6XYZhrL2YADcMw1h7+A+4NcQXw/kyH5L5DQ93CMA34Fwy/gbgETg3JMMwjAHBXFAMwzAMwzAMox8xC7hhGIZhGIZh9CMjBjoB/c3GG2/MEyZMGOhkGIZhGIZhGMOY+++//9/M3PDmZ2AtFOATJkzA9OnTBzoZhmEYhmEYxjCGiJ6M7TMXFMMwDMMwDMPoR0yAG4ZhGIZhGEY/UrsAz17P+zciuj77vzUR3UNEs4joSv+qaCJaJ/s/K9s/QYRxarb9MSLaX2yflG2bRURfqvtaDMMwDMMwDKNd+sMH/ES4NVfXz/5/B8C5zHwFEf0M7rXI52ffi5h5OyI6LDvug0S0A9zrhncEsAWAPxLRa7KwzgPwTgDzANxHRFOZ+eFmE9jb24t58+ZhxYoVDftGjRqF8ePHY+TIkc0GaxiGYRiGYRgN1CrAiWg8gHcBOAvASUREAPYB8OHskEsAnA4nwCdnvwHgGgA/yY6fDOAKZl4JYA4RzQLwpuy4Wcw8O4vriuzYpgX4vHnzMHbsWEyYMAEuSgcz44UXXsC8efOw9dZbNxusYRiGYRiGYTRQtwvKDwB8AUBf9n8cgMXMvDr7Pw/AltnvLQE8BQDZ/hez4///dnVObHvTrFixAuPGjSuIbwAgIowbNy5oGTcMwzAMwzCMVqhNgBPRuwHMZ+b764qjibQcS0TTiWj6ggULYsc0td0wDMMwDMMwWqFOC/ieAN5DRHMBXAHnevJDABsSkXd9GQ/g6ez30wC2AoBs/wYAXpDb1Tmx7Q0w8wXMPJGZJ26ySXA9dMMwDMMwDMPoF2oT4Mx8KjOPZ+YJcJMo/8TMHwFwG4BDssOOBHBd9ntq9h/Z/j8xM2fbD8tWSdkawPYA7gVwH4Dts1VVerI4ptZ1PYZhGIZhGIbRCQbiTZhfBHAFEX0TwN8AXJRtvwjAZdkky4VwghrMPJOIroKbXLkawHHMvAYAiOh4ADcB6AYwhZlntpooZg66m7g+gGEYhmEYhmF0BlrbBObEiRNZv4p+zpw5GDt2bMNETL8KypIlS2wVFMMwDMMQLFsGzJgB7LnnQKfEMAYnRHQ/M08M7RsIC/igY/z48Zg3bx5CEzT9OuCGYRiGYeTMmAHssw+wcuVAp8Qwhh4mwAGMHDnSLNyGYRiG0SRr2SC6YXSM2l9FbxiGYRjG8IPIBLhhtIoJcMMwDMMwmsYEuGG0jglwwzAMwzCaxt5TZxitYwLcMAzDMAzDMPoRE+CGYRiGYbSEuaAYRmuYADcMwzAMo2nMBcUwWscEuGEYhmEYLWEWcMNoDRPghmEYhmE0ja2CYhitYwLcMAzDMIymMRcUw2gdE+CGYRiGYRiG0Y+YADcMwzAMwzCMfsQEuGEYhmEYTWMuKIbROibADcMwDMNoGhPghtE6JsANwzAMw2gaE+CG0TomwA3DMAzDMAyjHzEBbhiGYRiGYRj9iAlwwzAMwzCaxlxQDKN1TIAbhmEYhmEYRj9iAtwwDMMwjKYxC7hhtI4JcMMwDMMwmsYEuGG0jglwwzAMwzAMw+hHTIAbhmEYhmEYRj9SmwAnolFEdC8R/Z2IZhLRN7LtvySiOUQ0I/vsmm0nIvoREc0iogeJ6A0irCOJ6PHsc6TY/kYieig750dENiBmGIZhGP2BtbiG0Tojagx7JYB9mHkpEY0EcCcR3ZDt+zwzX6OOPwDA9tlndwDnA9idiF4B4DQAEwEwgPuJaCozL8qOOQbAPQCmAZgE4AYYhmEYhlErJsANo3Vqs4CzY2n2d2T24cQpkwFcmp13N4ANiWhzAPsDuIWZF2ai+xYAk7J96zPz3czMAC4F8N66rscwDMMwjBwT4IbROrX6gBNRNxHNADAfTkTfk+06K3MzOZeI1sm2bQngKXH6vGxbavu8wPZQOo4loulENH3BggVtX5dhGIZhrO1wyqRmGEaSWgU4M69h5l0BjAfwJiLaCcCpAF4LYDcArwDwxTrTkKXjAmaeyMwTN9lkk7qjMwzDMAzDMIwo/bIKCjMvBnAbgEnM/GzmZrISwMUA3pQd9jSArcRp47Ntqe3jA9sNwzAMwzAMY9BS5yoomxDRhtnv0QDeCeDRzHcb2Yol7wXwj+yUqQCOyFZD2QPAi8z8LICbAOxHRBsR0UYA9gNwU7bvJSLaIwvrCADX1XU9hmEYhmHkmA+4YbROnaugbA7gEiLqhhP6VzHz9UT0JyLaBAABmAHgU9nx0wAcCGAWgJcBHAUAzLyQiM4EcF923BnMvDD7/RkAvwQwGm71E1sBxTAMwzAMwxjU1CbAmflBAK8PbN8ncjwDOC6ybwqAKYHt0wHs1F5KDcMwDMMwDKP/sDdhGoZhGIZhGEY/YgLcMAzDMAzDMPqRUgFORHsS0brZ78OJ6PtE9Or6k2YYhmEYhmEYw48qFvDzAbxMRLsAOBnAE3BvnTQMwzAMwzAMo0mqCPDV2QTJyQB+wsznARhbb7IMwzAMwzAMY3hSZRWUJUR0KoDDAbyNiLoAjKw3WYZhGIZhGIYxPKliAf8ggJUAjmbm5+DeOPm9WlNlGIZhGIZhGMOUpAU8e4nO5cz8dr+Nmf8F8wE3DMMwDMMwjJZIWsCZeQ2APiLaoJ/SYxiGYRiGYRjDmio+4EsBPEREtwBY5jcy8wm1pcowDMMwjEEN0UCnwDCGLlUE+G+yj2EYhmEYhmEYbVIqwJn5EiIaDeBVzPxYP6TJMAzDMIxBDvNAp8Awhi5V3oR5EIAZAG7M/u9KRFPrTphhGIZhGIZhDEeqLEN4OoA3AVgMAMw8A8A2NabJMAzDMIxBjvmAG0brVBHgvcz8otrWV0diDMMwDMMwDGO4U2US5kwi+jCAbiLaHsAJAP5ab7IMwzAMwzAMY3hSxQL+3wB2hHsb5uUAXgLw2ToTZRiGYRiGYRjDlSqroLwM4CvZxzAMwzAMwzCMNigV4ET0ewB6saEXAUwH8HNmXlFHwgzDMAzDMAxjOFLFBWU23NswL8w+LwFYAuA12X/DMAzDMAzDMCpSZRLmW5h5N/H/90R0HzPvRkQz60qYYRiGYRiGYQxHqljA1yOiV/k/2e/1sr+rakmVYRiGYRiDGlsH3DBap4oF/GQAdxLREwAIwNYAPkNE6wK4pM7EGYZhGIYxOLFX0RtG61RZBWVatv73a7NNj4mJlz+oLWWGYRiGYRiGMQyp4oICAG+EWwt8FwCHEtERZScQ0SgiupeI/k5EM4noG9n2rYnoHiKaRURXElFPtn2d7P+sbP8EEdap2fbHiGh/sX1Stm0WEX2p+mUbhmFU59OfHugUGIZhGMOJUgFORJcB+B8AbwWwW/aZWCHslQD2YeZdAOwKYBIR7QHgOwDOZebtACwCcHR2/NEAFmXbz82OAxHtAOAwuA7AJAA/JaJuIuoGcB6AAwDsAOBD2bGGYRgd5Wc/G+gUGMbgw3zADaN1qviATwSwA3Nz3l7Z8UuzvyOzDwPYB8CHs+2XADgdwPkAJme/AeAaAD8hIsq2X8HMKwHMIaJZAN6UHTeLmWcDABFdkR37cDPpHEysXu186kaOHOiUGIZhGIZhGHVRxQXlHwA2ayXwzFI9A8B8ALcAeALAYmZenR0yD8CW2e8tATwFANn+FwGMk9vVObHtoXQcS0TTiWj6ggULWrmUfuHrXwdOPHGgU2EYhmEY5dgkTMNonSoW8I0BPExE98K5lQAAmPk9ZScy8xoAuxLRhgB+i3wiZ7/CzBcAuAAAJk6cOGirjKVLgWXLBjoVhmEYhmEYRp1UEeCntxsJMy8motsAvBnAhkQ0IrNyjwfwdHbY0wC2AjCPiEYA2ADAC2K7R54T2z4kYTafOsMYrNjzaRhF7HkwjNYpdUFh5jsAzAUwMvt9H4AHys4jok0yyzeIaDSAdwJ4BMBtAA7JDjsSwHXZ76nZf2T7/5T5kU8FcFi2SsrWALYHcG+Wju2zVVV64CZqTi294kGOVWiGMTix4XbDMAyjU5RawInoGADHAngFgG3h/Kx/BmDfklM3B3BJtlpJF4CrmPl6InoYwBVE9E0AfwNwUXb8RQAuyyZZLoQT1GDmmUR0FdzkytUAjstcW0BExwO4CUA3gCnMPLPylQ9CrIE3jMGLPZ+GYRhGp6jignIc3Koj9wAAMz9ORK8sO4mZHwTw+sD22chXMZHbVwD4QCSsswCcFdg+DcC0srQMJcwCbhiDExPghmEYRqeosgrKSmZe5f9k/tnWFNWANfCGMXjp6xvoFBiGYRjDhSoC/A4i+jKA0UT0TgBXA/h9vclaO7FJXoYxeLEOsmEYhtEpqgjwLwFYAOAhAJ+Ec/n4ap2JMgzDGGyYBdzoJPPnD3QKDMMYSEp9wJm5D8CFAC4kolcAGN/sWzENwzCGOlbrGZ1k002tTK1NLFgAbLLJQKfCGEyUWsCJ6HYiWj8T3/fDCfFz60/a2oe5oBjG4MXEkmEUOfjggU7B0GDVKuCVpUtXGGsbVVxQNmDmlwC8D8ClzLw7ypcgNFrEBLhhDE7MBcUwcpiBf/5zoFMxNFixYqBTYAxGqgjwEUS0OYBDAVxfc3rWaszCZhiDF3s+y5k6FTj55IFOhdEf9FeHdPny+uPYbrt6w1+5st7wjaFJFQF+BtzLbmYx831EtA2Ax+tN1tqJuaAYxuDFBHg5TzwB3HvvQKfC6A/643mYMwcYMwZYs6beeJ54ot7wbfTMCFHlVfRXM/POzPyZ7P9sZn5//UlbOzEBbhiDk6HYiNYtXIzBTZ2uD3U9Dw88APzhD+73b3/rvvvDCl4n1nk3QlSZhPndbBLmSCK6lYgWENHh/ZG44cjUqcAzz4T32UNqGIOXup/PZcs6Gx4zMKLKu46NYcn06cCECfWFX9fzMHUqcP757ndXplCGYuf3oYfy30Mx/SG+8AXgkUcGOhXDhyouKPtlkzDfDWAugO0AfL7ORA1nPvc54M47w/vMBcUwBi+dFhy9vcUw11uvs+HfdVdnwzM6x1ln1R/HqlXAokX1hV+XqOzry4X3UBbgO++c/161Kn7cUOKXvwTmzh3oVAwfKk3CzL7fBeBqZn6xxvQMe7q7bVjYMAY7//Vfjds6LQI++tHc0lcHQ1G0rC18taZX2V19df67DoPOsmXArFl5+HVw5pnAU0+53z79dZblOi26Pt1bb11fHP2J7BwZ7VMlK68nokcBvBHArUS0CQBbVKdFhosAP+qogU6BYdTHHXc0buu04Jg7F1i4sLNhSrz7SX8L8U7n0/HH978F8ZJL2g/j+ef711q4dClw6KH5/2nTOi/Ar7sOeNe73O86XbIWL3bfdVnAZb7st19nw5asXl1f2AOBCfDOUmUS5pcAvAXARGbuBbAMwOS6EzZcSQnwweyCsnBhsTL55S8HLCmGMSB0WnDcc4+rDwDnjtJpvAAf6sPf553X/+sof+xj7Yfx2te6zkN/ca56Pd63vtX5OKQAq7Nj1x8uKAsWuO+ens6H7anjue5PLrgAuPXW/P9QFeCDdX5d1azcAsD7iegIAIcAqLHPOLzp7i4KWW9N8PS3AP/f/wV+/evy4/bcE7jiivrTYxiDhY9/vPi/DhHgGzNdD3QCL8D7ew3iOuqwOvJeivrzznOuD0DnGuvFi4GXXnK/16wB3j8M1g7r6srvRX+ImjpdUK65xn2PHNn5sD1D3QL+yU8CJ52U/69DgPf21tuZW7Vq8HYaqqyCchqAH2eftwP4LoD31JyuYQtRseKaNi3/PRC9tNtvB/7yl/LjBkMPMpWG7363/9JhrB3oydJ1PAO+YajDSu2t63LErW5reF0GhE430CeeCIwenf9/4gng0Ufd7y9/uXPx+PxYuRL4zW/6fwJbp+/HiBG5VXfp0s6GLXnDG9y3fz7qcNvcdVf37Z+TTvLCC+57qAtwoNiBX7Om82L28MNdB7gufNkZjK6/VbLyELhXzz/HzEcB2AXABrWmahijBbhkIFxQBrPbi+TDHwYmTYrv/+IX+y8txtqBbmjaFeAvv9zYCNTR+Ht8ev13Xx+wzjqdj+fFfpiW7/ONGXj66fbD+8c/4vs66Zfv896LmDpdafrDyjdiRC4qt9yynjj23x/YZRf3uw4LuL8nvkzV0f79/e/uezgIcElfX+frrBdecHWjp9PzYnzZGYz3osoju5yZ+wCsJqL1AcwHsFW9yVp7qaMykIVbM1QE+OWXAzffPNCpMNYmdIXdrgg45BDgJz8pbvOiqQ7ruk+v/67LH3XDDYv/67gWfy8WLwbGj28/vFGjiv9vvTX3Be6kkPXp9iMPdXSAPCFf5k7X7f2xiIAU+Z3yAb/++kYXIx9mHe2fvxeDUfS1Qx2uIlqDjBvX+fCBwbl+eZWqZjoRbQjgQgD3A3gAgK0w2yJlFvA6WHfd/Pe8ecUKtBNxzpgB/PnP+f9TTgF+9av2wly5Evi8rTZvDCC68WzlWZHnvPhiYxh1TsL0z3ndArw/6LSQGTOm+P/BB3Nf4Fatrk8+CRxwQHGbvgd1CrI6fZk9dVhANXUI8BkzgL/+1f3WFvA68PdiKD9zHiLg8cedAayrq/M6pW4joO5wDSaqrILyGWZezMw/A/BOAEdmrihGCwy0C8pWW7nKqJP8+tdFy97DDwNz5uT/DznEPcDN8PLLwP/8T2fSN9y5/PKBTsHQZ9myRrcE3Xi20vBstFH+e9WqRitld7fzpe3US3NkmvVkuf4SA3XUYZ0WrnvuCbzqVcVt/t749Dcr0BYuBG68sbjNp7tTou+pp4Bjjsn/n3NO/jskwDt9L1avruftqlOm5L/rEOC9vXn+9IcA32ADYOONB6foa4UbbgDOOKOeEZDQxM52Rf499wCPPVYMazBOxKyUJCJ6HxF9H8B/A9i23iQNbwba3aOnpzipohnRH3soiIoVTVdX8SG99tr8xQpANSFQlqYyP7FO9NL9JB3AiaQjj2w/zDr48IcHNv7LLgP+8IeBTUO73HYb8I53FLd5QeYnSrfSmEr/aCkCPPpZaRbmYlnv6SmKvi22GB4WcLkUWifo6mr0YW5XgIcaeC3AW+lIyHL39NPFNcpPOSV3b9ECE+hMeyPLzerV9VjAjz46/12HAF+1qjF/6hTHzO46BsPiBe1ClK/eJlfB6RQhDdJuXfWd7wCXXpqHDwy89gpRZRWUnwL4FICHAPwDwCeJqMY5q8OfgXwoR45sXAlBFszYC3ZShVdb9UMP6cYb57+rrLta9rCMG5ev46qZOhU44ojyOMrwE2kAZ5H3D7RR5A9/cKvpDGX07P73vQ+YnL3tYP58993sc6uX/4sJ8HY499zGCcj33+++mYtDxjvu2F5cA4m3+vprue225sP4zW/y36FGX/uANyuWQ8LUh9HXB2y2WWsCXIYbskAvWVI8TpbTTlirZX3t469TvI4cmQuwTlrA/XX09bk46rSAM7v7MVws4CNGuFHtJUvqsYDrZzE1b60Ko0YBy5fn4QPu+RtsVKn+9wGwP4/XfdMAACAASURBVDNfzMwXAzgw22a0QH+7oOi4li0DPvOZeJytvGBH+4WFBLhvCKqKmCr5oId7PYsXA9OnV4unKnX7PQ5l6rCK9Dd6GFT6CIcsi1XQK16EynS75Wr+fGD27OI2v365FgH//nd7cVWlXQPDmjXxCdd6ZZdmkOtw+86JpG4L+MiR7bvS9PY2impvUPETS+Wz2IoA98IlxJo1nReWixYV/8t3ZXRqFRRpuWcGNt+8NSGp0xrDP3vDxQI+YkRuiOi0AH/++cZnp93nZNSo/LlgBr7wBWDTTdsLsw6qCPBZAKS33FbZtiREtBUR3UZEDxPRTCI6Mdt+OhE9TUQzss+B4pxTiWgWET1GRPuL7ZOybbOI6Eti+9ZEdE+2/UoiqvGdVp0hJcD9/nbZbbfcghCKS84G7kQFEXJB0RWm/1/14a2SrjKrfCcZ6gKzToaDANfXIP+3aoXTx9eRT9Ja6PFLuGkLeB3IuR6Aa0xbQXYOpk93S9GF8Pkn1/BuhZQF3NOsCAjVOX4CvBfg7YqXkAD3HT0iN8qhy3GzjBkTL6dnneX2dbIcywn8QLGN7NQ64PJ+e/eQVpYhfMUr8jW+U/jJqkO9XgSAnXcuGgo6fU2PP954D9qts+RzMphXeqvyeI4F8AgR3U5EtwF4GMD6RDSViKYmzlsN4GRm3gHAHgCOI6Idsn3nMvOu2WcaAGT7DgOwI4BJAH5KRN1E1A3gPAAHANgBwIdEON/JwtoOwCIAwpNscJIqCJ1qKKdPLw59tpOmKuhORWiiRrM+kFXyYoPIavR1PHCDcRH/wcJwEOCyQQaK1yQb7mbQx+uOKtBavsl09vQ0upT5yYX9MQx+8snF/2ef3Vo4m2yS/065qHVq6ThdR7zlLY0uKO1awCdNyt2YOmUBX7my0Y3JW6xDHa5WR1hiLgCTJztB1skyFeqoar/dTsSnBXirYcZeZtXdDTz0UB5H3Z3f/uCgg4Dtty+WozraQv3sdMLlaCgI8CoDVF9vJWBmfhbAs9nvJUT0CIDU0v2TAVzBzCsBzCGiWQDelO2bxcyzAYCIrgAwOQtvHwB+CtolAE4HcH4r6e1P+sMF5YMfdL7QZRXA/PmuV98OIau+f4CWLSv+r/rwVnkA/SQq/ea6Viu9f/wDGDsWePWrG1/2YQI8znAR4FIcdcICrsuhbJDbWYlBTu7q6Wm0gEura90CvF1LtMTXf6m1stuZzCjRLkejR7ff4dJ1t7R4e9HXbronT25Ml7eAh4RlOwJ8vfUat3t/3U7Wh9rlRXZUO+UDLvPMPxetXkOsje7rc0tRvu51w0eA+3ySoy51rQWe+l81DH9v5FyJkLvZYKHKMoR3pD5VIiGiCQBeD+CebNPxRPQgEU0hIr9Q15YAxFoZmJdti20fB2AxM69W2wc1/eGCAuSrBpQ9LDfd1HkL+DXX5PFee637blZwVHkAfRzXX994bivX9JWv5MspPvtsOC7PPfe0/8auRx7p/Fu/BoKQZXeooRvkkACvUiaXL4/7KS9fns+xYAbe+Mb2801Pqn7d69zKJz6OukVAqGFrtT7x4jS1AoJeWjFFb291Y0eooxK6N83U3XJUpa+vuEJNq+j4e3qKk82033GrkzC9BdyH9dJL+X+izi4LqVejCbmgdPpNmHrEqxlS540dm8cxHFxQQgK8DmNUJ5Z8lR331avzkaLQJM/BQu39AiJaD8C1AD7LzC/BWai3BbArnIX8nMTpnUrDsUQ0nYimL4gtndFP9IcLCtD4FrxOEEtfV1ejCPYPqX8o6vAB1wJJUuWBW7Cg6MM6dWo8TJ3uj3zEdV7a4eMfLy4p1g4+vx57DPje9zoTZlVa9fsdTHR3F5cMlJ2KZiyib35zPgFYP3tPPll8GUhPjzumnec+1HGQHYC6RUBI4LV6Pd6SG0qvH6VrRoDvv39uANBpSwnwVIfrtNOAH/wgHJ+uc+Rkwk65oGhGjSpawENzGVrB1yFLl7pvv6KPz7dOirBVq4pvU5X52CkXFG0Bb8cFJXXt3i0y1BkaigyUAG/l3sSWyxzMLii1CnAiGgknvn/FzL8BAGZ+npnXZK+3vxC5m8nTKL7ifny2Lbb9BQAbEtEItb0BZr6AmScy88RNpLPhAJGyynSKZhqqKjQ74dHHr1eQ6KQPeEwsV33gzj8fOP744jb/0JYJ8FYb0x//OK8onnwSOOmkfN8ZZzQfnsfn18yZxZciLV9eXIO9Dm64YfBWcK3SqhVu9uxctMRcBfw+L/raeUZ1vsuOQ39YwDv5Uhbv9qXTe/DBwLHHut/N1GvPP5+7wHkWL87Pl3kX8vkP3e+nnoq/VEynSVpZm7G6PvdcfEh+p52K22XHoZMdLh+Gt65rkd9pAR57i6e/7lauSS+7KTvS7bigpM6T93u4WsA7fU3779/aW4fvuw944onwPvlsr5UCnIgIwEUAHmHm74vtm4vDDoZbWxwApgI4jIjWIaKtAWwP4F4A9wHYPlvxpAduouZUZmYAtwE4JDv/SADX1XU9naK/XFD0K5DL0iRp9gELWVn0DPM6fMB9WNrPsargGD067H8ov2PpadWf84QTiqsWSE47rfnwPHLSknYH2m+/1sMdzkjXjb4+YP31i/v9/UlZROfPL76JdMSI+ApEcqg9JsBDcaxa1bjduwSE1uDvTwt4q6NPzI3LNP7oR+5bp1deQ2pkr6/PuYbJODRSSGpLaxUBrl9kJtHxtWoB33xzYN68cNhHHgnsvXe+XYrhTnW4dtwR2GOPYrxSCHdagKfertmqAO/rc29k1uH4362uggLk561Zky/Np/cNJx9wb833dNoCLutMT5X7fdppwK9+Fd6nn70h5wNORFdl3w9l/tr+8xARPVgh7D0BfBTAPmrJwe+KMN4O4HMAwMwzAVwFt8rKjQCOyyzlqwEcD+AmAI8AuCo7FgC+COCkbMLmODjBP6ghAk48Mbyvkw9rzA81liZJ7AGLhZWygGvxUocLSmiiUZVKNeX3qd0OYqu6tINft7cTSGttKm2dHgKvi7/+tf43j0qfwVQlnRLgDz5YXFdfiix9/EEHFdfo9iJAHhdqeF772uLrx4HiS6jk+doCXrcADz3PVRq7K69sfPOoTHfMOp2ygC9alAtHT2x5Mz0Js+qqN6nnq8wC3syoWay+Sb30rJn7rTs/kpB40ffG74+tRNUMKQtls+2GJ3R8p1ZB8WHffjvwH/+Rb9f3ezhYwH1nSz4rrVzTV78a3+eXUp0/P+80VWlfH3wwXm6kgWww+4CnBhC9THx3KwEz850AQpc9LXHOWQDOCmyfFjovWxnlTXr7UGYg1q8OCfDYkGCV82W8rVrAmxHgoeHaVvNRjxz4yRyhBrHVOFJ5sXRpePWBMqQAl/f85JNzsTZ7NrD77vE3iLZDp60iN94I3HlnZ8NMkaqkUxZRnd/z57u3Ux54YGO51ELGi4AyC/icOcBFFwG/+EW+zVsMiYC77y7GoS3gdVrhdtmlMd+qCPBVqxonIPs31VUR4KF7EVseThIT+VIstep3nLKAa5/gffdNd8D186StkKF0h/yOY2V69Oh4uZDiRVtytSBupp2QyPyvIsCbvRep+khbwJt9Pvx5o0YVl2uUbi3DzQdc0kpdf9ZZwJlnhu+zL29TpgCnnuq2VbnfTz8dr2t0GR6sAjxaVWbLCALAusz8pPwA2Lp/krf20amCUsUCHtuXsh6ESAlwHVcdAlzO0Pfbq+ajjseHKZdyAxrfNghUi2PNmviShiFrmLYKVkVayGTeL1qUz8zv7XUvPElZv6rw6U8XX+sNuMmfneTMM/u38UpZwFMWUZ3f224LvDszWegOohaSIReUUMNz8MGNowFejKV8wGUcdbHOOsDrXx9OWwrm4jO14YbAW9+a72vFAl4muvR3mQ94s+Uv1OGKWUS33bZx9Q+JFoextKTiAFprT/TqLVJIah/wVucA7L478MADeZj9IcA77QOu0z3QFvAZMzofps+nMiNBFXx7t3Rp0S3Sj+r4+RnNxFHFAj4kBbjgKiL6IjlGE9GPAXy77oQNV1oRxO3Ek6oApGiTNFsxhQq3D0NPYKs6BFsl3T6ORx8tbo+lSRPyx99oo2JY/vs972lMQ5U47r4b2Gab4jZ/baHl1vSksapI8SCvafVqtyY8kAsj/ea5ZvnHP4B//au4bYcdwse2Q2o5uk6jO22hBicmwOX2MWPyEYzUebKBLmvc1l8/70TJ9Pr4JdpaWbcfaqizW8UCvmZN0Zdai+yYOE7Va1Xq1mYEeLsWcJkPMUtyDD0S16oLSivCQ7ugaCt7V1e+v1UL+EMP5XVdqvObGvFIkWpnOuWCsnx5cR18Ker749nT6I5wJ/DXUGYkqILPm89+Frjllny7L19yPlbVONYGAb473Cokf4WbEPkMnH+30WHqKCitCPDYObHKpIoLSqsW8Jh4CaUzNryc4i9/yX/vsIN7CY8OK0aVOC6+uHFo3OfBSSe5t8pJ5DU1U9HFXFAOPTTvVMSsps2i49hll3oq/youBZ0iVWZSIoCo2GnSq1Lob22FqyLAQy86ik0gS/mAExV9VlPoyWUSv8qLjyO0/F4ZunMlhWWrFnC97bnn3EoJcl/Kzzzk9hFCxnPvvfH45bZmLaJagMdEtRZ9rbo9SEt2mQvKyJF556lVC/iKFXk5SY1YMgPvfW/zRqHQCKz2AY91csrw5/X2FjsgQ8UFhblx8YGy4ztpAfcjHx5fZ8UMICn0MseeUBkejFRJVi+A5QBGAxgFYE62hKDRAmUFq9MCvIqQrbJdD7XrfZpO+YCHLBm6MZUvP2iHqpa2ZuK6KDAtWPpP6klMUrx86UvVrcAxC5mf4CJppTLyIt7HoQVBHQ1NbLWJOghV0iEBrQlZf2MCXDYyMQEeKm+pycI6j1KroBxzDPC2tzWGH2LTTeP7xo4tvv5cWxOr+oBLQssnyvCq+IDrbYsWuVWAfJjy21tyQ/E3I8h23724sopEi75mLKIxF5Sy0QHdWavSnvT2FutlLV60C0pPT37NrVrAgWrrNDO7F0s1W7+UddSkAG9mxTDZUdNlKDVyMJj4v/+Ld8QXLnQdHo8uf0cd1XpdH3O99M9FKwL8Va+KhxkbURtMVGmK74MT4LsB2AvAh4jo6lpTNYypMkzaSVLCtxlxOXMmcPTRxW3+xSWhwu0fCG0BlytGpPDHh0SYFsc9PcX/rY4kyAayUxbwEKl0SovSwoXVK3BpAf/3v/Pt2kLmj2kW6Z8XauRj+XTzza1bsvvTAp6qpFNlQb5ABEh34mJWuDLrUqjz6++p7sCFhGwd9crNN7vvvr7G9a2rWMDHjCn+r+qC0owF/B3vcMt+yn0pC3gVkQ80lpPvfCd9vI+vGUGWKkOS2LyCZtDzW0KWXBmmfPtmO+vAy9WFUgK8lWtKdZ51pzG2alGIkJtJah8z8Pe/N5f2ulm5Mv5uiN/+FrhOLeYs65SRI1vvVPh8PuIINwdChy/LQJU4Nt88b/tThrpW9UB/UKUpPpqZv87Mvcz8LDNPhluz2xgC+EIYEuCxCqfqA+b9gKsIcB9mVf9jf3xIhOlORcji2MoD18wSbu2ImtTse9mgrVrVvAAPuSToMiAbjX/+s1r4Ej2BKSXA99+/9VVX+sMHXL6YRXdMdNmtYnVNWVJlHL58VVmGMOWC0tMDbL998dhW3R5aQVsTfRrKGD0aeM1r8v/aBaXMAh4qb6Fh6Kp1hMynsWOdZa1qvvkOhxYBWlBIS3JZ/aRFYSxvylxQqtSD0o0GSLugAE6EeQt4lc5WjCoGk9A1VSE1gqnLrB/dq3K/deekzB2orw/Yddfm0l43f/pTfF/Zeuyxe7FqlRsNSiFHfuUIm7aAv+td1TtDKQNjlVV2BprSqpKZpwMAEb2SiF5FRK8CcEftKRumDCYLeKwxqJqOVIWlfVRbrUC9CHvzm/OZ01pQ6sa1t7faAxcbCvNhpSr+dh7qmAUFKDZovb3tC/CQVV/GWdUnWLLJJkUf4ZBA7AT9sWa5L1+6MQ0Nh1axuoYm2oVEnyxfZRbwUP5WseRq8VRX/aKX6YwJcLnsYFm69b2QZfjAA+PCSqKFpD+/LP7ubuCQQ6rnl3fDKJv4F5ofECJljdduD2WTMMePj8cT61iGXClaEeC/+13xvwyjp6eaj26ZVT/m0hjqsMV8wHffHfjEJ5oX4KFO3FDwAb/hhvg+vQSubr/9NV1+edGPvLe32JG76y7g618vhhWbFOnLsN9W1coujR1lz96QFeBEdBARPQ5gDpzwngsgcQuNFGUCvC4f8HZdUFLHNWMBB+KVrUyjFg077ZRPkIwJHB/HiSdWy8eQ/6xu6GKWtn/+szMuKJ0W4CErrm6M2i1jG26Yux/58AZjQ6M5++zG5RKrioDDD69mdU35gGuhHRLgzVrAU2JVC7J27ntsNIK58QUzMSvauHHF83QjLJ/j1L0YMaJaZygkwGMW8HZcOXwnNvWyrpAlOUZZGYpNHtVi+ZhjGldgkvi82Wqr4nbd4QmtrOLPfd/78uUjNQcfnP+ePRvYbrv8v35jbKhsLl8OfOxjcSF7551xq2tZp1l3hmJlSpMS4AO9DGFV3vnO+L6YT78U4H19wIc/DDz/fL5fX+dttwHf/35xW6rOks981Y6LfE5uvDF+XKpuH2iqJOubAPYA8E9m3hrAvgDuTp9ixCgrWHWtglLFBUVOJvrBD8pnSqesOb6CDr1FMNZA9/QAS5YUj081tCGrlqdKPur1sKu6oMhVIFohNoQJFPOmExZw3ZjK+Ftlgw2AaeK1WFqAX3llYxraYfly4NJL2wsDAH7+80Z/zCpvSzv66HhZaEaAA8UOaSdWQdGNS8gHvEoZ+te/4uXi//4PeN3r8nTr69CTMKtMzGvGAq7Pq3ovUgI8ZUkOXVOMcePyF+qUWeGqCvDQvI2YANdCMrScYgwfxzrrFO9ZyB1Il2EvnjfYIF+C9IEH4nXjd79b9DWXnbbYs3dHNs4eK8PLlgFz5+b/99473TbELODNiGVt5a7iAz7YeOMb4/tCIxrSSCCvKfV2zK98pXFJ3ZgF3Jc3v63qvZDl4oUX4sel6vaBptIqKMz8AoAuIupi5tsATKw5XcOWVMF6+WXg1lvriS/UOOi07LVXvv1znytOvEuFnbqmZizgfX3N+XrqSlZbacrYYovif22F0z1x/6a+di2KMUsA0LoAnzmz8XyguZVdqrLhhkXrhx4KPOywosX0mWfai++llzrzWvp11mmcU1BlAtbSpXGrjBbAVSfzyQa6FQt4ypVCipCqlr2ttwbuvz+8b/ly4NnstWzaEh4SGlUm5oVcfmIiU59X1QKu30SpOyepDkCZ+1noPH2PtBtTKyIvVMelyltVNxeg8S2dMt0pAd7VVSwHft/++8ffXiuFsg8jVQ8CwCOPuO9Yvul0/fnP+fMdegY7LcD1s1/mj9/OijEhfv1r4Mknmz9vxIjGUQ9P6D7I8iCvSeZXlTom1nHRLiitjBTttFP8uFR9MtBUEeCLiWg9AH8G8Csi+iGAFl8XYoQK1hNPuO+//AWYPr2e+FIWcP/t3QpCPdwQzYjkMitfWdpC+1JxVBly2nhjJzzkOSkLuF/xIlVRr1kDnH56eF8o3SkXlGYmYV5ySR6mfDlEyJe5XQHe05N31oBihfn5z7tv2eHbbbfyMP/1r+Ir1SXtTPSS9PQ0uh1JH/BUmYkJspQgqjoMXtUCftRRwD33uG2xUZSyMhxj9Ojia7V1/Loekdem86bqmzBT+aZHVUIjB6EwJWXL6cV8/ptxQQmNMIXSE+rQx9BWVhlWqOPQ6jrgMQt02VwYovbfllylw/WGN7jv2DWFOqa+o1h19Cn0P0VqpEZ3+HSYRx1VHr5m6dL4/fza1xon0Mb4/e/z32vWxJ/RWFz+OuQ1SWNGlbyLGTuqWsCfeaZooJT3Qr+oTDLUBfhkAC8D+ByAGwE8AeDddSZqOBMq4P5lEa0Ko4ULgQcfDO+r4oLij9HuIlULbaoxDDVOVcRxmXjZfPN8nxdVzVobYkNhPr264vczt1NCdvVq4BvfiMcHpC0/8n8zFvAqM75TnbFm0OJJ5psfgm62LP/mN8DJJ4f3tdth8JRZwFPlPeX2kHIBifnHt2IBv/12YN68tB9qyAWlWWuSPl6u1KJH1LTQ+PjHO/PsxSZipYRsmQuKtg6XWdlj5U66rul808tCeprpDGnrrE+T/9/MJMwUVcpQSEimrNexsqbzRYv8ss5v7LnQdZlfwzpVR8vnYuZM134285zIsOt2QRk3Dnj44fbCAIpvci4T4KF3AIQs4HIUpEqZS5U3+e3jkKskAcAf/+jmd3lSdZZO+1D2Af86M/cx82pmvoSZfwTgi3UnbLgSKii+kWhVGN14I/D+96fjS03CjL02XrKnePepdz9IieTUMHzqYajigsIMvPKV+b4TT3RLF8k4qixhF7ImxYahjzkmrxDKXAskJ5wAfOQj+fG6cUutQNOKAE9ZcnWjdMEF1cLWpNwHQj7/VdAvDNp5Z+ADHyimt116etICvIoFXJerMuthrBEOWcC32SZ8rJykJL99OGXWy1Yse5L99ss7Vrrx1c9J1dGKso6DXtpQd4yrPHuyTOl7ERPg99/vVnCIifx11y2us687Dqn7Hdu3fLlzs/KkfMBTz16rFvBUZyiUbnmvJKkO7L77Ft/6W8UC7tMXu6ZQOdD5FbKAy2s66ijg6qubG/FIWcA7PQkz9S4E3XmvSlkbEboXIQH+0EON+1OU1bXSBaWvD3j88cb9Wkek2mJPqJ0dLFQR4KE5swd0OiFrC7EGFsh9jJtFr0IgacYCLiso+V8eE0pnrMHx34cdVjymigBPiXvd0Ky7blGQA9WWsCuzXsYq0NSb0/Q2orTvoa4YZIXbjAD3pCxSurL65CebCzsWh8y3VCcuhRbg48fnk7t0WbjzztZe0iOHiD2piWC6zDLnL36Qx7TiSyxFgN//kY+kLeDSVzImXnQHr1XLXgx/jPS1bcXSV5Zv8jkJuYekOv0yzJhw1/fb34eLL3bD3LFnf7318tdf+7TpexGqP0P1iT92zJiihbirK718oiQklnV9HiMmiMo6kdoFpcq996MKklinQp7j0xMT/Hp7yvAj4/X3wj/PVScr6/yWhPzKWxHIoTg7iW73Tj216H4aaj+kAPf5JJcz1Hn3ylc2xptafEBS1eWomYnbQ06AE9GnieghAP9BRA+KzxwAEYcHo4yUWO2Ur2so7CoCPCV6UxanV7wifjyzE8jNWsCZ3XrTsbSU+fBVqfhS1sOUsGhGgOv4dCWt88JXXJde6uYDVK3Aq7qgHHhg+y4ooY6LT2erAly6C/hwdPn033vtFX+TW1kc+gVCKauM3B9zSQhZwFPl0iMbaJl3KUufFxwh0SXj1xbRdi3gOt2AezZjcVQVZCkXlJAbhtxXxQKu91WxgPtwY3GkrHChOELxS4EciqPsBUJdXW5ZzEcfDbvNVbmPQLzzWWaICLl+yOuMbU9Z2UP3wseRckGJCfBUZ1LeCz+a6/+XdexDIx6e0DrgVZ69U05J18nN+NZXQef32WfnbpOxeyE1CrOb9Pj2tzfu99f7nve4UWNJmdtS2YhHaF6IfvaqXO9gImUB/zWAg+DeenmQ+LyRmQ/vh7QNS1KVYqvCKOZnCqQt4FrYxIY9Y+f7/SNGNL7tS4sAbU2M0az1MPQfAF772ngcOhyZrirxNyvAtbCI9do/+tF8dMGva1pVyMZcUMqscM3gJ+mlGtNOuaCELE3tvphHNpBAo8gPNQp+foGewOfxDa0MMybIdPj+WLm/rw+44orGtMvjq1rA9f1O3RNtOY8d77etv37x+pu932XPnn65jycVn96mBbC+h6F66OKL3XfKChd7C6wuC6F09/W5ZS0vvDBeb6d8wP3zfd11bsJhzAXlllvC6ZBUWUs+lN8xN4yydijWaS/rDPn4b7qpuD8kwDfeOA+zSvuxxx7FsOToRgif7re/PVyGW/EBP+ec1gR4Fd/7EKH89quI+H2xZ8nnaVdXvmQwUF7HyNHH2P32nZ9YG6U7rKERrdj9HnICnJlfZOa5zPwhZn5SfBbGzjHKifXsgHre/KcfDLlCht/mH35pEZH75TGSVGOmRUizFvCUBTokwHVl69fmTVFmheuUC4pMp7ZuxcRTLLwYVS3g2gpcBZ9+vy68jkPei065oOh7AbT/anrtglLFgiLnR8gOp4e53CqTEu7yfH/shz7UeGxXVzUBXtUHXRPq8KREbqqjWqWxK0t3rJz6faG0lY0+pSZh+t9+slrs2Q9Zg/X9Xrmy8R0KMp9+85v83FCd39WVr6EcuidERbckXQ/29eVvDU7RqgtKzALejgBPPXv+miZNaoxP3ouJE527o4+vbPSprw/YdttwWDF8Xtx+e2MZCo1uVhXGrQhwWXf4tFdZFUWne/x4YKON8n3yLaUe2Rny9/KEE3KjTBUBnhr5BYoCPNb5lc9Vs+5+g5FBmqzhS+qBnDCh8+HqCvyjH82HhvQ+7Xd46ql5OCE3Eym2Yv6zoQejqgU8ZT0MWbOaFX0hEdCMBbzKy41kHFpYlIkQIHxNf/gD8L3vVbsmiR7aT3HCCcCsWcU0eGtwquPQqgDXEyTLLOA//nFz4QNhFxSZz6F8k8Oi2kLsf8sXTpR1DD1SBPilBWU+brll8VgvurSFSqc7VIaly0OM1GvbJX19bg3hlItCFdEREsAyf1OrzlSdhBlyFwh1XOR53oKdEgG6s6Hj2HRT59cdG33yEy6li5Nk7lzgU5/Kwww9C17QxCzgofzQpCZhpu6v9AHXHdBUO9SuBRxo7ITL83QHK9YmyLZF1luhtK9cWVz1RpfTmAtKKN9SdMItEHAdgzL0vRgzpmhc6enJ89nfJ1nu/LXpMGU6NKk6SxsgUxbwp5/O7oLMfgAAIABJREFU/1dtr2N1+2DABHg/k3ogJ02qZrnQpApXqmeq9+kG2A/HAsCOOzq/wxChClQ3Ss1awEMWKxl2yAdcNwZlhKwyVURAMxZwWdmVWeFSPo2Sv/8duPnm4rZrrw1fUyjfquTReeflqz3oxi/VmNbhguIrUClWfvjD5sIHGl1QqogAn6ZmJv5pETB3rhtmlkgRMHVqY3r8esYybb58lrmg6I5pFUEm8z/U0dDpjo1UVW3oyjqfMr/lcb4TWeVeyHNDdUZo1MiX36pL34XEqu886WfPX6M3tMQs4HvtBZx5ZvE8nd96XkDoGuXqWtJdwJMaiUt1IqUA13kTK2uxOM45Jy6Q5OiTvyYphvV5um5NvbApZNUP3e/Pf764PGrq2ZMjbLJNqkI77qc+vrJwYgJ41Kg8X/v6igLcx6EFuH9OYnMVfPhf+5ozrFSpaz3y3miXQUnV9rosvoEkKoWIaDsi2jOwfU8i2rbeZA1fUg9kHQVFFvre3rS1IvVWwFDaYkISyGeXhyrwdn3AU0OvzVhey0RAzCrSrACXlWQoDhm/rshCcegJiwDw3HPl6U7t04QsvikLhq54m7WAl/mAh4ZFm0XnWxUXFD/EWtXqqsVSd7dbx/db32o8z4fpLf+xe+PLTTs+4JdfDixY0Bi2Ry/Z5+MNXa+2ssrOb6wOKxNkKd95eW6rDW0o3bKsamt4bBJmyJign+fDDgPeqdYOk/fC+9vGLOByVatQun1Z0BZwbezw9dRllwH77NMYT5UOta6zQnng8y7kNiavP+Tmcsop8fsmLeD+t3RB6Osr1hmhZy9Vhvv6ivVW6Fj9IpzUs+dH2P7858bOkD8+RhXhnNqnO12pY0Ptnu646PT4c6Xrk0y3379kSe4GxAx885tunfVmBLjMt9TLfmIaIHTdQ06AA/gBgJcC21/K9hktkBImrRaUMt87wFnU1l23MT6J9gEPpe3CCxvD1uk+/PB8zezQg1GHD7geUqxCWUVUZvWsIsBlZaXDDFl+qljAQwJcXlPMeugr1yp5pIdT9Xes49CqCwpR0ZVDN+baKtMKZZMwQ+XSWw6bsYBrX0d/n/W98PFfd53bFhMBvpzGBHjKf9c/e5/+tFu3N1a/pCzgn/iE80vXYfpjpJiJPds67/yxzz3nVqIoE32elGVRP8/a2JByQfHp/vWv3XdV66VOd3d341wDfU1+DkFXV7hM6wlroVGzWFmQ6ZZ+5Nonvacnt3qWGSJCLii6Ux7KC339KSt7ygIur0leh74/Za4z8ryqLiirVxfnfITKqcfXL3vvXYwj9Zp0GU/suqqUwyoW8L4+4Nhj4/d79eo83264AbjyysY0aBcUXVcsWVI8DwhbwFMjpfJ+SwGu33aZcrfz/PjH7rqGogDflJkf0huzbRNqS9FaTKoBaxVfIHt7wy8RkYSW/ZJpIwJ++9vG80OWgFijAHTOBzz08DUzlKcr0FBjGqrAW7WAp0RA6BpjcaQEeF9f40orcl9Vv0QtJGVaQumWFhIdbxWYi6+J1/eilcmjmjIXlFC5LFsaq6+vuOZtTLzoTnKsY5p69qpYwGOdyLI5EikL+IgR+aTm2LPnxUwzApwI+PKXgdNPT1vAJakyHOrQxs7zcdx/vxN1+rwy8ebR6SbKBXSozpICPGYBl8+3T3dvL3DAAdUEuE+Pn+ypyz3g7qcXsyFxnLoX2gVFl2u9zcehy0bZs1fFAi4JdX5jz5NuL2LPR2+vezamTHFzNcpcUEI+4P7ZSYlAeZ6fEBm7zhBVBfiFF+bp/8EPgEsuya995Mg83/74x9yt0afLX6O8X7ot1PWr3+cNLPvum/9fsCAX5xJ5L/SykH6VG31crGN+wgkujE7rqk6RStaGiX2jE/uMBKHKSg9/thtuaLscJoydU0WAy4Lc1wd88INpQRZq/FMV0de+lp8Xm1AU2uf/NyPSqooXzZo17sFu1gKuKwnd8EgraZkAT63DG2pwZXxVKvTUWsQpa1YzFnA530EfX+aH2gpla42XWeGqDG/6dB99dLkI0PHFLOC+DPn9IRHw5JPhoV7ZAUitcazdHny8Oq36XkjLbtn1hq7fH1/Veuk7Y7E4Uh2AkAvKnns6Ee6v71Wvct+yEysn/KbKvs8LL8BjHS6fxpgFXN8L7yt+4435+SEXlFi+heqD1GTwUJi9vcDs2Xm6y3zAU4YIfWzMEBGygGsfcH2doZEZmYZvf9tZaWWn0ceprblAbgGfMsW9ITXU4ZLx63XA9bMTw5+3YkX+UpzYdUp02GUC3B/b1QU88EBe9vWzN3Kkqy/0/dRlWLcNsXbHd9r+9Kf8/+67A9dcE+78+vC0C0qq85symA1FC/h0IjpGbySiTwC4v74kDV9WrcpXlgDijVKzpM5JPbw6fj0EHUqbjKuvD7jqqvLKtRkL+OWX5+d1dblesx/+BlzlJBt9n46YAF+xIt05iQnwMgt4T09rFvDUJEwvYvzvUHhAeIhbhpEaoq8qZPUwuP7WHQc5lKvTHbvfcq1i5qIlWTeIVV1nUoQs4H19zsUiJt6qWMD9eU88AcyY4Y6bMqVRnHouu6x477fbzn23YgH3/z/1KeCnP41bLxcuLK4goBkxIu6CEupEhhq+lSvjdVGoXMtrKqszZDgpca7LpT5vzRonJH38Xmj4YydOdN8y/hNOKIYTKvsPPpjHEXo+5b2QxpCYD7ifr6M71P780MhKLN9CAjw04iD36U7FQw+5Jfv8+uUhS2fIBUVa2WOjjaF6UIbhr3XECOD88/PjQp32lAHFj7gsWpRfY2iZ0ZDoW73ahZdyQdEWeHmPPC+9BPztb2jAnyfd8GLXKfFp+fa33XfKB1w/z/LZ02VB1gcyHu2Coo00qedSt3t+dCElwOWoqM/LlStdPukwfRuhy/9QdUH5LICjiOh2Ijon+9wB4GgAJ5YFTERbEdFtRPQwEc0kohOz7a8goluI6PHse6NsOxHRj4hoVvbGzTeIsI7Mjn+ciI4U299IRA9l5/yIaLBms0PPRO+UAI+x++6u8E2YEN7f1wecdVb+v8okTG0B9/u6uoBHHnGVS6iSkg+mf3hT+PNWrCi+mGSzzVzPXTfYPg7d0LzzncXz5QuDQhVoFRGwZo2rOFoR4CnLj44jFB5Q7oKSEnKt+IDryjXV4Qq5oFS53yFhI/OpLgHODFx0UV65L1niGgZ/fc0I8ClTXAdbiwBprQSAI44oDovusEOenlTn14fj0+IniHkhuXp1uf9ujJQF3KctFKbs/I4d64aV/bEnnZS/sVSHGepU9PW5IWZdhnWnv6oPuN7X1eUE0LbbFoWGFODjxrnvqiMePp277FIMMyTAtfUwJsC9gN92W9dxivmAf+AD5XUt4NIze3bRpSAlgEOWRSlK9f5QmH7/3Xfnx+kOrixDofsmO/V9fW65vAsuKO6X7hohF6NQORkxIu2CEqoj/HMXyrdLL3XuKbqjFOpw3X478O53N6bJn+cnfQPAGWcU8yGET4tfsSxlAdedOF+fhAS475jqeGIuKH5bqDz7vNNx+Lj96J4n5nLkz/vGN5zRJGQwO/98N7FXxz9YlWFUgDPz88z8FgDfADA3+3yDmd/MzM9VCHs1gJOZeQcAewA4joh2APAlALcy8/YAbs3+A8ABALbPPscCOB9wgh3AaQB2B/AmAKd50Z4dc4w4Ty3VP7jw/ktyQpOkimUyhK8U5s7Nl68C3KL8vb0uXm2B8r9lpVjFBUU3hv6byFlHvvvdsOVJhjm6ggOTT5tsrABXKfT2xitbXQEtXlysSP7+98Zr8miraycEuEx7yHIvhY1Mi09zTICXuaCExEszgixkdQulW8ch1wr3VPG/02GGRjjaFeA+3268EXjsseI1HXec+//+9+cuB7I8VfUJ9tvkPt/YyLIkRZ+fpBUTDCGLlRe8WvRVHZbVNLMMYcwH3P9ndnXBuecC8+YV80Q/s/qaXnghHKZ8hqQLihYJobK2336us+LdQzwhC7inGZcjbVkMWcDlNfrzYy4o/l7OmeMEiLSsypEDH3/MaLDFFvm1AMBtt+VxaPGSckHRwkpbwGXnW5cded+IXPtw552N1uqQQNIuKBtsUNyvDSgxFxRpRfXh+nsh0xkq911drnx4ERkyoFx8sbumkO8+c77OP7N70+bSpY3uYKF3S/h6KPb8hurdqi4ofhRF5oXfV2YBl/muy36oPOs45s0rdgBkefNx+DTKDonsYMq6bptt8nQ/+6wzBMq8mTatWhs0EESTRUTTiGgCM9/GzD/OPn+qGjAzP8vMD2S/lwB4BMCWACYDuCQ77BIA781+TwZwKTvuBrAhEW0OYH8AtzDzQmZeBOAWAJOyfesz893MzAAuFWENarwADQnwdgrKE08A3/+++z1mjPvu7Q1bRXx8oYovJcBjFnA5LKrPk9s32CC3+MVYtiw/z1cov/ud+/YVQ8gHvK8vHH+MWGN69tlp8ZIS4KlOVUhYSIux7OCk3IHKXFB0hepJWcdDcYT8GXW69XVuuaV7aZOMo0qZDt2LmLBo1Zrhr+mss9wsf/1ceIvk4sX59ioWcNmJ8ttkuqWA8kjRFxIBkpDFSosA3/iHLKJVOvq6wyXTpc9NWdn9Nflhdm0pDVlyfSNcxXqpO2PrrOPul98XcmW45RY3sqHDZHb59vnPN45OpuIncsaOZ58N54V+PidNKuZTFQu4vxfe9SFkvZTpPO64Yhwbb5wLb7mKhyeU33Kfvib9bIaMNfK6dXnw6b7mmnw1nlh9op8Lf01lAjzkgvLHPwJvfGPxPDlSJC3gIRH8r3+5jqS/DyH3HP+t/ep9unffPQ9v1Cg3CvOZzzSmSeenfw9DTIDL+ssL+iouKLq9jrmgpCzgIReUWLukDQOXXdb47EtC6fJxeGu5T+eaNa6j6p/lkSNdZ0Tm409+MgQt4AAuBnAzEX2FiEa2EwkRTQDwegD3wK2u4l8z8RyATbPfWwJ4Spw2L9uW2j4vsD0U/7FENJ2Ipi9ILYbbTxABd9yR+4PHrInNhCcL5NFHuzdeAu4hillMy4b+QvGELOC6MZVo8fTBDzZWpJr11gM+97liePPnu28/HBqykPoK9etfL6YxJgD1Ph/mqaemxWoVC/jq1eHXUevKTjdQPr6QJdmj7+fb3pa7EqWsxc1YRHWjr61LsXR3dwMHHliMI+WCkmqE9f2VDXIraJGqLS++DJ95pnNbkkKjzAXlqqtcQx26pq4uZ8mRS3hKAR7yQ5XI5yvkZiIFeJkFXF9zaHszAjz0nPj06Lzwx0+bFhYBZR0Hv09Pwoy90VGyfHmj5R5wYc2Z41w9JCmjRVeXqyO+971wh0eWGyLgppuK9aAUz7FX0fswvfALjRzIY3/60+L9lvngjTGxOEKdX49/9lJ5Q+Q6QTFhLvNGj+bo+G+6yVmI/bUDeb6ts044zFC6fD4tX54LWY8cQfXHy3shrbi+HmZufJ58un1+x1xQ5Ko3/hr0RMtmVtaS1+vP8+lM6YfY6FOoM6bvsRbgPt91GxGygOsy7NOZEuChusunVeod3UZo1xkZ32AkKsCZ+WoAbwCwPtyEzFOI6CT/qRoBEa0H4FoAn2XmwrrimeU6UM12Fma+gJknMvPETTbZpO7oSiFy/l1XX+3+xyrCZglNzFm1KjwJ56678uFNTajh86Qs4PqhXbgwXGlV4b77woK+p8dVNiHLkxfgssF45JHGyk5eJ5FzR/Dxxaxw8r5UEeAvvlhs+Hp7w5ZkPUTrSbmgeEvDmjXOR977NOq8CF2vvBcf+5j7hHjqqXzCU8oCHqsIdWUbQw+ty3NiVlZdZs880y2nVUbMB9wjXRR8Yxx7PbJcQ7mrC3jmmeLb5Px3rPMXEuAxC7gUdlqclglwLWRjwjbkPpDqxMXujXe10dY7WT7e9a78fktRptP94ov5yhsyL/S9kM9KrKz5vNECceTI/PpD+eFHFOX1E7lRzBUr4pZ7nY7vfKdRHMcs4DJMLxZ9un/yk2I5Dd0L3enR3/L6gHiH56yzGgW/T5+ul/faC/jnPxuF5GabFeOIiT6fJ5MmAY8+6n7rl2DpjoDutMsRrtA1yU5NygIuJ4P7c0KjT7qtjRktpLHClzctVFPunzEB3t2dvxG4yupf2oASuheyrlm5snFEQz6vfvvzz+f3JyR+db3kwymzgOv6MGWk8fnt9YFmyAnwjFUAlgFYB8BY9Skls5xfC+BXzJytSornM/cRZN+ZbRNPA9hKnD4+25baPj6wfdCTsha3UlCYnQAIFWjtguL37b03MH16dRcUTzMCfNy4tDWrjFDHwT9gIatQX19eSUpGRsZvfLovucS5naTcHmT6tQCXK9vEOhrbbdc4eVRXzjLdZSvSdHU5f8ojjsjT7SfldXW54XH9unotlkaOdBaZUBxjxhRFZsjyI9Mi80lbKGMiFGhcbs2TsoDL45jdiMcjj8TjkMdKC4oW4N6C4o8FGi3gfr+30vmVP6Q40NbLUNmXK4aErHChdKdEgLbuH3988b699a3u+JjI12W/rDOg743usPjVHEICXF9TSJB1d7tJrYceWhxS1p1BGacsiy+80FgPyjL0i1+4/VKAyzB9fsjXkMt09/Q0jsTJekgeD7i3I/pjpfU6ZDGU98LX36FVTHS6b789bLkP3cfQSMlf/gJ8/ON5eF/9ar5P5qXuyDDnvv5SsEmLtc+32HrzoXbI1z9a9MnrCtUZMt2hZy+0KkaoUyFJ+UvLTleonMq4Qu0J0JoFvLvbteH6OmLoZ1HWJ7otJXIrOvnJnfIcn7c+3Ztt5jpLKReUmAXc3wtdvkLPkuwc6Pz2adKuM1XyZSCJNo1ENAnADABjALyBmU9j5m/4T1nA2YokFwF4hJmlHWEqgCOz30cCuE5sPyJbDWUPAC9mrio3AdiPiDbKJl/uB+CmbN9LRLRHFtcRIqxBj2xspZhpBX+ebxQk2oLiCU0+8q4hqXSkXFC6u91b/W69tZi2qm4PmtADHbMCxizgG2zgVhMIoS2L2hLQ3e1GCZ59tnieF+A+T+VrxrX10OfXvHl5x0FX4P63rIhSAtyn1S/H5CuisWPzdN92W6OfoRYvoU6TZ7fdgPe+N3ye7jjoffp+p1xG5HXGLOB9fUVRL8uyj+fBB+NxyGN1HDKdI0a4Z8hfF9A4DO73+zQccUTRIinTtO++8bIfs4A3K8D9Pj83wl/TeecVGzE5DB56vrVFNLbqTKjDJesXf85eexX/63snxUtI1Pvn8v773SoTMm9DQ9MyzFmzii/sAMJWOKAowLUISHVA/DXLMnT44XELONCcBVx34mSZl+VN5ttdd4VFX0yAM+evgh8xAnj88XzVEnmuFrKyvvR4P3ztE6wtq77dCZXhT36yMW6fb7qD7venRs38PZXPF+DcIPX9CXVyAGDzzfM06A61bPf0ZELZ7sn7LeteibaAP/98vi/WHocMG1UmYX72s8V0x9okiRbg0gIOxDuKQKPbHJDHr+etAEW3tLe9rZh+LcB1e93d7RZa8MsZe1JGoIEklayvAPgAM3+JmV9OHBdjTwAfBbAPEc3IPgcCOBvAO4nocQDvyP4DwDQAswHMAnAhgM8AADMvBHAmgPuyzxnZNmTH/CI75wkAN7SQzgFBi8tVq9xanq301HwhHD26sbKNCXApZD1vfSvws5+lxXKZBRxwPpUeLdDk9d16K3BMw0rzxbhCowRAXPRpAR5rDHW6Yz3qK65wSxlKtAV8+fJG8RBa0k3G9Z//WUybjl8P/Un89frjY50RXXHrzpA/N1Rpyhn9Mg454/zee/ORl5QAr2oBTzWm2nKvz99xx3gc8vplBa4bBWkB9+hVULyQ1S/0CVnA/b5QA/rNb4Yt4CGLqAwrtWpB6u2LIYupDltbRKsIcF/e9QQ2PZIgj/f//fNw1VXFxtTP/wh13LxYlNcQWyFEHxOyiPr7qeOKjQBo0RUqQ8zOjeIG1Rq1YgGPCfDY/Qy5+4VG5fz1nXNOfr/9y4NeEo6i++zT2BnxolYKS0/ZxG1vAdcjHl1drgMgkXV9FQu4zAt/b6Q4lmijV2j0aeVKVz4OPjjfHxp9Cj0r8jmRadSdAc/ttxfTI+ckNGO80vOOJLpODrl6yDpSIttvf2+B/Hq8K6ROq+9khsqQrzd0XKkOl0xbaOTVn+NHKGV8g5Fo08jMezHzzFYDZuY7mZmYeWdm3jX7TGPmF5h5X2benpnf4cV0tvrJccy8LTO/jpmni7CmMPN22edisX06M++UnXN85lM+JOjqci4EnhdecN+tFJTUVWsBLiscXfj/8Id4A+2JWcBlo+CthH5fzAf8K19xQ8ExYuJQWsymTs2PZS5WDjq9oXCkFThmhdOVihbgq1cXBXNs0qusrB99tCg6tTVHW9JD1y87Dvpe+N+SkLCKCS1t1fTHzZmTp/W449zrrmMdAE/MBQgoDkeHhpN1/IBb//jQQ91vn+9bBqdf5xxxRFrkA+6+6cmD2gLu5xPELJI+vXJfKH/vvTe/3jILuAwrZLHyQ/sxAa6tcKH0pDo8kliHz6fb1ym6AxkT4CFL7qJF+XCyRpYF33mPGQIkeqjdH+/j0OfE6sGQ1VPfb3+ed8vwaOt0FQt4aBUreY0xAR6rp2U6tfWQyNVLV17ZmG5d3nUcHllnyI5SSKzqfbFOW5kgk/niw/bPSXe3K09+FS15rP7WdfZDDwHXX5+X8SlTiiskyXYvtfiAFIx61NszYwbwy18Wrf7yOkOE8n/TTV2cc+cW06LD8em+8spiWTj66EaXIxmG7lTISaChOkOOHITiX7Ei/OxpQ5pPg382YvVQzNgz5AQ4ES0hopeyzxLx/2UiSjQTRhV04+KFSLMFZf78RrEmRW1sGcJY7zM2RC3P88h4ZaMgry1kafTsvHP+6ucQKRHg902eXEy3fnBjIl6mTQ7f6wc6VDGvWVN8E+bq1UVXCj26EROnshHTDczkycDpp4fzTQrwO+5wy0/64/zwbmiYOCSsYgJRd9pC1iwiZ718+eW4WAbCQsojhVqZBdz/7+nJ3aVSL4+SXHZZHgeRG3p/7rnGzohumGPLEMYskjotsfyVcXTSAi7jDlnAO+GCosuCFmi+IyzzQtdRus7Q+eSvSSMtq76ei5VTyfz54XsRc4/Sx+p0h9wOQufpuHRnKNZR92FOn56P7MXCDFngJVU6XLERB5luea4sh8zA617n9snn0Z/35z8XxbKPz4e5eHF49EmK0SoW8FDHxV+TX0VLHuvTAoTbCZkf3d3Aww+7Cfu68xs696ijGtMtOwiyrnvd65y72lFHhXVArDzJd1oAwOtf7/zuly8Htt463y5HBeT1SxGtnz1NrDPkzzvvvLjOSFnATzml6G7j4wgJcJ+Xq1e7ukHmpzc0DhsBzsxjmXn97DMWwOYAzoJbOvCH/ZXA4YouXEcf7b6bLSibbtrY2MkK2K+CEhoakpWDrzhDYlkPt3tiFnAtRmJCepttgNe8Jn5tscZMW6vlsXoSZqpB9BXomDFORIasrvI6PdoCvmZNUYBrC7i/pzHxJNMi779/K2Do+r1YXL7c+bz6MFesaBRI+jydbykXlP32c2s6a8uVr0DvusutlSvj0+KtigAPWaf/H3tvGm5bUZ0Lj9rnHFpRQEDAvgGNDajB7sYEFCNgEyM2F2MDBkUUg02u3dWrxsRr7I2JTaLxE32MxqvX9lO8itHkiyaK0Y/EkChRUREiKhFEOZyzV90fc49nvutd7xhVc52GzckZz7OftdeaNatGdaPe8daYNWezYTs8A4RZqA7L17++aKAZvDAA5xAUl4wBV4wkiqdlEKAY0T/90/H/f//34WFhxYDzizP8GoO+aD4oNqmHAfcxxVvrDLgjBhztD4/LCIBnISjRW2L9eYioL9jmMbDm2PWNG8dTUFoAGOvUM/ewr173umF+RaF4F18cjzfFfGLZmC4DL8o5YjvrbxhWISjHHjs/v1/1qgHI8vqBzymg/orV9zIiAO6gT9UFy1DstAvPcZeI1Wf9cIfSy1IhKL7+mI3PcLHdZsn6lK/xXPTyfex/8YuanVZ5RCEon/qUttEZAI92qlsA3F9hbzZPPPmOh5JobF/X0lSrlLJ/KeWlZnaBDaef3KPW+rv5XbulJTxZP/MZ/XuPZIY2iwFHBvxTnxp/53yQmZgKwBVYdmGm+JGPHB4QwbKU46CYLv/94ovngfOPfxyDM2ThlBPjgIzBoQpBQcPJ9fK6RGc44//YlxHo9DZVLIlv92FdzMxOPVUDq1YIype+NLBHirn38vkaft+4cWTHlPgLULD+6Azd6EaLemO9pwDwv/7rRScnAk+eBo9Cq3V4BfLznrf4ZsBe9tB/43r4dx43Z545/s+vZfZPB+A/+ckiE81bxr0MeAQkeT4rBpxDAVBf9RCm2RADyyBAtekZZyy2KQNJ//7d787fu3nz8gw46u3t/ZGPDG85ZL1bDLhLxIAj8DSbf+DbBecCg/qIAY+Yen+QOFp72FFgBpxto5fJdsH7+qqrhnTIVmPIEa9nPIaV/XS92A5ie/v48LQoqi/ucY/xf+Vgo05XXDF/ze9h51eFoOy99zi3+c2x2A4o6qg9Lw9tyEc+MjzIzPmgzdprr8Ux3BuC0lpLrrlmiKFX67XnwXPQ88Hf8UhM1NPz/PCHc+f3eseAl1IOKqW8wsz+wYbXyt+t1vqiWuuPd5p2u7Cw4VD/94oysC7f/raeGG4MvDyPpV4mBOW7353/nY2Vl3/++fMxv8997mD0vvvdgWnF2HEvSxmf5zxHL2azmdlDHzqW/2//Nq8n6nTNNYvABCe0b2G6YWY2zAH4FVcMADViwP/8z+f1i4wUhwMxyEfxxUyxMsj84L3vepcG4FEbex18nEQhKGYagHueT3zisEujZMOG+ePqShle0nL3uy+yWYrZ83bi3zKJFhYZjgFeAAAgAElEQVTXxx0pb0OP+cat18MOG8o9++wxz172EPNWjBkDaPx0gHLhheNvL37xCAjPO2/+xBDFgEfzG8GL33f55YvHnCkGHPX2/BXg9vT+ndst2o1waYUD8dhzUgG32hkERAw49xvv1EQ7HhkA72HAL7tsfGGTl6EccQdge+yx2G4cGsPz5pprRvuH92V9oWytWreivvj7v9cMttlwtjmGoPCYYUCGjmIEyPjYSawL6ov3RmE+6Azi7svrXjfkc/XVZm94w+KZ9Sr8S5WBej/iEfN1N1sMnzHTR+352EMA/ta3Ds92mS32oevFYygLQfFxhXOKy+f71fMXKyvjw76qj3iH5UUvWtxxwDw/8IGYTHK916NkDPjFZvYYG14X/3MzO32ZF/HsFi0RC+e/n3LKEHPWIxkD/qY3zQ9MN+4rK8PLMnyQ+0OgEVvtogD4298+v2CyIfeJco97DC9rwMVhdXWYiJ/+9GLZ2YRSixkzR7wouFx55cA6MOuM/2MModqadHD8whcODMOWLWYf+tD4MAouRK5f9ADdiSeavec98+3WAuARk+tlKKDFi5IbYbUoeL39kxlSbF9clGqNmXsW3nnwBeqnP13sCw47cJnCgLvOCJ54UcB0rpfZ2G7I+P7xH4/3ZQBcgTssA8vEvvD/PdaZn63A/FS4RgbAlU7sYH3mM4Mdcnnb2/SRYmoMIROJ+vrvL33pIgBvsXDnnjt8Zgx4y+HJ4nxRohAUX/izMRTZzxYDfsUVZq95zfjd+1Qx4M6YKpvJ4IX1ef7zh4f0mL2MxrBy2ldXB3t+u9vN579167CWnHPOsHvkQFHtPjFb7fVlO4OAy9Objcc+uqgQlMjhmgrAEay6Xj/84ZDPUUcN3z/3ucVQCmbA0VHdsmW0dYokcvG3WqN8+cuLv3l5GIqGZWYAfAoDjs5Q78O5PC9LmSfI1BiOQlCwXVt44QY3GMtbj5IB8Ffb8Dp6s8WX8HS9iGe3TBcfKJ/97KJHHUnEgOPE54FZyujBm41b7coYoPQsmDhxGHT62zfRUKJOLXY22nrF78xqfeEL83n4MYk4iXlxwG1R9dYyB8feHlu2mJ188sBgZTsOWHc/auqqq8bzvF0HZ9I9H2cx/BobSbXw8Batig/3Nv7Zz+bfJolGsIcBR92yrUBuk9lsONHE89ywYXBi8EU1ynFw6XkIk6/9/Of62oYNZre85XwZCAKQ/cxiwFFU+BczfLxA+9sDI0CAevn96ji9F75wHAsIPL7zHbPb334+P597z3zmOL723HN+q/uMMwaQqIANO6kMwI87TusdAVnFgH/ve8OnigE/+uhxDEXx0lyGl8NpzBZtj88/HwOZM6QIFS8rc1y++93hWEDWTQFwf0kN10kBcK6zescAO5Got6rT6qrZq189MrYuq6vDsz0ve9kAxP18cKyPC889BnVozzPWFfXye774Rb1+RA85R+y0l6EYcL+2117D/8rmq3bz/9/+9mHn96c/XRx/Lfv5oQ8Nn7/92/PlzWbDcyL4myIpOARkCgDHvsA1ENub71fOpwu3O5JVKP4gtV9XAJzzetSjtD7rRUIAXmt9Kb54h/92ppK7oviAuNWttMHeY4/5Re0Tn5iPB0WJGHBm71CY7XCmYpkQFP9dMeAI3nDiMPPp96nt3Be/ePzNX3GttrTYcHud8LhHM7Mb3nBM52Uy4/mSl4yLQi8ANxuAtDIErh/W8YMfHMERn8LCDPj73jfm5SA3Y5O8LsxOKWNb6/CyodNOG/PCV5uffbZm7lW/8dZzJt6H/+t/zW8vXnHFcGqJCz9IzHXC+ivhaz/4wfh/FD7g/coLj9nig35qwXJRbZE5zKurwzx/8pNzIMk2w7fvcdHy0yWYAb/yyuHM5Usumc+j1uHV1j4m1di/6qr5tvBx0GLAv/71+d/NFkEfL6Ys/GpyLOuCC8Y4UG5vBD14DR2TFgB3px2dMK6r67YsA851RqeJ29dfksW6444Vrwu1DjuQWBesb7aLkzGdaAt8R9MlAl18bWVlHMPq9ecI+qJDAbDPXvMaPRZU6IaqI1+LAHgpIwBnYeaeAfjKyvCMjZ90g+Vt3TqE70Xi8xIdQS/vG98Yvv/850NevnZEzu+UU1CQsPJ7vd98fnF+nieXsc8+Y95q54Dnw4teNPbFhz40HBHJcy/COdHYvq5lnaq160sEOl1WVoYHCv3p8osvHh+mYIkWdJdsYLpBOOmkUa9eAM6GX9XpJS8Zv/tCGbFEPEmjrSgX9WCQ2Rh3rR5UMZuPQ/e28Tcpul7OZKv2OOOMERy7bp6n66va24GsYuE85MWFGXBkbd2oq77A9mK9WTdfOL0sr8emTWNfKJbEDaZf4xCUqQw45qn6OornNIvP1UVhXY4/fvw/Ak++qCLoRjacAUlUXzV+orh1dFAxnQu/FQ7L8P7D13+jbggCHIDd7Gbz6XDr3xc6ZrbPPnu+vi3W2eeF92vEwvE1ZSP87ZY+3jhm+Jxz2nGg2VY/p8Vre+89pucdj8iJY1EEw7IAfM89zZ7xjEUn28Fb5CC8/OXjC4JaoAv1UI6DmnNYNoei8a5ZBMB5PWMnEo99RR24z7J5qeZedAY/jlO188pzjstHEIj2CsEztsUeewz18904P2oXJYolR1t+7rnDb/4wMrc3zslWu6EzxM6vr7M4vxQBxe1297sv1sEsBuB+n7cnP8eg5h7223qU3QD8OhIMg1BgtJQBdPFZn0pw4VSiFiU0ZmbzL6TYHgDc5cc/1gZcOQ1RCIqaiLXGAPyyy4bPFgB3oDGb6a11/x61hwLgfkapOnXGw29Ybwc6vC2HW8+9ABwfwrzsstEZ8TwVkMa2dEfJ6x4BDdcd2wnbZAoD7nkzsHG59tp5kK9CUNR9W7cO4UdqscU63fa28/r4mbZeH8/fxwID8MzhUKAvAoE+hpl9d9l3X50HOi78IHPEgLNwX0ThV9/6ll5MWyEoLjz2I3uiFlMGZOj0Zvcpvfg7lv3xj8/ns//+40k+uFPTozfbyIwBz8CDylM52j421e6YWRw6k83ZFgCvdWQzV1fHMji2GHXy+Xz44WNdoxfxsB1eXR3H+crKsJPznvdoAB7VKdp9UtLqb6yTmdl97jN8cjgQ9iOva6inv1TL8zv66EWdlLPg/XS72w3f99xzvgyeJ2hnMscQ68xtzPM5mvc8hhUAx/6OiDde91oMuJnZgQdeDwF4KeUZa5+/svPU+c8jDg55uwZBTcT8ssxmA1OeAeeWIYq2aVkiJgDZDR7sCth6Geef3w5Bic6R9jze9rZ5o3HEEcNnDwOOuqgzdRn0oYdf63h8JALwbMchYsBf/vL5FxK4bl6+nxZyzjkagKNe6AxhWRyP73rVunj+rHJ+sL2xTXAsMHOfCbOuPQz4hRcOb4xzYQCO5X7+82a/8ittAH7/+495IOvv1/0eBD4MwDPWdQoL58Dma19bXMQwPQNgZOpRuE4rK2YHH5zr6f2uGPBDDtEAPIo75nCCXgZctSm2P5YfOfdKuM2dZcTfH/zg+XzwmLY3vCFnLzNnTLUbs4mRMNDBbXsFwFW71prrnTH3rYft/DqGJKiwg8gx2LBhEYCz8+uCY3LDhuGwgqc9bbF9uU61mj3mMfNlRHVEQbukgKQLP0SahaBkcfoe4sb5oWAIEtZhNhuBLbLvnA/OPSYBeZfU8/LvOPYi59dDCA85ZCxDkWtKmDTgOk5x2v336x0ANzOPQPrjnaHIf1aJGHC1JfjNb+o8OK46ShOVj9dbISiRIcJBrsAn19EfqEJRxo1BIL5ynBclN8z+gFkU7+dg+WUvmzc23/pWzG4gw+xllzLuUHhZDsAVA262eA2N+89+Npb1s59pAH7aaaNRV6zMK14RO25nnhmHoJx88vAbXssMONYJy3f2NBtDLioERbX5aaeNen/pS/P9ilu6l18+pPPdpQMP1Hpnuzhu+BUIQCeBQUAGwKO5h4vaYYfNA9lLLx1PJlK68txj1hB1wwWTF6JPftLsrLPm+yI7AQh3R+54x1Ff/+QFOzoFxXWZEsrh39meRA+5Yjmch4sztyxYBjuUDMB7WVcVdoG6ct9ldfQ+ZXuNAFy1ecS69uj9hjcM39nhQh2QAc/Aql/zevWEoKi2WFkZmF5/hqZVJz8VQwHwKAQFbW0W5sI7EhxCiWVwmBDm6SEofj17GBvF2yl6SDWae1MBeOQ0Kgzi88sB+JOfvJhW2ayeeHy+NxrDaP/Wm2QA/MJSyjfN7PallAvg7x9LKRfsLAV3dYkAuFq4/UxiFsVsotQas0loOP/iL9oAPGLAObQBxa957O3Kil7A8Ml+1BsnnMfm8ra3mnyKAd+0afGYJma1We//+I/xFAQ0oCiepx+Z1wvI0KP3Nvnc58ze+9553VQISs+2KIvXqdb5hfpf/1X3fbSF6XXB8h/5yLG/eFybmT3lKQOARj09zw9/ON/18Ty5XZFh9YeN/Ii23/qtUTfUMwJkitlTDLh602k0Z1qOscsPfjAPZJ/whP4dLSw/mnuRPt/5ztAnmIc/9Kry+9GPRltz4YVm73jHOBcjBvz5z9d6Z4xoFoLidfAXpURAHeus6p71G5bPx4HyOI2cIZfHPlZfy5wzs/n6KgCuQpXcaYr0WyYExdsCwz54nvj/yNwqQIzpax2fQ8A1gXdLuN345CwvpxWC4mmVZH2hADjuKHkZ/CIhBuBTGXBkqFmyGHAMJ8wAOLLYau799/++aFe4DV//+nkdWNcHPMDs1399XMtvfvOxjKi9MwDes2t2r3st6pStidelhGrVWh9jZr9qZheZ2UPh7yFrn7tlgrBRPvHE4ZNBHzLg0ZFJLC0GPFvMEIDf5z56AeG8XM/I2HFZioVTzI9vW51++hgbGAEidiqUAY0AeMResnHGa35yBoaaoPjvr3ylXszceWKGgg0K6o19ygA8YovN8i031+15zxviw7EMde44LvItBhxPdXEAjjp+5SvzL3bBMfPJT+YA3GNGuY+3bh3OlF5dHR+G8jT/8i+jbih77GH2kIcsXlMMuGJ+1C4Gt83jHjew2qp8F/7dx7D37ZRTUBTbaTbO58yx937ye6+9VtsMB7wK2LjevAu2ZYvZ+98/ps0AcAvIcv2dzeT6ZIB8NhseDPc8IscFd98UA856/df/OuqtWMC99pqvk4dMrK4OMeb77z/NiWMG/IwzxvKXCUHpYcA5lILZUc8Ty4gcVa/T/e43lq/aFXXz06vUCUTeHplTEc0fzyfajVBhDze60ViG3+e2y58X4L5gAJ45SS0GXP2mSIpsBxPX/lrN7nnP8Z7ZzOzGN9bzw/+/971HO+r1U2vEAQcsOm09DLhaw3pCUPDdBZ7m+siAW631slrr0WZ2qY3nf/+g1nrxzlBuV5JaBwbQZa+9BoOSxYArAO4D7qtfHX/zwboMC4eT0GOHMS3rkAHw7HQHZERbW68+yRz09QBw3N7z9Js3mz396fN5MwM+JWbT++T008eFwx2pyy+fD4PIQn64v5np8HqoEBSve4sJiMTr++pXj+UjY9PLgCO4ZgDoYJmZh0MPHR+Q9fqx3i3HQQHwPfecHycZcPU0/+W/LF6Lwh6OP37+bXEcmhFtvar5ZLYIzHleOKiIFkzXi+v02teOvx9zzKhrxoAjo4eg2cfCli1jzD/qqV72oRbGrVvny8t2DlqMrF/ff/95RrYFwN2Z92uRPUHxubdpkwbgrLeDw4zAwLZ/05tGQPa2tw3nFWcOh7InzP56+bweIOjNYsC5jMc/fqi/lxEBcCwjA/mljGGUSm8GZOjw1jo8hPya18zryay5ms9/+qe2IFMBOLPYaAuQqUed1PMXCMCzvsBdjF4G3Psc26Jnp8bv84c9/Vp0r4s/j4TlRzgjGqcuU3Zj2M7c+tbz9zGhdb0F4GZmpZRjzeybZvYmM3uzmX2jlPJrO1qxXU3UIHjsY+eBqdm8h6hi0vzsXnyC+GMfyxkMxXoxe4EAHPXxFyl4eEgWghKdyewG9MADx5f/YN2U3sikYbvd7W66Tv5906bRkKg4O4+vc+EJzXqzgdmyZQCSfo/HGT/hCYuGV0nGgCNo8Wuz2fCKcX9pj+eRMQE928m/+7vj9xYzhOWi3moBxhcRMSjzsnyRYD0zxyUC4BdeuDj2L710Pg2zYDgXuXwHowgo3v/+RQCuQP5736t157548IPHF8egMAM+BYCz3j5P1Bjm8Yd5mMUMOAINnEM+n3msHHjgIgBvAdljjx3LmM3mj/+bzYZwmcMPH+cy56m+83MrPG6f9KSYNEAAzoBFlRc59IotRrDM1/jeLASF23Tr1oHg2W+/8foJJywC8JbNcJKIAbi3Da4FOJ8iYFnr4sP+fp+X/5znLDoO2KZ8Bj/uWqkdTASSfv2YY3R/R2tSKYtjyI8HxjnH6wj3r/fjc587PD8R9YUz4J5fLwPONi0Lc2EHDW0i9y/r5+m4L3oAuPrO2KjlDPHce8ADxj7ydQXleg3Azex1ZvbAWuuxtdZfM7MTzOz1jXt2CwkPAmcKfPC7tBhwBRb/6q9yBjwDZAzA1QA3M3vXu+bLVwy4p+WyPM/99zd71rPaDLhihV1ufOMhpoyv+cLzrGeNbwebzRaNqj+w47JhQ/4mM2YN/Eg8/M1s2L7zia+OIXRhQILG3dvB9fF2e8ADFvvE+8qlxeS6OJjwh1nZEEbgxctFUeW/+93zW6GKjX/nOwd2TTHgUbu53nz96U8fHp5FgIQvbkLd8Ds7PV6+L+bIwjEjrfpXLVgRkC5lAEcRC+fOVRYfPJuNL+pwfdU87w1BwTr74h85AAxWPE9e7P/u7+LjCf0+zt8foPb6v/GN89dxV8HnYeshTH5RCJfr4QQoWAaPvcxp9XZD1p3riGVgu0UMeLQbokiKlZXhpUcXXTS+22A2G9+OuEwIivcFs8ARqMGxxnk+8pFmv/Eb8fqBJ/QgA+51ZBuB11gUIxqBMZ4XPE55bN/hDvNleN5sTxQAP+aY8V0LqjwG4L0MOOfVAuAoqLv3RfSMEaardbDlBx+82N881rGf/LvvIKNkD90qp5138RQDHpFs17X0qLWp1vqv/qXW+g0z27TjVNo1JQLgHAPuMgWAm+UgOzLg+BmFoESgi9NlD2GycWcGPAJIDgjZWCj2Um2Dz2bDm0bxuwLgaLBQVKyvP2Tp4v8/7nF9DPjqavwQJjKQXp4yRFdfvciA9y6mHCeIBo1fbODpuXwXxYCbjY6ln3vOcs01w9vaWE/1cCPqgQwalrnvvkM+/NIXpRsuAHwtW7CRvVeOgjL8zsqpvohAgJ8Hn81ZL88ZTtdN9bvXab/9BkDMQEM5E/zmUS6/NwTF3+bb2gb3s+pVXzAI8HHv9tNs/vXtXIbZcBSlH02qGHD8zizgpk3jsxG4MxUx4K7b298+plXsrKeNdjyw/zOniYHNyorZP/zDsHOJJ1B432R9EY1TxYD3MvcK9P3yL2u9Vd/4tR4GnHVhQBY5TVgnlwiAR3qfddbi+heFoKiH1HktxfdC9DDgv/zLZk996nxeGQDnXT7VbhEAx3aZzQbC6JBDFscpzyvVbne602K+bF+jN5/iriTmiWkip3u9SA8AP7+U8vZSynFrf28zs/Obd+2WOVEAXBkGBAgqBCVjHdiAnnbasIWbbQ0pAB4ZBrNFBvzII8ffV1cHpkWBAJ4oW7eOb/bLtmzV5FFbcxELd+yx49FHblQitjgD4N42v/jF/MtOMAYRn/7nvNzQOJP2nOeMaXkcYLgPtqUD81e8Qnv5Sm8WjO31MlR/e9xvZMD5Gpcxmw27Ffgg7Mc+ZvYHfzAyilMY8A0bhnb5+78fy/Z7b3CD4X+Pwz3zzPl7eeGNmEUEAbg4OQOOC2t0PJ8LjtnZbP5BRNaLGbKIAY/mJTLgClh4He51r8V8N2wYxsKVV847gAqQ4VzAoyDZcXD9PNyrtQ2u7KACAd433m8qRlbZur32Gh6My5hkJiT8N2TAo4fiWyAgA6hZzD+eChWFoChmkc+CR32WOT7R88gYcM4L72O9I8eB557fi4Cf5x6OZ2+vBz1o1FOxn7zGcT5K7w0bzF74Ql3XWgcAHOXJ85tDmrg8Z8AV0eSyujraQrOhfN4Z5vUwYpKnAnDsM+zPbAx5ecyARzsXqCsTVuiMKRKQ516067EepAeAP9XM/tnMzl77++e133bLBFHevdpiwsHNb0fktCjKqGzaNIASnxjqlbZTATiXxzGbe+2lWVSewFu3Dk9Qn3HGYnqf0BkD7tdcvL3Y+OP3M88cmFfFtHkbsN5+zfO64or5LetShjhkBgQtBhwNEQOQzZuHI6AYHCPoybbBe2LA8VXOmFYtIi6cZ7QAZ+wpljkVgP/bv41HDWL9/Y17s9nwjIFip5/2tHldcO55PdR2NoM+BwE9DLjX1cGx+h3bBpnkaDHz2H1ezHDXiNuNF15mEC+80Owv/3L8DR/CRPFxzwy4Wkxns2G3ycE8/s5tkLGXDALQNjiY9OMmVRlYll9jEKDaTQFw3rXz485aeuM9XIbrwwCw1sFe41GLfg433q8A+N3vPrymHttDAXAFXpQw4GZG3PV4+MPHvFQZXi/sQy4f+wLnpZfPDLiXsXnzEP5WitlNbjJ/DR0HVbZf27p1fIuk0vuggxZBteuWzb0eAI7/MwCPGPDWC+p6GPBXvnKxfHTa1b0RgaHaFa+xw+X1Uu2G+X7+84u6oaD9VHZ4vYJvsw4AXmvdXGt9Xa315LW/19dag3cM7pZIpjLgvsjxAyQ4MD/wgfF/NTAxz9lsPLlDLXoYA/5P/zTeq5iXF70onlDKkEcPgrnOytgpgIT3ex5u9N2AsvHHyegspGI9f/VXx7oi0PC03mZ4zi3n4S9Oieqk9EIA7rJly+CcsIHrBeAZE+HG34819DKOO27UjevmwmPhAngbAC8g/v0tb1m8Fw1lLwDfuHF+HOC9CJD22WfxBUy1juw4LoY9LJz3u7e3gzIGtZHhj5getShg2oitxTfLKQAezT0GAX4N54uncdDMfXHHOw5/7uy64NxHXffdd9gxisKYmKFEJi5iktE5UQx4rfEDagqsRgDcf8OHMBmA/87vLJaPD/Jy+RFDGjHgN7zhEBOvxhADWRzDKytjLL3r1wLgmc3AeYF68xj+3/97rKt/tgB45vxy+Ssri6dYcT3MhjSHHrpYd97d4DJWV4dQkic/OQac3BfsOHgav4Yg2OdNFIJy3/sO/7uTkQFHnm+qPRQAv8995tvAnzfKnEjVj56OGebMiVMYwPXg8nF8fec78/eZmb3qVXqtUnNvPcv1SNXrt0QAnI0BGi91FNFsNh5+/4lPLN7HJzF4ubPZfIgEXvd8nQG/+OLxemRAlVH2PDzP29xmvKYmmHJAMI2XH4GX2WxcaLy9MgactzbNRiN5yinjAutn+rLjwHrj75huNhvSITO3776jnmhclH5btowP6WDbYDgHX+tls/za1VcPDOXKygC4PEQmYhe4DLN5oNtiwF33k05aDoD72HSZCsDR4cSFkscwz1PXE+cp6+nn5aot22jxwjRYp1YIilroeA5GeXpafJhQLeLRQ5heLuvmc4/bDUON8He8L2LAoxhwBG8KgKvvfI0BYsSIrq7OA/Arr5zXW9kvBi/M5qoy3J6urg7hZZyGbQa2haqTAl7+ndvzxjcef5/NxnA9Lp93XLIYcC775S9v6x2xl37Ny2sBcG7vKM9s7nGePD6Uzcic3xvcYNiB8/HmayTn6Q6uh4UtA8CR/OE0s5nZne881sl15PpyXyjwHP0eOb9ehiINWHj9OOCAed1qHRysiDnfDcB3y4K0GHB+ixYDcB/Ys5nZF784/xvm6cd2eR5mfduivQ9hMnhxQQPmv+ObL9nJQLCsFj81ableDGSzhcdsfEOiAqsKNHqev//7Y7kKgKs2m83GFxuYDcfCPfKRi3mgcfc8HIBzvngWeIsBj4Cs37dly5BfKQM43rRpCAdSoRUuq6vzdfKzpnmBUm3pxyje6EbjLss3vpEDcM4zAuAeguIAnF/ApOZexmZhfdR49zjUJz95uH6LWyzHgEegDwEZ1wPnjAIBLNE2uN+ntrGjhzBRT7XwuqNiNs/k85zE11HjZwZkMU+uL+qy7745CGAgmbGuq6uDk+oPYXp4guejynfdVMhRVAay+ngKCN7XIiKyOqGuzICffPLwv/f3/e+/qGdPGUqvzHHg8R/tPp1wwvy8ZACeObgIeFmvbO5xng6W1XqlbAbWaXV1WJPx3PdWDHi0w4DSYsBPOil3fr0eyGJznTx/tkW4S6XmEws6KIxJ2LlT5fl7E7BMXP96cM56lRSAl1I2lFJes7OU2ZUlA+Cz2XikmMvKyvwDTHjGNnq4Llu3LpaBeSng6Hp4XssAcDX4I8800kexrq2Fh8tnUO/3RnXef/95vdVpEK63L1q+hdjLgLPefh8DIn+Do7eDh7lwvvg2zAyA9zDg3jbOgG/aFMc24/++TWoWs+Y4Bv7qr8Y6+zVsPywvO74RwZ3Z/DhlAO4nUDzpScNfxLxEABzbFnd8mAHnhSdiXnoBOM4LrN+3vjWfxvPE36LyeRscATiHoPhvDsDVvNy0abg/m8+eFm0DtgXelzHgCGRxoeZ+wzwdeESixoKymd5Oe+wx/7CXH2kY6Z05Q1NAH5cRAbKICMG0ODa4L9h+Zww0f8cxxelVGVinaP1gu3buuaNdcADOMeC8G8Ntg+tMzxqJLDJKprfKMwpB4YcHUbdWnl/60oALEICrXbsnPUkTUsoOMgBnIOt1PvTQ8WQd/B2/8xjntJkThGmjHRZsS25Dbm/Paz1LCsBrratmdt8szW7pkxYDzvLlLw9nufokcKOzujoPml3898xI48A88cT5FxIgIGPWU9UjAi8Rk5wx4J7e32iF9/QyP27cshhw/P1RjwlbleUAACAASURBVJovJ4pdx4ddkOnj+ikGPHMccPHaa68h9tBsZKedAc9YksiAeV18B0JdQ302bx6AhrchCgJRrtPGjcPDXpnDddxxwyeyrhEgc2aZHzZzXVX9DzlkeBDYnZ599pl/2x4DC2RNOE8HfQq8IFjzcYF5MehqsW3R7x7KgWMKFyLWxfWOWLiMAeddBf/Nnz1RIMTjU3nh3brV7L/9t/m3DkYAXDk8Xj9lT1y8/jz2uQ9ns9EJcz38T8Wge94oEQD/0IcWdVUgRMXWsygGvJTxjH7UXdl2Bc7ZLrt+DGbuchftxGVhVFkZKL0PYfYCWXQqemLAXUe/pnamlPOLYVSZM8R6+zUeS9HzFxs3mr31rfEYztr3Xvcy+9735gG4YrrdUWayg9lrtY5EAPzrXx92crnuPE7e/e75/HDsKec3IiJU22Q4Q4WgRPN7vUgKwNfkq6WUj5ZSHl9KOdn/WjeVUt5RSvlhKeWf4LeXllIuKaV8be3vQXDtBaWUi0op/1pKOQF+P3Htt4tKKc+H329dSvn7td//spQCh8OtP+kF4Jjma1/TISgKgEcMuP/GE3rDhgG8RAuPS7QNrgC4G4WMETVbBMt+zZk+XHQiQ6QWhVYIiuvCE5pDZ1BPNEQK5PvvzEarRQ9BABoxbLdS5mPAZ7Nhy/5tb+sH4H6fx7Kbzcejs7H3EBQHX1wPF7WdrLb7XDfc7o4YcNUXKiyCx6Uz9494xBgCsnXrGGvPebLemCf3BS+mCBi8XgzkooVezb0eFs7/f/rTzW55y0W9p4IXxYCrMbRx4zAe1Hxw54MZM8/zgAPGh99QouP0mK3NWDi/rhwnHs+KjfdrLfDEujEAxyNIld6uj9oNaDHg/v/3v98uIwLDEQDntebccxf7kNsbHRdutywG3MMgs7HP7ZHF7+L8aoWgMJMcOS5RX/DuE6dhm6Hsiwu3E4/NXgaYxcF1BsDdRjEAZwCcEWZsM1RYFZM5UWgMt2nUxupaLwBXNsPzW6/SA8D3MrMfm9n9zeyha38P6bjvnWYm3nNkr6+13nXt7xNmZqWUO5rZKWZ2p7V73rwW/rLBzN5kZieZ2R3N7DFrac3MXrmW1+3M7AozO71Dp+tMegG42u4zmw9B6WXAax3CFvyc5MwQsQF38XL/5m/m68FGDIFk5JliuVkMeMQ24P1eZ1wUshCUz31uzFtNaGX4OQRFLe5etmLAI1GACJ0U9RCmGhfcbg4O0BlyucENhjwj5seBMTPgHh7j9VKLqVrMZrPxjaQM+iIA7otGZMAVAEdHZevW+WcgPB0+0ITMSwRk1RjC9namnoGcAuCq3bD9VB1RN3/DHKbhOZoBcNYV21E5yz//+fDMgwLgfr/PIXfqGOSz4LMLaL+YIWwBcE/LY67Wwdn0Fz9lNoPBajaGt24dHApki/fcc9EBUQA8e94G64gx/6y319UsdiJVnbIQFK+H2pWM+pDzbAHEo44adkMOPDAnIiInMmsnBOCPeczwUOFsNr7pk/XmtvFPLONP/mQRLKt3cLCeZn27T96mPE9qNXvZy+bbRpXh4qfusJ3MGHAchypsCG0A9wXHgLM+7OBEANjzVnNPiac99tjhXSarq8PzSa5vNBeidluv7LdZBwCvtT5R/P12x31/bWY/6dTjYWb2vrUjD79tZheZ2T3X/i6qtX6r1nqtmb3PzB5WSik2OAR+EN85ZvabnWVdJ6LAMTPAZsPEwVMc+HXLCO7886CDhhNH1OD75jeHgawmUGbsXPx/fzjI68GDnZlczlOBdTREz33u4j1ex1LMTj99/hqyIl6XjAH/9KfHspSxU4CWgawC+ZiHCzPg/BnFD3v5v/jFEEqBQIvLUPqedtp4TTHJinVAZ8jBGl67y12GE2JYb69ntoWJsiwDjq8qVgAcY+WvvXZwNFAYgGLdokVBORl4zevMzGrGurJkcw8Z8MxpV+CFJQIBfi1anKJrXvfZzOzoo8e6qHmB7eCiWDAEaLyY8jY4glKz4a2Ps9lwZN9eey3miWV5+Tz3VLu5PTnssOHFLq63igHn/lU7QxHIR9Y1stFZnSLwFAFwbl/Mq8VAK5uFZaO88pVmr3lNzoBHzm/k0OPcO+ywYWcQ1x3URfVNRB6dddb83Nu4cbAlv/d7i/XCNnS9ox2tKPwL++Jud1vMO5rPb3rTmAbtZATA+feINMDdPr/G/Rs5UjyGFBGh8sgAuPfF4YcPZ+FjG/puVNTeUfnrVZqqllKOLKWc56EkpZSjSikv2oYyn15KuWAtRMUPmLmpmX0P0nx/7bfo9xub2X/UWrfS71EdziilnF9KOf/yyy/fBtWXF5+kX/3q/CQwmx/EvMXGMeCKAT/jjOE4KR+ol1023n/YYfGgjRYFFTqAk8+NGDPQra0hLINjwP14JLwHgSzHdLpuOKGzGHA/79R/d2kxGAwCMgB+2mnDK6/dQCqDlTkOnu7qqwcAzqyrAuDvfOf4G7NiKlQmAuARA242Muu9DLhaRFdXR5YqAuDeFjj+bn7zgUnzPDCtxyozAHdHxGwRgDvIiwC464OLEqb171PASwSsorQIwFGinSGsR8YeYhl+LVsEZzOz97xnvnx2jFlvJWjPpjD32KYRy37jG+egHn9nBytySLk8nDd+klK0g4lj4bDDFgEhl4XAkuthZvZLvzQctZo5FVynjIjwMnA8q3StdssYcLMRyCqApkBwNhawjq73Qx4yvNfCv0esqwLH0bqHRAS+gyNj7nH94L5WMeBehr+Ajh0H/z9jcmezxRPSIgY8AuDcBlhW5vyiIBGBmKAHgKPjku0E+poUtSnrw2MY+2U9So+v8DYze4GZbTEzq7VeYEO4yDLyFjO7rZnd1cwuNbPXLpnPJKm1/lmt9Zha6zEH8zlPO0l8sN31rvPfeQBGANwXzdXV+f/N5lnAUubfBGaWL0pq8B9+uNnNbjZ8d0DmeWYMRjT5VAx4xvSZDQ9zPexhuVHm8rMQFHzhQASeIia3lwHftMnsC18YX+SQgSx2XLB8LxMBAgMyT68WHsxD6clMo/eFMzZKZ8+TAXhmbDHd6ur8C45QT0w3my2eV+/jjV/+smXL/Nj3h0kxTpcZYC8nGsMRS4P9w2PF0ynWMwIBrgcKzgU1ZxkAYzm9DDgC8BYDrgCZ39M790uJY8BbjosC4AoEKCeux2Zw2+IngiUsw88kbjHgKytmP/iB1gF157hj1ul3f9fsWc+K+xcBUFR/ZsD/5//UYzgDsip+GB0A1gnz5Dope8L9zWuTX2O92Ubj3ObyGfyh4PhyAB4x/JHNQLvKeUZpo2doWmMYWf9eAB71Yc+6p8JX2M5ndojHjCpX1Z/LViEo3L7RmrgepQeA71Nr/RL9FkRI5VJr/fda62qtdWYDsPdThS8xs5tD0put/Rb9/mMz27+UspF+X7fCi3DEoOyxxzwA9zTIgPt1H/z+lkBeCFymAnAEQVu3mp199gieWuxhZNzY2OPipozNPe4xgP6Mzcq297x9/DvGBk9l4Vox4NgWBx00gP1swWJj5kYDATgv/Aw0kEFAPVxULLViD7gvFAPuuqqQCBxDeLIMj0XUJ2LqHdj5Nj/XKwpB8TZUYTcO1HkRxjGM5eC2LNaNwXjEQLOoeYnAnH9n1jUa+2oxU0BWLZ5TGHBmk/z3iNlTcr/7mb3vfWYf/3h/u5kNeu6xxxCexkwY64k6ZmxxxMj29MUZZ4whAxEAVeVHQBVtWGaHuL/9N8xXgTwXBuCPeIQelxkAVzseUb9lbdFaP6I+4fu4jIyIwDwy0IlExLXXxnNPOenR+qHmHvaFsomteYEA3OcF7/xGAByBLK7XyqnhNYrHMdpJnF+ZHexxADDtFAZckQaRfVsv0gPAf1RKua2ZVTOzUsojbWCvJ0spBY5Ut4ebmZ+Q8lEzO6WUsmcp5dZmdoSZfcnMvmxmR6ydeLKHDcz7R2ut1cz+ysweuXb/qWb2kWV02lkSAXAegBwDrkJQHIBzXG1ra0YZ8NaWdRSHyvcqw4h1YPCIYQ+RMY8MvZrsvQy414H1zliRqeeAc3tzvioGXC2Y2MZRCEoEetBxcB1QT+W4YAw4H4XmeSo9XUdnB1VbYl+4Di996fC/P6zp19RJDGbjeP/Rj0YA7jsFXIYLhqCceOKo1+1vb/aAB+R9we3FzlDG9LneGQjJ5p6aF8yAR+Alqr+n7QXganz57wqQRWPxVrcye/CDFx1TxZxznTZsGOKJI5Y9mnucJ/fFvvvmIADLUw6lAuD3uc+Qr2rTVhls61q2lcGpmdlXvhKDZR43ihTp3dFSZSjJxnC0fnj53Obe3pHDpUI5sL5cH5y7Xp7PEz9qUxEt3BZRHbEO2E6eL5bb024ovguOAJzBsgNwM7Nf+7X5EFWlG7aFCr2M1mFvi7331g/5q7T+HXed1M6BIujU23XxvujaepUeVc8ysz81szuUUi4xs2ea2Zmtm0op7zWzL5rZ7Usp3y+lnG5mryql/GMp5QIzu5+ZPcvMrNb6dTN7v5n9s5mda2ZnrTHlW83s6Wb2KTO70Mzev5bWzOx5ZvbsUspFNsSE/3lvpa8LyRhwHJg++V18Evjb/WazeTDu90STxCz2qHlSqLQR66mMcDT4easbDVG0sJrlLKDXn41bFAMeMeAtvfkBnx4QMKUvME80SLzYeDvtt994nxpTWEe1Lcv9jc6Qb72azR+FpkCX56tAnCpHMeCPfvTiIssMkZfv7XTYYcNi4sw2v9kvA+Cf/OT4+/3uZ/bqV/ezcFjPaDGJFsxeQIZjIQPuXle8L2OFWiEoH/iAvk+1p+vNjko0h5F1VM7AFMasNwRFtZuLX7vqqnjs+qcKQcE0N7uZ2R/90XjtC18YHlZX8zKqY+ZwqXZCcsbz9vzvfvfFduK+QQCsbFYURqUc1Yhp5HSsb2v9yBhw5Tgo26LKwHuyued2MJrPSm9uA7PFcAnsC+w3bDPMMyvf6+xzioknfNvme99r9tGP9p3c5NcyBpzzqHU45ODUU6ete5EDgNfYwcCXMrmww9NzAtF6EXHi7rzUWr9lZg8opexrZiu11qt6Mq61Pkb8HILkWuvLzezl4vdPmNknAr3uyb+vV8kAOG8hKmP25jcPn6urI0g66KDh80Y3Mrv00ukA/AUvGE4PeO1rF8EFxplPAeCqfK4TGqLolArMU/3OuuGC6YJGhI/T4zIiAI5MsmLAGSh7umi7jUE8lq+cITYup5wyPKD5i1+0GfApD2E60FAhKKq9zdoGHEUtkorlisab5/Gc54w6eQgK1pnHkQKgEXPNIEAx4BkIUIvCFBCgGHAUZl17554K1TIbWTLcHbrpTc0uuWQ6A5+FoCB4UizczW8+HH34ve/p+zxtdJpNjzNy9NHD22/9WgTQsN84PIR1u+ENh6PhzgQ6ivXx/D772eFV9h/84HitxbKrOmF4lo8hbqesb3gMZ6A6alP+3mI9e+aF+q4cp+g+3u3Da9xeEQD3fHvWJNYzI3DY+VVzGKXFgCMAV2uSM+DXXDOsezi+eJyg8G4r7kYovbF999237wHJqH/xHraDeJ865MElIw3WqzQZ8FLKjUspbzSzvzGzz5VS/qiUcuMdr9quJS0AzqDkV391+I5n6L72tcM1Z8PvcQ+zxz52PI6pl01yucc9hq14lfZ2tzM78sjFyd0DwBWwYEPYigHP9EZDwEYiAuBmY5u6ftdck5fPHjWDZ9QhAwG83akMYXR8o+eLhsffFMmGv5SBkTv00PnQmcx4sTO0ujqeOoJpWG8vP1rM1I5HBsDPO8/strcdy2CHxmyRwcGTClw/tTvBp6Cwnj0gAPs+6m+WCOT5NZW+FQO+774DkGyFMblkDLizZNiGD3rQMH6ihU49hKnmhaobOhVXXz3qffDBZi8S52oplp3r2OMMmQ2O25ln6nYzi52hCByjHeR7FbA6+ujxJVEK5E8Bq1hX/l+NYQWeVJ2iMlp5si4uagz3hKConTX/DVlXvK/nFBS8J2PAfRe6F4BH6152DCGnZ4LK++Y731nUoQeAb9xo9qpXLTq/itWO1p2IAcd0vUQAX+P+5bQREbHMKSjrWZoA3Iazty83s0fYEHN9uZn95Y5UalcUBcCPOcbs9NM1IPNB5G/BMxuYz9lsnJyz2XhcXbTweJ4RQxelffSjh/PDX//6fFFwySafAkVRjBdKtvCoLbwMgM9mwxGB/r/ZwA70GI3tHYISGUIWzFcxon4/ytlnD2EqLQYc+5EZ8Be/eP6+U08d4rSjxdTziphtBMsO3rhO97//ECaETBfWERdozNOdDB4PLtl2smKHcVHCxUmxMqifKvvZzx7CAjztW96yqAOKWni4vU85ZWBTM/DC9Vfb4Gb6ZR0oXCfXiwF4aw4rBhzPuec63v/+o63jMnrmnt/nJ06pa6wbO8k4T3nuRWNNlZFJxvRFbYi/uS6R3uq7Yi8vv3wgW7z844+P67R5s25HlJbjgHpljgPvJLDe3oZso/1Tle+/Zw6XshlokzLnG9MxWMQy1BhSbYHrv0sPAEeb7DpFYUTZbgCnVXrifb27IZjW20KNG7YtEcvdurZepUfVw2qtv19r/fba3x+Y2U2ad+2WOVEA/G53M3vGM8bB9oY3LBoUZKj33HO4duCB4+u3XZYBskow7fnnD8wk662MG09SzlMxotsTgLshihhRZwX8f84r0hsBiioDQYmL2m7Dz4gVyZjkiIVjNt7vUwD83HOHB3K4DIwBV8zPfe4z7B643ve+93z5qPerXhXvePgDkxlQz1g4BpKbN+uXDaH4SzUUWIgW81vdyuxpT5vXD8tXC4/S+8wzh3Oc/ZqHKjB4wvKzGHC/d6+9YhaORTHgHmbk8ZR77DG8NMWv+0IWsV58jUEeSxaCoub+eecNYXW9DHg0hr761cW2434zM/uVXzE7+eTFtAjAe1huVYYS1W48vlt5MrMbtRP3DfaF1+mgg+bH0Gc+o8svZRgrma3vbQu3AxEg5DVD6Y33ZaeJ4Hcsm/XxdlN2sNZhF+OUU3LCDKW3L+5wh0W7FI11s3mbFAHwww4ze9zj8rnXcviQ7OBdFP+dd+9boXhchiqfHdOWzcjAeeQQrBfpAeD/p5RySillZe3v0TY8FLlbJogC4AwsnvGMxQmNW8EOwI88cni1ei8DjYP/rW/N9VT5bA8Azt/5FJToPlWnZz97YGTZgGcx4LOZ2XHHDYy+ardoMUHgroAGhqCorWVPg+3Qy0QguFCnoPQ4Lp///Pj7Xe+6+KZI3o3o2Xr94hfn645pnvOcxQUOGXBsj96dgyOPHMIusH9XVobXpnv8stLZbLh+zTUa9GKdLr101PvWtx4e0MR6YD9FIMBsZEpb4DgDAS3HVC3sPYsZlmE2MuAbNw7nTbtEAFyNddabBR1l5Zi2bNZUAJ7ZL2Wzah0eyH3KU0Z9sTx0hrheGXiJ7GdUxwwQZddYF1XHjAGPABLqGNl6BbQyvbFss7zfeI5FDLjXLzuGUNnhVgiK2jW7172G56Yyph6lNwb8wgvn74v628vhdQDPLPfrKyvzO4rKDrDDE63lkV1WfdE7n7EP1HxBW9sbbpc5Q+tVQlVLKVeVUq40syeb2V+Y2bVrf+8zszN2jnq7jmQAHAeN2lLzt6/hi1J8YLq0PFq/5gtNJLwoeN6sN5b3rne1Jx/+vgzoQznmGLM73Wm8du65MROAAPymNzV76EPj7XslGEutyvDfIxbu/e8ffz/kkIFtUv3dw4Bjf2d6o9Fixhvv9098A9wU0Od1jJhcVYbZ2FYReOI6feYz+shAf8gokz33HOZP1E5eh0MPXVxQUD9mZSI2h8tR7aMYPlUGhxypRf+ssxYXUxZ0lBQAV3bJTAMLL8PbreVEe55cP6xHtphy27TmXgQWVHlRe3la3KWbwoBnrJtiqx3k8/zuaSfeCeT6c7tFTHLk4Bx00DyQU2VEgnp//OPz1yJnDAEh9is7KlyGOr0F64vt9epXmz3xieN3rj8y4P4MVtQXCoAzEcNMMpMWeA/r4nLllfNt4RKdgoL9jeML7UDmRM1mwzML7363rnP0OdX5bdVfhdBFemdr4nplwkMAXmvdr9Z6w7XPlVrrxrW/lVrrDXemkruCRACcB5Ty4n7+8/lrZpoRjTxxNaGjAYlpeYKh3rjQPP7xfSyNCy9uy4bOuC4nnLBoYMwWATiWl7UNCjtDyoCyEcYF6lGPGvP+wz80e9nLxmvf/e7YjvvtN7C8KAwAW4CkZ8Fm8b7AeMKevvDvv/RLZve97/AbLmZ8Ni0/hPnQh/axl/4719eZHw5BYVFH37XqxIuE/x8BcDX3sm1Zzht/y0JQeKEpxexP/qRvDCvA4CEoLDi/OU+cT6WMTGHPKSgKAHO7RX0R1bF3DPk1xRZH5XNfKEa2pwwGNopZbBEoatvd82bwMoUBb7Xbl7882NeW49QCXQ9+cN/cu81thhcecbshkFR9iDaa685ypzuNb3pW7YSgb599xvIjvXknkOvI/c19oYTb1zGAX3OJiCcEtmg/oz6Mwnoe9zjdF0rUfMJr0dxDJtyvqRCUXrwQOWPrUUIAjlJKOaqU8hullJP9b0crtqtJtE3IxlUB8A9+cIiJzACZMtJ4bQrzkxnXWseH6XrZrIjp214A3NO2YsBx0WqV8eY3D+dNz2Y5A47b8li/yAjitZvffNTnzDOH81pV/c3iEJQjjjD78Y/HcnraDQX7Ijt+K3IUTzppcCxYb+wLbzcE4M99buxEYp/yAonl89ZrtA2uwoFUO2UAERfTXvCSXXv2s8c3hypdM0AWgU4lzlYrBjw7UcBM2wFmwNGGYRkKrE5hwFVfLAvAM/DUcpwiBtzvb+nNgn3BDHiv3hzStkwICtcp0htjvjlt5HBhOgWATzppOHZS9cVtbzu+eCkaQ+gM+fdl3ijJunraKAQFyzMzu//95+9TuyTc37h+KFLO15OWQ436RC8NwjIyW6eIgF684GVg2/TMCwXISzH7vd9btIO+JvlnqwwmpdYr+23WAcBLKe8ws3fYcArKQ9f+HrKD9drlpAXAcZKyF/ee95j99KfjghmBvujhhGjwK1EDnEFOdBRZBsBZr54X8fQA8Mi4mc1PRmZQuAwu/6lPHdgPjC/kvsI8skUwqxN+51ewo+Fj5h7v42MDexYetU3acoZULLECAS0G3Nt7ihPJujGoV3VT92V5RkCD0yrwMjUk4bjjzI46ajHtMo5pa+5FISiqvd0mmek8GYBj2ygAjm3DY3hKHXEhZn0yJ67Vbj0hKBk4VhI5Q35tGQZcgTX/zEJQonkajfVlwFMkqk61Diz3CSfk6xf3TctxYDtw6KHjW0lbemL5ERGh5pofUID1cN1e//rxma0em8nrLbfbbGb2iEeM/2PaZc7gb60RmaMa3dMaQ2y/1Rx68Yvn80G91TzpWcvXs/Soeu9a6zG11lNrrU9c+/vtHa7ZLiYZAFesGw4iP/cbB18P8xNd4wmFgobo6U83e/jDFw3oVACOjIWXwUff9S48KGrhiQA4gj41aW960yE8hMt34/7Wt2pj1wtWse697IJiRNW17L6WINCY8gKKiOX3awiOGYAzm4VlRGw1g7xs4eGFk0EPX8Myor5RYCnKJ2s31gGFF5tsjkYAGNvsFa+I43e5Ti4KoL3+9SPQe9Sjhnh8zlO9DjvKM7MZEesbOerLAEn83pp7EQPeG4LCkjHgLWeEZZ995t+M63lmYBn7oteJVHnip+fL/2d5tsZCawxhPvicjpf5N38zhL142gc/eFEH1lXFgKt00XqNztAznznopJxfJIVU+6n1Y3V1OIXlHe9YdGIzAK6Ivje/eWwntnGf+YzZAQfo/la6omRzT9nMqP687kXEkyof29vz7VkHryvpAeBfLKXccYdrsosLg8VoUWIAXuvw8N7tbz8/GKewSYo9VNtO/ulpjz7a7M53jgF4j/f5sY8txjYjINsWIJmxrmYagEeL8IEHmv2P/7Gop9/3lKdokK+kx0vnscDl+iceEdjq7wzYZLr29sUUNodPLOFTUDIgqxY+xeBkCw/q3QL1EVjBvmFA1tKb5zNKD+vaw+Ty99vffligXZ7//CGEgHeKcBxF8elmY/nPfOZ47dGPNvv1X9djActAhtbTqDHUy/pGY1M51FN2PFS5/hm9it7r1QuWMV2LAcf8OU8u78wzh/DEjIhQQAfTZu2bgWOul5JW/2ZjgfsViaeedWfTpvk8P/7xXF9stywEpaU3j4vI4VJpXSIG3NcBJg04FA/F5z7271OfGvfN8ccPbacwSSQ96aJ175a3HE65UmmVHVRzuGVP/uiPhrj/9Sg9APxdNoDwfy2lXFBK+cdSygU7WrFdTXoWdv/OW2q/9VsjA+sDnCfiVGPX48WqxcwBuFl7MS3F7CEP0aEVOyIGHMNFXD8FwHtDFNSi0AP6MhDA11Rf4NiIQIDSO2JpIh1Rnx4GPNvC5IVm2RCUbAwzqGdnKGqLZUM5sG8wHwWAoxCBnrkXgfwpztBsNjiRj3/8YnrFVmdto8AEz+uMnY5AqCICsv7mtJGuvc5QC+R5nTmt/4/9lDnYyzDgyzjUKytDmEMWgqKAfa+tzcaw551JZqNQr4suas8TB5Kt/mbbHq27eD/qGtnBKA/WRwFwZWtVWtRbAXBlM9UpKCjZ7lPWN1lonioD0/Xak1qH02he97rFtmYGnMfzwQePto5tNLfFaacNIUnrUXoA+J+b2ePN7EQb478fuiOV2hUlMgSRwWQm1xlKnwg9gMyFFwW18GBaXnh4QN/qVsPLWXrZLFXG9ooBZ2CB+eD1ZUEfA4te1jXawotAnxJupyns4VQGfCroUyCE+4JDUHjhUWM428LkeZIxP9jfveFA3BeoH86FiIVTokBfxJCiLZgKJFvzhFlXlQ/bhCmMKDtcyr5MHfs9zq9aOViH2AAAIABJREFU7HtZ9ax8BseZ0x7tbvo1lIgBnwqAFTvsumVtPAWAR/VVc0kJl83rnpd329u2xwbbjJ6xP3W8LROCouYQ3qf6W5EG2RphFu++tUghbLfI+WWds35Tdcz09vRqDEUYBNNGzsDhhw/HH/N9s9lA+F111Zh+PUsPAL+81vrRtbdgXux/O1yzXUwyAI6DVr3NCT3zDIBvDwYcB3w0oY47btjqbnnUSg8sww3K1HPAXaaw08iAt9g6F2W03v9+nZ4NWBb2MKUvpoSg9FxTenMMeI8zlC08DI69DBWCwvF9kTPGjlqrv7duHbaSFVjqrROODezTqU5cL1hvMaLMUEXlK9DH85TrhHn5d9YzAyFRCIqqX9TeKHytd0y3iIgWIFN1iuqrxr6azwyW2fYoYMk6ZWUop6InLeo2pS8i0Ni6D8dFS08eQ8jkYvgj5vM7v5MDSeX8KvY0C0FBXVDvaO6p8C81blohR4qE8zx7YsDZfmb93VqjsE4omCe/TRXz/PCHF/smqr9ag9H2uTzveWY3vOF4H79wbr1KDwD/ainlL0opj9l9DOHyMpUBx7ANnHxRDPgUIJmBPhz8GaiOFrM99hgfDFJt4Gm35zngnjaLz0YAviyTXMrw2urDD4/rNjVPBVawPG6naJuQ72sx4NwX0avoW8wPpsM6tY4hRNDR027KEKsdD7/mMefZuGgBQgYMmd7ZdvKUuOPo4SNOr8AptgP3YcSAZzHwU8Fxy6lV7GUGZBlo9ABwZbOmhAOhRDseXI8MAEd5oq7KLnGdWoAoqr9Km5WhRJWPn0oHsxzIcXmtOrKjour7xjfm4UC9614WguJ17bGDrrfqb3ciemyG2bYx4Eg8cVsoXaJdBqxTpLenO/748Xe0J2ZmD3tY7KRz/Xud9j/8wwF0t9a99SY9AHxvM9tsZg+03ccQLi2RIfBBi16yA1lPqybfsq8mxzJYP07bkyd/P/pos8su0/VHXbc3AGeQx5J51FOARlYG1i9beKbGgKsHJNWCmbFZLWMX9UVmlDNmT4XuMCCeyiRz/aO+QAC+zBjG76qOrncEJlQZPSAA+2IqIIsAoeuNaVdXzd73vuEYxN4YcFU+fs9CUHjsR/XI6uhzoQeA41jM8szmntmi0x7VX7V3JGqetGxt5PCp8iOwHOnKdcoAIab13zPJ2lvZyB4Hn+uu9O7Nk+uSxYBHJAmu3wpUc/l4tKXqi5e/3OzYY7eNAVdjowVkFZm1PcdQa+5x/22P9ZrbYj1K4z1yZrXWJ+4MRXZ1mcqA44RSk09NxClsdS8Dzrr0GNC999b1V8fSTZm0Kk8GeT1MwLYw4MymqnbkPu0Je1CCxlW9kndZx0Xp2uMM9TJrDoAVAMfFTY3haDHlhYZZV263a68dQ1BajA2WoZggriMvni0QoFg5JQzIepgmVX4PA/7AB5p9+9vD+wW4DP+ezYts9ymqY89iGjmRWX+zbq35zPWMhBnwyPZlIQlcRosBR92mMPdRm2bzFGXq+qHqhmXgfViGf2/ZYXbwfQwv47Rj+T1zrycEhcu/xS2Gk7KuuGL+PibXIlvrnyefbPa3f7vYF+z8Y53Q1iqHEtdybu+jjhredvrWt04bQz0OLkpPnoyJ1Lo3xdZeH6TJgJdS/p9Syjv4b2cotyvJVABuNj5IoBjDqYZoCuiLYsBbiwIvSijuRGAZaIiyCR0Jg6XeEJTeWDi1KPScAz7FS88WUweu3k7IyrQYs2ViwKcswmqB5HbC/laM9JQxrMBb9BAmlsfzi9O1WLgp2/e9QDLbueh1hhQ4VYDQLHYiozJw7vPvWfk9ALzXDqm+6A1B6WVEFSBToEeB41boTKQnA/CI6cv0btmMLB5/GbKjVadIsv5Wbdoz9yInGe+bkiemzRhwnttcp1vdyuwNb9Bp2eHC/u5pN7N413DDhkU7qOZ+xIDvtZfZMcfkc43LnDpOvA1aDHjPLnzWbsuO0+tSmgy4mX0c/t/LzB5uZj/YMersuhLFjfn/aDD9mj9IsK0MuBrEvQx4xHoq4xYZQjMdkoCAeBnDz23aCkGJmIde0NcqA/WO2i1iXZUgkO3RuxcEYFosI+sLVX62DR4dQ4hOjALgLQYe50m048EM+BRWP2LszBZ3gzCfKUCyJ22WruU4ZHGoGQvnefn3XqciG+89baH05mstJyMCZFx+ZIe5jthuCvQhQIvIFSVRX6g5i+2dldEKH8A69jqRU1j97LfI1vU4v0pv/l3pjdeydpvNxmetUJ9WCEo2TrO5hzaMy8j60PPJQlDUrrNqt0xvzFO1sao/iiIXOI+oL7we/n/kqKj5Hdkl/209S08IygfxeynlvWb2/+0wjXZRyRjwjCGrdXE7Bu9zUYtptBU4FQREemehFcoQKQa8BbqmAvAeBlyxUFFbRI5DJmwkWiEo6jqX1xOCkhmiSLCOU1hXbjcGFtExhGxcFQulFnrlREZ9sWHDAMBbIU6RUzEVvDBA42s891rb4L19wd+juddi4XqAhiqfAUMPA56NYdYzA+Cz2fj2Q9Zt2TEcjWn/Pdq13F4MeOY4TAn/6mGSW23jv3meWUyw59vKk21bBggj5t7rF/WFKh+/R6EUOIZbISjYBmwzst0ndn4zu8TXmEDCtNdeG69JGLqjSDjV3601asoY8t9bY5ixRYu5XwYvrEdpQAkpR5jZIdtbkV1dIgCuJgYDQuX9qkHeOzDZMKEo71MtrGpCZSBgdTUGZMtOKMVK9QDwZWOpGVhGkrVv1G54HcfGMiEoqt1UbKCnXfYc8FYICgJyDEHpPXYS4wLVWIzCgbi8ZQFZVkeVjxJVRiTLLtDK4YtAAAINXsxR5yl14r5RjpXSM7MZDGy4DARPmW7cbr0gwGyRAcd8WnqjqDw9bcaAR3XKANFU8BS1N6fpHcMoPL4UyMrKiBjwjNBAUeM0Ig3QnvSEoHAZ6poqY5nnbcziEJTWuuf5qfaNQp4isI51nDL3XvCC4a2trHfLOXIMotY9TBeVr+biepMmA15KucrMsBqXmdnzdphGu6hkDDgvXrzwRZMPZQqQ5Qnl+nHazIBFBjMCAQzAmQGPJnQW95mxcCotGr6IacvaTYE+l14WjPVkI4F94+UpINkCy71xc72gj/uiBQIUA44PYao29PKja6pO6AwhWN+ype8hzAggqO+Rbq3+jvpXpfU69ozL6HsPA56BgI9+1Owb3xiOdVtmXkQLnxpDGevaYsB7+yLaGWr1DbOuUT0yx4ElY8Bbsa3cRli/CFhl81SV0dvfmUT9i+3bcsaU3moNzO5jljebz6iPmhe9Ow69u08M8nkOKAY8ehV96/ABpWe2Xrf6YgpzbzY86PmTn+R9EZEdPXpjH/LYj+bUepGeEJTgVOfd0iv/8i9mb36z2ZFHDt9x8CkjtWXL/P2KAWfpAVnR4PffWJ9owYz0brFwOFEiYMl6T2XAFSBD0KGMS68hUmVg+0XGjtNlzhDnw+FHGXiJyuAFnNP2xIBH/e2i2okXnh5Guveaz5MIrGMIyhQGPAPg0VazAl3ZYtZillsMmVqUsvhoBdCyMm5zG7NLL43BsapT5FQqFrvHZqjxtiwA52vYji02E20G3he1jesW2ayMAY8YydY4zdh5VSceG35fBDrV+pFJ5vD0EjgRIFPAjceQC9edv0djuNb+dSdbP7gMJjuiOavWebQLs9ki2ZAx4Fh21BbZPM3sIEqPbZtia1U7ZXNviq1dLxIC8FLKLbIba63f3f7q7Lryi1/owRcBGxyMrS1jvG8ZQBYZFAQESu+sjN4QlJ4FMzOEajHz9sCHOpxt4IWOwVPLEDHL3sP0oagFUi0ofs2NK9ZB6Za1W7ZgIlieCvqibUnsX793mZCQSE/1ndM6AG8x4Nmir5wML4/ry4Y+Y556GPAeRrQHyLLeOIZbi1kE1iJwrNoD74/YS8w/slGZw4cy1Q7ydcWQclu09I7IDbN4960HSPaU0Qtko7ZRooBsj6ixj3lMqWPUTlPWD24LNS9w7ql5YZaPBcVcq/5mQoX1boWg+LVsRzFrC7Vet9Kq+mdloLRAfdSOCoBzCEpUp95xel1KxoD/vzaEnmA1qpkdbEMMeCMSdre4ZMZFAQvl/artJy4jm9AMLCMQgItpyyhOYQIQgGdMAOs9hYlg1tXbisvLmLUpLJzS19NlzE9vDLinReCK44T1jtpN9TeWz30RMYu9rIiPaRWC4mC8R28U1W8ZAPcQlCnzondR4Pr2gAAuE/P0hwmxL1p5Mpu1vRhwHntKlF3oDUFpzb2oThl4UmXwb6hX1t8RAEf9psw9FuW4OdDI+jvTW/WvStszTnuu9QIb7ovMGWjNvYgB35b5rcIXIgY8s5+qXFUGr0lOEHEZaiw4BlAMeAbAo7nGbaPSuqh+y+ZeZE9aDLjqb6V3Zoez+bweJfSbaq13qbUetfZ5FxvegPm3ZvYzM3tmK+O188J/WEr5J/jtwFLKp0sp31z7PGDt91JKeWMp5aJSygWllLvDPaeupf9mKeVU+P2XSyn/uHbPG0vpNQs7XzLvL9piceEFMwLgUxlRHqhcXjT4ew2oAuCKIV12UeAy2BChPnhWqmqLnt0AVUduO/ytdxHkPLmP3di1QlBazH3muC37EGa2hRkdQ9gTA54tChHoQ8FTUNT86h3DmeOi7uudezy/ewFZtEAvw4Cr+Z3p3apT9lyDy9TFNBtvvBuxrN4t56hnnLbYcZRsN2Jbdp96+mLZ/s6YbJVPlKeyQ71zDwEZAlClN7cF/r4sA46Sgbxs7mGd1FzAPLl8z4fnQQuAZ+tO79zjfpsyTrh8rGNvf7fC1jDPFvG03qSxcWFWSjmilPJOM/ukmX3FzO5Ya/3jjrzfaWYn0m/PN7Pzaq1HmNl5a9/NzE6y4XSVI8zsDDN7y1rZB5rZS8zsXmZ2TzN7iYP2tTRPhvu4rHUjGZBtLTRmi95vVMay2z8oqE8GJM2mA/BlX8STGUI2tsi6KpZALVCZIWLWmds/AhoZA54ZCW5HbCcOQckWnqyMWhfbpuetpNlYUIwov4inBTRa5bfehIl1wpCXKQ5XiwFH0JcBi6hOqr97ABne11pM/TfUm/NR8zvTu1WnDIBHjsMUEMCsXK/Dk11rgYKMZc92zdQOhMqTbW1rDEV6ZuVj2lbYw/ZgwBWZkM29qE6qjkigZHr3kh2RE9maTy2Hi9e9nr7I2s3zQQCO86L3aNwMyGYOfWttxzaKximPS0U0onh/t8ikKY7DepSw20opd1478/uDZvYZM7tzrfXttdYt0T0otda/NrOf0M8PM7Nz1v4/x8x+E35/Vx3k78xs/1LKYWZ2gpl9utb6k1rrFWb2aTM7ce3aDWutf1drrWb2Lshr3UnLEKiBmU2+qIxe45p5hmpRaC2srTqZjU6Ep132RTxZuzFAUwB8W1g4rmMkXKcWeGqBvp5TUKYyGFNZuFaeuC2ZMeDsSGTtpsrHMhxkYxq/5i/iUWM/AwHZotA7TlDUQsOLbQbIVHurPCNWyL9zGZhP1N7ZQsvttswpKFPGsOo3LC9qCy6/Nfe2FwOO31F6515Wp5atjQB4a+5tDwCe3ad2MXr7AhnRFlidUr6aez0MeLSWTpl7U9Y9DEWcwoBHeSr7HWGQiJ1uldFi/HvIDna8p657650Bz2LA/38z+54NseD3NLN7YpRHrfXsJcq7Sa310rX/LzOzm6z9f9O1sly+v/Zb9vv3xe9SSiln2MCs2y1ucYsl1N42aQ0+Bi+8uPKJIT1l+L3+2TswMZ+WAeMypjDgywBwv0+VoUCA67phg9k112h2g78r1i0DAcss9NxubFAVCFDHVvXGoXL5q6vDK4i53bJFYYpRbgHw3jhzll7mxwG4YsAzvbmdsgW7xXr2zj1f8LH+0cLTu2umnN8IkLXmnpJooW0B8Jbz679lZWCdor7P4tqzucZ6bwsDHskU0Nc7hnoBuGJdI1vHwnlGguVxe7fsYAuQeTtl9jvSRX3ndTeLAVd5R3lyX0Sk0BRbG5FwTkRMZcC53bh/W6xzNC8ikN9jB5WtnRJ6OQXnrBfJAPhv78iCa621lLJTmqfW+mdm9mdmZsccc8xO75IeAM6TDe/1CZY9hDmFCehdXNVE7AUvCoBHgGxZvSMjxfpkgH8qm8ULtL/KGEUtEr3txt+zkIRIb5WW9WZnaOoRga06cQgKx4D3LDwsGcvO+Tg73lpM/DfVTpwWnUg1TlhXvBa1m2LAs/7GPHoWJW43nhfbMyQhAuDRmFULe1QntosZOG7tRkRAMgP5iiSJbEbkjHGePjYRWHG/qTx7QJ8a0z5nlG6q3bh9onZD4bGd2SHOm+9VdVRja9ldu6gvap0WA545v9GapAgV7G9uNwzh254MeO884XnRc19GGrT6u2UHe8Ywl7EeJQTgtdZzdkB5/15KOazWeulaGMkP136/xMxuDulutvbbJWZ2HP3+ubXfbybSr0vBhdW/RwMawQp/Vww0l6FkqiGMWJkpQFKxcNmr6Hs96ojB8LRYhlp4FFDvBeAZkPV7/b4WAM4MES8SvS/iyQxRBCQZBCz7ECZfQ1amlH6Qz8AqAkSeZwbA9947B7Kef9QXap5mADyqU9a/Pib9/2j3SY39qAw197Y3AFeMaGTf8D4mF3qBbDbeWnr3LtAZQJvN5k+rae04RDKFAY/qlI0F1gd15TJ6xzDqgZ8t6QHAvXPPdVXzp3cstOzwlLkXtUVr96mnL3hebNhgtnmz2X77LTqivccQRs5vNk/w98y+YDrVNz15cn4ZAI+eBWn193qURrdtd/momZ269v+pZvYR+P0Ja6eh3NvMfroWqvIpM3tgKeWAtYcvH2hmn1q7dmUp5d5rp588AfJadzKVAff4Vf8eeb9ZGSgtgxKlZUCk7uupk9ki6OsJe1ALfcsQ8uJmNm+kWotCiwFnIBsBwF4D3mJdW4aoZzHl8qO+wEWIpWdRYnY6OoZwmThUbwusf+8pKJnjkI0v7hvs7xYDjnlkY4gZcG/HKXpn17I6bi8GHPudy+hpCxzDURnZeOMylmVEuYzIOZjKgKMoAI7zW8kUQBjpY5aHoLT0Zn1QetYSpTfmpQAZj2llo1rjNJvf2Bf4qdbrXpuBdUK9Pe+oL/h+tvWbNw+7rT1vwoyc39bci8Z3xE63ymASbIrDhfNiis3IxtB6lOabMJeVtQc4jzOzg0op37fhNJM/NLP3l1JON7OLzezRa8k/YWYPMrOLzOznZvZEM7Na609KKb9vZl9eS/eyWqs/2Pk0G05a2duGE1o+uaPqsq0yFbxs3jwPwDdv7n8TZu+CqYwb59OjN5bRAuBcxvYAfT0ggI1UBlanMuCRIeoNe+gFfQxcp4AX7m+Ox+99CHNqCAr2Cb+IR/VTNha8DJUnC17zPLEevbsR3G8RA86LBLcbgzy+jm2Bv7HevWNoezHgU4CV55fdqxb2lhMZ6dMLAlp6t5g+ZMDxvt7dJxbuC//smXuZnhHowzqyDclshhLu75a0gBzmxdf4OzLgq6vz62Okt2LLo/7Fuk1Zd7J5aZbPPT4HnPX2fJwB37hxsU68tkWOXORURHMvW7+y+RXd11pLuQzu78jWsh3O1qj1KDsMgNdaHxNcOl6krWZ2VpDPO8zsHeL3883sztui486S1sDggXnttWNsMbKJzuRGZUxZeLh83l51Q9SrtzJSKAheEKC1DOgU0Of3+Oe2AnDXTS1mZvNAFnVoAeCpQGPqKSgtBieLx4+AxVQmmRlwz3dbGHCuYwbAecGK9ObyM6eyxYAvM/eQAcfP1oLVAhYMAlT5GeuazUuVJ+ofLXzRAh2BgKzfIgA+lYiY0t+KpFB6c90jxwH1mKJ3DwBXYLnFgPO8yNjqHmnZtgyARWuN/x6BRVV+tn6pvqi1DeSiMaTWPdXGykZHeiMD3gPAt2yZzwvLw/syMmvKeMM8o/ml+oL7W83vyGYoXVr9vR5FmLB5KaUcWUo5z1+oU0o5qpTyoh2v2q4jU4CkA3AVgrJxYwzAM0Ok2LSWR+9gqRU73jMxzBZZ1+0V9sCLP4I+1wdfxOP3ocHKQAB+9jLgUxwuBciUIZoCwFtAI+oLBboidrpVp4j5mfoQJgNJ7LeeU1BYbwXAozGs+juKAe9lixXo62FEFUDKQAD3YeSYLjP3VJ1Y/4gBn+JQt8BTj97qGn5vOS49Mf+9zpjnGfX3sk4c5uUSsa69TnvkQKmyIpliv/latp602juzgxGTi+3Vui9z2nrnXusccLw2lQFXuqq+6GXAW/Ylagvsw9ZY8HZ3wXnSGqe9NmM9ShOAm9nbzOwFZrbFzKzWeoGZnbIjldrVJBr8nMZsEYA7YNmwYfjNgQXLVOYnMiiYj/8fMcCod8sQLXssXe+CqQxpxIBPMUT82cPCtfqbDUpm0BGAZ3orPaPyo4cw8f9WndQYwvuiMBPub2WwM/CCdUKWHQXZ8amgLwMByzLgWZ7IgGPbZmySKiNzfiOmcyroyxZTz0/VGeuqxtAyiymPNyyD7SCCkF7HyWy+v9n5m8KAo2QAPAJkLb0VIIocrl72UOXJ/d2SqL+jPHkdiurYmnsMOrGsyH5zX0xxHLK5x2VEDDi3yRQGHMkl1caqPFUnTNtav3rXvV4CR+0cRAB8yq7ZrgDA96m1fol+C3jY3aJEDX6UXgZ806ZhIkYLz7IMSi8Dnk2a1qKAbBKCMJ6Ymd6ZUWYQwAtPKwQly7MHyKK0wFML9Cm2mtuptWC32MOpD8T2GOWsv3tZ1+0ZA94TgjLVGZp6CkprDvk88//9nilzNquT693DiKIoPfH/XgCO40Qtwq3diKiOvbtPnLfSW5VvNj+/t4UB575Q7eZto2QKIMR7UB+zkXVV92V14npE85NFtXcvk6zquIzz27KDPPeio0tb6w7mib+h3pjPlIcw/T0WigHnU1Cio4qXwQB4bw8DznMP7akaSwyOI5uVERh4X2u8rUfpAeA/KqXc1syqmVkp5ZFmdml+y25ByQam2SK7wg9h+qByBrzH++RrLdDJBtuBQXRWqd/XuyhkoG8ZFo7LwPbjtCoEpXcxxc+s3/xeT98y4NGuQgQ0PF0PC9cabyoEZXueA85tw6Cv902YihXBOkUAHE9B4TxbLGDGwmUMeIudjtL6PPP/8TeO2ezVu8WAL+MM4X1cJ557Eevaat+M6VLgqcdm+G/qWgYIzebnSYu5R4kAiueDdtA/M5JmCnhyieZeLwPOOrC+LFlfoE5RH6p5wXYwstG9654abz0MuGJSp9hBlU9mB1X5EQO+ceM8KRcx4KxbBmRVm/QA8CnrtcoTZXsw4JldXi/S8xDmWTa8xOYOpZRLzOzbZva4HarVLiatgcGTjR/C9IXYJ9veey+WwQu2utYLQqYw4Jlxw0mqHspTTN/UdlMMBqdlY8dANprQLUOUsXDLGiJOG4G+DIC3DGEUgpI5Qy0mme+LQlB6YsC53bGMXgbcd5GmsIc9IKCXAUewmjF73u5YX7UboRbMSE8FwJdhwKP+jsBixIBn4CVjRFu7SNuDAc8AOIOACOT0OmOcZ9bfSm/83gIWGesa6b0sAz6bzT/EH42vDPSpebEM68p5Z+2mbJ33bevBv6iMFhERzSHWuzcGfL/9zH760z4A7nmrtphCPGUAfIqD3SINcH739kX2fT1KE4DXWr9lZg8opexrZiu11qt2vFq7lkwFshyCgkxuFgM+Bcii8KRBQMZAiu/rqZOZZm8dgPfGHbfaDT95IWh5zVGd8JONGwPZiAHPmB++ptL2gr4MgEdMLgNw1tsf+p3SF9w2Crz19DcLg6AWAI9Oj1nWgLcYcNU2LSBZinb0egBo72LWisfHeYF6RWBVtZPnp8rodXimOJG9zi9f632o3PWJ5l7v7hOLssM+BpYlIhQgioiIjPWM6sRps3WgNYYiQNSae1xGZgez8ltjSPVFa93JxlC0E5iFoGQMeK3z9zkpp2wtS+/cU/aIbWbvet0i+iLJGPApNuN6D8BLKXua2SPM7FZmtrGs1a7W+rIdqtkuJNsLgPsA62FEUXoMOAMyN0TIVipjg2W0DNEyL+KZwl66jv6JjkvG/PTmyWkjEDBV72zh4TKyBTMqn/ut90QaL8Pz7A2r8TLUmwN5TLUW08hx8THUigFXdVqWhYucIWwnrCOWFy08GQO+Ldu5PPdU2tbc6wVEmfM7BbwokBuVn8297WFPXHpDULJFP7O1Li0APqW/PT9Oy/HBvQ59S7gvep3PrC+y8b4tALyn3ZgBn+pEctuofNhmsN6KAd+0abAr/NAlOti9ADxbyxUAj/qN71u23bA8LoP17h3Drd2A9SA9ISgfMbOfmtlXzGzzjlVn15QphiAD4GbxtuiUhac1iJERVS9/ie7LjBuCJdR5ey2YCgQg6IvCJXoAeNRu2UOYrS3MDJBxGT0OV3aNy2DmPooBZ+Y6G0NslDnkKGNd1XnhSnC8T2HAt8UZ6u2LjC3OtsFL0QteD1sb6clzj+1E1BcMnJd1frmM3rGftWkG3lC21alQ+fk1ti09c4/zZUaU9VaiQGYvAFdzWOWRAVlMw3pz+VwnHvvLOr/Y/lMAeJZnVMepzu+UueeiGHCeM35t40azX/xi+JzN5u2e2++pAHzqutcab9gWUdtw2pbjooinlt67HANuZjertZ64wzXZhaWHAccJpB7CdImezM8YlJ7yXRCAu5FQoJbLbwHwbOHZHgyGfyrQp5ifiNXODBGnzYxEb/hACxRErGsGAlrl826Et0cLSPae5MNlYPn81H7GLCphoJM9hOkMeK/zqQBDT19kYLk1hhUDXsriXOPvveNL6RoBcJRl5p5K2wLgUZ4bNrSBjmLA1Rhq6c31RskYcJUnl88vT2sB8G3tC8yP0/b0RdRuqK+a+wiOM735vil2sMfWcRv0Amm+J1svuS2mOEO9RpS/AAAgAElEQVT4W+/D6Bs3jqegrK72M+BehtIt05vnVU+7Ybpl1j1u38jhUg5GNPeuDwBcmLAF+UIp5S47XJNdWHoAMA4ifggzY8AjEIDCxrVVPr/Ge3sYIg57wPt3VAgKA42ovi1DlAHZHhDQam+1aKky2Lhxu0WLEuep+sKBYAYke9uNy8Dyp+iN11x4MYvaP2LApwBCrmNrNwJ1RseF82RgzePMH7bqjVduzT0GfVlfcB2WmSeoz5SxzwA8q2M09zJ7wmVk9swFHa7Iacf7eCxw+Nu2AHD8vgwA73kIMyoD9eWyIlunxlDvTmRWxynr3lRApogINU579MQ8PS3+1hsD7gDcT0Hh3cWIAW/teCxLPEXOb2vdmTr3sh2PXr3Xu4QM+NqbL2draZ5YSvmWDSEoxcxqrfWonaPi9V+mAEkHD70hKJhnZojwU01MNBI+wRl0Kb2xjMy4MSBzYQ+ewcuUmDL+jAzRFCMR5cl1QmG9pxiiDORnC0+LeYqAJOY3tb0zRpIXCazflBhwlgj0oeAcajm/mIcCAb27T1G7tcpXDHjvC4QiPRWTqfLpcdp7yuD7uYws7CC6xmMns4MoigGP2iIDKC7ZbmOWJ9aDAbhqt/XAgG+PEBR0QFqAjPPMHNVe1lVdwzwz1tXvmWK/W0QE19FFhaBE5fE54P58i5cfPbczhWzodajNtm2nPWo3bh/Uo9XefH82htebZCEoNzWzu+4sRXZlaQ1M9rb5TZi88PSGoCzDmPEknMJAc3kM+noYcNw2U0xyaxta6aNeTjClLaLJzyAgY356gawCy1NDUFrsqeoLB33LxvyrsZe9iGeqE+mSAW8XPBlA9UUvK6Tq2PMQJrZbCzyVsjiGlwmdyUBAxN4q0BeN4Z55gnXifDh/pTdKDwMegQCe6ygtJ1Llx+W1ABle87AB1DtiRFtAsgcAs95sB7OdwCx2HcvlsrIdll7mvidtxoj2tlsP6FPrzhQiIuoLnOdsazm9YsARgO+551g+P1+VMeDbY93rdYamEjhRu/G4mEKYZaTgepAMgH+71nrxTtNkF5aWIeBB24oBjzzDKQxGy4vs2XrNJnTLSLtkIHtKu7Ew6IvYsymGiCc/90VWp15nKOtvvE8x4NGilIF6zM/LVtuZXEbGbLpEISgZAx4dUYjtg59K8Nxcr28PkFV9we2m5h6zWXhfC9QjA476K0DSyyTzYpaFCEwJY1oGgC+7CO+oEJQsT1UXZQdbdeITLHpiwP2+SN+poRTLALIM5ONvfC2yCy1Alu0UZONtWwB45px5Gu7DjK3N9HRR/c02Q40FBuAYgoJ54kOZU/tbiWLAe3afetq7B4OwHr1kQ2aH1qtkAPyQUsqzo4u11tftAH12SenZmkEmkgE4sxbRwIwMuEsvCPE0qoxeQ+T3uiB72GLAMxaO8+8F4NE2cM+EjhZerBMKG54MaExpt5bDtT0A+LJgVfWFAuD8Ih7F8vaApxYA9xjw2Wz5cCC18PT0Bd7XAiGlaAa8tYuBwvejjXC9exlwrvuU/sZ7ewF4dK0VgpKdQJSNocwZysbwFAacAXhkv7EsBlZTHPopDHgvAFcS2WF22jP7HZXPOwWKNFkWgOP3HtCXzWe+T9nvHgCeESh+ze/DN2A7A67eZOzfewB4z7oXjbds96kVwoht1OqLqG16GfDrg2QAfIOZ3cDMrkfVWZ8yZTHzeK/oIcwp2/fKI2yV79K78GDembe5bAx4q90iIIbt1gpByYwUfipApspvOVwtBwDzxO98Hy/sWDcFbLF8dSTkFACunBHF5HLaKcy9kogB94XIy3UnduvWaQ5XNqZ7H8LkRTBzADIGPDrdQOkdgZWsjtncYxCSOd8sWEZrfvUCcM6HAXjG6qO0HAAW7O8eBrwFwLOdQO6LDMj2AvCMiJjKgCu9o3xUnTJbxzsFWRl4XTmR3G49/Yb58hhS9lv1E19Turqww8Xpsd2wbRhwl9L/ECbqko0htrE97eZ59jpcUxyXzNZlhJlfX8+SAfBLd79sZ/vJFOZnex9DyJIt5i5R3PEU8ILChhjTTWHAewCw57Pswyi80ESAIXsIcwroy/oC240NfwvY9IAXTNNaeKaAPrP8FBQFbHoAuDKymK+XGzHgLadCleXS+xAmg6cIWPl3Va7qi14AviwDjvkovVs2Q5W3rOPA84rbjedeDyBT5bdAQO9DmC4tJzYCuQ6sMmCD31ugbxlAphy3KC1K1DZTxjAz4Fx277MwWZ24fFUXd4iXddqV/VKOC+8EYp15nXQiwX/jYwh3dAx479xX694UAM7COMF/a43LKWVc1xLAFzOz3cz39pTewY8PXJjpQZyxcD3gJSvfJQJIvUwA54msKxvLbPs+Ay8ZWEPWm5mfFoOhgHer/igt1nOKAc9AX68BVY5DxMItu/BwXmbxi3iiEJQeEBCxcLy4uRPbWoRVu3F7uGB/Z3OPnUh2sJkt7xlDLda1NfeU89vSO4pRVWWg9NoFdQ1ZP/zsdX7VGI7s5xQiopeBVqzvFAa8B9hMAeA43lU4TFYGSzT3Ipa5pTfPCwbHKNjfioiI2i2ydZGsrExzHHrY4Z7+5nbDT3ROFAPOISnLEE/KRvSu7S5T+ntKu7XIBiw/03s9SgbAj99pWvwnkAzITmXAo4HJD7Bl4CVa+FyWYcBVnVFvFQPeYg93RAhKr5GIgDjWSXnpLcehF4S4rj1MwBQGo7cvWmxxy4BmL+LxtMs6kdwXPIfwHPBeIKtAPS9SkTPED0b1LKb+ewbAIwY6A7muX6uOWX9vy9zj8TUljAn7EPXl8rPdJw4Biea+YtNYFBHRAjbZeOsNQeE69dph1jtjRBl0TSFwUHoZ8GzubaS9+IzAUYCsBxCqflP3sBOXjf1sXmKeXr4L20FlMzx9iwGvdccz4JEdROmxtdhurWfWIrKjNZ+mzO/rWkIAXmv9yc5UZFeX3gmNZ36aaQalZxvcy0FRLAXn49LL/EQggPOLYsAzsKoMaMYWs/49TEAPIMuYn20NQWnVCdu4xQREhoj7txWPn5URXVMLT8SAZ05kLwsXgT8vF48hzB7uUqyri1p4okUhOr4xW0z99wh0TXEceO5l8xTLZsehNwQlm3tTGPAsJMF1VGmnMODRQ5DqGsuyDHgGXrK+wDnrsowzpGy9egiTAVEvgYOC51LzGGqBVXa4IuFQvKi9uS9QXy5f1WVlRc+9ZQgczJPLypxfTo8x4Bs2LL6K3n9nfaYC8Mi2su3JHMXWTg3q29MXfC2z3+oz21VZD5IsY7tle0qv9+ngAR/CzEDAsgxGiwno8T6nsDK92+AMzjMD3suAq4W2B8hGgFbVye/F8pZhLzNnKGPheFHCT9a95Qxlxi4D4JHeCoCrBVM5LpGR5n5XDLifJpKFoOA1ZuFU+VNjwLPF1H9XY7hnDEXtxGMKy2+BgCnObzT3Wgx4RARgnuoUlKgMFK6TeghyCgjoiQFnPVsPz0aArJfJzYAN5of3om7qPlWG0kPJ1Veb7buvrm8vWOW5xxKFoPBxfqoOka1V4vOxl0DJ5ppLj/OL7cZ6txhw/FR2qUfvrO/Z9rSefcrWNu43vMbSQzwpvbN5ut5kNwDfSTKFCVBvusK0iglw8JQxg8uAPp5Qmd68pcSTqicGHO+LJhaW3wPAW8xP71acAgHKuDKQbZXRy6C0FgXWpRcgYTm9J29k5btkD2GqPHkMKwMasTRcrjPgGchkvRkEqMVVLQo+9qOxgPdNCUFBRrTV3wzAVX58TTkOCAIyx0WNUxd2trOFPnPwIr3NpoWgbAsDrsiObM6qOdjLgE/ZCWwREVH4V2YHI0KB24LlmmvM9t5b17eXwOG+zHbtst2nlv3usbU8hlpERK8zhO3HIShMGKHeDMDVW4bVeq30Rp0y247CdZxy+EBGdkTrAOqo9G6te7sB+G5ZkIx5UUYjehNmdIIEL6ZKegyKSwTyUTKPVkkU9hCVoQxpy9hhWVEISi+bpJgAlMgB6AF9EUuh8sS+6HGG+JMX0tms70jIKQvPtoAABuCZAY0AWcSAT1kUWtvgmCYDASjcF8yAr6zoMdQCwK1x2suAt07eyOZJBMha43QKEZA5vz0hKFkMuALnXL4KQekBL1P7jfsieygxG8OYhtMqW8P9i/lkANwBt9kw1/bYQ9e3tdvI610kDMBx3WEAHgEyNS9YSlkcQ8pRi8bwlLmXPfvkabCOfk0x4MoutWxtZL/V+sNzP5p7XN9esgPv4+8KH6EumcO1G4DvFjNbHHy4CCvDHz2EiYOfvd0dwYD3srU9AFxNcAZdnq9Krwx4VN9s4ellZSL9XbZuHUOFULxOmd648PSyWS12Qxkg1MmFQTbWL3qYkMvgdlNjL2LAs5CEDOhEdWPxsRgx4L0goMXKMACPnDHUe9mHMKcwiwoELMO6th4kzgD4Mg9hsn7Z78uGoDB4mxKC0jOfewB4T19kNqvHcVC6ZnMvAjEo+NvVV4//IwCf6rT3Or+rq+P8VASGf88AmSqfxR3i3hhwHsNqTEX9PeW5Ee9vTxcx4Nw2yzD3CghHY5jTsf4ZA96SyNaiqDGM9+8G4EJKKd8ppfxjKeVrpZTz1347sJTy6VLKN9c+D1j7vZRS3lhKuaiUckEp5e6Qz6lr6b9ZSjn1uqhLr7SYFx5YGQCPBibH1rL0GEKX7InzqE4tdqGHdcVrPQY0AgHYxssyASwKBESefMYebi/QlwFZvo/1jsKBlg17UCxc74NBmCePBXbqIpYG64Lgr6cvIlamd15kTDKH+vQ+hJkt0Kw3X1MAXC2u3r/Rtd4wKpaM5W6x+lPmXu82OI4hBlbLMuBRWygQ0krr/2cMeDb3s10zLD+Lh8/mFefJum/ZMg/AM2Z1W+ygp8H6ZqcqKaeo5fApm9FaP/CaAn2qbVXYGjPg2DZoM9R62UPScN6ZQ8/3MNkS4QP+jNpNhRyxqHWP+yu7thuA53K/Wutda63HrH1/vpmdV2s9wszOW/tuZnaSmR2x9neGmb3FbADsZvYSM7uXmd3TzF7ioH09CjMvLcPf8yZMXuiih9tcMgcgA309LNiU7Xs25BED3vKo8RoLpu1hfvBalifK1q3zrAymy0JQsNypADxazDLmh/9vnYISGfCpjKgKQclYEX/+Iaoj6quYEC4Xy+thZVpxqFhu5vyq9FhGz0OYCkhG/c1AUgENBQLUHPD78FSLqPwIrPU+hDkF1HNZO4oBZ4mAXS94aYGgSG/uU0yfAWlVxo5gwFF+/ONxvcoc88yJ7Jl7CMDZZkQ7FfjZA8h8PvY6ajwWMgDO/c0ONkvktPMOE35uCwMeOWEZAFdOXOZ8TiE7EOdE8yvaUfK0uwF4vzzMzM5Z+/8cM/tN+P1ddZC/M7P9SymHmdkJZvbpWutPaq1XmNmnzezEna10r/D2C0+oyNgoEJSdxNDDYPSEwExlfnoAuJooDDQUE5AtmBljhqAvi31EyUAA/44PwyjDHzGUmIYNUcYks7FpLaZR2yi23P/vDZ3JjCvrnYEArNPGjcNi2rMoRaAVy8U69SxK28KARzsnis3CsbiykgPwZfpCCQNqvw8/Vfqe8ll4Mc/Aai8A59+jnUB26DOyQQGrqNxeYNMCL5hn5vxm4TE9O6iYLzLgGThmnSInjuXyy80++9kxzRSbEc09JVEICjrt2xqCUop2fnudyMxxwrZl5l5JtLYqBnxbAXjLicS0TDxlTtyUEJQIgGe6TdF7Pcp1BcCrmf2fUspXSilnrP12k1rrpWv/X2ZmN1n7/6Zm9j249/trv0W/r0uZyoD3hKDwQtd6iCdyAHqBRuY1L8uAM0BicI6fzB5yehR0VHoeeu0RxcJlRiJqN7ymQJ8yJGb9jCh/ctmRA8IgoLXwtLbBVQhK1hcOTjGfHvDC6XAsZg4e693DwkUAXOmEgmX0MOCuW4/Dw/ZEjbcMgCu9Ob3Ks4cBzxbhnjGEdYrKUGApAqvc31x+ZMfw2hTwopxvVSe23wrIYdpW+JdK22JyUX+VXza+99xzvD9qm8yJ61k/FOjLQlDYwVSMaOTksxOXjeFeBjxb95REbLFiwD2fLASlF4CzcL8hAM/WnZbNQlFAGdsrsvvZDmY2h9aLdPidO0TuW2u9pJRyiJl9upTyL3ix1lpLKdvNd1kD+WeYmd3iFrfYXtlOkowBnwLAI9DHIQVu0FGmMOBsLDzvbWHAo7jjCHQpAN7LgPM2eMaCcX49CyaXodJFhgivTd2K6wHHyuAzsxUBcNY7Akg9IADHMO5GoCgA3LMoZWwztum2MOAKEKpyFWjJ+ruHAfc8ehjo7QXA8T4VgtIb/tViwHvYcRbl/Krdpyn9zeWvruqHqv1aNvciPXvtSctxwPSZU6HK8PIz5ryHkIjKMDPbZ5/F8lQZvQx4tiZyO+ED0ArkZeuuEnbapwDZDIBzf3MdIweX2yZ6Zop1y/SeOoYyBjwC4FOIJyU9DHiWZzb31otcJwx4rfWStc8fmtmHbIjh/ve10BJb+/zhWvJLzOzmcPvN1n6Lflfl/Vmt9Zha6zEHH3zw9qxKt2SDX7GeU09BUTFhO4IBj0AXA1HF/CzLgEdMH+eFgg9IZmBRgd3IMCvwiPVmkBmBJyx3SghKi4GODOGGDcO52KinMmiKOWKAEo0FJUpXbkO1CPewcCofF2bAW4AsWuh650XERqFsbwacHfoWAI9i/vE3vMYAnMvA+1kyBryXEWXJnF/FSGZANmLhehnwFqjnsnpDUFi3KSEomeOCdqkVitfjRCrpeRFP5nAty4B7eUhSRKQUr3tRnRQAzwgcrG/Wb1hWj82I1ggml1B6HYceDODC+TADrtY7/+xd91T5/p13nyJRDPhuAE5SStm3lLKf/29mDzSzfzKzj5rZqWvJTjWzj6z9/1Eze8LaaSj3NrOfroWqfMrMHlhKOWDt4csHrv22LkVtm+E1Hlj4EGbkqfJkM4uNBqaZwoBnC322pbTvvvNHVSkd/X8GnRkDHrFCLBifrcIeIsM3lQFX7M62MAHLhqBkYTX772/2s5+107Ych4zNyhwXTJsx4AzAvUyUHgY8ewiT9c6cyGxeTA1BieZQiwHPwGo09/bYw+zKK+d/640B5zEc2Qy+D6W1UxKNoWVDUNTuT4/NUAA8cyoivTFPBSJ6AFmP/Y6utYAGzr3WrhmXhZIx4He725hmmRCUKTHgas4q3bhuagxH0mKSMzvYG4Li90eSOYoZA47lRY7Dpk3t59BcuI69DLhaEyKyQ9XF02J52RhUDHi0Jv3f9s48XI+iyv/fw02u2SAhJCBLCFsQgo4sEecXZAlgAGWJTlCWAUNQxMHReRyQxdERfkoY0XHGYVEcHcSfiCI4wDxsKkgGRjEgW2QU4sIqEghhCwlZzu+P7rar61ZVV/d979tv3/v9PM99bvfb/Xadt0919bdOna7uFZpIQdkCwA8lOdujAFypqjeLyBIA3xeRkwE8BuB96f43AngXgGUAVgE4CQBUdYWI/F8AS9L9zlPVFd37GdUICdmy4XvfDcx1E46NgK9dm38eKzRCwt1uJMaMKUZdXTaayy6BYNvtygGvEwE3jxlzw/SVZUf6fAI8FAWLiYC7/O2KAPsat7IbiG1TSOSb9c2OuobOW3ackMgdTAqKLwKe3YRiokKDzQEP3Rx815BIWICbx47tOGy6KfDaa8XPquaAl9kd+p4dofPZ7fJhKApnYo8E+jpDobS1UPTQxo6A+0SmS8jGpqCY/8si4HbU1ZfrunZtHswJ5TLHRKB95yYkQEPpGlWvPV8EPGSbuS02BcVlW5UR1JgUlJi2LnSP8HU8QilWZffyUOfXFuAxs86EOqpVcsBjBXjMKHyv0XUBrqq/A/BWx+fPAzjI8bkCOM1zrG8C+GanbRwKqkbAzTdh+iLgIfESagiqDD/Zws4U7qEGfPTo5AUNJr4ccPP3ZmW67HbdlHyNaGwO+GAj4K6h9rJIsnmsKmkPociH3cGzf1PZ/L/mMX0RFFPIuoRkKALuS0EJRcCrRBrNz8y6aD+kFerQxgjCuhFwXzQrFAG3b/SxEXBXuohLYA1WgMdEwENRT1f0LhSF89lfdj37IskvvBBXDhD/m+xzEup8hzpDIbvte0JIgNsvyfGNYLoikr52OETZuYntuLhwRV1dQtQVVMn2jU3dMb9X1qkwiRXgrs9io8Wu1FNzW8jujNC93CZ03wulMZVpkLJysn3NTmRMG2uu97oAj6j2pBOUpXL4RJddiezKb1+Iocpvlu9rCEN228NWZSLAvMAzm8z/9u/MbAz1mu0bjW9I0Z4Fxfebqly0LtEbEwEP/aZOzYfaiQi4XZ5tt1nf7LoQwjxOSORWmXkjNgLe1zdwasPYuu+KCoUi4DE3c1eUJhQB94mXUIfLdZ1k+6xePdAmcz1UTzsRAS+rez5C9dTcbreDoRzwt1phoFBENJRWUybAq0TAQ3ab+9opKDECvK/PX4fsh09D116IMn/HRpJduERfKAXFttsVwAnh6wyF6nDovmva6Bopib1HhO5toRQU+5ixEXD7c3siCN9oRJXf5CLbJxQBLxs1owAnAMoj4KHKb1aiNWvyKZ9CkYBQ7zNmuM+1rUoKyujRAwW4KwLuavhtQiIgJMBDF22oAfXdiO3PY3PAyzpDPttMm4BwtLZqpyIUeYqJWFWJgJvHCUXAqwzLhuy2H8K0v+eLgNuUpQNVuZmEfBMS4DGiz772QgLcFm5lmJ262IcwBxMtjk3/yo5tY0fKQqkcmTAtOybgTzcDqqeguESn/f3QNetKQfGdNzsCbuIafbLLKvvMJmR31c6vvS304F+oLsd0asq+F9txCHX4zH1jUn5892t7Rh6TUOqMua1KAMVFKAJeV4PYZNeyKcCrdNqrdriagAK8S9i99rIc8Ay7AV+9OhfgIfFSlkNoEhsBD+WuuwS4fYG7ohWuab9CKSi2gDBF/pIl+bKZpxYSqzERjAw7pSazyXUc2+5YAe4ShKGHzTKqDouGGjRfAxqKgIcEeGafy27ThqGIgNtluH5TqO7HRMBjOpE+u0MR8LopKC4RkO0TEuCdioC/9howdmxehm8Upcq1VxYBz7DrUEgQuQS4yfvf77Y71Bkq69C/973A1lsP3DcmAu7bFhKW5v0iZvQpREyHLdThCEXHYwiloJjnMnYEtUoKymCmsXXV96qdXxPf9LdAeQqK6W9zW2gUxdWux4wEhtqTKhokFAEP+a8NEfCm5gEfcdgpArENgd1IrV6dPOAIhHPBQsNPMfv67LYf3vQ1EpMnA88+W/xssBFwuwG1ReCsWfly2TBdlYhVRn8/sPfecfuadrtGA0y/ZTdIoPha5YzsHIU6DlVGUW69FdhlF/dxTNtcDbjpbzun0FeH1qzJ66wrBSM7TpVIclk9CX0vNgo3YUI+u0OGeY5DkVTfjcf20V57ARMnusvvZAqKGU0KdQZsQgLc5++Pfzyflq5KBLxuhDI7LuCOgPs6Dq5ryOSqq/JlX7pZ9r1Qe2Lue801+fJGGwFf+ELxezEBFLu9Dp23WbOA00/P9zMxr+eYQEhsBDyU8+6rCzbmSG+GKxBh31NCHcXQfc5FjJB13Uttv5l225/ZZbm+5wog+QR47KhZlTmzQwLc1aH2tVmufVy2AcCWW+bL69bF5YDbHHAA8LWvxe/fBBTgXcKOFlfJwTYvwHXrwikoGaGeuH1BT54cTrvwNW6h8s84o1j+okW5CLNFtKtME58Av+wyYOed3XZvsQWw447JcijqaounUEM0bRpw9935+tNPA9m08qHIjysf3myIzBkrDjlk4LnMzltZBNyHLQLe+c6BdpjEpA/YfnM9dJth3kxdvshsqzIsG2qIq0TAQx2XI44ADj/cfWzznFYZxbHL2nXX4vrzz7u/F/JFTAQ823fKlDyyWyUK5xKy5votxgSwe+1V/H7Z3NPmvr5rz/V5KLLo87e5j82cOcAmm7i32cP+sQLcdd4yRJJ20vye+T82Am7vO2NGvrzHHsUpAk1CnbhQZyxE2X0n9r63xx7AacbUC6+/nh8ndL5DDwvb5+3ggwc+B2Di6wyFOi727//tb4tBiyOOyJdt7DYjO/b48cDtt+ef2y+us48R03Eos9vE1Z6G2mpfhysrx8XYscV78dNP58tr18bNgmKz+ebAQQfF798EFOBdInTDrBIBB4oCPBQBj837/fa3ixfkqlXu79mNW1kE3iznrLPy5QkT8uh4leF7uwE98cSB+2accoo/7SHUgK5fX5y/fPZsfxlvfGO+HMqRdUXAzd9pLtuCz9weyv0LNaBlkZ+LLnKXF7qZluX8P/hgvhwS4KaQjUmJiGmAqwrwmGFou3yzU+XqjPiicHZUz2byZPf3XMPnPl+MG1e0yewY7bADcOWVxd8SIjYCPneu+/sTJhTbk7opKPa0iiJF+0Oddl87CADf+U6+/MEPust22e2rQ7Z/+/v9HVOTqikoZvn2tffII+4yQhHwss7vMcfECfBQIKJKBHzPPZO/DLM+h1IfQxFw+7xlow8ZRx7p/p5dL0MPr9pl7LBDvrzxxsD117u/F6KvL4nmmuV3IgXFpG4EPNTWheqCzaJF4ah+6HmuNkMB3kV86RovvgisMGYwN282rhxVMwe8TgR84sT81cFAnq/pWzcbG18EvEqDIpJHjqtGwOs8xR6aBcUuf/Jk4OWX8/W77oorKzTUHWqkyvjTn/LlUK5pKAVk222TaI+P06xJPn1DmOY21zzTpgh4y1vy5VAeaoiyBvzOO/Nls86EyrBFfSgH3Obyy/Nr1xQ9rg6yLbqyMiZODEfdbLJj9/f75+636/enP10+yuSyOzuuy26XIIx5iGvcuGKHNiQCQtf3dtsBP/lJvv7UU8kol2mjz+7Q9InHHVf6EwbYbV8XZp2yBfiuuwJHHVV+fNfwfWyHeqsjWOYAABkQSURBVOzY4uw2PkIRcFd7Yta37363/PhZGaHAj7nt1VeLZbzvfYgi1HEItbVlnYzrriuu+1JX6kaSbTtD/OY3/m2hB8djI+BlAnzZsnx5+nTg4ovz9YUL85GiUHDJlYJi2r1oUb5cFpjwPbMUe757FQrwLhJqCJYvz5ezlAPAfbHFpqD4Iiibbz7wTXkhzI6DT4BXEVYmMdNfxdyUQrh6zb4GdNNN3fMDlxGKvLgaqdie++ab58uhWQtCQ9177gl861tx5QHFaJzPF7vtVvw89FT9K68k0Z/MTvt4vnPhih6aDfA+++TLa9YkvrP3sb/nGgaPrbsf+EC+HPq9/f0DX0KVlTFpEnD//XHlAf46FLqZjh4d1yGOGXHwXXuhDp+JfS7MOmx39O02yxx2HzcOOPDAfN3MEQWqdRxiO1wmTzyRpwfZdr7hDflvtOv37rsnf7HERsDNbdde60+dMaky8jp+/MCR0BhCeb92JxJIUjSylLjvfS+uDDvKazJq1MDOiNmJtdutEHVSOcaMGRiccFE28utLrQTCEfBzzy0GBnwpP2UCPEvfBJK0tb/5m3z9G98o/o5QG21jbjNHxcsw3wxuf27XqTZBAd5FfOLpySeBrbZyfycUATdFX5UIuGv/EOZFG5q9Zdtt44/psyOUggIAK1dWLyMkwO0ccPNmWoVQCorqQLvrTAFlihfb7iqvWS4jlHbgS9059thi1Ntk4cI8ulWlozZmTPFm+uqr/nprPpwMDEzl8d1MX3yxuB4bhQt1BkMR8KqY9dQ8ZpX0AR8uAe7b54kniqMxDz1UHF73EYrcu0bazHNqDruHqNppr3u+7rgD+NCHkt9kHrNum+HCHCkKzWJlbvPdO2xc156vXtojF1Xw2e3qUNcJ3Jj3HbsdDEVkd9stqbexmC/Di80BP+ecuJSjmJFfHy++6D9v5sh2lcj9nXf62+8QVUd367aDvgj4bbclHcUzz6x33KahAO8ivmh1Ni2Vi1AOuNnYxAzN1I1Sm4I/VMZjj9U7vo3vZnrddfV6u64UFF8DOhgB7muI/ud/Bu5fJ5JvzuziuvF0SoCbIt93MxEppk3ZaSwmY8bk4jgm6mp+zxTg5s3FxhbgN9wwsJysfLujtHRp9SicOdWejasO1RV92TVn+yKUfhZLlRxwM6cfyGfRKcMVAfcJ8GXL6nXiywS4vS1mth0XmUCxh8vHjOm8AA9FwFetihN5Nq7nRnyjGLG56zbmjBV2ua4IuHnNxmLObe4a/QkJwioC0NcZCqUwTpsWd2zbjip29feXT6EJVEtBAYrT+MYyalT8M2PmtjrlAAPbuqOPTp4zaSsU4F2kTr50f//A4VZXBNyFeWGMHl2eZ+UjayTti3b58s6J7gzXzTQr135ALZZQ7qPti7/8yzyVoQqhxubEE5OhwYwnnxzo0xhefjlvbOwGeMOG4s3tU5+qfvyMTOi6IrnmDbvOearSCazSGVqwANh+e//2zBedEkurVvk7BHYdDj1gVEY2nZ8tiMwyqrQnJlVmnfnYx4CvfrV6GXYdMgMKtgDff//6v8UnaGyRue++cekaNuZzDK5Rs5gc7BjMqVPtTnr2O6pMpec6dkZo+H7cuHri2HxteEbmC/v+c//9SW5/VewpIU1Cb2CuiinAzXO+bp2/E1mXdeviOzzmrCAhQv61vz9/fnznwcSVIputL1+e3Os6gRmIMDnrrIGdozZBAd5FsjzYbbYpPuQQ4rDDilPprFqVN4xr1/p7wpdemgwbZwxGdPgEOFCccqwT2C8ZmDs3L//88+sJS1cDkYkXWyy9+93JX1XWrPFHfkSKvfTQiEeI1atz0Wf7/dZbk0huJvQ/97l6ZQBFoWEPQw82yl4lB9yOgIcoSx3JynUds47QCEXAx4wBNtssX6+S62jj8/fKlclQNJDUuzrRq5gZBbK6MHUq8NnPVi/Dtjs0k0/oOYYQLrszgWSnUixeXP34QFE8uuanNgVandxpm5CQNHPhq+DKl/aJ+Q9/OOnUViUUAbcFZpWHkU1CuevPPFOcws4svyrmuwvM8/Taa8lDknPm1O8w2nzpS9X2j4kk2/nooQj4F79YL0DneilQds0/91zx81NPTfLJ65CdZ/t8mzPlAPUj7E1BAd5FzJuy+ZBDCJHihWHe9M2hOJu77ipORzWYiukT4KH5SOuydGkiJjPM+YWBPCJYBVckqdN2r1yZPGBnkpWx/fbFdI3BkPnb9vthh9Vv3GyyuvLznxcf1p0+ffARn5ic/4zttwf2229w5WVkddgW2w8+WC/yc911+SwcQHGE45hjkjcedoJMgNs3nm22KQo08yVUdXn11eL19ba35f6ZMgX4x3+sfkzb3y+95I9Ab7ZZ/eFk32wLm2xSnNWoE9jXnjkyBXQmKmqnUpijZqNGAZ//fPVjlk3ZZ4qZvr5wypcPV1Aoq1N1Rh5chAT4H/5QfFeDLdCqkN13XSNx5nUSmqo2lpkzq02MYOLLf7ZnxzEj53Z7Mn16vbLXrx/o76yenX12Mfhw6aX1ygD8drcdCvAu0ulcpZAAnzatnrBwkYkWV555p9lqq8411BmTJgFXXJGvP/9858Rqxpw5Az/LRjyAzjQce++dp33Y5/7Nbx788W3s6PeyZfXzZzNceb877eTed84c93kdTLn2b6rz4BEw8AHEz3wmX7Y7zYMhs9s+70uXdr49scXxL34x+GPawli1eF2YnH9+5yJYmXicMSOZlrGT2L79+tfrpWOFePjhZIaQDHPUTCR52K8qdpuxeHHxXQb33lv9mDavvz6wrcvq6YwZnRkdCE0detllwK9/na8P5jdlfh47tijA580rphDGTlUb4pOfLHboq3DBBe7Px44tRsBXrcrfutvfn78UaDCsX19sm847L18W6cz1bM7q1NfXmTrUK1CAdwkzb6xThAR4J8kEuOv1wJ3m4ouLc452gvHjgRNOyNcPPrjew14h5s8vrv/4x533txnZAQbmGXcCc3j7lFMScZExWPENJCLg5pvz9bVrgXvuydc79SCpTVaH6w57N0UWTbKnNvO9vr4qZqQ+lNJWF1dOphlZNVOH6nboQykoU6d2XoDb5yh2NLMKpjDuFHYE/Jhj8vcxdApXdNqMFndidMCemMBMddhpJ3+HvirZ+Vq/vvibrr228227OcVpGVOnxl2nrnu12fnNXgo0GOwpETt9rQGJ4DbvPZ3Ku+8FKMC7RN2HsELccksx7eHxxztfxtixeWOz664DX5XdCewZK4aaH/1o6Mvo9itwO1W/zJed7Lhj51JnTA45JF++4YaiuByK6wTIG+0qeeVN88or+fLMmf43HA6Ga67Jl//pnzovwLfbrjj6dNNNxWnzYmedCbHRRkVBVienvwpDFfQwXyH/kY8kedidxO5AX3FF598kOH58sd4+80zn0wYOPbT4wLWZ2jkU7LBD8QHkTonvmPnCXTz+eFwgrKzz2wn23HNg6mWn6UTgp1cRbfu7PCsya9YsvccMuZEgZa/qJqTXyeaXZj0enrzySiLAM3Ex1G2WavJW1JNOGroyhgLVJO1k//2HroxHH006inUeZO8lQm+bbAuPPQacfjpw9dXJ+u9/n+R6t/13tQ0RuVdVnU/pUIATQoY1oZlWCCGEkKEiJMDZFyKEDGteeKFpCwghhJAiFOCEkGHNUOcoEkIIIVWhACeEEEIIIaSLUIATQgghhBDSRSjACSGEEEII6SIU4IQQQgghhHSR1gtwETlURH4jIstE5Kym7SGEEEIIISREqwW4iPQBuBjAYQBmAjhWRGY2axUhhBBCCCF+Wi3AAewNYJmq/k5VXwdwFYCjGraJEEIIIYQQL20X4FsDeMJYfzL9rICInCIi94jIPcuXL++acYQQQgghhNi0XYBHoaqXqeosVZ01derUps0hhBBCCCEjmLYL8KcATDPWt0k/I4QQQgghpCcRVW3ahtqIyCgAjwA4CInwXgLgOFX9VeA7ywE81h0LC0wB8FwD5ZLBQb+1E/qtHdBP7YM+aw/0VfNMV1Vn6sWoblvSSVR1nYh8FMAtAPoAfDMkvtPvNJKDIiL3qOqsJsom9aHf2gn91g7op/ZBn7UH+qq3abUABwBVvRHAjU3bQQghhBBCSAxtzwEnhBBCCCGkVVCAd4/LmjaA1IJ+ayf0Wzugn9oHfdYe6KseptUPYRJCCCGEENI2GAEnhBBCCCGki1CAE0IIIYQQ0kUowAkhhBBCCOkiFOA9hIi8SUQ2bdoOUh8RkaZtIGS4wuuLEDJcoADvEURkLoDrAeyXrvNG0wJE5AAROUdEjheRzZRPNbcCEdlDRI4UkekisnH6GdvDHkNE3iEiHxaRfUVkc1VV+qn3EZE3Nm0DKUdE3i4iC0RkfxGZ3LQ9Iw02ZD1AKr4XAXgMwPsBgEKu9xGRIwD8K4BNABwG4G3GNnagehQRORLAtwG8C8DHAHxeRLZU1Q0Ud72DiBwK4D8AvBnAsQC+JSI700+9jYjMA/C0iCxo2hbiR0QOB/DvAN4B4AMAThKR1r+csU2wEWsYETkAyVydJ6vqXADbicjCZq0iZYjIWADHAThFVc8C8FsAfyEiuzFS17uIyBgA7wOwQFVPBfBDAG8H8EUR2UZVNzRqIDGZDeBfVPVvAfwDgNsAXGWIcHZyewwR2QrACQD+BcAZInJCwyYRByKyG4DPAThRVT8I4AYA+4KasKvwZDfPUwDer6r3p+tXAtgRYBS1x9kAYAqAQ0VkGwDHIxFypwO4RES2ppjrSRTAlgBmAYCq3gngfgArAJwiIn0N2kZQaPdeBDAdAFR1hapeiKR9vFBEpnCUsCdZAeAiVf0EgI8COJcivCd5GsAlSNo+qOoPAYwH8JYmjRppUIA3hIhMFJFNVfVRVb3b2PRTAMeLyKG8wfQeqd8mqeoaAH8HYC6ArwO4WlX/CsBnAPwJqcAjvYHlt/MBzBeR80TkS0g6UtcC2BmJQCcNYrR73wNwjIh8zNj8bSTX17SuG0ZKUdXVABany7cDWIhEhJ8IACKyn4hMadBEAkBVXwDwzXSkNks7WQdgNACIyO4iMrExA0cIFOANICLzAVwN4CYRWSgif+51qupSJALheBGZ1JSNZCCG324WkQ8DWKGq+wC4EclIBlT1CSSN2NaNGUoKWH5bCGAlgL8HMArA86r6V6lYmAAKu8YQkQNF5MxsXVWfBHAUktzUj6ef/QnAWCR54aQHsP1mfL6Rqv4UwMkAzhKRKwF8BcCYLptI4PSTHWz4I4BnReS9SJ5Je0PXjBuhMOG+y4jI1kiipB9A8vDeewDslEbDF6e73Y0kv3gKErFAGsby20QkfttORL4P4GYA/5bmfD8LYC8AFzZlK8lx+G0egBlIRizOMfY7AYn4frkJO0c6InIQgGsALElHKs4GAFW9L32Y73oR2RbAGiSjS+c2Ziz5My6/qer6VHxvSP/fLiK3IZlg4MC0Y0W6SImf1qW7vQDgG0gCESep6rNN2TtSYAS8+4wB8CqAB1X1DiR5WKsAHCIiuwKAqj4A4BdI8oxJb2D67acALk7XjwYwDsCXkcyEciSSxuvRhuwkRWy/XZKuzxeRXQBARN6DJF/1BFVd0ZShI5xJAC5A4oetReSCbEPaHs4G8DCSDtJ8VV3WiJXExuk3Q3xvSK+zHQEcrKoPNWjrSCbkp9HpPpORdG6PTUfiyRAjTDPuPiJyKYAnAPyzqq4WkTchySf+mape0ax1xEeZ30SkH8k1taZRQ0mBCL9NBjCOkblmEZFxqrpKRGYB+FsAz6jqmem2jfhQc29S4rcxANYDmJDmHZOGCPkp3b4VgEmq+nBjRo4wKMC7iIhI+tDDIQAOAbAUwHdV9TUReSeAMwEcqaqrGjWUFCjx21wAnwQwT1VfadRQUiDyenuPqjLtpIdIHwrbA0m07mEkD11uAuASY7ic9Bgev00C8BV2nnoHj58mq+o/N2rYCIQpKF0gmw/aeLr/dgD3AZgJ4Ox0CGhTJKkobKh6hEi/TULiNwqDHqHi9ba2ESOJ982jqci+H8A5SJ6F+TKAn1J89wYV/XYbxXczVPTTj7toGknhQ5hDSDrZ/TOq+ryRDzdKVV8XkR8BeA7A4QB+gmQOzg+l0ziRBqHf2gn91g48fsr+TwawKk0VOgRJXuo+HBZvHvqtHdBP7YER8CFCRGYiibxdJCJbpJW/T1XXpU8kfx7Avap6GpJe6EGq+ssmbSb0W1uh39pBwE8bJHkr8L8iGVUCgNUADqM4aB76rR3QT+2COeBDRJpn9f+Q5FdtCeATqvqkiGwB4HoAF6rqD5q0kQyEfmsn9Fs7iPDTF1T1miZtJAOh39oB/dQuKMCHgDT3ahyAf0fyNre/QPJK5auQTIt2n6o+kT0k1pylxIR+ayf0Wzuo4iegkMNPGoR+awf0U/tgCsoQoKob0hkxbgKwRlXPRXIBXA1gdHoRbMQLoLeg39oJ/dYOqviJvuod6Ld2QD+1DwrwDiEi24jIxHQ5O6/9AN4iIvsA+D9I3ph4rIhsqXwyvCeg39oJ/dYO6Kd2Qr+1A/qp3VCAdwARmYdkGp+TRWSKUcn/E8l8m9cC+ASABQAeANDXhJ2kCP3WTui3dkA/tRP6rR3QT+2HOeCDRESmIsmxehzAk0gefrhKVZ8TkQkATgPwc1W9I829Gq2qrzdnMQHot7ZCv7UD+qmd0G/tgH4aHlCADxJJXj/+JgCPIJljeD8AywBcrarPiEi/JvMQj1K+SKJnoN/aCf3WDuindkK/tQP6aXjAFJSaiMi26UUwSlUfUtU16fQ+iwHMAHB0uutuwJ/fPkUahn5rJ/RbO6Cf2gn91g7op+EFBXgNROTdAG4EcBGA/xCRXbJt6cVwB4CpIvKfABaLyFbNWEpM6Ld2Qr+1A/qpndBv7YB+Gn5QgFdAEqYBuADARwF8GsASALdL8vpXAH++GHYAsDuA2ar6dBP2kgT6rZ3Qb+2Afmon9Fs7oJ+GL6OaNqBNqKqKyNMAfgbgUQDPquoXRWQtgFtFZI6qPiIiWwLYE8A8VX2oSZsJ/dZW6Ld2QD+1E/qtHdBPwxc+hBmJiOwEYFMAvwNwCYB7VfULxvZPApgJ4COq+pqITNBkUnzSIPRbO6Hf2gH91E7ot3ZAPw1vGAGPQEQOB3A+gBcAPATgOwC+IiJ9qroo3e37AM4GsBoAeBE0D/3WTui3dkA/tRP6rR3QT8MfCvASRGQ2gAsBHKeq94nIZQD2BjAbwM9FpA/JfJzvALAXgElILhjSIPRbO6Hf2gH91E7ot3ZAP40MmIJSQnoh7Kyql6frUwFcrqrvFpEdAPwDkt7n2wEsYO5Vb0C/tRP6rR3QT+2EfmsH9NPIgAK8hLSnOV5VX0qXtwRwA4B3qeofRWQ6gKfSfV5s0laSQ7+1E/qtHdBP7YR+awf008iA0xCWoKrrVfWldFUArASwIr0I/hrAOUhe88qLoIeg39oJ/dYO6Kd2Qr+1A/ppZMAIeA1E5HIAfwQwFxz+aQ30Wzuh39oB/dRO6Ld2QD8NPyjAKyAiAmA0gP9N/x+kqo82axUpg35rJ/RbO6Cf2gn91g7op+ELBXgNRGQBgCWq+qumbSHx0G/thH5rB/RTO6Hf2gH9NPygAK+BiIjyxLUO+q2d0G/tgH5qJ/RbO6Cfhh8U4IQQQgghhHQRzoJCCCGEEEJIF6EAJ4QQQgghpItQgBNCCCGEENJFKMAJIYQQQgjpIhTghBAyTBGRz4rI6YHt80RkZsRxCvuJyHkicnCn7CSEkJEGBTghhIxc5gEoFeD2fqr6GVX98ZBZRQghwxwKcEIIGUaIyKdE5BERuRPAm9LPPiQiS0TkARG5RkTGichsAEcCuFBE7heRHdO/m0XkXhH5bxHZxbPf5SIyPz32H0RkUbrtHhHZU0RuEZHfisiphl1npDY8KCLnNnBqCCGkZxjVtAGEEEI6g4jsBeAYALsjad9/CeBeANeq6tfTfT4H4GRV/TcRuR7Af6nqD9JtPwFwqqo+KiJvB3CJqh7o2M8u+nFV3V1EvgzgcgD7ABgDYCmAr4rIXAAzAOwNQABcLyL7qeriITsZhBDSw1CAE0LI8GFfAD9U1VUAkApnAHhzKrwnAZgA4Bb7iyIyAcBsAFcbAvsNkeVm5TwEYIKqvgzgZRFZIyKTAMxN/+5L95uARJBTgBNCRiQU4IQQMvy5HMA8VX1ARBYAOMCxz0YAVqrq7jWOvyb9v8FYztZHIYl6L1LVr9U4NiGEDDuYA04IIcOHxQDmichYEdkYwBHp5xsD+KOIjAZwvLH/y+k2qOpLAH4vIkcDgCS81d6vJrcAWJhG2SEiW4vI5oM4HiGEtBoKcEIIGSao6i8BfA/AAwBuArAk3fRpAHcDuAvAr42vXAXgDBG5T0R2RCLOTxaRBwD8CsBRnv2q2nUrgCsB/ExEHgLwAwxO0BNCSKsRVW3aBkIIIYQQQkYMjIATQgghhBDSRSjACSGEEEII6SIU4IQQQgghhHQRCnBCCCGEEEK6CAU4IYQQQgghXYQCnBBCCCGEkC5CAU4IIYQQQkgX+f/ThfRDUPhCRgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# visualisation of anomaly throughout time in train_df\n", "from pandas.plotting import register_matplotlib_converters\n", "register_matplotlib_converters()\n", "\n", "fig, ax = plt.subplots(figsize=(12, 5))\n", "# pd.plotting.deregister_matplotlib_converters()\n", "\n", "ax.plot(train_df['datetime'], train_df['value'], color='blue', linewidth=0.6)\n", "ax.set_title('NYC taxi passengers throughout time')\n", "\n", "plt.xlabel('datetime')\n", "plt.xticks(rotation=45) \n", "plt.ylabel('The Number of NYC taxi passengers')\n", "plt.legend(loc='upper left')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Train and validation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can use analytices zoo automl to predict time series data by simply define a `TimeSequencePredictor`. \n", "\n", "We use feature tools to generate features from the given datetime. The generated features are \\['HOUR', 'DAY', 'MONTH'. 'IS_AWAKE', 'IS_BUSY_HOURS'\\]. Our feature space comprises these generated features as well as the original inputs such as \\['datetime','value','extra_features'\\]. \n", "\n", "Currently, We use RNN to learn from 50 previous values, and predict just the 1 next value. You can specify the sequence length to predict while creating `TimeSequencePredictor` with arg: `future_seq_len`." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# build time sequence predictor\n", "from zoo.automl.regression.time_sequence_predictor import *\n", "\n", "# you need to specify the name of datetime column and target column\n", "# The default names are \"datetime\" and \"value\" respectively.\n", "tsp = TimeSequencePredictor(dt_col=\"datetime\",\n", " target_col=\"value\",\n", " extra_features_col=None)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Current pyspark location is : /home/shan/Applications/spark-2.4.3-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/__init__.py\n", "Start to getOrCreate SparkContext\n", "Successfully got a SparkContext\n", "Start to launch the JVM guarding process\n", "JVM guarding process has been successfully launched\n", "Start to launch ray on cluster\n", "Start to launch ray on local\n" ] } ], "source": [ "from zoo import init_spark_on_local\n", "from zoo.ray import RayContext\n", "sc = init_spark_on_local(cores=4)\n", "ray_ctx = RayContext(sc=sc, object_store_memory=\"1g\")\n", "ray_ctx.init()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2019-12-18 15:48:56,962\tINFO tune.py:60 -- Tip: to resume incomplete experiments, pass resume='prompt' or resume=True to run()\n", "2019-12-18 15:48:56,962\tINFO tune.py:223 -- Starting a new experiment.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model selection: Vanilla LSTM model is selected.\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 0/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 28.9/67.4 GB\n", "\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 2/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 28.9/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'RUNNING': 1})\n", "RUNNING trials:\n", " - train_func_0_batch_size=1024,dropout=0.48112,dropout_1=0.26833,dropout_2=0.39814,latent_dim=32,lr=0.0080377,lstm_1_units=64,lstm_2_units=8,past_seq_len=3,selected_features=['HOUR(datetime)' 'IS_BUSY_HOURS(datetime)' 'WEEKDAY(datetime)']:\tRUNNING\n", "\n", "\u001b[2m\u001b[36m(pid=7206)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7229)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7206)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7229)\u001b[0m Prepending /home/shan/anaconda2/envs/ray36/lib/python3.6/site-packages/bigdl/share/conf/spark-bigdl.conf to sys.path\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Model selection: Vanilla LSTM model is selected.\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Model selection: Vanilla LSTM model is selected.\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 2019-12-18 15:49:02.369651: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 2019-12-18 15:49:02.369651: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 6s - loss: 1.0319 - mean_squared_error: 1.0319\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 6s - loss: 1.0319 - mean_squared_error: 1.0319\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.5378 - mean_squared_error: 0.5378\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.5378 - mean_squared_error: 0.5378\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.4298 - mean_squared_error: 0.4298\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.4298 - mean_squared_error: 0.4298\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 1s 144us/step - loss: 0.4075 - mean_squared_error: 0.4075 - val_loss: 0.2391 - val_mean_squared_error: 0.2391\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2575 - mean_squared_error: 0.2575\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 1s 144us/step - loss: 0.4075 - mean_squared_error: 0.4075 - val_loss: 0.2391 - val_mean_squared_error: 0.2391\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2575 - mean_squared_error: 0.2575\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.2372 - mean_squared_error: 0.2372\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.2372 - mean_squared_error: 0.2372\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.2405 - mean_squared_error: 0.2405\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.2405 - mean_squared_error: 0.2405\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.2393 - mean_squared_error: 0.2393 - val_loss: 0.1187 - val_mean_squared_error: 0.1187\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.2393 - mean_squared_error: 0.2393 - val_loss: 0.1187 - val_mean_squared_error: 0.1187\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2387 - mean_squared_error: 0.2387\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2387 - mean_squared_error: 0.2387\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.2252 - mean_squared_error: 0.2252\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.2252 - mean_squared_error: 0.2252\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.2146 - mean_squared_error: 0.2146\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.2146 - mean_squared_error: 0.2146\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.2154 - mean_squared_error: 0.21\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.2152 - mean_squared_error: 0.2152 - val_loss: 0.2252 - val_mean_squared_error: 0.2252\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.2154 - mean_squared_error: 0.21\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.2152 - mean_squared_error: 0.2152 - val_loss: 0.2252 - val_mean_squared_error: 0.2252\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2553 - mean_squared_error: 0.2553\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2553 - mean_squared_error: 0.2553\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.2125 - mean_squared_error: 0.2125\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.2125 - mean_squared_error: 0.2125\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1989 - mean_squared_error: 0.1989\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1989 - mean_squared_error: 0.1989\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.2005 - mean_squared_error: 0.20\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 28us/step - loss: 0.2004 - mean_squared_error: 0.2004 - val_loss: 0.1079 - val_mean_squared_error: 0.1079\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.2005 - mean_squared_error: 0.20\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 28us/step - loss: 0.2004 - mean_squared_error: 0.2004 - val_loss: 0.1079 - val_mean_squared_error: 0.1079\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1815 - mean_squared_error: 0.1815\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1815 - mean_squared_error: 0.1815\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1827 - mean_squared_error: 0.1827\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1827 - mean_squared_error: 0.1827\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1716 - mean_squared_error: 0.1716\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1716 - mean_squared_error: 0.1716\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 31us/step - loss: 0.1715 - mean_squared_error: 0.1715 - val_loss: 0.2062 - val_mean_squared_error: 0.2062\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 31us/step - loss: 0.1715 - mean_squared_error: 0.1715 - val_loss: 0.2062 - val_mean_squared_error: 0.2062\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 2/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.5/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'RUNNING': 1})\n", "RUNNING trials:\n", " - train_func_0_batch_size=1024,dropout=0.48112,dropout_1=0.26833,dropout_2=0.39814,latent_dim=32,lr=0.0080377,lstm_1_units=64,lstm_2_units=8,past_seq_len=3,selected_features=['HOUR(datetime)' 'IS_BUSY_HOURS(datetime)' 'WEEKDAY(datetime)']:\tRUNNING, [2 CPUs, 0 GPUs], [pid=7207], 5 s, 1 iter\n", "\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2466 - mean_squared_error: 0.2466\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2466 - mean_squared_error: 0.2466\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1960 - mean_squared_error: 0.1960\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1960 - mean_squared_error: 0.1960\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1723 - mean_squared_error: 0.1723\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1723 - mean_squared_error: 0.1723\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1650 - mean_squared_error: 0.16\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1648 - mean_squared_error: 0.1648 - val_loss: 0.0950 - val_mean_squared_error: 0.0950\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1474 - mean_squared_error: 0.1474\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1650 - mean_squared_error: 0.16\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1648 - mean_squared_error: 0.1648 - val_loss: 0.0950 - val_mean_squared_error: 0.0950\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1474 - mean_squared_error: 0.1474\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.2130 - mean_squared_error: 0.2130\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.2130 - mean_squared_error: 0.2130\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1809 - mean_squared_error: 0.1809\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1809 - mean_squared_error: 0.1809\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1680 - mean_squared_error: 0.16\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1678 - mean_squared_error: 0.1678 - val_loss: 0.0839 - val_mean_squared_error: 0.0839\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1680 - mean_squared_error: 0.16\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1678 - mean_squared_error: 0.1678 - val_loss: 0.0839 - val_mean_squared_error: 0.0839\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1549 - mean_squared_error: 0.1549\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1549 - mean_squared_error: 0.1549\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1627 - mean_squared_error: 0.1627\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1627 - mean_squared_error: 0.1627\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1579 - mean_squared_error: 0.1579\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1579 - mean_squared_error: 0.1579\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1508 - mean_squared_error: 0.1508 - val_loss: 0.1198 - val_mean_squared_error: 0.1198\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1508 - mean_squared_error: 0.1508 - val_loss: 0.1198 - val_mean_squared_error: 0.1198\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1437 - mean_squared_error: 0.1437\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1437 - mean_squared_error: 0.1437\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1404 - mean_squared_error: 0.1404\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1404 - mean_squared_error: 0.1404\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1384 - mean_squared_error: 0.1384\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1384 - mean_squared_error: 0.1384\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1468 - mean_squared_error: 0.1468\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1468 - mean_squared_error: 0.14\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 28us/step - loss: 0.1469 - mean_squared_error: 0.1469 - val_loss: 0.0838 - val_mean_squared_error: 0.0838\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 28us/step - loss: 0.1469 - mean_squared_error: 0.1469 - val_loss: 0.0838 - val_mean_squared_error: 0.0838\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1304 - mean_squared_error: 0.1304\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1304 - mean_squared_error: 0.1304\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1260 - mean_squared_error: 0.1260\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1260 - mean_squared_error: 0.1260\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1252 - mean_squared_error: 0.1252\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1252 - mean_squared_error: 0.1252\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1308 - mean_squared_error: 0.1308 - val_loss: 0.0829 - val_mean_squared_error: 0.0829\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1308 - mean_squared_error: 0.1308 - val_loss: 0.0829 - val_mean_squared_error: 0.0829\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1382 - mean_squared_error: 0.1382\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1382 - mean_squared_error: 0.1382\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1300 - mean_squared_error: 0.1300\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1300 - mean_squared_error: 0.1300\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1257 - mean_squared_error: 0.1257\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1257 - mean_squared_error: 0.1257\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1245 - mean_squared_error: 0.12\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1243 - mean_squared_error: 0.1243 - val_loss: 0.0532 - val_mean_squared_error: 0.0532\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1366 - mean_squared_error: 0.1366\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1245 - mean_squared_error: 0.12\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1243 - mean_squared_error: 0.1243 - val_loss: 0.0532 - val_mean_squared_error: 0.0532\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1366 - mean_squared_error: 0.1366\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1184 - mean_squared_error: 0.1184\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1184 - mean_squared_error: 0.1184\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1220 - mean_squared_error: 0.1220\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1220 - mean_squared_error: 0.1220\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 25us/step - loss: 0.1258 - mean_squared_error: 0.1258 - val_loss: 0.0817 - val_mean_squared_error: 0.0817\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 25us/step - loss: 0.1258 - mean_squared_error: 0.1258 - val_loss: 0.0817 - val_mean_squared_error: 0.0817\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1439 - mean_squared_error: 0.1439\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1439 - mean_squared_error: 0.1439\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1270 - mean_squared_error: 0.1270\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1270 - mean_squared_error: 0.1270\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1245 - mean_squared_error: 0.1245\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1245 - mean_squared_error: 0.1245\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1189 - mean_squared_error: 0.1189\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1189 - mean_squared_error: 0.1189\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1191 - mean_squared_error: 0.1191 - val_loss: 0.0416 - val_mean_squared_error: 0.0416\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1295 - mean_squared_error: 0.1295\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1191 - mean_squared_error: 0.1191 - val_loss: 0.0416 - val_mean_squared_error: 0.0416\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1295 - mean_squared_error: 0.1295\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1437 - mean_squared_error: 0.1437\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1437 - mean_squared_error: 0.1437\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1312 - mean_squared_error: 0.1312\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1312 - mean_squared_error: 0.1312\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1302 - mean_squared_error: 0.1302 - val_loss: 0.0622 - val_mean_squared_error: 0.0622\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1185 - mean_squared_error: 0.1185\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1302 - mean_squared_error: 0.1302 - val_loss: 0.0622 - val_mean_squared_error: 0.0622\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1185 - mean_squared_error: 0.1185\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1229 - mean_squared_error: 0.1229\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1229 - mean_squared_error: 0.1229\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1213 - mean_squared_error: 0.1213\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1213 - mean_squared_error: 0.1213\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1162 - mean_squared_error: 0.11\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1159 - mean_squared_error: 0.1159 - val_loss: 0.0325 - val_mean_squared_error: 0.0325\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1162 - mean_squared_error: 0.11\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1159 - mean_squared_error: 0.1159 - val_loss: 0.0325 - val_mean_squared_error: 0.0325\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1205 - mean_squared_error: 0.1205\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1205 - mean_squared_error: 0.1205\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1195 - mean_squared_error: 0.1195\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1195 - mean_squared_error: 0.1195\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1177 - mean_squared_error: 0.1177\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1177 - mean_squared_error: 0.1177\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1168 - mean_squared_error: 0.1168 - val_loss: 0.1096 - val_mean_squared_error: 0.1096\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1833 - mean_squared_error: 0.1833\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1168 - mean_squared_error: 0.1168 - val_loss: 0.1096 - val_mean_squared_error: 0.1096\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1833 - mean_squared_error: 0.1833\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1240 - mean_squared_error: 0.1240\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1240 - mean_squared_error: 0.1240\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1136 - mean_squared_error: 0.1136\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1136 - mean_squared_error: 0.1136\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1122 - mean_squared_error: 0.1122 - val_loss: 0.0391 - val_mean_squared_error: 0.0391\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1208 - mean_squared_error: 0.1208\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1122 - mean_squared_error: 0.1122 - val_loss: 0.0391 - val_mean_squared_error: 0.0391\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1208 - mean_squared_error: 0.1208\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1276 - mean_squared_error: 0.1276\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1276 - mean_squared_error: 0.1276\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1227 - mean_squared_error: 0.1227\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1227 - mean_squared_error: 0.1227\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1186 - mean_squared_error: 0.1186\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1186 - mean_squared_error: 0.1186\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1166 - mean_squared_error: 0.1166 - val_loss: 0.1924 - val_mean_squared_error: 0.1924\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2109 - mean_squared_error: 0.2109\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1166 - mean_squared_error: 0.1166 - val_loss: 0.1924 - val_mean_squared_error: 0.1924\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.2109 - mean_squared_error: 0.2109\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1509 - mean_squared_error: 0.1509\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1509 - mean_squared_error: 0.1509\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1291 - mean_squared_error: 0.1291\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1291 - mean_squared_error: 0.1291\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1235 - mean_squared_error: 0.12\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1232 - mean_squared_error: 0.1232 - val_loss: 0.0370 - val_mean_squared_error: 0.0370\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1235 - mean_squared_error: 0.12\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1232 - mean_squared_error: 0.1232 - val_loss: 0.0370 - val_mean_squared_error: 0.0370\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1046 - mean_squared_error: 0.1046\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1046 - mean_squared_error: 0.1046\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1043 - mean_squared_error: 0.1043\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1043 - mean_squared_error: 0.1043\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1047 - mean_squared_error: 0.1047\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1047 - mean_squared_error: 0.1047\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1038 - mean_squared_error: 0.10\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1040 - mean_squared_error: 0.1040 - val_loss: 0.0512 - val_mean_squared_error: 0.0512\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1038 - mean_squared_error: 0.10\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1040 - mean_squared_error: 0.1040 - val_loss: 0.0512 - val_mean_squared_error: 0.0512\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Train on 8253 samples, validate on 1029 samples\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1463 - mean_squared_error: 0.1463\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1463 - mean_squared_error: 0.1463\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1244 - mean_squared_error: 0.1244\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1244 - mean_squared_error: 0.1244\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1182 - mean_squared_error: 0.1182\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1182 - mean_squared_error: 0.1182\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1167 - mean_squared_error: 0.1167 - val_loss: 0.0406 - val_mean_squared_error: 0.0406\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1316 - mean_squared_error: 0.1316\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 27us/step - loss: 0.1167 - mean_squared_error: 0.1167 - val_loss: 0.0406 - val_mean_squared_error: 0.0406\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1316 - mean_squared_error: 0.1316\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1280 - mean_squared_error: 0.1280\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1280 - mean_squared_error: 0.1280\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1178 - mean_squared_error: 0.1178\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1178 - mean_squared_error: 0.1178\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1155 - mean_squared_error: 0.1155 - val_loss: 0.0401 - val_mean_squared_error: 0.0401\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1155 - mean_squared_error: 0.1155 - val_loss: 0.0401 - val_mean_squared_error: 0.0401\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1412 - mean_squared_error: 0.1412\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1412 - mean_squared_error: 0.1412\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1237 - mean_squared_error: 0.1237\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 3072/8253 [==========>...................] - ETA: 0s - loss: 0.1237 - mean_squared_error: 0.1237\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1180 - mean_squared_error: 0.1180\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 5120/8253 [=================>............] - ETA: 0s - loss: 0.1180 - mean_squared_error: 0.1180\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1102 - mean_squared_error: 0.1102\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1102 - mean_squared_error: 0.11\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 29us/step - loss: 0.1109 - mean_squared_error: 0.1109 - val_loss: 0.0486 - val_mean_squared_error: 0.0486\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 29us/step - loss: 0.1109 - mean_squared_error: 0.1109 - val_loss: 0.0486 - val_mean_squared_error: 0.0486\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1275 - mean_squared_error: 0.1275\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1275 - mean_squared_error: 0.1275\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1213 - mean_squared_error: 0.1213\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1213 - mean_squared_error: 0.1213\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1164 - mean_squared_error: 0.1164\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 6144/8253 [=====================>........] - ETA: 0s - loss: 0.1164 - mean_squared_error: 0.1164\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1133 - mean_squared_error: 0.1133\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8192/8253 [============================>.] - ETA: 0s - loss: 0.1133 - mean_squared_error: 0.11\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1131 - mean_squared_error: 0.1131 - val_loss: 0.0905 - val_mean_squared_error: 0.0905\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1248 - mean_squared_error: 0.1248\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 26us/step - loss: 0.1131 - mean_squared_error: 0.1131 - val_loss: 0.0905 - val_mean_squared_error: 0.0905\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 1024/8253 [==>...........................] - ETA: 0s - loss: 0.1248 - mean_squared_error: 0.1248\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1186 - mean_squared_error: 0.1186\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 4096/8253 [=============>................] - ETA: 0s - loss: 0.1186 - mean_squared_error: 0.1186\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1112 - mean_squared_error: 0.1112\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 7168/8253 [=========================>....] - ETA: 0s - loss: 0.1112 - mean_squared_error: 0.11\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 28us/step - loss: 0.1094 - mean_squared_error: 0.1094 - val_loss: 0.0332 - val_mean_squared_error: 0.0332\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 0/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.4/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'TERMINATED': 1})\n", "TERMINATED trials:\n", " - train_func_0_batch_size=1024,dropout=0.48112,dropout_1=0.26833,dropout_2=0.39814,latent_dim=32,lr=0.0080377,lstm_1_units=64,lstm_2_units=8,past_seq_len=3,selected_features=['HOUR(datetime)' 'IS_BUSY_HOURS(datetime)' 'WEEKDAY(datetime)']:\tTERMINATED, [2 CPUs, 0 GPUs], [pid=7207], 10 s, 5 iter\n", "\n", "The best configurations are:\n", "selected_features : ['HOUR(datetime)' 'IS_BUSY_HOURS(datetime)' 'WEEKDAY(datetime)']\n", "lstm_1_units : 64\n", "dropout_1 : 0.26833423376715093\n", "lstm_2_units : 8\n", "dropout_2 : 0.39814194762629107\n", "latent_dim : 32\n", "dropout : 0.48112037684170644\n", "lr : 0.00803765177979179\n", "batch_size : 1024\n", "epochs : 5\n", "past_seq_len : 3\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7207)\u001b[0m 8253/8253 [==============================] - 0s 28us/step - loss: 0.1094 - mean_squared_error: 0.1094 - val_loss: 0.0332 - val_mean_squared_error: 0.0332\n", "Training completed.\n", "CPU times: user 3.62 s, sys: 147 ms, total: 3.76 s\n", "Wall time: 15.4 s\n" ] } ], "source": [ "%%time\n", "# fit train_df and validate with val_df, return the best trial as pipeline.\n", "# the default recipe is SmokeRecipe,which runs one epoch and one iteration with only 1 random sample.\n", "# you can change recipe by define `recipe` in `fit`. The recipes you can choose are SmokeRecipe, RandomRecipe, GridRandomRecipe and BayesRecipe.\n", "pipeline = tsp.fit(train_df,\n", " validation_df=val_df,\n", " metric=\"mse\",\n", " recipe=RandomRecipe(look_back=(2, 4)))\n", "print(\"Training completed.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Test" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# predict test_df with the best trial\n", "pred_df = pipeline.predict(test_df)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datetimevalue
02015-01-10 13:30:0022192.162109
12015-01-10 14:00:0021757.605469
22015-01-10 14:30:0020591.683594
32015-01-10 15:00:0021799.269531
42015-01-10 15:30:0022432.207031
\n", "
" ], "text/plain": [ " datetime value\n", "0 2015-01-10 13:30:00 22192.162109\n", "1 2015-01-10 14:00:00 21757.605469\n", "2 2015-01-10 14:30:00 20591.683594\n", "3 2015-01-10 15:00:00 21799.269531\n", "4 2015-01-10 15:30:00 22432.207031" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred_df.head(5)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datetimevalue
502015-01-11 13:00:0021296
512015-01-11 13:30:0020381
522015-01-11 14:00:0019508
532015-01-11 14:30:0019210
542015-01-11 15:00:0018255
\n", "
" ], "text/plain": [ " datetime value\n", "50 2015-01-11 13:00:00 21296\n", "51 2015-01-11 13:30:00 20381\n", "52 2015-01-11 14:00:00 19508\n", "53 2015-01-11 14:30:00 19210\n", "54 2015-01-11 15:00:00 18255" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# prediction value start from 50\n", "test_df[50:55]" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAFzCAYAAAB/xLx5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9eZwcVbn//z69d88+kwnZF5aQPWGVRSCRi4CgcJH1AoLey1UEEZWv+wJeEOHnggpeREHwCkKMIijITmQTkLATtpA9mWT2mZ7el/P741RVV8/0zPQkVT2TyXm/Xv3q6trOqa5TVZ96znOeR0gp0Wg0Go1Go9FoNJXBM9oV0Gg0Go1Go9Fo9iS0ANdoNBqNRqPRaCqIFuAajUaj0Wg0Gk0F0QJco9FoNBqNRqOpIFqAazQajUaj0Wg0FUQLcI1Go9FoNBqNpoJoAa7RjAGEELOEEFII4RvtupSDUdd9jembhRDfqUCZFwohnnFhv1cKIX7v9H4rxe5Q//F27oQQ1wohLrf9vlgIsUMI0SeEaHKhvN3q/jAUQogNQoh/c2nffxJCnOjGvjUap9ECXKMZBdx8CFUaKeXnpJT/M9x6QohVQoj/qkSdNLuGEGKZEGLLaNdjLCKEaAY+BfzK+O0HfgJ8VEpZLaXscKAMN0WqY+fW7Wva/qJfJtcBV7tVH43GSbQA12j2cIQQ3tGug0azG3Eh8KCUMmH83gsIAW+NdEdCoZ/DDiGlfBGoFUIcPNp10WiGQ1/4Gk2FEUL8HzAD+KvRZf1V2+JzhRCbhBDtQohv2bbxCCG+LoT4QAjRIYRYIYRoHGT/y4QQW4QQ3zT2s0EIca5t+e1CiP8VQjwohIgBy4UQQSHEj4yydxhuJWHbNv9PCNEihNgmhPhMv/JuF0Jcbft9ihDiVSFEr1HfE4QQ1wBHATcax3yjse5cIcSjQohOIcS7QogzbftpEkLcb+znRWCfIf7TvwshLu037zUhxGnG9M+EEJuNfa0WQhw11H/Xb55ljRzqPAghQkKI3xvzu4UQ/xJC7DVIOeY+okKINUKIf7ctu1AI8YxxPrqEEOvt3epCiNlCiH8Y2z4KTBjif2kQQvxNCNFm7OtvQohptuWNQojfGue1SwjxFyFEFfB3YIpxrvqEEFNKnOei/2qoYxqK3e3cAScC/zC2mwO8a8zvFkI8Ycw/wthHj/F9hK1Oq4QQ1wghngXiwN796uza/WGIczvi/0YMck2XKPN8IcRGY/tv9Vt2qBDin8Z+W4QQNwohAsayp4zVXjP2f9Zw7dlgFXBSqbpoNGMKKaX+6I/+VPgDbAD+zfZ7FiCBXwNhYAmQAuYZy78IPA9MA4Ko7u8/DLLvZUAW1S0eBI4BYsD+xvLbgR7gSNRLeAj4KXA/0AjUAH8FrjXWPwHYASwEqoC7jLrua9vf1cb0oca+jzP2PRWYayxbBfyXrZ5VwGbg04APOABoB+Yby+8GVhjrLQS2As8McsyfAp61/Z4PdANB4/d5QJNRzleA7UDIWHYl8Hvbf7dlsHM11HkAPmv8bxHACxwE1A5S3zOAKcZ/dJZxfiYbyy4EMsBFxn4uBrYBwlj+T9u5PRqImvUvUU4T8EmjTjXAH4G/2JY/ANwDNAB+4Jgh/gfrPJdap4xjGi/nrg04pMS16zN+NwJdwPlGnc8xfjfZroNNwAJjuX8U7g/9/6ed+m/od02XKGs+0Idqp0FUu83azslBwGHG/zALeBu43La9dZ8ppz0b63wZ+LNT92r90R+3PqNeAf3Rnz3xM8QDdppt3ovA2cb028CxtmWTUSLNV2Lfy4yHXJVt3grgO8b07cDvbMsESiztY5t3OLDemL4N+KFt2RwGF+C/An46yDEXPaxRIu3pfuv8Cvie8aDPYIh3Y9kPGFzE1RjHMNP4fQ1w2xD/fxewxJi+kvJF3KDnAfgM8ByweCfaw6vAKcb0hcBa27KI8X9PQllG+5/buxhEgJcoZynQZat7HmgYpA2NSICXcUzj4tyVaJezKBbg5wMv9tvmn8CFtuvg+8OUYdW7XxlO3R/6/0879d8wvAD/LnC37XcVkLYfW7/1Lwfutf0uEuBDtWfbvIuAJ8q99vRHf0bro11QNJqxxXbbdByoNqZnAvcaXbXdqAdmDuV/WoouKWXM9nsjyjppstk23YwSeatt+3/ImI+xnX39jUPUfzrwwRDL7cwEPmSWaZR7LkpoNqMe/mWVK6WMoqy5ZxuzzgHuNJcLIa4QQrxtuAR0A3UM4boxTJ0HOw//BzwM3G24dFwv1AC9AQghPiWUm465n4X96mO1Ayll3JisRp2LUue2JEKIiBDiV4YLQC/wFFAvlN//dKBTStk1sr9g0LKGO6aS7G7nDvUCUDNEOVMYeE42onqDTDazczh1f+iPU/9Nf4ruHUa7tQapCiHmGG4k2432+QOGdqkaqj2b1KB6UDSaMY0W4BrN6CBHuP5m4EQpZb3tE5JSbh1k/QbD39NkBsqNoVT57UACWGDbd52U0ny4t6DEmn1fQ9VzMF/t/se8GfhHv2OqllJejOrmz46gXIA/AOcIIQ5HudU8CSCUz/BXgTNR1t56lJuMKLGPGOplBGNbL4UXEbPOJc+DlDIjpbxKSjkfOAI4GeVeUYQQYibKleBSlFtCPfDmIPXpTwulz+1gfAXYH/iQlLIW5QqAUdZmoFEIUV9iu1Lts+i/Qb0oqZ3t2jHBbnLuDF5H9QINxjaUoLUzA+VCZTLc9e/m/aHUvnf2vxmunkX3DiFEBOVGYvK/wDvAfkb7/CZDt5mh2rPJPOC1Yeql0Yw6WoBrNKPDDvoNvhqGm4FrDKGDEKJZCHHKMNtcJYQIGCLmZJS/5ACklHmUePqpEGKisf+pQojjjVVWABcKIeYbD9DvDVHmrcCnhRDHGgO7pgoh5hrL+h/z34A5xiAtv/E5RAgxT0qZA/4MXGlYveYDFwxzvA+ihM/3gXuM4wJlEcuiRL1PCPFdoHaQfbwHhIQQJxlWvm+jfFdNBj0PQojlQohFhvDrRXXh5xlIFUq4tBnbfRplLR4WKeVG4CUK5/bDwMeH2KQG9XLVLdSgOuvcSSlbUAPyfmkMbvMLIUxBswNoEkLU2fb1KvAxoQZuTkK5C+zyMRnsLufOrOsxwxzLHCHEfwghfEKIs1C+0H8bYpv+uHl/KHVud/a/Ga6eK4GThRAfFmpw5fcp1h01xj77jPvExSXqune/9Uu2ZxvHoNq1RjOm0QJcoxkdrgW+bXT5XlHG+j9DDZJ8RAgRRQ2Y+tAQ629HdZVvQ3Xnf05K+c4Q638NWAs8b3TtPoayNCGl/DtwA/CEsc4Tg+1EqjBgn0YN6uxBRYswrYE/A04XKnrBzw3Xg4+iXA+2GXW+joJouhTVxb4d5X/82yHqj5QyhRLt/4byizZ5GOVS8x7KFSDJIC4AUsoe4PPAb1AWyxhgj6wx1HmYhBIcvagu/H+guu/7l7EG+DHKL3gHsAh4dqhj68d/GGV2ogTI74ZY9wbUoL12o64P9Vt+PkpQvQO0Yohqo638AVhntNEpxrG8hvJPfgQ1eNORY9pdzp3B71AvIuFSC6WKA34yylrbgbLgnyylbB9kf6Vw7f4wyLnd2f+m6JouUdZbwCWoc9qCuifZz8kVqPYcRRkB7um3iyuBO4x6nskw7VkIcQjQZ9yHNJoxjTmqXqPRjBOEEMtQA9P6h+fSaDQOIIT4AdAqpbxhtOuiKSCE+BNwq5TywdGui0YzHFqAazTjDC3ANRqNRqMZ22gXFI1Go9FoNBqNpoJoC7hGo9FoNBqNRlNBXLOAC5W+9kWhUgq/JYS4ypg/WwjxghBirRDiHlFIOxs0fq81ls+y7esbxvx3bZEZECrF9bvGsq+7dSwajUaj0Wg0Go1TuOmCkgI+IqVcgspWdYIQ4jBUlIOfSin3RY2I/k9j/f9EJZjYFxVB4ToAI/zY2ai0vSegQmZ5jZBINwEnokI8nWOsq9FoNBqNRqPRjFl8bu1YKt+WPuOn3/hI4COosEMAd6DCDP0vcIoxDSrk0Y1CCGHMv9sIU7VeCLEWONRYb62Uch2AEOJuY901Q9VrwoQJctasWbt4dBqNRqPRaDQazeCsXr26XUrZXGqZawIcrExkq4F9UdbqD4BuKWXWWGULhfS8UzHiu0ops0KIHlTGrKmoeJ+U2GZzv/lDxUUGYNasWbz00ks7dTwajUaj0Wg0Gk05CCE2DrbM1SgoUsqclHIpMA1ltZ47zCauIIT4byHES0KIl9ra2kajChqNRqPRaDQaDVChMIRSym7gSeBwoF4IYVrep6EylmF8TwcwltehsohZ8/ttM9j8UuXfIqU8WEp5cHNzyZ4AjUaj0Wg0Go2mIrgZBaVZCFFvTIeB41BpbJ8ETjdWuwC4z5i+3/iNsfwJw4/8fuBsI0rKbGA/4EXgX8B+RlSVAGqg5v1uHY9Go9FoNBqNRuMEbvqATwbuMPzAPcAKKeXfhBBrgLuFEFcDrwC3GuvfCvyfMciyEyWokVK+JYRYgRpcmQUukVLmAIQQlwIPA17gNinlWztT0Uwmw5YtW0gmkzt7rJoxSCgUYtq0afj9/tGuikaj0Wg0Go3FHpeI5+CDD5b9B2GuX7+empoampqaUIFXNLs7Uko6OjqIRqPMnj17tKuj0Wg0Go1mD0MIsVpKeXCpZToVPZBMJrX4HmcIIWhqatK9GhqNRqPRaMYcWoAbaPE9/tDnVKPRaDQazVhEC/BxSnV1NQDbtm3j9NNPH3LdG264gXg8PqL9r1q1ipNPPnmn6+f0fjQajUaj0Wh2F7QA343I5XIj3mbKlCmsXLlyyHV2RoBrNBqNRqPRaHYOLcDHABs2bGDu3Lmce+65zJs3j9NPP90SxLNmzeJrX/saBx54IH/84x/54IMPOOGEEzjooIM46qijeOeddwA1kPTwww9n0aJFfPvb3y7a98KFCwEl4K+44goWLlzI4sWL+cUvfsHPf/5ztm3bxvLly1m+fDkAjzzyCIcffjgHHnggZ5xxBn19fQA89NBDzJ07lwMPPJA///nPJY/lsMMO4623CsFoli1bxksvvcSLL77I4YcfzgEHHMARRxzBu+++O2DbK6+8kh/96EfW74ULF7JhwwYAfv/733PooYeydOlSPvvZz5LL5cjlclx44YUsXLiQRYsW8dOf/nRnT4FGo9FoNJrdmH/9C958c7RrUT6upqLfLbn8cnj1VWf3uXQp3HDDkKu8++673HrrrRx55JF85jOf4Ze//CVXXHEFAE1NTbz88ssAHHvssdx8883st99+vPDCC3z+85/niSee4Itf/CIXX3wxn/rUp7jppptKlnHLLbewYcMGXn31VXw+H52dnTQ2NvKTn/yEJ598kgkTJtDe3s7VV1/NY489RlVVFddddx0/+clP+OpXv8pFF13EE088wb777stZZ51VsoyzzjqLFStWcNVVV9HS0kJLSwsHH3wwvb29PP300/h8Ph577DG++c1v8qc//amsv+/tt9/mnnvu4dlnn8Xv9/P5z3+eO++8kwULFrB161beNK647u7usvan0Wg0Go1mfHHooep7dwnupy3gY4Tp06dz5JFHAnDeeefxzDPPWMtMsdvX18dzzz3HGWecYVmCW1paAHj22Wc555xzADj//PNLlvHYY4/x2c9+Fp9PvXc1NjYOWOf5559nzZo1HHnkkSxdupQ77riDjRs38s477zB79mz2228/hBCcd955Jcs488wzLZeXFStWWP7nPT09nHHGGSxcuJAvfelLRVby4Xj88cdZvXo1hxxyCEuXLuXxxx9n3bp17L333qxbt44vfOELPPTQQ9TW1pa9T41Go9FoNJrRQlvA+zOMpdot+kfsEEJYb3FVVVUA5PN56uvreXUQC70TUT+klBx33HH84Q9/KJo/WJn9mTp1Kk1NTbz++uvcc8893HzzzQB85zvfYfny5dx7771s2LCBZcuWDdjW5/ORz+et32YIQSklF1xwAddee+2AbV577TUefvhhbr75ZlasWMFtt91W7qFqNBqNRqPRjAraAj5G2LRpE//85z8BuOuuu5g798O8/37xOrW1tcyePZs//vGPgBKmr732GgBHHnkkd999NwB33nlnyTKOO+44fvWrX5HNZgHo7OwEoKamhmg0Cigf7meffZa1a9cCEIvFeO+995g7dy4bNmzggw8+ABgg0O2cddZZXH/99fT09LB48WJAWcCnTp0KwO23315yu1mzZlmuNi+//DLr168HlNvNypUraW1tteq9ceNG2tvbyefzfPKTn+Tqq6+2ttVoNBqNRqMZy2gBPkbYf//9uemmm5g3bx7t7V2cdNLF9PYOXO/OO+/k1ltvZcmSJSxYsID77rsPgJ/97GfcdNNNLFq0iK1bt5Ys47/+67+YMWMGixcvZsmSJdx1110A/Pd//zcnnHACy5cvp7m5mdtvv51zzjmHxYsXc/jhh/POO+8QCoW45ZZbOOmkkzjwwAOZOHHioMdy+umnc/fdd3PmmWda87761a/yjW98gwMOOMB6AejPJz/5STo7O1mwYAE33ngjc+bMAWD+/PlcffXVfPSjH2Xx4sUcd9xxtLS0sHXrVpYtW8bSpUs577zzSlrINRqNRqPRjG/sft+2jvQxjU5FjxrkN2/evFGqkYpUcvLJJ1uDCbu6wDA0c3DJBKaachntc6vRaDQazZ7Ipk0qKsnHPuZ+WckkhMNqursb6urcL7MchkpFr33AxwDvvguZDCQSqgGl04VlUoJO6KjRaDQajWZ34tBDYccOyOXA47K/RSxWmO7sHDsCfCi0C8ooIyU0Nc3izjvfxAwMkskUL9doNBqNRqPZndixQ313dblflpGupGLlOYEW4KNMKV8luwV8d/Fl0mg0Go1Go+mPKcTdRAtwzYgplV3ebgHXAlwzVnj3XfjoR6GnZ7RrotFoNJrdhUoIcLsLihHUbcyjBfgoU0qA24OEaAGuGSucfTY8+ii8+OJo10Sj0Wg0uwuVtoDbvQjGMlqAjzKlBLh9wIIW4JqxgpmLqVSb1Wg0Go3GxK5dKm0B1wJcUxaDCXC/X02XEuCrVq3iueee26Vyq6urd2l7p/ej2X0oFZ9eo9FoNBqT7u7C9GhZwFetgkHyEo4JtAAfZfrnpJFSiW63BbhGMxLs0Xi0ANdoNBrNUHR0FKYrLcBTKfW9fDmcd577Ze8sWoCPMqYF/IorTuX88w9i4cIF/OlPt+AzIrQ/8shDHHjggSxZsoRjjz2WDRs2cPPNN/PTn/6UpUuX8vTTT3PhhReycuVKa5+mVbqvr49jjz2WAw88kEWLFllZMwfj61//OjfddJP1+8orr+RHP/pRWftZtWoVJ598svX70ksvtVLOr169mmOOOYaDDjqI448/npaWFgB+/vOfM3/+fBYvXszZZ5894v9OUzmSycJ0pQT4a6/Br39dmbI0Go1G4xx2l5DWVvfLsz+X+rugjNVwzjoRTz8uv7zg6+oUS5fCDTeUXmYK8O985zbq6hqZMyfBAQccwplnfpKurjxf/OJFPPPMU8yePZvOzk4aGxv53Oc+R3V1NVdccQUAt956a8l9h0Ih7r33Xmpra2lvb+ewww7jE5/4BGKQzD5nnXUWl19+OZdccgkAK1as4OGHHx7xfuxkMhm+8IUvcN9999Hc3Mw999zDt771LW677TZ++MMfsn79eoLBIN32/irNmMM+qrxSAnzpUvV90UWVKU+j0Wg0zmBapL3eggW8u1tF0/rQh5wvzx6dq78A7+yEpibny9xVtAAfZcyQg/fc83NWrbqXUAh27NjM5s3v8/77bRx++NHMnj0bgMbGxhHtW0rJN7/5TZ566ik8Hg9bt25lx44dTJo0qeT6BxxwAK2trWzbto22tjYaGhqYPn06mUxmRPux8+677/Lmm29y3HHHAZDL5Zg8eTIAixcv5txzz+XUU0/l1FNPHdGxaSrLaAhwk1xO3cQ1mrHI88/DfffBtdeOdk00mrGDKcD33lsJ8EQCGhrUvB07YOJEZ8vr7VWZxBOJgQK8pUUL8N2CwSzVbtHXB6+/vooXX3yM3/72nxxwQISjjlpGNqv6/MvpOvH5fOQNZ/F8Pk/aaH133nknbW1trF69Gr/fz6xZs0jafQlKcMYZZ7By5Uq2b9/OWWedVfZ+7HUArOVSShYsWMA///nPAWU98MADPPXUU/z1r3/lmmuu4Y033sDn001yLGL3r6u0AI/HoaamsmVqNOVy1FFqLM/3vgeh0GjXRqMZG5guKPvsA08+Cb/5TWHZ9u3uCPCmJtiypeADbtLSAgsXOlueE2gf8FEkm1XiQogempsbCIUivP32O7z55vP4fLBo0WE8//xTrF+/HoDOzk4AampqiNpMkrNmzWL16tUA3H///WQMs3pPTw8TJ07E7/fz5JNPsnHjxmHrdNZZZ3H33XezcuVKzjjjjLL3M3PmTNasWUMqlaK7u5vHH38cgP3335+2tjZLgGcyGd566y3y+TybN29m+fLlXHfddfT09NBnV3maMYXdAl7pRDx2X0KNZqxh2gza2ka3HhrNWMJuAU+liqOR2AdoOkVvL9TVQSAw0AK+fbvz5TmBNjeOImYElOOPP4Hf/e5mTj99HvPn78/ChYfh80FDQzPXXXcLp512Gvl8nokTJ/Loo4/y8Y9/nNNPP5377ruPX/ziF1x00UWccsopLFmyhBNOOIGqqioAzj33XD7+8Y+zaNEiDj74YObOnTtsnRYsWEA0GmXq1KmWq0g5+5k+fTpnnnkmCxcuZPbs2RxwwAEABAIBVq5cyWWXXUZPTw/ZbJbLL7+cOXPmcN5559HT04OUkssuu4z6+nqH/lmN05RyQcnnQQj1cRMtwDVjmepqNUi5tRWmTx/t2mg0YwO7BRzghRfgiCPguefcEeA9PVBbC8FgQYCbYvz9950vzwm0AB9FTPeSUCjInXf+nW3b1NviunWwYAGsWQPLlp3IeeedWLTdnDlzeP3114vmPf/889b0ddddB8CECRNKun4AQ1qb33jjjaLf5e7n+uuv5/rrrx+wztKlS3nqqacGzH/mmWcGrYNmbGEK8ClTChbwefPUDe9f/3K3bC3ANWOZqipob9cWcI3GjikN9t+/MO+kk9wT4L29ysc8ECi4oJhesWM1arMW4KOI2Tg8noIV0bSKezzg8UhjHZdNjBrNMJg30xkzoKtLvTy+915lytYCXDOWMXORVSLUmkazu2Det/fbrzDvqKPUt1sCfObMgtU7nS7oqRdeUNNjbYiZ9gEfRUoJcDMsoTfZhyeXIR9Pld5Yo6kgpgV85kwV0skuNkoli3ISLcA1YxnD469iFvDWVjXYzBj2o9GMSfr61LUxbVph3sKFKlKJWwK8lh6CLetJb2m1jEYnnggXXDA2nyNagI8ipguK3Y/WfGPz7mjBQ5581mV1o9GUgd0C3tkJdi8lI6+Sa4zFG6dGY2Ja1SplAX/iCXUNlvD202jGDLGYEuCRSGFeQ4N6eXTNB7xjPQHSpN7baD03TjsNbrxRDdAca2gBbiBHIVWSZQEXEpFKAEqACyERsT4lwKV2P9lZRuOcjlcSCRWLe6+9VC/NK68UlhlBehzFblXXAlwzUvqHIXOThLp1YwSpch0zJr7ZW2ryne/A3XdXpg4azXD09RXcs+xMm6aS8TiJlCqiXFUgQ4A06bzPem6YPVRjES3AURkjOzo6Ki7YLAHetgPRqlJFZZMZvB4gl9MCfBeQUtLR0UFIB+Z1hGRSxTg2c0G9+WZh2dq1zpdnihrQAlwzMh59VLVVtwcHm5httVLJfE0Bbn9Jjcfh6qvhnHMqUweNZjhMFxS+8AX+8t2XeeABNf/EE5VPtpkd0wlyOSXCA/kUQVKk897dQoCPMZf00WHatGls2bKFtgoPY+/rU10x70fbSaWggwTRzgw54eXtXDs7eB/p9ZJ721/Reo0XQqEQ0+wOaJqdpr8Af+MNlUihpwfeftv58uxBerQA14yEu+5S36++Cocc4n558bj6rpQAN7Mn2y3gtiBYGs2YIBaDqmAGbryRU7jR8rldvlwlrXr1VTj+eGfKMnu8gqleAnhIZcIFAd6+EdKT1ejMMYYW4IDf77fSvVeS3/wGLroINh15Dk896+E87mReQwuB2jCvblzI17iPzY1LeaVjRsXrptHYUQJc0vjw3cA5vPEGLF2qRpqvWeN8eXYBrvMzaUaCOSahUj6fpgCvVIIqU1iY44UAXnpJfRupGzSaUSeZhHAmOmC+aZEeJin3iLDifse7CRAhncpbL8T1/3kaPH8Q3HKLcwU6hHZBGUXMBhjKx/GjzBqd6Wpq/KpPM+JJEs9o67dm9EmlVDtt/N+rAfXwnzYN5s+Ht95yvjxT1ADEosUDkd95B5591vkyNeMDU4Db25CbVNoCbgpwuwV88+aB8zSa0SSRgHDSNjDCsIAHg+qnk+M0LAt4rFO5oKQKYzIa6YSHH3auMAdxTYALIaYLIZ4UQqwRQrwlhPiiMf9KIcRWIcSrxudjtm2+IYRYK4R4VwhxvG3+Cca8tUKIr9vmzxZCvGDMv0cIMfb6GIbAEuAyURDgyQg1XnVHj4QhntUCXDP6JJMQkkmmscWaN3WqShy1ebPzD367eEr/rXDzfPZZlQDowx92tjzN+GHrVvVdiZ4Tc/AXQHenugg6O6FfnjRHMQW43QfcPOaODvfDgmo05ZBMQijVW5hhdJW6KsD7OtQgzIzKVwHQQNeYfTN10wKeBb4ipZwPHAZcIoSYbyz7qZRyqfF5EMBYdjawADgB+KUQwiuE8AI3AScC84FzbPu5ztjXvkAX8J8uHo/jWAI83WMJ8EzOS40nBj4fkbAknt2t3ik045RkEoIyQR2FG+qyZcoKns06H4LNPggzvUaN8kyltPDWDI05rgZU7Pof/lANynQLezd6T0cWKVXmvyVL4Omn3SnTFOB2AbPFeC/O5SrnCqPRDEUiAeFsLzQ3q3AoRobu4DuvAc4KcMsFpaNFhSHM+ujsVMkMa+kt9tcaQ7gmwKWULVLKl43pKPA2MHWITU4B7pZSpqSU64G1wKHGZ62Ucp2UMg3cDZwihDu5zm4AACAASURBVBDAR4CVxvZ3AKe6czTukEyqBuJ7+UVLgAPUyCjU11MVyBDPBUexhhqNIpmEUE6Z+j7FHYAazW6Ocd2yZbAtd44iAS5UJJuHHirMG2sZzTRjg1dfLUz39sI3vgEf/ah75ZntdApbSRMkGlVp6QF+8hN3yjQt+7024+LWreA3OkvdiLGs0YwUywK+ZAkcfbQKnXXVVYQ+/m/WcqcouKB0EBAZ0nkvnR2S+kgaD3LPE+B2hBCzgAOAF4xZlwohXhdC3CaEaDDmTQU22zbbYswbbH4T0C2lzPabv9uQTELIk0ZAsQDP90B9PZFAhmQ+qLsUNaNOMgmhrBpQcwv/TcufnivKcua0AC9yQfGrUTvvvad+f+lL6n6qrwtNf157rTBtthc3Ma3Rk1GO5/br4P333S2zd5PqY89mYft2pXOg8AKg0Ywmyge8CyZNUqODX3kFrrySIEotu2IBJ02wPkKaAF3tORojRiEdHQWflDGE6wJcCFEN/Am4XErZC/wvsA+wFGgBflyBOvy3EOIlIcRLlQ41OBSpFIS8GZg+vViA57qVAA8qvyW7NVCjAfWQ/fjH3c9CaZJMQijdC0uXEiTNpITKvjN10z8Bdy3gGZ+ygEeNAfV77aW+KzXITrP7YA6EnDixWIy7hSmGzbER5mDI2lrYsKGQ7diNMns7le1p+3b1MrpggZpfqcGgGs1QJBKScKJD3bDN8DzTphE87WTAJR9wUoQmVJEgTGd7jsaQLYbt5z7nXIEO4aoAF0L4UeL7TinlnwGklDuklDkpZR74NcrFBGArMN22+TRj3mDzO4B6IYSv3/wBSClvkVIeLKU8uLm52ZmDc4BkEkIiBXV1+FcWUpjVZDqhoYFIUJn4tNAYOS0t4/t/u/tu+Nvf4KqrKlOeEuBROPRQEEKZ9/78ZyaceiRCSEeTKkDh3NXSQ9qrchlHo8qVsLZWLdPhCTX9SSRU82ysy/LBB+6XZ7bBqcajxxTgCxcqoexGdkxTgGfwg5TWAExTgGsfcM1oIyUkk4JQtk8J8EmT1IIpUwhMmwi4J8AjE6uJE6GrQ9LgtwnwT37SuQIdws0oKAK4FXhbSvkT23x7pNJ/B8ycevcDZwshgkKI2cB+wIvAv4D9jIgnAdRAzfulSlv5JHC6sf0FwH1uHY8bJJMQQgnwwOyC90xNfAc0NVkW8PEsJN1ASpgyRVmIxysRpUnZtq0y5SWTUrmg7LUXzJ6tYgGuXIkHSdCbtboAncK0gNfRQ9oIbhSNQk2N+oAW4JqBJBLq2qh5/2VrnpvJcM02aFrAt2xWJu+FC9X8DRvcKzODH5JJq/dpvhGaQAtwzWhjCuIwCdUdZXZb1tYiJjYTIEUq5pxftt0FpaopTIwqOjqh0Wu7GD72sdIbjyJuWsCPBM4HPtIv5OD1Qog3hBCvA8uBLwFIKd8CVgBrgIeASwxLeRa4FHgYNZBzhbEuwNeALwsh1qJ8wm918XgcRwnwhLKA26IN1vRsgSlTiITVzVwL8JGxXnlH8MQTo1sPNzEHWm3YADfd5G6kB4BUUhIiqbKbzJ2rBLgRay3gyTpqzYBCm6+jh3RW3aZMAV5drZZpAa7pTzwO4TDUUEgAkkzi+AuiyQAL+Fp1ISxerOavXet8mVYiHnzQ12dZwOe3/QOAnnV6FKZmdLEivJFU6ZPNUfPTp8PEiQRJkep2zre2yAI+IYLEQ0u7nwbRDTNmqPBA5oNjDOFaLAEp5TOAKLHowSG2uQa4psT8B0ttJ6VcR8GFZbdDhXZTosaeta0m0wGTF2gBvpOsXl35Mh98UAn+H/2oMuWZYf/eeAMuvVRNu+FvapJMSDV4pr5eCfDHHy8kViBFOh12tLxEAgR5aoiSyarbiBbgmuFIJCAcylNNcePo7Cz0gjtJfwv45vXKqnfIIUpzvP46nHWWs2UWuaD09bFlSzPBIMz8f2fiYRu9GzpQ9iiNZnQwezDDJNQz47DDVEiiK66Ap55SArxHAjWOlGdZwAOCSIOKHBdPemnMt0NDA3jGZs7JsVmrPYRUCoI5ZQFvbCzMryGqLOCGm0EsVnp7TWnefLMwXanoQ6ecAj/+sTIMV4K2NpUIp1Ko3hqbBTyVsu56wXzCcQt4IgFhb1qJ+5wXUGJHC3DNUCQSEO7ZTjPFg+3digwywAK+Sb2UTpigLhM3BoKazwOJh1xPHzt2qB5+T3srtfTSE9MxOjWjS5EFvL5excj8wQ+UNdy0gPc61y1lWcCrfFQ1FHKnNKS2KxeYMYoW4KNIJiMJ5OJQV0dVVWF+DVGYPFlbwHcSexSAdesqU6ZpXfvLXypTXmsrTGpK4/UWzN5uRllKpkThZjp3bmHB4YcTyMZJ9zoY1BXDlcCTwk9GCXAptQV8N2XLFnd7Z+wkEhCJt7MXxaOCo9FBNthFzDbYTBs+MmxpUw//mnCWRYvgrbeG2HgXywTIdMdIJiESUX9wHT309JbqeNZoKscAC7id5mYlwKPuCHDTAg7QGN+iBbimNOlkHr9MQ309wnbPtAR4lZoZj1Xo6TVOMB+2QsAdd1SmTPOGU6kkGG1t0PzWKjy5QvjKVavcKSuXg0zWU7CAz5tXWPg//6NuputLBiDaaRIJiIikSitMABIJJcBj26n+15OAFuC7A488otw+76vQ8Ph4HML5OJOqVePw+9W90622Yu63ekYT9Z5e+tLq4V8zpZp6b9SVcmO250GmJ046rcZhgCHAo/qxrhldiizgDQ3FCw0LeLLPhUGYNUGqJhTcIRujG7UA39ORstBtmMvBJZfAmjWQSeZU/G+7AziGAG9uJlKtTk88mqt0lXdrolGlEU84AVascL+8np6C8K5Ub0VXFzTm2vBRuInddps7ZZnWBUuAT5gA++2n4qoee6zKPOaGBVwkCJC2fF2jUah54i9Uf+YMwD2rpsY5zDZZqZ6oRCxHWMasHim/V4VydcuNLxaDgEgTmNxEfVC9hftEliApgjs2Ou6aJaW6NmpR0R2yvUqAB4V6Ea+jh54+r7OFajQjxLKAe9IUde8D1NYSIkUq7pwAtyzg1X4i9XYXlBYtwPd0Pv1pWLRITW/dCr/8JTzwAKRTkgADG2gNKhV9pEbdSOM9Lg3hH6dEo1ATzrDc9zRr18LTT7tb3qZNhelEhc5VNCqpIYoX9XJ25JHuZd4b4M8H8O67qiEDQW+WVMrZbu9EAiIyXrCAmwKcKFUoNRXv2/lUmL/4hbLMatzllVfUd65CNoREX44IcfaarizRAZ9qI25awKs9cZg0ifqQUgFNkQQCCD76N1IpZ3svEwmQUlCP8rPL9MRJpSBgZBeso4eemH+oXWg0rmM9M6p9FHXvAwhB0J8nlXAulbEpwAO1IctzAKCRTi3A93SamgpRK8yEJb29kElLZQHvF6i2qsYLXi+RCWoUZrzDWevieCcahZr3VvPhv34VgKOPLtwQ3MCebCPxQGViH0Z7lQD/IV8HYM5+0rUMeEUC3OytEcK6sQa8OVJpZwV4LAZhGcPvF6QJkI0mSCSgxpsgVKvEVaJ1503gl11WWd/kPREpC3HqK+WalYjlCZOgZqYa1R7IKVNc31Z3gmP39UG1VPHxp9Yplb90gnLHUtGBhKNtzHyRsAR4b0K5oORtAjyhBbhmdLEs4DWlBwQHA5JU0rkLw3RBCdaFiuyZDXRpAb6nM3GiEhSxWEGI9/RAJkNJAe5pUCInMkml/It3agE+Enp7JDV9LRzG85yx+F0Ann3WvfLswjfenXLdOTmbhUTSQy29XHLUG0gEzTUJ1xJwWN17/jwEgwOWB3050hlnBfj27bCX3E4g5CFNgN52dYetz7UjliwmTJz4jl33QUk4F4pW04+2tsKl0PH3FytSZiKhBn7NPaiKeazhlsT5APStczhVq0FfNE9VPgqTJnH0fi0A1Ioo+P3qhRVnY5CbrjR2AZ5KQTDRDR6PEuDJgdeoRlNJTKNNsLZ0WwyGcLTX1HxG+WtCVvQ4gIm0uhN/1CG0AK8AZhKoHTuKLeDptMrcZArwp478Bj/iK9aghcBeDXjIEe9y2JFwnBPtzlJDFAHctu8P8HrhqafcK8+MPjKZbSQIF96yXML0fa4haqXXrRNRkkln0/uaWBbwSGnf0qA/Tyrr7K1k82bJ9OwGAmEvaQJ0tyt/wXq6YckSwiRItO/6i46OMOQe9lTwHa9vqUiZ8bggTILw/NmsYQEn8zcA+nqc6+4uKq87TYQ47LUXpx+xDS9ZPt/wB9hnH4IhdU04eU32F+DZvqRyZdy6Dk47jbpQmp5USPfsaAbw1lvw3e9C3p1LoQjLIj2oABekHDTaKC2VQtTWFAlwH7nKxusdIVqAVwCzB6S1tb8FXCgLuGFVPGryWr7CTyw/W9HUSIS49gEfIaZ7BhMnUv3as9TWuhuiz9z3FLYRJ+J64HZLgAczsHQpAPU/vwpwJw21JcCrSgvwgF9a2SqdoLcXensF09lEoMpHBj/dbWqQWT3dMH8+YRLEu3f9utAx9t3DHHg5kR20M6EiYWsSKY8SxHvvDYCXPBFixHrcSQiQjOWsBFUz9g2Qxc+yrnuhro5go+oLd9L9bYAFPJkjncoTyMTgiCOoDSTJ5r26Z0czgF//Gv7nf+DWCuQLtw+KLEXQL0nlR+4q9bvfKS/I/uOdUinl8kVVVfGQOq9Xu6Ds6ZSygPf0QCZbbAEnYIzeNcP2NBoCvLdC2WTGCdG4Vwnw//gP+OADIqG8q0KrqzWDIM9eVTFlAXdZ1fX2qu+aKTUweTKgfD8BV/zAiwbUlCAYkKRyziX/2LxZfc9gE/6qoLKAdyqzTT3dKkkVcRIOWK/3JAt4T48yBrk9KNnE1Nt7s44Omgo3PxdJZLwq9rAts1k1ffT1ujMKNJXIqwd/TY2KDgSwYYMS4BNUlj8nLeADfMCTOVJJI0ttMEidMRDULXc0ze6LOSD6a1+T3HADvPyye2VZYQGrAyWXhwJ5kvnSy4biy19Wz785c4ozXqeSeaWlwmFLgB/HI8r9xDt2owJpAV4BSlnAe9/cRLqfBdwS4GakCUOAx6IV6DMaJ6RSkMl5qfHE4aSTAIh4Eq4Kra713dTRQ/XkGmUBd1nVWRbwydWWADcfyK4K8JrSFouAHytbpROYUWWms5lAdUAJ8C7Vp15PN9TXE/akiCd3vQtzTwrx+fLLalDkt79dmfJM4TmtqptWJrouwDMZyOU9hEkWsjVhCPCoOz4ZlvitqVGj7U1sFnBXXFACysSdSeULroyBAHVhVZj5kq7RgHI7eXV1juW+p+jqEnzpS3Dooe5lirYs4HWhkstDwTxJOfKxCvaIzW22ZLdp80U4GCQQgDf+/bv8hVNhypQRl1FJtACvAKYAb2mxWcDbUmSyongQZn8LeDBISKRJxrQALxdLnIYycNBBAFTlo64apbu78jTQRbjWXxELuHmMtXVYQsO0gLvqglI3xICanehOHAzzJaKRTgL7ziCL33LzqacbamuJeFMkkrt++4p97fu7vI/dBfNhK80uBpdJGmHG9pkUo51mkpvcHRthtdOgBI8HZs8GoIoYfTF3skMWCXDjZRhQAtzwf3VFgNeqF8ds2ibAg0HqwspVS1vANXY6OqA35uXU7Epu5BKqghlyuUKUIqexLOC1gwjwgNwpAW73YrNfV6m44QpmaKmFM6NESIxp/2/QArwiBIPKDWXzZpsFnFrSWU+xC8qHP6ze2I46qrCtL+tovMzxjun7GAnl1YvMvvsSSXW7awHvUnF5w7X+yvqA1xihACdNqowFfBABHgh6SDsowK2b9zFHEJihRrC3dSoLex09UFdH2Jclnhq51X316uJB8fFVL+xyfXcX2t9XbzH59RvdM33ZMFNN77uPsj5vecddH3Ar8kLYeKw9+ijccgvVwSyxuDuPulRKFAT4lCkQNrLw2QV4r3MK3BLghiUwk8qTSouCC0q1Oq9agGvsmMK1ts7DJVV3cO/xvwKUt5QbpJJKswTrwyWXh0OSJKER3YceeUTppzNUHjZiMdVbGo2qrOJFWsq8UA45ZKePoRJoAV4hZsxQjcWygFNHNu8tdkE5/3yVqeff/93aLuTLOh5jeTxjiTcjAgGHHEIk1uaqAO+JCuroIdIQpJdarv3jPq5qcMsHvNZoFy0t1O2rulnctIAP1p0YDAlSBBwbXm91X4Y9BCLKt7y1O4AQspCkyp8hkRmZAH/oITj44GJPiBhVg28wzmjbpN5OJaIigblTPSk85Jg9Xz2EN3/g7mBye7sBYJ994KKLqA6kiSadG6NQVGaaggD3eAo3oPnzresl1eHci4flA254KRa5oASD1FWra1AL8LHPlZd18qvqr6ikZi5jtpvq5jAcdhiz1j4GuCfA032qJ8ZfW1qAh0KQIIJMlD9C+be/VYbMa65Rv/v6YOZMWLZMCX67Bdx6SB5zzM4eQkXQArxCzJwJ69dDezt4yZJCNZRSccDtBH05x0O8jWcsAW6GzJs3j6pUB7FdyJo4HKmUSlITbgyRIsQ3/3yIdZNwg1ifsihW1xbaRVWzkbTpNefTYaZiykoRaoyUXB4Me0gRdCyotnUOw178EWVZb+0OUBdM4vEI5QMeyBHPjMzq/uUvD5wXp/QxjUfadqhrIIvP9VCZoCy/QVJM30e51t370nTXsrVCQYCHqorvl/XhFD2pwe+xu1RmxqMe/LUqZ4OV8vPYYy3rX6rTubdxywJuCvC0JJ0RBQE+QV0TWoCPfa76RSOfi/0Y/vAH18uyBPiEECxaxIx1qwAXLeB9GRUWsKa65PJQWBmP0r3lC/BEQrnzmi69psZ++WVIJaR1DQDw4x+rdMdHHLHTx1AJtLKrEDNmqNA5+TxMFQXHq6JGU4KgL0dqhJa+PZmMevEmEDYsXjNmuB5JJp1S5zEyoWBNvfZaePNNl8qLq2MJ1BTaTdXFnwIgtqGt5Da7QrJb3SRDDaWtGYGwlwwBZNQZS59lyazyWT0ZrdEQ9f6Yim7h8RAJ5UhkRybAq0s8C/YoC3i7+m5nQkUikiSjaYKkmLa3EuC/eOc45sxxr7xCuyluF/WRFF2Z0kJgl8vMeAiSxgo+fM89cM45MHOm9cKa7HBWgPvIEKlV97dUCrI5j+WCUjNZHadbg041zlBkqwiMPBrISLEE+KRqmDePYLKH5qacaz7gqVim0DNUAtNTKzGCEMtpQypVfeYsALaveqewLCWLLeBTp8Kll1rZmscqWoBXiGnTCtMz5EZrusgFpQRBX56UgxEmxjsFC7ghwGfOpIoYcTct4BnlgxluKramXn65O+WlY+og7SGeAmeeqpI2uXCcybiy6oUipW8XwZ2wZgyF/Ryaz6bWvgj13qgVaSIcksRz5Q/iyefh7bfh4otVl6XJHmUB71D3kVYmVsYC3pclRJLI5DqaAruetXTY8qzYw8XuJg1VGbpzpYXALpeZ9RIM5AsP+jPPhLvuUvUwo6D0OBeUOxZTg0r9NUpomOMgTENOeLIyjY9E2Ggqz4b3M9Z0fotLKthGX5cqr3pyDcybB0B9MOlaT0k6llVtspTVg4IFPNlbfjtNpSAYyOP78wpCJNj6wCu2Zf0E+G6CFuAVwgxsAjCNQlY4vyc/ZJxKp2MsjwqtrfDpT7szQrAflnirKraAx+LuvQmnM4KAJ0t1ffF52n9/d8rLGBZw8yEMIIIBZemPOW/5SsbVPgcT4KaVOh11ZrCZKaQCVX6rZ39TtIF6eqxYy5GQJJEvX4B3dior0Ny5sN9+hfl7kgCP9qlroI8a4ls6XS8vFc+qh2JdHVWhCgz6tAR4sUWxvjpLUoYcTYhjlZnzERzEgGkJ8G7nCo5Fc0qAG761sbSy9psW8ODkRgR54u06w9RYZt09/7KmW9e6HzOyb4dqDzWTqmDhQgDqRI9rj2Tr2h9EgIcNN7GRCvBATl1L1fSxhYJV0z4OYndCC/AKUb/mOWt6Mi3WdMA/tGAKBvK7vQBfc94P2Hr7I/DAA66XZQpwf8R4Kk6bRoTETkXMKLvMrIeATw4Y72GPWepoeXGV+MdbUyweI8KdeOfJhGqjwVDplxhz0FuqL1Ny+UhJpcBPGk84aOU26UpVUZ/vLFjAI4K4LO0SUwqzy7eqCmYkC4Oe9iQXlHSqcK9pW1cJi7SwrFIeX+H6yzjTTEqUp76DNf0EeJ3qFXJabORykJNegoMY3YJNSnykepwT4H1dWSXA69S1H0upZ4MpPsTEZvUi3uHC24bGMTa9Vzg/mze6H+Wsr13dAKsnRpQ1cP/9qU/tcM8CHs+pNjmIC4ppzEn0ln8zSKUgmFH3rf4CPNWX1RZwzeDUeQsPvElst6b9w7ixBgPOxlgeDRY8egPT2FpZC7hpBQsEqGoKksn73HvwZ70EA5I5c2CKdzunz3iBSKRQF6fJJHL4ySCq+glwT4p4wnlLfzIhCZJEBAZJK2wK8KgzB2wPKWUKcID6bFvBAl4lyOEjkyrv4WWFUgzB9P/7gTV/T7KA29tj60ubXC/PihDi9yN8hUfN9u1DbLQr5RmuUv2j9TQYAxa7djh7QVqCfxCjW7BZdd84GoawN0c1fZYA70ur+5xl/Zs4UQnwbu2CMpbp7Cm8kG5vc9/FtK9DtYfqvQyDwxFHUNezme4ud8S/FR9/EEEcrlbHnIyW/1BOpyHYshG8Xqob/MUCPJoqDkO4mzCsABdCVAkhPMb0HCHEJ4QQu7ciHAXq5hcai12AD2sBD0FqJ1K2jkk2uf/QTyfUQ9g+QDEyTaWldisUYTrntXyVN88/gRWLryEYdE+ApxOGf12knwD3pYinnH+nVgI8Bb7SPTGhyMhvpkNhdV+GwzQ3F+bXp3YULOBGF2aiszz/WkuA/+ZGDualQlnsXl2Wu0I6AxNQg3RbX2txLGrNYCTTxuDAQIBpEwttY+tWd8pLGS5QwUixoKlvUC+l3dudtQpbAnyQe7gVhtDBPA6mC4qv1oh6lLG5oAQC0NxMmIT2AR/jdEYL99KuPvd7uKOdqtc03Gy4hFxwAfWZVnq2ueOqlM4U3KJKETLGaST6yndNSyVyBFvWw2WXUR2RZFFt30OOdN43ZHljlXKe1k8BISHEVOAR4HzgdjcrNR6pWzTDmm4MFR58/sDQFstg0IixLHfPUe1ForcCGfgyfeqpWCTAZ6q4RfEd7nS7p3Ne67r37Ls34r13CQRctIAnlQV8oABPE3Mh3nEyKQmRHFSAh6sNMRx1xs83nShYwO3ZvetzHSoKChAxDDnxzvJElSXAV/2dBazhPfZjKltUMog9hHRGWONPWrMNalSqi6TSHtVuAgHuvn4Tn+IOVbZL4z+TMcMCHi5+rDVMUIK8u8XZFw4r7KE/V3K56bLlpO95rE8qF5R6dQHEMv0s4A0Nro0F0ThHZzRABCV+uzLVrr8M9/WoFzdPo9EddMwx1NVBd8wdW2oqbYTGHCTCS6jKMNr0lb52Su7TtKrvvz9V4cJ2AdJqLMY4dUERUso4cBrwSynlGcACd6s1/qifXvCFMrsmoQwXlJBQVroR3MXjcfjBD5xNgbyztG0u1Du+3v3QZ+ZAQHuEkPAk5Ywd3+xO8pFU3l+4zyxZAu+/T8Cfd9ECni9tAfdniWecF+BmnPPBGmvIGPCaHIE1Y8jyEoW0wvYi6+m2HOvDpg9hd3mN3BLgqIn9WEuE+B5mARdM9aprsJWJsHHjMFvsGlaM7ECAKfvX8H2+C6hcCK6UN4gAr29W7bOr1VkfNMsCHigtdk0tkEo6J4b7YkIJ8AYj3GBWFWIJ8OpqJcDd1XOaXaQzFmBvr7r+OmmEri5Xy+vrzVNNXyGAPFBfJ4nnQq64ZqbN7KyDCPBwzcifGalUoZ1Pbijc9/1kSGe949MFBRBCiMOBcwFzFJ2OizdCaguau8g6O1wI0GBYkCKEjJXvP3HLLfCtb8ENN4y0ls7Tur7QxbVpi/tDDqwY2bZYwGaXtFNROuzkcpDHW3AlWrIEpCTQ3eqeBTxV2gJeFcyMODlNOSSTDG0BN26miZgzXe12CziAVyhhVUePdSFFalRbinfthAA3BgOHSO5RFvBM1kODP0pNdZ5NzHBfgGcNAe71QlMTE1DK2zUBbrh6mCHOTML16hwne5y9/ocT4IGASroWSzr3uIzFiwV4LKeOzep+93iMsSB6eNdYpiseYoKvh7pImi4a3BfgRs+JPTJAXYNql70uBGFJZYaxgNeq+SN5ZtgHdX9kUSHfRQY/qZx33FrAvwh8A7hXSvmWEGJv4El3qzX+sFvy7KP0/aGhb87BsCEeu8sX4GbkH7cSwYyE1o0FU8y2rvKjVuwspgC3/69mTPB0n/OK2BTZQbMb+iMfUWXGe9yzgCdlaQt4MEc86/x4gXTaiFc/mAW82mELeL+0wgdOUWMmJtNSsICbPoRl+rpaAlyk4fjjASVa9igLeM5DwC/50GGCZz1HVcYC7jHMa7W1RIgTIkHH2+70hFmDMPv5gJsDFk33NMfKG2YQphBQLWJEk869FMeSXqrpw9egelSjOXVPtfu/hn0ZEqmxnYBkT6czGaHRH6WhJqcEeKe7YUGTcUmERNEzo75ZtUs3YiOkbOM/ShGu9Rv1Kt8Fxe5XfvyHVKXr6SJJmEQ+OP58wIUQXuATUspPSCmvA5BSrpNSXlaR2o1TgrWFRmKm2h50XeNhkuouv0/RbIPr1o28bk7TuqUgkKIx4V4MMoN00hiEGSlYa4PV6j92Q4BbMat9hhWstha++10C+URR2DcnyaSlEsT93vYjI0xOUy7ZjFHeYBZw42bqmAXcfMEwjm/VV/7GPzia43jUZgFX10W8p7z2ZI+CYsbdtyzgu+n4ipGSznkJ+OGYYwSv5RfT+Z5LpmiDZNZHyBTgQiCACbTT/oE7cY9NC3h/FxTTXzoTr6wLCkCNN06fg+MyYimfsoA3KgHelVMvpDWeuNWuI4EM1lNVCwAAIABJREFU8fTuHbp2vNOZitAY7KOhXlbEAp5MSoLebFFmyKap6v7avsX5kJXprGEBH8xoU2M8M0YQGCGVLljAp0z30ksN30RFtMpK3/iLAy6lzAEfrlBdxj1ekWMZTxaFybISxgyCJcBHEEvWHM+xYcOIq+g4nTsKD71eaqFj5H7Yy5bBokXljVNJGw9huwuKKcbLjVMtJZx4Itx/fxnlmWEP7Q/hiRPVwJDVb5Yt7l57DR58sKxVSWdKJx2IhCWxvPO9DNks+MgOK8DNeOG7ipXVzMhXHJlSz9E8jQdZsICbor/MgZ+WADfdExobCxZwt7oqxhjpnBe/HxYvVr+PWvV9XnvNvfJSWW/BAm4wgXba+9x5SJq+1gMs4A2GAI+5FIZwkPj4ANWeBNG0M71SuRwkMn6qiFtW/c68IcADBet+JJAjntaBysYynZkaGkIJGhpFZQR4ShDyF98rJ85U99fWd50vO5XxDm0Br1f3gGS8PKNNPq9c6Cwrd1UVNfQRoaDgg57BjURjlXJcUF4RQtwvhDhfCHGa+XG9ZuOQzKVf5gk+UiTArYQxg2B274/EAm4KVTd8u0ZK0hYbemcF+D/+odxpyhELGdMCbhfgxnS6TAvY+vXw0ENwWhmtvOCCYhOfzc0ESJPe2lr2jXXpUjjppLJWJZMRyiLd7+YWiRhxrXPld+uVQzYLXnKDWzN2wp+vFPm8el9JJSn257OHQjEt4LXquoj3jlCAG6PveeMNQs21Awc4uxUjbwyQzvsI+PNMnqx+r4nPZunSke3juuvg6KPLWzeV8ymrm8lzzykB3u3OQ9KygPcX4BPUwLNM1KUwhEO8T9T4Elas7l3FjChVFcrh8QoC3iw72AuA6mDhPqtc0bQAH6vkciq0cHUwS+NEb2VcUDI+Qt7i599eM1TD3bHZ+bFR6axHGYkGyfIdqjMEeJkDlC1Dl9kzavjZ2gV4wOt+QiOnKUeAh4AO4CPAx43PyW5WarwiqqsQQKC2IMDNrvTBsJKcxMr3rzUFeKxv9BtkKtrPAj7CEVh2A3I5WjZdQoCbPvfpMv/DF19U37NnD7+u5YJSSoATUKrSYdKZ0t174bBUAtzhkFbDWsDr1P+7q+HWjjhC/efpdLELCnvtVVjJtIAbZSbKDGNl1i0cMayVU6YQnDpBuaCYC1etgmnTYMWKXTuQMUpG+gj4JJMm7fw+vv51ePrp8tZNZfsJ8EMOoYkO2nvdyWuQSkp8ZPCEivfvn6DajFs+4IHgEBZwX5Jo2pmBYTFjPHu1EYKtPpSiA5WYqiZYuM9GwnkSuXGSO2IcYonJoKBhgk9FQYm5E4/bJJXzDhDgE6epNtLa4vwzSvV+Fbu82DEFeKLMxHGWoctmAYdiAd7/xXt3YFgBLqX8dInPZypRuXGH0RiD/kKDb2wYJhGP6YKyEwJc4nE7vOiwJGM5QiQI+PM7ZQG317+cwSJp443aX1V4AJkhCcv9D19+WX3bdd+g5Zk3BrsVrLmZICklwLPDl2kPF1mOXs9kBX6yA6wLwZCHPF5yUWczDuVyhgAfzgK+E23ta19TFlUp4YUX1LhAa7S74YLCnDmFDYzUxpF6VWa8zJfMARZwIBiUygJuVnz1avX9wgsjP5AxjpSQkX4CfjmgXe/Mi1M5nlWpvI+gz/aC5PMpi/AIByWWWz8rTnC/duoLqMec0wLcHM4SCA3+GK0JJOnLOuNyY2q0qoj68xurCn9MtU2Ah8MQz+9e0SD2JIoEeJOHLhpGFOVsZ0jm/IS8xc+i0IRqaumhtXX4izmfh+9/H555przy0jkPAe/gzz6fX+AjQ7LMS9LqbTJ7Ro1e0VoK3fzBht0vq3E5mTDnCCEeF0K8afxeLIT4tvtVG4eYAtzWMBsah0nEY/iIj0SA25PfdGwZXQVu+vPW1kglwNvaht/IRl9fYbo8C3geP2lEyBbq0Qj7mE6U9x+aqbLLEfyWFcxucJowoWABL2PQ6QcfFKbtxzsY6ayHgGfgfgNGxJxMb4Ut4IZVOTFCISclXH+9sqg+aYurlDTjvZqxO+1vN4a4CjcogVGu24sp4swBuQChkCi2gJsvS7uZH2E5WGLRLwe4Ze5MFIRyRHEm78Xfr1u4OpilbwT+yQ8+qATlK6+UV6dSAlwI8JFx3Afc/E/9Qwjwan+aaNaZcRnmvaGqWl1vDRF1PEFPusjgEIkIkjLktCeaxiEsAR7y0NAAaYIket0NTpDM+gn6+j3/amqYSCs72oa3HH/wAXzve3DUUeWVV+ra70+IJIlkeeEyiwR4MAgTJsDq1dT9f9+x1gk0VpdXuTFEOUf/a1QYwgyAlPJ14Gw3KzVuKSHAzcEIg2FZwEcQrsduiWx/y/3kN0ORTApCJKmt99Ar6pWD9QgYsQBPyQH+0WbUmXSZ/6FppC/nXaEwCNM20xiEWa4F3BT8AD09w5eZyQn8noHHYoZedDreeTYrhhTgpj5OJkcW+sweJvP66wvTO3pC6kZri1lrWr5NIg2q0HIz/iWT4BcZvFUFy2AwRJEP+J0v7c+DnDio3+LuTMl2alBOm+vPcC+KUkJOevH7is9PdThHXyZYduCZa69V32vXDr+uZQEvcZB+T45M3FkBnk4aA76HCCVbE0zT55AAtyzgpgCvUaKtRvRZXfJQuFTKeZnXVB6r1zSsBDhAV7e7YSOT+YEWcFOAt3YNb3Cwjycr6+U75xlWgIdFimSZ4TIHWMABDjyQuuMPs9YJTqgpseXYphwBHpFSvthvnjMBf/c0jNFPgcm2QWW2G2cpdibJSZEAf3tkFmenSaUhKNLU1gp6qybBe++NaPsiAb55+CeK5T8cHGgBNwdpDYcpwDs6hncJKemC4vEQOOLgsi3g9ptbOWJIWcAHXoKmBTzd6+xgs2xu6EGYQkCIBIkRCnC75f+NNwrTXYkwATKFgPagFJhNsYcalKgp1+0lmYSQSBXFwQ2Fiy3g5608lZN4sLIW8E2b3AnE2w+znZqn8BenPs4nuA8ov3j7u+Rw4m6wzoTqSJ483rLdSp5/vrz1QB1jKQs4mALc2cdWJjEw50B/akJponlnusYtAV6rymuoU28x1TJa1K5NAR7tdNeqqtk57BbwxkY13dXjbuKkVN5PyN/PaGPE5i/nWoxGC9NlGYnyXvzeod+yQ54UyfRO+oAb1DcW/remae7nGXGacs56uxBiH0ACCCFOB1pcrdV45bOfhTvuwPPZiwrzhkmFWV2vnmCxvvJDvBUJ8HWjGwolmRKERJraWugNToT33x/R9kUC/M0tw66TTg0M0Wcl4kmWaQFvVQ/WXG54q7sZ+qz/QKyAn7It4HYB3vvcG4OvaJDJefB7Br4ZWC4oDvu6DmcBB5XgJpke2UOkxXYX2bateFkwIIsH8EycCAsWWD9FOESYeJG71VAkEkYWTNsLbzDkGRgFBSonwNvaYOZMOO8814sq+J2q70uPf5+vorodyrWA24dvlCvAB1jAq8vbvv9+ylk/kxnY+2Xi9+bJJF0S4OHB20t1KEdChkfsDtLSUix6wDYIs84Q4E3q+qjJ9xRbwA3PrWib8/GdNbuOmR8iYLOAf/2l090Yr2+RzAcI9XdBiUQIki4rCutIBLiU5bmghD1pEunyehstV89+6ebtnaQTZ41DH3DgEuBXwFwhxFbgcuDi4TYSQkwXQjwphFgjhHhLCPFFY36jEOJRIcT7xneDMV8IIX4uhFgrhHhdCHGgbV8XGOu/L4S4wDb/ICHEG8Y2PxdikCG3YwWvFz71qRF1cVc3KGtO3wgGSScSsJenFYCOHaPbWZFKewh5lADv8TYoAT6CxCf2B293+8BjWbNGWXx++1v1O1PCAm5OpssMedTRkqYOZRbs+mDo8FBWN3R/AR4w3BtGKMB7Hh5+AGA65yXgLeGCYgiBclxQenrgW98qLwR2Lj/0IEyAsCdFYoQCfNs28HgkE/wDTbBVwWH+NyEIj8DqnkwaAtxuAY94SBMkHx8lAX7bber77bddL8ryAQ8Y/1d1NXWoJ2m5FvDW1sJ09P/+UlZ5vv4CvFa1kXIEtV2QlCfAB8/YqgS4s07RpqAf0gIeVn/ESN1Bjj5aDYGwn5u+XvWHVDWqG1rDBCPxzv/P3pvHTZLVZb7fyIwtt3etvXpf2RobGhCaTdlnWHQUR0bAYWD0InpHLorCMNxmu4iO6+hFdAAHZmD0ugsozSo7CI3ddNP0ShfdtbxV9e65R0TGuX+cOLFkRkacfGuxu6jf51OfrDczMiMy8izPec7ze370Mu262ZK/cXvt+8Pf/qEWw8ia166ZMQD/2PHH8T//55k75yC0M+YPABgGthky1Bi3M3PU/cUIfDSSBhDji+/xcKseA382AD5ebj4tINhz2TmoAY8qXz4L2A08TAjxFCHEIY3PDoBfEkI8Angi8POGYTwCeAPwaSHElcCno78B/hVwZfTvZ4E/BAnYgRuAHwSeANygQHt0zM+k3vc8jet6SEVjIQLgHf21Ra8HBw1JL2Zc/97/fvj2t0/n5ZXGwK/gVH0uvRTu3NjDcCiyth8lEbM+tNk4OQnKlKT8lZEvj+flMOARITbUAOCjEWwOXC5Glulu31HsC+1F29rjxThsW+hLULaSgXGrX24f5o/y2YXY71yj4uev/Aq88516xYaCkQYDXvUYaLIZKo4dg30LQxZ8KZM6WEso1rla+X2rGwO6mkk8gwG4IgvAVX7FxP06WwBcGdsrY+4zGOMMOK0WC9EiU5cBTx/X+eMPFx6bMODZ55tLsn3rANIM+Lz9e6XHB360UMxlwAX+SK+tvOlNcOON5ccpQF/EgNccOebM4hA0GiWa97QEp3tYbsc1rjoIwOIe+T1DKlkGPGLIO2un39/5fJx6qPFGJWGqeN/7zsz5ggBGmJMSFMC2QrygHFu0t5O5c+vrxTLSeLFvliRhVn36vt5Yq/KxmnQz43Oact19+ZzWZz2YQscF5XWGYbwO+D+An4n+fpVhGIUlHIQQx4QQ34z+3wa+AxwEfgT4QHTYB4Afjf7/I8AHhYyvAguGYewHngt8UgixLoTYAD4JPC96bU4I8VUhhAA+mPqsh06UsMHxhNXTZxd7PZgTWyywwepGChS96lXwqEft6DJ3GgO/ilsNePazoefbfIknzwTA1UR9CYdY7U5qvMYntrwqkWo+1ikNv7EhV++XcEie/3vFtokqOXbcisy2DX0Jyr3JKmlro3wf0gvzGXAFwHXcHtQ6rIDUjkMHgNcqnvZgquLoUdhfPU4Lub/5cDsRhc83yu/bYnWLjZ6exVu3K6iLTpYBjywJB+0xsH+2kjCVpv0UquB99KNZLf20SAB41E53wICnWbDOrksKj40ZcCs7uTd3Sfaqs1G+wEqTB91PfqX0eD8oYsBH+KK8fX7tw/fyznfCf/gPpYfi9zUAeDRkzWL1mK4FlU4E7x6SfzQeJQsU/NAzq1zGvbyIv8tqwOflb3xeA/7gjBiA16uxBhzgK185M8XzYgtWO4e0sWVOUVm0jyYalK2bi40UYnegEga8ZvoMNOeMv/s7aFpDnuB+a6q3uL1vKff5B3PooLrHAa9GgueDSCD+POC/G4bxKzonMQzjEuAxwNeAvUIIpf5cAZQr7UHggdTbDqfOOe35wznPPyTiH1/3d9zD5VmP45yIGXBNAP4nfyK9OoehyS5WWWtHk9GZFJgVxDCo4pgBT3qS/PtbPHqm0t8KgF/KfZzwFqa+rsJTVSJTk7D6r+eVA3BVkOwiV+63tx8oRieemoSd7O/jOOgz4Gs+taigwKZugksOu2DV9Rnw+++XjzrsZwzAC9C6a/ra24kqjhyB/eFRmsgf8ULvu/Frc83y9rrL3GK1p6f7a28JCfRzGPBhZ+w3OhsMeBDAnXfK/+8QgI9G8MIXwhOeUH6saqe22qlxHJp0MAjZPqGHDjMM+HzxUDs1CXOPvP+do+VIIw3AOyfKxf7TKsRCJEERZinh8Te/JKsMPezi8vPF8rN6wc5QtFs+6OvL7n73d5P/p2U/MQN+7ZUAPOYpDe7lCv4L/0+WAV+U19PenF1yc9668MyH15XjjVM3WViADzz+9/mTA28iCODmm0//+RTfdUoAPLWbsrVSvJ0TA3CrRIJiBvQ1K7Z++cvwQwfvTqtPJmPXLq3PejCFDqq7AHisEOKXhBC/BFwH7AGeBryi7M2GYTSBvwReK4TIjLoRc60/Mu0wDMP4WcMwvmEYxjdOzuhDfabi6b/5Qi6/7e/gh36o8DjbMbAZ0unrgZs/+zP5+BWul1XnFGvseXyJ63kLN/CpJ715MuvtDMUgMHHNUWzp3KWxIwb8Mr7LSbGL0Msyo+OJSp5vYBs+VJKmbRhgGx5DDcsjtTbYPSf/k17550UwzAfgtg0+NsLXYMDbsI8VXPqsbpczul5o5pbdVQWH1ABfFKob6GC/IKxIF5QiBrzqaw+mIHHQfffBpcFdMQN+oJ94zc3Plw8Ly3ab1b6e7q+9FcqiDWkAnvLYz2xUnA0GfHVVNrZ6fcdlqBVTqvN21SZiBvyqq2RVXjy843rn395M2lxnWPxbJ5Nw9vnmPvl7dY4V9ysYA+Aa5dyLGfAQH6uUiHjAkuyyf7J8WyCWoNQLFqZ1eb91fZ4HA/id30n+TgPwzsk+NkOsA7vlE46TIPw0A74s71V7Uz//5+674SUvkV18wnN9OEyKVJ2PUw6vmzDgAD/98G/wA0Ii7zNRkT6ugWBPjqmOW2E40rAh3Ezem5ZM5kXCgBd/Zs0KGIz05oxeDxbMDoUIvMRR7sEYOgB8D5BGTD6Sxe6PPT8RhmFYSPD9ISHEX0VPH4/kI0SPaog5AlyYevsF0XNFz1+Q8/xECCH+WAjxOCHE43bv3l10yWcvDCPj6lAUTaNLZ6AHCh4bpa5ew7fYxWoMULztAc/iU7yVt/CfvvrvEqR+hmM4ktXwbFtuA88KwJX7y6WNk4RUWb8rW8o+44ByfCMC4DkWfYaP55cDcAXEFh3JgLWPFzNhvgLgY4lYKilTJ/Fru1Nhni12Vzc4mSOzmThnOOmvDIndot8rn+zDkRxENz5f7royCjUYcCtgoDGQq1hbk4unyzq3xmW096fMleYXy4emXU6bNU8PgG9vRwx4yk/cbcnv0++Mzn7FWLXyufxy2R92cAFKeqIjI1IAPC4as2cP3HEHNh7+CT0NyvbdSU2Bdrf494kZcHtMgrJf3n8dRlsBcIcBHb8cgAejIgZcSABeQvEeFpLZX9dIXveHsg9V3YJ+UZPff7Ctt+uXHhr3GSucvCnRvq9u2+yqrGe34JXGJc2AL8nraW/q73r+7M8mU8I73pF97fBLfhnvcU+auYja+cgPLyqqZ6uFW73Ooif7li4AX12Fj31M79hYguLkzBlNG29Uji3a24J90fi8tV3c96ctvsfDtUYMQj0APhyCYwzH/H5lrLPIGktTpSkP5tAB4B8CvmYYxg2GYdwAfAn4sGEYDeD2aW+KHEneB3xHCPHbqZf+DlBOJv8eIjNa+fxPR24oTwS2IqnKjcBzDMNYjJIvnwPcGL22bRjGE6Nz/XTqs86pkABcr6Gqxv9pnikBuC+p5zu+PWJAjcdeeILv8AiOfHLqT1cYW1vw0pfKBD6dGIwsXFtOek03oENzJgAe+IIKI/btkoPW8TuzYCHNgHe+/C38wMj1yHYqvtZWmwIOC44ERGXbuDELNgWAq63/otjuVJljm93uthaj64Um9nhGOykGvMTveDgEz5f3YuOz+Xue3/hGslsvJSijzK7CeNTMgP6oHCSpUODx8tGd8ZZ5GoDPXVWemLjsdlnzWlrqqnabCQAeW3y2w6xG92zswyvh9WWXyccdyFBUot6ShvRRLcoyRWMuu0wy4GvlbDTA9sYIg5AKI9q94kk7TsIc14BfIGVkOgBc6WEPcJROWC8dN/xg+kLRMiMGvCQn40hbjpcbXav8fMPJqrvjUWtGeQaaAFyN33/w7L9lvzjKic/fEb92slNjtzm2WFLfNQXA60uu/I30flYgqwq8PTU1DIdw4d/8Pq/ifWdt1/RcD1XV2o524KjXWRrIe6s7DLz97fCCF8CnPlV+bKEGfM7FE+U7Q+02LLBJkzZb3WKiRR+Ah/RHejk8wyE4w3bWdzCKRTZZYud5NP+SoeOC8nak7nsz+vdqIcTbhBBdIcRLC976ZODlwDMMw7g5+vevgXcBzzYM427gWdHfAH8PfBe4B1l98zXR+deBtwNfj/69LXqO6Jj3Ru+5F/gH7W/+EIpmpUdnqMcuDoewOD9iN6vsagxYDZcQoeCWWySa+sVnS8uzfxovraQZX/86fPjD0ilA63pCK+74DXd2BnzkjTAJ2LNfTmQn7s3OKmkGvHvz3bJIzXjFL8CujBgG5Sv9GIC7ctTqdItX1UHEgpnOGACPtLZKJ1oU270qLdrsagw46U0OMOkIQ5nRnre9F9sQlgDwtJZ3YzDJuH/qU/D4x8N73iP/DsIKZk7lzXS49kh7OxESAH4Z36W1R15DhgG/7orSz9hV7xFS1UoibHcrkwA8svhstzn7AHxjgxEVTux7dPz3rHHokHxsamwCeJFndSZZ2LLkzpBGGwXZbubYZr7SZmtQvNialoTpHpCrhf5Gue483o2qbMtxowRR+sFk/oeKWIJS8NsKAYc7coGwLhYRt006Rn3kIzJZDsD3wqmMuwp3XgKMwZbemBcny37yo7JKoUh2bE/0GuxxxpI2lO41JUEx6jWadGi39dWdx45J68P/+B+zSaBHDsvP+F+8PFuy93zsONT4bDeidlOv0+odp1oV2gz4KJC/y/98+6HSY2MNeI56w553Za5SyYk7XWjSYd7sstXXlJ/ZxXNnzRkxEHqkzXAI7tphuDbH++OZzyROMnuIha61xjeBPwf+GjhhGMZFZW8QQnxRCGEIIR4thLg2+vf3Qog1IcQzhRBXCiGepcB05H7y80KIy4UQ1wghvpH6rPcLIa6I/v1J6vlvCCEeFb3nFyJN+TkXzWqfzlCvoQ4G4PgSlV66vE2fOt+7rc2tt1VwGPDUR8mJPk7OnDF07MN+8zcTh7VBaMfas0YtnJ0BH46oMmLvJRKkHT+U3apPz8ndDS+qEpnjEFIN8DRsyNT87DoCt+qVMn1qG3qSAZfn0gE3Q8/AZcDuBY+TYrnQMiG2eMpJcIlZ9xIAngasG8NJAK4SND//efkoAXhJRrs9oh/qsRmQyAv2sULrQgl6MgD8Bx9W+hm7moPMZ02LMIROT+4ypAG4covodMcUIBrONaccm5u8mvew94/exhB7RwBcKQK2V7qli4Z427s21k4rgZY7EEhGep4tOQkPirKhUgz42CRsLcrVgipiU/gZnuw783ZfjhslFhF+UMEiyN2psUxRyoBvbMBgZLOXFYa49I9MgpIXvQiuv17+3xtM1hwYD3dOjtv9zRkBOB57OMHJYBGEoN+HE4M59tTGFiFXXhm9ITU/1Os06Gpb1w6HcjH3wz8sP67dTsbVB+5NUePnAfhpidi6thnNwbUahghZrA20h4H+t2XC+vrXygvbqQTgXAnKQoOQKqPDxbUVVYG7eXtQ2ve1GXBbaM8Zg4HA6a4nGtt0fOpTMkvzIRg6NoT/J3Acaf/3UeBj0eP5OEvRrOppICHyO+7JiePJl8lO9aVPDzh8tMIFHGbPbtkJN7yGlkPHeHRTBYHy3j4cwutfD099avS3sOOO36yHszPgfohJwMJVewDYeiA7CWcY8HYYFanJkaBUA7wZGHDTqdKyh7RLpD8xAB+zIlNgeNgvB+CKudu9t8oquwq3eosyzNUcrK5pWqQH+Y1wfkJ/rCZfBdSDsEK1BIC7dshgBgCuTlkzhjziB1sc5DAHSL733L5yd5PFprwZZZOWaiPjDHhcsrtT+RdhwN+LrIi7yq4dZV+t3iKpys2uhbjlW4XHxi4oY44ddiXQcgcC2O4YkgF3hmz59UJHkZgBt7NTjNWSk7dObkTgyWMWa322mStnwEcGVo49J+hpwFWbvDAy3Vr/Xsn5vOmVN1XUFnbGgFv47OYkJ9jD2940oNWC+wYH2NMYq8h2RbRTpFbNAPU6Nfqy5oJG3H+//CkvuwwOHJDPKRY8DcDFsfMA/HRE3BcjyaAyYlgcrWkPAxsnZAfbFOXe12oOGrfKBXAW5Tg7fODExGvpCHyBScB83ZN9v0Cyos2Au4IBxWAe5KmCwJBFeM6yjfKZDh0G/BeBq4UQj4zY7GuEEI8+0xd2PpJoWgM6vu5KMar4B1xztUeDDv/+9bv53/+wwAGOUp+3sKoj1lkqndDyIg3A87b+Vda+yocYCAcnGmcadSGZrBlsCINIgtLaJb9/+1iWgs8w4B0JwK1qDjitjLSyvZPksQotx6Pt2YVAQ7F0pjsGbKLBToddVDZ/uy6q02aO4T0PTD02Zshy1gWx3WJJsqn63Q4aRyX4W8t6navJ9/hnpE/1KDQwKyVlhZ2QvpgdgLuX7OMnfyLkMBdi4/Nrb5YNrFaeixrvupeVo1dtZEKCEkk32tuCwWqqXZ0FAC42ks6zztKOGPDVw7Kf+9j0DpdUbO1PYcCrI+3uqHIV5uuenPgLdmpiBnzMHUhJUsoWiSDlZyB3OjZZKGXAg1EF08j/XB0GXL20J6rMunY4uzBNt7NBXyQAvIgBX5AAY8JrfkpkGPCf+CF6NLjh15JS9rtbY/f8ta+F666TFZZV1Gq4DOj39RjwYxH5ub96goPH5MZzDMDvS+7X+n2aFZvOR2F4gzEAfv318LKXsTQ6oT0MbHTleze9eukAqHab8gCxHQFw73jxiVWV2flmyFbJYjhuwyWcoesIAiwCv3iOzFTBXF4u/tCHWOgA8AeA8z3vXzBqpr7F23AYNVSgalc5wFFGI9nx9nMMw3VYagzZYHFHrv9pAL7xwKQeRQHwxcomo0B2MKUS/wHIAAAgAElEQVQ9azbEzAx44AmqjGg0o/LKJ7KTYqctqCMvqtuJyrSbORIUc4QXzsCA2xVatRFt0cx+6bHwI/ZwKgDXkKAoBrx5kSyL1rt3+nZg0fZeXHCoDIBvyGu+un4/J9gzwb6qyXfFWwIhCEQVM8f2MB01R4/NUDEYyKz2ylVXZETMb7jBRQi9hPZ6Qx5UZiCimvk0Brzz5VvoP/P5yRvOAgA/fiQBNmss7wiArw2SXYKNQ8VDdFw0Zswyz66GeJ4eUOv0KzTpsNAK2WK+0EReAexxBtwwwMTXAuDBMMQgZGluxAaLiO0SRjqsTGfAzXIGXPX9gw35W6wczoL1tAnId3//Y1oMuLsoV5KDjp6sKakiKNi9PxlT9u2Tjxctj425F1wgM6YvTBmFOQ4uAwYatquQAPADL/thDvyKTOs6dr9EUYfvT36nMkvW86EXMSPdTLWbq69m0TvO+qre2LPek2PtFvNwV0llSgXA3cn5T5coCoKIAV+IzlmQeBPPUU4xvIyLVJX0jcERSRC5DGBhshbIQzl0APh3gX80DOONqipmVBnzfJylcEw99hakVkox4LzylSyRgKs5tsFxWGwFknXTrUGdirTkY+NLk04qxyOnsoXNQwxvkgyqKtPeaMzuA64kKBXXpmn2aa97tNvwW78lL39rI4y1w92ukA4hOUVqnOoIbwYGvOqY1GuCHvXiwWYYYuJjONlJ2KnNwoBXsIwRTlTJa3hoOgAvYhdiCUoJ2ba5Jgf5qxZOssHSBPuhAHiXBuHmNqEo14C7LgxxCX29CaTfh5oxkBYeaf/WGTy4aw15j3UZ8HENeMyA08ouHs4CAD+W+onXdwjAV/sNlpCT08bh6YtESBWNGWfAzVDLnhNSLNhiRU7CBeL7YCA70jgAB7CMAN/TAODR7tfigpAs/2oJ0zeqYE3ZqdEB4OqlC135vY6NdcO0J/fhW9bi+1HEgNeW5SKp39YD4HH/NkP2XJh08vvug8+7z+EnH33HlHemwjBwKx4DzYVVzIBzjF3I777+JZmsv76e9PvO9s6Luf3O78BnP7vjt59TEffFVqrdPOxhNOjS29TbjtqIdNibLGQbZt75lOTFyWHANXOVVJGruUVT9v2C8UpXghJbdJbIs4a/8EtARCx+HwLw+5H6bxtopf6dj7MU0i9TUwPeiwD4O94BBw6wTCIv2GIeXJel+VAC8J0w4JsJutu49fDE6wqAL7LBcBAlf9RlR2s2Db7DI/jKbfrNJ/BDWQTGtplzfbZ7Ji98oeCXf1mWp73r3grXIq30ul0DP6xi53lkmyFDDc/RtAa83oA+tYmFyl13wS/+ogSRShs3TkkroKMDwP1RBbMqcFryNx7cPzmgep4ECEWDWyxBKbFbVAD8yn0Sma4eyrJqq5EHco86owekLtvMkfWko1aTr+tqXfv9iNFw3R0XUFAWb/1e8bWpDYxGNesja5rgGoNJAH6mkzCDgJUvJ1U/12oXzKwBFwLWBg2usKT2d/NY8TZAPAk3xtqpFeIFekAtCJAs2G5bG4DnsWCWEeBr9IuRJxffi8uRZebxSXDyhS8khWv8sDqdAbf0JSgX1iTVfexkdsGexjl94eD7Ggz4kgTgg67eoi7WgJuCPZck/cK1Q546+CTmvF5fqVU9+kO9xeyxY+CYAYtssIAkG9aPSBJnO139dAZXlXSsr8PrXgfPeMaO3v6QiF4PBl/+ZmmlVZDJuyAtAOO45hrpyd/VBeCSPm4zR3CieOyYZpULYEdEkZqrp0Uwihbfu22Zj6EDwEsYcAXA+1vF33m4Kcc2hyFxRb9zJHRsCN8qhHgr8F/V/6O/z8dZCsfSA48Aw0EoG2qtBktLzKfUQ0/nc5IBX0RKUHbAgHdXEtC+sTIJtmIJChsM1iTycRtRx6/K5nb9W56jfb7AiwCubdOq+bRFk3vvkYPFF74AnmfwZL4EQKdfne6RbYZ4YTkDrlgw06lSq1ckAB9jwK++Gv7bf5Nlg+Nt6HEAPosEJaxgmWEs1RluZXWen/mMxI2///sphiyPzVASlBJANezJL3nxhfLajh/KMovbG/L1AIvefXJFVS0B4K6rx2ao6PehRl+20zKx4JSotyIAXlJlML5nOSXDW9UebVryd1Zxphnwf/onjp1MJsN198DMDPjWFoxElSsdCcBVUta0iFm3CQAutApxQCKVmt9XY5s5xMnpAFxN+uP2nBAB8BLdJ8j8iiojFvfJRdNGziLjaU+T4A4it54pX8Uy0WbAW7bHfLXNsY0ss50G4L2tQBb9witsv+ZCkwqjmQG4bQmWL5FExa5GDz7wgeji9MgL1wwY+HomZ8eOwb76NkatRrXbZoEN1lYFCMHWA1vYkaSxrPjStPjEJ+SjSvA8F2P3UsCVT94Nf/EXpcd6w5AqAdVGCoBfeSWWWe5gBRLgdoIaS4YE3ttHSqRZCoDnAGJHU4LiBwZmVTC/y6JPHX81ix1Go8QkR8kySyUokYKuzCN/2JJWmy6DwloUD8XQcUF5kmEYtwN3RH//gGEY7z7jV3Y+4nBtMTsDXquBaWJE5cN/9YW38xreDY7D0i5j5wz4+hCTyH3i5ORgoSYpCz8G4E4EfP75dn2NsAolQcG2adVD2rRwIonJpz4pO/qTkMa8vUEFL7RyGXDHGuGJGZIwXZNaszIhQUnP391usi0/PgnHDLgGoaGAgyJnB70saP/TP5WPt95azIAnEpQy73JZUGXfZXIEPPHdLAO+1U6Ghe1DcpAvtSGs67EZKvp9qImeXrbltHO25O/ZKwHg8T1rTPahljmgQ5N38p/j58Jg51vtWrG1xTGSQkNr9v4dAXCAi1056+X1xXRMB+BouQNBYvM3f6DBCJPu4clrvuEG6QpWyIBXRvgazUT1/cW98nfbOJIF4GkyW4jpFWJhNga8ahrsb2xzdCPrxJNhwNf7WhIUoy4TIpUVXFmkAfjF18zxcj7IJxf+LbzyldELevOAa40Y+Hq/69oaLJtbsHevLApT2WJ904BPfYqtY73YnajT2xn4uU0qEXn4w3f09odE9IYmh7mwVA4CiaVfpt1UKljLc1q5EWpH7wJb7tSU7X4VM+B681QwMrCqIfO7ZfvbOpqVvN1wA+zfL79+7AxWxoDX9YpUDVrSC98pLrz+kAydHvW7wHNBahmEELcATzuTF3U+suG4BkNh6+xuJRpwBWwizdQjPvIuDJASlN3mjjXg3a7BxcjyyKvrk81HfaSHzXA9YsAjqcDznytnuEuW9M8b+CKWoLSagjYtel15I+47JEHfw5F6xf6wgifM/ARFUzDUWMSojGzTqVJvRgx4KgkzbYXb6UiJTKEERQNo+GEVyxIJAz62Hag0mqNRiZ4vZsBLyoRHW/vKkvLE/cnAFobQ7ptx2eHt++XiY7ygynjMWnJ7MBCnDMDr81Ep+RJ9bbyoqk02jKY9ZJ0lbiUxdirLyj/l6HY5xn4WWiP274e16u6ZAXjs2BEVZil7e+y80MqCRdtBKzkZIreeqmBuv5RBbB/NLtzuuw/e9jZ48YvBVxpwd3LRa1VDLQdU1U4XFyLr1LEdtzvvTP4/XNmI+1FezMKAm5bBvsUhx3utTEKFktcB9DaGsS62EBRXKtQYlMqkVKR9/k2nygeX/i+uPRLVHH/Ri2TREY2o2SGDQC9vqN+HRtiRABxYdtqsty3Y2mKbOQ4ik0I6ff38jHQoddWgexb89f+FYzxxNy+8YeQfP5ZpbrccrcWwaiO7HUmgbR0vLmpVCMA1d2qlTBLm98nxemslC/rf9z75+PGPp5I+yxjwKIenbAdz2JTOJ9+vABwhxLgv2lkwyj0fKtwaCCpak1ZsQxgBG7FHDqoG0QTgOCzutdhmnmB9Bwx4z2CeLZaMdU5sTk48SifoYzFYl9IGJ2Ld3vaWkJ/iQ3SG+kWARkGisZ6bkwlz3U4yWFSNEXO7HCzDpzs0CbDyi9RYAg+rVKMXDKOtc9ek1qxOAPDDKdl7988+OtWKTAFwHS/eCQZ8jC1ToL9703cKBzddDbg/kMlt83PyPNsnkgG82wUhjDixdWszWpCU/GS6g6mKfndsofje98I//qPWe1U4LRuDkH67eDiKGfDaJCDZVe/xGaQ49WIOAWcHgJ9gD3t3j1hYgC1jYebFsALgy45sm5vbZb955ErSzO5C2bYhS1FrrBT9iAVrLci23TmeZcH+9m/l46MeBUHBpG9VRvgaWEzlfyxKcyDWT2Z/57QEvfuGt0cAPP+zLIuZGPDGgkWPGnzve/HrJ07AnopkHftbXlJ50ywGum5lWOTYmIlYA652uFSlyx/9UXmDH/lIrc9xnVDbOavXg1rQjgH4ktvn48cfy5fuO8AW8wkAH+gB+vFYv1vmIXVuvmemBPyHSqSnlG99p/yeDz0D25gcJy2ngi/KAbhqIwqAb54s2QGcUiwOEg14Wff3RxUsS9DaLceP9mryOwZBMkV+5jPFrivpUNLUMovOoSHP+f0KwB8wDON6QBiGYRmG8csQUY7n46yE0mnpjF2xDWFkkrzvcslWxVpwx2FpjxwkNlc0Z4VUdPsVGnTZY29xojtZLKW9KSdJDzvWMrsteb6Ka3Mld7PWq2nXAMow4AsVtpmjO0wmgsXKFsZ1j6Vuemx7EsHmEVKOHTLEKU2wCwbywqquRa1l0aOO6HS57jqZ1/pAaina+fvPJwB8rM6v0huXWbyNRnJxZVlMZ8CPygG0c9shvKMSdeQx4IYBphHgj0okKBGz2JiTA2BvLWEzFA6MAXgkRyllwOvyOF2/434vTDTgAK96FTz96VrvVaG293u6ADxn0fL6x/0jwygBcy+S4vQ1C9PMEr2e/IrXXguf+MYSmyywuChzirZFS6/EbCpUM3ZswbzdY6NTPPF7Q4GFh1HP7jjYriFLURdYbcbnDCtYpojdYzonsrkDipHeb68lNoR5GvBqWCqTAhip4h8L8tjtjWzfTeettrsVQqqYZv7nxgBckwGvLboyMfeee+LXT5wQXCwOAdAbGBKA51TdHQ+34jPQxA4TLkcq6eyaa/Q+QJ3TQVu22O9D3d+MAfiRkfQ8/Ml3XZthwNua1ZjHY/0+uYvWGZjwz/+8o894MEd6cXVypbw9DIYGrjHZIGy3gq8hk1Tj2Z661H5vruez11/+stzRnFYsTp5TEUXF5wzCCqaZVA9uryWI/eabE6epjY1ixj0dSkLY7xTfs+PbcsyK3d3OodAB4K8Gfh44CBwBro3+Ph9nKdyIXdTxkh0MjQyz+I7XHOXd/BwvUMVLXZfFJTlJrR+bfUXZUQC80eVEfzIjubOdAHCVkKcAOKbJXk4ghJHx1C0K5T+KbdNaNFljmVGKJVgcrcLevdSsQFboYopFnyWvqWypH6S2zmstkz41bvzmbr75TXjzm7MF5zr2UuKCMg7Atf1V5aNlJQz4cCDo9eDuu+UAevyE/L26NPCPS9QxbXCzDb90G1PJZpSLSHcraVcqLUAB8O2uPKZqlWwnKkcSTbu1fk9kAfhOol6nTq90AE8724zH9VclNKoC4GfCBOUTn4D3vx9uuQVe+ifPZJMF5hcqzM/D1qg5c1Gs+DtZBov1IRtevbBtx9ve4+3UiQB4mZcj0Ta0mdg3djazN0rZV/Y/+xWC+6VuOJcBNwW+hvOKYsDjiXp7OgDfrMpt6lIGXMMHvGpVcBdcufu1ssLqqgQWJ1ZC9oljOAzo+5bcEdAA4E7VZ+jp6acnALj6XS69VOv9Kmo1/byhXk9QHyYA3I7GISEkObCPFQwEncAprIA4Lda7ss11aO4o7+jBHunNq7GaZrkx9KVN5HhYblX2xZJ7HEtQ6tHuV45L7sc+Bk9+MrznPdMtSAGchiKKiq9Z5lek+v5GQrR87nPy8bLmcdp3HE5kkjnnS0fMgBfgmjCEF//Ny+S1/o8/Lr7Ih2DouKCsCiFeKoTYK4TYI4R4mRBCo5mdj9MVKolxuFE+SQ68SgaA1/e2+DneQyUlQVmSdtO5tl5l0RtUJQBf9DgRLk8Ah7QEZbgtV6zOXDSiGwb7LNl00nrKohilAPilV5hsMw+Ahbz2ebZgbo6aGbDlS7Y/jx12bKEFwEcpCUp9zmSEyTcPyRt2Te1u/uLDHpc3JDjt+Da+Rz4DHl1DmcdyXLLbMhIJilfhx34MrroKTn7lHoIIrHRo4m3KNpBXVhjk9n6Zq0XghVj4VFybmuXTDd2YAokZ8Oh3UgDcLAHgblO2UV23h0E/AuDu7Im5cSwuUqNfCvqLJCiqwirAPlYyx5/OSDNMF7a22GKeheWKZMCD+swMeLrU+0JzJP2AC2wBpwJwtTDVWHWoJMd4Eh7zhT56RPb9PjX8LQkOcjXgpijdpYHE4jNuW/0w8+NkAHgkwbGmYM5ZJCimZVBrVCUD3u+ze3eUYHZcsJfj1OjTCyy8oIJdKb9vZiUk0BRtxhpw9T0UYJ0RgLu1Cn1R08ob6ndDavRgzx4A/vIn/5z9HI2TUBfYpGH7EkBrLNTGY60n56IujXMegK9vli+0Bl4VJ6fdWDUpoRSd4t2oGIA35c7l1vZkX7pZOvPyve+VMeB6EpQgrGBVRrEJT3sradA33wwXLLS5unMTnbuPaTPgipgrmjPS3dW59tzL4tVxQfkNwzDmIvnJpw3DOGkYxsvOxsWdDxnxSnGjONtZiKhzKxtCgPn57EHVaqKpXJ2dzfACab21Z78pqyimNJKQ4AgPm0GkB3bnE5Cz146qzK2gFUFALEF55auT2VUlXvpY0GpRdwI2R3J0mJagOMQpZ8AVAK9ZsbPH6rYcKFb683zlJpv/UPtTavToeM5UJwT1py4At2wjkaAM4cYb5f9vecprAKjTlQz4tmwDUxnwSoA3KkvCjBY1jkPDDuTEGP1wMQNek7TKVlcO2nkFVdIxMwOetiHcaSwvSzC0XSIrUrsMOffMmE92cWIJiqYvtm4cOZKtFL6ncpJNFlhYjBhwryYbgm5NeLIVW+fnhPTlLthW8rwIgI/plW07AuAaq44grGBaKRZsbM1w5AHZd/rUCHry8/ISXyUAL9e6qsW34dg4ZiAZ6VTZ0wwA78jvZU2RSlm2QUg1Lm+fe77opapVwW1E+R8R4BwO4eRahd2cpF716Ae21MWWVIiFSHJTkpehYsJmdKcAPBq7dJpUrwd1enHC/iUXC17L78avz1//SFq1CIBrSJXGY32QAPBw49wrqp0B4G0NDXhQwa1O9jclW/Q3ihfjqqsuN+WqfrM7eU7VN5a//g8JAM9xgdKtnuwLE7MaJtWDU4vv9rZgqX0/TTq0aeFHfT8P8KejNhcl0Xen96E0AD8VrubBGjqjwnOEENvAC4BDwBXA68/kRZ2PbDgRAzTuDz0eqmNmktvGATjEDPj6xuxAIxjJxKPdF9dZYxfBvWMAvBsN/NgMO3L0jxlwYF9F2jQd/67eQD6Kin9g2yzvTwaQRyCrcG4zJxlwe8QWEkzlSlAcPaCRkaBEt3CtLa//JJIhOrh6C026dHxHSmSM0YQ/aTywlTELKdYtzYCr+BxSF/1kviQZ8C0JQKYx4HYlKAU3QcraseFOAeBNubOxPZCDZBkA12Ez0tEfZKVSO4qlJSlBKRjAIcUW57Cx6cYSS1BOcxLm61+fbQebR3tSgjIvu+f2MPrhZ5ChxIsK26DWjNjaMQD+mp/xedv1H4dOB8+T8qQJ5wV7BgZcmFiWkQDwbvJZvg/HV6NFGDWCfjQJ50pQpPd92VZ7nP9hWdSskfyOKQY2A8AjEDKt+p6SphTZvKUXNUp+lk4qDkYVllmjbvv0Rk5h5c10mBWhzYBPJGG+NSq5cfCg3gdEUVOkjYYrUX9gyMWwKoi1sMC/4a95zgXf5sl8kSd+4DU03YA2rZkBuO/DtlejQQdBhf7a7Az6gz22NpI2sD6sl84xA7+KU81hwOuykZYBcNVGnFqFOWfA5sCdkFYpKYzz2Y/jD0dUGFGpTyJY1S9KNeCiilUJk+rBnaSftTcDWqMNWssOHdHAf0Cya2UA3J2LCs/19AB4gdvnQzZ0ALi6i88H/lwIce4tYR/k4TYjcLNZDMBVguAS6wmwSVeO+pIsWBNLULZnt5XyAwOTgLmLJY3evetI5nVVrMHHYhBpc92FpOPvffxFAKzcNn27PB3BKGHAAeoVCUAVAG/TkgDcCSULyJSCA46Bj40YljDgyoYwDcC72YGrZXRpLlTpBhEDnqMD1WYWFAOetiFMJW5+jqezaLV5BLdLBrwt28A0BlxHguKnihs1aqEE4BH4iyUo83Ki3OrLUa+UAVc63YLBNB3xpH8qAFxJUErOWSRBoZrcK1UF8HRLUNI486f4EIe5AA+HhQXZPbueTUB1JhlKBizOSbA4LkD9w/da3PCV5+H/2m/i++Q6L+gy4EJAIEzphKC2oVO2dEePSvcciCQoRQy48uQumfUDP1l8u/YoZsA/+1mZ+La+LjCQN3ezZ8f3Iy90AHichBktaoa43L+SXc0vskHNCenjSgBuajLgJbtSKiYY8Ne+Vt78EqeV8VC7pv3VYsAchjAYViQDrtDVwgJXcg83XvsGvmj+MBdfYdGshztiwNWa8oKqBGWdtXPPyWJrTbZ1G2lpWuYFPghMXHMSgMcM+FbxIiWWKblVFuoemzml4dXitE8Nf5jv1AXp2hHTz6f6vllNAfBu0vc724ImHZq7XMmAr8sfXZsBL7DoTAPwc6wGD6AHwD9qGMYdwHXApw3D2A3nYDrqgzhUifLhdvHgpSqOPYPPJMAmnZV0/fVAvNPIRt+ZGW0EYQULn8ZB+SG9767wxS/Cr/743Yi774mtqjxshpHvqzOfANjG236VBh1tDXiQYsAB5uvyepUEJaQiAbgrYgCexw7HmuxuCQPuJe4NkZEMa/2s20vL8Wg4AR0aUgNeBMDLPLkVk1kVCQOeSqK8iet4uLid5oWLkgFvyzYwLcHFroxKfZ3jxFHHoVEX+Qz4ouziWwN5UVW7RM+nwWakY+BVTh2AV6vUTJ9ev8T1Rd3jes72sGnyDt7ENXwLq+Fkjj8dEYZZXL2LVY5wASD7odqgatPaEQNu2hXcenWCHU7H12+q4HlGrl7ZtpELU6+4X8TgtJoQpZ2BGXuwKQeUS7hPMuCqEE/OJGyZojQhUp4zWSjWnJABLl/+kuAZz4B3XP5+VldGXIhkHTb6coyZyoBHz+sw4FWrGi+G71rJJpovsEm9JuhRZxhUsavl1LZpCgINzTukAPiUHS7diHXza8WAWSl6avQzAByQBQiiQbBZFzsC4Or7LJlyYOmun3sAfDsC4JfWjrPGcmmC03Bk4lo5DHgkEfE2SjTgqtJkzWShFeV/rGfL0atL6NLAH4ZTAXi8MC2Q3cXjZyXEtsGuBnT6SftstwUt2rTmDDo08btefH1FoaSpRUWq0kPEjJtAD4nQScJ8A3A98DghhA90gR850xd2PpKIwU3JduLXvgb7Wh2u4q544MwLywKzEm3pzlgAxB9VMI1RbGHXPbbFU58Kv/FXV9K+9qkxC+Zhx2BMTQYANJvsY4WVE3oTzGiUBeCK0L+Aw/wq7+JGnis14DVBW0lQ8gC4AsRlADxiwKt2NcaGX924OnNM0w1ougEdmlLOkVMlMvbk1k3CNFM+4CIZKAfUmA/WaFy2jxFmrL2bNrjZVR0JSlK9s9GQg3TnRI+//Mskj2/vkrwwZe1olhVVmJc3uK+xw7y1JasqzrN1agAcqNsB/UGJB7a6xzlsLIuLvIl38q3mk7He9XZ5/GnUgL/xjdKRAOA3eD27SHZ+FAMOyMXjThhwp4pbrxQC8JPHArwplnlqYaoSp6ZFvItgCmwbrOqIvxL/hrAtwYIC4I+p3ylZt8gLOJcBr5ZXpVTfUe1+uY6gT43Pf1W2s9WjHt++HR6DtLXbHMp2NK34hw4ATxjwStws7z2ZBeCLbFCrGfSp4YUmjlkOwK2qnuYd5H2uMKLq7MxzW4UbsYuqFsO0UAC8Ti9ZWalV4U03xYC71doZAFftZsGUbTvtnnGuxDBy8Tgw35EMeAkAH4ysuJpzOuymbNulDLhKcqyZLKj8j9TuVxjC7bfLOalHfWoCNqQAeMHPEo81VfmZLcejPaoTdAYcPSrlKC3aNBekacHWdtSG3WI9vD3nYhAWAnB17vfs+b/Tm5XnTOgkYf4E4AshRoZh/BfgfwEHzviVnY84lIZ62C4G4P2+dAUxLriAeJ942mdaklGaJfELVElaEeP7bioZ43BvMf6/j8Ug8rPO9PtWi70c5/i63gQTBEZGgqJy5gQG7+KNPI6bJAOewnG5dks1TQY8B4CPR6sW0KyFcrvNk2BkPAxDOrUMfU0G3EwY8OPszRzTpENzr5wcN7bk56ntyvGwqiFeWHxvYwbctmk0Dbo0+HdvfzgvfrGsh9M0OrhzNqYRsO3Jm2DqMuAaJbdvvVU+PorbThmAO4609SqKGDzmMeDPfz68+92wsoJ1sRzWdPW6OvGXfynvx6V8l9fzm7EvPxBrwCEC4DthwJ0qtVZ1IkEx3a03TgZ4fgW7aKemp5nIGiUd+qMq3+Q6/vxD8kR33B4yzyaX7PckAz6Ub8ibhGMGvASAp/M/aq5ggMvXb5WdZIV9nFw3eTrSA21zGDHg09yBFAAv8HjP2BBGY9ZaJ8saLlTa1OsS2AynAKnxME1BEOpLUCxjsrLurFGLSI9+iS+/WrPlMuAQr0qaLePUALgVAfDN07i99CAJtdjctRTKnCQNAO5ak33Rasq2pvJ8pp5PMcxulflFQzLgKQB+6BB0Io12jzr+YHRKDHg8fkZ9X5FPVz3S5OBBOHzcpkmH1rIcTNa3LWkEUVQhFjBqLi4D+gV6inicO7X16IM2dEaFNwsh2oZhPAV4FvA+4A/P7GWdj3TEWzUlg6nvgzVowxOfWP6ZKqlpRgDuh1XMqojJkn+EgwcAACAASURBVO52MpA8wIUAzLElJSjRbmOm37daLLDJVkdvOTsKo0k46oGveLEcyFVxCHnCudixBKZJUKJiRr2Sbe8gpEqAYVanSlRb9RH1mmTkfJ+pTgjSk1uTnbUkaLfNkXSXSUWTDo0leRPXo4Ir0xnwEV5JMYdY1uM41JsVujQ4elIOlidPwpzRhnqdRnXAlh8B8LwExlQonX+/eO4ApBc2wA9wyymntttOpXyR4wuZhFTLyeIxDPi5n4NGIx7kdR0rdOKah8sZ5I/5WQCuvCZZcFx8cQLAt5mbiQFP2xC6DXOCAU9/1GbPlu5FOYlfthstTPt6DLhiwVQc/Z7Phz4E998z5FLuo7Z3TvaLQYiJj+FMTsKxBryMAR8lfd91pZ5VFR35B/4VAE/ka5hGEDPg0xaKWgx4EOV/pBjw9e4YAG/41FzZ94fCwskBUhPnNuW4qROeh2QrS8BLWSRVBovvcYYBzwPgUTRblR0lYaqfeNGS7xu3rjwXwo/kVou7TblIKdGAD0ML1568DwqAK6er6edTNn8VFparExKUb30rObZLA38QnBYJSsyAN0JW2Md99ydzQos2zV1yLF/rOnpt2LZxGTAYlp/7XGS/QQ+AqxHm+cAfCyE+Bpza6HA+ZgpnQc4Gw04JAB8EWH4PHvvY7AvPeY505U+Fa0cM+IylgYNQWm8pAN7rJhPy+yo/A8A13ColKLhUGGVXr80mDsNMomHh+UYGVcI4A+PVP19lmxYX8QCxn2KrRb2RNOU8Bjz2Oy1j+vxk0n/KU5LnXZJBsdUIqUUAPBhJXWxeSACuyc6a0W6BNeLbZMtNN+lQX5KD21ZPjpjTGHC7Oiqd7P1UcltjzpQsScr5Y54tCcDNIdsKgOcUsUmH4To4DLRKbn/nOzDnDuUi6lQZcFswDIvZQn8wyi2WNB5qMjqdLigbJ3yexud4Fp8G4Kp/e2382lVXnYIEJZUsnCdBSZPpG0ELP6hg5ywU1cJUF4Crdqridb++l5e9DI48IBOx3Kbchh4ME5nTeOgy4PHul2Xh1gwGuDGg9JBg4sBlLg3LY9OTW3JTk5Oj71nIgEf5H+ndr/V+ts0stgIakR7ax8axytuKaUIg9Bnw0wrAS1yJVJPJlaCkojlfPSUGfNGR7+u2z0EAHjHgi8tVejQYbRR7nQ9CB8eebDd2VBSnTA6mCutYdoWFPXYuAw6wj2NZBjxn/NMxCxhnwFtNwT1ckTmmRZvWXtlp1vs1vTZsyET8IgnheQYcjhiG8UfATwJ/bxiGo/m+83GaQjfBTbJOQdb5BKSp9Be/mP1MVZp9BgZcCPBDE9NMxuq0HdGfhy/mB62beEr9n2UhHhwcw8s6n7kurjEDAA8rmKmtc2PXMi0ioPK858nHZpNaCoBbuRIUPaARV940Tebn4b//5CcB2EPCajSbUKtLHagfGFOdEJxKOQOeDDBRue2+za08OnNMkw71eYkOlStJrpwCsM0QrwSQphNbG/MmXRr0Osl3mAslAK+bvqzSCOWaVNOMBtPy33V7GxadHka1Crt2lR5fFHoAPJg6AaUjZsA1HSt0Yn1VSFcigI0N9r/k6fFrljXGgM8AbpRfveVItjbAIugkq58MA+7V8UYV7By9cpycPCixBIzbqQQON7773szr9905pEGX2py8ie2BLdtYjpTCMsuL4kB290v1t3G+oHHhEg3LY2Mkx7ypADyWoBQkYQ6VBWmShLkxyObSzM1BoyGk1hcp5SsLy4JAkwH3fbDxT12CErkSlVVPziRhKl1hDnBqLkh2t6xIzHjEEhRbnihtXXmuhALMS4uyb3Q3iufUobBwnZy8oYjkKKuerHZxbAcW9jhsM0e4mjDgKytS/ngBhyMAHiVh5vXFWZIwo75/YJ/gu1yeOaZFm+YeCQrWhk3tRaRb8egPp4+3SfL36bWGfbCEzkzzb4EbgecKITaBJc77gJ/ViDXgJZNknO2ssa3v2GJmCYqyU7PMRAN+qLOcOeZi/x6sZzwlZsDdyhhrbxg4VsjQ15WgGJhG6nunl8Lvfz984Qtw4EBcCAbAbUyv+FUmQUkz4AALP/4sIGKIonCaVgLAhTnBCsbnrEjtbVEkNoTTj2nSoR4Bmy0v0rpOAeBWNSyXoIwSdrK1aNKmRXeYvGdOMeC2x3oot6PVAmZqGAY1Bgw0Flb9PtTCntRgnCLQcGxRrnlXDHiJkazOZDRrrG8aLLIhdTcLCxgGPOtZ8BpZXynLgM9SiCdVsVV19zTYSgPwDb+BN6pi5yV+qZ2hsrElZsDl4xNeclnm9U0WqdOjFpEFm15tqg5UpyolqN2vkZSgRCz/ePtqNqFpewkgntJOEwA+/XyqSI+ZYsDXvGbmmEqrQbNBnPCdx2SOh2mBj1nq+gJy56JG79QZcKUBL/HIv+MO+Vhzyfq8hSH81E/BL/8yAK0lixFmaS2K8VA/8YIr33duAnB5j+cXoorF68X9eICbC8BVXyzapZHnixbfdoWFRVlgqnM8WRitrMh6G43KQEpQvFDmFRiT975SkQmTRZVpx+VneTWhmnTiqsJrwbw+ADe8QjLuXGfAS7+WEKIH/JVhGHsMw7goevqOM3tZ5yMdSYJb8XG+J7QBuKsA+AwSlLRjh2LAj/UXM8css4a92EQgtcVOTsUvxwoZaupsg1GF6rRiF66L0onUWgkAT4NxFUqWUsqAq+IfCoAvJq4ucdTr1NwKfWq0aE8dHLSqUip2IQJ/z7h2jc/cnF3UNOnEnqlbfoMqARU3f3CzzRC/VANuUI8Y8Cuvkv7oK8MlavToU08kKLaPH31vt1H+e7mVYSGboaLfh/poGy6/vPTYsnBswVAUD/T+cPoWbDpi55rTqAHf6FiSAd+bJNZ+8pPJ6xkGfIa+KG3+nCwAb/souNj557uBKwHYZAHPr+QuFGMAXrozJB/VZ9Qbk5OmBODyJm76jQiAT8oZzJgBL046DUay5gCVCrWoMmV1bEHr1Ks0nID7WY7/zotYglJkQzhMJCjqnt7Tv4B5Y5ufFv+DJh1oNmm2ku+uBcBNgwBT/r4F7lQAt90GD+eOUwfgmoWxfvvXPfayzmMGX86+YBjwoQ/Ffzbn5X1tbwTMkrURS1BqEQDvn3tiXinx8GjNyzZW5PQSjoSULuVwAWr3xisD4KqypVOJTQk2VwZ87MOC0Ze+ysqRx7MvPEa9HnKyV8fzAixjejuwjKAw72W871961SRp0qJNczkC4OEiS6yCXdzWAdyqx6CApDrXAbiOC8qLDMO4G7gP+Fz0+A9n+sLORxJKz1c2P88EwN3ZGfA0WFQAfNXLyl2WWMeek+dv08otOODYMAj0mM+RGGPAQRqC/sAPZJ6qzyWfl7E9VOeMJubyrXaRYcAVQMoA8FqNWlMCAh8rZgXHw64EeEG5HhuSAea/v3vyfqUlKJtirpBdsM0QT5RIUFLA5tEptcu13AzAHNtSgmIn1+JOATbpqFWG9L3y4/p9qHlbpweAu0gpVUHo7gzFhZBGp2e0Hw6h51ksGRtTpTa1mpR1bDG/AwCeLRjV7yST7Cfe+hUA5tlkg8VIglIAwMu2vcfaaV7za9CNpQ8bo7lyBrzMBzw0ZJVZw8BtSK/zwdjOmeE6NJ2AAfImqLFy4pwKgBek0Yz8qAZAKglzM5xjwdjiv/GLvJM3QatFM2UwpVOdz7INrcJDngff+Y7g0eKWU5egKBvCEleijRM+L+CjNCmWlqhFR2drNosgdb/na3Ke6Q7N0gqoD7VQ40u8SNma/v1ULQ83J/VFAfCiXRr5egLAVb7s5kmfn3qpwcvf/SRWbjrKPo7RaEi/et8jtwaACtvwC2V34wz4ZY+YbPTLrMVJmCFVLRcUALfiT/TpdMRJmOa5t3MCehKUtwNPBO4SQlyKdEL56hm9qvORidgfuiBbGCR7qw3AHWYG4Gm5hALgJ0WWrV1iHWtOji5bzFMzcxhwB4YlsgEVuQz4Aw/AzTdnnqqlAfi+ySx+lbQ47BcP/rH1mWLAo4/ysXiB9XEOclgy4M0qIVV61KfOlbZGVcpxBrx5ecKUWsjfpkmH+qJsBFvMT01uA8lSlAFwf1TBRAKbRzwief4HkPYkCoA3nGSyzVvUjIdb8RhoAPBeO6AWtE8PAHfkFmxR4mQwDLUkKDGTrCmPKgtlsb+4VJmaxm8YUoayvVMJipOwtYrtHAzgN1Z+GpB++Rss4oUmdk7C4OwSlOn3uU6PpV3y846xX07CU3Sn2hIUQ56v1qxyjANs+XWcdB0416VRS7XTUwDgcRKmY2YuW/VDQDLgc8k5SqVZgGlFDHhJhvJd//f/IggMruFbp86AR85ZZVVivZEpF/QloQxSZnUxias2OgZ1y6dDY+ZEzgd7eJHGurUox8iiezRQANydnMu1JSjRYjkDwDeS96y0G+xjJXa4kk5dBQx4ZVS46zfe96957GTbfBS30dqd4A5tCYrpM/Cnzy2xBvz7lQFHeoCvARXDMCpCiM8CjzvD13U+UlGtgolfzoDPAsAVc7gDBtw05SRarYScZHfmGMmAy8F/mzlqORW/HBeGoa2K6BWfM6xgjgPwHC1bGoDXLt038bq2BGUMgCsGfIjDR657K4e5UPoSR0zfNnOYVv7CyK5qlIWP7eTkZ6Tt2/chyzc36VBbSAB4MQMuJFtfcHOD0IgTW+t1mKtKwfAlHOJH+Wt+mM9KAO7OBsBrVY++Bnjtb3ky6eu0MODyvhV55M/KgA9OEwN+JHLK3Hv15IIwHfPzBluVxdnkYNE2dJoBV2xnGt8c4Kj0q8fCymkycb/QTsKcfkyDLgeiChFHOSgBeE79aMvWTcJM2qnqY+1Rg92cTA5yXZq15NqVXG/inBouKDEDbhmZpplZ0LZaNFrJd9IB4JYTMeAlAHz1198LRP2+2Sw8tixiCUqZbHFkyL7xZ39WeJwalzrt2ZLhYoLBNmi6vnRS2S52CXmohdp5bi5EAHyamdEf/AHDL3wdyG83qo2WFKWN+6rtJgD8nrVECno8WJYAfM6SDHiQX605Pq8RFDLg433/4EH4xNJL+H1+IT5m2e3RnEs5keFp7eK41YBBMH1Qic89ZY59qIcOAN80DKMJfAH4kGEYvwcl+1Xn47SHY3ilCW6+qnCok4TpsmMNuGVLDNxwAlbJbq0vsY7dkuffZIGaPdnx3aaV+byiGAljEoDnhEpSBHCXGxOvO1FiplegAYXpAPyVvF/6xgFsbcUAPJgCbEAC8DI5Q6zniw5L/3QHOBr/X9kQDnGLAbgVloKbYFTJaAKVTKhOj7/mx3gRH5ESFDcFbHQY8Goxm6Gi3x7JpNbTCcC3p7dj35teijkdsQSlYEKYJW77itQ4P/LJxQB8bg62KwuzSVC8SQa834uq36UK6V3CIdq0ZOJXzrAQM+Bl294aycJ1ehy8MAVOjfwOblmGHgMeVmL52de/njyfdiTCdWk0ElCo/Ognzqm294sYcFWEy6rQaMAHfuKjANkcg2YzBlowXXOeDtOuJBrwgugix60GXbjkktLPLYraorwPqhjatPCDCICnPVdzQq0HZqgVJT9ftRunQrMWSgC+tTXbhzzIQ827SoLS6U3Cqge+F/L3v3gjgw/IhY5bn16tuVyCMsmA37R9ZeaYfazQWFQA3MAqmEOtykhLgpLe/Xr2vlv5Bf5f+Twe1Os4DpiG7NPaDLgVFBIe3/cacGTZ+T7wWuDjwL3AC8/kRZ2PyZDWfeWOGtoMeOSruyMG3JLX0XRHrCDZZuWTPcc2zUU5S59gT27BAWdJTjTDkskB5CRczSn1Ph5pO+k8nJVIUIo/axyAOw503WX+K69PAOPqapZxn3K7bXOEV2I/FgMpW97TNLmvNNkGIrPAKNLXWWakVy8C4ClmEYirstVSXufU6zTqKWDTKmczamZAXwO89nuhPFdeOv2MoZikIneGWIJSwiomDPip6W9V3PbNIQ4DrnjsXOFx8/OwZcwqQYkWbinLvEEkr1LWch+uvpzln3oebVr0qeVve0f9QluCknNrLuJ7gATgi3tt2T5hapEaywZBhdGwHIAr+dmb35w8PwHAm8n3chfzfeW1GPAg0YADLFwhyYVMjsHCQgy0AJwpkpfMue2KFgN+OgG42XCoMKLfLyZtvKAytUx5OmIJyowuJumCUY16KL/jg5EB/4u/KN0FmBZq3lUSlHZvsk08/vHw/PAjDNbl6jiXAVdJ4GWVfRUAr5ns3w8VI+Qfg2ydj32sUF+qyVL0wppqlQsRAC+o1JoLgiPkf5w9snJzrYZhQLMqBx9tBtwcFY633/cMuBCiC+wG/jWwDvx/kSTlfJzFcAyfQSkAN2YA4JVT0oADPPzSPt3Id+Gn+SAAuzkZ18dZZ5makwPAl+V7hifKmZCRqGDOCMBzFCrYDXnRZV93HIAD1O2ACgIulJU+xwG4W5smQSkvCx/r+ezJz/htXscf8mqex8czP+k0bS2AbQkNAF7JJLaqYiIZAF6rZbfalyZ3FcbDNQMt8NofGLJyaVpvs8NQEopiCUrkgnKWAfh37jZ5GHdQrRcz7/PzcrdoJgZcySWcxDLvM5vX8bSnSRsykLKs1rJNgEWXZqZarIpYglKiOy1ioq7mTkACR8N1OGjJUtxT2ehoMlU69mkhJSjyez7nOfCExbuASQCe3vp2l/KdF7Q04CkGHGDh4fuBsQTsn/iJmGAAsKdUpE2H6VS0NOAZAH6Ki1OjWomqDE4/RgjpT64zZ8QAPIfdLYpYguJUaDZ58EpQfu/34Ld+a0dvVbsIMQM+nLScPH5S3re1ddn283IVYga8ZGdYAfCqXaVeh0fs3+D2seJt+1ihvquOQFYwnVatGZRb1/SFZG7+RwTA93CSRTbjBtKyBtFnjnLlZ+PhWnoAXPXJcy10XFD+I/BPwI8BLwa+ahjGK8/0hZ2PbLhVr7Tkth9EDLhGdUG3bkhmZ5ZJf2w1+rSnJq+9vfHr3M7DeSS3xwAc8tlhZ7cEXsNDx8rPGVZnZsDzIpGglAONtA0hkIDdxzxGPr7udZnCP3nABsAxR+Ue1aqgSg4Ar1+4i1fzRxjIscytSpDpTtHWggTgPlbhKD6uq3ciT9q01zn1esy6G4QYC5N2cuNRswL6o5Jtx06H3rBK7YoLSj9PJ5QEQEsDXgL4LUt+19OlAd/cqrDMWmnjXF6GdTGbBjzwUpUwoz721q3X8oUvwIfeJovk1O2A1lJqoZi37a0AeGl+iXzMa6dXcrc8Hz1w3Vg65ezKv986ZeEhYsCNpL9akbRtggEvkZ+BrgRF/v4VW37e4iOloH2IA694BXzwg3D11TR3J7+n0yxfrFlOlQAL0Z8BgOdUo5w1agwYFNiCxuBYQ54VA/AZbQTjduNWabaMBy8A7/eTrOkZQ827jXnZbro0pgrBVzZlG84D4HEdgjIA7gssPIxIt/j4qyfv5z5WaESFcTZZyK0BEJ+3MsIvAODjNoRA4k6gIipo0LTlODxt92s8XDtkEE6fM+IkzO9XBhxZdOcxQohXCCH+PXAd8Ktn9rLOx3g4FZ9BmaVdYGiV3AZw3FNnwB//jGSCbTzhkdK/lmzfrNUmAa+zRx4wuP/ExGvjEYicJMycKLHXjRnwMtnLaDTJgMfUxPKypI1e+tIMpsoDNiD12GVVKeNkurwBRmW0RVE3o8GtMv03s+xyCYo/ylYXdaO5t0Y/mfgtK2b6BJXJATcnanY5ABd33kWfGrUrTy8A99rTEWTgCS0JimFEOvayRYRm9AfRPS3pj8vLsDZamE2C4oUSLDoW+/dnX/urT8vJsO6MaC2nAHge66YkKGU7QxE7nOeCopKFFQBf8GWSpLN3ceJYSAHwkpLb4wtFqyU7XQaAO05Gk20u5P/GujaEJkHsWLOwW967ESY88Ynw8pcD0FhM2ocOAFeSFlXoZ1p0m1LO1/jwe0s/UyfKfPljh5LKaKpLjwq1dm0PZlucKrbWdKqxl/uDFoCvr5cflxNq59msWVSMUM6r/fzs15WOBMVOTrG4pA5BiWxoGEk8ojnq8ssm++TeVp/6gmynayzHMsO8kBKUcgY8s/uldmhUw4geW44cSPIsT/PCtcPCSsbf9xIUYA1Ip160o+fOx1kMt+ozLAPgo4q+BCXy1d2ZBlx2hv0XpXTQkUsHCwtZBjxHnqGYseGx8gFvJCpaZWjLGHDdZLPYIzs92ijmOyX7SJ8vr/APKE9uzSTMHGYxLpOozhMlS05LbgOwLenDWqSvDcJqRtbjRL+RwxB++7flk/v3s7A7de0ajFzNHtEPi5k0rz1EUKHeOj1bijED3pl+T2J/fA1nCacSMChZNOlGf2BIAK7BgPdEPU6i1InAF3Gp93374O0vvzN+bTVyJqq7Ia29CSNcDMBLkvU8pY9O2mmzJtuYAsQNuhIQI9k/Z2/+ok2XAZd9PwXAIxZ7idS44boZSYgxJSHDiqQiZSW3M0W40pefYojTzUgLgEfjpd8v1rx3AheDkNpLfqT0M3XCNbxC2aIaC3Usx2s1uTvQGc7WN5S1o+VW42qmmSzhB0sMBrC5uSOPcuUkY1imHAOpTf2OK4HMK8hLak8kKGVmCyJTWn4uZf/3ZL4IQGPZpR4x8iHVEgAeamnAM+3kjW+EX/s1eH1UFD0C4M3IOSvP8jQvXEcwENPnjPMAHO4BvmYYxlsMw7gB6QF+l2EYrzMM43Vn9vLOhwqnOip1mPCDWQB4BR+bsL8DF5Soc6WK+1Gpu3IL79ChLAOeI89Qq/8yT+4wlOxr9TQAcDV/lgNwMiwYAP/7f8PHPw77EnvDDAM+xSHEtso9uRWzqFiyTIxNBnVb/gBuAQMeD+K9AgmKqGRsqZSG3ceSW+1CwMICC3tT7Ugjo71mh/TC4rbXb8sRtTZl12DWUACoCIAHvpCuL1pJQX6sSbzrLvjGN3Z+bf1BRZsBB1jraFR1icL3sgWj9j5678QxNVcwt5iqENvKmfRjDXjJpB8laVqpifDeP7uJe7g8BuB10wfDoBVpsqdWpZxFgpJaKCrwr3IVXsGfSMZ9b+q+5SWAoMmAB1kGXAFtc0yikSYYnFZ5v7AcPc17d+RSt/xpX2HmcCvFVQbHx/OiMAwpL+h4s+0OqUWH5VapNauF7PC/aPT7crzdATsvNeCy1LtrTzLgaUfY2LQgJ6ldlwH3vUg2pJy69ifbv5/k2RzhACwv05hPEUY5Zgjxeasj/AKpZC4D3mjAG94AF0XF0RUDXo8AeIHkJR2uIyuDTqvJ9X2vAUe6nvwNoJrR3yKrYbaif+fjLIRrBgzLPKXDipaeD5LKhmUgOPP5qiNGnWF32gLcdSVlND+P40At0hPnsW5xZc+yojhK/6UBwEslKNG8MSwBGkFgTGrA5+bguc/NHJdhwHOADUSe3GVFcVJlhVV87w8+wnd42EQiTz0qjOPkVBeNzxmVxi7yOx/f2p+fjwACZkZbvrC/PJcgc31uSIBV6C7X35aNqKZR2l4n4sVct0By48tqkzrhWqNYN3v11dK9YKfR9yraDDjAWk+/yHeaAQdYuHiSba7XREb2njfp2xE4LF2YqsI/KQC+54DJ5XyX59S+yFuMt/KE2q0ANF/x48D0YUinLDxMJmBbjhw3bDxGP/rjvJ9XguuytL98vIv1tUUMuB8x4BEANwz4o9pr+Wcek/ky6bW5DgBX42WZ5KYb1mhY+juSZVGreoVFpRIArof4m7ZHx3cLawxMnGOQsstUAPzByIArwLwDGYofVLAi+70YgKe+Y9qX/zhyoZy3cxKTJ2UA3M8C8Ln9yS5XjQEHOAZLS3H1ZCjmAMrMAgotSNU8efHFACzNRTaEBbu06XCj/KNp6S8xA55HUJ0DUSroEkK8dScfbBjG+4EXACeEEI+KnnsL8DMQV1L4z0KIv49eeyPwKmAE/CchxI3R888Dfg+oAu8VQrwrev5S4E+BZeAm4OVCiNM3ej3IwjFHbPTLS4xblbBUzweJf3K/J9CFWUlRBfmYWRGPgYwWbfrUqV15cPLcCjSV6LHj1a9G3yuVoETXXOp3rGQ8JcajacA/zaLPtkVpmXS1RZsGNhddbAB3wmgP3HNPDMRjAF5U1SxiCYts5YKwmtnaf/fbVrnoaR/gOXwic9zCgZJVzVgovX+/Pz3fsbcdMeBTZDuzhgJAhRKUoLiCYzpcO2SwXYka36klY/aHVS0GXFWpX+vpL3iCsW3oxRy59QQAn5s+6Wtbn6WlUlGna9g+NzT+AP5/9t48XLakrhJdsecczniHKmqmqILCggKpEhAVQUWgfTYKtMhT4WMQaUREn93tUwTaoW2fn0LTrTQoaKEC2q2t2PKcGB6KTFUMhYDFVPN0pzPksOcd74/YsXNnZsTekZkR5966dX7fd75blSdPxt47Y1ixYv3WzyqZ4/LoW3ZosggDPi1BYRNBAQvW0VISFQTYukCBhVZIcMszOic/e8X6e4HwAel36K8rgH/OgCfN9zsqOuh5asBFJQI7RdhwasrnQlW5wFqQYjjsMbmGQqI/MAHgbsdB0LGYPONcZcCBpRIx05xUpd47AZ27xxO1lIWKARcUjJpsEhXthjkDfrQ2rglhG6TTp6dcrJqmINcuMKYNSZgpBUDEMpAXvAA4dQr4sR8DABzdLhlwheqqABDUioh1Baflh0mYy8fvA3iW4PU3UUofX/5w8P0NAH4QwLXl3/w2IcQmhNgAfgvAswF8A4AXlu8FgF8rP+sqADtg4P28jcDNEDfY9VAK5NRWBhq8lPwiZEQjYzKz2naOsfPbjsCKrNLttqhfqt2vAgPeRvpbFjtKbgUavDJcCwCvy7M7AmADMD12Am+OyZ5qr1ZUoQqO7vOceY+XBYD6ZcntQFBdtGqTg5sGvWlKpzXgF1zZw5vw06w8fS1UgE09uPy2aX0dDxkI0QbAuQRl3MD4Z0RJ5wqwhSpCsHRCeaHu3gAAIABJREFUVj3C1F6IAT81brd65DHHgAvk1vMAfH6QqALwyq2n/hz5fdk22wGUg5C3Kev2E0/uFgBO7anNtxuUOm64kx1HEGB7u/Fjpq5bSQM+RXH70//OhAoAd7zSgaVpw0EpRrRTuUjoiMBJG6sMNjnbiKIf5BhgbaFS8lW/6TiTsXWuMeBFMVmMlmHAa4XNAn/+Hu+d1FNrBOC82zWVhQdqAJxrwOupQs8qIdcXvjBNEkmcugAGwBslKHyNkjHgP/mTFcI/dpS9N23JfeLhl5vqaCDeeJ7vDLixu6KUfgSAam9+DoD3UkpjSultYLrzJ5Y/X6WUfr1kt98L4DmEEALgOwD8z/LvbwTwfVpv4BwL3y0ak8OEXp0NwRfJ/aF6F2hMiJhBXZsXMTAhwh6qDPgiEhQV3aRHUsRtAJzr6Fs8TOuTXrAhXoQ9r/TkbqDdK3eJOgDndMUMgul32QLuN+jrKkAlkaDwjdrUM5UkWCoYn0wF1/tzkC2Km29lGzNeVHTVUAHgaU7gOGogoypQdepU9VrD/kkaeQ6kuRoDXklQogUAeNYOwDt0PPXVdjblrFtb+evKzaK+EHJQatvA9nZ1n3xzL2ObJxKUlvE/k4Dtlnr1FO5kAvN9Ifs/16YCAM/zeQZcBsCfhg8BkBf+mWpbQQP+wL05/hzf35gst2j4Tt5Y1XVhAN7NmY3gAgA85dKljosgABL4KMbNdowHHnUmaFkAzhnwDuY04HffPXkvB+CijRshgEeSVglKkpIpF5Sp6ftxjwO+8zuBd797BoDL1zPXKRoBc5VIq0BiHD3G2tnL1OYynn8U7YvXyOqE+BCAa4tXE0JuIYS8kxDCp86LAdxVe8/d5Wuy148A2KWUZjOvn7cRuAXiBr9MlVLR9ahspQRVu6RtCI6hP/Jzf42/xjPnkle4NVoTAG8qEgHUJCh6yFJ4RJEBJ+2LYH2NrhxgZtvzCDK4KOJmh4669zCAyQ3PAvCy5HaTxyoHNzIJCv/IqcIMPfFkqWAaMhXdXilr2pV/se//7MNwEe7B4x6v50jR65cSlIbNXJQ5woqsogi6NpMN1QD4ouW3gcn6uxAAT9RTarIUrQDcisYzG8X567BtwEaGpK3GgCBXoVrhn/lMdhPlYOdYtRWANziv8ATsOgC//MpS84r9yQQWBLNmQeI2FSQosxpwAFIA/j73+fgnfHNV8r0pVBjwt/13dp+fukffMuY7BeIGZrOSoARqMKDfo4sDcJ6823GqtaDJs/+sRJ08WkqCMklqDzqYc0G5+3a2kK1hH2lZ1ElG2rgkQ9JQFh6o1fvgGvB6/+90gL//e+C5z52a1gNJQjQAuDZF2iBBabTKnYnNo+ya9gtFAF5uDKQAPGQDtq2Y2YM1pN80IeTfl//+V0LIW2Z/lmzvrQAeAeDxAO4DsFzpqQWDEPIKQshNhJCbTp482f4H52D4XoGIKgDwQA2t8kG7CAAX7Ua/7foxnom/nSs8wAG4aMHj+vM4bkuIZP+qJtC1hW+l7cd7NTZDNWSTqV8mRKajhiIx3CKvvuhLAXj5uW4DA86T6iQAXCjrkRwfKBQymwrOgId78vu9/WQf1+EWkEDPhMr1900AfJQF6HUUC0OU9px1i8y99oKtc1EBcLv9NMXzgDU3XAyAZ2IA7ta1l2E49dUGErCosjGtWLA6W7q5CXzpS8Dv/i7whjdUlQTbwG5VFKcBgE8235P3/MLrCW7Ei/D9+F9TAFylnxLCNhptEhQpAz6TeLi2YeGb8XGlhHe+4WjSgG9vsBt+/nW3St+zaPhujrihqFS1ZvhqA31zneIUji4mQUkK2MhAfK/ah4aj2nO48Ub25ezuKn+m9qgD8KUYcLsGwK05Bvyer4boY4DL3YkWRXpqSlIFDThpBuBlTDHgAjOEqk2naDQLqE5pFcg9XvhrL1djb1oZ8JC97vQeYgAcwJfKf28CS3Kc/Vk4KKUPUEpzSmkB4HfAJCYAcA+AS2tvvaR8Tfb6aQCbhBBn5nVZu2+nlN5AKb3h2JR1x4MnAo8iVgHg62rJMRUDvkBlsyqhpj5hVx80TRPyGjL3CYpd8om4TQO+qKzmHe8APvxh+e89kiFucAUAgCS34ZHFAHhnW/zMKzA8bvDkTgXH3lyf8XM/N/Xevl/aEDawubxNmeNCBcAVihstGp0+6xdNADxJCfMbVwAuSm2W+vsm3fmoCNDz1b7TYM1FhAA7d002lMvUDakAuKcG/I/4I5xK1asfpjMMuOMAv3rsN/AJPGn+IsoIJJ7VHhQ2piIJCgBccw37Lp/4ROC7vot9XktJbRUNeDX2awDc84AX4Q9AAFYY5ylPAa64ovG6p9pFhjRXkKDUN8OyyepDH2LjU8Ef3/EVNhwly/j2F3649fNUw3ebi5wsCsAf/6gQd+AKnLh7geJtcWnt6E0AeDRkY5F+4IN43iuPshPUe6TLt/lYFYAXFitmBObuNM+Ap7gY92Cry56bhVzKJrOqlG0M+DQAnzpgq/3PFACXWOUCbH1NGwD4Igz4+hrr4/u5IgNebgxkGvC8ZMCdtcUcuR4sIf2mKaV/Wf7nH1NKb6z/APirZRojhNRrtn0/gH8u//t9AH6QEOKX7iZXA/gkgE8BuJoQ8nBCiAeWqPk+SikF8CEAzy///sVg9ojnbfg+ZTtrSVQWgRtqHb/SgIfqiXYiKzJcfz3797WvnXrvc5/L/v2O75j/HI692iwBFwXgL30p8O3fLv+9OgO+mA5TymZw7/GRQpGYWdtDSoHnP3/qvV2bgQCnwRO1TYJS9RMFXT0AfPKTzIhFJTrlJN8IwLNSv6jgVa8S3S32kMehuC9RyorcdD01AO6vubgTl+G3339F9dre3Ysj8AqANyTM1uNIZ4zTuToAn2XAAeBnL/h9fCM+i5v+3R/jf+D58wBc8sg9lXEhYsAlUenKJd1gwoA3tFeNfQlIv/Za4KMfrXRSL34x8LrXNV+XR5JGqY3QgvQXfmHSXj0e8xjgV35FKfmEA/AmDXhjQa4lw3dpIwBfVILylBvYH3zs04v41RdsfqsD8FEO3Hwzbv+ul+HPou/Bc/FnZ7c65soSFBtu6UwV9AQM+D3AJbgbmxvsOw4g18B7JEPSZjfMAfgMJf1c/OkUA173RZA5dQElAG9wfKoYcIW++dinHcHj8Rm86WVfaH0v0A7AuQTF6etZL861UElV/SQh5BWU0o8DACHkeQB+FUBjGhUh5D0AngbgKCHkbgBvAPA0QsjjwTzFbwfwYwBAKf0CIeRPAHwRQAbgxymlefk5rwbwN2A2hO+klPJv9j8AeC8h5JcBfAbAO1Rv+sEYgQ/E8EHTDMSd/9qqBWtDzTpuUlpYvbKZkAHf3hb6wj7hCUzHKVqfFgbgimCxLTw7a68mWtgLS1BkntYeB8NNDHgmAOCScNfYJJQdmS+6UrVZynsSSYLbopuaRXywubMJtxoURZJZUwlEqwafwMNI3Jf4OthTBOBrmw52sYVf+tC3Vq/tv+E3gWe/caHr4u1yn9u2ONINcfq0etZrNqMDBVAxt9d/k4Xr8adAeMnU38jMWDySthb/yGQMuCA489bqA97ACFfgULGgx+//fvt7PCtr3GgIGfBnPnMh32tRVBKUVP45FQBXlBCqhK96aqrIgPO8jVu/rr5mZJxg8Lyq/0Uhxf/+0xi/gzcDYOB0GeCrLaIaIF6KAbeZ/S8wKTZUZ8BPeHg67gE9ciFwZ1lxGGKizLWyVgY8ySz0ZubQ+KnPgPORDwDBu4R/08qAw2X9XLBgV6dfCgx45+JtfCZdB+zHt763fl3RSHJiewjA8UMA3kkI+TCAi8ASIAW85nRQSl8oeFkKkimlvwLgVwSvvx/A+wWvfx0TCct5H77PSspmoxHcTQEAH0QAArhbatqrSgMeL8CAL5iRLCOHFgbgij61beFZeTu7kNvTCYoKIWUWFSQoaSKovCkJ55qrAADZE58ifQ8H/TIJihSAf/CDi4u+Z6K7XjLgg4b7zS32fDWV+yOEFX0ax+Lnx+WqqhIUkaJh7/7FfYvfeyMbjx1b7bj+SC/C1woFO48ysrxka+ssGF+QOQKOppk2OQOeIWnbmPJF2G/vp9/93Yw4fs1rxL9X0YAvulFUCZ8kjQA85Qy4vZj9Zls4Kvd7NgH4mhq46R3twEWCnV31sZsmAgnKuMD3/dqTkZcH8Bfi/rMLwFeWoEzWjCAgCNGtPjPPgft2O7gEd2Nw6dOAzzQz4K6VIyna1qh5q1zGdlPpLruzIe8HFQDPcyExsggAZ29UJ1cqBnwonp+ziL1u9x9iEhQelNLPgwHjVwJ4OoBXU0rvbv6rw9AdlRRxXyyczh44DQBwt9USuXwfcEi2EADnllKu4pFlU9sAELc5L1SL8ErNTdq1FY73isUlKDKmjwPwpiqNQiZTElUBkwaGpJKgSBhwKbP49Kc363cUglcEDSWTKVAy4AtucFrbJRFCSUIvJ6JUJShXXjn/2h5Z0I8RwK+9mQ3Yzv1fV3r/0Y2EJbi1JUaUUWnp6wD8D/8Q+KEfAp7xDOBHfgR43/um/qYZgLcw4CmFgxTEaQeItg384i9OCgzNRgXAGxxJ+O88jQDcI80nYGlGtJ7O8OAVPJuSMNO4gIUclq/OLreFz09NJY+wcrVSzBsi/R42sYudPfX5P43pnARlJwxQFMBFhCUl7mP93ADgx48vJ0GhdQAORGTCgJ84wQqfXdI5g61LGTnWVKTGs3KkqhKUej/l/y1ZjGQySYAVYkrgQVbCOEvLvunq2xxW11VKYyLJGvmQB+CEkHcAeC2A6wC8BMD/JoT8uOkLO4zp8MtsYZmFU/oA27mrAnBCgDV7jP1kgfLXFQO+2kDkRXGiRBGAa1qTPKfZFQDgbIYaAP/N32RuLzIyl2srm8rCp6IkTEmoWKl5pVdyqwRFMwgGJixLOJDfb5Lb8BSfr2p0SYhxLH5+FQMeqLX58IcLPoMuVhG0jnhcqFU2vOqiMfawiS/epFakJOZSnvrguOYaBsI9D3jXu4Bv/mYAwG/9FgMG0o2inSsV/1Dtp22hAsD5RnGOAX/KU4CrrlqqXd9KGzfglbuELt/TMvj9Np34CZOxVwzfZ1aOMulLMmQP2VtXXAN6PWxhBzuDBRL303kA/pnh1aCw8KbL3oyXvaTASRw7NwD4RRetzIB3OsAe3cDL/+4H8NOvLXDXVxjbffF2iM0SgDdVR3atHGkrAy6o1sz7bDE9r1tlcTVR4Z+qTbdkwCUAPE1gZFwAdQAusc2NMwb+19RrJDyYQmUr+3kAT6eU3laWh38SgCeYvazDmI3KrkeSrMCt7tyuOlpdd0MMUnUAXnm6KmoGm8InqToDrkuCYisc79X0fG3xUz81XeVsrr2gXQM+W1a4KfhbGgF40OwwofuZ1oMD8KZCPEluK+t6ldu1YoRJswSluwoAl+g1ZZH8zMS95thH/kzpb37w2++HgxR/9G61Y94ks+AjUZLyvOpVDGPIFEaelStJUHQtwpUGXIUBn+2nH/0o8JWvLNWuZ2WImwB4boYBV3F9qpIVdbENqJ3AyUibPbbZU80bQqeDLexgd7iABpxv3GoA/NMRK2Z97RUjHLvAwkkcAz1zFgE4nyQuvnhJBtyZIzTe8eWn4k3/xcJ//M6PAAAuuTDD5nEGvIeQy0SV1qjcgkuy6bHP++wMiO4StrloykVxXYIcDmgqY8D1jf3ZqAC4pJBaFmWs/3QXJEEeJKEiQXlz6TrC/3+PUnpel30/F4OXbJVOpmXp8UU0hFveCO8683/ge75H7f1JqVP0G0z9VSOw4vaESM0MuO/kSBoKU1AKZNRZWIIiba98TjJHEqDmZqEwufE5qOmtFeiXLPYTCYp+AN4tKy2G44bkusLRDsC7VoRxKv5euQSlF6i1ecEFwO/c8Lbq/z3EGGGxyX/0u+8BALwOv4RHfps8YbYexy92cTW+gn9RtIGOUxuepcaut4XntFuf6WRoVU5ypAz4CuG1SNASQwy4Ss5LtcHRCMB9Dvxla8aAsbPupmL/JgRb9j7+9utX4fd+T+1PKgbc9yt58nuyfwMAeMRVBMeOASk87D1wFqtjcqP/Sy9lE8YCpW/5msHntE99avr378++GwBw5eU5rruOvTaE/JTatRUZ8NlicXxczlx7d4P1J/+Kh0EWnIzhGGKuvUSQnKwpuDQmkqwZWZw/tAE4IeRqQsj/JIR8kRDydf5zEBd3GJOoKkZJGHAOeppKzs7GtZvMe/X9cymu4ojLOZIzK6uEb6XqAFwTIeU5zb64nDzQJc9Qk6AI9HyS+MEfZG6Pv/zL8ve4HfY5iSThS/emZqrt9Q5sZAjH4udHKZAU7jyruWJ07AShBICPhqytXkf9O335Ez6NV3ZuxFte+DH0MFpYgjI6dgUA4HLcof5Ha2u4HHfg9rvUOnuSW/B1AXC7aK++t8BJTVuoAPCKAfc0JmFaWXNhmkxwtK+jXQ7AGxlwGADgJWkjyRtKSgDubaqf8HQdBuZf+lK198dJmavgeVMSqA7GCC47Xtmo75/W05eXijoAB+aKyjXFJFeBzS/ctXI2Ni9bxzd+Y/vnMQa8uQ8kmWDz/cY3MqvM0oufR6+0aaVeg+zFbasdcQAMeCgH4Dbyhy4AB/B7YBUsM7AkzHcB+EOTF3UY88HZVFlC38nT7KuUJT6J4urNSbltFaetJGLJGHaw+iKxEADXpgGnjZNbxQ5r0ihXemzJxAYsloTp+8Cb3sScH9valHksS4/2dUQQoINQWhSHb3C0M+B2jHEq/l7Hpbaw21ngfjc38dbix/ATT/okA+DFYpP/8MjlAIA+1BdyDsDvuF8tKTrObHgL2mXKwnMLJC25EToX4QqAN1z+hAFfubkqGAPeAMC5BEUz0KjcPxpyXoT1AFaM1ryhAQPm7gIA/D7ImVRR1AH4JTVXzBBd4KKLJpuThkq2xmNvj3VKXqRvAU9yvqnyyurE3/7twGuf/jn23/jw5I0XXgjLAt761mbLTNcuGsvCA9woYGYOfcxjgH/+Z2Br2knpL/8SeMUrgMsvl38e3+TK6lUs4tS1aLhrAQgKKQDPk4c4Aw6gQyn9AABCKb2DUvpGAIqihcPQFRUDLnGYOLnDJu7jF6iz04/aPln991gh9ytJ6Hzi15Lhq3hyVyzYys2xNt0CCVUozayLAecAPGxwP8iI1uSrtiTMCtgYYMDR6aCDEOOxuA9WGxztDHiKMBPf0GifbX4WYcCxuclW1pMnSwZ8sQz8ocNcU/qXqNsKcgB+et9TqvSd5DZ8XQDcKdp1pzqTMCsA3gBIDZzU+HaGuEGClnAG3JQEpSHnxYgEpZwLpAB8WAJwxcR9ALgrvxgApsB0U0SJxWz3PA/dLrD7QI2NP5cA+MZGzZt30Pz+Wogkff5x9jlPBdN/e4iBCy8EALzylaxolCxcu0Da0EcBnqekRhJdey3wtrc1d+mzyYCTToAA0axj6qTtmo3l+RgqADwmhFgAvkIIeTUh5PuBhiyCwzASfo8NyliSrMAB+JFj6hKUF1zzOTzfYwVEVZK/kxjakpTajoOB2iKsqTqc5xZqvriadKcTBrxZA65zcqskKJITXRP+ylV0OuhijFAymVaLlea5tOsmGGfiDx0N2LPvdRe433KxxJe/jB5G0s+WxXCftdn/b/9Z/Y/W1yvJyh0KypU4d+DZuhhw2pgbARy8BMVEX2HH+00MuGEJStrggpLRucqmK7fbKSVwEmYz4Yn7irUjAODtj/g1AMwwRCXixKoYcADYOO7jVzd/Df+Ib5kG4OrV7fXH3h7bdHMAvgADzvup707meFJ+jo8Yf77xYnwaT2CfrxCe3UwSActVa26Kajw21I4wxYAjKAG4RJ6VxgWcWb37eRQqaO0nAXQBvAbA9QB+GMCLTF7UYcxHZVgvqRh1ctfFFs4s5IJCAh8vtP4EgCoAp/Pew0uGb2eIVAG4LgmKS5FQ+YdpZ8C75aapgd1Jc0MMuCThy6gExfOYBCUSTyvJzZ9nb3v0I7Q223EyhLkYqXF7K5kHtjC4Fcott6CLMUbpYiiw0p1fpF5anjPggBoA18qAu83SLIC5WeiXoDQkJZpgwFuSsNPcMiJBUWLANW5wqnbLNSMeSvKGSrvQznF1BvzZF9+Cf739DxXwbIsoLRnw2hf5s7e+BN/y698PXHddTR+vh2RZKnZ3GQNelYdeggGvzafHH84kPds4g+f8P9+Ca/FF4FGPUvo81ymQtgHwBaxyldrkrkSx3DnLFAMO1y0ZcPH3P4ps9KzFC6E9WEIFgF9BKR1SSu+mlL6EUvo8AJeZvrDDmA6/zyYwGQN+Ys/DMZxcjDLyPGzlTAeuBMATfQx44KTtDDivDqeJAfe9suCARPBuCoA3MeDCogoa2kxl3r9cgqLpmU4FIeiQGGEsAeCf+xK7xicrZCMtEF03xTgXJxktVWGQV+O59VYmQUnlCUyzkWXAc2//DQBAf5Fzwn5/AsC/3F6MhzHgmnIVXLSzbhqlUosAcL0MeHMSdmI4CTOSWGUCNZBjQoIiyRsaDikChHA2FrDZ7PXQK4ZKMimA5Sr4s5ua48eBn/kZwLImFo1nmwHXCMBf/TMBfguvwo/id4CXv5zZHF5zjdLnMQZc3geqRHaNAJyPMZlZQGaSAScEAYkRSTZgo8R9yAPw/1vxtcMwGEGfLQqRxGHi5L7PAPgiE7jnYTu9H4AaAI+5BEULA543LoZADTxpY8DLIggSmyljALyhBHXGgY1uCUoLA25EAw7myS0rC1+B/0AvwOl6GcKiBYAv4l1/8cXVA+phhJEE3Ivi9tuBpCy0sRAAdxw8DPfBQYrbP3Wi9e1J4cB3NDHgHtjGtMF+TScLZlmsQIiSDaHGjaLvZM0nYLlthOmzbVZ4rLEKpwkAzkkbGQAPbZYoLKvQJIpeD91FAHhqw7flX/REgrJ6bYmlY1YDvoQEpQ7AXRd4Fd4KBznr7AskELoObWTA+RBVrVWh1CavsCxjwDXLJGcjILE0QXmUeuc1AJd+04SQZwP4VwAuJoS8pfardTBHlMM4wKgmU0lC35mRjytwemEGfBsMeSsx4KlGAO7kOCUBTTyWAk8NwYEGjSMQActljgFvlqDoZN2I58JBikSiNzWlw+bRtWOM0mYA7gV62ffAyzEuxBoTXm7b8RdYPGwbuOwy4GtfYwA8U9ev1JOJFgLgAOzHX4dLP3sX7rituS8URek9rKufcgAex1KwkOU8CVNPSWiXZM0MeFwAsPQy4A5t3PSnhQUPqVJxo0XDt5oLj1V2pK6+9KrKOUtyajoIHaxhCJBj6h/a66GX7ysl7QNAlNkIGuwyVeQ5xmMFBpy7oPia7DIZAFeQSerUgHttSZhmAbhvyatij1IXa/ZZLNJkOJpm+nsB3ATgXwO4ufb6AMBPmbyow5iPNr/MWKC1aw3fxyZ2AagVANMpQfHdBRhwXRIUn4LCQh4mcHrzQEM3AOebpia9ZMYBuKxM4aJhWfAQSS3ejDPgTopTEk9u7sziLSIHUYjALVDAZkWNZppO4wIOUpBF/ewuumgCwCXgXhSD0wkAhhp7i1ZP/vu/xyVHv4B7H7iy8W1V4pcuBtwvAXgUSQG4bqkUA+Dy3yclANfLgOeNDHiSq7tLLBoBiRFlTR7k+lxmeLTJFoeRg76lSGXz6PXQy/YwUpSMxLkDvyFZuJLnSDbtxqMogJMnmX8vB+DLMOCzG8X3vhe4++6FL8dzCiQ4YADeqgHXe0o7G4GdIpLk2YwzDxfY7ZK8B2tIRzul9HMAPkcIeTel9Cy65B8GAPjrbKaKJXriNLMWZ6c9Dz2wCVil9kCSlD657uqenH5LURzABAM+8cV1BH7pE0spTcxijwPwJgbc0ju5EfYdJRJGqdLWaiimJIqOkyKUeHJXz1dz2/VCJ3MAfFl7t4cxv2MGwNVZ3+GJMQAPjzq+A89bwIYQALa30SMhTo+a+1/lPaxpEfY8UjLgcuChmwVzSN7MgJfznFYG3KXNLki5BVdTYutstNU9yPgGx4QERcaARx7WLHWwCYBJUNI9pEUpm2m53ChzEAQqEpSzlIR5//2gcYzTxx6No77PsrV3d5X/XArAX/CCpS7HdSlSFQCuMwmzRYJimgEPrBRRKp5jR5mPnnsWq6QaDpVS9Ifg+xyIYJ2N8Egih0q4hdaCANwCRT9IMTjT/jUnKdEnQXFzRLRZgpLo1oCXwC8ZS0ru6pag9Nl3JisLD9QYcI2Tm9skQdF8qjAbHTfDWOLJXS1WHc0uE+Xxr6jSYJoUyzG3ZVGOPoYI0VWuTj24jSU1//HPfmax9gCAEPgdq9UTWTsDHlgTBlwSaaZ3o+hazQCcn5ZoZcDdnN2nIIoCyKmtzdpxrm0rRZwraMA7eiQ+QPup6TBx0bcX1Nf2eugVDLSryFDi3IHvyAdPBcBbakIYi9tuw1/he3DsP7wUf/u3YCdf99yj/Oe6JX2eW55GZS1rlEYNeFWxWUruGUzCBDNkiCTf/yjz0TuPGfCzKLw6jEWiYsAlfTHJbHgkW0y/WM5+a9FJDN7/D61vrwC4DheUFk9uAEj5IqyJAfdL7bG04pdmj2yuO5aBYaDGgOuSoADwSIo0lyRhRmYBeNdLpZaAEw243mmnqdT30gx42cePkdMA2Cm1Sgy/9gAAoH9tQ+m5hgi6ltQRgEfFgOvaKPoEGVwUoXyhSzVvFJkEpbkwDaDXr95zaCVVmmuPj31DnsO+nSGSbExZ+2U/XVi3JI8JABf3k2Hioe8sCMA3N9EFQ95tiZh5znIV/Aa29lwA4LfjCgDAz/88WDn6u+5S/nPdANz1CFK4oBJj7Em1Zn0bxVYJSqafJKpH4GTyQmqZj577EATghJA/KP/9yYO7nMOQhRM4sJFJSaq0sBY/lipnjTUMMDilYH2WEn0+4F4y/dLpAAAgAElEQVTzcTAwWYRtR1MhnpIBl7kC6GbACWFV0Jo04FXxD42Tm0dSuQSlnGSNSVDcXArA+fd5VgD4opvG8vt4mMOQ9333qPWJ4R0MsK9du5xTq993WhPSqkVYlw94+X3wyoii0J2r4NsZkgYAzk9qdEtQAHFOhu6xPxuB1Wy7WiVhamTAO+tsng5D8VgfpAHWnAWP97e2Ktni6MOfbHwrH4+BigtKw+mA0bj9dthg6+ZXvgJW4nMB7baoEM8q4QcAhYVsKP5eTDDgFQCXSCV1O3XNRs9NMcrmT8MpBUZ5gJ5zNj0qzUbTbHo9IeQiAC8lhGwRQrbrPwd1gYcxCR+xnAHP7cU1oXUATtZb356klr4kTB+IEEg9uQHOCiUgjp6BryxB0cm6IWmugFdo1oCDsYsycGNcguIXCAtf+LXykwDdEpSgxCyio/Y0WdLe7SlPAQA87Fo21d13p5oSb3Avc1Doby23SQ3WPMaUNoyLynmh4Wh/kaiOoIfyhU63BMW3myvhpiZsCJukSjw3wpQGvO1+M8C1qVYHlkq2KMHYw9RHf1F2cXu7AuDjrz/Q+NaqnyokYcaFy3RABx17ewjdDf6foJdcyiQoitfCXcl0bRSDYJKnJAoTG8WzzYD3PHEdhzgGCtgPTQYcwH8H8AEA14C5oNR/bjJ/aYcxG8wvUyItyK3FByWXoGCAf0kejr295rcnmT4JSqcDpPBQjBt0pxw86Vr0eWnmgwTgRK7HBmoMuGYJigyAc1mP45oD4AVsIctoTIJSfp6o4l91tL9on33e84CvfQ0P+94bAAD33aUGzIahBQv50kSmvxEghteYCKY9WZhXT20C4JolKIHdwggnFASFttMvoJkBr3zHDTHgvp0hbqrCmRHd9X/grzFUGEqqDA6yDta8BcHN1tZEgmI1V9DkwD9w5JtXDlxj+M12UaYiDDF2JuTTqc2r2EJwot2LH5jopnUBcC6TjPYPEICXrlRSBjw3m4TZ81KM8nmnKS5x6rkPQQacUvoWSumjAbyTUnolpfThtZ9mn6zDMBI+SYQFC5aujlXOGn0McVt0EZ70pOa3J5k+BjzolDv9XbkGsZIPaBr4HPjJXAFMTG5NchCAMeD6JSgZ0lzGgJenCova8ilGN2DPTpSgVTHgugE49zsWsEYrFTi58kpceJzdj6oEZZD46Nvh0kSmv9lhYKQhEUyFWVwkVAB4lus9hvadHFEDAGf9NNV2+gXUGHCBJtqEvVs9AidFJJFmAaXER7M1KPE9BAiFOQVJAqTURd9fENzUGPBR3DyHTPqp/JkSwvTMEYKzA8DH4ykAfkfC3I9UvcAra1VXD2kTdNnceJAAvBr/saRCtGkJip9hVHTmDv34GtLzzl8fEBUXlH9LCHkcIeTV5c91B3FhhzEfAUmEhvVVdaxFmdsSgHtgg/3WW5vfnmQ2e6+GgRj0yolmpwGAa6y+B9QmGknJXRMMuE8ShSTMXOvRs2vlSCQAXPemZja6XfbsQsHXuhd65Xv0tumXi5YQgPNTlCU3jcGaiy2cwX33KmrAEx9rtmKVElF7R7qIEIDeLQfgxhhwybgA9Ocq+E6OOG9OStQ11/CoSm6PRScl5Xs02rvVg1X+bWDAc0u/Nz8h6CAUMuAc3HS9Be+3pgEfD5r/VnWjGLj52WPAx2OE9qT40Z2D0jpUNIEJQjcA56e0otM8oJ6EacAHXMqAG5agBDkorDmp1IQBfwgDcELIawD8EYDj5c8fEUJ+wvSFHcZ8yKqpLT0oL7wQALADNb/iJLf0AfCStYz2GpwXNC/ClQRFAjT4RsbRKUGxmpPNssKCo9l5wbNSJJKkpjTRD2zq0SlPEkXr12fuuxAb2MWll+pt0y8rjoolKCuW+A4CHMFpnDmt9naW2LZ86WR/s8OSsB6QN2hMA94AwKuTGk1SqcDJERVyRjiJoV2axfXGieAEzLgExW2+3zS3jeRldEiEMJkf60tXcKy7oAyan9VEgtIMwH23YABcluBkMsIQ4xoAP5OULjQNlpz14BIUv9lRVzkqBnwofmbcwcex9a1RlQRFgnN153/MRq/DnuGsqw5fQzqLbhIfRKEyu70cwJMopa+nlL4ewJMB/KjZyzoMUQR2IqwYVrE3izJi114L/Omf4hRYVZqtFhwea2XAFQB4oncR5kyfTILCJzfb1qg7bUiILAqW8e5oPvb2rExq65WYZsB77NmJJCg33X8xbrA+o73SN5egRAMBAM9WY8ARBNjCDnYUa3OcSDZwxFeoaiVrjt/LSN4ndLNgXrmBkeVGAPoLRrVVwjWxUaz0xoLxb6LAST16XopxQ0XVtLDhanR84SHLG1q6KJbjTBjwoVrBqDa/+gqAny0JCunjaFmYbTcukzdUGXDu7KQrCbMnn8sAwwBcwoDnhVkfcC5bnAXgVR/VdLpwLoYKsiEA6rNSXr52GAccvi0GVhV7swxz+9znYtg9DqAixKWR5DazIdQBwPts0Y/2mxhwQxIUScEBzoBrTfyyMqkcpJpMiV7WrcnyTHdi62xwecl4f37RvfXMMTzW+ZL2NnlfEtlLVvZuKzDg2ziDnT21TeAd8YW4vHdqubZQ07NLvJsB/VKpsyFBCdwCUVNVylT/ol8x4IL7nABwM4t9388wLOTaq5TacD39ZTk6VowwmZ8LKvs8f/H77ZYYtc0HfMKAN29qzioAD0OEpIvjxxnPs8cB+GCgBMLjULMEpSefy4DaGqVx+m5PwrSYVaMpBryULc72p2pM6pZmnUOhMuJ/D8AnCCFvJIS8EcDHAbzD6FUdhjACO0OUySfTZTWhf/Jt/w2AAgDXyYBzAL7X4LygGYDzya0VgGucZzw7QyJho6v2LL2LfpPlmQltbT26fTaljPfmGZwkt9Gx9B8zVyW3RRKUVRnwTocx4HvtzyvPgbuSC3B5T1GvIgieGyE7pQFqGzdNebRejz2/JGqWoGhnwBsAeJZR/QWqeB2ABgmKKQ14P8gwpPIiOyl1qsJdOiOwEkQC2WJVzGkJ2Uvv9J0A2gG4amKr79KzJ0EZjzFGF90usLEB7EXlLu17v1cpWSWJS7ceV5M0q9d8AlbJJDVuFKsTMEmuUl4YTsIsh8VoOH1PEwD+EGbAKaW/CeAlAM6UPy+hlL7Z9IUdxnz4TiYsWLDqTvGGy07g6e4/yqrfAiidVnILHlItCYNVlTaJ3ynAgIbOgc8nGlmp74kGXEtzrM2GhMiqPc0a8MBOpcf7lbbWlAa8zz43FGys0sKGo7GABI8KgAulBasz4FvYwc6g/Xndey+QwcXl6zvLtYWJnj0ay5+T7o3ihAGXt5lpl6A0F+LKDZS/VmLANeZ/1KMfZEjgC0leShkA1+0OBAAdK0GYzvf9iSXo4nO5F1iwkWEsKfDDQ3WjGPjF2XNBCUOE6FQAfHe8mJYkSZiJgS63nmpdlADwiUxSS3MAALfDviCZBjwriFkGnAPwvWkAMsE156/gQglqUEo/DeDThq/lMFoicDKciBom02V3iv0+vCLEuGH+y3OmV3Y1FaqoikQM5J+nG4C3MeDV5KZTgmLLK0NW7RlgwCOJw0SWGZagSBjwid79gAE4LyKxqgZ86IK21Em54w727+UbioJxUXO9dgmKdgBeMeANbdKSBdMk4K9AVy5e2LMMbNHXyYBzG9ImG0JDSZj9DvvSRqN5vXAYsoIjaz39bXfsBINs3q+70mcvURGXEKCLMUZh83ejytZ2A4oxumdPA04DbHMGfDwzb2ZZ49yRxFSbLBOoSVAk49+IBKUFgOemAXi/zBvaSwFMnv+hBOUwzqnwnUIoLVi5o/b7cPOoSigRRdWGJraWA/Dv+MWnSQsA5Tm0HkNXSZgtDLheCUqORCIHMSZBceQJbllGjU6m3XV2r+P96dmcbzZMABxecEQIwHM9DHheWBi25FbyfrzdW/4onS/AoqqePExJUJpY96ywYRON9pxeWXxFsurnuf5+Wrm9CJJNjTPgJQAf7s330f091qYJAB44abNsccmqtD0rxChqnpdV+2m3cxYBeBhiXAQTCcqYXewn8ERQANjfb/zzJNErlaoYcMlYNCFBsX0HBEUjADcqQSkB+Gh3+gKqMWmoavO5EIcA/EEUgcTKamUGvNeDhwSJBJgCtYGvicHsbE58m26+WfyeigXTJUHhTJ+k4ICRJEwnR1I0a8C1S1C8XMqAmzjar8cEgE/fU7UYm2DASwAeiZhNTQw4AOy0KEuWdpaoReUDrDAWdX2FVRKrZN/Aq3LrdOsJfNooO6g23zolKA0nJdUG0RQA75WJZnvz4H+wy67HCAPupAiz+TWDPwPe3xaNnhViHDV/N6pyiW63BOBnSQMe5j46HWBzE9gb2vhbPANPxifwVvxbtJWHznmugq7k5JKYkjHgJk5p4TjwESOWaMCzwnAS5hrrg1IJykMVgBNCbELIhw7qYg6jOXy3EDKbK3fUfh8eEqRJAwOmWS4RbEwA+JqkorHuRZgvwDKm34QG3LdzJJICHMYkKA36Wt2yntnorLNnHA4lANwEA77B7N1iAWtcAfBlGfAyCRNoB+DVsb7cba41gvJvm2yIdW8UeflrGeiv+qlOBtwHcjjIQzEAz1IDEhS+AR/NU30m7N3q0S/B9XBnvu3BGfbaek9/AmjgZMKKo/wZLKs779pxayVM1fm01yMMgIu8S00GpYwBz72JBnzfwr/gGgDA5/A4YLdZTpZpduuZkAktJJHONcNm7maiKtsAkJsG4Ovsc0f7EgD+UJWgUEpzAAUhZOOArucwGiLwimYGvLdkT+UMuIQZBuoMpiYJyuYEpcjGdZZrZsD7JbsgIVqMaMCdQgrAJ0ym3kU/8CkS6s2V9gX0nyrMRneTPePxDADnk6mjebMBAE4/gI1MCCDTrLTPC5ZExUGAPpj2pM31YRVdLQ+eKKjCgOvaKLaBft2nX0DtPiUV/3LNYx9QY8B1br7r0SsNNYa7IgacvbbWN8GAZwiL+SoxXIbDbS8XjZ4TY5Q0rzfKDPiahRF67QNMdyQJUBQYpj56PcaAnzlDcALMlpeCtDPgXCqlS4LCc6PaxqLOfkqIlAGvTr9MSlA22M2M9qf7/0OBAVf5GocAPk8I+TsA1QihlL7G2FUdhjB8T8xsVoV4+ktWA+j34WEHyf1ngEFXSElPFmFNDPjafLKFqE0fGWB3tLQ5kaDI2wOgzVIKADy3QCLRY+t+pjwqcBPP404TR/v1cPs+c0iYsZQyyjAGAVtARACca8CXLVUXBJPKfy34YOIssXz/4d9X02m8bieECoDHkiPoigHXBxCrNgcpRGZvJgA4nx9FLihGjvZr0S+LLYo04IOdUoLSn/vVytHxxEng3GeaO0MtGj0nwThtHlPKGvA1hzHgBw3Ax2NksDGIfWxtMQC+vw98BE8FANyJy1oZcN2SviqfpS1PSXM/ZQWb5uetalwYJG06ayUAH0oAuH/+KqVV7uzPAPwCgI8AuLn2cxgHHJVuciaqQjz9JUFGvw8XKavY+Ed/JHyLbg1vHRjK7A+zTG/2tePbsJBLc32M2BA6BRLaIkHRXIinDsBFbZoE4KTbQRdjjEcSAG5AA14BcMH9prkF1yqWZ6gcBz3CCnK0nZBz3eayulpg8t3JwDBgQILS0F/q7WllwLnsRcKAV/1UZyn6hmRdI8xiLfpr7H6FALzUgK+v6d+cug5FRgXF27gEZckkzHU/wk4q9zUH1J9pd+MsAfAwxC42AbAq0I99LHv5H0oA/nVc2cqA6z5R5HOHjAE3YUMIAD5JhBKUaq4xCMCtboAOxhgNZnzAYzbfOA9lG0JK6Y2EkA6Ayyiltx7ANR2GJLhuctYZKR0z+x5vbUkAXkpQUrjS4gPaNeA1AN7EgGsvxoEEsaA0M28PACxHJwNOkdBmBlz3vNbEomY50DE4maLTQQchwrEYgBtJcvN9ONhHngqSMHNrtTYJQS/IgVCBAQ9zAJYeBrzFEhQwIEGRaEBN5CoE5aFWNJRX/NPOgJfzo6jgkGkJShMA399l/VaWC7NKOC4RAvAqCbO33A1f1NvDh05f1/ge1VOF7oaLDDbS/RAHKvcdjysAvrkJPOYx078+g+12BlyzW49lAR5i6Qbc1EbRt1KhBKUaFwZJGwQBehhhNEPa8MqcD2kGnBDyvQA+C+Cvy/9/PCHkfQp/905CyAlCyD/XXtsmhPwdIeQr5b9b5euEEPIWQshXCSG3EEKeUPubF5fv/woh5MW1168nhHy+/Ju3EKLJoPYcjqAsGzzL4CR7jKFz15bUuZZJmAk8KQDXzYLVEyukBQBMLMJIpBW/spTC1g34HXlCpAlmEWhmUUxLULhkYzSefsZGGXDCbLIyGQBfsZJa1594ODfFQTHgulmwtjbNMOCl24us5HZhYOyvs/lR5Hde9U9DbFsFwAfzfXGwX9oQrutv23YIMgHPxmU4y0pQLuoPsJuvN54KKSdhrrHveLx7wDaEYYgdbAFgDPixY5Nr7WOAIfrtDHhq4KSGtJNE2iUoVoIomR9rUwy4xnucbpwD8OmX03Kj/JAG4ADeCOCJAHYBgFL6WQBXKvzd7wN41sxrPwvgA5TSqwF8oPx/AHg2gKvLn1cAeCvAADuANwB4UnkNb+CgvXzPj9b+brat8y6qY9v9aWoz2WdIiy8wCwdPwoQn1crqdrGob5dkEhQT/qM+kQPwPC30L/oeZc9VEKZcUIJO2U8E4CbLzHq6otNBH0MMx9NTS5WEaYhhdEiOLBVowAsb7opt9o6zo/Y2CUoFarQw4PLP0J2rQAjgkQSxoGQ5UO+nGjXg3RKAC+QggJnTL7tXJusKHCaMJ2GWTg9NAJzbsekMxyWgsKpkOh6rMuAXb7DE5Hvvlb9HWQNecj4ii0ajMR5PAXAAuPBC9u834jOIESAdNlsjmjipYXrslnwM3RIUO0OcySUoDsm1FeGaCw7AZ0gbLkF5qAPwlFI6uw1snYkppR8BK11fj+cAuLH87xsBfF/t9XdRFh8HsEkIeRiAZwL4O0rpGUrpDoC/A/Cs8nfrlNKPU0opgHfVPuu8DQ6sov1ppiAdMADuri+ZrFhqwHM4yGPxJDhZhJdrQhTft8kcLtOP3SRpU38FLo9kUqCR53o9XQHAc0u7NQHOMCVBqRjwvfnFw8SpwlQEAdYwwCCc/nzTNm+OVcgB+Irn2t3HML5BhQF3kMIKlkyGRk2PLVmAATPH0AFJEKXiPjE5vdBoQ8j7qKTgiImxz3MFRG5PpoAND6/nwkOM4VAAwAcUfQxW6jey4Ezp7PxTbRaXTNy/eIvtRu+5R/4edR9w9u94/4AB+AwDDgAvfzn79/pvKq3xBs1Qx0TBKMZGy9Yo9q/ujWJgp4gzcUVaQK8F6Vz4PnoYYRzOAPDSFvl8dkFRgVNfIIT8nwBsQsjVhJD/CuCflmzvAkrpfeV/3w/ggvK/LwZwV+19d5evNb1+t+D18zpkiUvJkAFyb1MsH2mNUoICAGko12QCeo+h/+OVbC+W/dJ/Ev4+MyCX8KwUSSZjwPVaSgGTstMimY0pb+yqmMtg/kjXuASl08EaBhgeMAC3SYFs5hnnOUBhrQzAvcc9GjYyjHaaj8jjsGBlqVdosJKDSMAwYMaxI7DlDLgJ72FufydlwA1IUNDpsByQBgBuLOHL89jJ0GD+V+GYlXafq1GvIfj9zAHwUobDrRkXjYuOsM19EwCv1oyWZ1oB8IF+H/TGqDHgm0wKjte/HrjtNuAxP/YtAIDBXvPcbCRZ2EoRS8a/KQmKb+fCiqmmqjVPBWfAw5lT03Kc2r6hY6lzIFR6zU8AuBZADOA9APYBvHbVhkvm2uC3OglCyCsIITcRQm46efLkQTRpJPixbTQDrFYG4KUEBZjormbDBIByOmzBSSWpN3lBtANin6RIpEft+tkM32PPS2R9Vk1umtmFoFeCGwEAz3LDEhTXxRqGGETT36npSoOOVcxJmSpbwBVxDfmGRzOG5r7mhKwkLtg4WqFBxwEs5FIwDJhZhH0rRSRgwAAz+v1qLmsoua0b2MB1SwZc3B5wAAB8NP/5cUzZxs0EAC+P72dPh+KogIUcdne5xP0jm+yB7e60145oTcLkAHxoID+kKWZcUACmsrjiippt5LD5I4xIUKwUUZscTPepqZMjFhRsMpWnNBXdbgnAp28qjQu4SEBW1RCew9E6u1FKx5TSnwfwnQCeTin9eUppQ522xniglI+g/PdE+fo9AC6tve+S8rWm1y8RvC67h7dTSm+glN5w7NixJS/97EfFbM44B+ydKW2sLlhSgmLbFQAXAUXAzMB3O2xgyQC4CbDoWZnwqA1gZYVNMeB8kzTVHp/cNLPCXNcZDQQV/3IDR/sz0XdCDOJpMGFaY+tYBfJ8+jlyyUgvWJFZ29piiaUtGtU4oisz4IQ0g2GA9RsLOYijcdG3U0Rpc8Eonf3U7zUz4Eb6KSHwSCq15wQMAvDymH1W5woAcQRjANz22HeahTOnphFlc/6S/vjd9dK7uWFMqI75XulmeOAAvGTAfa9AZ2bprAC4QLNfDxM5NUpjUXM/DdwMUT4/b5nKU5qKfp+NjWgGgCcFq+FgatE4B0LFBeWbCCGfB3ALWEGezxFCrl+yvfcB4E4mLwbwF7XXX1S6oTwZwF4pVfkbAN9NCNkqky+/G8DflL/bJ4Q8uXQ/eVHts87bcAPWQZnt4CR2dyg8xOgcbfZlbfxssM+UAfDJIqxvknS6bMERZekDNQZcJwC3MyS55Kg9M6ABL6si8spz9TDFZlQMuMBj2bgEBcCaE2EQTy/sVRKmMQ04RTYjLdIGwNfXGQPeAhAqULMikJLpMXlkBqRSvp0hzpsZcK02hHyT2FBy28RG0SMpkiY5mKm1njPg4/nvLI7NAXDHZ88vH01zZtVmcckKsSoAfFEJimhzYjRKAL65Md8HKwAu+L7qYaRia8NYNCZBcYpGBtwoAPc89EiIUTwLwCnDJedxLXqV6eYdAF5FKf0HACCEfCuA3wPQaAJKCHkPgKcBOEoIuRvMzeQ/A/gTQsjLANwB4AfKt78fwL8C8FUAYwAvAQBK6RlCyC8B+FT5vl+klPLEzleBOa10APy/5c95HU4gZjN29y1sYhekvzwAV2XAdSZinQ0G3LcyJFIG3ID1WYlDeeGLqfZMJWFycCPwWDYuQQGw5kYYDH1QOkmcN56EaRfIZrouB+Ddzoptrq0xhmbYzBbqkhL4dibUY/LIDUilAjtDlLVVbNVoQ1j2UW7dONemAfkZUOprGyr+OZ4hxwXPQx8nMQwFADwxCMD5mjGMAKxXryfxagy43QsQIGzUbfNn2lZXoZKghAcMwMMQO7gYW5vzv+IAfDBqB+AecsDSBxIDN0MUtxRv0w3AvQKxoGKzCeJtLghBz00wSqbbT2MKF9l5zYCr3FnOwTcAUEr/kRDSmq5MKX2h5FffKXgvBfDjks95J4B3Cl6/CcBj5v/i/I2KAZ9JlNwZudjELuBfuPRne7/9X4BXTax/ZsOIBKVk3Q+aAY8FR22AGWbRKzWYIgbcmASFV/wT2RAegARlzY+RD2zENYLN9BF/IwPeXfH5rq+jizswGm03vi3hTOaKjA1jwBsAuAG3HrboS8aFgbFfJWFKSm6b2ih6Via0ITVdip4z4HeF8/cTx6QE4MsTKLLgCWxzDDjvq0sCcHS7TJa139RPARtZq1TqrAHwshDP1pH5disGXPB91SPLgS4ywF7SAlgQvpNjdyyWk+Y5QFBoLRYHAIFbICrm+4IJ9zNRdL0Mo/H0BjRN6XkvQZHeWa0Yzv9HCHkbWAImBfACAB82f2mHMRtOhy2QWTQNrHZHHrbwAOBdtvRnV0Uq2hhwnUmYRZn4eZAacDvHKJFNbvqZRS5BEXtys3+1S1DW2PMUltw24K0+G2s+21gNBvMA3FgSpkORzRSS4b7dvVVxTcmAtwGEOIYWCYpv540APEsMSFCcHFFxcBpw3kdlJbfz3BADbottSCtdvamEL99nEpRo/vPjhLB+Y+CofZoBr7dZ9lV/ycHR6bBToYG8fKdqmfYKgEcH7Pdc2hBesD0/rnlVUtH3VQ8jSZhOLiWJTEmzfI8iFlRsPhAJCoCOXyAZulOnpg91CcpvzPz/G2r/fSDuJYcxHZVkY4YB3x172MLuSgs/Z9dFVeKAuv+oRglKwbKhDtQFxcmRRHIJim7nBV6UpYkB1y5BKa3FopGg5PZBSFA67F4HA1ZdDjiAJEybIssNMeC9HnoY4bSk3/CINTHgviNnowFDEhQ3x27eUjBKZxJm2UdlDLgRG0Jwqc38fVZ2csaMwD05AE8JNkwlYQYlaTOazjwdRxazPlz21LQE4ONRX/oW1WdaJWEmB8x0jsfYIdt41GYDA94wDoHafKpxzQi8HJFADgKYMQoAWJXtGMEUAAbMWeXOBs9VyLLJ9MlcUFLMZcieRyHt8ZTSpx/khRxGezglAJ9lwHdCHw/H3kqLBweK0iPhahHWd0zIAbhMgpIVlgEGvJCzCwaATZWE2WBDqNviKVgvJSgCBjwrLPMuKB3W7qDmeWy6EqZtYy65tgLgq1YYtCx0nXQuS382Kl1td73xfW0RODliCRsNGCr+4eaIqPgYfdJPDTDgsXg+MXVSEzgZdrJ5u1bjAJxXiI3m5544IcY14Pl4GoCPIhs9jJaXoHQ6TIIykvcJ1aR2jq9GuV9+EQcExEsGnFsQ1qPfZ97490bNsjMjSZguRVRINsOp/rEPAL5f2uXOpAVMGHCtzc2FW+KPKQAelQC8u6S98oMgWns6IWQTzGXkivr7KaWvMXdZhyEKt5SgzHp170YBtuz9lT6bT4KyBdGIBCVXZMB1AmKnQCIBN6pHposEt45sdEHRnVBTasAjwWbqICQo/R5rt+6ha1wD7gBZMcOA7+cAbC0lvnte0srQxTFlTOaa/IOS9eQAACAASURBVFheJXy3EFqC8chSqr/4h0uFSViAGakUr8AosgQEarkKmpm+jpvi3pHYbs0xmfBVAvBR4qAopm8rTi1zAJzLFsfTNqij2EEP4+Xvl0tQBL7mPLK0UJpPLYttjMZZl+2a19aA170OeNnLgEc8YrnrU4hiFGKPrgsBuGUBj9o6gS/tXtn4GSZyagKvQEzFfcFE/gcA+FwqGYsBuKnkeR5OmatQr+VQ2RCexwy4yuz2fjDw/XkAN9d+DuOAo5pMa+XiKWUAfMNpqRjQEryPh6H49yYGYhsAN8GA+06OhMq0rvqBjdeRS3uMSVB4EqYAgB+EBMXrllKpmvGLcQmKw/pLPUa77AK6a6vfa8/PMEqbAVLCdbUrAvDAL8FwIZGDmZCgeAUiKmZDTYx94rHS7HEiZ8BNMH0dN0cokNqY2HxPhWWh7yagsKqTGR5JZg6AyyQoo9hBz5ZM9irBJSgNeRGL2Lp2/QxjlAD89tuBX/1V4BnPWP76FGKwT1HArqpgzsY3HDuFL2aPbPyM3MB8GvgNY9GAUQAwydWZLYx1ID7gqGGbOgCP6SEDDiCglP608Ss5jNZwe2XlyBqYy3MgLRz0bAmVpBhtiTAmABT59/8O9l9lQgkKpUBuQC7hNTB9RmwIuQa8SYKimV2wuz4cpIgFCW4HIUGpchUEANxUPo3jsP5SD+5R3NtYvdN2/QKj3TYbwlJKsCoD7lOchs+ySPvzGlsT/dT3KCIEmKNnYShZ2LYRYHjwEhQvFxcc4acKBuUP634MpEyaVe8icWqbY8DLWgt5NG2DOkpc9Kxl6+mhkqDcKbBV5JGl6jk1XT/HeNQFPvhBNvkDrCa8wThzPzsV2JaoTB594Q7e86XHYzzIpZv4KldB52mUD8QQzzXGJCgcgO8nwIUTKZopkmg2uFSqvmZUSZjnMQBX6TV/QAj5UULIwwgh2/zH+JUdxlxUGe3xBMzxI1zfWa3YSMWAR80SFK0D8alPhWsXSL15kMHJP+2MtFsgEWR7AzU93wEx4KZcUOD78BHPOUzwTY1pBtztllIpEQNuTIJCkMGerBiYAHAtDHinQErdqXuajTgt3SxWXDCCgDAwLKmDbUKCwpKwfIhu0JhdZgMDXm0UdUtQvAKhwG4tTwvj42I9YICvnhsBADFnwA2Af5kEZZy66DkrkDZlYvKogQFfBCz2OgVG6AE/8iPAi140+YVMo7RqJAlOfIYVz77gAvFbjm+xsbD362+XfoyJE8XABxL4KBJR4r4ZCUq3y77HcHf6eR+YBEXEgKeHABwAEgC/DuBjmMhPbjJ5UYchjooBr3l1J+W86jmrJfJVDHgs2elXLigrNTMXrl3MSQfq7ZlIcJEB8MxEEiYH4A0MuHbvYd9HgGhu7Zra1BgEGlWF06nJtPydKQDuEnaSUrvp8bBAB2NYvdU1hN3SSYVbG4oiTGx03XTaRmCJ8APCwPCsVqEMI0mYfsmAJ8nc74zZZZIYkaAoDmBQguIXCAXJpgfCgHfYINifSdeJcwe+la3cb0Rhd0oGPJzRgKfeagD8kkvQ6xGMh6snYQKsWNYYAqB15sz8azriU5/CiZglSx8/Ln5L5xseDgAYf+gT0o8x0U+5Bjven/9+TLmgVOv/3vQG3BhJNBNuKVvM0kl/ShMcasAB/F8ArqKUXkEpfXj505yZcBhGogI2IgbcXQ2AVwy4ZEE0peF1rAJpMT+6q/Z0u6B4VHq8Z6JMO9dDNzHg2td8z2MMeCKREpiWoHAGvNZPjWvAOQCv0f6jQcGcHjRM4D0FAD5MPPS9BopcMYKu1ciAG5Gg+EAKD0UoWPRNMeAkFXpyAwYBeMD0tXTmVioAbpIB77EHOQfAMxu+3Vrbbqlwemyum62ePMp89Nz5zZZyEILuVQ/DKHEw9zDLWIQB73ZxsAD8llvwABj1LQPg3cddDQDCnAEeJpKFg06ZECkA4KYkKN0ea3O8P90PJxIU0wx4iW1qfvVpdgjAgUl5+MM4y1Ex4MlkMOgC4BMGvKUErub1ybULpHT+Q6cYcK0SFCCHU1cqTLVpSoIiSog0pq8jhDHgM8f7FZAyLUHps0U/HU4WeNOlvh1PAMCHBfM61gLAy88Uk9KgtAQ1/upAyu9YrQy4dglKSQrHgwNkwK0YcSbZ8HOplHa/Y6CAPae0MQVs6iEC4JQCce6aA+CctKkB8CQBMuqsBsAB9LYDjNETbtqAxTY13S4RA/DTp1e6Rml88Ys44V0KYFKrYP6a2L/jJqtFA7kKAXck25//fqpaFboBeCnTC/enB8Zk8621ubng/TTdncx5w8hB3xqbp9/PYqjwUSMAnyWEfAhANdIObQgPPvjxfZYIJCjuajtUvgCHSYsERXMSnWMVyKiN2QoA1aJPCq1Hs77HnlOazo9rxoBrlqCUDPiBAnCU7OIMADd1qjAb1UZxlABgq0mWFgAsuGv6SjbXw3GtOQAehRQdhJPOvUJwhkgGwOMYyKldeaCv1NaazfSwUg24gep7PAlrkGJ2u2JKfuZbKaJ0/h4oBSg1xIDzk74xhefV5puDkKCsszmgDsD5RmBZO+62qErR1yQolT/+iqc1vXW2OYpO7KN7xfwYW0Sv3O0TPHCQDPgXv4gTWz+KtYb9uSoA134aVSbuRwNRPoYhCUqffd54MD1/HZQEpdoo7k+43v3Iw5qzglPPgyBUZps/L38O4yxHZVBfA+C6GHBCgI4VYZw2ewE7mvXKrl0wG8K6Az9qiz7RW6SGGw3E4xxBMD2rZBnga57cOmtsiIlKbptMTPStBFF6liQonAEf1RjwMAPgVUfiusPmADzcq14Lx2AAXAcD3i+PaCVngRwr97ur99f1TQshusj2x8IJ2kjxj4580TfmV29liLOG8tcGAXi0n2Bjc9IXTSW31WN9nT2/OgDn8zcv2KU7KtKmVrytAuArntZ0y7lt9MAQ3SvmdRyLbBR7fNPJ44YbgJtuMseAf/WrONG5HMflhTxbjQkAQ0mY3bIonug0ypQEpWTA5RIUrc3NBV8zssEEcA8SH+vuCk49D4JoBeCU0hsP4kIOoz04OZPVJCgVA67BwaprRQjTg5egZHDmAPjEf1QvAK/bLW1sTwMzExpwDsBF/uomJ7fAShGn02B3SoKimUGpRzWZ1o692X97cPqmGPBSglLTFoQRB+ANq6xi9NbZl8ScVebHiLay9wDWt9nnD07FENQIMSNB4brTkch5gf2rWwMe2AmibH5zZLKfBnW3h8sm4+MgGPC1DXYvIgDuB2YAOJ9b8nQyj1Z9NVgNgPc22Xw9OhVCpOJYiAFfd6YlKM96FgPgphjwU6dw5+aFuPiqhmviDHiT13lhQAPebWLADUlQyvltPBT7gBt3QelNA3BKgUEaYK13fgPw1l5DCLmNEPL12Z+DuLjDmI6KAU8FGnBv9QHSsRMpAz6RoOhdKBybThhwUXuaAXivw57TaE80uek/TnR7HhykQn91U0f7AODbKeJsnuEHylMFA44LPDjITseTZ8z/2+6bSahxXIIc9gwAJ9oY8O56yfadEetdKwZ8dayP9SNsDO6fFksETBSN4QA8GjZUbNVdMMrOEGXznd/kSU2nBDezdmuVZ7VBqs9f9+EjEgPwjqHcCE7a1NaMCQO+mlyqt8VYn/Ep8bHQIs90CoC/7GXA61/PWCUTADyKgPEYX947jkc21Nlpq40BmKmr4HfZZ4nGYpWArVuCUhJFswDcmFPXTHAAng4Y4A5DJulb91fLUzjXQ2Xpv6H23wGAfwPg0Af8LAQfc5kAgOs4wuw6CULBggiYc7FwJQDcVAUuzlCOdsTsgvbJzffRQShkwE0d7QNAYKfYnTnNMHWqMBvuJjtKTocTkJNFGWxkID0znq4VA16z0Ytigg1EeiQonAHfSYD6UXkZHNT0+xoY8GNsMdo/I2YojUhQmhZ9QxvFnpNgHM8f3RmVoPTE7GKWmWfA0ethHfvY25ucAvHuepAAnMuousGKifub7LsbnRbrdBfZKHZ7tSTM172OsU3HjwN33bXSNQrj9GnsYgMnR71GAF5JUGL5d2MkCbNf5g2JTqMMWOUCk+9yVu9+YD7gJWnDXVC4V/5asLqr1LkcraOeUnq69nMPpfTNAL7nAK7tMGaCEGbLk9Y2hdUEroUBTzHOxFoWU2DRselEglILUwx4v0wcYkBqOqqqZjont25XCsCNJmHaGeJ8+oNN6epnwz3C/HVnAbjJogqVC0qdAY8tbUmY/a3yuH1XvCBwBrzXW318rB9lY3B/V1aKXr88o9KdjudZUVNjv+fGGGWCojgmJSi90u1hb3r8m0hsnYteD12MEdWeccWAd820O5GgTNrk+Sj81GPZ6B1h42p0WnwqtJAEpctsMFM4wJEj7MUnPxn46EdXukZhnDmDr4BZDCox4Lk3tz7xMFEwivfRaCQei0YqxK6x+W0WgJskierBk/M5AOenRGsdM+5A50qoSFCeUPu5gRDySqgx54dhIBySTc0FOjWEXTdF2ALAdUtQXKdoYcC1NleVJRcB8Cwj+hd930cXY6GO0JSsBwB8O5873p/o+QwD8KMbAKYBeDzOGQDvzbPHOqJyQakx4GFia5OgcAA+EJycADUJypoGAL7FFlcZAM9MMuCSRR/QTw733QTDfP67mUhQ9EulqpwMgd2aaQkKNjbgIUFcO2WogMaa5G9WjAkDPnmtAuAr7kt7xxhCnS3ewqNiwFVK0XOw+4l/njyMpz4VuP124M47V7vQ2Th9Gl8GQ95XX61wTegKk3hMufX4vTJxXzAWjZzSArA6PjoYzyWZH1gp+rXSLWvE1gzOgK93z28ArjKl/kbtvzMAtwP4ASNXcxit4ZBiysO2SsLUIEHpuBnGQzEAz3OAoIDl6B34rtOiASer27rVowmAG2HACUGHxAjj+e+H37LuZwoAgZMhDmUSFLPHie6xTdbeaALA9/coNrBnkAG3kMEFTVLwJ60VgB9hTO1wV9wfRwNms8jdUlaJdXaAgP2B+LNMSFCaWDdTi3DPTTDKRfZ1ZXsGTmo6fbHUJssoAtMSlK0teEiQjFKgLAa2V5r2bG6YGZP8dvJM4Jy1ouyle5SNZdmpEHOVUtvU8H35+NJHYYO/+G3fxv79yEeAH/7hla51KkoATgjFIx4hH6+uy+R646LLNGYzuyRTdRU4Gy06jTJRBZc1GpRE0Wx77F+TwwKQA/C1zvktQVFxQXn6QVzIYaiFaxlkwL0MO7nYJs5E4hcABF6BCD5mK2NMEr80a8DLzP3hrljrakR3ascYR+JiQ7Yh1s13C8TFdELtRNZjFoBb631YyKdsCHf3CTawaxSAA0ARp+BPM0oddKxEC1tkr/fQxQiDfTEoHO4wUMUlTqvERolA9vblAJyd1OgH4HHYULFV80lNv5Mjpj47Vq+tRBUAN9BP+QZ8uDfvd2ycAd/chI8YyXgy9+zuUAAEG1tmNOD8durOWbolKLPWdTwWOVWo2OY6A/vYx7LBoBuAnzmDL+ORuOLSHL4vh0CEAB0vRxh1hP6jppKF/T6bt6OxeCwacbGSnNQelASlSsIs14yJBEUvAXeuRSsAJ4T4AJ4H4Ir6+ymlv2jusg5DFo5VIM0mg6FiwIPVB2TXzxEWYoBkTHvmUewiaNCAawbgZeb+aF/ALhQGJCgAunaMMJm3x5gAKQMMuJsjyqcBeAWkDCdhgrDnWHdB2RtYJQMuqfu8Ytgue4Ys2ZNFmDkIHE1HmN0u+hhisC/ujxUA31h9fFQM+Ej8WZPNsAbv0TKqRT+UF4zSnoRZeqaPRpNNB2C2n24eZTexuzuvdTWehLm5yRjwcDL37J1KAPjY3DachCkgbbjuf9ngpz2iuZS3uUgpemAG59o28wO/5ZaVrnMu7roLX8Zz8MhHtYPKrp9jHHWFFbhM5SpwBlw2Fl1jDPjunOf5gfmAl0WxsjEDNBUD3jO8Vp3lUOk1fwHgOWDyk1Ht5zDOQrhWjqw23+m0ser4BcaF+LjelEYy8AtEAgBuzAVlm+20R4P5RSPLDFXfc1KEidhuzVTi15qfYD/vgdYe30FJUADAJRnScPKd7g0dsxIUnz1DXnCkKFiJ746rCYD3eljDAAOJLIT5g09OWFZsCgQF9sZiMGjCLpM7L8hYN0A/C9bvsX44W/DTpARl6xi7z52deabPeBJmCcDrpwy7Jxjg2DiqucRwGVUSZlZjwEtgt2riJx/KI0lxqpUZcIDtzCQVYZcN+oEP4svWNXjkNQrXFRRMA36ADHglQRGcRpk6peUM+GjmpNZU/sdsVBvFiJE2/HHzOeJ8DZXHegml9FnGr+QwlIIx4BOwXdkQ6mDAgwIhgrmy8IBBBtynJQCfnuBM2R9xLe9oIGAXuAZcMyPdcTI8IPBXNzaZAtjuhsjgYjicSBcPylIKYBvFtFaIZ2/s4OoDkKDkMVsx+DF7x9PHgK/hFIYjsQPrcD+Hh7jK5l8lCAF6diSULQFm+mllfRbJGXDduQrcMWaWXDQpQelsMi/unb3ZKrHl6ZdjplAUgBKA349RPAFWe6cyWMireUl3CBnwcQ7AqWRHy8YENIs3ZtUztdufaQXmZ6m9Xk/IPi8dwyHu//jtGBbNFoTVdXUoq9ApAOBTdpkax6K/zvqCiAE3YhQAAL7PLDLH0/PbgfmAzxQZ5PO3KXvOcyVU7u6fCCGPNX4lh6EUrlVMMeBJxCZzHTZWnYCy3X4icggxpQGnB8qAe1s9OEgxGooAuBkGvOulQn91Y3o+AEe6bAarV3I+KBcUoDypiSYddXfsGU/CBIAsZm1OALime+31mARlLP6uRvsFehhpSfgEgK6dYCzxH54AG4260zUmZ4kEAJyN/QxEsyURd4yZ1WMb3SgGAbawgzN78xadxjXgW1tMA157xrunc2xgD2RNQwUnQUySMGsMeJmAuuqaYdtAQCKMQkk/XYBgqJIwZ3GubgD+uc/hy8UjADRbEPLo90oA3iRB0XxSE2yUAFxQBNIYaWNZ2CT72B1LqicbcOqqB++n6QwAX3WTeK6Hyoz6rQBuJoTcSgi5hRDyeUKIZlHWYaiGYxdIa/7O8YCBZX9TQ7W/DkWIDmg4P/KNSVACMQA3tgh3u+hhhKFgTjcFwDtejjAXFBwxVFQBALZ77GhEBMB1WzuKwrULpHWmL/KxgX1W3c5AzEpQuGtYJ9DUf7gEZSz+roYDij6G+gC4m2AskC0BZtx6+LF3KLHLNDH2eXGj4YyPdNVPTfjVdzrYwg52BjNH7fweDRfi8ZBO8Rt7uwU2saunhKogqiTMOQZ8Yne3SvTsCMNI/DlxQuAjXk2C0hXLP5aOm29W8gDn0e8TDNFvlqBo7qdO14OFvDrdrofJU9Mtex870fRpxYElYc4UjOLs/6p5Cud6qIzAZxu/isNQDtcukBW1JMxBDCCAu7X6BN7pAAVsJPsR/M2Nqd9lqRmwGPg4UAacAfCTGAmOTZPUYguGq1eP2fVyjAXuMnFEWXsGQOmRNbbK1ys5Vwm7tvnMctcukOZl1cEISHIHG16o3deZRwXASwZcOwD3PPQxwm0SsDEclgBcE8PfdTOMQ3E/rDTgGk9Ouke7ICgwHIntMk2M/f5maQl6OgIweW4mJSgIAmzjDHaGl069nKSE+dSbZMAJgecxYMpjdxfsZMgQABdJUKIxk0uRjoYCVW6MUSx+ZlUhrFUAeK+UfwhkkUvFxz6GO3vfBDKmuOSS9s/rrxHciX4zA645WZjYFnyMEQkAeJICHhLA2Zj/5Yqx5QywE00TCFEEWMiNa8D5kssBeBwWsMA2I+dzqFTCvEP0cxAXdxjz4dh0mgEfpmwyXV+9kkO31GSGu/MjPwopAkQGGHAw1j0R2xBqZ8BdFz2MhMemUWqxe9TEYvLoBAXCYh6AR+Octefr138e2WSrQ50Br0pQO/MSI91Rd+upvI59cclqLe1VAHyaAddQBJMFIVhzQwwEpdMBYDQieiUofiavSmuAkbZcG2sYYH8o2JgmYBtFzf20sgQ8M90fD0KCsjOafrYVWDSMNDyfIKm5WO3tWwcCwPPanjsaF9rmnZ6bYJSIN4qLVKJtBOCUCgvhLBy7u8Bf/AVOXHY9jh4lSl91f93CAGvNDLiBjWKAGJFAghbFRFt139nYdEcYpsGUI3AYAh1EIL5ZIDzRgLPNTDRiayMJzORGnCtxfvP752G4Dp1mwEcp2xFz77IVggPw8e48QIvCctLWzA4HAWPdOXPJo7LK8jUfQxOCvjXGKJzXgKa5ze5R8+TWCShC2kExcyvRqDA2mW6XuTSnT00arVhhXc4gDeHaFGnBppfK0zUwB/wnAJzdb3WvXX2M+5obYRCLF4ThmOiVoPg5K4FN5xf3KCk3iprB4oY1wN5w/jPDUWFkXPDqorOFXDgAMGKX6brYIrvYGU/fSxjbxsZiPfyOhSSdLLvDMcEaBsYqxFYSlHwyDuJQHwDvewmGqfhzFimExQH4nOEJfy46dODvfjcQhnjggutwwQVqf7K2aUslKCZPanySTJ2U8Ahjy8hYBIAtjz1jTpgAjAEPiJn26lFpwMvNKQfgJsipcykOAfiDLJz/v70zj4/sqO7993S3pFZ3a5dGs2lmPJs9YwYb29iOAa9gm908Q4whYBwSAgGS8PKyQRKWwIMkhCQQCHsI2zMJO8TE7CSssbHxbs94mVUzGo2k0da7VO+Purc3SR4tt67UmvP9fObTo6tWV/U999b91alT50QNhelo6cGcmyxY71QAtYx9sVJbphkqxGLA3uG493G16c/KxSKCv0ST0eyMZdNSew484Ckv33HtGJ5JG2eDaWeXteXwQFlslzzgbvZBVtEQm6bohaD47Sbj7jZ/1oag+M9r/9wHQUdTmrFCc220lG0vHbEe8KBCUPwN0bN4/koCPODrtDU6yVhmpgAP0mNaiV/IxeZQL1OaPDW6CZXqiI7PiHUtrX45fuA3JmLkKlYwJ9JRO3FzHAM+NVWxCTNtAlvRSDUVmSzO/JypKSgU5+8BT6VsJN6JEzW/CFKAf+YzcO65HM+3s2ae5QhS7TErwEMMQQGIR3Jk87N4wPPurtOOJjtQj4yUj2Uy0GzSoQnwUgx4esrJqttKQwV4ndEQgyKx0vrXyAh2E08QHvCUJ5hGZwrwjP8QDlqAexU8a1MulQSxg/s+Gcsxmav25LsU4C1z5DsuhfU4GGQaWuKkGGd4sKwWS8Im2K83e/tRU4oBL7frLv2hv0vf3/jpPy+DKA3v091sP7QyrMdnIhMN1gPubYiuffAbU+FZDHgm1RrLMJaZudScTbtZqSmlBK0p5FK6XoJe/fLoaJhgNNdcElDFIhSn5i8Wl0JjqoH8dHmSM5F1K8BFICpT1R7wbHDjTrJ5iompmdd8yYbzdNqIwNq1cOxYbQMBCfDpabj7brjiCo4fl/kL8BZhkhTTkzMnwuVqzUvr2mzEI3lyhdnCJN2s0gK0N9tl5yoBnnbjeKulFAPundNs2t2zcSWhArzOiMWgQEMpRmNwOEoPg4EI8OaUHUky4zNdfNmMceQB9wT4XB5wB7ugk7E8E/lqoVFKWxfNBz6i+osT4yPV5zWbNe4e+okE7ZxkdLh8Xkse8KTbHe1gQ6UKxq7UlNp1OIb7p9DfuORPdpItwV0/3Qn7EJ7hpQMmsrFgBXgC6wGvmbUVizBtPC9Y0AK8McvoLCE2rjzgzZ3NduPnWPW973qi6C+1nzxZ014oAryRvGkorWCOZxtIBbh3YDaiUl6NAshOFq13MYBnRqp5mgmTnLGJvrQHYwEODV+Aj4xUCPE58xMukIMHbad27eL4ceYvwL150WxOKX9Te1OjgxCUSJFsofo5ZAzkCt7k24UHPGm/UKUAL937YXnAvcsolw2n3eVGBXid0dhgyNNYFuCjjVaABxCCkmi1d0F6bKYAz6TdeIdLAnwuD7gLAd5YYLIwuwCPNwTvdSsJ8BPVm1uzGdzN8hMJ2hhl9OQsMeABxkXPRUPM2IliPl96drps178s/TR6pRCUluDa7EnNLcAnc1GSpAO5D8GeqzQzS2Av1LO4ENriWcbys3gzHYVKSSppN0SPhyzAa5bawxTgTS1N5GnEjJzEGJjIN5JqyDmpBeATi0xXe8Ani9ae81WhT8BcebIXc059AX7xxbBunTdHmbNCzwJ58EH7MVvOZmxs/l+9NHaPznwulIrFOBDg8WhhhgCvWqV1cJ368zG/DDzY/R9h3Be+z6sUA+7y2biCUAFeZ8SbDDmaygJ8rCkwAd7cYgV4ZmJm7GU260iA+yWwJ2q9w97vHSTiTzYWmKxJC1hqryn4wbSlzd5mtQI8k3U3mJJM0s5JTlZ4M9JpaCBPLOl+UCut1GSzpYdxIsBwkFpKAjzrFXfxvKp+rukg6G61HqLBwerjJSGVNIGtniRSkVk94C5DpVrjBcaKMz8zG2DIQhVecaPa0CzXE8WOuG3AF+BV59R1DHhrHEOE4tFBMhkwREg1zfSuBkk8ViQ3VQ57yU568bU9PUv+7GSSWWOkSyuKixDge/fanx9+mLIH3F+uWCz79gFw68GzAbjwwvn9me8Br12lgcpnhoMY8FiBXPEJBLiD67T0nKoQ4KWVb8cCPBKBiEyXQ1BcjTkrDBXgdUa8yYsNzeUwBgYnE/REhwPJJZ1os4FY6cmZA0om68brdioBHkSxiFpS8QKTUzVZEPwlUwcCPNVmB9LxoeosIKWUUi494ONlEZPJQHMIO9rBxvQViUEuVw5BSbnLsVwS4DnPA+5l1vBzTQdBd7u9Rms94LkcTJlooGK/JMDn8izGgi+M05ooMDo1MxY5m3HkHU6lrAe8xrnpXIAnqmNdq7y1IQhwgPzgaGni0dLsWoBPVaVBzWUMcQkmc1YqZQW4Ga+eRZXOaSQ/72w9a9dW31s//CFlAf6iF82aEWjeHD4M6Ohy1AAAIABJREFUTU186TutrF0LV145vz8rCfDa7CxUZupafLfmojlWYLI4R5iko+t0NgHuMlFALQ2RqVKV75LDTwW4spKIx73CNbkcY2NQmI7RE59ldFgEza2eAJ+lTHs2J25S9LV5JbAnq73u2SzEKDhJxJ+MT5OZjlfnxnW46bOl3RPgNdkeXJ1ToBQDfnKsfIun05AQ9xtqwApwf69C6WHc4i7HclmA23M9OVokRoHGluAG8K4OOzGtFeAPPWRfN/cEV7Ev0RqjQCOFk3MIcAcZQtqSU6RNYkaWl2zO0cPQ94DX5OQvfcekm8fTnAJ8AWJxsTQm7Ofnx7IlUZdqdpcdCCDeUCRryikts1mIN04HUtgm1RbBECE7XH3tL2Yj7RlnVGvsY8eADRvKB2aL/ZovR47Ahg385CfC5ZfPf+5aEuCzFKgqOYniwU8UWxtzjNesRpXj6oMvFgfQ0mk/s0qAu5p8z0JMpin6IShZr4qqxoAHj4js90ra/0pE7vCOdYrId0Rkn/fa4R0XEXm/iDwiIveIyHkVn3OT9/59InLTcnyXsKkU4P5SeE8igBRNQKLDPmDT47OEoDhKfeaXwK4V4JmMm2V2gGTzzLSATgW4P7CN1HzHXNR5DPjJirzONqVUOINpQ2M5BKXkAW8JwwNuh7SJ0alA0wICNLU0kmJ8hg746U/t69POXIJAqMHfj5EZyVYddxkq1dpi74vKBzDYsB4nE8VYjKSkmajJye9agHemqjebuU57WIm/olclwBNu221uKNpVUy/B+mimkURAoj/lrfpMnKi+ThcjwM89t/rnEyeA9nb45jftgUceWWw34cgRDnefy+HDNsZ8vjyRAC95wB0Mp63xPGPF6rGrvE9pyklF4cb2BI3kGB+rSFnpMkyyhli0vFeh5JxSD7gzrjDGnGuMucD7+U+B7xljdgDf834GeDaww/v3GuCfwQp24K3ARcCFwFt90b6aqRTgflhcRyqYJcxkrx1tZhPgCymqsBDirZ4HvDYLSsbd0lcyYQeYyqXvMAT4xGiNl7/grqhCKQtKuqHkVcpkIOE444JPvKl8naYnbQf8FRYXlAR43vOAj08HWhoegJYWe05Hq8XvHbdPs4YBNu8IbrUm0e6tRo3U7BvwhU3chQC3r2M1E0WXD8NUNMtkdqYAbyRHJOHmod/RUk7hChVL+47SHlbSmLR2zY3nygLc4d4IsBvLs8ShUGBsDB5Nr2VP19FAPrtUzXRojut0Aed09+7y/5ubK/Za7NhhX5ciwA8f5h9Gb0YEnvWs+f9ZaRPmbPnxHXrAW5qLjE/NLsCdTRRTKVoYZ/xkRerarLvKm7XEItPkvRz5ubwK8LB5IfCv3v//Fbiu4vinjeXnQLuIrAOuAb5jjBk2xowA3wGuDbvTYRNvlpKwKQ/gwXx2stuqmNqsBH76Iydl2r2whNo40FKZ9pAFuIu4Uz/fceVO+qqUUg43YRanIiUPdHrShFJUAWwe6zQJG4IyMUWMAg0t7totC3DPAz42HWhpeAC6u21c/YnqCe/oiSJrOI50dwXWVLLdivnaIjUuJ4pt7fbaHx2o8brn3eXITsZyTNTk5PfLX7u6TuPJKHHJMjxcbg+8sAzHNKasXfPj+fL43e5uZQisYMvQDPk8d91lN35e0DcQyGe3dlnbjQ3NUUxpARPFxka4+Wb4q7+C886riDjZssXu0lusADeGwpHjfOzxq7jxxmqhfypKHvDMTBu5zNTVmigyYVJVYZKl67TBkQBvabECfHh5BHiioUBm2oZKZU8TAe424G1uDPBtETHAR4wxHwV6jTH+tPwY4BeL3QAcqvjbw96xuY6vapqTQpEGiuk8k959kmoNZgCINQiN5GYI8KrNH0GnPmuzr6MTNTu+J90U/oFycZbJCQN41T/9wc3BYBptSZBgcsbSHrhPQwg2gUAyaYsqJAhHgCdT2PRk2UOkx4okyDktwVkW4N6EzveA+xdYEHR1WQE+VATK3u70hHdeAyym0rbGXhO13miXGxRb2+21PzaQAcql0V1W30s15pmsyclvBXja3UpNPE5HZJSRkXipPQjXA56fyJdCfVLt7laGwE4s0p4H/L777LFztgcTttjZa/s+Mjh7HvCFmvCTn7Svd9wBjz3mHWxshM2bFy/AjxzhJ9nzGKOZF794YX9aEuC5mVKpFILS7OBeTNn7fqJiCHMZfgaUPeCj5ew4rkJPZ22+qWCfGcViud0ANgqvZJbLA/50Y8x52PCS14vIpZW/NMYYrEgPBBF5jYjcISJ3DNbmEKsz/NLsuYlC2YPSFpwHJRnJMFmzl8xl6rM5Bbij6ntQzg3tZ8oAt94MEglaGWOsIiOJ65yuJBJ0Y11I/iWfnginqpltXqo84C4qN1bS0AARpsgUPAE+YawHvL09uEZ8D/hItVBzIcBbO+33GKsJdylfpw4e+n6bg+VwAr/yprPVqMYCEzWlzDNpx6nPmpvpYGRmDLiDsJ5amlrtd81P5Ev3ZVeP28dwc9N0KQZ86Jgd89ZsDmYM6Fxnv4+/muCz1FzuPT01ey63b1+8AL/3Xv6bZyBiuOqqhf1pWYDPUiHWD0FJBL+C0Zqy12Ll/e88VMr3gHttVlXdDcNp01S0KS3zeU+A56C723m7y8myCHBjzBHv9TjwFWwM94AXWoL3etx7+xGgr+LPN3rH5jo+W3sfNcZcYIy5oCeA3KfLiZ8XOztRLFf7CzDVWiKaYzJdfVm4FIvJJEQpMpqpKQ2fducB91cMKoWGy7zjJBL2gV+RkcR1SikaGuiN2prpA95qcyZNaB7wRFLI0sx0Jkd6rGDbDahIzWyI2Cqmfgz4xCTBC3DfAz5WLX7TaWO/XzI5xx8uHN/xM3qyWhSWPeDBD91t3fYerAyxKRTAGIcx4PECE8WalKCTjieKa9bQMXWCEa9KbOledD8vLWV9mhyb4vD+IlGKrF3v9jEcb/JiwPN5Ro5maGGM2NpghE3nBnvShoaqjy91I21Pj3UcTPtac7ECfHoa3vAG7mUPW7dML9ih2tgIDZEi4/mmGWkQXT4zWls8AX6inLq2tErravj2PeDeykyhANPT4YWgpOJTTJBiZCDPeK6R7mQm8FSrK43QBbiIJEWkxf8/cDVwH/B1wM9kchPwNe//Xwde6WVDuRgY9UJVbgOuFpEOb/Pl1d6xVY3voc1OFMvV/jqC2/yVjOWYzM6RFkyCT38kAm2RcUbTNTlPHW7C7Oy0ryPHZ/GApxxEZSUSdDLM8Hj53FWVanYU59bbY59evgBP+57FEJSGXwI+PVogPZK3AnXdOqdtWgHuTa4mo7Qy5sYDPl59f6T9iU2AAtxfGRqbqBb7pevGxUO/296DlfG8iymosqA2m4tkp5v8BB1ACNX31q+3E2IvbMK5sKmgtcNLSToOhx4vsJ5+oh1ul9mb41gPeCbD8LECnQwHUoQHoHO9PWnDo3NkslnkSs3OnbYsuV+Uh+3brZu91tV+Km6/HR57jHvZw55zFnfPtDTlmSBZrj3vkctZ51GsOfgQotY2e97GB8v7MZyHoPge8Ima9kLKgpKMTzFJkh/9yO5TuLT3YedtLjfL4QHvBX4sIncD/wP8hzHmP4H3AM8SkX3AM72fAW4FHgMeAT4G/C6AMWYY+Cvgdu/fO7xjq5rKwjUTYzZOLNUZoABvyDNZE+9WuhEdbVJqi01yMltbmdI484B39tiBePh4OW4xFAE+UbZTqT1xl3u4d5M9pyUPeFbC84CnPAE+PkV6rGAF1dq1TttsjhVKecDH0jFaGQ/W6+4L8HT1AzedkeBDUHwP+Pjs1fCaHRQ1au2ZGXfueq9Ce9Iq78pCh8494Bs2WAE+bIWM68I/lZSyaozD4YOGPg4Fu09hFuKJiPWAT04ycmKKDkYCKUMP1sPdRJbhsTmeGYucKPqVKv/nf7wD27fb14V6wfv7KRBjb+QsnvSkRXWFVLw4Z7VPV7mqW70N0ZUe8NI5dRBzDkBvb5WDoapAVRge8IT1gP/sFxEaJc+FW46f+o/qnNAFuDHmMWPMOd6/s40x7/KODxljrjLG7DDGPNMX0172k9cbY7YZY/YYY+6o+KxPGmO2e//+JezvshzE2+xDMDuaY2I4TwN5GjuDe/Anm4pM5mdmJQB3sWdtsUlGs9U3uMv8ox099mExPFgtNBrIE006GGgaGuiSEYYnywLGeUopoGVLF3HJlj3gGQkvBtzL+T04FOEnD3ezmwfce8AbiqUY8NFsE21NGZs9ISja2miTcfJTsZL9ANLZiLMQlLH07J5FFxPFZE+CCFOMnizf51UrNS7uRS8lYJUAd13+2veAj9YIjRAEeMmuExEO90fYyGHnG82akxHrAZ+cZHiYQD3gItAZOVm1ugdLTyV55pl2Pnv77d6BxQrwo0c5yjqmp4XNmxfVlVJoRFXhCNyu0rZ4YaWVq1HO9yqsW0cvAwyMNTM9Hb4ATzZPM0mS/qPC+ugATes6nbe53KykNITKPIi32xshO5ZnYqRg41wD9PIlm6aYLNR6o722HS19tTekGc1Xi8Ksq+IfQFNbnCQTDA+Vv09mcsrpbu/O2BhDmfImxPKqgjsBLps30WsGGBjwPH25SHhZULz8wN+4fS1j2SZuavqC0xhwsJOZbDFKsQjpYhOtQZf4FqGtw0vVN1o+nM5GA/eANzVBk+QZq/G2lyZuDqqKSkvKbhau+G5lD3jOyUpNe6sV+/6GSKjYhOnQA97JMGPpBopF+x0bJU+k2X3Ks5IHfDLC0RMx1nHUvQc8FS17wMci1gMe4F6ozuhYlXMBvEw2kl30PRGNWhFe0ttbt1q1v1ABfuwYR8RuFVu/flFdKXlmawV4zmGq3I4uK81qnUTg0AMej7MuMcbUdITBwfBDUFIJwwQpBoeENVPHoLf31H9U56gArzNKlSPH8kyOFm2qtQA9KMnmaSan5hDgjjxEbU0ZRgs1RQf88tcuMmekUjYkpEKAZyfcDaYAnU2TTBaaSqmrynGnDr1ufX2sYYDjh/NMTUEuH7yndi78qqqP9FsRdVbviJPqbZU0N06TmWos5VtvSxZP8RcLp8uLefUzWBgD6XzUyXltbUgzmp2ZISRGgVjKwXWasgJ8dJZsPc0NRSf262iztqr2gDve+LVmDR1iZxkjI17VXcmFknPYF+DDk02Mp2PWG+1YgDenYuSIMz0+yfBEI52R0UCfGV2NYwxnajbS+lV3lzAp3boVHn3U+yEeh40b4c47Yd+++X/I0aP0t54FVFe1XwiphGGclpkhKOkpG4Li4LrpWWtXvgaOzZK61kWiAI91PdZpcfRohQc8kg9879dspFojTJBi4JihxwyoAFdWHv7sNztRZGIoZwV4gEv7yaRh0iSqNpyUU0q5EuA5TharxUspD6gLAd7dTRdD1QLctQe8xQ5sM6rvuYwG6euz33OgWL2ZzrEnGiDRZb/Y/uPWrt0b3IubZPM047QwesxesH4qryA5a7cdMh98wH52Pg/Txs3EprUxy1iuZjLsZwdyNDHtYZDBk7PsVXCkhdt77fc7OVDOSJTJetepq4liJEJvhx3fjh3z8447bK+CWAyaI1kOj1vR3c5J6HBbwDnurZZkRzKMZJvpSOQCnUx1Nk4ynK2+Hu0qxtLuiW3bYP9+ysVozj8fvvY1u0Nzvhw7xpHUmcDiBXhLyszuAc9Mu1ulbW+mg2EGjpftlMl4YZIt7tK5rvO26VQJ8BDScwIk2xuYIsbhgQbWcFwFuLLy8O/17HiBiZGiDUHZuDGwz08mxSbDHxsrHXM98+5ozjIyVe2RcSrAe3qsB/xkhacv7VaAd3VaT5+/iT8MbwabNlkBPmxKz46gQyXmwi92tH+klbbIGI0b3Kf/7G7LM0SXV0imnEkgSM68oAVhmgfusN6w8nl1UKSqKcfJfI2wGS+6C89oamItAwyMlQWF62Xv9vX2+40cLnsXS9X3HF6nG9ZaVXfkiO+tDee+AGiNpTk4aaumtnPSea7j5lY7oXr48UZyUw1sbj95ir9YGJ2JLEO56kl9Kff/Es7ptm02Fd4hv9ze295W/qWZpyjs7+dI4xk0NkLXIgvVtrbCSdpn8YAbZ5swSSZtPPaJ6tS1cck5nSiu32w93UePhhDyUoOfTOLERDM9DKoAV1Ye/r2enpimfzBmBfhig9tmIdkSmSHAl5rT9VT0pDKMT6eqNrY5FeDt7XQywtBYeVnNZd5xgM5uK7T9fLku08mV6OuzE42xWPWGmjA84J7ZDox12MHUcQYUgO6OKU7Qzehx603181oHSfOZm9jKY9x/p22jJMCbpgIP0ehKZBgq1kxM/ZUaF/eFCGsbhjg2Xn7Al65TRw/hjk32WjzZX/YuZnIR9wJ8o/0+/f0241KYArylIcvBjJ2QtscmnRaoAoi32vvghw/YzCcXbZy1XMai6WwpMFycQ4AvQSxu3WpfSxUxzzkH3v1u+/8ab/ScHDzIw2YHW7Ys/vbs7IQROubehOmoknEvAwwMVTyjshA3bldq1m6zn330yFSom5MBkl3liYx6wJUViS/A/33/U/nVsXX8r5bv2moBAdHWLqRJkjsxXjrm2lu7ptU2UBlXmyk0uBMakQg9zRMcnyh/dibtptKnT2evl3mlxgPuIp1cie5uOqNjnMzES8UVwvKA+2Yrmhhrpo85z4AC0N1pGKGD4aNWHLeuceCZ2rSJs7mfB/Zae5YEeDz4DEE9rVlOTHVUefsyk26riq6NjzCQbikVQClfp24eFc0bOmkgz8njNiSkqvqew+t0/TZ7nx85Ahm/QmxYHvB4gUN5K4bb24zzvRHJdvt8+P7eDcQly5PPmAj08zvbp8mY5pJgg4pUkkv0gENFHDiUizicnIcXP52GEye4fWgbT33qortBV0+EMdoojGWqjmcz09YD7kIQd3RYAT5SUTsi7f46jW/upYNh+h/NuK0OPQupbhXgygrHT9/602Eb1/bK7T8N9PPXb7APg2P7ZykA0OJmI0ZPr70MB4/aOGk//NylIO5tmWQ4lyoVAMlm3GZe6FxvP3fYK/7hNO+4jwhdnVa8Pf64PdQcLYS62QywHvAwBHi3LeCw/wG7VNy6zsGDsa+P3TzA3n577ZQEuIutCq0FBump3o8x6S4/PsDa5ARTJlpaqSk/hN1MFKWnm06GGfKyPRQKNqbetdBo6ltDN4McOVAg42/ADkuAJ6fIYu3X3uHeu7h2nW3jl/3r6OMwDb3BpncrFTYbqkhf6YvFJYjTjRvt3r8qAe7Hy1emzZmLQ4c4ylr6x1uWJMD9uhF+4SafjF8B18WKYnc3vRzn2Gj5Pi8lCnC5V2HDBtZxlKMH8s5XvmvZuqv8XNrFg4Fm6lmpqACvM9raoDU2yZH8GmIUaN8c7A769X12sOk/MEv+UQepzwB6+rzMEvtsZoKS1y1acFaKtrfdiprjXq7/Ut5xVzHgm+ygOXzIKrbS0r6jSY2PXyr6+c+3Pzte7S7R3W2vU/C8GWEIcG8id+999rVns4Mv29nJ7oZHKExFeeQRmPCciYme4B+K3R1FxmgjP1KOPS1NFF15wHvthO3YMa891xPF7m66OTEjNMv5psitWzmLh/j3LwqP7Xcfc15JZ3s5tZxfk8AlfoTi0ck2ukzwsbWlwmYHyqummTRLPqfRKGzZUhGCAuXKtvPxgB88yMNYR9Vii/AAdK61Y3RlSkCoqIDrQoBHo6xNTTCWi5fuwVL4mcv7Yv161tPP0f6Ke9HlKm0Fe55cnozuXjMUSuaV5UYFeB2yOWmfVj1yAtnUF+hnrz/DLlf2Hy57M0oP4dbgQl0q6dliB5TBxyeq23NVcpeZZdpLaQ8dCfBUXwcxCgwdtqOa63Pq03FW9cM2hBo8gF1Vb4paj9H5/DIcAe49KH/44Bp6OUbXVgfp3UQ4Z72NlbrllvL109sXvB17vI27Q4cq4qP9uFNXAnyjFYS+AHc+UWxvp5shTpyMVbXXHMkHGlo3g3PO4T38KcOjMR4/1BCqAN+8oSzk2te4vf+heotQNycWnw5kDrr88LqD5dCWoDLZnHWWrYbph0SVBPh8POD793OQTQBs2rT4PnR5Toyhweows9JmYUd7avxMPaVKxpNL39h6SjwP+M/3dvL979tDTldpK6jcy5rYGVxiiZWMCvA6ZHObHXx6zPFAM6AArNtqH+z9RyvSH6WNTX+UcqPe1uywQun4gRpx6lKAb7OD2MARLyQkJ04FuOzYbjdEHixPMmIUiLW4VcSte6rLvyUcxfLORhE7cF8m/72w1GGLpHunXQt/dLSHs7nf2RLmnosSvKDhVj7wAVOaqK7bFrwg9pNjDB4up+jL+sLGVQjKGfZzjx2uCZVyJcAjEbrj4wyOWiFaVXXXZWz0jh3sjB8q/RimAN+ypfz/VK/71IetrZAQe2JdCPBOLzd+5USxVEhtief0hhvgwAH47//2DvghKPPxgO/bx6HoGcDSHpMlD/+JagGezkXdecCZxUmUNu494D09mAZ7L95yiz3U3BqeJ/pb297AN3heKM+LlYAK8Dpkc6cVcV0MQV+wHvDuM1qIUeDI8fKsNztRdHrjt23rpoE8g/027CUMAb52jxVnA/dZb6ZrAc7OnVaAH7VfLhPGYAo87aV9vIV3ln4OazkR4Ksv/hy/xcc4c+NkKK733Ze004D1Gj2J+wOfnPrIH/w+FxZ+wsiI8Pi9E0Qp0rOjPfB2etZYAerfF2C9bk494Dtt1pVj+2w4QSkcrM2dp7a7rciJtP0+5ZoDzpqzRKN0ndtHTOxEI8wY8C1nlmNdZecO5+2JwPomu2razYnA74veLdZYRw9WXKd+Jpsljm/XXmtf77rLO7CQEJS9eznYejY9PUu7nvwYd38DvU8m71iAr/eK8fgCPBPCMyMS4Slbx6oOuQ6TrOTaNXfyPP6jvAN3laMCvA655Ne8jXWcEfhgGknE6eNQqYAKQHbSrQCXtb10c4LB4/Z7uS7+AbDugg1EmOKxu63QyOSjbgV4czOdTZMlL0ppUuM4KFs2b+J1/HPp50RLeAL80t/aycd4DRINZ5hpbIR39/4Du7mf37/6QXf5lS++mLVt9iL91Vceo5cBIpuCF/t9m+158zfQgp0ouowBT+1YR4JJjj1q4879e7Gx1d3N2L0mwlChlenpEAU4ELnsGaw1R217IXrAN55jE1Kfxy9Z0u7ABbC2066idDEUuAe890w78T20vxxak8kHs5G2s9Ne6gcPegcWEoKydy+HGrct2UflDyPHR6qFaDofc7pXobRKe9DaLpMJZ6L4ezcM8Hy+Drgv/DODf/gH2LMHnvnM8NpcRlSA1yHPeYNNkNrLAJx5ZrAfLsKOhgPsO16On82Mu019RjJJT2yE4wOeOA2hAEDzOTvZxYPcebe9BbJ+6jOHT/71HRkOjNjzmp0ohlN9LxplHUdLP4a5nMjll8Pf/z189rOhNfmHvzPJ/TyJrR94k7tGRFj7phsBuGtokz2/e/YE3syWnY2kGOeeBytSkfmeRVfX6VOewlqOlTzgNkNIBkm5u057NjQyTZSTA7lwcw9fdhnr6bfthSjAn/z0Vt7U/GG+xPXwlKeE0uae3VYcTxENfMyJbDuDDRzh0P5ylpBMwROn7UtbGRKx8dulYjyxmLXTqTzg+Tw88giHp9cv2UfV2got0UkOnyxfH4UCFKejJBqLEHEjo9ZctguAgV/ZazSbC6dia+zSS+y+HSDKVCgVYktceCHcc499PQ1QAV6HtO9ezw9f8kG+/PERJ3GuO9eMsG+ku5R+uFQl0uGNuKYtz6BX9SuUClwdHZyXfJg799v1xWzRsQcc2L0lw2P5DWTT0+XUZyEMbpFkgvs4m7ck3kfP793ovL0q/uAP4GlPC6+9t77VVqxzHEO49nkXADBCJ+sahqoDewMisnM7e7i3SoBnC1G3Kye9vaxtGinHgE8UnF+n/ibsgTuPhJv67JprWOfFvIcpwGMxeN++57PlPz4USlEsgBt+17pxz3zdVcF/eEMDfYkhDh2112k+D1PTEZrbmgIZTzdtqvCAgxX1p/KA338/FAr0ZzsDcfj3NQ9xaKI8mfCv00RT8Pn/feKXXkg3gxy8x8sOlgsmrv6UXHQRGzls26Q5XAF+mqECvE657N9ez/pXP9vJZ+/YIYxPJznebx/CmXEvXKK19RR/uXh61kYZzCQhE14BgPO3jXI020l/P+SKMXdVzTx2PSnKNFH2/uhoOawnjIf+7bdz9q3v5Z2T/xu59hr37S0nkUgouRYrC3vu6Mu62TDY2srZyQM8dLR835WK1Dj8juvWTHFkxAqn7Lj7lZqznmGdCPd9b6AswMNYqYlEOPelZwEwLF02x2tYbNgAz3lOaM1d9qJODh+G6z94pZPP7+vOcmjM2z/gZdBZuz6Y8XvTJrsRs0RHx6k94HfeSY5GhsabAikU3dd6kkOZckibn//faahUVxdnxg/y8KNehqBcJJxnRipF3zPOKP8cQhXj0xUV4MoMzr7YemXu/tIjAGRPTNiH8JOf7KzNni0JW3TknnucV970Oe8y+z1/9uqP2/a6kk4zL+x+mt3Bf9/XHiX707vsOT3vPGftldi1C57tZrJ2uuIXxALY9UZ38Yob1k1zPNtKoeBXiI0Rb2l0mqJv684Y+4sbmT5wiOzgmH3oO9rQCnD2c7cQo8CvfpEjM2A3gDWfvdVZe5Vcf6M9j+bXX+p208kKYMMGd8Nb37ZGDhfXMv34AQ48aNXppu3BXKPr1tl6DVN+iHl7+6kF+Pe/z9E2G8IRiADvmOBQoSxESx7whLtEAQBnbpjgoZE1YIzd/9FkqgcfR1z2nT8v//CKVzhv73RFBbgyg6f+7lMRpvn5J+6DTIbM/gHiDdPBjGRzsGZXN2O0kfv5XWRH7OgW3+quPYBz33YdwjT/+p92QIvv3Hz7I7ghAAAZsklEQVSKv1gau16wgwSTvPwjl/KfuSussNkajtBQgqWyRsSuC9x5h9efvxZDhIFbfmBFOBGaHRT9qWTbhV3kiHPkcz8k8+M7iZODSy911l5TW5zdTY9xxz2NZF7zewA0X3C2s/Yq2bMHbrsN/vqf3a3unQ70PX0zBRo5fsv3OfiezwOw6XnBOGx6euzksxR1cqoQlKEh+PKX6b/yN4BgHluberIMmF6yE3ZVuOQBd1SczuesJzcyML2GkY9/0Yafbeh0m57To6nJrjrcey/OYtwVFeDKLLT2tbG76zg/vycBN9zAZDZKc1ez0xu/d6dd/j32vfvJ3vxaAOIXneOsPYCWzgYuuzDLN3iBbe85Vzhtr6GzhemGcohL96+dHrlOVyvvf799PduhVlx/gxW+/f/vR2QmbbxpvDf4lIeVbLvMpo149C2fIJs1xNvjzuNAr7xokm9PXMLNfIoIU/ReG87mRICrry6nl1YWR9/51olx6KPf4uAPbe34vpcHM2nzs5CcOOEdOFUIyt/9HeRy9D/jBiAYAb7zHBtrsvcr9wM2jSxAYrNbb/RTXmFLeH77NV+kQCOtO8ILB9m0aWkVRJVTowJcmZWLn93BzyOXMP2Nb/II29l6nbvwE4DNW6y43/+Ne8hil4LjF5/rtE2AL95ajqXdeYmbwi2VfPij5bCaK17mvjqk4o43vtFmQ3Ap3tZvtq72/p8fZPCN7wCge5fb63TbTnuN/oAreCy6g7ZzzzjFXyydX393WXDHE1ES691OMpRg6dtkx++79rfzdt5Kd2susDnbDAF+qhCU226DK6+kP2onkkEI8F3X7wbggS89CED6MRvontgRbErHWp52bQsNsWleyhcAeNJrn+60PSVcVIArs3LxZU2MTLfzjch1jNHG2XvcxmOf4T3jH+cMMt22bnB8jftl4a6u8v8drrKXuOlVwqc/bf9/zSrfD3k6EHNcpXmdN0c7OtLEoc/9CICNL3X7EN6yBVpaDO/grTwwdRZXuF0YAuDXLinfF/4eEKV+8HNt/w4fJUect74zuD0Kswrw0dGKoPAKjIFHHoFdu+jvt6FilWP8Ytn51DYiTPHgrY/DkSOk3/shAJrPXEKN+3nQ3Aw3vLQs0845P5yy8Eo4qABXZuXii+3rddNfBtwus4Nd7hKBf7ngg7wl/WaSSadJV6r4n/+B733PvZjyecUr7PNjh/sieEqds2YNNDYaHl97CYewKscv0OMKEWhqKoebvehFTpsr8Ru/Yf994xvhtKcER1dX9T7d178huHDFWUNQwA6itZw4AWNjsG0b/f3W+x1E5GQ8DtvPmOKeqbNh61Yyd9wHQOL8XUv/8FPwmc/AZm97ksO90MoyoNMpZVZ2767+2XW9iMZGO1j+1x123XLPHoiGVLQxpGJ0VYQ1uVDqm2gUzjxTeHDTb9D2lJfAO8N5CH/2s/CJT8A//mPZC+8aESs2lPpDBPbuhXe9yzoWgtwu5AvwwUHvgJ8FZGCgXCfe534bo8327fR/M9i8Aedd1MjPRi+H4TzDrWfAGLR1h1PY7O677d7SEPZfKiGiHnBlVio3Ph87Fo5gfPnLZ29fUU5ndu2C274t/Pk77d6IENKcc8018G//Fp74Vuqf5mZ45zvhppuC/9xkssID7se7HD5c/cZMBl73OuvNOffckgc8KM47Dw4MtzL0zZ/x+G+9i2g0PI90W5smzFqNqMxR5uRb34I//EPo7Q2nvfe8Bx57DH7nd+DjHw+nTUVZ6ezebTd7QvUkVVFOF7q7KwS4r3orBfjJkzadzUMPwVe/Chs3cuRIsBNIv2TDXU0X8/ixZvr6wgtbVFYnKsCVObn2Wnjve8NrT8Ruxvzwh+GCC8JrV1FWMjfeaF/37LGhIYpyulElwH23ti/Af/pTq45/8Qv45Cfh2c9mZMSGgm/ZElwf/DDM734XPv/5cuIARVksOn9TFEVZwezcaRM76L4B5XSlSoA3NdnqPH/5l/Dtb8OPf2x3KX7rW3DVVQA8alORBxq20dlpBf1f/7X9OYSClMoqRz3giqIoK5xt26zmUJTTkSoBDnDhhfZ1ZAT+6q/g9ttL4htsKCPY+yZIrrvOvu7cCW9/e7CfrZx+qAdcURRFUZQVS09PRRYUgK9/3W66nKPaj+8BDzpM5H3vgze8wXrWNSOJslTUA64oiqIoyoqluxvGxyGX8w5EInOKb7ACfM0aaGkJth8i1quu4lsJAhXgiqIoiqKsWGYU4zkFjz0WfPiJogSNCnBFURRFUVYsa9fa1/7++b3/0Uc1b7ay8lEBriiKoijKisUvxX7gwKnfm8/DoUPqAVdWPirAFUVRFEVZsSxEgD/8MBgD27e77ZOiLBUV4IqiKIqirFja2+2GyvkI8Ntus6+XX+60S4qyZOpegIvItSLysIg8IiJ/utz9URRFURQlOESsF/zBB5/4fVNT8JnP2KqxfX3h9E1RFktdC3ARiQIfBJ4N7AZuFJHdy9srRVEURVGC5EUvsmXgv/zlud/zoQ/BPffAX/xFeP1SlMVS74V4LgQeMcY8BiAitwAvBB5Y1l4piqIoihIYb36zDS+5/np41rNgwwbYtAm6umBiAn75S/jKV+Caa+DFL17u3irKqal3Ab4BOFTx82Hgoto3ichrgNcAbNq0KZyeKYqiKIoSCPE4fOc7thrlv/87PPQQHD5sN1yCzRX+p38Kf/InWihHqQ/qXYDPC2PMR4GPAlxwwQVmmbujKIqiKMoCaW2Ft73N/gM4edLGfadS0NiowlupL+pdgB8BKrdabPSOKYqiKIqyimlvX+4eKMriqetNmMDtwA4ROUNEGoGXAl9f5j4piqIoiqIoypzUtQfcGFMUkTcAtwFR4JPGmPuXuVuKoiiKoiiKMid1LcABjDG3Arcudz8URVEURVEUZT7UewiKoiiKoiiKotQVKsAVRVEURVEUJURUgCuKoiiKoihKiKgAVxRFURRFUZQQUQGuKIqiKIqiKCGiAlxRFEVRFEVRQkQFuKIoiqIoiqKEiBhjlrsPoSIig8CB5e6HUqIbOLHcnVCWjNqx/lEb1j9qw9WB2jF4luucbjbG9Mz2i9NOgCsrCxG5wxhzwXL3Q1kaasf6R21Y/6gNVwdqx+BZiedUQ1AURVEURVEUJURUgCuKoiiKoihKiKgAV5abjy53B5RAUDvWP2rD+kdtuDpQOwbPijunGgOuKIqiKIqiKCGiHnBFURRFURRFCREV4IqiKIqiKIoSIirAlVWBiMhy90FZHCIS8V7VhoqiKAGg4+nKRwW4UreIyDoRWQdgjDE64NQfIvJC4KtgbbjM3VEWgYg0LHcflKUjIheLyLXL3Q9l8YhIj4ikQMfToPAdRC5QAa7UJd6D4lbgn0TkNlARXm+IyLOAtwNnisirl7s/ysLxbPgnInLGcvdFWTwicg3wz9RUCtTxtH4QkecC/wm8T0Q+KyJty92nekdErgReJiIdLj5fBbhSd3g3xT8A/9sYcz1QEJG1oCK8XhCRZ2Jt+PvAnwBnLW+PlIUiIhdhJ8HnA9erCK9PRORy4HPAbxpj7hCRhD+G6nhaH4jILuAdwOuMMa8BksAPReRs7/dqwwUiIk8DvgvcBFztQoSrAFfqCm+5eyPw28aYH4jIduAC4I9F5BMiEteHxsrGWyK9DHiNMeZHwF7gFSLyouXtmTJfvPvLAK/ETqQ2AL9eKcL1Hlz5iEgU6AYeBxq8e/PTwKdF5Cs6ntYNGeBe4GHv598FGoD/IyJRteHCEJEY0AHcAHwEeB5wbaUID+J8ah5wpe4QkYQxJi0iCeBvgGHgfdhE++3GmKuXtYPKKRGRpDFmUkRixpiiiLwKuBT4Y2PMiVP8ubJC8ARaVkSuAp4LDAK3GGMeFxHRONSVj+fUeA52NerJwLuAL2PH1IQx5tnL2D1lHohIH/AB4IvAncCLsQ7WJwMHjDFvWsbu1SUiEgei3nPq5cA1wG3At4wxw0G0EQviQxTFNSKy2RhzAMAYk/YO54C/9Y+LyI3Al0WkzRgzukxdVeag0oZAGsAYU/R+vgd4IdAFnBCRiDFmehm6qTwB3rLsRdhVi3uMMQcBjDHf8zYrPRt4lohsBjqB1y1bZ5U5qbHjXcaYr4lIM9BljPmg954bgC+JSKsxZmwZu6vMQo0Nfwi8H3gF9h6MG2OuF5EdwM3L1sk6Q0QuA56OncTsM8Y8AmCM+Zw3vl0DHBeRpwAdxpg/W0p7GoKirHhE5AXA4yLyFxXHxBgzVSHoAF6GfeircFth1Nqw1jNqjLkTuwz+Sc8rrjZcYYjI87DLsX3YydKrRCTuZwkwxnwH+DhWBLwS+Nhy9VWZmxo7Xge82vOCfxX4cMVbX4adEOsqxgqjxoYvwu6H+j7wB8CrgZd4b302sE1EGjQE5YnxNpR/EkgAzwI+6u2PAMAY8xngM8B7gTcC/7bUNlWAKysaEVkDXA+8BbhORP4MqgWct2noVcAfAa81xowvR1+V2ZnLhhW/98eh9wG/AlrD7aFyKjxP2tuwG/XeBNwCPAMbojBd8XA/EzgPuMabVCkriFns+P+woV8txpisMWZKRCIi8grgj4Hf0fF0ZTGLDT8PXCYincaYUWNM1nvfzVgbvt0YU9BwsFOyG/iIMeYt2PP7SeCDlSIcSAFbsePbXUttUAW4stIZxN4U7wZeit2sV7vskwK2ATcYY+4Pu4PKKXlCG1Z4uweBNwcVX6cEyuPYzZb3gA05ASaBc7yf/Yf7XuACY8wDy9FJ5ZTMZscJPDt6tGE3ur9Ex9MVyWw2HKfahgIcA56p9+K8yQBnAxhjxowxnwXeDfyZiGz13jMBXBTUOVUBrqxY/E1cxpifAhhj9mGXvl8hIm/23vNMIAq8zRjz4PL1VpmN+dpQRLYbY3Iau7/y8OLxi8aYz3obLqPer6axk19E5EIR2WiMuV/vw5XJfO3oHfsbtePKYwE27DHGfMsY89Cydbb++BRwroi8t+LYrcA+bJYngO8GOaFRAa6sWGqXzLzYYF/AXS+2AM/7gUZjzNRy9FF5YuZpw38ECsvRP+XUzBKP7z83DgFHReT5wHsAvQdXMPO0419jN/CpLVcgC7gXNd57AXipGvPYmPmLROR9AN5qbAO21kHg1UU1C4qy4qnwohbBelFF5JvA64HLazZiKisQtWH9U2FDf7I0hN1omQd+yxhzdPl6p8wXtWP9ozYMDj+hg+cc6heRFwNfF5HPYMMirwD+zkXb6gFXVgziVbOsOSbGGCMiF4hXrlxs8Z2zgKuMMfeF3U9lbtSG9c88bPjb3uFW7Mallxlj7g21k8opUTvWP2rD4BGRi0TkVSLib1w1nge8KLa678XA04BvAg8CLzTG7HXRFxXgyopARK4D+r1sJiW8m+PXsOnN9nuHH8VWwrw71E4qT4jasP5ZoA3fAuwxxjwaaieVU6J2rH/UhsHjpW/8ODbX903AzZ7ne8o7px8Bcl6c/ReMMR9zuRdCK2Eqy46IrMdW8TqATXT/HmNzbvq/fzkwYoy51ZupanziCkNtWP8s0IYNFcvfygpC7Vj/qA2DR0TOBj4H3GyMuUtEXoQV4TcYY3I15zSUKr4qwJVlR2xJ+YuNMd8XkSuATwBvrRxwvPepcFuhqA3rH7Xh6kDtWP+oDYNHRLqw9Sg+4Z8zEfkO8GfGmDsq3hfaOVUBriwbfnybMeZYzfHLsUnw32aM+bSIXAo8YIw5EX4vlSdCbVj/qA1XB2rH+kdtGDzeOZXKjaki0uR5vb+FLVT0cxE5F3jchJgKVwW4siyIyPXYsrkNwFeAXxljbqv4/RXAB7GVEXcDzzPGHF6Oviqzozasf9SGqwO1Y/2jNgyeeZzTTwLvBM4Ffhu4yRhzPLT+qQBXwsZbCvou8JvY/M/Pwpaw/oEx5gsV7/sn4AbgSt3ZvbJQG9Y/asPVgdqx/lEbBs98zqnYfN9PwRYxutmEnJFL84Ary0EUGMMu95wUkSHgmcDlIjLoxb3tArZiS+nqQLPyUBvWP2rD1YHasf5RGwbPE53TIWPMd4FObJGd84wxj4TdQfWAK8uCiPwjkAR+3xgz6e36fiWQN8a8z9uE0mSMGVnWjipzojasf9SGqwO1Y/2jNgyeJzinBWPM34nIJiBlAiwvvxA0D7gSKiLiX3MfxM5O/0REksaYfuA24IUi0mWMSetAszJRG9Y/asPVgdqx/lEbBs88zukLRKTHGHNwucQ3qABXQsK/IYwx096hR4EvA83Ah0WkG9gJFLHxWsoKQ21Y/6gNVwdqx/pHbRg8CzynuWXpZAUagqI4xUuXtLcyrZKfZ1NENmJjsG7C7uruBF5njLlzeXqrzIbasP5RG64O1I71j9oweOr1nKoAV5whIldjS7u+1BjzC++YGGOMiFwJvA74Q2PMQRFpA4rGmMll7LJSg9qw/lEbrg7UjvWP2jB46vmcagiK4gQRuQb4W+BGY8wvRKRJRCLeTdEC/F/gC8aYgwDGmNGVclMoFrVh/aM2XB2oHesftWHw1Ps51TSEiiueCTQbW2GqB3sjtIrIfwE/Aq41NjWQGF2GWamoDesfteHqQO1Y/6gNg6euz6mGoCjOEJGPYStMFYDPAkPAed7r32Kvv+m5P0FZbtSG9Y/acHWgdqx/1IbBU8/nVAW4EhjeZodxY8xoxbEPAMeMMe/yfr4KeBNwvTFm2XchK9WoDesfteHqQO1Y/6gNg2c1nVONAVcCQUSuw5Z9fbWX6gcAY8wbgfdUvLULmAIawu2hcirUhvWP2nB1oHasf9SGwbPazql6wJUl48Ve3QIcBA4DA8AtxpgTNe97PXAzcLPRUrorCrVh/aM2XB2oHesftWHwrMZzqh5wJQhGgT8AXgv8CtgB3Cgia8AmxxeRVmArdXBTnKaoDesfteHqQO1Y/6gNg2fVnVP1gCuLRkQ2AceAmDEmXXH8euAyYJ8x5gMico4x5m4vPdCK3AxxuqI2rH/UhqsDtWP9ozYMntV8TtUDriwKEXkucCvwT8C/iMhZ/u+MMV/CpgDqEZGvAj8WkfX1clOcLqgN6x+14epA7Vj/qA2DZ7WfUxXgyoIQSx92w8MbgL8Abgd+ICJn++/zbo6t2PRAlxhj+pejv8pM1Ib1j9pwdaB2rH/UhsFzupxTLcSjLAhjjBGRfuBnwD7guDHmvSJSAL4tIlcYY/aKyDpsLs7r6iEW63RCbVj/qA1XB2rH+kdtGDynyznVGHBl3ojIdqADeAz4EPBLY8zfVPz+j4HdwOuMMRkRSRljJpant8psqA3rH7Xh6kDtWP+oDYPndDqn6gFX5oWIPA9b5nUEuBf4HPB+EYkaY97tve3fgD8DsgD1elOsVtSG9Y/acHWgdqx/1IbBc7qdUxXgyikRkUuwJV1fZoy5S0Q+ClwIXAL8XESi2PycTwfOB9qxN5CyQlAb1j9qw9WB2rH+URsGz+l4TjUERTkl3o2x0xjzKe/nHuBTxpjnishW4M+xs9GLgFfVYyzWakdtWP+oDVcHasf6R20YPKfjOVUBrpwSb+aZNMaMef9fB3wDeI4x5qiIbAaOeO8ZXc6+KrOjNqx/1IarA7Vj/aM2DJ7T8ZxqGkLllBhjpowxY96PApwEhr2b4jeANwMNq+WmWI2oDesfteHqQO1Y/6gNg+d0PKfqAVcWhYh8CjgKXM0qWQ463VAb1j9qw9WB2rH+URsGz2o/pyrAlQUhIgI0AA96r1cZY/Ytb6+UhaA2rH/UhqsDtWP9ozYMntPlnKoAVxaFiLwKuN0Yc/9y90VZHGrD+kdtuDpQO9Y/asPgWe3nVAW4sihERIxePHWN2rD+URuuDtSO9Y/aMHhW+zlVAa4oiqIoiqIoIaJZUBRFURRFURQlRFSAK4qiKIqiKEqIqABXFEVRFEVRlBBRAa4oirJKEZG3icj/eYLfXyciu+fxOVXvE5F3iMgzg+qnoijK6YYKcEVRlNOX64BTCvDa9xlj/tIY811nvVIURVnlqABXFEVZRYjIW0Rkr4j8GDjTO/bbInK7iNwtIl8SkYSIXAK8APhbEfmViGzz/v2niPxSRP5bRM6a432fEpEXe5+9X0Te7f3uDhE5T0RuE5FHReS1Ff36I68P94jI25fh1CiKoqwYYsvdAUVRFCUYROR84KXAudjx/U7gl8CXjTEf897zTuDVxpgPiMjXgW8aY77o/e57wGuNMftE5CLgQ8aYK2d5X23TB40x54rI3wOfAp4GxIH7gA+LyNXADuBCQICvi8ilxpj/cnYyFEVRVjAqwBVFUVYPzwC+YoxJA3jCGeBJnvBuB1LAbbV/KCIp4BLg3ysEdtM82/XbuRdIGWPGgXERyYlIO3C19+8u730prCBXAa4oymmJCnBFUZTVz6eA64wxd3vlnS+f5T0R4KQx5txFfH7Oe52u+L//cwzr9X63MeYji/hsRVGUVYfGgCuKoqwe/gu4TkSaRaQFeL53vAU4KiINwMsr3j/u/Q5jzBjwuIi8BGwZaBE5p/Z9i+Q24Dc9LzsiskFE1izh8xRFUeoaFeCKoiirBGPMncAXgLuBbwG3e7/6C+AXwE+Ahyr+5Bbgj0TkLhHZhhXnrxaRu4H7gRfO8b6F9uvbwOeBn4nIvcAXWZqgVxRFqWvEGLPcfVAURVEURVGU0wb1gCuKoiiKoihKiKgAVxRFURRFUZQQUQGuKIqiKIqiKCGiAlxRFEVRFEVRQkQFuKIoiqIoiqKEiApwRVEURVEURQkRFeCKoiiKoiiKEiIqwBVFURRFURQlRP4/t2zWnNHhPJYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plot the predicted values and actual values\n", "plot_result(test_df, pred_df)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Evaluate: the mean square error is 1921356.3949139877\n", "Evaluate: the smape value is 6.465159906962593\n" ] } ], "source": [ "# evaluate test_df\n", "mse, smape = pipeline.evaluate(test_df, metrics=[\"mse\", \"smape\"])\n", "print(\"Evaluate: the mean square error is\", mse)\n", "print(\"Evaluate: the smape value is\", smape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. save and restore" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We provide save and restore interface to save the pipeline with the best trial for easily rebuilding." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pipeline is saved in /tmp/saved_pipeline/my.ppl\n" ] }, { "data": { "text/plain": [ "'/tmp/saved_pipeline/my.ppl'" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# save the pipeline with best trial\n", "pipeline.save(\"/tmp/saved_pipeline/my.ppl\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Restore pipeline from /tmp/saved_pipeline/my.ppl\n" ] } ], "source": [ "from zoo.automl.pipeline.time_sequence import load_ts_pipeline\n", "new_pipeline = load_ts_pipeline(\"/tmp/saved_pipeline/my.ppl\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "# you can do predict and evaluate again\n", "# we use test_df as input in order to compare results before and after restoration \n", "new_pred = new_pipeline.predict(test_df)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datetimevalue
02015-01-10 13:30:0022192.162109
12015-01-10 14:00:0021757.605469
22015-01-10 14:30:0020591.683594
32015-01-10 15:00:0021799.269531
42015-01-10 15:30:0022432.207031
\n", "
" ], "text/plain": [ " datetime value\n", "0 2015-01-10 13:30:00 22192.162109\n", "1 2015-01-10 14:00:00 21757.605469\n", "2 2015-01-10 14:30:00 20591.683594\n", "3 2015-01-10 15:00:00 21799.269531\n", "4 2015-01-10 15:30:00 22432.207031" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_pred.head(5)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Evaluate: the mean square error is 1921356.3949139877\n", "Evaluate: the smape value is 6.465159906962593\n" ] } ], "source": [ "# evaluate test_df\n", "mse, smape = new_pipeline.evaluate(test_df, metrics=[\"mse\", \"smape\"])\n", "print(\"Evaluate: the mean square error is\", mse)\n", "print(\"Evaluate: the smape value is\", smape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. continue training" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We support continue training with incremental data using the best configuration searched and the trained model." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "**** Initialization info ****\n", "future_seq_len: 1\n", "dt_col: datetime\n", "target_col: value\n", "extra_features_col: None\n", "drop_missing: True\n", "\n" ] } ], "source": [ "# review the initialization infomation if needed\n", "new_pipeline.describe()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n", "1029/1029 [==============================] - 1s 1ms/step - loss: 0.1201 - mean_squared_error: 0.1201\n", "Epoch 2/5\n", "1029/1029 [==============================] - 0s 45us/step - loss: 0.1232 - mean_squared_error: 0.1232\n", "Epoch 3/5\n", "1029/1029 [==============================] - 0s 46us/step - loss: 0.1343 - mean_squared_error: 0.1343\n", "Epoch 4/5\n", "1029/1029 [==============================] - 0s 58us/step - loss: 0.1122 - mean_squared_error: 0.1122\n", "Epoch 5/5\n", "1029/1029 [==============================] - 0s 48us/step - loss: 0.1186 - mean_squared_error: 0.1186\n", "Fit done!\n" ] } ], "source": [ "# Use val_df as incremental data\n", "new_pipeline.fit(val_df,epoch_num=5)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAFzCAYAAAB/xLx5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydebwbZb3/30/OyZ6ctS2lGy3QUrpRVllEW5FNQbzKegFF70VFUNHLT9xFL8jyQkERBBREr9VSUYQrXHbKJosUy9KytLSle3vas+ZkT57fH8/MZJIm5yRlJmfp83698koyM5lnJjPzzGe+z3cRUko0Go1Go9FoNBpNffAM9QZoNBqNRqPRaDR7ElqAazQajUaj0Wg0dUQLcI1Go9FoNBqNpo5oAa7RaDQajUaj0dQRLcA1Go1Go9FoNJo6ogW4RqPRaDQajUZTR7QA12iGAUKIqUIIKYRoHOptqQZjW/c3Pt8qhPh+Hdq8QAjxrAvrvUII8Qen11svRsL2j7ZjJ4S4Wghxqe37RUKIbUKImBCi3YX2RlT/MBBCiHVCiI+6tO6/CCFOdmPdGo3TaAGu0QwBbt6E6o2U8ktSyv8ebDkhxFIhxH/WY5s07w8hxAIhxMah3o7hiBBiLPAZ4Dbjuxf4GXCClDIipdzpQBtuilTHjq3b17T9Qb9KrgWudGt7NBon0QJco9nDEUI0DPU2aDQjiAuAB6WUCeP7XkAAWFHrioRC34cdQkr5EtAkhDhsqLdFoxkMfeFrNHVGCPE/wBTgf40h62/aZp8rhFgvhNghhPiu7TceIcS3hBDvCiF2CiGWCCHaKqx/gRBioxDiO8Z61gkhzrXNv0sI8SshxINCiH5goRDCL4S43mh7m+FWErT95v8JIbYIITYLIT5f0t5dQogrbd9PE0IsF0L0Gtt7khDiKuBY4JfGPv/SWHamEOJRIUSnEOJtIcSZtvW0CyHuN9bzErDfAP/p/wkhLimZ9qoQ4lPG558LITYY61omhDh2oP+uZJpljRzoOAghAkKIPxjTu4UQ/xRC7FWhHXMdfUKIlUKIf7PNu0AI8axxPLqEEGvtw+pCiGlCiKeM3z4KjBngf2kVQvxdCNFhrOvvQohJtvltQojfGse1SwjxNyFEGPg/YIJxrGJCiAlljnPRfzXQPg3ESDt2wMnAU8bvZgBvG9O7hRBPGNOPNtbRY7wfbdumpUKIq4QQzwFxYN+SbXatfxjg2Nb834gK13SZNs8XQrxn/P67JfOOEEI8b6x3ixDil0IInzHvaWOxV431nzXY+WywFPh4uW3RaIYVUkr90i/9qvMLWAd81PZ9KiCBXwNB4CAgBRxozP8a8AIwCfCjhr//VGHdC4AsaljcD3wY6AcOMObfBfQAx6AewgPADcD9QBsQBf4XuNpY/iRgGzAHCAN/NLZ1f9v6rjQ+H2Gs+3hj3ROBmca8pcB/2rYzDGwAPgc0AgcDO4BZxvzFwBJjuTnAJuDZCvv8GeA52/dZQDfgN76fB7Qb7fwXsBUIGPOuAP5g++82VjpWAx0H4IvG/xYCGoBDgaYK23sGMMH4j84yjs/exrwLgAxwobGei4DNgDDmP287th8C+sztL9NOO/BpY5uiwJ+Bv9nmPwDcDbQCXuDDA/wP1nEut0wV+zRajl0HcHiZa7fR+N4GdAHnG9t8jvG93XYdrAdmG/O9Q9A/lP5Pu/XfUHJNl2lrFhBDnad+1HmbtR2TQ4Ejjf9hKvAmcKnt91Y/U835bCzzDeCvTvXV+qVfbr2GfAP0S7/2xNcAN9hJtmkvAWcbn98EjrPN2xsl0hrLrHuBcZML26YtAb5vfL4L+L1tnkCJpf1s044C1hqf7wSusc2bQWUBfhtwQ4V9LrpZo0TaMyXL3Ab80LjRZzDEuzHvJ1QWcVFjH/Yxvl8F3DnA/98FHGR8voLqRVzF4wB8HvgHMG83zoflwGnG5wuA1bZ5IeP/Ho+yjJYe2z9SQYCXaWc+0GXb9jzQWuEcqkmAV7FPo+LYlTkvp1IswM8HXir5zfPABbbr4MeDtGFtd0kbTvUPpf/Tbv03DC7AfwAstn0PA2n7vpUsfylwr+17kQAf6Hy2TbsQeKLaa0+/9GuoXtoFRaMZXmy1fY4DEePzPsC9xlBtN+qGmUP5n5ajS0rZb/v+Hso6abLB9nksSuQts63/IWM6xu/sy783wPZPBt4dYL6dfYAPmG0a7Z6LEppjUTf/qtqVUvahrLlnG5POARaZ84UQlwkh3jRcArqBZgZw3Rhkmysdh/8BHgYWGy4d1wkVoLcLQojPCOWmY65nTsn2WOeBlDJufIygjkW5Y1sWIURICHGb4QLQCzwNtAjl9z8Z6JRSdtX2F1Rsa7B9KstIO3aoB4DoAO1MYNdj8h5qNMhkA7uHU/1DKU79N6UU9R3GeWsFqQohZhhuJFuN8/MnDOxSNdD5bBJFjaBoNMMaLcA1mqFB1rj8BuBkKWWL7RWQUm6qsHyr4e9pMgXlxlCu/R1AAphtW3ezlNK8uW9BiTX7ugbazkq+2qX7vAF4qmSfIlLKi1DD/Nka2gX4E3COEOIolFvNkwBC+Qx/EzgTZe1tQbnJiDLr6Ec9jGD8toHCg4i5zWWPg5QyI6X8kZRyFnA0cArKvaIIIcQ+KFeCS1BuCS3AGxW2p5QtlD+2lfgv4ADgA1LKJpQrAEZbG4A2IURLmd+VOz+L/hvUg5Ja2fvbJxghx87gNdQoUCU2owStnSkoFyqTwa5/N/uHcuve3f9msO0s6juEECGUG4nJr4C3gOnG+fkdBj5nBjqfTQ4EXh1kuzSaIUcLcI1maNhGSfDVINwKXGUIHYQQY4UQpw3ymx8JIXyGiDkF5S+5C1LKPEo83SCEGGesf6IQ4kRjkSXABUKIWcYN9IcDtHkH8DkhxHFGYNdEIcRMY17pPv8dmGEEaXmN1+FCiAOllDngr8AVhtVrFvDZQfb3QZTw+TFwt7FfoCxiWZSobxRC/ABoqrCOd4CAEOLjhpXveyjfVZOKx0EIsVAIMdcQfr2oIfw8uxJGCZcO43efQ1mLB0VK+R7wMoVj+0Hg1AF+EkU9XHULFVRnHTsp5RZUQN4tRnCbVwhhCpptQLsQotm2ruXAx4QK3ByPchd43/tkMFKOnbmtHx5kX2YIIf5dCNEohDgL5Qv99wF+U4qb/UO5Y7u7/81g23kPcIoQ4oNCBVf+mGLdETXWGTP6iYvKbOu+JcuXPZ9tfBh1Xms0wxotwDWaoeFq4HvGkO9lVSz/c1SQ5CNCiD5UwNQHBlh+K2qofDNqOP9LUsq3Blj+cmA18IIxtPsYytKElPL/gBuBJ4xlnqi0EqnSgH0OFdTZg8oWYVoDfw6cLlT2gl8YrgcnoFwPNhvbfC0F0XQJaoh9K8r/+LcDbD9SyhRKtH8U5Rdt8jDKpeYdlCtAkgouAFLKHuDLwG9QFst+wJ5ZY6DjMB4lOHpRQ/hPoYbvS9tYCfwU5Re8DZgLPDfQvpXw70abnSgB8vsBlr0RFbS3w9jWh0rmn48SVG8B2zFEtXGu/AlYY5yjE4x9eRXln/wIKnjTkX0aKcfO4PeoB5FguZlS5QE/BWWt3Ymy4J8ipdxRYX3lcK1/qHBsd/e/Kbqmy7S1ArgYdUy3oPok+zG5DHU+96GMAHeXrOIK4HfGdp7JIOezEOJwIGb0QxrNsMaMqtdoNKMEIcQCVGBaaXoujUbjAEKInwDbpZQ3DvW2aAoIIf4C3CGlfHCot0WjGQwtwDWaUYYW4BqNRqPRDG+0C4pGo9FoNBqNRlNHtAVco9FoNBqNRqOpI65ZwIUqX/uSUCWFVwghfmRMnyaEeFEIsVoIcbcolJ31G99XG/On2tb1bWP627bMDAhV4vptY9633NoXjUaj0Wg0Go3GKdx0QUkBH5FSHoSqVnWSEOJIVJaDG6SU+6Miov/DWP4/UAUm9kdlULgWwEg/djaqbO9JqJRZDUZKpJuBk1Epns4xltVoNBqNRqPRaIYtjW6tWCrflpjx1Wu8JPARVNohgN+h0gz9CjjN+Awq5dEvhRDCmL7YSFO1VgixGjjCWG61lHINgBBisbHsyoG2a8yYMXLq1Knvc+80Go1Go9FoNJrKLFu2bIeUcmy5ea4JcLAqkS0D9kdZq98FuqWUWWORjRTK807EyO8qpcwKIXpQFbMmovJ9UuY3G0qmD5QXGYCpU6fy8ssv79b+aDQajUaj0Wg01SCEeK/SPFezoEgpc1LK+cAklNV65iA/cQUhxBeEEC8LIV7u6OgYik3QaDQajUaj0WiAOqUhlFJ2A08CRwEtQgjT8j4JVbEM430ygDG/GVVFzJpe8ptK08u1f7uU8jAp5WFjx5YdCdBoNBqNRqPRaOqCm1lQxgohWozPQeB4VBnbJ4HTjcU+C9xnfL7f+I4x/wnDj/x+4GwjS8o0YDrwEvBPYLqRVcWHCtS836390Wg0Go1Go9FonMBNH/C9gd8ZfuAeYImU8u9CiJXAYiHElcC/gDuM5e8A/scIsuxECWqklCuEEEtQwZVZ4GIpZQ5ACHEJ8DDQANwppVyxOxuayWTYuHEjyWRyd/dVMwwJBAJMmjQJr9c71Jui0Wg0Go1GY7HHFeI57LDDZGkQ5tq1a4lGo7S3t6MSr2hGOlJKdu7cSV9fH9OmTRvqzdFoNBqNRrOHIYRYJqU8rNw8XYoeSCaTWnyPMoQQtLe361ENjUaj0Wg0ww4twA20+B596GOq0Wg0Go1mOKIF+CglEokAsHnzZk4//fQBl73xxhuJx+M1rX/p0qWccsopu719Tq9Ho9FoNBqNZqSgBfgIIpfL1fybCRMmcM899wy4zO4IcI1Go9FoNBrN7qEF+DBg3bp1zJw5k3PPPZcDDzyQ008/3RLEU6dO5fLLL+eQQw7hz3/+M++++y4nnXQShx56KMceeyxvvfUWoAJJjzrqKObOncv3vve9onXPmTMHUAL+sssuY86cOcybN4+bbrqJX/ziF2zevJmFCxeycOFCAB555BGOOuooDjnkEM444wxisRgADz30EDNnzuSQQw7hr3/9a9l9OfLII1mxopCMZsGCBbz88su89NJLHHXUURx88MEcffTRvP3227v89oorruD666+3vs+ZM4d169YB8Ic//IEjjjiC+fPn88UvfpFcLkcul+OCCy5gzpw5zJ07lxtuuGF3D4FGo9FoNJoRzD//CW+8MdRbUT2ulqIfkVx6KSxf7uw658+HG28ccJG3336bO+64g2OOOYbPf/7z3HLLLVx22WUAtLe388orrwBw3HHHceuttzJ9+nRefPFFvvzlL/PEE0/wta99jYsuuojPfOYz3HzzzWXbuP3221m3bh3Lly+nsbGRzs5O2tra+NnPfsaTTz7JmDFj2LFjB1deeSWPPfYY4XCYa6+9lp/97Gd885vf5MILL+SJJ55g//3356yzzirbxllnncWSJUv40Y9+xJYtW9iyZQuHHXYYvb29PPPMMzQ2NvLYY4/xne98h7/85S9V/X1vvvkmd999N8899xxer5cvf/nLLFq0iNmzZ7Np0ybeMK647u7uqtan0Wg0Go1mdHHEEep9pCT30xbwYcLkyZM55phjADjvvPN49tlnrXmm2I3FYvzjH//gjDPOsCzBW7ZsAeC5557jnHPOAeD8888v28Zjjz3GF7/4RRob1XNXW1vbLsu88MILrFy5kmOOOYb58+fzu9/9jvfee4+33nqLadOmMX36dIQQnHfeeWXbOPPMMy2XlyVLllj+5z09PZxxxhnMmTOHr3/960VW8sF4/PHHWbZsGYcffjjz58/n8ccfZ82aNey7776sWbOGr3zlKzz00EM0NTVVvU6NRqPRaDSaoUJbwEsZxFLtFqUZO4QQ1lNcOBwGIJ/P09LSwvIKFnonsn5IKTn++OP505/+VDS9UpulTJw4kfb2dl577TXuvvtubr31VgC+//3vs3DhQu69917WrVvHggULdvltY2Mj+Xze+m6mEJRS8tnPfparr756l9+8+uqrPPzww9x6660sWbKEO++8s9pd1Wg0Go1GoxkStAV8mLB+/Xqef/55AP74xz8yc+YHWbWqeJmmpiamTZvGn//8Z0AJ01dffRWAY445hsWLFwOwaNGism0cf/zx3HbbbWSzWQA6OzsBiEaj9PX1AcqH+7nnnmP16tUA9Pf388477zBz5kzWrVvHu+++C7CLQLdz1llncd1119HT08O8efMAZQGfOHEiAHfddVfZ302dOtVytXnllVdYu3YtoNxu7rnnHrZv325t93vvvceOHTvI5/N8+tOf5sorr7R+q9FoNBqNRjOc0QJ8mHDAAQdw8803c+CBB7JjRxcf//hF9PbuutyiRYu44447OOigg5g9ezb33XcfAD//+c+5+eabmTt3Lps2bSrbxn/+538yZcoU5s2bx0EHHcQf//hHAL7whS9w0kknsXDhQsaOHctdd93FOeecw7x58zjqqKN46623CAQC3H777Xz84x/nkEMOYdy4cRX35fTTT2fx4sWceeaZ1rRvfvObfPvb3+bggw+2HgBK+fSnP01nZyezZ8/ml7/8JTNmzABg1qxZXHnllZxwwgnMmzeP448/ni1btrBp0yYWLFjA/PnzOe+888payDUajUaj0Yxu7H7ftoH0YY0uRY8K8jvwwAOHaItUppJTTjnFCibs6gLD0MxhZQuYaqplqI+tRqPRaDR7IuvXq6wkH/uY+20lkxAMqs/d3dDc7H6b1TBQKXrtAz4MePttyGQgkVAnUDpdmCcl6IKOGo1Go9FoRhJHHAHbtkEuBx6X/S36+wufOzuHjwAfCO2CMsRICe3tU1m06A3MxCCZTPF8jUaj0Wg0mpHEtm3qvavL/baMciV1a88JtAAfYsr5Ktkt4CPFl0mj0Wg0Go2mFFOIu4kW4JqaKVdd3m4B1wJcM1x4+2044QTo6RnqLdFoNBrNSKEeAtzugmIkdRv2aAE+xJQT4PYkIVqAa4YLZ58Njz4KL7001Fui0Wg0mpFCvS3gdi+C4YwW4ENMOQFuD1jQAlwzXDBrMZU7ZzUajUajMbFrl3pbwLUA11RFJQHu9arP5QT40qVL+cc//vG+2o1EIu/r906vRzNyKJefXqPRaDQak+7uwuehsoAvXQoV6hIOC7QAH2JKa9JIqUS32wJco6kFezYeLcA1Go1GMxA7dxY+11uAp1LqfeFCOO8899veXbQAH2JMC/hll32S888/lDlzZvOXv9xOo5Gh/ZFHHuKQQw7hoIMO4rjjjmPdunXceuut3HDDDcyfP59nnnmGCy64gHvuucdap2mVjsViHHfccRxyyCHMnTvXqppZiW9961vcfPPN1vcrrriC66+/vqr1LF26lFNOOcX6fskll1gl55ctW8aHP/xhDj30UE488US2bNkCwC9+8QtmzZrFvHnzOPvss2v+7zT1I5ksfK6XAH/1Vfj1r+vTlkaj0Wicw+4Ssn27++3Z70ulLijDNZ2zLsRTwqWXFnxdnWL+fLjxxvLzTAH+/e/fSXNzGzNmJDj44MM588xP09WV52tfu5Bnn32aadOm0dnZSVtbG1/60peIRCJcdtllANxxxx1l1x0IBLj33ntpampix44dHHnkkXziE59AVKjsc9ZZZ3HppZdy8cUXA7BkyRIefvjhmtdjJ5PJ8JWvfIX77ruPsWPHcvfdd/Pd736XO++8k2uuuYa1a9fi9/vpto9XaYYd9qjyegnw+fPV+4UX1qc9jUaj0TiDaZFuaChYwLu7VTatD3zA+fbs2blKBXhnJ7S3O9/m+0UL8CHGTDl4992/YOnSewkEYNu2DWzYsIpVqzo46qgPMW3aNADa2tpqWreUku985zs8/fTTeDweNm3axLZt2xg/fnzZ5Q8++GC2b9/O5s2b6ejooLW1lcmTJ5PJZGpaj523336bN954g+OPPx6AXC7H3nvvDcC8efM499xz+eQnP8knP/nJmvZNU1+GQoCb5HKqE9dohiMvvAD33QdXXz3UW6LRDB9MAb7vvkqAJxLQ2qqmbdsG48Y5215vr6oknkjsKsC3bNECfERQyVLtFrEYvPbaUl566TF++9vnOfjgEMceu4BsVo35VzN00tjYSN5wFs/n86SNs2/RokV0dHSwbNkyvF4vU6dOJWn3JSjDGWecwT333MPWrVs566yzql6PfRsAa76UktmzZ/P888/v0tYDDzzA008/zf/+7/9y1VVX8frrr9PYqE/J4Yjdv67eAjweh2i0vm1qNNVy7LEqlueHP4RAYKi3RqMZHpguKPvtB08+Cb/5TWHe1q3uCPD2dti4seADbrJlC8yZ42x7TqB9wIeQbFaJCyF6GDu2lUAgxJtvvsUbb7xAoyfH3LlH8sLzT7F27VoAOjs7AYhGo/TZTJJTp05l2bJlANx///1kDLN6T08P48aNw+v18uSTT/Lee+8Nuk1nnXUWixcv5p577uGMM86oej377LMPK1euJJVK0d3dzeOPPw7AAQccQEdHhyXAM5kMK1asIJ/Ps2HDBhYuXMi1115LT08PMbvK0wwr7BbwehfisfsSajTDDdNm0NExtNuh0Qwn7BbwVKo4G4k9QNMpenuhuRl8vl0t4Fu3Ot+eE2hz4xBiZkA58cST+P3vb+X00w9k1qwDmDPnSBr7ummdOJZrr7iRT33qU+TzecaNG8ejjz7Kqaeeyumnn859993HTTfdxIUXXshpp53GQQcdxEknnUQ4HAbg3HPP5dRTT2Xu3LkcdthhzJw5c9Btmj17Nn19fUycONFyFalmPZMnT+bMM89kzpw5TJs2jYMPPhgAn8/HPffcw1e/+lV6enrIZrNceumlzJgxg/POO4+enh6klHz1q1+lpaXFoX9W4zTlXFDyeRBCvdxEC3DNcCYSUUHK27fD5MlDvTUazfDAbgEHePFFOPpo+Mc/3BHgPT3QFMnjJ026FyBgifFVq5xvzwm0AB9CTPeSQMDPokX/x+bN6mlxzRqYHVjNymSeBceeyHlfOL3odzNmzOC1114rmvbCCy9Yn6+99loAxowZU9b1AxjQ2vz6668Xfa92Pddddx3XXXfdLsvMnz+fp59+epfpzz77bMVt0AwvTAE+YULBAn7ggdDUBP/8p7ttawGuGc6Ew7Bjh7aAazR2TGlwwAGFaR//uHsCvLcXWuOb8aUDpJ59EzjWSuM8XLM2awE+hJgnh8dTsCKaVnFPKoGHPPlhmj5Hs2dhdqZTpkBXl3p4fOed+rStBbhmOGPWIqtHqjWNZqRg9tvTpxemHXusendLgO8TSuHDQzolSacLeurFF9Xn4RZipn3AhxBLgOeziB6Vhi+XVYq7QWaVAM+7PL6v0VSBaQHfZx+V0skuNsoVi3ISLcA1wxnD469uFvDt21WwmRH2o9EMS2IxdW1M8my2ps2ZozKVuCXAm/xJ/KRI5xoso9HJJ8NnPzs87yNagA8hpguK6NiGiCnH2mxfAoAGctoCrhk22C3gnZ1g91Iy6iq5xnDsODUaE9OqVi8L+BNPqGuwjLefRjNs6O+HcFgSmj7Rmtbaqh4eXfMBl734SJPKNVj3jU8duZlf/ixNc7Pzbb5ftAA3kENQKqnIAo5qP5vOIYREgCHAtQV8dxmKYzpaSSRULu69xubI5eBf/yrMM5L0OIrdqq4FuKZWStOQuUlC2UwwklS5jpkT3yziZvL978PixfXZBo1mMGIxiPizu0yfNEkV43ESKVVGuXCmCx9p0om8dd8I//C/4KKLnG3QIbQAR1WM3LlzZ90FmyXAkQUBTgMNQs3wCKldUHYTKSU7d+4koBPzOkIyCYGApO0qVX31jTcK81avdr49U9SAFuCa2nj0UZWP2+3gYBPzXK1XMV9TgNsfUuNxuPJKOOec+myDRjMYsRiEPXEA/sZpPHDBnwHlEvLii4XqmE6QyykR7kv0KheUZK4gwOmHv/3NucYcZJi5pA8NkyZNYuPGjXTUOYw9FlNDMat6d5BKw04S9DVkyUnBm/kdbBOrkMJD7k1vXbdrtBAIBJg0adJQb8aoIJmEgCdNW88aQLmgjBunhv3efNP59uxJevq7UoDf+UY0o5I//lG9L18Ohx/ufntxpTHqJsDN6sl2C7gtCZZGMyzo74dwTgUPndbwALyxGZ6fxMLf/JIfykUsXw4nnuhMW+aIlz+uLOCpFMUCvN7FK6pEC3DA6/Va5d7ryW9+AxdeCOsP+SRPvxLmPBZx4NgOfPkkyxs/yuXpe9iQ2Yt/9U0ffGUajYtYAhw1zv7665L58wXpNKxc6Xx7dgEeu3URfPPzzjeiGZWYMQn18vk0BXi97vGmsMjaRvdfflm9G6UbNJohJ5mEYD6mLDWnnKIq8Zx8MuGefa35TmEW3vHFOpULSsZrPRC30L2rv9YwQbugDCHmCRjo2oIXZdbojAeJ0gdjxhDyZohnteVPM/SkUhAQBQGezQomTYJZM/OsWOF8e6aoAehfWzxW+dZb8NxzzrepGR2YAtx+DrmJZQF/x8Ex9QEwBbhdU2zYsOs0jWYoSSQgmOuHsWNVAYlUCnp68O8/BXA2TsOygPdsN7KgeOjcqdx6zXsWjzziXIMO4ZoAF0JMFkI8KYRYKYRYIYT4mjH9CiHEJiHEcuP1Mdtvvi2EWC2EeFsIcaJt+knGtNVCiG/Zpk8TQrxoTL9bCOFza3/cwBLga1cWBHgiQDTfC2PHEvJniedG1C5pRinJJARIMImN1rSJgZ3su+RqNqzPO37jt4unNIVr4LnnVAGgD37Q2fY0o4dNm9T7ALXGHMMM/gLo7lHxOp2dUFInzVFMAW73ATf3eedO99OCajTVkExCIBuDMWNgopEJZcIE/MceAbgkwDN9+HyCND66timzeCtdaua99zrXoEO4aQHPAv8lpZwFHAlcLISYZcy7QUo533g9CGDMOxuYDZwE3CKEaBBCNAA3AycDs4BzbOu51ljX/kAX8B8u7o/jWAKcpCXAM/lGotkuZQH35YjndRChZuhJJsGfT9A8dx9r2oLUw0xiI9mcx/EUbPYgzHRjCFCdrBbemoEw42pA5a6/5hoVlOkW9mH0HpqRUlX+O+ggeOYZd9o0BXgqVaItMjsAACAASURBVEgasNF4Ls7lhq27q2YPI5GAYEYZExk/Xk2cMgX/3m0ApHqc80GxXFBI42vyk8JP59Y0HpGniV71lHzNNY615xSuCXAp5RYp5SvG5z7gTWDiAD85DVgspUxJKdcCq4EjjNdqKeUaKWUaWAycJoQQwEeAe4zf/w74pDt74w7JJHhEnsYJe+G98gprejS9E8aMIezPagGuGRYkkxDI9cM++/CZiY8DcHLH7y2L+MaNA/26dooEeIMS4A89VJg23CqaaYYHy5cXPvf2wre/DSec4F575nk6gU2k8dPXp8rSA/zsZ+60aVr2e58u7OymTeD1KkG+c0vanYY1mhpIJiGQ6lEW8AkT1MTTTiMwsV3N397rWFuWBZwUvuYQaXx0bs/S4k/gCYdU9Z9hmAi8Lj7gQoipwMHAi8akS4QQrwkh7hRCtBrTJgIbbD/baEyrNL0d6JZSZkumjxjMwDbRFMV71GHW9Ghqh3JBCeRJyoAeUtQMOckkBDIqoOb2Ly5jC+MJv/iEawK8yAWlIQjAO++o71//ugpA09eFppRXXy18Ns8XNzGt0XujHM/t18GqVe622UsToK6FrVvhoKjKULTjoZfdaVijqYFEQhJMdSsL+BFHqEjhyy/HP2ksAKkdfY61ZbeA+9uUAO/amafNG4O2NsfacRrXBbgQIgL8BbhUStkL/ArYD5gPbAF+Wodt+IIQ4mUhxMv1TjU4EKmUEuBEInhtmQaj9CoXlKBSGHZroEYDysp26qnuV6E0sSzgzc34Z+3HeLZBJsPEkAo137jK2ZPUfs5nGlQgcp/RX++1l3qvV5CdZuRgZj4Y157l1Zfcr8ZjimHzQXTDOhUM0dQE69YVqh270WYvTZDNsnWrehid3al8XrpjenhIM/QkEhAkrizgAIceCkLgn6As4Klu5+4Zdgt4oCVIgiCdnZK2hm5VenOY4qoAF0J4UeJ7kZTyrwBSym1SypyUMg/8GuViArAJmGz7+SRjWqXpO4EWIURjyfRdkFLeLqU8TEp52NixY53ZOQdIJiEgUhCNlgjwPsMCrnpvLTRqZ8uW0f2/LV4Mf/87/OhH9WkvmZQEcjGIRGDGDGv6mK/+O4I8217eMMCva8c8dk30kJbq4ujrU803KcNfXYLsNCOLRAKEgLadq3h3o/sZpMxzcKJx69nwllLHc+YooexGdUxTgGfwQl+fFYA5G5WOqKdLp0LRDC1SQjIpCJDcRQD7xhs+4L3OPSDbBXioLUCcEF3dHlrznQWLzTDEzSwoArgDeFNK+TPbdHum0n8DzJp69wNnCyH8QohpwHTgJeCfwHQj44kPFah5v1RlK58ETjd+/1ngPrf2xw1UZokkRKP4bMlOrDSEyvWVeL8uqV4LUiqXs1NPHeotcQ/z3Ni8uT7tJRPSOlfZf39ruucrF6u0TxudTcFmWsCb6SGdVd1UXx9Eo5LoqlcALcA1u5JIqGsjSmF4281iuOY5aLlivananXOAGhNft869Nk0Bbrq9zEIl5O/p0vcLzdBiCuIgiYLFxECMacdHilSfc7EKdheU8JgA/YTZ2dtIW3bbninAgWOA84GPlKQcvE4I8boQ4jVgIfB1ACnlCmAJsBJ4CLjYsJRngUuAh1GBnEuMZQEuB74hhFiN8gm/w8X9cZxkEgIyUd4CbhfgPZmh2cARytq16v2JJ4Z2O9zEzPSwbh3cfLO7mR4AUqYAj0RUQMu3v61M8BMmqMpjCWcdsk0L+C4CPN9D5IYfA1qAa3YlHodgIF8kwJPJwg3aaXaxgL+ufGDm/fbrAKxe5bwYtgrx0FhkAbcEuM6Cohli7BneiEaLZwYC+EmRijmnaywLuF8QavUj8bClO0hrcmshA8swxDVnMSnls4AoM+vBAX5zFXBVmekPlvudlHINBReWEUcyCX6pTlB7gK7lghJZD0C8MwnofODVsmxZ/dt88EEl+K+/vj7tmWn/Xn8dLrlEfXbD39QkmZT4SUHUsGb85CfWPL8nQzrpbOOJBAiUkMpkPSAlfX2CaO8mIijVE+vNo2uJaewkEhCUcescMelc18v4GU0VfrX7WBZwsRkkbFincgIczj9pJMNrf13HWWc7W8m41AVl40bwe3Psk3kPDzl6nUsuodHsFuYIZjkLOKh7Rqo/u8v03cWygIcaCbWqIa942ksbHXusBVwzCKkU+HPKAm4P1LUs4GPDAPRv0SaNWnjjjcLnrHPX+ICcdhr89KeqSmM96OiAiRPrN9ScTImCBbwEvydTlJPYCRIJCHrSyr0FL6TTxGIQzXYXBPgmfV1oikkkINjXwViKg+3dygxiWcCblMV9Q5ey9o1hBzN5i1dfd/4WawpwiYdcVy/btsFekX48SJropSemb+uaoWVACzjgb8iSijsXq2BZwEMNhJsarOmtdGkBrilPJp3HZ1jAw+HC9GgwB4EAob3UiRvfok0atWBmQgBYs6Y+bZqjXH/7W33a274dxveuooHCE0ZXl3vtDSTAfZ4caYcTTsTjEPSoAlVpfBCL0dcniWa7iExVgdSx9S5EuGkcZ+NGd0dn7CQSEMrH2GtMsUtUX687G2AK8LGtWRo9OTam1bkZbfUy1/8OKzY6n3s4FivsS6a7n2QSQiIBwSDN9NKjs6BohpgiC3hZAZ5z1G3REuDhRst1F4wy9FqAa8qRTuRVBcxIBGFz1om2KYfw0N6q845v186utWCmqxMCfve7+rRpdjimb7bbdHTA2L538VDoxJYudaetXA4yWU9la0ZjllS6nLfZ7pNIKFHhI60EeH8/fb2SqOwhMmsKoC3gI4FHHoHJk+G+OoXHx+OSYD7G+L3V+ehFjU3HNrtjxDAFeKTNR0soTQx1fUTbvLS0CGIp58WwaQEHJcDTafDlEjBlCs0NffTEvZV/rNHUgSILeDkXFG++qIrs+8VyQQl7i4yZbXTCxOFbHkYL8DogZaHTzOXg4oth5UrIpAwBXiJqou3K3zs0oQWAeEc/murp64MDD5SctCDBkiXut9fTUxDe9Up92NWlOpdGmwX8zhvcEaSmdaGiBbwxT9rhOOF4XFlPfGSUr2sspgQ4fUTm7QtA3xb9YDrcufNO9V6vkahEvyQo44zfV5nBvKgTs3+7O31ofz/4RBrfmCZaouphuJEM/rYw/tYQqWzDIGuoDSnVtdGEutazvXHSafBn+5UAb+ynJ6HjhTRDi2UBFykVtF9CwJsjlXVOfloW8Ii3yALeShdMmuRYO06jBXgd+NznYO5c9XnTJrjlFnjgjq2kUxIf6V1OUDOCPzRJOYbHd+pKPLXQ1wfR2FYWPvkDVq+GZ55xt7316wufE2vrUxmnr0+J0QaUH90xPMuqd9wZZh/Un68xTyrjrNBIJCAk+/EFPAULeEwQpY/wrH0AiHfvfmqLm25SllmNu/zrX+o9V6fU1In+HCHi7DVN3YV9pgV8h4PmNhuxGEREP7S20tKubqft7ES0t+EPN5KSzorhRAKkFLSg/OwyPXFSKfClDQHuTdCTcj//uUYzENY9I+ShaHjfwO/Nk8o6NzpkCnBfxFfsghJOl71nDRe0AK8D7e2FrBXbjHTJvb+4i0zasICXJKoNb1d59EItqvOOd7lf0W000dcH0U1v8kGeBeBDH8LR4a5S7MU2Ev+31L2GbPT1qQe1a/b/DQAzeIfumLMi2KRIgJezgHvzjlv6+vshmI/jDTaQxke2p59E0kOUPgITVWGHRN/uR9h+9auGb3Je50x2CykLeerr5ZqV6JcESVijiJYA73SnD43FUEHBra1MnKranM9yaG3FH24kjR+Zc87X1XR5sQR4LEU6lceXicHkyTT7EvSkdrU4ajT1xLKAh8tLTL83TyrvnAA3XVD8kWIXlNYJw/ta0AK8DowbpwRFf39BiPdkQ2RSsqwA9+SVsNB5wHeP3l5JNN/DkbzAGfupnITPPedee/agzzihwkF2iWwWEglBE71cfM0U5HP/YGxDp2tDz/YqY2WzoPgk6ZyzXcnWrZK98lvwhbyk8dHboTaihW5EextBkSAee//CJvGZL77vdWjK09FREIw7b/5TXdpMJJQAn3mA5MD909x+6ZsAxLrdMcHHYpJwvg9aW/nQQvUQ2kQvtLURiKjv6Z19A62iJkxXRkuAJ7Kk4nl1bba00BxI0ZMZ3qJDM/oxjTb+SPl4BL9Pksp7HYvONu9R3migyAI+bvLwHg3SArwOmEG427bZLOA0kU4bLih+dZI8/TRcf8IjKqk04POBhxxx7YFSE309Kn+0AO5898M0kOXpp9yzdJrZR/ZmMwmCrpv7zCDTKH3Kv+3oo2metw/JvJ/Uq87nQbQs4A1Zikq2Gvj9kMo1OprqYsMGmMx6fGElwLs71ENoC93Q2krQkyIRf/8CPL7or+97HZryvPtu4fPOmL8uqVDiCUGQBMGxEVau8nHK9QsAiCXcGR2K9yqXF1pbOf10aCDLl7kF9tkHf0RdK6kO5wJASwV4Npktuo80B9P0ZCN1yzqjGTmsWAE/+AHkna2ZVha7Rbocfr8khd+xoel0GnykEJFwkQBvPOmjjqzfLbQArwPjxqn37dttFnCayWQosoAfeyz818MnwKGHAsp1KuRJEU+6c/MYrZjBenz/+0Top4leuja5Fx1pCvAJbFYWcJcrYRQJcCPCu+XfPgJAzwPPOt5ekT9fGXw+ofy0E848Kfb2Qm+vYDIb8EW8ZPDSvUONCrXQDW1tBBsyxOPvP/NKP+HBF9LsFmbg5Ti2sYMxhRPXRRJJjxLERmWzhgYINabod6kPTfZnLevzlCmQDbewgKfgtNPwR5UAT3a4awG3YokCAZqaVIVMhy5FzSji17+G//5vuKMO9cLtaQHL4fehBHiNJ+rvfw/NTXlWvVb8u1TKGKENhYpcUPh//6+m9dcbLcDrQDkLuCnAzY6zEqHGFPGUPky10NevfIU5+WR46CFCxOnf6t7Nv6tLVW3cS3QoC7jLAtxcfVT0WwnIm6cowdG93fma25YAD5YXvP6AUJ2pQwJrwwb1PoX1eCMBZQHvVGabloYYhMOEvBkSyfcvwOOEBl9olNDTo57X3A5KNjHdT/ZlDTtpL3R+LpJIe3apvhfxpV1JBwiQShgVYs27/t/+BpdfDjNm4G9SI5upnc5l6yn4gKssKJlUviA+/H6ax6k2e7rqYObUjCjMgOjLL5fceE2SV15xry17ZcpyBAKQJFCzAP/GN6C3z8OMg4Is+9xN1vRUMm8ltDAvxeOP361Nryta2dWBIgv4FuWL2EsT6axHWcD9lf2UQo1p+lM6r2u1pFIqZ3WUPpgwAaZPJ0Sc+A73Ujl2dUGz6CXS5lWCrsfd/NSWBbzNC42qg2sZo95NVw0nGdQC7jcs4A4NJ5pZZSazAd/EsUqAd6kx9ZZmCUIQ9OUceTDdkwT4K6+ooMjvfa8+7ZlWsEkNW9nOONdjIzIZyOXLCHB/hljG78rYeyqZLxbgH/0oXHMNQEGAdzrX91gW8KD6czPJnDH8rgw5zeOV/3fv2jpFvWpGBPk8LF8uWRh8ga4uwde/HeCIw/OuVYoezAJuCfAa8/Y2RwuxHB13PWB9Tify1kOozwevv16/onjvBy3A64ApwLdccRvb1iuR0kMzmZynbBCmnUBjjqTDKd5GM0XuGePHwz77EBZx+l1KQwbQvT1Fq+wkODZaFwu4uY9NexWCrYwRd3o6nQ82swR4uPx56PfjqD+fGdTaNmtvfNP3IYuXrm5l7W5pVe+hQI5E5v1bNfckFxTzZlsv/2DzdNivrYsdjCW5cUdd2ivN1hMO5IgRKZiPHcQ+9F2Kv0Vdn6ku59zfLAFuCJFsyibA/X6aJ6sHj5533f2vNSOLnTuVW98nE3/kl1xMmBi5vMfKUuQ0lgU8Uj4xQCAkdssCHusp3N9SFAyXqXhOXYeGlpozp+wlOezQArwO+P2wV3OCDZs9bN+gHg17aSKdaxjUBcXvcML60Y55PYcajZGFhgZC0QZ3LeBbUrTQTXBctL4+4HsVepgWVbOJ7m7n1ZUlbCLlBa+Vq9vBgBoAX1sEn18J7o5uNQrU3K62IRiAeM6vzJ41sGwZjA8VRij2JAv4DkOT5Zf9qy7tmVaw/Sep82Lj2+4WFLMyL4jiPjUSzKsHLRd80AcU4M1qG1wR4E3Kmp9J5UmlhSU+mqeqjqBnXZdjbWpGPuazZ5OIcXHuJu49+noA1q12xwQ+mAU8uBsC/JFHYHuXjzNQ1fX6g2NZ/06Svt/cTdp0QRlASw1HtLKrE1Mm5ljPFLbtUFbEHprJysZBXVACPudzLI9mLPHmL/gHh9pDxHuzrgnjnl5opodQm59emrj673OLykU7jeUDbqsvYFnAe5wtCQ82YRMtb82wfMAdEuBW5x30WElXtvf4EeSJjlHXSiiYV6MNNQxhPvQQHHYYbEs0W9P2JAt4R4d6l/G4u4nxDVIplcVp2n7qNrPhLXcFuHXe+Cgq/hEJS/qIunL9p1Ki2AXFhr9VifJUt3MRkZYPeLN60M6k8qQznoILyjSVI79no/sBr5r3xxVXwG231KdClXneRKKAx8PUc44CYN2vHnSlPfM+7I2U1zaBUAMJQsgaUrz99rewl6+Tq/ZSvt+xZCP7HBBgwYX7k9qw3XJBGUloAV4n9tnfx1qmsSMZoYEsKdST2mAuKFa+zHqVkhvhWALcphXDbT4ltLa4U6UylVTD3sFIIykCfOfx47jqKleaAgpWsEio4NNq3v+dyI1dilWKPlohpVTQs1sR7ZWwjmGwAa/R5PZYiGZPH572VgCCAams1zW0+Y1v7DptT7KAd2xQojtLo+v+2ACpuMoQMnmSEov3PtnCqlUutmeepyXdaUuzpIdmdwS4aX0uZwE3fcD7nbMy7mIBT0vSWVFwQZmknsp7Ol1y7tU4xo9+BF+6uAGWL3e9rYIAV5JvyoUnArBupTvZwVJJqdIChsv3r6Y7Y7q3ekNAIpZlXHoj485WGb96pXIze4VDjfa0BVxTgSn7+1jFDPI0MJFN1vRBXVDMdD01BivsqZgeCb5A4dQOhQyh5ZJZ2szDG4oWRiquvhreeMOV5goCNVCw8pkCvN+B1HylWC4ozeWtC76ghww+ZMJhC3i4sWAB7w/RIlUKQoBQUNZsAY8EdnVX2aMs4IYA38GYugjwZF8GPykmTVQC/KatZzBjhnvtWedNqQBvFXTR6o4Az1S2gJtZg5IJ5x6K+/uhkQyhJjW0n0pBNuexXFDMEaJYj86CMpwpshv8y32XMEuAN6t7lN8PY33dbN7uToKHVCJX8cEUIGgUqUr0VJ+1K22sM7yfyvy1lfGFefmGIh/wkYIW4HVi0qTC5ykNBQHuJYNl5iuDFeDmpk/DKKKsOI0IVwW4aQUzOxWTSy91pTmbhbjgX+fzgUfkXSnaZAnwpgouKEHDmhFzJgWiPYVVQYCHaZGd0GpYwIOiJgt4Pg9vviW4iFtYEF1mTd+jLOCGD3g9MpKAsvwGSBJqC9AedacUfFF7lgAvvq21tnvopsUdH/BsQ2ULuPG8mko4F5fR3w9h+q2h/XhKXXumBTwYUv1eIqZHTIcz69YVPufXrXe9PUuAtxX68JZgip5e5w02AOl41koLWA4znijZW/09w0z52Rj2E/Bm2cTEwjxzJEq7oGjKYegGACaFC7XLvY0U+SuW4g8a/rUuRPCPRgo+4DYLeMSjLJ2uWcDVEHCkpTjg5IADXGnOsvJ7AwXBLwSEvBniSecv6WS/uplXtoA7K8BNIeULe61scusTY60iPAChMMoCXqUA7+yEWKKRmbzF9I9Nt6bHCeFaLq5hhqk/Y0SJb3A/TV3KLFITjRKO2M5Ll9Kw2GMH7LSM9ZIk6GhBHKvNqgS4gxbwWF4J8Kiy9PWnlfHGtP75/aomQbxfW8CHM2aRKoDtq9xNWwsF+RBtLwjw5kie7nTQnQfT+CAW8CZ13tYkwG1uJpFgjo0UrJrp1ODeBMMRLcDrhJmlAmDvloJo8HkHvhlZAW4j2AK+ciVs2lif3GdW8IfNOhyKNrjrgpJRAvzDHy6e3hx15yaYTqubbIO/WPCHvBni+UDNmUEGw+wkzbRqpZiR7qmYM+2mUuAljSfoZ8wYNa2LtiIBHgx5arKAm4uF6WfK7EKKun7Ce4x7VzpVuAY71rr/QG/dhCMRPLZzNbP0OXfaMwV4qHgkqmW8uil3b3b2OOdyKu+4X2SKg04MLAGedK7vi3VnlQBvUtdif0YJGdMCrqonJ4mP3NvFHsF6m9F7wxrnazeUYlnAxxb68JZWlQzCqnzmIOlETp2TFQS4GU+U6Kve+JFKSetBMxLMFwlweyagkYQW4HWiuZB4gfFthae+AbxPAFuA2wi2gM+eDZMmi7r4utkD+EzCTY1k8JHpcSngJKN8MGfM9TNhApx+6BpC9JP+832uWPsyaYmXDCJQbJEO+XNKlDosKJPxPH6SiGD5zs1pAW4vrW0KcDDKbxtDSaGIhxyNZPqq8zu33Gi8eSZPKXR7bj6YDTfSNmPT9nXuP3SkzOIYkQjCNsq39Q13clRXEuCte6vztmurs24wVnvefNlRTDcEeH9vjggxS4DH0qoRu/Uv1JAinnDHtUDjDJ2bCoaDrRvdH4GL9apRzMi4giBubhbKNau7u9LPdptU3Lj2K7igWBbw/updpdK2iq+RsCwW4GYmoNHmgiKECAshPMbnGUKITwghdGnGGikS4GMKF9zgFnBDgKfc96F0naVLXW+inAAPNavTNd7tfJl2gHTOY/m7bdgAS65Zi58U6TUbXOnc0knDulBidXNNgJvlthsrVDWLGv58MWduJPaiCmPHFqYXWcCjtQXxWALcLznsMFtbI3x0qRbSaRiDykW4faX7hVqS5k04Gi2Kgdm0xp2+zBLEkeLbk1m8qXu7s9d/Ie1h+T7cEuAO7m5/n3JBaWxSQiqeVX2A3foXbMyQcKBKrMY9Old3Wp+7OrKuV8fq60ghyBMcUwgWbmkTygLuQuXmtFkhtpIF3IgnqiVWIZUunOeRKGRR17mHHOmsZ9RawJ8GAkKIicAjwPnAXW5u1GjELsDbWgsXm9c3sKXCckEZoQK8SAs67BpRDisLSsjmguK2AM968Huy4PXi8YDYdxo+0qo4jQv7nEnmy+aPDwXyrvi6JxNSVResIMCD5nCiQ4Ff1vBlIEB7e2F6kQ+4IfqrPaYFAZ5n9mx45x2Y2BZXxSDqkBN7OJBOwyQ2AobfqQul2e2Y6TkJh1m8GD5zvur3tm905zq08tWXFIwy42+6O53d30Law4EFeDLlnDW6PyaVC0qzEjb9WdMCnrGuz5AvawVnaoYnnRv6CaH66a50yBVDjR3TdcnTVHC/a25rVBZwFwS45a9dSYCbGYJqSNFp5dwPBIpiSnykSeVGbxYUIaWMA58CbpFSngHMdnezRh92H3C/t3AjGFSAB2u3gMfj8JPPryL1u8U1b6fTmMU/AOJrtrrenmUBDxesYMEWI2NAjzsPAKlcIz7bMWXKlIIATzsvNipawIPSFQt4KjmwADf9+ZJxZwSOlcIqEChy0bK7oAQNAZ7ore6YWgLcyI4zfbp6YHGygNBwJ50RVgrU7ckovP66q+1ZFqtgkAkT4Mf/rf77HdvcydBRsIAXXxdm39vV6ayV0Wqvwqi3qQVSaecEeCxmZEFpUZbMWF4N8ftsxYdCvhzxdPlrVTM86OxtYF9UJGYnbcVO4S4Q61GuS0QKArxlrJc4YTKdzgdhpk1/7UouKMbkZA3Bwikj1opAgL2nFS46L5lCVfHR5oICCCHEUcC5wAPGNP14XSNmNgcAX2PhpLNXbCyHEuABZLJ6AX777fDd307nxgvqU3J6IOzZzta/477QsaewMzGzIjiVpcNOLgd56cFnH/VubMQ3rsU1AZ5JKR/wUgEeNvOdO+2CYloyK1nAzdRnDmVeSCfyRSmsGozeppmegg+4OarRV52YKwjwwrSAX+5RFvBMVtBKF9FwjvUN+8Itt7janhkbYT5Fmf78O1zyfjF9rUsLRlk3+z5nH8CLKm+WweeDBpGjP+WcGO6PiyIBbuaxtxt1QoEc8azXdbcGze7TFfMxhh00hzMqR70LgZB2Yr3KdckuwJvHKbHau8353LWpQbKSmJNrqd1mTzX4kY8UdFMGL6m8d9RawL8GfBu4V0q5QgixL/Cku5s1+rBb8oos4IGBn2Us8dhf/c3DvMbeYI7rQ1uDYRfgm9e7H2xiZnrwhgt3RVOnuiHATX3t9xWLT59XuuaCkk7myz7th8LuBBWmjaDPihZwo89LOpTvOGX6DxorPuQQNX1vtljbYAbxVBtFbwnwYKHjtnLs7yEC3MzW84EjJM+FPup6UHSpAA+FIOBJsbPbHfuNGQRc6gNu9r2ZmItBmGUQAiKNSfrSzlnl+pMNRIjR2KyEdx+q8qXdDz3oN4pUjVC3xT2BzrifNjppbTOKRLlsAU/Gc4SIF1vAx6kbo9OxEWATy2WyA4HtobiGe4bdz/tEVciTluY8SYIk8v7RJ8CFEA3AJ6SUn5BSXgsgpVwjpfxqXbZulOI/9QTrsz1dXtlljYj+VLz6YVtTl61hX1ixovYNdBC7AO/rdr84RDquBJnPNgxt/h+1PMRUi5WzusSVyNco3bOAp/NlLeChsHDFAp7NDFwwyuxME3FnBHi6pKzw0qXw1MVLOP70gh9XqNVwK4pVZ3W3BHio0OUF/OxRFvB0VgULf3iB4NW+/ejc7O5+J9MNauTEOE+FgDGBGDti7gwTm32kmZXHxBLg/S4FYVYQ4ABRb5JYxlkBHqYfb6sSUl2oEaGov7BvoUC+phSdmvrTGQ/QJrppbW9Qx9CtYSEDK5DeVrG1fYzhEtbh/EhJOivKukmaFCzg1bdtPdAHAkyYoArbfucydd5n8Y4+FxQpZQ74YJ22ZdTT0AALFoB/+hRrReRr+QAAIABJREFUmt1VohyWAK8hWMHsd9cxFd56q9bNdJTOnYULrLdv93whFyyAuXOru5+YItvuA272AdX+h1LCySfD/fdX0Z5V+KdEgPuksq5WKcBffRUefLCqRQsCtdQCHmlwJa91NitpJFvZBWU3rBkVWbmykL7OTKsWgg/98kw8f7670KZZyrhKt5dyAtwKcN5TBHiuAa/IMW+++u+O3byYV5e756aQyhZbwAHGhBPsiO9att2R9oyCN/5A8bVoCXCHn78H8wEHiPjS9GWcscrlcpDIeJUAb1c+jZ2ooORo2OaC4lIsiMY5OhNBWhv7lAXc0+5KIKSdZMJwI7RZwMeNU+/bdzifMSeV3vXat2PdM5LVaYJ8HjIlgZbRqKrxYeIXlUdphyvVbO2/hBD3A38GrLFtKeVfXduqUYp5A7BXwRrMAh6I1G4BN4VqL02wbVtN2+g0Ks+n2sfetBFMWuNT6lNPqfdXX4Ujjxx42UzCEOCRMi4o8eoE+Nq18NBD8OijgxdJtFxQSnbJ56UmF5T589V7NW6bmUx5H3Cr4JDjAhwayA3qgpKosjMtQkq49VY45RTyO7sQBx9EqvnVQYcTzeD6mi3g4UKHHQgKuvckAZ714GvMs/fe6vtKOYv5B9fmKnzttfDAA/D004Mva1WJtAvw5gw7OlrUOVohQ8LuYgnwkkqYlgDPO+v6MlgaQoCoL00sVj4QrVbMyzosEnhCAXyNebZl9wIg0mSr/BuS2gI+jMnlIJXzEvElaWuDFZ52111Fk0kIlwjwvdSpw7auCkEM74NqLeDVZgiyDF0lhqdQpHBN22PrRgrVCPAAsBP4iG2aBLQArxGzVoP9nAxFBn76tIqc7IYA7ycMO90vOT0QyupsCHCaoKsLxo+v+vd2cdDVNfjyaeN/slvALReUKkegX3pJvU+bNviylgtKST53nw/3sqCYAS4lnVsw2kCcgOM+4NkM1VnAd0fHrlwJX/4yLFrE0evvZitrGZ/opJk0BFoq/sxye6nS6m5uWzBss4AHxR7lgpLJN+Dz52u5/HbhW9+qflklwNPgKfzn7W2S9YxRvmlTp+7+hpRrL5mnkQwefwUfcNmgOpQyRXN2qz3L/azyMpFAhr6cMw8a5mUdCWRBCFqasmzvVJGt0Wa7ABfKBzxRRYepqTuWmPRKWluhU7a5bgFPpaG9kgW823kBXhr/UYpltKlRgJcaZuz6qXTkayQw6NiDlPJzZV6fr8fGjVbs1lIjrXHlZQ0XFdO6Uw2mAJd4SGzrrXXzHCUZyxIggU+klQDv7Bz8RzbsRpxqjATppPqfvKEyLihVpgN75RX1bloIBmzP7BhK/ED9/up9wO2xUtWkZrYs4CVmd3/YS54GcjFnLV+53MACvNCZ1j6UeflX4nyIp5Cvvc6LGybyHlNJeULVW8Dj1R1TywIeKc6OU+SC0tsLn/50ceDCKEFKyOQb8XnlLuf17jx/VGM1T+Ua8TcUDyFFWxqJEanpP652+1Kmn2vJTd88bTN41cnsEFbNgQH0SzSQJSZDjmQkMQV4OKg6ibbWwrxIc8ESGAy5EwuicYZSAd6Vb0J2u+yCkvJYOflNAgFo8sbZ3ju4i1Q+Dz/+MTz7bHXtmfEmlS6OxkZoFFmS6eruGdZok0gX3Yfs2eX8zSPL/xuqq4Q5QwjxuBDiDeP7PCHE99zftNGLXTe1tlZeDgrDqbVYwO397s4t7hS9qBazqmGTL1mwgNdALFb43LV83aDLp5N5vKQR/jIuKOnqboJb31NXezWCv7IFXFTtgvLuu4XP9v2tRDpd3gLuM0ZLnM72kM1WZwFPVNmZmkgJ1z15OM/wIZ7sO9SanswYOV3DlX2FrTarFGeFIi0FcRYINRRbwO+4A/76V/jJT2raj5GAJRa9cpd7Yvd7td/8qxHFmZwHb0NxvxVp89UkwB98UB3rahK2JCsIcCGg0ZNTAnwwn7IaMP/TgWo5RII5lanEgYwkZt8QDqm+pnWMut78JK3CPKCsgkmCjj+Ia5yhVICnpY9El8sB0RkPfs+ugfTjQjG29Q8ek/Huu/DDH8Kxx1bXXibnKesmaSfQkCFRZb56S4A35otGsOwFDn3Nzrq01YNq7pi/RqUhzABIKV8DznZzo0Y7dgEebB54+McqZ5ys3oJiz0bhRoRzLST7cwRI0hTM7JYFvEiAr9gy6PLpMlUiCy4o1VlLdz6m7vYda3oHtZhZnWnJYfT5q3dB2WqrT9Tz8AuDLp8xs5KUNOr1GSkre53tzAcT4IWKf7UJ8DfeKHy+jm9an7fl2q0S5pWwLODJ6tpMJsFLmoZIwR/XHyq2gC/65wwe5OQRF8hTDZXOU4Ce+5+qeX2xtzcNOF9KyMkGvJ7iIZ3I2AAxIsht1Qnwq69W76tXD75sKllegAN4G/KOC/BKAdh2oqGceuBwwBptWcANvdTarqzeUfqKrhXTHSXW5X7lYU3tFFLXSssAV6NdqmaSmQYC3l3vZeOaU2zPtA76gNhrG0iv7uG7YcDMWQDBxgzJTHVxGZUyDtkFuL91dArwkJTypZJp7id0HsUU3QQrVIoqnV1LPE3CVpFwx86h9YsyM1o0hfNKgD/+eE2/LxLgayqI9yefhNtuAyCdyu9iHbZcUDLVibWdMfWDnYkQ+TffHnBZe2dqx7KAVyHA7Z1bz09uHnT5dFqUzYLiVr7zbG7gIEwhVH7nRJWdqYnd8v86c63PXbSp/RtAgBcCP6sU4HH1IGi/3kot4Of96eN8nAcLlX9GEeZpaN4Pb7oJPnGqOme7X6suB7Fdu8bOubCqZUtPmciYIHkaSG6vzjXuhX9UP/KXTtdXgFsW8IEEeNTI1V2rAI/H4Qc/gHXrrEmWAI+o9kzxFiFWLMBb1Pnb16kF+HDE/jBsuqB29TificROKttAoEy6zFDYiIMZZESqz1Yssxp39Uzeg1fkBoy3CDTmSGar62sr3WftFcbb9xp5hpNqjvoOIcR+qMBLhBCnA4ObIjUV8dj/9UGsbWbMRH+i+gs0ESvctHb0VH4CrQfJRF5ZwFs8SoD//Oc13QSLBPi28jeU2MfOhC99CdasKZuizxKm2SoFuE+licjRSNe7A1vsKwVi+QLVu6DYBXjv1HmDLp/JlreAm18zVbraVEs2Kwa0gAMEGrIkM7V1gFs2FW4Im5lYNM9vq4RZDiEg6EkST1XXgSf6dhXgFQvxjGYLuOEqdckl8M3L1c2xp6u6+BJ7PHdsx8BmMPMS9zaUWMBbVX9UrXU2a2QuqcY1K2MWjKq7AK98DkaiggQhcj1V7ICNLX9aSt9/3wDHHGNNs4IwjYwnpgDfxQJuCvAubScbjtgFuHkMv9V9eVXxP7tLMuctawH3hxvVfaoWAb5h4IdnKU33s4F3KOjLkshWFwBa6T5rt4CPmzwKfcCBi4HbgJlCiE3ApcBFg/1ICDFZCPGkEGKlEGKFEOJrxvQ2IcSjQohVxnurMV0IIX4hhFgthHhNCHGIbV2fNZZfJYT4rG36oUKI143f/EIIh8Lb68kgm2wK8Fi8FgGeZy+UX8PO/oCjN51aSSWkIcAFPXvPNDawenO+/cbbndj1Alu5EqLJDn7LBXDffWTSuwpwywUlW6ULSjpKM8oBvGvtwI7gpcLGxOf3VJ0HvHdjoUPriQ/+wJTOeMpawE3dYVYDHYieHvjud6tL0jJYECao4cREtjbhunl1Px5yjPHtalIJ+zKDXhvBhjSJdHUCXAUD7xqElMZPPlEy/DoKBXghYLBwbpg3r+7u6h7YiopqNU2svKCtvcaG4nWb4jHWPXifZBcksSWDJ8nPpCsXjKpagK9YAT/96aBtgV2AV+6boy3G/nbU5o/9ocuPook+ujsLf4LlA96szk9TvIWIFwnwSJtSKfUofKapHUtM+oV1DB/If4z/+bV7fuDJnBd/467nvi/sVfepQQR40SjtY/8ccNlcTiWAGEyAB7x5ktJXVWC05YLSUmyUsYcJjZs6Cl1QjMqXHwXGAjOllB+UUq6rYt1Z4L+klLOAI4GLhRCzgG8Bj0sppwOPG98BTgamG68vAL8CJdiBHwL/n733DpPkKs++f1Xd1VXVeWZ2dmd3FVfJCAkksoQJBpFMsMFgDBhMMsaZFxtjEz6yjcEYp48cjF+DsTFgMsIYAwIjkAAhBMpaSburnd2d3Lmrq+r941TsrnB6drTWLvtc11wz013dVV19wn3ucz/382DgQcDrfNDuHfObkdc9XuK6jqvwG1i7Lw8Kuh2H3QiN5hJzd7/ALCP6ni7zzFNtblzexoDSVNuxAetDi9XBJCO6d6/4/UI+DBsbDAduhgQlH6zZNqwNy5xe2A9Aa3/2fluqD7g+hQRlb0gtrq/ngyFrpGQy4DIA/E/+ROQayhQbGkkAcEMb0Z8SgB/c22eBRZoVgWR2sz94rm7k37dy0aJjyTEoAQCPpM2nVkg9gSUopQg29bdv19flFqbRred2NdvLMGDAi2MA3CcUNvLpvmgSdPvLV+QeHxSMSgLgRVcOgF92Ga/+4z6XfyYfDMkAcLMmrqW3Ig/AbRtuWRZT3JXD+wUOKoEEpSne0wdvDmpsAKrNersMEvf4ZBz7iOYORE0YPvhX0+VHycZoJPIxjCQAXtbEPJWDEVqLobXt+lU3ZR4bLPYL2cDaKDmeXWZ+3zhyWPSB6nnxhX+Uo5m/KJsUuCeGjAvKyxVFeTnwW8Bvev+/SFGUi7Je57ruQdd1f+D93QKuB3YDvwR8xDvsI8Ave3//EvBProgrgaaiKDuBxwH/6bruiuu6q8B/Ao/3nqu7rnul67ou8E+R9zp+QpYBnwaAL/Wos0FTa7PEtv9VL/B+X8Ggz2MeMaQ71Pg2D53Kp9pnfc7gDpac2QnwHuu7nU7oELJJCcrqqli9n2EKRqC9mL11nC5BUeUlKJEKoesb+deYVuRgGgnKT34ifmfkyAQxsvMlKKYmv53ox113jtjJQWoeK3ovrg+ea5j5AHzG6LJqyVVV7LRswRRGAHhQDKI7BlSOIwD++c/HtfRpkZSEGTDgbbmxJcqCtYvpHu0QYcDHNeBTAPBode6Okp4PEJxzCxjw71r34895NS94Sf498fuZZqS3F7MurqW/Kg/AD/zjfwZ/H3FmgxvfWRM3tbJLfHGPfCTsaSzzFD4LR44Er6nNeQx4RDZwMu45EQXgURvi79y6PdbHtioCC9biJCAOiKKceap1KJx315eyjw0WpsXsecjUbaE/l3AI+uy/dKjS4kGPTh8HSuefnfs+97SQ0TU8AHgpAjzvRgDxxwPvVxTlT7Je6IeiKGcAFwPfBXa4rutryBcB35V2N7Av8rL9kXOmPb4/4fHjIr7+xLdzC2eNCcInI2DAB3Ja7g9/GL51/RwDdLaVuywzFwLwf/gHOT+vLYzBUJjnX3KJ+P9a7jMVA+5P1GeaBznM9viszJg2tNNhOJysEhlIM+x8YOWbtJxmCAAeHXiSIkhuG2PB9LIqz4C3FEzEeWTAUGDxlCZBkZCV3Onl3ckk1MgAcEOz6dvT5RscWCywk4NUPcBwaqSb18v5EoVtZpclKxsI+tHa8LSyCQz4hMXnsQTgT34yvPvdm3qpbYuXP+hB+ccmAfBqFRQcNjpyn3f91rDvtXNyUsIkzBQGXEISHe3q7UIj/UAvAnego2DA/0N9GgA/tzv/AocDMTaVjPR7YdTFDe+vycsL/ua94U5fdMzrHBTorLJHTJkXXwy3fvFGXsNb4NJLg9fUtomG3dqYPhfEXlqd2qnqZEwXwa6podBswkc+Ah9+9D8zcotc8/2tl4v6+DZJAy6bq9RaDxfM6zmSNVkAbuiuYMAlbFX+5zsKj+TrGBdkgOxt23Lf554WMgD8FOB+ruv+keu6fwTcH9gOPBx4ft6LFUWpAp8EXua6bmx95zHXd7tPnqIoL1EU5WpFUa4+EmEK/jfjEW99AmfNrcOTnpR5XKkEJWUoDcD/9V/F7+9wKXN1SzDg3gD+7d//F15/v8/w1Y8du0Ij/YFgwOvzYlLoUJkOgK+LQWNPY5kjzOMcjgPwGMvT6SQ6hCgKlAojBnY+uPUHx3lPl9xayl6dB1vtY17AJaOARQl3IAHA2woLLGIofZY6+UUR0oochH7nuW8REGarH/p08gHf/Ca8//2AAOBZLigAZsmmh3y+gevC3qUaZxoHgy3zXdwVPN+o5usC5yp9luwcI30vWm2os5EMwHtO/LKPlQb8+usFhf07v7Oplx/wnABl8FISAFcUKKmjoHhVXmwcCDtbu5sN2tMm4U0D8JGRW6UqSE4+CgC+r3C6eK9u/s6V1RdtNIsBN7ziIL11OWeifh/eedXPB/8fZnvQWduLbUoM0PacGr7g0kvFNuAv/ELwUK0uxqJWRz5v6Oab4dcuuoHi/Aw/3PaYLS1YdDLiEfRFU7Sb5z0P7nvZPAArP7h9y88X1EBISsI0FKEBzwHgGxFpZB5LH/T9vCRM3ZVmwLs9hSZrmbUhtqrC7bEMmR66HYjeIQvBYvfGHp8IRVE0BPj+qOu6fun6Q558BO+3jwYPAJGRhVO8x7IePyXh8YlwXfd9rus+wHXdB8zPz2dd8rGLCy4QM8yuXbmHVgt92kO57f37eamrF3It22bsQIIy7Nlcxld5A6/nD56zJCpcHIMYDEVJ2lKzjFZ0pgbgnZbHgM93cCiwcls8KbLdCgeGYXvA0EopUlOwGTqF3Ip0/vw8o4trbLWzO3WaDrTkFVCyevmAdKNToME689oaR3rV3OMDBnwMaAQSFAmDCccS17X6jR8lH/CIR8BLXgKui+0oqdpaP4ySO1VZ9+VlaFkme+bb1JoC8O40wu+2Uc9fl2+r9Vl2Z6SqDG601Qm3iMDKsOvGpUzHCoB/7nPi973vvamX+9ITTcv//Gk7NaWCgzWUBOARRrXVy75HIQMe7z/TJJX7AFynT5tKrlZ0lOIOBPIAfL8jxuOVGw8nr2xuv12M2TffjOUtXApGRr9oikbW35AD4FEssjA35AjzwY1YumvINpbg1FPjLxqrGOs38VZHHpC85MUO//ojkST/ZvdVcPnlwXP798st6k+GXAQAPLJzMvMI4X61cvVeqfdYWoIvfEHufIEEJcGGsGQUpHZqWy1Y8Mzv1tuSi+8cztAw5AH4wFKExWh5MtFy5ft7Wb7qttz3uCeGDAD/KPBdRVFepyjK64BvAx9TFKUC/DTtRZ4jyQeB613X/evIU58FfCeT3wA+E3n8eZ4bykOAdU+qcjnwWEVRZrzky8cCl3vPbSiK8hDvXM+LvNcJFdVin7YlZ7HjN/7/uvgVbLtgZ8CA33DtkD4m9+P7XM/5HPjM1Zu6lvV1eM5zcooF3ngjvOAFMBrRt7wSuIZBtexMXZRiZDmo2CzsFJPJoVvj1FnU67a97mBZyR7ZetGWGmj8+bmpi8k+j0XywcsEsPH+l0mI3OgUqLPBvNlhaVDPPX5oFyipkx6rAQNuZU+8gwEMvd2AVZIZ5Ku5v9iaWlmR04AbjvR2IoTg8azd/aBwyM6Z8LX1Rj54mKtZLDOH089HB61ucUKCErX4jF32sZKgXO9p3nNqAaTFLe/9KgCz1iGBkjIirWx6qWgzHCC3iNkQkhUVm1Y/e3YNdobGDgsAuIStqs+67VIXxbiRQ5tbVvpCURaAH+jPAV6/uP76yQM+9jE4eBDe9z6sgVd1t5R+L8yZ6QC4/z39g/oH7FxwYxKUI4dd5jkCp5yS8Q4Co6jYtCSlRQDDjXBx81PODzroYCDw/oueu7XVdX+WI8gbMsPvZ/bewvp29adyDs9vepPYPP/qV/OPDQH4UUhQWtBkjaraYb2bvfiWlqAYiDlDBoAPPQCeMFbO3O9MZh+wJ/c97okh44LyJoTue837eanrum90Xbfjuu5zMl76UOC5wKMURbnG+/lF4K3AYxRFuRm4zPsf4IvAbcAtiOqbv+OdfwV4E3CV9/NG7zG8Yz7gveZW4EvSn/w4iqomD8AHfZcZVph/0oPZtlBkiW24S8v86Aei8/3hs8Vg/r1vbY7SuOoqMQe9+tUZBz3tafCP/wjXX8/AKmCoFqgqFdOdmgG3hw5FRmzfI2buwzfHRcvt1fBzdFoOQyslQbHoSNkCBgDcEKNWu5c9iY08HWixNA7ABYAc9vK3cjc8cLit2hdJVxmDoeN4FQYTtvcCDXgOAx7Vfa+qk7q5r34VHsjVvAfhrT6y1XwNuD4dA+4D8D3bNoIt853zIThqnJEvLdnWtHAosLaYf85WPx2At3pF2cve0rBvvIXDzMftPqaI2z8nSolWaccKtiRFyLqNLdqKLkM0KU3I+oZCnQ0ahTbrg2ypVFoSZlhAKX+BNbK8kuvFthg3cpK3syUo5AJw14X9HdHuVpjFXZ38Xj5388/xHR4CluUB8Jxy21VxA/otOd/z4Hsq2mxfKMQA+OG1EtuLKxOM93goClTV7lQSlIMHXB7ON3jxY+7gALvh0CEglDn987/pm26nJyMePilTKoedo1aDgmKzckAuWde+RTDl//ed+ZLaQANeymDAcwB4u6tQpU1D67Le1zMX7NJJmCbSc8bAJ/I2SVbcU0O2h/4A+ATwaeCwoiin5b3Add1vua6ruK57H9d1L/J+vui67rLruo92Xfcc13Uv88G0537yu67rnuW67oWu614dea8Pua57tvfz4cjjV7uue4H3mt/zNOUnXFRLQ2kA3u+KypMYBmfuEUUg7vhJmx//WGzlPux8kZC5fKe8E0k0YvN0ymT2V3c+gx9xHzAM+qNCoD2rVNzpGfChQwGbHV6q7qG98ddGi0102m7oEDJeJbLoSDHgvvTR0GyMwpBWjvuMNfB0oOMMuM9GS+hrB0MxuMzP2WLLOVqbfvx8PpNZTBhMAwY8u1tH59FVpz7BQNx5kxgQv8nDBQB3ZBhwpC2lIJQXLDT7wZb5zl0hKGu8+vdy32PbjLgHSweyGRTHgfZQp6524nZt3nnb/WL8so+R/vWlP3gJOzjMYGVzffHInJAMbFDP7VOh88JYO9Vc0S8kLDM2WioN1mmUeqxb2RNhWm6Ej40tiZ2hkde3GnpPjgH37TmTALiWz4CvrkLfLrGDRQYY9A5Nil2f8o9P41K+A/0+w75XdTdLmuUvODpyMp/geyo4bN9V4Ajb4brr6D34kRw+5LBdl7PJqBT6ueSBH4MB3H6kzC/wdc555G5a1AP71X1R+wM/c/tkHFUMvfwC3Qz7oqII2eNqLz8HCKB3UAziK9/Lt0AKGPBEAK7iUMDuZwPw4UBIOxvGkHWnljnOS0tQTFWaAe9bhVQJyvEcMjaEvw8cQtj/fR74gvf7ZByjqOqWSEKSiKDktmEERdS+/T2N/fvhFPazfV5MfLIdfTyiJJR1zU8mnh8M4BXt1/MwrgDLYmAXA/ujanX6JEx7JBjwZl0MHut3eRfwgx/Axz8eJGn61xYkKI7JCHRNDoAH2lVNoaYPaQ1zVvv9FAmK7z3el/D1tgVwmN+tC8lQBpuZxS7IasCjlq+rzEwwW607xQFrNOGOOxg5am4SpmHIsxkQjt9mtcD558PumQ67/uhZwfP1Zj43MNP02vLhHPbGw201I35coJXta/HLPhYAvNXiA4PnArC0VpSSgIzHUlF4ca/RTGRro5HKgPv9QsYus6MKBtwYiEk44zVpDHgAwCWsMkeevGvG7ItFRi4AT86NADkG3G+TpxaEDCCTjdy/X4oB9wm7fkeuTQVa/aLL/LzCYWU7b/zIadS+91X2softZbmKmmbRQiL/GxC42kVlT32JXaeJL+zAneJ6owDc3Z+YYnUypoxhR7TBKAMOMGP0WRnI2aquekXp1tbIHTvSrHIhXATkzVO+x36jMmKdRmbmtywAN8uKlAbccURF3DQJyvEcMgz4HwLnua57b4/NvtB13fx62Sdjy6Jq2LRtWQDuBAD8wguhUhryG0t/xb98rsou7qJcL6IVbFbsSeZTJjqHwglg7YofTzzvF9RScMGy6I+K6F7yR6WqboIBFx0/AEuHe+L1978/POtZtI6EyKnTUxmOVDTVmdRHF92pJCjFkkrNsGg5lcz75IOEohEfTKcpiuNrrLftqdOizuCmO1KPDbeoMyQoOX7nPt7eXTgoAP8YAD9wh7gJh9gB3W6YhJnFgJeVqTTgPtgxqkWe+UzYv1KhdNnD+Yu/8N5PYpwt18Qiq7uWn0AEUDPj4CuQoAz1+GUfg8qx7nI4ga04jam88f1Y6gk2yKJE93A2MPN3YiYY8KI7BQAXuQoN0xKLswxAnMaA+01IBoDblgCB26p9cb60e9TtguOEuQqJDHg+APef2m4I9nf5YLxdRYet/u2LWAmWp+MReM1PCcBLmsv27dB1y7yON2Ijbtx8Ta5/GcWRdJXYg57seOfsgN2eke+BRfHafbeH92vlpqXxl56MTcSw6wHwSrydzlYHrNo1qfFntesB8FEld2ciAMQJzVR2p9a3+GzUXQHAMwr3JDkuJYVRVhihMepmj99BFUxvZ/9EChkAvg+QcAs+GXdXmIZLz9FzbbgABhEJSqEAu7YNg8F7JwdRTIPZcl8wn5tw/e/cEQ7CSWXafQA+wyp2b8jILQZbX9WGOjUD7ktQKlXPWmvdCavIAO2lPmXExOwD8FIhoeKXz/TlLDpiDLhp06I2eZ/uvBPOPx9++7exfA24Hp/sppGg+Fvn1dNEVYbuzQlM05VXwpe/nMkuyCZhrq0K8HNeeZ/QmI4D8IPi9YssQL/PyPE04Bme9QGbIQnA+z0XnT5qOT6g/umfCkJHxlGq3PCqDOZYvPlfX81MZsDbw9Ixl6BEk4mXmduUvna5H7Jlqwez77vVFw1bM8cWir4ERcLmot0rUKVNs+7kTsIBA67Fv0hFgaJqY9lK7n0eDR0UHGbrI1aZwW0lAP5eT1iTvfa1wU7SZiUo/lO7dSGE+OMZAAAgAElEQVTTWzwYXyREHWxvW53BGjqp5/MjAOBDOUeSqMQsatjlO1Cc1pQbsw3NoT8lAN+14ASmXAeXRDvZvze8X63b//cKup1IMeimMODVESvMSs3LK13BUKzTCMtBp0Q4Z0y2QVmiaDQS1ZAbs6p0389lwCtiPum3ssee/iEBPw1t0njgeA8ZAH4b8HVFUf7Mr4rpVcY8GccoAq9OCX1tv+cGDDjAbDMEgHU2wDCYqVrSHX08opKP1cVJMOvl7tBkLShwopdE565Upwfgtrf1peoaVX1Iy63QuvUw7+DlrFNnfcVmpy7YxE5fFQ4hCSVw9ZIc0PAn4YKmUjYdupQn79PXvy4cEj70IayBQxFrwgkhKHMusQ08clQ0Rug1MRoObh/LhHccuOQSeMITGN4hnsvSgFt2DgBfEa89t3mEVWYZHomvrw8cEp+lQwWnN8BxVYoJuwrRMMoqAwycriQD3rEx6R0Vo2FuEwC0u5TdnnwGvF6Kt9eAAe+q9G+NLHqOAQA/uDe8TyvMbgqAL/WrzKpiIsyT4Qy9vjheNCYA4BIMuGUJgNuYK4hJ+HBKPYHFxdhO0ngEVSnzFsNeAvZMwxUs/0pC2/ra18Tvz3421Z4TBPjIA+D+136qV4Tr4JE4gI1+3P29ubDypoQEpTeQA8PjDLgfey94Ct/kYTxz1xVS72OUbPqjKRnw3WpQy2RlXYDDlaWwL7T3ZZcrz4p3vhP++783/fITKoK+WI23m0oFMd9IVEdb7Ytxc41m7vHRypvjIc+Ai75fnyvJA/BS9jxkVLwE5Xb2eDv4/T8GQLfk5FfHU8gA8DsR+u8SUIv8nIxjFIbpsYsSTgX9fhyAz82Fz63TAMNgtmFvGoBHd4FXj0xOZofuEp1phlUGntbN0AUAr1bhes7nO7dun3hdWowsV+iPNY26OWKDOk9+7UX8Me/gszyFmwanc9G8KODSGWpYtkopwSGkVGJqCUrZl1WM3aebrt7gD/kbettODUBCmie3jATFslWKBQfd0+dOWJYtLzNEw0bFWhbXkrSdGEpQsideH4Cfs0MM3Ev74gu7JW/y7VLG7gqQVFRziioEbIac20Ovbcfa6WbC3CmqYPaWswG432Yrery9FotgFC1a1Oi/KFIM5xgA8MU7w+94Mwy468LyoMrZJbH9vLaUvW3tu/FErc9gOgA+sj0WbF5PB+BveQvs3Mlov0gkTmLBAgCec07b8gD4rOgXSYuMKz5yG+/kZfCgB+UAcE+CkvHd+n3/VEPs8h1cjidyRz9ub6iGEhQpBlzO7yCqAY8CcONRl/IwvkXRkRN2m7pLz5arHXHwoEjQnzm1StMrLLsyrMBoxEak6mF7aXNWQSt39Xn5y+FRj9rUy4+L6HalN//CvjgmQSmZBdFGJebl1YGQn7WoM1rOBuBZgDjIVcpjwG1PgrLDEPkYSRrwX/kVeOtb5ZMwK2Is6uUB8MPi8+nZZWeOy5CxIXyD67pvAN7u/+39fzKOUehlVYBHCZ3ooB/XSjVmwwn3EXxDMOBNV0hQZOqQj0WnG3bi1ZXJTnt4v+gkM6wGusdxjHXpv71M+nwjyw30x7WqQ4satx4SzOcVPIwhOg89TWQKtammMuAljalcUIolNdQ1t1piFPvYx8C2Oe/vf4+/4w+5ZnCv1G3oaapSWraKVnCC+zReGv1rn15HZ8jf8/sMW4Pg80x8Rv+cORrwgTcBnH6KANXjzjIbns/rCI1uR3zHhZyRwh9MZf2Oe21HMOBHkVRT3uUB8JXsnaEoqzgeNX1Ii5r4nv04Fgz4gXBBsxkGfH1d2FGeo4u2n9QXo5EKwEtTMOCeVKqxs8wGddzDCRZor3mNOHZFbDtkMuA5WtfRUCy+Z3YKILx61+T3/PBP/D4v551g254G3E70cddK+Rpw/2uvlQY0im0OrsUHrsP7QgDQHWoMh26i5Wk0ikXhyT0tAC+VQvJkG0fEDhhI5ycYhkvf1aXyfA7us1hgEWXHdgoFaJr9YFG4vg4lD/jkFSVLi6+8VNTg2zV/4lbzmZ+zOad6V0wemRbDvk2BEYVyfIGnmUXRF3PmZcuCtmUwiwDBG4vZBEQWAA92anOaiTVSKCoOjR0GPcpYS/FrtK/9CYuf+jb82Z+lFqcbD7PqzRk5+RGDutBiGfwveMXezSHjgnKJoig/BW7w/r+voijvutuv7GQEYZTVKRhwYsyi4k0Or+St/A7vEgz4rLJ5BryrUET0sNW1yQ59+ICnNcUKOpbP7P7wh1OfLpCgoGnUatCihu6IjvhVLgPgkrMFEOhSFgA8QZ6h63IAPMqAm1U1lKC86lXwnOdgfz60mu/01HAbupiShCkpQSkW3GAw7He96x8MwLb5+KfEm/2YC7E64g2zNOCWnd2tRwOhrV04XZzw8C3xdrDeDyeGjbZ4r1wG3EuI7G1IMuAd5+glKAsNALqr2bNH1gRU0y3aVPlzXhU85ozkLOOmjkOH4McicflgxGlyMwy4P0efbgjNV1JfjEYAwMuT7VRWA+4zzI1TatgU6ewf24YejXgdr+erPJqRrzlPmISnZ8DFe6zui49/USzqdntYTgFNTZ7MZSQogfysqLCz2uKu1fji8PAd4QKgZxXCvp9B9SkKGAWLvjWlBKUEp58Oz33mgP/80P4QjUsDcG/XVMJecvnQiDmWg3PM1qxgUbi+AbsQO4ztKSprRuO624XW615Hvgm3HZ8VC/Oi2y+w394F3/te7rHDnmdfOTb2aeWiaKM5ANzn4U4pib6/dkhy/Evoi7Lz1MhW0AoOje3iBeuL8cXw635vmZ0scph5rCNiLMuVoPge+TkAvF8VuqifSQYc+BvgccAygOu6PwIefnde1MmIh14uMkBPTkIai/4gDsB9YHg+P0UBAcDn1c0D8J7K6QiXjqWNSeZnfUV0piElBj0BZPxLeeITxe8z2DtmMJseUQlKraHSokbXSy7ai6h+da89omP2MBm6WrJFn+5JUGSTMEsq5VohlKC8970ALB4Ou0y7X2Rk5UhQZBhwpxBnwL37hmHA05/OQS8ZzKYQMuBZGe12TvEgv7jRjBiZo8DCcaA1KLGgiME9AOCFnKpmwWAqBxD6vS1gwKvi2nrr8t/peFQNkfj0Y0JjJ78AzJbHpZfCfe4Dl1zCwUWVJqvs3GELAJ6hqUyKwLFDF5N1LgD3XVAmGHCmkKAoFFWX+pxo6xsH4uBu75WHeCOv4+n8O1ZPXGAiA+5Xpcw5p9+3Zhri2scTTW+8Mfx70La8naQUAF6S14AXi7AwN+LQcAaWvcTD667jUJQBpxzaEI7VHBgPszCkN8quJ+BHkISpuRSL8E8f17noBRfDAx8IzSa89rVS72OWkQbgvY5LhY4QIQNzjVEAwDfaBXYj8iPaXfnCPtFYKQotTR8jt2Lr8R6Lt+bvUg8HyQC8VNakGXCAeU0A3fWllH70trfBk54UOA5pxuS8ICuVFDJJl4ZnD7t+KN4XP3jl+QB8mcdj3S7aSy4D3hAnz/PIH1SEOcHPKgDHdd1xtHRsKlWcDECAGxcVay2/c/cHagyAuwJ2C1tAEBKU7RobNBit5g/O49Hpi2Ics9oGhzuTnqXtDdE0LLSAyfW9Rt/4Rnj2LxwUVoSSRR2iDHh9VqNFjY4Vos8CI+oLZbSCTYcKI7eYkqCoTOeCUlIxa1oIwL2JbP/HvxXeC8fA6tuZEpSBhPvByFEpFsN5vD9QQseb//gPFj1Hgg6VkAFPYBcCDXgOALc8AN6oiXNsHAoBeKcjPIF3amJXYb0jzp3PgHuOJC25oaHXdY9aA67rojR6byMb9GdpErfVB3wNIU49nduB0Fpyy8Nn/668ksOLDjvUIzRnPFeBKRlwv53O6WJRvrae3c4Ctx5zvJ3KlaKGUCoVuMcsxgmBz/yrmJQv4LocBlwWgHsSFM/vfeVIvG0tRVzxOm3XY8CTvzsZAB5lwCszJbH7dfPNInvwwgs5fMVNbEcsTHuYUj7gICwB+5IAPNCAj/fvZlMs0h75SKn3McpqKJ/LiW7XFYthr8jJ7Ax8mSfw7W85rG8QAvCcomRpseJZ5rWpbspu854eURvua6/Lh1SDnptYLE4ra6KN5nxnfhuZ1wRQX1tOGXNf+Ur4wheCvn80DLhlq2jFsO+3lsMXjNr9YE7+Go8K56gcAB6QNr0cH3NdVC/+WQXg+xRFuRRwFUXRFEX5Y+D6u/m6TkYk9KqYNAdr+S4oA0uJacAXRK0OGr6TpGEwu+B5iOZsXSVFp1egQoftlQ6HreYEoG15pHqMAS+LZqaqcM5ZDsvMBdtUeTEaETLgs0U2qAsnFS9mWEWZaVLWbZEcQrLWN3CSkZj0AQqlAmZdo0sZd32D+3M1b+bV7PvuXcGxbapY3VG2BjzHEtC2BeDVCm7IgPfdGAtycNUIzjdsi8EtKaM9tHjLkaB43uq+tWM3ksTon3anIRjZ9a74XLkMeF184EA+kxO9HkfNgCsKGOqQbg7oz9qCfcWTb2CAuL87PHAlgUWnju4/fJAX8QEu4od8hcew1i4wU2xTbyhsqJPFkPLCB4u65tDQe6y2tcmCHK4rwKPrMuzbaAxR9DhYLOmKtATF34b23WPay/G+f+NPxUXt5CCWV+0vmQGX04DbXv5Hoyna6cZK/PhoHlirhXDrSWmn0zLg5qwpGNvbbhNFv4DDi06w+9elHOZ/5DDgRmF6AJ7noZwXQeK+RGZgrwdlugEAP7Ai+uQz/88uNgZ6AMBb/ZysupTwLfNOVAAevcVHDuYPHuMyUT9Khiq1MPWf9ne/fFvZ8fgfLsFBweonV2sGeaJoZKsUC5HiZSvhNV7znR4tb+5dZQarm04SRcMsi+d73ey55VBLtMufSQ048FLgd4HdwAHgIu//k3GMwvDYxf5afgPsD+MM+JvfDO/it3mSX7zUMJiZ9yymFqdPimn3iwKAz4yEh7S/pXjbbbCxEcjUh5TojwFwgB2naLioHNkn15l8/1GhAVdYLu4IfM1BAHCaTcySLZhEkgF4SZfbah8NxWBVNIqYtSI9TC7/0QI/4P68ljdzZ2c2vBdUGfVH2RKUHAAeFCwphhrwQd+le+cSN3M2DgqHemJw61AJgE3a4FYq2Ayd7Mnel6D4A2CnXwguxFcl7SyLPzb64oMk5LXFwqyJc+ZltPvR6ytHrQEHKBeH9AZy93jckxrg0gtCtskH4HeHBOUrv/85PsSL+BEX8Rw+ytqGSqOp0GjAemH6JMzoZ5qpDFl16pNb15/6lLCeeM97GPaTEwZl+wUIqVSx4IYAfDX+mgMHvAkVk1FH9O+kbe+gKqUkA+477PRalkDJlgUrK6xEXJjWOqL/aQkOSDAlA66pGFXR92m3WTposUqTw/YcCyyiF0eCAfc14DkAXC/aDOwpAXjCAnuaME25KoMA3Z4iALi3GC55O5YuCi6qSNDEoT3YJADvn9gAPNrtlo9I1OoYJO/+aboq+mLOwjSQoBhi7Era/frCF+Ch/A/v4aUM+8kWpCBvl2s5KpoW6ftr4TV+4+tivNwzs0KLWljpM+F80QgcgjIYcMeBp3/imeJaLzwv+yKPw5BxQVlyXfc5ruvucF13u+u6v+667klH/mMYgT/0ugQAtwqxzl0uw2/zHtSIBGV2zrP1OjQ9AO8OPAZ8QREA/A6vauNZZ8GjHx0k6lhoDHwJSiWcfBbOENd1aJ/cuW07dEE580zYGAn2W0O8vsG6AOC6kwnAdUNuq90eeAC8pFKuKNgU+cHtAnRfyLX8O0/nLFUUPmhTxeofHQMeFiyJS1Ce9lvbOJebOcI8I7TgfEEVtZQJWis4DPPs1izB3Km6hqlZYkfB2/YMGPCa+N8H4LkMuO+CIsmA930AfpSlhc2CRc/KBgZZDHhtJtI2EZmR1miLiz3Ytth98eJU9rFOg+ZZc9TrsKFML0GJlnpv1mzhB7y4GD/Ip+Y++9lQdzoBwKeRoBTQipFJeD3exu464i3CMLE6GQy4JilB8eRnQdtyvVoIz3gGzM2xsj/cEQwAeEL+B4CmywPwYlE4NPQxoNtl/h1/yk4OctiZYweHMEu2SPgekuuCAqLvjHJ2pfwINOBHCcCFBKWM288H4MFi2GPAP/kvFju5i7sQZTGbrFHRhrSHpdyy50mx3BNjdofKCQ/AV1bzv+d+39ulHpeg6CojNNyhHAPuA/D1jcm2cs33Rd+8g9OxuulyMGmiyBF9P2DAN8J2cM21Kqewj/N2trxdYSv1fNEIAHgGrIl2V/0j78t8v+MxZFxQ3qYoSt2Tn/yXoihHFEX59WNxcSdDRKCVamevjF0X+lZxsmTrDTeEf5dKzMyIP8c1lTIxHKmUGLL9NCME4P6gevXVtHuiSQ0pBZZ0/gQKsONMMciPV5lLi5EVSlBe+MLw8Xt5KigLDRoNyoYjQAgpCYq6KidB8RlwvRBgw6U1cf8XWeA7XMoLGp/ELI08AJ5sQxgwCzlgLgCHxfArGwwVLv+u+JJ+xH0BKJesOAOeMriVCnYuoAqsHTWNii608z71HTDgdSFLWR+Ii8oD4EHBkZztRD96g61hwM2iRXeUDYCCXYYENlbRQgB+d0lQDhRP43n8U/D/dg6zRpPmTkMw4G79qBjwRkMRi0+/CpYffh7BNdcwHJCoO50GgI9clWIUgLfi3/WBltip6WEy6om+P14hFuSTMP38D6WkBawznQ585jMArNwZatDXenrw3kmhlVQcCtjD9DHPX7PGGHBvbBtgcMTdxry6QtlwxCJjJMeAa0UHy5nShvCoAbh4/bCT/712+2pMgnLG+WVext8EzzdYp2ZYtKlIMerjseJ5Vneo4LROcADeztcODYbpEhQgkIykhd9t5kwxRq+1JvvYyj5xn+dYDjXZWUmYeUSRK3a/gvyPSPpHa8NllhWqnkmC1Rmkni8awZzRTz93FIBHd9JPlJD5RI91XXcDeBJwO3A28Iq786JORjx8BnnQz8lU9jqmoTlhmT+A8yJbN4rCrKeiSPLSz4uRI7yA5/fUWWYbo737wlJqhIk6Q0oMNkRH9DXsAAuniOcPHZHrTLYdSlCiRYXO56cAQvc9M4Opu9kSFEkGfBQpLe8PEMuHxChwBJHNv7u8RtW0hQRlaAcMfex8gSd3jiNJhHULGPCIZ/A3eAQAD73XqhQDXirmW7z5GnA0jYqZAsCbgl3cGOrB9WWFzHZiNHp+svBRMuDlkkXPlmPAk9jY6AgfSFDkjFzkot/nFbydYYQBX6PJGk0ac0UaDdhwKlN3xmBRoQn5Tx9jojDO77z/Yt7Ia2F9neEgRYJiqPI2hE4BrRgOLe1OmCxsDV0OWWJg6WEy6qZP+vISlHDxbZbsCVePlRtDH/I1rzJgmiOgv2D1E9ISzxdZ1JgVkcTYW48km6ExZ3QoG6JCru+LngfAiwUYuYVwQZQRQRJmDnuYF2ZZvjBWb1iI70YpCk995Xk8lst5KN/iIVxJ1RjRojY1g21ZsGGVqSgdXNTY/TxRIgbAR7XcitX9gTJJkhFpo8McT3/vFuo61PU+a53iRNtavkP0E50BVneIio2qJxeoAhhYOXlDbiGW/9HqqMFuSKsFNVrUmgVBSrXT+340pmbAs7vZcRkyvdyfep8IfMJ13emrt5yMowrD09fmbe/vu0UA3tmfP3+SBv7Wt4QgHAIAvrox/SBvjVSKjAIrss7ewzEA7ifqWGj0Wx4DXo2wjDvEb9/ZIy9GdjgJQ0DSBAC8NXs6bN+OaYQAXEsAp7qhYlHK3d5LYsCXV+PvVyvbVMuOYKQHydXwZIviRB06AgY8ouH+Bo9ghhXO39MX5/Ps3dIGNyFByV5oWFEGvOyGAPzf/531z4tS1ztnRVtaH4obngheIyHDZkQjmPSPlgHXRrkV/4J7nHTPIsCzyVrs+C2JpSWcyDD77Ke02c8pDNFpbi9Rr0PHNhkd3hwAL2oKZlUN9MrRePcVF/A63ohli6qNyRIUVWph6rowcovxbWi3Ah/4ADgOd127hOt9zh5msO1dNCb7eVCVMq8QT8QBySgJ1pmbbuK/eSR9dFbu2EBBjIlrfjtN0PlDOCZkAfAgCVNTMMsKAwzuPBSf9WfKA0zD9RhwRcoFJZDcSLDHW8aAS1YZdByxaxplwAHOed4lXM7j+RYP43TuDAiHaQG4v146RROL26h2+ESJ9VXP4pOBsG+M2vMkRJCnlbAbBdltFOIypWZ5yJo7WRp+xQPgvhwsza8+qB2RsVPr9/2iGu5+tdxQttjuQJU21XrBY8DlAHgwZwzS55boEKGeeAS4FAD/vKIoNwD3B/5LUZR5OAHTUe/BoXvevYE/dEp85UuitT7qIQmVsR76UHj1qwGCcsOrreltpUaOgqZEHTR6fOu/LV7JW3F1Q+gE8Rhwj33xNewgrGYrapdDa3LL2dFIiSU5NgTGDiQoDuLemCYhA55Uctfb3vP9kFPP5zPgRjGYj5aZix1TK9tUyp4GPKUctSwAD5jMkhIy4ISg9Pvcn3txPdW6IhjwXnpCDQgGPF+CEu4qVCqeNvO66+AZz2Djnz4NwM55cWHrI3ETCtrR6/mi0bc8AO5/oZsMs2TTtbNBfHCPk1jF007jzbyaC7lWfI9sbRKmc3hJABcvtm1XOcApADR3GMHHbx3uTaWvjQJwo+LplVPA0VWji0MGPNF5IX9hGoLTwC5afK7f+i0oFLjxV4U/9RnbWoIBz7Ih1OQYcDuSgG3qLn0M/udKlUfx37yZ17B02OFUrxjJql0L3jspZNjFWBKmd5tuOhRvn82KRdl06VJmYBcpJRThGo9iEUYUpwPgOQlseRHo5nOKnPhkbVQDDoR2FwD/+q9Uy86mALj/eWaLYmutk2MZejzGxqq4x2caB8VccSShQmwkBpYHwMcaa2Ajm+fJHSksFuR/jMnPDnnpIIK0SQfg/kNZXTEYPwsOpRKUit5ibHERXvMaWosdwYA3VE8D7gFwM7tfBHNGhgNLNJVp9+7MtzsuQyYJ80+BS4EHuK5rAR3gl+7uCzsZYYTgJrtjfvd7Kgsc5Nzd2YOkpgm7un7XldoWjYZlqxRVN5iEO2sWD3vdo3gbr6Q10AIWbEgpLEVfjzNEC6UVFluTHuJJEZWgANSFzJRTXvJEXvlKuPxy8X+57AZWSEnskZ/Z7wPYtPA9oAt6MVihX8klsWOqVfHTphoW4hnfTpT15I4k0yUB8D4mDdap1ArYFGl3xWdLYxdKEvrakRUuGipVhQ4V2jfs55M8jSVE1bEd855HuJf0upUM+Pq6SOhr1IlP9JuIsm7Tc/VM8Brc4wQ9Mg94AK++4glcy30DAL6VSZh/9pcNvsCTAFEXY9tCOCk1txWD9rw+KucW4IhG1K/eqBQzAfgRZ9azIZyUS/iFefydlbSI5iqUSqAVbD7F03C8OgM37hUN/uI964J183Ss477jECkLn5uEGe5+GR7r/M1rxA1bYhs/sX+Oi5siIdrP/0hzB9K87z4LgAeLjJIatOdbl+IAfKZuY5pe0S+7iF6whB9mRgSSG4nVqWWJ0vUFfXOe237IVhn0AXjUBQWI98tf/VVqFXdTANz/iptF8br2xtYtbu8pMfBcP3bVWnIMuFVAV0cT7SZgo3MkKDEA3vSIp4j8zHHgp61TAa86dHckFt9ZADxjzAtlkuK6aqaQI43+4T3c9ZYP0dpwqdGi2ixiU2S9VZBqw6WSqOMQlVymnfs91T/OdeI6HkMmCfMZgOW6rq0oymuAfwZ23e1XdjKCCOzpcvS1va5Lg/UJr9/E9yza9NGnmvRBFI3RCnZAlnTWw4l7v8fsQbwQzzgA31FucSihiE/i+XwJiscy+Yyh+/wX8Na3wgMeIP43zXAASQLg/i5CHruQBMDHo1aDag2x3eZbkY0BcEUBTR0xyKtKGdHy+t/zIXbEjqnSptoUn391XbzfeEVDP7Sim8+AR7b2K7UCHSo865O/wtP5JB/gxVRpYTQNiqrNhivY2zwAHiwScywBIajGzgV7jj4hSy+5Irk2Q8Nsed9p6pbogx4knvcZ8C0k6T75DbGgOfOUIa94RZgDAaIt++05MYkyI+ISlEIsYRDit2OVGYZdO5UBB4mdoYhdJogF1A+4P5/gGQDcwM/RYI0zdg48Blzcy6RJOCgLn8eA22E7NQ2xML3qVpGcvMgCR9jOI3aIBPNcAF7K396PFuLxb9NyO75gaTZcymVFMOCuhl7IbyxFbToGXEbWkhdmTU6C0vU2S82CFfcajeYQIca7owLgmgfAWyceAPcXm9saI5GTlMOA960CRmGy7U/NgOsqjdnCBAN+++3QdsX82qWM1UsuFhc9Z1btiOB8XiJ+tSwWY+e+/xXs5i72cypV2tRmxZutdHWhcc9pw34dh94wHagH41yOCcDxGjL7XK91XbelKMrPA5cBHwTeffde1smIhuz2fpocIvE9NSew2ZomfC/ggAHfCAf4fYhVd70yEhKUrnhOb8Qn/WZ1xHpfTvtr23EJyvOfLx4f347yPa0hjQH3ZDzd7AnJthwKnvNC2nxZqziUK0pcB5qgZS4V7KkYcEUR23uHvWRPP6q0qTQ87/aWZ7eWsr1X0iQAeESCUq4LAH7Xhphwj7CdOhtQqVApWYGsRxaA9zLYDD9+dI0YTO978dFTGiUNAcAzwM1o4KQmIYk38awWn/ccYGsZ8Au3C2bqfX8jqMZzzgvvz+mnhwB8g/pEEmVWRBNLg6IrEXAUlYOv0WTYTwHg/sI0B4CH7TQ+Ed7FLj7Ks7mT0ziTvZheBUZr4FDEQiklT/pyDHjY9w2PdfYdH77EEwB4yMIdFAuhA1JaO5WRoCQx4CvdsbFrRujDe5gM3BJ6Id9JKvi8kgBcxtowLwwv8T0vb6h3xdUAlO2N+BNjsppqTdlUEqYPoGZKHgBvZxx8nIa/ezQzK2SCuRKUUQGjmA7ApVS8THUAACAASURBVBlwXaE5XxJt3x879u3j2h+GbbJDJdUqN3ZOKQZc/K7VxAJ4b39ncEyNFtVZ0WaXe+VUxn08DNWin5EAGiyK1Z9dAO5/m08E3ue67heAo6zTdTKmiYABzxm/AwAuMXgbvquArGjXi5GjoqlOAMC77XCA/yAvAuDC8ywhQem7qNgUq/FJTK8UBTMsWX0vmoT50peKfMHTTosfV65GAHiCfjJg+iQY8CIjKJX4+Z8PHzcIM9trw+VgEh75C4Q0AO4UpeQR/lhllBx+wr1jx1RpU26K73Td8+VOY8BLEh7LVkRbW2kUvap+4TU2WBcAXB8F1UUT5RuRUBTQ1SH9YT6ovv66EXXW2X1OOffYvNB1jwHPaMcCDI6y+4Xroj331wDR5rYqVjdUHs43uOyXxQLn3HPD5849N5RUjW8j50VMguKxw9HFdOsHN4fXwAyWD8DHJSiS/SIqQYnGy3knv85HOcBuqrQxKio2Rfp9JX3SlyiKA/EEbMNU6WMEOyy+q8yumR4VfRQy4CnuIdNoXQtaBID349tgM3MqlZoAWhYl9GI+AC9qqmDAJcbaQKsvAV6yQrYybfeHNwKeBCUjqnX1qBjwGV28/wloA47l1Y6YmVPpUsFe3cg8vj8qJrabQIKSkwQeOuUUaO7QQwb8Jz+B007j9vd9BYAFY02M7SlWudFzDqUYcNGWak2VWzg7dkwtyoAPq9KLSLM4zKzjEIxz6nRS2eMlZAD4AUVR3gs8E/iioii65OtOxhaF7Pa+5dvLSQFwJxe4jIfrguUUYwx4qx1e0yf4VR7Mlfz8QwUIHPRddAYo5fgkZlQ1cW6JLfeRo8Rs/hQlWTZsRjxCtayKX3kA3Nd0axqNBrz//eLx7YTgqNo5FNiUWbaaakWmF+3cymbjVRo3uho/5j6xY2IA3PPlzmXAc84ZJmEqdJQq3cgg6DPg5Uh10UIpH1ibhSE9K/+4jeURM6yi1I9O/w2g64oEALelFqY+w7OVDPjKeoFZoxds7+8MSSM0bYwBz9GORiOavGuawiJv1AoXie1X/0Xw9xrNdB9wfwKWlKD498jPvfBjL2dSoYPpJf+1BlrqWBQA8FwJSiQJ09txGi+ZXampVAybVWaC904KGXbRl5/5ixqA1UF8kVjfVqJSU4XWF6QAuFaSl6BYfsGkowTgZtVLwsyTLTZFgzTJts6rNoq0qeK2NylB0cX7+4XaTqSwvL4z2xS/O6vZxNLALmIktJtpJSglXaE5o7BBHefQkUDbt/iDA2gMOaXZEgA8Y/yTkaCMy892naZxG2fFjqmVBlRr4rtdtpvSANwoWPRG6RKUYFfqZ1iC8qvA5cDjXNddA2Y56QN+TEOaAbfkJSh6yZ2aAffzNbWiG2jAbx/FtSCncwdazRAMuO/1XI5PYnq9JEDTeOW+hLBthaJi5yY6+RMOgGGmV/zKu4dRj2wIHWOiDJG+cSQE4G4BTXUSry9wJMnSJ48x4ElRpU25IQ7wbQHTALgmCcD9dlKrQcut0RmFwCyQoBh2CDSM/InTLAzpW/nJY722LSb8o0zAFNfllVLPkaBEv9O0kNmOnTZW2joz28L2qChwWfnb/M6eLwNjDHiOf3A0xhlwiHs+t7edEfy9yoyQNiijCS+vAIBLM+DiOE82H8QaM5TpBv1wbVgWOtAsBlxCghIw4GXh9DK+w1Ktq1TN/HYqA8BtKwTggQXpMN5G1dNOodooBAnfupbPzBU1VVqC0jrSF31jfj732KwIJGE5TeqGfYJJyQPgtRmRYCdTjTkafjs9oQG4x4A36qJtjVeIHY++rWFom2fA/TwGzSjQbAonsPaB9UDfs9ifYYFFKlXVs8p1UmWSqgqq4mBlSCWjMkmAM/dMfodVYxQM58vMyUtQiiMGGQD8RNeA586Wrut2gU8pirJdURR/4/+GrNecjK2N0K4n31NaWoKiMzUADzpihAE/yM7YMXMsUzJE4fuOa4pJeCybUa8bDHBj/uFpMXIUKf2XWQnvTVQP7ocs0BhZbkzy4gPwYVR1db/7BVrXGq3UwUHKEjDCZAI86lHwta/Fj6nSDj7T+qhCgRGqmWzjWPL1pnbWORXKHiA95xxx/CI7MenSo+xJUE6hYjpY3uc2zPyJ0yiO6EkC8DLdrQHgMgy4pDQrYKByrCOlYzBgdVRldne8/f9n56HB3zEGfBoAPnQAlaJeiAFwP3Wu3QgXxms0GVoKWoJeWbpfRJKFYWJNLR6ji+nVLFgbVVMBeFEWgEfyP/xE08JYYSu9qlExHe70rEJzAXiWBMVPwC6F9/SWwak0WON5pY9TpQMv+m2qbw+vQQqAlxRpBvy6HzvCYvWcc3KPzQrZvKG//sK57GCRi//2BZNPfv7zwdhdnRE3sLViIZe9IyKQoJjiQtrdE2/zXEg8hmGVyAwA7jhguVpiuwnGnxxlpkj6VNHMYjB+rC32+cJX5rB5DovDWRZYpNw4nSOUGfq1KlIq2WiqjeWkA/BxBvzMMyePqemDIG93mTlmWZHDIUWbfl9CgnKCAnAZF5SnKIpyM7AX+Ib3+0t394WdjDCCAi155WIt5JMwDY8Bn6K0cLQj+gDct63zY5aVoN+1qCVWO9Qbhjj38nLuOW1HoajkT3Llegj8fA/c2DmlJShxGY8/wMUA+N/+baABt9ACbdx4lHxHEgkG3Jeg+JKXaFRpB4Bnza1nbu+VShIMeGRr/z4RtctFXANEJChm+LlkALgoipPf9npdZ+sYcFOV0oDLAPCgn+VUL5WNwc130qXC7KnV1GNMUyQ2rtOcDoB7rFuUrY06XnzlZjFLNiojwYDbKqUsAC6dhBl/XTQqdDDr4vtfZSbVCUErqVIacNsJ26lR9jTgdnyBp5RNqmWXPuImpJWrlgHgfpn66D1dc5s0WePv/rzDn/dfDuUy1Vp4DhkAHri+2NnM6HAI199R5j5cC2efnXlsXvjXnwfAVzslnsTnqT7tsZNPPvGJghEgBODt1emqVPn3u2GIeabTU6fyuz8ewhqK8cWXYLTWU9rEL/4igw9/DBAS0PGQ3YGLFmPzCaK1w0Oe/Ymn8lz+mcWhx4DPlIL8nqQEbD9KBRvLlWfA9+yZPGauPgoAuEMhdfE9HoZm08+YM04mYcKbgIcAN7mueybCCeXKu/WqTkYswhLlOZZ20zDgxuYZ8CgAP0J8q3SWlaDfrdOYLPBABDTJJGE6KgWJ1W+UAU+ahAMJSobpP4A9chIlKBYaT3p0V7ivGAamKQaaLuWAGZg4p5YvQRlnwKPuX5oibngUgK/TyPyONY1cAG757hKlEuefHz5+X34EeAC8UKBSDj9XGrCJRt5g6ke3w5YCcIcCo3Z6Ow4Sa3MmhIA1zNgSnSZWD4nvfWY2vc0pCtTrChvFmakciQIAHmXA2yO47jr6P72Nt10tgNMppykCgFPKBuB5rJuEVKpMl9nt4t4dZGe6BEVXpRnwAkLeZZpwkF2s21X0aB0406RSibTTlIXitAx49LID9lCZ7KN6KX9sCmwIcxYcN90EI6fAhdqNR111JJCg5PjyD0eqlFygWhf9P09eMR6BXrkEZc2iTeWEs0IZ9gXDXKuLe51otWjb8KUv0X/x7wLJAFzaB9yzPYwB8KWwbS2yIBjwWVNIUIZkM+AFR5gFpJ1vTH524YWTx1yw40hsOJfWgJds+k76cYEGfGuG5HtcyABwy3XdZUBVFEV1Xfe/gQfczdd1MiJRKEBRGTHIsOsB4W4hzYCb+Vv34xE15Nc0KBTcSQBudIN+t0FdAK2x69HLKgMM3H4++z5yVKkM6CjJHtWD+yELNKIWfRAy4INCmc99scj+/fHzbVCfsGYLzilhCTjOgEcHsYWSKC9cpR2cb51GYjJdcM5SPgCPbu2Xy1A3xU05g9v55UsW+YXT98KePcEiC+QAuKnZ9Oz8Cqe9/tYCcIBBO+MeS0pQthqAH9gv2q1f1CgtGg1YV2enYsCDQjd6IWQ7uw5ceCGdez8wOG7XLmEfJ3ZqJtupdL8YSxZOigoddp0h3vAudmcAcMkkTEcJ+r4/AbeoM0/E5s00qUq0UykG3AoZ8LMiOWZDSjH2MNovdD0fgAcMeA4A93NwF7Y7R113Wzpxf6RK9Y1AXrExnRtFtApt1bCEk8qUtSfu6eGPL9WGmHcSde5eqfiB596TNHzLSuCCashmCMBvGYQ1OA6xwIK2QrmpCQbcxwUpDLim2lhuulvXeN/fvRu+8hff5+/v+4HgmLl5NbYwldaAa04mAP+Zl6AAa4qiVIErgI8qivK3iGqYJ+MYhq5a9HMcJqbRgOuGchQMuCCDKhWFJS2uAZ/90DuC06/RxFQnZ3ajLFd9D/xJOL/zRUn2TAlKLtBwEwH4C/+wHruvPugZoU1Ys/lR0iSKxPgJNR4DHh0jd5VCVwz/8w0wsiUovgY8B4BHF2qGByLKdPn0N+Z4yu1/B6ZJOaKlT7qn42GUHPpuKbe6aq+vbJ0G3GtLUgBckgHfKgnKddeLhnHvc7IbXb0OG+qUEhTfsSPCgPfuEK5CXcLOcMaZAoD3MTITv7aGAe+x+4zwgPQkTHkG3AfgV10VPh51JMI0qVTz26kcAy76QUEvUqnARz4iHh+gxxBTnAHP/AiAAC4yDLhv0VeZzV/E5kWwKMvLG/LHgpw5w//MrdZ01xFWbSQsZ7+2Nt2b3MMjkKD4uwQJOvd9P17jizwhqHJsJCzcpk7CNIsBAP8+948ds1DvUqmqHgBXchlwCy113E7q+4/50/vze9e8WDzOEBoNdF1U2IZpGHBHFARMkWedBOCi7HwPeBnwZeBW4Ml350WdjMkwClYuMAg6mhQDrk4NwMetyKpVWHR2eNcnZvD6zkowWB9me2LFrwA09fLZFGkJSoQB16vpfqd5OvpxBlzXxcT49renn8/UkifWki8HyZKgDEMmE+JmKhdVhJez8qxnxRYYOoP0wbSkiHNm6E1HY8WN/MnApBfb65MBNtEwdUdUZMxpU72BunUMuAQAH9f1p0XAGkrIaGTiulsMdPq5ct5GA9aVKV1QvHaj6REXFG9y73l66I+d+krmtgkA3sPEKE62060A4KdxJyAkBjOziijPDukacEPFRcUe5PiAO2qg/Xzta8PHMwF4HgOeoa+NMuAQys8yAbgEVpb1PQ8A+LaUErxTRLEoStr3cmSLQ7sgJ0HxPvO06pFwh0+lUnbpUDkBAbggvmozYuxsdSfv+QOffhpP5Iv0i2LMOxoGPJCgmEV27gRVdfk6j4wds9DsU66Iiq1DuyAHwFPa5/i8H41Dn/2uqNz8uMehKFAtiYFEGoDrTmYuWta5T4TIBeCu63aAeeAXgRXg3zxJysk4hqEXRhMJSOMRAHCZhl+eHoBH2QyAe90LOraY9J937ncB4Z41Iyx5WWEOM6Hil+5NkjIA3HZVqdVvFBArxuRAEwKNHAA+mgRr5fLkjnD0fEl6PnFOCQmKP5gm+Bf/9Rl/x7vfDY//6HNjzHhWmd+pJCieN7XuVQ416cVWAJVoslklfwQ0dDlry96wIM5VTU9OlI1SWVzXoJOheZe05wwB+NaM9tffbvJz3EChku0b0WiIZL+pALgvQSmXgrb4NeUyHs43WGQBANNwqNXELk2HKmZp8wx4lgTlvOItAFS0IYoCu5sCSRr0UxlwCFn8tIhKUB77WHjQfcT9iQFww6BajwDwapo9p/gty4DDmANSpAPGttoTqu6OR+CCkkNtBgB8/ugLVPllvrMYcNcVmnOZvhEA8CldTKI5LtWqcmJLUJqi3bT7k23w0IpXJbIkdoyT1CDyDLjoxwVDSAjPP8/mp2PF2xYaPcplcFFpUcsE4IFbV8qckbX43v7kBzNzx4/g2c8GoGaIg6UlKL4bWw4AL2zNpuQ9LmRcUF4MfA94GvB04EpFUV54d1/YyYhHnl8mTMmAVwpHoQEXk87DHx4+96aHfpmf/hTufe8QgAOY+uSkrxvyAFywYPnXFjNaSQCngQQljwEfEbMhlDlfErDxz5nLgPvbiQkV/MpKj5e+VEymqkpQvtignw7A9Xy2beSowlnGA9u6l7g2Xg2v7AFwBSdxUTMepuFKMeDdoSYWZltAawQMeBYA95OQUjSQfmia+KxbxYCvtQrMsTzhAjQec3Ow4kzJgPtJmKYWfKw3uP8fV/BwPspzACgbbmyT4agkKB44TVoonlPYK87n9fVdc2IyzfIBh3ArPS2iDDiEfWQcgFfqkRoAeQA8q+T20EHBQS2J9/DHsaNnwFVGaLhWDgN+h5CcVRaOfmcIfF9+CXu5lDoG0dgsAA/LpqtU68qJKUHxpJ+VpmhknUH6uLZYEk7OScnC0i4oA2F7qHj6pwc+ePI7Xlj8YZCrsEaTkpI+3moFN9OlZ9yCdCIiZamrujg4iySKRkDapADwk4V4RNGdi13Xfb7rur8B3B945d17WSdjPPSCLcGAq9KVMPWjYcC9jvjAMNeLymide91L/O0zRwBmAuYJXF1yqrQBjNyCVOeLGa0kmBSHEpTsJh+tvpcVMQY8JRFLRoISJNMlJbeNDYhlLbK1nydByXJBseOJrf62/XgxDj+pyEWVQhqmmQ/AXRd6oyKmvjWlhX1m3k9MSopAgpIDwBVFSL36o60B4L2BIu5pznnn5mB5NL0ERcFBNfVYdU2AT/E0AMoeA+5Hlu40lwH32OqkbrFQWhHn8wB408ubSJWg+EBDAoBH22kiAHecoJ2C2BFICikJyii5CJdNMT0Js5Y/1vqSFt/mMC06bxA6t60C4IaaXWUwcChJcMcZD78dtXrTLZoDCUpJxawIL/epheT38PB32IrlEqri0LfUVD31YkG42+gZADw3CbPvxhLxzzp78r127FCCaXCZuUQpaHDeYrYEZdwoICtqpngPaQbcIJMIPKkBh2Ug2mNa3mMn4xiGoY0Y5DBzlj0FA+5VltsUA+5NKNGJ3+yvBn/HGHBzsuMElT37+Z1qMxKU2MrAiwBoSDDg0wLwNDBZ0pV8AB6pajYRY4O46TGYeRIUh0LmZD+yVYoR73LdLITvG4nmXGSylQLgSi4AHw4FoC/PHH2iGYQAPGs3JZCg5ABh8JKdna0C4Ko0AO86ZszHOy9GAztYVCwswJveFD635DkTlZWePADPqzEQuK6EU0a1Kt5v+8vE9nPF8433k9FSGXBJAG47Sqzva16exCwr4UGjEdVG2E7TdmpkGfACdsAURomEVAa8ma/X9oFL3udtU0XBydswkQ6jaGVWpvWHpbQ6BtEwTbE71O5PpwUIFm5GAaPizTmdE8vDwbLEvKsYuqiFgJlqKbpoiYJRWdWacxnwYbyugV9NF+Chu28HoPK5jwcA3KGQDcB9BjxNA+5/hwm7X+NRLU+ZhGnKSVBkwP/xGDIA/Bbgu4qivF5RlNchPMBvUhTl5YqivPzuvbyT4YdedHKBgWXLWUqB2AKzKOH05AvxhBpw0Rl27AifUzvhGi3GgCdsewcAPEeC4jgCrMnov2KTVsJ2aiBByWEXRhGPbNnzpeGrki9ByaqEGXGzmIhxBtzb3suUoBj5k/3IUcW2s3/9HhtjEW9fzfnI/zIAvCySfrIAuE/ymtu3huULAHjGYi7wx5cA4EbBom+Le3vTTXD11Zu/tkDrLiFBAVhuyy9KrIHnbe59L9G+6Ic5asUm56SF4rQAXItMhLfeqnDLLbD9YsHqlf/PbwFQm/USmPMAeI7f8cgtxBKw/YW/v1PzfD4MO3fSnIv0nZR7HZzTTu//4wy4D7SLWDERapRgkAHgPnOfp3nvUKFMF+W8c3PfUyaMwijTUnPc3zkrFAWq2oB2QoJhVvh6ZU1XMWseAJ/C7/54iMDmr1QStRAwYtmqUXe/xb7YHkpKag8Y8Iyy8DBpq+o7dQH85/M/yoEDwO7dsZ0aU4YBT5Gg+N+hFAMeBeCSZhAWJezuz6YGXGY/6Vbvx4/PeL+3ZgY9GVJhlGwGsgBccusHhHZWlnAJtqK8CWU+agEeGXB03auKaBUTnReCc+cw4KEJ/5QSlIQIJCg5TjIjexMa8JQbOBUDHmEX7rixT/dxT4V3vCN2bLkUYcDTEmq872Y4cFNLRo/cOAPuD+CjseGguW06BrxcURihMWr1UgeW3voQKGEuNFKOmC7kGHCoSkhQwAPgXj877zzx2GYL9wUAXIIBB1juGJySeWQYQXEh73uJsbVelK31OAOekfiVuzMUqbzpx/bt4mdhAV7/enjQb10MQHWnQK46g8SZUxaA205898t/XYkh9tBG+fFFcPHFzEb3Y7dvT3wvKQbccmMMuKLAe/f8JZfe9n9h+N7guOhH0mfyEyb9e5bHgHcau6h0h/CEJ+S+p0yYmkV/mD6OhQBcTg5W1S3abc+uTtKn3OpH7DJ9560TlAFH1zFKffqd+GeMftxDQ7F607MY8IxFIkwC8Ngiu65h7hJ/x6x5E4iw4LzF7OrJ/ncow4DP1qdlwMV7DlpDknrSie6CkvuxXNd9w2beWFGUDwFPAg67rnuB99jrgd+EoJLCq1zX/aL33J8BLwJs4A9c173ce/zxwN8CBeADruu+1Xv8TODjwBzwfeC5ruvml1Y8TkPXHFYxPI1E8tc2cuQZcB9P9dq2NAAPM9rFABG7jFe9KnZszbToWcXEBMWAAc8h38PVr0QZ9JwPEQCNPIsnP5E1Z8kdG9xSqu+VdJUBxRwbQm+CMsKbedq5Buz90uQ5jXwJiua5MmSVFhfa2hDYvOtdcNqn3slj+UrsuOZM5HNJOJb41Uh7G1bq6rx7y13AGZi7ZnPfTyaCJMyMxVxeIYpoRBnwo42eVcRMcQKJxrZt4vdyT979YuRvQ3udKcrK+jEBwBNYN+l+kZEsXKnA614X/u9LQkoME3ejpDXgbjIAd1BRtQLcTwD+2GdP2gqIntOW14ADvOTpK/C2n8BscnvVZyuJj8fOLcuA2wYVPb82gmwYmk0voy37w1JJguAAoe9ttyvCxSSpwSVEsHPi2WX2KJ94AHykUPLmjCARPUJIHY6kLPgORVkMeD4AJ5UBj06EsUJqCURYcN6iSzdTgiLPgG+bnZIB9/KP+i0rEYCfrIS5+fhH4PEJj7/Tdd2LvB8ffJ8P/Bpwb+8171IUpaAoSgH4/4EnAOcDz/KOBfhL773OBlYR4P2EDaOUXdTFdQVjJMuA+51zmt3AgDExEprNZZfF/vW9sc3SZKeeFoDLaMDzCFpVFdVEh3mD20hFU/K1uDHWYTYZ/ZcMJd+GMAPYjEfVFNdl0M9lwLPYRcuJJ7bu2AHv5OUUiX/u2Bx7zjm51xcF4GnRXRKTrzmTD4ZlQvckN5kSlGkAuObkFi+RjZ5VFG4vOQ4TPgO+1Je3ZQwYcO8zJTLgw7U4AJ9NT06WZcBlWDD/nDY5RXGkJCgJrxuTSsWw8Xy8Mu/EazMWGuMMOABveQt8//sEGeZjIQPAAwY85/N2bIOqJi8JzAtDyy7zPY0EBaBadmlRg5WV/IO9GPXFIK5VShgGouhKFIAfOABveMPmt5nuAWHZCppXgCZw9YgA8LsOhJ8tAOAJbj1+W59WghKdi6IAXJYB17RsF5RpGPD5WXGshZY77kG4E9BvJc8ZJzoDfrcBcNd1vwnI9tRfAj7uuu7Add29CN35g7yfW1zXvc1jtz8O/JKiKArwKODfvdd/BPjlLf0A97DQS9l2PcFgqtpSDd+fJDfa8k0gTMLMF2Q1TXGdmQx4jif3NKtfiY9MSZWwcowMplkRHfSMueRJuKSrEoV4MpIwx6LqJbmlaWsh1IAPB8kTmuuCneQs86lPwac/HXsoBup8mjYjzKr4DN2NdLbl+9cJwHjuafLJv1khs5izfF2/hIzGKCvCui2yMs2oaZQatg2WU8TUckx9iUhQBtMAcDdXgmIO1mLsmLltsp2GutM81i0jV2Es/MW99fDLEp+XlqC4KkUJAB5bKKb0i81owAEx+NzvfhPHPtK8EgBjPl+J6RMWWQz4oUPwH73HYxS2jgHXNSdTthi6WkkC8KpIFJ0GgPvVjosVHcOAITpO2+tbi4vw1KcK/dKNN0q/5z0trFE4Z5imMgHA998Q5kf5ADyproKiQEm1chnw4TAu8UhjwGMAPKVWBYgFWGYSppVuQToe/jSxjpzE0N8J6KfYyJ4E4Fsfv6coyrWKonxIURR/6NwN7Iscs997LO3xOWDNdd3R2OMnbBi6x4DnAXBJu57AVmqKpJrodqIf3/wmfPnLk8fu/DmBCMynTeoZAxvC3KI44nehuDUZ0KWCnc8u2Cqamj8JRgcEcz4ZOJUM4f/r9DM04ENX2Mnp+bsW1UoEgKesOHyniDQA7oPJCd3nU58Kvxxfw05bJ6dcFzel10q/f1/8dp1dHOC+520NAA+0/RkAvG8VMJShVCaPUS2KfrZ/f/DYZlzTgmTTDObJjwCAO838KhxeBNaKGQBcHfRyF4qFAhQUm2FelV2vPcns1Pj92zo7mTWW0WP7CdjRheLpp4vfdTZix8YYwJSQAeCJDHhKfHbuhfwPl0glExe1fAb8vZ7E/KqlM3PfTzZ0zWXgpo8rgQRF0vSnWlc3DcC1qh5gw0FrKDKcd+6Eq64SD05bYvMeFGLOEOOpYXqVaCMs//4bxGerFbtYiAEr1a9edRg6OX3RTyrPYcBjEpRMAE62DaG3SxvN/0gLX7a4gUSnJALAU+aMrcYA97RIvaOKovyJ9/vvFUX5u/GfTZ7v3cBZwEXAQeAd2YdvTSiK8hJFUa7+f+y9ebRsSV0m+sWe98484x1qulBFUQUogwVVQvlsRlsQbR8qtqJty1LR9qEi+lw+noogrUtdbyk0vm6cAMuhaW11IXbzRBZCg8pgIUIJQlFAFVV1q+54hhz2vOP9ETsip4idOzMj8t66dX5rnXXuzbMz95AxfPHF9/t+hJA7z507N/8Nl2H4lcHjXgAAIABJREFUvGKUgk0dAfB2CTW80y4CwPl24rhe+dnPBl70otljr3kMOyYPZ1fCI9ayHQDXtfr17aIlAF+M8gyukq/2ecVPvnCRno9vJ7a4yW7EJvBpu8Dx8Gq2TUW6j2Q9c0/XNs9KRMgBeIOd3r2nfTwNnwJx9XypIqG3IftjkLno2O0Af7DhIkGA9AsjAL5M4b74M6w4TZgfzjmSzaMbfooLONYaiKgA+ASbeccdE+s0FVvbZmFapLOLb1XMqzrZhgGXTbyvfS1wB74X34rJnZo27ZQQttBoBOAtLUgBYCO/iK/BR1qh/zYacC6j+fbH/+Pcz2sbPpctLlHhUBbbxyycx/GFJSg2CpBOJPpq3C+BT3968sAFPvNyi7y04NZe6qLC9Fg/fvBLGbro4fqtUQGiYFsuh/PsAnlbAF73/YkmOPZlTjDgiloVwFjFZlUhnqy9THJjm117awa8yxnw5iJAj0Ybwn+pf98JluQ4/bNwUErPUEpLSmkF4HfAJCYA8CCAx4wdeqp+TfX6BQDbhBBn6nXVeX+bUnobpfS2EwqN4OUerRnwlhntyxRWEGxGC7nEtXUm9kMPzf5NgKZ51mcLThBvfSvwgQ+o/+7ZJdI5xYyy0oa3IABXOXp49XNqVSSmxU1y3+UAajDJAbgK3IwWNfo1l+EGu4e4r2bAs7xZQrPwOWvCJ07VQ9kg99Bpqa0NtnwkCLB392ihfniw+LOK3/YOdn1xu5IJxzYyBm5a0u35VHEhxwF++ZeBj350rE994zdOvEe1UGy1M1S3pzYSlHkltduUhZfpkz0P+N67fhpkSW9Idw4AFxKUNiv+Jz2J/d5owYDXH5fn8xccv/11fzL/3C1DAHCFLeiiEpRbnmHjPtyAs/e2TxzKk9qvPgzFuJ/0C+Cee0ABvBR/ir/Cix7xAJwXMxLFhsYlKPdTXIcHsVMvki2UcDYUdpl2hXxeXywmGfCJ1JYxEN0WgLdmwFuA4M0ddu2Hdrsk3aCW4iRDOW551CZhUkr/sv7nH1NK7xj/AfA/lzkZIWS8Ztu3Avjn+t/vAvAyQohfu5vcDOBjAP4BwM2EkMcRQjywRM13UUopgPcD+Pb6/S/HyB7xigw/IK004G2YTWBMAx63B0IyBlwV38aK8eEFL5j9m2DA51SlXBSAf//3A899rvrvfisJii3YjLYRXCMfbLxwPgBfhAGPIjYAOmjIaOegX8EIL9pOPvYx4J572h0bbrEJIe6rF4FZTlpnyLcJPskMU/kNUQoMCx+R007a4W+F+DIei//yzmvFawe//ccLX1e8yxRx09VFVXFsM1+QAceMrv01rwGe/nTmXf7f//vse4KrJToVjAHwhkQ4UYp+AQZc1QaXBeAAgKc8Bbj11pnjX/5y4Od+rvm6PLto3N4vinYWpABYzsR73jMlwJUH79pFU2L0VI0FHeH7aCRtFpWg/G/PZ23tw59uJy8AGAB3kU8C8EEJ3HMP7t15Bv4cL8W34c8f4QDcFtLPoGvPMuBnXJzCA8LWNUAyqQ8ZC88ukVXzKl4TqdvZt+HPJkD0+J+b8s9dtxmACw14i77/1K8ocAs+gTce+6W5xwJsxxF49DLgbdYVHyOE/BCl9CMAQAh5KYBfBtBYLYAQ8g4AzwNwnBDyAIDXAXgeIeQWABTAvQD+AwBQSj9NCPkTAJ8BUAD4EUppWX/OjwJ4D5gN4dsopXzv6v8C8N8IIb8I4BMA3tr2ph+JEYRsMKVpBllTXFSCIhjwtL3l2iIM+DOewXScMqnyCIDP32oD2mfpzwvPaeGlXllw3cXKpIfXzgHgCj02wAa3ts41/JAiUk/6QoKiOOeiz1RSVFQZHIAPB+rP1g3AxbZ2Jm9LXIvd8doB8I1tG/vYwX/8wLPFa4d/+b+A//dlC10X8zsHgtue2ur4Y9slA+AtGfCioErL0VtvlWJUhNcoALhTIeMuCCqL0wWSMPmiSJXz2gaAj8Bhu3b6e783/xjPKpA17ICVJWfAWzj07O4CL3xhq2sT/baBAV+UbGgTIwAuZ6wXBf1fdRu7uM/dv4BdZjoC4Hy3KhmU+B8fOY7fwRsBAKfwwCMbgFeWmHdDCQB/YC/C871zoMfGKsQqALhrV8hpvRhW5PlkOUFnymc7/dk3wPml1wMnPyB9T7Cj9ul1PTS7oCyw+xVet4tP4EbgZ94091hgDIArGPArPQmzzW39OwBvI4R8AMC1YAmQEl5zMiil3yV5WQmSKaW/BGBm2VRbFb5b8voXMZKwXPHhBwQVbBTDDLIxWgymLVapwJgGPGsPwEUxjhYMOKB2JlmYAddjy8wKDsxjFyp7okpkmwg2VVUpazDcxIBzJrPFCONssomv+Fo1zS8kKApws+i28yIRbbABOo6bPLlJ6wVHmyAECEmMYSZ/fjwXqi0Av+GG2dfa6hnH47/d+XgAQPiG/7vV8cd2Kb6AY0D/vlbHFzlgE8UKVxHBlsK60qlGbj2Kdigm4RZ9/4UvZHrtV71K/vc2SZhGAOkcBjwvSHsGfIEYSVDUxyw6frcJP+AAfK/5nC0BeKcDuMiwd9j+GkXF1mikAU+GFb7lU7+AsoYfV1vnHuEA3BaERhAQxCRi93PLLSi/63vw0ODVOHWsh16doBggUVaOc+0xPbaqLxbWTK0K7/U/A7zgXwHPeY70PTIHJHHOOQy46PstkjCxtcWYt5YhALhizhC5IO6l8AsxH20K8dxFCPklAH8AoAfgOZTSB+a87Sg0R1D7Zab9aRMuFqJITtRu8vB95ovdyxYof809XcPVlqMCgM9zXhCTsJ7tJ98tGdPXUMwor+zWuwjicxWP0PNbeFQvwoBfy/IX8iffoj6Gb/8r9PWLFt9YJMJaIhM3SESzwmIMuEZKI7QzxAoAzt0Eo5YFTm68cfa1A9p+y53Hr36McRTzCkTxOH4ctQb8n+cfDCArCHyr3aKCh2obegKAK4ABy1XIWyXP2jbwhjeo/76IBKUtA94mPLtEWjTZ8hHtbRNoz4BbKFmBIU3h+4TtmiZp865pSwBOCLBt97DXWyBvKK1mJCh7Aw8VLFzbPcDp/hbTCz/iAXjtghLUZgl33w188pM4+8kzKPBTOHU8wcPH2HfrIVNLUNy6LHzTYphb5Y4vvh1HrvesIziutrTyPNJYCbPIK9Y2vZbf+yKkQE1ePVoB+Ny7IoS8FcCrATwNwPcB+B+EkB8xfWFHMRncsD5V+GWKwbQlOCYE2PBSHOZt62ACBU/GaMmAq4IXxUnmeXJr1kV6bnMxI2ByMJ0Xv/7rzElLNd6IIicNEhTBgC8gQWkCLuKcczTgmkk+AGMJkQ2y5yy3tEpQACCyUgxz+ecJBtxvp+t/nMQFbkDbb7lPR9vbvOkmggNs4zOfbTfRpLkFr4VdJgD85//MgIFyochLUTd4OebZAgmKc6INA87br14GvFlfq3t3hgf/uKYdP5GM3cIqs234IQGFhWIwRwPutx9fd9w+9gYLyBazWQD+ifzJoLDwxpf+HX7gB4Bz9DiwJ2fpHwmRUwd8XRqGwAHdwive+x34Sfwa7q89JK67psL2CXZQCr9BgkJHAFx1vqK9U5dVF1cLTqpJBMGAN0hQ2lSHXiaEDaHCV6As64Wp8ygF4ADuAvB8SumX6vLwzwIwW5ngKIyGKNmqcJgQwKolAw4Am16KXtEegAsf8AXOoQrfLtoz4LoAeBugQZ3W+uif+Ang9OmG83Ew3FAWXlhKtZGgtNjKnudAsQ4APowbgFWhVwMO1Ay4gtnkADwK2i2qdADw8bmzrenSy76TMcx/9IF25QyywoLfEoC/8pVsUaSy6/Pcam7BKDEJa/jeFpGgSCTuS4dnN+eA5IUZBnxkldlwv5wp1nhuXhU37csHg2XG1x1viP24fRVbUTBqDID/I1iCwpNvcXHiBHCu3AFN9FUAXXfI5oy34hV4I34Sv4DXAQBOXW9j+wRrzH10lVtjoi82zVElaS2TjGz2OapicQD7/ks4oLk6CVN32+QhZEkNDLiuhf/lGHMBOKX0TbXrCP//AaX0ii77fjmGHzGwOpcB77SfsXbCBL+ffze+6ZvaHc+BpKyK16IROMVcS0DhvKAJgPvc71QBNCgFCuosLEFRnq9mHBuTMBfwHubqgCYiYl5p8UWT2xYJfn1NloBZaetnwJ0UQwUA5xKUTtjuO73qKuB3XvSn4v8e0oUBOAf9P3fjf8UTGlPVR3HycR3cjM/jsw+2q36UFrawPls1PHc+61YsYtE3Jy4VA+45JbIGAJ4ZYsDb5Lws4obU+rxhSwC+AKGyEyb464Nn4e1vb3e8uK+xJMx3gKWHPf7JAU6cAHLq4mBogBFYQ/A5g4+nvK4Qj3eDTa43PsnD025l99jHhnI1LCwBmxbDZXuZZETYdqS/2wzAAXW9ikXylBYNAcAVNUHE/GiAfb8coo0E5WZCyJ8SQj5DCPki/1nHxR3FKEYlW+WdhG/7qypsyeLJV50HALx7JsVVHmkNwL2OBgbcme/Jzf1Hdc2HntcsQRE6+gWTMNXnY78bxtKRp2uLwe1lLwNe/WrgF39Rfcw8DbgJu7Pxc9solACcUiAr9APw0MkRF/KFp5CgtATgAPCKF92PH8Zb8OZ/9SfoYLA0AL9+d4ESmlGE63Ef7j0/31caYAsZ39FTttxz0YIBb99O58WoKmULBnwBecS88J2ysTKkSG7TDDQEAG9iwDP9DDgvBKYC4GIxHrYHN3wn6fu/v93xaQb4JAMsa0ICFdopgmd/tXBxXMQO10j87u8Cv/mbC79tOlfhta+VH7d903E8/Rnz27I3hyQCahKj5eK7E7DjaMNWnADgqtoR62DAGwC4jfLRC8ABvB2sgmUB4PkAfh/AH5q8qKOYDc46p0N5x+MFPo/vtgcaN58clfhrsAAWkSUsGcMOV98XFgC8yXuYS140OQMIoDHPF1cXs9hCA15wAN4CkPo+8MY3jqrmNZ1TxS6aSG4bj9BKlQCcL3B0b/NHbo5hKW+TIgkzXOB+X/xivAWvxI999HsYAC/aJyoDQP/P3gMA6O4sACoIwfXuady33y7hMy0cje10/qS/SDudFyMGvGGnhDPgOiUoToWsCYCXZiUoSYPtap7q19n6UT1naGTAH8oaBh9JpJklkoVPnRq9Hpc+EASjxUlDovpa4o47gN/6rYXfxqcSPu4+97mMJAGA5+IDowOvuw6WBbwFP4zfw8uVnyf02I15Su014H/5/g380EvO4PqvUUvb5kkl88wcA+66AEGlBOCiONajGICHlNL3ASCU0vsopa8H0FK0cBS6QpRsVfhlnnuYdciTJ9t/5hOvHTF0wxbFzbKUsglKlc21QPhOhbQh8xoYAXBdLJjvNzN9Iy91zQC8kQG3tA5ubSUoJhhwgOmxVZaAYoGjnQEv2IQuiVES5gJs8ZOeBNx8M5DnDIAr7kcV/X+8GwDQ/XcvWeh9119b4ELSFdfcFFllw7c1MeBe88IU0LsN3YoBF/IzjbZ8ToWUqhF9VlhwUbSrbb/IeS+VBIXLFhWkTc5LjC/ganX/gAHwU6faAeYksxDYbGCNImB/f/LvbXYH1hJJApw5s/DbxJg21qz4PT0HH2R/c0rgmcwx+YfxW3g5fl/5ee0AuN0agD/5thC/9c6rGvErJ7j4jvN0iMW3ARBMCBCQFIni+y+yqrVE85EYbUaalBBiAfg8IeRHCSHfCqCdUPEotIVfyz7SWAHAH2Qd9thV7QfT7/yaL+PbwUrmtXGBypIagGvIjPK9qrFMMjBme6iLAZ9TGW7RYkZzz9cCgBdlPbhpmvSFBGUOA24KgEd2iljB9JkC4JFXYFhpBOAAcB1jjDoYYJgtdq39HgMn3euPLfS+659zPQDgvr+b7/KaVi68lpPwvBAAvGnSXyBZeF60YsCH7PvyVl/rixB2iwqf4rxszywuEm1sV4ULigEAzp/ldGQ1MF8kb+i3v/NvAADXnmz3nNLcgj9GaGxtAb/8y8Df/m19jfzZXOoczCQBzp5dyMMaGHWZcU6Ku2L5SPHOdwL/+E926/G9VV+sHK3tdJ4ExaQGHAACK0OiKKSWxwU790Y7ad4jLdq0ih8HEAF4FYBbAXwPgO81eVFHMRsjw3oFAH+owA4uwt1WJ1tMBwkDfBfeAaAlAM/qKl46GHCXMr/UBs+6vN4S0+aCwv1O5zHgmjXgjdrP0tK6xTZiwOVd24S2djxCJ0ecr5kB90rECgDO13eBv+AW91VXAQAiDBeWoAz67FwKpzFlXP/VbPvqvo+fn3tsVjnw7cV8wFXh+c39AhhjwXQC8KaiODz/Q+Oc73OHCVXBkdKCt6C3eqvztgDgeW5AgjJHthj32HMIu+3P+eLb9/C/4y+QKRL2piMpHMGA83jNa4Cv/dr6Gi8XBjyOmefdhQsLvU3GgPNd6F1cxEteAjz5ye0/z3XJfAactmfAW52zngtUDLhYfBuSgQRWhkQxXw0OCnQwALpXJufbZni7gVL6DwD6YD7gIIT8WwAfNXlhRzEZYjBV2PWcPVPhBM4t1lCDADtg/qvtALg+BjzwWzDgul1QgpYAvKUP+LyYJwcBGAsYaWTA52nAjUtQnFxpCSgmK1IsVKxhXkR+gSGV23otbbtYA/AOBrhYHm/9tqIAvu19rwSw+Jxx/VexUvH33a3uEzz0MuDzAXheEG0LxZEEpVmSwa5t5dOJ8NwKKQL2JUk+OCv1AhseHGQmTQBcY5KrOC+fMxTa3v5BiQAxnM4CC8ytLSbL6s8/FADSymksGNXGonEtweehM2fae4dC7qX+oz8K+L3z+MFv/A+zb3jPexr7kOc3y8EoBbLKbV0DoE1wu0pVrlJRmnUiCewciYK0GfSqKxqAt5n1ZbWU29VXPgptwd1NVHj13DmyFADfBUPebQB4mhKNEhS0AOCaXVDqynBzJShrdEEpSn3ABhiToJSKLT3Ni5rpCN0CQwVjLMC/JokPj8grEVO5N/HSkpvjDHR3MMCgCltvTd97L4TV3aJzxjW3XAUHOe790ny2PqOuPg14CwZcFKnRsFC0LMAiVSMA5wlhbT3528RcBryytfX98bBtVngsbSg8lhtwmhAacAVp0z+s0EVfXSJVFltbbFeoRc4QAKRlMwBvo49fS4wD8AVixICPnrHrAq/8+eNwbpNULH7hC4Gv+zrl57me1ciA81o5uvKUgDENuLJ2BDHLgNu5MkF50L+yAbiytxNCXgzgGwFcRwh589ifNsEcUY5ijeEHzWXNLx5YuAEXgMAcAM9yLh/Ybn8ORfg+cB5+swQl1QsWvcBCBg80zZpLM2ua9AUAb9C65qWlVQNOCOAgV56TARsbXmBmwou8AgOFI4lulxkegU8xhNwqkH+nzqLJfPVM1yFDDGiHTdCKMu3jMb6eXHTOsDc7eAy5F/edbl7gVlXtPawLgPOdoQYhrvaFolUiVywSAUMMuFPbkColKDY8z8zU5lt5swQl07/N73frvCHFnNE7pNhAb2EA3sGgsdjWeCSlNyNBmbjGyw2AP/zwQm9jz5bA1+Qq5XrNEpQRSWQAgKuSMEu++NbYGcfCt9VVsQd9YOMKBuBNrf40gDsBJAA+PvbzLgAvMn9pRzEewspKQRinGUGAZDG6OAiwDZaWvvfRz809PCvqMuIaJgk/IPMZcM0Jg35ogcJCGc9zQdFciKdBglJU+tkFzyqUDhO6rR2ng+mx5wBwTRIfHoFPUcFGkcyCJ5ZAlIMsKiauB/zOho0BOu1sggD0xqy/F9WAA8Cp8DxOX2wGRCLxS5dbj2/NZ8BLve3UtSvkcJQ7C3w7XGspem63qADgmSEGHKh1rmWDBaKJJEwhQVEw4H26FAPewQCDuN34kc7JVRDynAaLxrXEsgx43U512bpykmhdeUrAGABXJWFqlJ/JInAKJIqaIMOY5eFcqUmYyt5OKf0kgE8SQv4rpVR/ZspRLBTzklWWKqN89dVsewdA/11/A+CJjYdnuU4AXktQ4nPKY4RcQpcEpWZ900Ehbfi6AWJbBlz34OaRHJmCbdNt7TgdoVchruQTuikALnaHDlM4weQ3u7R7x4/9GACg81dficH7OkDcLjmrX2tjn9h9AJ53qvlgSXRCigtzJODCe1gXAA8tZHCakzBLfRIUAHCsijF9eS5N6jajAecMuHwxlVftKwwuGr7VXPlXZ5KrOOccAN7rYSkGPMIQeeUg/+v3w33h8xsPT6qWDHhpM4GzxtyQtkHzAhfKbRzHhcUBeFIBsLQBcNe/BAx4YE989nQIpy5jALxEoqiEOhhaV7QEpU0p+iPwfRnEqGKU/O9ZvkQZ5ZtuggWKLnroBfMNxPUy4BZzQWlgwDPdEpS64lsWq0vuAgZsCBsAeKFZggIALimVGnChrTXFgPsVS4iUFFgyDsB7s5PW0gDc94Gf+il0t2zEiFD2FmPA//hrf2Ox8/HTRvbchLQRA65LgtKCAdfMgjEG3FXO+kYYcL9mwMvZ/l9VQEltbbKemXPbOQOZitBp88hDVE9WDLH9AVmaAQeA4cV2ycJN7VQA8IYKxabjf74zxwmcx1/j6xeWoPDxdO0MuMaFIiemVI9f1KrQ7I/PI3BLJArZ4iB5lAPwo7g8YuSXqnC3yJdgwOtjN9BDz51f4UwnAA8ia/0SlLo0s8oXV7cGnH8VjQx4pX9w86xcmeBmOgkzCirECKWjuTEAHo4Y8OkQBU6WbLMnjjGwdu50Ox6CM+DdjeWeb9B12Ha8BCTy0M6ABzYKuKiSJgmKpVeC4tBGAD5qp1pOB4BVwm2SKgGAa5upyOjbxRwJin4p2rwy3/2htTgADwImCQAwSJvnmrJkuQp+g2PH5QDA7/0Cu76fxS8tyYBPJmGuEq5vI4cLmsqfhYk8mjYSFKMMeINscZA6j04ATgj5g/r3j6/vco5CFY4D2CiUfpl5YS1XKvqJT2QAPJ0/06WFzXzAdTDgYQ3Am5Iw6wHBdnQx4M2+uLrZBUIYGM6a7NbKuvqexvCsUnlOE1v74xGGlAFwycJKeJBrB+C124OMAU+rlZjFa65iz+uhB9pNeByAb2wu12b9TY/1i7Nnlcdol0rVzy+P1e1QtwTFd0rG9M1hwD2NDDgv6pMNZs9pYmt/PAKnQNoEwA1IUMLamTNO5G2xN7AXl6AAggEf7DUDZr5QDJwWEpQGdyrTYVfs+j6Pm5fWgOtKwuR5SrJFImCGARcSFEX3152APR0dv2BOU1NBKTDIXNbelkmoeQRE02h6KyHkWgDfTwjZIYTsjv+s6wKPYhS+lSPNFO4Wy2jAAeAf/gEbfo5ePP99WVkz4BomYT+y50pQmDVXBuJoKlLDJSjzGHCdk75dNms/KwuO5knftUulBnwk69F6ShFhSBAjBI1nv1cBHDVNVjyCemcj6UmA1Yolvq+5hv1+6HS7a+YSlO7Wcm022ApYvzh9WnkMxym+o0mCMkeaBejPVfDdqtmRxMBOjS9yQNQAXPfiUJzbLpFWTTaERL8EhTPgijmjn9iLM+AAOt/EdN/Dg+ZdIdFOG9jay4EBj3vs+g6wDfrQMi4o+ggNLhtKB5cAgKskKJoX39PR8UtpHYc0BSpqoeOaY98vdTQ90d8E8D4AT8KkC8rHwdxRjmLN0VQxSmwRL4oeNzaw0a3w2f51ODhoPjQrbAbANSTKhF0bOTxUw2YJis6tL56UlCkKUxjR19lqPTbArM9copkBbzgnBzaOa0gDHrJt/uxgdmcj+/DH2fXtq9ndZcIPa2DVNwDAT7Hn+NBD7Y7vH1awUCLcXG4V5++EDIw8+KDyGFMM+DwArrMvBhyAqyQoOUBQadv9ApjdIgBkknYy8qg3w4D7bjmXAdfNMnJwG6fyvt6LnaUY8OjfvxQAq1LYFKIKbcNCUVQLvoQM+LA/+s7P7y32/HVrwLl3ezJc3xwlStErircVmh2QpqMTVsxpasoRaTCo/+5duWmIylmYUvpmSulXAHgbpfRGSunjxn5uXOM1HkUdvpUjldg1UToGjpcAGt2gxJeyU3jWs5qPy0oLHtHTGYK6/LEMNPHQ7Y3rRbya6JzBTSNDy8BwMwPuEr2TvmeXSg14lurdVZiOqMMG8eG+RAP+gb9n17e/2DbvvBBuDwYA+NWn2PseOtvuefX2C3TRB+nM9wyXhb/hMzDSsBpuwywuEtwRR7UwBViysFYG3KsY098gQXGRa22n/pgL0nSYsHcbj8AtkSh0rsAYyNHIgBMCBCSRMuBZxhb/SzHguwzZDw6b299op0Z9HCGA55SsLVwyAD76zu/Lrl6IiRdSKc0M+DoBuDALUFTCFLtfphjwGoBP696582vHuzQ7I+uINi4o/wch5KsIIT9a/zxtHRd2FLMR2Lm0nLGojrUMA47RBPy5OVbgWWmzMuIaIqiLRCR99ecJBlxXmXae7a0aaAwkYvl2iaxqYMCNSFAq5TlFxT1DbAYH4PHB7KB5sHEdOwYty+i1DFHxTwasVgTgwU6IHVzEQ+fbvb9/MWes4pKaxSBi7kAyCQ8PY3aZDQBcd8Eon1sCNjDguhK+eTQx/SMJiiEG3KmQVi2SMDUCcAAISYI4m32GHNxEGC4NwMeZY1mMForNc0bgVZdWgjIYjfdfxmMnzfznhG4ALnbzFNaRRpIw62apSsJcBwNOYSE5mFyACQbcvjQLs3XE3NGUEPIqAH8E4GT980eEkB8zfWFHMRu+VUirqYlOuSQDvldutjqOAXBNDDhf6c8B4DonYW5XpwLgfCGjcw70nBJZ5Uht+YBaA070sm6eXSlZ9zzTD2zGI+yyISU+nG0nn+jfjC3s4zG4X+s5BQNuAIAjDHEMF3DxsN37e/ecYQD89tuXOp0f2SwJK1b3szbM4iIhAHiDBEUUjNIEwAOfNjPgmd7FNzACN7IkzJEExZALilchoWqUprvQEY/QShHns21XtCGkC6Njb5wtAAAgAElEQVTHqO7jg37zs2ojQQHG8gEuFQM+BsAvYncpAO5rckERuv1YMV/Uj1LnHDUPgJuoVTEenYiddzqpl/szhA1JvI/0aDO6vQLAsyilP08p/XkAtwP4QbOXdRSyCJwcSTHLogj2BtlSDPj5lFWZ2tluHkTSwobXYCm1SAS1dVwrBlyXBIXrDRXjPB/cdI4znlMpq+9VFUChnwH3nEqZ8JVplvVMR7TBzjs8nL3fO++/CrfhTug2QOQlt5OBjNlckfGPIuxgD3u9djPe2ftiHPP7wNOfvtTpuDRLllDKQ3cyaysGvLLhaJRK+d6cJEwTDDjfKZG4IJnY2h+Pjl9iiEhZ+VNYvWlmwAMrl1aZnCBtFgTgfHNnOAeAC5DvNj9TsRtyiRjw4ZDiOFhBuH1sLwbANbtKjSpezwHgOithzgHgZUWMSlD4ruk0ADdlW3s5RZsnSgCMj1hl/dpRrDl8R+6oIdibJQfwfs62FK8+0Qyus9KBb+kZJMVAo9C6AWPWXLokKBxoKG6BM+B6AThVFlYQg6lmBjzwSqQKvakApKYG0w328GQA/HNntvFU3AU89alazxl01faSIo9gBQZ8FxexN2g3w97XP4brOxeWTlT2O2w2VFllAvr96udpQIFagqIxWTjw0ciAi9LsWhnw+RIUUwC8G5boo6susGIIgId2hrhQzxk+WXxxGtXpDYNhcxtvzYB79JIy4PEQOImzsEiFA2wBh4et35vW96irsrBwhVEw4GKO0picLAC4qhJmZcFGaY4Brxd000m9use5yzHajG5vB/BRQsjrCSGvB/ARAG81elVHIY3AKaXFHCbYjCUY8D951d8CAK4+1rzVk1UaNeBtALjm4hR8cJsLwHU6L7iV0u9YnE9z4pfvVkipvB2YlqBEm2oGPCsshIiBD35Q6zn9DYYgZcm1K1cYdF3skH3sDWbLpU9HWQL3J8dxfbh8kim3VFTZkAFjCzdNcok2AFy3VMr3mzXghQFXEJGELVncmGbb5gJwvs2vmwG3cyQSAL5KMScBmOYA8LYASrSFSyVBGVJEGGIrKhgAX1CCotOtZ17xJCGT1DhnzCWmDDPgnW7NgB8B8NmglP46gO8DcLH++T5K6ZtMX9hRzIbvyL1kRUNdEmjc9rQMz8ffoEjVnZrSWgOuS4LSAoDrnoSFBEVR6tuMBlzNgIvz6WbA3Qop9eTl4DXLeqYjrCUosSRBK69sI1pCLkFRSQtWZRZ3nD72kvmJaqdPs8p/14fnlj4Xz1No6he6F4qtAbhGqZTvk0YAXvK+r5MBb7AhNc6ARxUy+Mj6s+MApYwBN7EwDp0McTG7e7PKgsPzWFG4YdL83bRdKAZBvRvSUJTNZMQxS0bd2qyYBGWeH+9YZDWhocutZ+TdrrAE5DLJK4kB36hzClQA3FCfvByi1ehGKf3H2pbwzZTST5i+qKOQR+DJrawmGPBlOkm3Cw8ZsgYAXpZMr6yrUty8ZBNgDIDrcl6Yw4CbGNy8Bn2jOJ+ld4Xv8wQ3STnzwjAAj7bYaD4cTLalqgIoJUZYPqMMOIAdb4C9JFTl0Yq47z72+/ruhaXPxfuFyioT0C+VagPAS2pp1YAL0KXojEUB7ZN+kw2pabatG7FzyqpHxjErOLKBnn4JipMjluyarpLISwgQ2SkGSfN305bQiDqE6eO57cWaYxgTBsC3LcaAv+xlwIV2fThLKUtk1TxHzSOJdM4ZAoAruLWyImYB+GYtW+xNtsUjBvwoLqvwXSrV9k542C6jPe124SJv1oBqLtXMgcYLPvQLSsKhLA0x4PmcwU2nBtyjLSQomgF4g6bSBLAZj2ibPeTpBC2+2DAB/v1NNmulkvarBYBvFiipLcrMq4K3491weSaPT8BJAwDX7YTA+4WqYiIAFJUNm2i05wzmMOBl3U41MuBera9vZMBNAfAu+93fn0U5XHJsAoDPlS0umcjbcVIMsuZrbdtOBQAf6rUnbRvD1Ebk5NjaqQE4gI/+1d7cBTfAdhR1zlHzqpea2KW1bVb0KlfNi5VhH3DOgB8B8KO4nCPwSqmV1cr6Rc6AN+RX6taehWOVZz/+cfkxRakXLAqmbx4A11gl0nNbSFA0a8BFgpvinCYtpaKd2iN4ai4Vk7EJCUoNwBMJ7hWJvKsA8B3WXvb2mo8T/XAFR4RREtb6GHDBuitYN27cobOdBmFzEqaJdiqkShIALhaIpgB4p7Zak1SP5JLjDfSWyuFpitAtEFez+QttHUpU0XFSDFsC8HlfYdS1LykAjzMboVdi+xgD4H+Nr8ft33MT3vKW+e8tC2oEgKcKAG5ilxbgRf4U56wIbCxJ7rWIzhZrR4PeZN8bFcYzctrLIhqRBiHEJoS8f10XcxTN4Xt1yd4pK6uVtVI1AM+TBh9gzXKJ8doPGxvyY8pSb/KHkKAoBpqyqMu0a2QXfA9zXVBMSFCaZC8mAXi4zR5yPJQz4CaYFOEDLsnh0sKAn2QzwDwALkDNCp7AI2mW+hjdGvB5296inepMwgwslHBQpvJ9b7FTo5MBryUosp0+E/7K4yEY8IPZMZYD8E0cqgfDJUNVgXNV0iZycwyy5pVmW7a2s2lfWglK5iLyS2xtW9jHNj6LJwEAPvnh+ddT5GZkkjLrSMDMLi1QA/BCMS9SW2vfnw4BwPsqAP4oZcAppSWAihCytabrOYqGEMUrpoCVNgb83IGSjtbtPzoOwFWDiSkGXLnSz1lH16oB97F2F5TABzL4oIlEgmJga388hARliszit+8Q/UyK47CkMKkEpVjdSad7kvmuzSs8IgD4fMMUZQgwrPABBsaAjSYXlNbb3hrbKU82Vdktlpr7PjCWKyApMqrbWWY6+DZ7/3D2GY4Y8P7SFVRVEXpyBlzYEC65WOz4BQZFc0Nvz4BbGKBzyRjwfuGjE1bY3gYudh+LszgJAKB/+Edz36u7nYq+qCKJDEhQAA7AZ+9htPtlpkIsAHS2GcGhBOCGFsWXQ7S5tT6Auwgh7wUgloSU0lcZu6qjkIbQ9mbZBIIVhXiWLU/LATg84ItfBG69deYQ3ZPwOABXZV+XJYFvQAOeqVb6RQXA0qwBVzPgo2eqmQHn4KafY9q7w7QExfVI7ZAwCbJNFJAYDx8pUol1lw5/5ehqVil28HAPgLpqrA4JitiCbnBk070NPW/SN7FTw+0Wk2GFSPJ3IxpwX10J19TWPo/uBvvcJgZ8Iyq1L05Dr0RMZx18hA3hshpwv8CwbG7oos+7zfcURbhkDHhRAL2yg51Ohu2bgMO+jQ/iOQDqsvRlM7guS71+9WIBPpcB1ztnBHYhLfI32v0yx0KHW6wdDRSkzZUsQWkzK/15/XMUlziEc0A6uRcuCvEsq1/0fZaECQ/Ykm92mGTAFcXwUJRApJFdcBzAQomsUGjAuQRlzoSxSHgeQQZ3vRKUBgA+kqBoKt02FYQwS69pi7IRw2gIgJNMKqHQAcA717I+MXxwD00AXDDgwfLtR2xBK3yAAYMSlDmTvlYGvC4Lr9K6FyY04EJqM/s3U8wij+5mzYD3Zvu6kKB09fcN1wUK2lAJc8lhYDMs8FC1xTwUFYuG1i4oHIBfAgZ8f5/93tks8JS6PtiHagD+RdwInDkDXHut8v26k9rnSVBGuwqaNeBOIWXAxVhjUIJihT5CDDEYTN6T2DXVOB9fbjF3uKGU3kEICQE8llL6uTVc01Eowg+AEg6KQQrnxOh1wYAvK0EhzIM2h6uk3kYdX78GvIkB160Z9iz5QAMAZS1BsRy9rNu6XVCCcATAp6MoCEKDLigAEFopYgUA1+WiMx0OKesdjMnQAsBPMlnA4IJEuzAWAtSsUBVvlISlPkY3WBwx4HMmfRMMeEPFP8aA66O/RnaLs38zrgHfYs9WBsCFC4pe+TcABl4KyTS/ar7CtTsx3o8baxNt2R7GAhKUCCjgIu+nWDfZyQH49hbFU54y+beL2AVO39sIwEvNANyyAI/IiycBBiUodoE0nf1Q0zuXAIAoQgeDmcJOjwYGfC7SIIR8M4B/AvBX9f9vIYS8q8X73kYIOUsI+eex13YJIe8lhHy+/r1Tv04IIW8mhNxDCPkUIeQZY+95eX385wkhLx97/VZCyF31e95MiKEU3csoAs5s9uQa8FUaqpCgKAC4brnE+LUqCwCU+v1HPatApgDgRUFh666+xwuONElQNG8ncnYx6c9uLZSVWQkKAERWgsHUYD4ayM1sZTpWhULSjrRIUI7XGnCJh/N46GXAGywBNcslxDnnTfo6GfCItT+V1r000feFC9Ls39YGwCVWlkKCsql/CrNdmwHwKU+9VReL1x7PsI8dDM+rWevWSZi17F1WPdd07D3EFtU714Y4cWJ0rV30WOXS06cb36+7VgUA+LZcjw2YqdYM1HaV1SyAMEUSTUSnwwD4lAJJAHDvyoV2bVrN6wE8E8A+AFBK/wnAjS3e93sAvmHqtdcAeB+l9GYA76v/DwAvBnBz/fNDAN4CMMAO4HUAnlVfw+s4aK+P+cGx902f64qLcWnBeOgoo+z9mxcxAJ7IWT7dSUrjyyWVBMUEWPStHFmp0IDnVL/uNLDW7oISRHU7kZQzLwpiHIB37Rj9dHIwF9uJhpgUh5TSdqSTAR/uNwNw0Q+D5duPYMAVVpnASCqlaxImBPCsHGkpf0ZGGPDOPACuH9jYdp2sK0k2NQ3AudNDXyJz5gCcH6MzHM8ChYVqODmur8qAX3eCNfbTX1InKyyiAQeAQW/9FQ/3Pn8eALBzPZOZXX01e/3p+ARSBMi//FDj+00kCwd2LvVuB9rvKiwavlsilZxzVK3ZXBImPI8B8HiyXx4x4CxySul0qZS5PYVS+kGw0vXj8RIAd9T/vgPAt4y9/vuUxUcAbBNCrgHwIgDvpZRepJTuAXgvgG+o/7ZJKf0IpZQC+P2xz7pigwOrpDcJwHU0VPfmG5gt2HCOBEXjJPwtT/oXAECeyT9TMODaJSgqpk+vpysAeAFhzzVpkKBoZ8DZ9ScyAG5gwpiODSdGb8qizLTLhGNVKAqJC0pprc6An2QecoPD5kkoTQEHOSx/+Y440imr27yJXIXAKeZO+iYYcMV631g79UnWyICbSsL0uh48pOj3Zz+/1wO61gDWZlf7eW2fPb9yMPmgV10sXncNawsP3qdmrds+Uw7Ah/1LAMC/yPKpdm4+DgB4xSvY67eCuYENHmj2HjUHwNcrQQmcEqmEATdFEk1Hx05m8oaOGHAWnyaEfDcAmxByMyHkNwD8/ZLnu4pSypeUDwO4qv73dQDuHzvugfq1ptcfkLx+RQcHVulwctBbtaoZAHj1hJgP1YUxAL0A6hdeyJpREcvPWZT62VrPLpFVag24CQYcAPJYxkaz39pdUPj2/nB2QjOhq5+ODSdBP5u0KDOtJbQtimIqubYsAUpXtyH0TmzBRjEfgCd1WeoVVsLzkrAAoMjZM9SJTQOnUDLgJhaKoo0qkjBF+WvN7dQjhdSGtC1bu/yJPXTRR384e+44BiLERkTgjlcD8P6ksbywIVzSMvPaa1hbePDL6j4h5oyWDPilcCHcu48J8LefyKDIz/888KUffxOe8i03AwB6FxX6yDoKAzs1vt2iL+ouxONV0iJ/a5GgAOjY6YxskQNwnYXxLrdoc2c/BuDJAFIA7wBwCODVq564Zq7X4rBOCPkhQsidhJA7z507t45TGgmeXJf0DADwkDX+fCDfZjfBYDoR6/BK0F/p14H6doGsYatd+/lqAJ7FsxOVqaIKQad2mJB4LJtY1EzHhpegV0z6r4gkTEMuKI5VoZi6XdEvkK1EGZEOSxIaDpqvPUspO9cKANxxAItUSg0owBK/AL0Tk6/QgAJmFopcgqJyezFll+lbmbQQl2kXFPi+EoCnKeAjMQPAawa86M9KUCyUsL3lnu+xq1lb2b/QonhbiyRM4NIA8P2H2MJk5yuvAcDkWDe86dXovuzfAJDbRo6HEQbcKZAoLB6NVcJ0K6TUm8kVMFWteTo6bopBNgvAXWQgV7AR+NwRnFI6pJT+LICvA/B8SunPUkqb7QDUcaaWj6D+fbZ+/UEAjxk77lT9WtPrpySvq+7htymlt1FKbztx4oTqsMs+BGs0JS04qAVCm36DefCcEFXiJEARMLMV5XLQf6/8qytMuKDYJdJKwS4UBhjweteiCYBrT8KsK0MmAzkANy1B6Xo5ekU4eV7jEhQqgCkPntTTwWA1ZEUIIhJjIEmgG480rlZmwAlhi8QmBrzMK1goQWx97TRwClYxkc5+P0aSMLnURjFkmWqnTIJ2aRjwDgYYJAoATs0AcNtn7b4YTD7oLGNuG8v6EPKCW027QnynZt4zFUmYDdVfTcXegQUfCcLNyT7bVLl0PEwkYbK+KB9DjElQvIpZHE85IqxNguLmGGSzeUOrygcv92jjgvLVhJC7AHwKrCDPJwkhs5Va2sW7AHAnk5cD+Iux17+3dkO5HcBBLVV5D4AXEkJ26uTLFwJ4T/23Q0LI7bX7yfeOfdYVG25Qy0SmSsbv7wMeyRD6y0+Q/LOzwfokKE5QTw5v+g35OQ0w4J5dKRlw3UUVgGYAbiwJk5dmTyQSlDW4oGz4GXrFpDWZSMI0BcDtCkU1OdFrA+CoNYpxM5DI0mplBhyo5SCFLQXDAHfr0bxT41TMrUeSyWoi8UtYHyoZcEMSFKuUFuIyDsDDsGbAZx9imlIGwMNQ8sbVwgnkGnDGui/fVqNj7FqbEie5rWvrJMzY3Jikir2+i23rcOZ1AcAllUvHw4Rbj6/QY7Pzsd/6JShU6ta1NgmKl89UVmUAvHh0A3AAbwXwSkrpDZTSGwD8CIC3z3sTIeQdAD4M4ImEkAcIIT8A4FcAfD0h5PMA/nX9fwB4N4AvArgHwO8AeCUAUEovAviPAP6h/nlD/RrqY363fs8XAPx/Le7lER1OyDplkUxOkvv7wLbTX2mrRlSJm8OA6+wL7nO+BgCQh4riP5Wl3wXFKZBRFQOufztRAHAZGDYkQREM+FBS8W8dEpQgR6+KJvCjcQbcpihKOQCPMFwdgDvpTJb+dKRxrQFfpRQm2HZwAl+ZoWgiVyHwSikDBowvvg0w4ApjGROLb0Bt8bY2AC4BmaLdLCvIbghBcgxnrWs9ki3dVu2NCAHiRllW0bKugpCgpJcAgA897NhqAN6TJM2OR1mZkKCUSCp5W+DPVD8ARyMANy5BCUoFAL+yGfA2d1ZSSj/E/0Mp/VtCyFzDTkrpdyn+9HWSYykYsJd9ztsAvE3y+p0AnjL7jis3hGRjKqFvbw/YtnsrMW98HJYlCwJmWDD3cUxFVETy6oImErE8p1KyC4WJJMxWEhS9g5vfZfcnY8DXIUHZCAuUcJCmI6bTtM2bYwPFlL2kTgY8cvOZJKHpyNLVJSgAELglmwyHQykrasKtJ3DrLegsmymsMtqp0Xa6MQAuBxIm5GdAnYRdqgG4KRcUEIKuHeP+RFIUJ6m0LNxkYdeOPNPuVowBX6Gt7uwgwhCDfTUUKOu6CvOkUgKAF+7c0u+6Yz/2sePMassEAz5HdlYUBJHuJEy3xL4kIRJgz5SAai0WBwCBT+v+P6kDWpcEJQoqDKrJsY5rwK9kAK78Fgkhz6gL4vwvQshvEUKeRwh5LiHkvwD4wNqu8ChECDYjnZWg7FiHKzVUUaRCAtoAQ0mY9eXmitLwRlxQnApZw/aedgY84nIQCRttqKxwsMEB+OzfymoNDHjE2if3NwbWkIRp0xkJCk/q6mCw8v12vBzDvLl/pQm0SFDEdrAiK83EQtH3qrUWjBpJUBSe/AaYRQDw7VJqQ1oWlOnqHYO5EU4y448PsLHBw/JsdFOIOWMwC8BXOufuLjpk2FicqsirVt+hAOCXoBz9Xhphx581Z+dyfFnS7HgYYcB5QqTsfAbkZwBbEKfwZ5Iy1iVBCQOKjHoTu6aPdgb816b+/7qxf6/FveQoJsON2OAt04DvkIOVtjA5ZlBJUEbJHxqTMOtzqgB4WVlGtK4ZVQDwwoAGnLugpA0SFN02hDUDLivzLWQ9Jm0IxwA4z3k2LkFx5jDgQSB5V/voeAUuDJp9mtN0dRtCgAHwBIESjJiQSgUexb5CgmKCBRMMuMSRBDBnQxg4BZJE4necVeYLVLkp+vkssEoTii1TDHhQyxanJCjDIRDRwfJtlRB03AzDQ7VNX5FTOC3aqUjCRMQ6rYFkVFXsZR08cevLM68LBnyOLt1EYTMmBwuBqppp/2VRmekXAZAiAE0zjM/GpsdtHjxXoSjGcEFOH70AnFL6/HVeyFHMDxUDvrcHPK68AGxvL/3ZfOxX+fKaYGt5R5vW7opzGmBrPbdCitrtgUye1wgDzrX1EgbcWEb7JvsyZQ4Ta3FB6bJ7HWfATSdh2g6QUWvie50A4CsmuEVegUHZDOKFDeGKQCrgbNR0beY6TLj1BP6YBGX6fCYZcEXBIVM7NYFbYk9i8cbAomEA7mXoH86SJGkCYxIUnjc0LUEZDIDOKgActWygp24TZctnyrvmAJ31M+B5Fzvh7EDZ7QKBneF0stv4fsGAa5Wg0FE+xhSpVuSGdobqKtvZIMf4GdfFgLu+BIBnj2IAzoMQsg3mMnLD+PGU0leZu6yjkEUjA56fBXZ2lv5sPggqK9OZlKAoAHhJLf2abBesNPx4T6+jMABs+PiZpU0SFG2nY+fkVQYlDhPrkKB0a0arv1+ADxnGNeAOUMBhk1YNZAQA91Zn/DtBgWHZvMOUpmBM5qoMeIBGBtwEWBRJWE0MuMYmIxb8EkcSgO1mmGD6QrfAaUmC21oAuF9gUPgzxKbYOTGRhMkT96eKnQ0GFB30VwL9nQgYXFATMm3rKlgWWxgN8/VKUKoKOCi72IlmAbhlAU88fgH/cubxUrKGhwlCI/DH5GBTbaIsKiM7mByAp71MCsCNM+C8naYlUOdNPRoAeJtv8d1g4PsuAB8f+zmKNQcvXDPOgFMK7O9TbK3IgHMAHiu8WI3YEAoNuHoS1g403IoBcIXbg3bGnWvrJQDcmAtKg8eyCWeZ6eCJp+NFndYGwMduWrigRIo3LRCdsMKgav6gLCN6bAgD0qgBFzs1WhlwulYGnBDmwjFXgqK5nYZeiVgBwI3vDAUFKKyZjY0sM8eA22E9Z0xJUAZ9ynaGVmirnS4wzN1RA5mKRSR9UVCOJChril4PqGBjuytPJP3Ka/bwGXxF46JAEBpaHYmo2pHIgPwMGCvy1598FutKwhS7+4ejZ30EwFkElNKfpJS+nVJ6B/8xfmVHMRPCBSUbdYayBPKcsMF0BQZ8nhWUCQBFCGCTUipBoZQz4JWSfVgmPJ7g1jS46WTcOQDPmiQoegc32wYc5FKLt8KArn46XElVVeNJmA5BCXtiC0cw4NHqzzcKKAZoBuBptqKzRB1+SNpJUHQuTH0oAbipnZrAypAoEltLasYFJfAqJPTSMOCbIRtzxqVZAHOCMSZBqUmbMp4C4AOsDMCjqJaNHM7a+AGLPdMoqNaehHmxNjTe3ZQD8K+4qcC9eByG//xF5WcY8QH3G3ajDCRgA4Afss+bLt5miiSaDofPGYcjBvAIgLP4A0LIDxJCriGE7PIf41d2FDPheOzrGmfAOeHnI9XDgCeKrTZDNl2uVSKvZpthVeM0hzRXIls0hARFwfRp14ALAD773EzYu/Hwkc3oayllia2mgYYA4MPRBGLaZ9lxCWPAJQA86qx+zk5EkcNT2nQCDEhp0YBHVrMEpdC/U8OSsBQLU1MVW4nckxswl6sQ+iViOqvlF2ytSQDemXUHAgwDcM4sTtWOGA5Wz43odAkD4LwU81QssqvQiSj7rDUy4GfrOtxX7cidXE4+7WoAwMEHP6n8DBN5SoFPkcFHlcpIIjPtNOqyuSLuywH42iQoEwz4le+C0mbqzwD8P2BFdbj85E6TF3UU8hhPTuDBcaSHTA8DnqmqRLLfuvuCa1dSBnyU/KHZIzuoAbhE7F6YZMCbJCgGvIcDK53xWBaLGsNAQ6Y7FUmYpiQoHICPSVCGQyC0Ulid1SsMiv5xQV0vO04IK/qzMgNuz5GgGEjCDFow4LqThe0MicQSEDDnghL6FDHCmSqja2HAu6wDThPGJgE4H1tmGPBhDcBX0Gd1NizGWu/vS/++iF99FK3fhvDsg2xQOnlcPseEj2UWTsM7P6P8DBMVW4WEcDC72DfR9wEg6rJ2MuxNAvB1SVBcGQB/NLugjMX/CeAmSul50xdzFM3B22GRjQaMCQZcQxJmrPDlNaXhdawKed5QmY7oBeBeYDFwIxG7G9WAS9y6TFo8+SRDkk3ehxhMDQzg4yGShWUMuGkAPsWAd+xYiwi8wyeovRRbp+Q2af3YRhf9lS0Pg469dhtCPyTI4aFKshlWZlQNTzMDbhVKBlwkYGtnwJnbC00zkGAkRbksALiJJEw+Z+ST391gWMsWwxNLf3a06TQz4AsQGlFEagB+YenrWTTOPJADcJUAnO+cxQ/L7w9gDLj2JMyAfVfpoMA0dWDKBSXqss8b9iefxdokKDy/rTcuQQGiKxyAt5mF7wGwXm+go5CGjAHXJUERDF+uqBJpTIJSIa9me7cpBtwLbZRwUPblANwUA55K7NbMMuDZjMOEAFKmJSgddtNyAG7IB5wD8DEJxWAARCTRA8A3amvDi5LMVjBCdZDYDNTsrqbQ8ztOswa81O9XH9Qa0HQ4K/ky1fcDO0dayidXU371QUBRwZ7ITwDGHJBMAvAt9vzGATilQJrb5iQoEtImy5h/9coM+JaLITqoLsoZ8CJvP9ZEXWvtSZhn72HA+sR18ucu5sTDhmqfJiQotSPJtB4bMFOrAgCiDXb98XByfF6bBKXDFp95b0Sg9AdghMYVDMDb3NkAwD8RQt4PQMw+RzaE648RmzE5mAK1BGVra+nP5qRdrEqKMtQRHbtCMeXfDFUFn7QAACAASURBVIxN+kQz68YdOnoJpofMskKrwhGLxAiAN8hsDABw38qR5nIG3HQhHrdbD6ayJExjGnDMAPAkAUKihwHnDJEKgKcp09d30V8ZgEddq1EPWxQGWLdwNOlPs26m5Ge+UyCRAHBKAUoNacD5OHeQwTs2en0RsLhsCAB+QIG63AlvrsYkKPXtlGNzxoQ//ioAfJddb3K+L01PXkiC0rVwZt0SlA/djQ10EH7rN8ivqSUA1y5BCeSOJICZPCVgBMCHgylplqEE7OkQDHh/BMAPewQb6D3qAfg765+juMQxqhA1em2CAV9h65sQIHSyuQy4CQ14DnfGl3u07a2fAQeA9DDF9NMqCsBHCVj6Rhvhr94kszEhQbELJIVCgqJ5UTMd7g4rIzfOZpiWoNjOLAMex0AITRKUTTbBDg/klf/6ffa7i8FKO1EAA2oxIhTDTDpAm9CBCheE4Wx/M6UD9Z0SqcR1SSxMTWjAeX/s5RinKxYBi8vG5i77Ng/PZ0DttszHb2Ol6CUSFF0APNphI+jg3FAKwBeRS3Q2rbUX4jl7zyFORn3g5LXSvwtZZn+WieZhwio36IzmqJnzGahVATA5ETALwNclQeGkzTgA7w0sbOIQcE6aPfkljLnT4ZHl4OUTo+1ERRLmihrCyMkRl2uWoNjVCDiNAXBjk36HPcTkMMP0fkFZ8u1EfROhGMQlOwtGJSh2jnQqwc3UomY63GObACYH07VpwKcBOB3qAeBbrG0O9uWOCQLUdOjKk+Mme3zoHVaQZXWYyFUIIrUExVjFVrdCIhlvTEqlONMf96b8jtfAgG8cZ+OzDIBfMgZ8FReUYzUAPx9DpiRfpJ1GHQvDdbqg3H8/vtzfwXWPV4+FggHvq48pqX4GPOjWc1RPbpVrxAWFA/Cp9c/aStF3JgE4pQyAMwZcvkC6EqJNJcwvAZh5+pTSG41c0VEoQzDgxQiwTQzgKwLw0M0xTOWfISZFzRICx6aMAZ+yPzMFFjubtZRgX263pnswdV3AIQWGDQDcBCj17dkENzGYGgbgzi5DkPkYAOdfr+2akb44rsV8wKcBeLUay8eDT1CDAzkbJhjw7ur9gwPww54lBeAm3Ho4AJfpTk0tvn23woGsLPx4srDGGgAAEEY1AD+c7P8mrB2nwz++AR8JDi+MFnE6x29ZmGTA+Vg6vCgvnyyeaaskTGBI1ihB+fCHcTeeh5c8VX1tAoDHRFkN04Rdpt9lE70UgJtyQdlm/XAYT97j2pIwO5OyxThmhNgmDs2f/BJGm6n/trF/BwD+LYAjH/BLELzPjQ+mYgvTWn0QiLwCMfVrJKoAb5oBuOvIAbgpBryzxYGURF9XGdr2tjPEEmmPKWADAIFTYD+eFNmszVJql7mE5P1JDbiNAsQxM5g6Xs2Aj9noJQmwVWliwHfq8vaSdgOMQE13e/X7GwFwebswoQP1I/ZZSdxQMEozC9YJCgwlVSnFpG9AKhXWTWG24p95CQo2N7GJQxyMGX3w5mo8CXNszuAYN8JqfYO/VdUn2pai5581pOHaGPD9j92Nc/gOPOGZan232L2kdUJ0tztzTEkNSFA22FyR9tdXCTOqd/iGU94EJkmi8XC6bK4qBgzQcK/8DfT0lDK+TGMu0qCUXhj7eZBS+iYA37SGazuKqSAEcEmOfGzMEAO4uzqrGXp1OWBJDXNTYNGx6Yx0ABhnwPUW4unu1FKCQ/lWu5HELztDXKi32k3M+b5TzjhMiGequbjRdLiBvBS9S8wBHMe1JBIUyhjwTmflz+/WCWeDnryfcQacS1VWCQHABwqLvrI9s9g2hO40btCAa+77naDEgEYzntwmpVJBvdCYkaAYAjYTsbWFCMMJ8L82CUoxesbcqTPAag5BvFsN+vKF0qI+4Dk85H15krPu+PzH9gAAT/hKNbIUDDgitdUiryyssy9u1gy4JAnT1E5NsMkZ8Mn7WFcSJi/eVgzZnMGdgjbQW8lc4nKPNhKUZ4z91wJjxK/ctNTLPBxSopBJUDwN5bb9khWpSNOZgdk4A55N24Kx37qrRAomUwKkitJM+evIyTAsZidXU7IeAPCdCkk1CQbXJUERUqnh5Fa7yaIKggEfB+BDqi0Js3uMMbW9Q3k/ExKUXfMAXCQL62TAeW6EhAE31fe7YYU+uqzvj8kvRsnC+ttp2Kkr/g1m/Y6NM+BbW/CQIR2OzjEBNEwy4GNYbgKAr6IBrwG4SjWyKAMOsEIw64Bbd3+OtfObb25xTRyAX3fdxN9NufX4G6wvSG0IDcgkAcBybYQYYjhVB2RtEhTeTus5gzPgmzhcOan9co42s+Gvjf27AHAvgO8wcjVHMTccq5Iy4DrG7tCnbLCRVIksS4CgguXo7fiug/VqwBsAeGmgqAIAhLY8uZVPirqfKQAEboFUAcBtwwk1HIAXYz7gh4fAFjGn52MMuAua5eAwUSsAv4qhjX5P/uyErnZDowQlloP5UfU9fYsZkfjVIEHRzoDz8uNxPAHARzUADEhQajvJaXBTFECwFgDeQxaPBmtOrG5j3ygALwtF8bYVALiQoChUI0VJ4LckNASYXwcApxR3XzgGggqPf7z62lyX1aEYVnIGfCJZWCsDztqBKiHayE4NYVV8h8nk567NB5wD8JSdcEKC8mhmwCmlz1/HhRxFu3AtBQOuIX8nCirsNUhQTKy8A79CAl+tAdc8znR22YPijOV4mGIXQjfHMJNrXW1Dnty+S5FWkxO6qYqG02FZgIUSeTxaKe7vGwbgPvvcKs2Fv3uScBvC1Qdwe3sDEQboKQD4KAlz5VOJ+eYglgMy5ldfALY+baSY9BskKLon4W6XIkWAorcHZ4zlGmnA9TPgnQ3W16YXUutIwsTmJnycR5aMvjdexX0Lh0Z2h/jtFGPDq2DA3Wql+xWgOVbnKrBnOn9yEmzzwOzYBAA4PMTd5Y24YfcQvq9mVwlhlVPjWK5NHyULV1qThf0tpodWWYKaquMQkRjDKVtQk3lK48GbPi8yeCRBqYMQ4gN4KYAbxo+nlL7B3GUdhSocq0JejjqDYMD91TtIFFImQZEw4KZKNQcexT6CtWnAeUnxgWSgN1HVDAAiN0dcygG4qUk/8EokdBLArUuCws8xDsAPDmqQYQjgcHeVIikEAI8TUutcr1n9BJ6HLvbQ68snPgHANzS6oKRyAG6iEI9IwlRsewP6JSidDq8ummDrMaPXTbbT7V32/e0fTN5LUei3IJ2JzU14yJClo/sSDLg31O74AsglKJxfCaLVzic04LG8TywlQVmHCcrDD+NuPAFPuG4IoFneEIUUwzhiuzRTYWqO4othGQAvS8A1lKsQWQniTCFBMQzAxa5pXbFVMOB2vNIuzeUebZZRfwHgJWDyk8HYz1FcgjDJgIch1BIUQy4BgU+RSAC4MQ04nzSGDZZS2hnwArHE7cHUrgIAbAQFDunGRH7buhJqANZOx79SBsAPDGrAawBeb2FWFZBmljYJCgBsWAP0hvLvalB7BXNrtlWi02Fyr4NUXljLhFsPr+HVWIhH8yTMdwv6FybzP0xKUHZOsPa3N1U9vTC1tT8etg3PKic2GAUD7s0CPE2nBDB6psBoePeD1dqPkKAk8mcm5owWAGqdDDh9+AwD4I+fD5yjUC3LNFXYjHvVy3ajTO3SAgyADzJF3tC6JCg1AOcLse6mZWRherlEm9nwFKVUXqv1KNYejkWRF6POJ2wIdTDgUc2Apw/P/K3IKjaYuqsnmY1HEHAAPqkJMaU945P+QAKkxOCmGSSGXokzdBZMlbyqmYFJf3cjRwEX/T6wsVGfb02FeIAagI/t1BwcADfTPXMAvJaglBm7ST5fagXg9hD9WH79/f0SHnJR0W2VIAToOBmGmUoDrh8scgCeJmoNuO5cBS4HmfbkN6oB3w3hI8He/jQDvgYJCgDPrTAYA+AHB4BFKnQDtR3eKtHMgOsB4MNMnSy8KAAfnN4H3vUu4MYbgSc8wYgu/uHP7qOPDTzhKyU6RMl1sTyFWWp+1E71jqecTJNgfhRi11T/c9m0BzhIJncE1sWAT9tlikXi1vLVvR8J0aYH/j0h5KnGr+QoWoVrVygkEhQ/WL2DhBFRr/aTgk36mj05Ax/NDLjmju95gINcytqI5DbN9xh5JeJqdiARi5pA/yBzbIs9wAtnRjPvOiUo0zs1+/sUW9VFYEdWWmb1EAx4wm7SBADvOil6iRyADw5LVthE03cZuRmGEutKwIxbj5j0ZS4oOWUe7qHedtrdYn2wv7ce+RkAoNPBDvZw8WA62cyM/Gw6fG/S8Gl/H9hyhyA7ZpweRBJmOWtDyJ1vlg3bBgI7m2FNeYgdvhYAXOjJEQEveQnw1KcCz372StenirvvYiuQJ9wyf1zodjFKFJ6Kka2r3vFU7EZJALggbQwUbdp2+thPJ7+rdSdhchgg8hS29N/n5RRtRvB/BeDjhJDPEUI+RQi5ixDyKdMXdhTycOwKeTmaJIQEJVx9Mo4ighghaDKbhFlmBZugdAPwQA7ARccP9DOmHStGXwbAq/YTxiIReiViBLN+x2m9qDEAwHe32aRw4fTou1yrBMWukJejNikkKKYAeO09ziUofL7UyoB7KXqKSrH9wxJd9LW1ncgtpNaVwFgxDo19kTfBWDbp52YWih0OwPdnPbkB/fIzAEAUYQd72DucHFdGzKJhBjwgyKakWdt2z5jVmkjClMkWVwTgANDxcvQlCeYAkGaktdPKhOUfj499zEhhns9/8CEAwBNu25x7bHeDMKvMJgmK5p0ax2FJ7BIvhFHfNzBn7Lh97GVy+2HbN9svVAx4sH1lM+BteuCLjV/FUbQO16EoqtHMxNkUXvxklQi7FirYyPoZpofUIimNgNMgnMOAB3olLwDQsRMM0tnPzQqLTRi6GfCgYhPLlN9xGpcrW4Gp4tguG8gunskAMHpJJOy65nWWrl0hrz1lkwTIMsIA+O7jjJzP8cwD8K6f4Us9OSjuH1K9ANzLMTyUAxtRjlpjO40ipjuXSWzE7pfmSb+7LS+KZVKCgijCLi5irz/p6ZzlhPnUGwA24+EFNtL90VjN3IHMAXABbMZ2TZME8EgGEq3eVrtejkHss6SLqR2ZOLNZ/1sWgAPAQw8BN9208nWKODzElz/dA0GFU4+Zv8Lrblj4MrpzkjD1MuCEAD7JkKSzu79ZDnjIjMwZO94Qe4eTRcuShC0GnMgsEy2SMGsAnqb1eTeu3ARMoF0lzPtkP+u4uKOYDcemyOEIhJqm9WAarN5Bom5dpKI3q0dMhuXKldNkEQQ1657JAbgRBtxJMchmPzfJnZWLU8giDMG09VODeDKo2PlMSFCOsd8XHh59l6IE9Roq+zoWFQz4hNfx7q6Z83EJSp3Ewx+1zja7EeToFfK2MehTJkHRBcD9EkOEMwtTYEyCovGLtCymcT9MZhcYGV8oamfAWR/sKwC4Y4J1s23sWAfYG0zeZ5xarcHiKuGFNrLpnSG6bxyATydhBiTT0n46fqGUaGgB4KdPr3yNE/GhD+FsdQzHt4tW6SjdLQs9bDQz4AaaaWBlSLJZAJ7wxHIDc8Z2mKJfRhNDThwzEoN0zE4a07kKrI2m2mVvl1uY2OQ7CoPhOnXp9np/KsvqFbEGTVhUFxEZHsoAODUDwEOCCjaKeBJo6EoUkkXXTTHIZj2y88pGYOv3WA0jIEaEajAFwOPK2KS/e5zdw7gGXLDCayAVXKdCTm2gqiY9XU0B8KkseiMSlLBAr5B/Vr8PxoDr0oD7pTIfI8ksI31xyx3iQCKxiflCUXPD6e7yoliTTDcHAEYAOIAdp4e9ePJ7itP2YHGV8DsOssoRiLjfBzaqfWPSLCFBKSclKAHR0366YckkGhL/wDh3WoNFfin9b/n3k3/4mZ8BfvVXV75OEe99L85Y1+Cq69oROxtcgtLAgNue/nbq2wXSbHYeilPLGGmz02VbpOM1h5Khmb4/HUIDPgXAr2QLQuAIgD/iwrExUbo9Tdl2lQ4AHtbV8KQMeEyNTFAcYCf9yXMKDVhH/+DWcTMMpvS1o+IU+hO/urX3+PDC5CAe80WNCQ34SfZdXjw/2h4VDHjHvK2TWChmmThvBwPzALyWoHDpaBd9bUB1p8usHYvZ7oHBEHoZcC5bkkz8pnZqNr0Eh9nsZ4pJWDcDfox9Xv9wcgvf9EJxxxtgbyrZLMmttQANr+MihQ/s7QGoF265OQZcZUOoS2rXjUrGgE8BcEZoOAidvJWNXLfLEuTP53XRlW/+Zvb77/4OeM1rVr5OAKy6yx134Oz2E3HyqnbQp9uFUgMudmo8A5WM7RxJPjv3JbltEICzga1umgCAuF+uZWE60oCz36KNGpaEXeo4AuCPsHDdSQZ8bw/YJgd6GPBtBkplDHgcG2LAeQns3iQDbhSAezkGxeTzEufz9DuEbNS5Pv2Lk37HSQxjg6m7GaKLHi5eHLGLAth0zHd716FsoZimk2y0YQCe10VORGl4K9FmnXl8i7XRCxdm/9YfWno14Lwo1hSwoRSICwehnWvf+970UxzmEgDOd2p0a8BPsrFk0J9kwM0D8CEOskgAqKIAimo9DLi34SGDB5w/D4BV5OxWB8YAOCGATcpZBpzqWWx0IsoA6lSypPgOWxIahABXXw08vHkz8NrXAn/4h/rHxbe8Bdjfx9nODTh5st1bmAtKF9WwQYLimgDgBdJ89nNNAvDtLdYPpQDcsG5RaMDr5pIk+tro5RxHAPwRFo5DJhjwc+eAEzinhwHfZp8RH87qTpOEGOmIwQbreUoGvGtAA+4X6JdTDBi3rfNNAHDWzXpTBUdEqXQTg0wUYRv7OBgrOCIY8A3zNijjAFyclyQjU3LNIay76sQlXpmyE5TaCjkcP85+nz+dzfxNAHBdEhRuCdqf9CouCqCilpGF4qaf4aDozLyexGZ2asJjEUv8nLJjHi0UzezU7ITsBLwIzsQC0XQSZqcG4PXJe706edcQAAdYMut44n6SAD7VJEHpQCpBETkYC+woXn018PB5F3s/8QY8PNwErhmrYMt1bKvE294GvOAFOHsQLATAAWDYm70PnRbA0+E7JZJicu6jFEgLx9icsbM9C8BF7te6GPDarYctEq/sKpjAEQB/xIXnUjaA1wz4uXPACaoHgEebrBcM+7OTuyjrrVuCwgH4NANe+xGbAeAlBgoAHvj6nRc2thng7V2cusfUHAOOKMIWDnBwOJocBNDorgOAYwaAhx3LSAU3YNQs49p5RUhQIn1A9US9bX3+S72Zvw1iS6sEJexaDID3Js8lvkNPv1RqK8xwWM0C8NjQTg2x2TMbTMmHxT0ayP8AgJ2IIScONMT5iL7dElX4kY0MHugwBqVAf0AYADekAQeYS8ckA04R0KEeAL4BqQRFPNMFCI2rrwYefhi4/XaGvek1147++OCDq13owQFw990YPPsbcHiI1gCc8wW9viQhkvupGzAICdwCSTk594k5imRGCpptbtdE0cHoO4uHZqSn08E38/IagLNFv/kF8aWOIwD+CIsgoExDKAA4xYnqjB4GPGKNX6oBz4gZCcpGLUGZZsDr/web+it+dcISA6oA4Ab6uwDge5P3aGpRAwAIQ2xjH/u9EdgeDgEXGZyu+UHNcUe5CnwyNqk9FwA8mWLAu/rOefw61sfOfXlSl03jBP3Y1itB6doMgE8xf6OFogEGvFPgsOrO+NUnibmFYtcaoj+Ysq8zLJXa6UwC8FH+R2W87LUX2qCwUPRixDFAKTHOgAdOgRQeswoE0/Tr0oB3upZUgrLMjiIH4Hffzf7/uSd/2+iPDzyw2oV+4hMAgHfn/xoA8MxntnsbZ8D7AzUANzFnBG6FVAXADeQpAcDGDjvf+E6tyP0yLEGxLFYRVkhQ1pT8eanjCIA/wiLwa0u7LAOlXIJyFtjaWvmzhRXUYJYFFi4BugF4XQwiGU4O1ByA+139jFQ3rBhrM5aZJLZMDQym3R12D+PMAgAkqTlLKcGAD0YAnFtKrWNQc12IXIV12B8qGfBtfUzR8VPsezr/4GSFjPTsAUo4epMwN51mBtzATs1mp8QBtmasD4X8zEC76VjxTFVa0zs1OxuTyWYmdxWmw6vHu+wwEYvEDZjzAQeAwCnZnFF/r2lcaSNTuls2+uiCDvQw4LU0HgDwga/6ceA//Se2KPqVX1ntQj/5SQDAn336Sbj6auAFL2j3NgHAh7NQSTh1hfoXbWHDLm3oSrLANcTGbj1PjQHweIi1AWHXGuUqmEr8vtziCIA/wkJUjkxTHB4CeU6YBnxcL7dk8D4mA+CmXAI4654MJie/pF/AQW7EiL8TUcSIUA5GiTWCXTAwmG4cYyx+b3/qHk06L9Qa8P3BaAEzHFSIoGfreV64LmaTMA1KXwQAz9g5BgPAIQW8bX33euyxTJ5x/uHJCfCzdzFgcz3u06cB3/aQw0O+NymQFs8y0A/At7oVhuigOJhiM1NijgF3EvSTyUWSuMcN/dvsQAMAN7CrMB1eVAPwXioAuHEG3C0nip0JTb+Gcae7xRj95GByUbpMIu3jHje5+fLwORt41auAn/5p4G/+BrhvhfIjX/gC0O3i7z4e4HnPa5+/3ATAhQRFQxXq6dgMC/RoR+xaAGMkkaGF4sZxtsM3LpWMTeYpTQWTStWuaDE1VqTucopLAsAJIffWJe3/iRByZ/3aLiHkvYSQz9e/d+rXCSHkzYSQewghnyKEPGPsc15eH/95QsjLL8W9rDuCkAgAfu4ce+0EzjH6YMUQDPispSuzPrP0a89E8twUAx73zSV/dGqZ6/DimgH4lN9xnJnLaOcM+P5wJOFZl6UUALgemU3CNJj8OQ3A+32gQ2Jgc3656bbhX7WNLno4f26yrf79h1mb+dqn9rTsRAEjR6L44pR3vMF2KjSgD0+BfoPewx03Qz+b3OWKh6yfhJtm9Ni72+z7uxQAnO/oZf1sEoAb1ICHXjHBgB8cQNtCnO8wTTs8LQPAb7ll8v+CDf/u72a/3//+Ja6wji9+EQ+cuh0PPEBw++3t39aKATeQq7DZKXCIzQn7w5FTl5lKxt5OBx7SCamkWHyvgbRxbIqCWkBZIknMWfReTnEpGfDnU0pvoZTeVv//NQDeRym9GcD76v8DwIsB3Fz//BCAtwAMsAN4HYBnAXgmgNdx0H4lhyjdnmUii38He1oAuACmyezkHv//7b15mGRVla/9rhwjcp5rLoaCGplBJpUCZVJRoEERbUXabm2u3XZ7ve3sdf6kaZvPoemroLQDenFCkW4QpVulRVGQAoqxqKKogZozs3KMyIzMXPePfU5EZFQWVZV59omMqPU+Tz4RefJk7B1nneG31157rbEqklXRT31lBXiqIDxjaMzbhR/GBQ91T3Fz85D2sLEzyHdcsHYvm1LKhyCuqaGFPvrStVmvUmpwPDYPeP5MTXYRpiePJkztAW+QwUgFOK2tQWaZyQ/Ahx+rpoudHHHDeyJrqq7VeaPyB4mQv0AxsqayNLW6Y9e/ffIIPFv4x4cHvHqUoUIBPjRBDSNU1Pl5+LYucAevtyeIiQ6n9j3MKhRSU+8GViMDBQI8ooHbVCSqJ7Ie8P5+2LC5muNZG00MeKv7PoN7C9a3TEOAr1yZe59MknUwcdxxrrTvDAX4F8f+BhG44IKD/7fsIsz0voNBnx7wxroJV4Ezrw6Az0xdADQ00MgAA315oZnpeCrEgvOAj1IDmQwj6fhCX4rJbApBuRT4VvD+W8Bledu/rY4HgRYRmQdcBPxSVXtUtRf4JXBx3J2Om0SyIitsJt3AIxTgQ6nJIlQVRsarvSz+CK+voeHJot/nIoysAO/NW2wS3tzqovcsNnQ4IZG/kn5SSikfo3wRWuozjE1UZgXw8OBELAtqwDUxTF02BKWKDNVN/m6mU3rAdShyAV6YWQagr0/pYhfSsG8GkelS3xR8j9795Mf38NBv7nAio29Hgdc942+tQn3tGIOZgqqUA2Nez9PEEXNIkKJnq/ue2al9D7MKhdTUT+EBr8l49fQla3Mx4GvWuIWfp/FwJPfWpnb3ffr37qeY0iHcT2tq4Npr4TOfgVNOyfOAV1TAeec5Aa7TGCRNTJB5fgu3bL6Qq6+eLPQPxMGEoPhw2jQ1KoM0Mj6Yuxaz56mH9R9AngDPC3sZjU+A14UzNaOjuQxhJsC9oMAvRORPIvKuYNscVd0evN8BzAneLwC25P3v1mDb/raXNck6YYxqxlKZ3EKzipTzEMyQqiqoqcgwNDL5hpIbeXtIfRY4fvqGJ3sY0sN+Cv8A1Ad5ufMFePbm5iHtYWV9gjqGGMjL9pC9eVdEX1AlpLnTeaey+Y6H1XnAY7ip1deLW+gaeMDrJJUb4XlgXw+40jDRH61nsaqK5soh+von3zaHh4Ip/fBpHQFht/t79uNZ9JAhJCumdk+O5/VZ/KMhkWFofHIGJ++hUvPn00ovvdsmC/A4nvXZGPChTHZ9bUOjX+GfqMl5wJ94wm07kcdg0aIZf3ZYcTc/dzRMP47/1lvhYx9zOfezHnBwAnzLFnj++UPv5Lp1PDByKv2jSa688tD+9aBCUDwJcIDB7ty16DPrCgDz5jkBnnfPSY96nKUtoCEx5p4Zo6Ne153MJoolwF+hqqfgwkveIyLn5P9RVRUn0iNBRN4lIg+LyMO7J13VpUciePCODGZyHpTW6sjyK9dXjTA0sp/0Rx5iz3ICvKA0fMpf/tGGwLs4lQfchwCnooIm+unPy0jiO6UU5KXNC0754SHi84DXyyQPeJJUpAK1kOpqqGA8m4ZwaGCCeiIOQQGa68foG5gsmIaHAwEe4QAj7HZ/374pAcHPedrU5R52/Xty14UqpDLV/mLAkxMMjk8+H1NDnqvvLVjgBPguN7swHW/tdAmzxY4OZbLXZXur39jzZIJsVdWwimtXRTcce+yMPzssbNvTKGafJQAAIABJREFUt59MNtMMO+vsnJwRhVe+0r0+8MChf9hDD/HfvBIR5dWvPrR/zQrw0epc6cuAcN1Sbb2HazEcgO+ZYpbWlxZesMAJ8CBZgLv2/WQ/m4r62nGX0jJfgJsHPHpU9cXgdRfwE1wM984gtITgdVew+4tA/lB9YbBtf9unau9mVT1NVU/r7OyM8qvETjZt30BOgNe3RVcJoK5qlKHRAjHssUhNfT1UMk5furBNfx7wcOFQvncxzMISFgaKmtaKfnqHct/Rd0opgDlHuWO3c5v7bqkUsXnA6xqENEkmUoEHXKMVqIWIQLIqk8sD3jfh0gJGLcBbZJ/ZmuG0RO4BD7vd1zd5u8+MMs1z3XnR1507JzMZUIRE5ZiXHNkNyQkGtVCAT8TjAS+MAY9BgGdD7gaVrVtdmfi57ftWHo6SRF2wcH9ggN5eaKwapuqYIyOpHREK8O7+aBfSdnY6x0E2CciqVc5bc/fdBa7xg+B3v2Nt5ckcffSh3w5qaqC6ctzFYxfm5A9rVfgYDDc7adbfnZeRxHeoVFUVjYkMA4GuyGRc1d24QlAakmMM0kDv7jEGUlV0sMc84FEjIvUi0hi+By4EngB+BoSZTK4B7gze/wx4e5AN5UygLwhVuRe4UERag8WXFwbbyppEs7tppntTuRCU1uhEY31NhqHMZDHsM/WZCDRXD9GXnnyhpT0WqWlb5IRg74686b1Bd6PzJcDbqvvpGco98HJ5x/0t/JqzzKU22/msi0EZjsETHVIfZDwZHhgP0h8OeRXgAMmqsWwe8P4+pYn+6AV4Z7Ur1z6SO3eG0xWRe8CzISgF3vbUkFMkXh7681z/+3tzszK+B4pNTZAmSSaV+3zv1ffmznUCvM+dK9lr0VPlzXzC03FgUNiyeYL5bKdy5TKvbSbrK50HfGCAnh5ok15YvjySz856wAcKBHhQzC3ZPL1CakuXOodzWJSHigq49FL4/vcPvooOuHrxP/wha+vO4PjjpydcGxMZ55ktGA2PDI9RyZiXwmbZjET5GUlCR5jHgWJjvTIwXDm5vcoxL5U3C6kP6nP85oFKVIVzuN884B6YA/xWRB4D/gj8h6r+HLgeuEBEngPOD34HuBt4HlgP3AL8DwBV7QE+AzwU/Hw62FbWJFrcxZ7emyvkEC7yi4L6mjGGxiZ7RnymPgNorh5m7+hkL1h2EYYHD3jbUU7d9OzIm97zWHkToC0xTM9w7rjm4vn83UznrHBPx53rXbBpKhSKMQjwunwB3peJRfgna8ZIZSpBlf4BnACPOLtE89ykK1bzwgvZbcMjld5CUPqGCsLBBtxA0UeKvqb5zj75YS8+Z78AWtrdebL3hb3ZbamhQICHKSiipqqK1kSa3kF3DLMOhmmKxUMhm1VjqIKtzwyySDfB+ed7bTNRXznJA946vgeOOCKSz04moVZGJjkXIHeehg6jQyXU2H/8Y97Gm25yr3nX3gFZu5ZMdx/rBudz3HHT6oqbpZlCgKcHx12uag9e2qa2ICPRFIPhRFN0M96FNLdA34j7PnEWqAJoqHPH+fcPVVHDCKfzR7cYoIyJXYCr6vOqemLws0pVPxds71bVV6vqsap6fiimg+wn71HVJap6vKo+nPdZt6rqMcHPv8X9XYpBuOAjFODVjFLTEZ2XL1umPc/D59MDDtBcm6YvUyjA/RWpaT3aZavs2ZOLvUwPjFHNKJX1fqa82utH6EnnvqP3eD6g8di5JEixc7Oz5XBYedOXsMmjrt19sd3bMjzw6wwrecrN53okWTNOShOQStE3UEEzfdDVFWkbzXMSjFJLetPO7Lbh0SrqKkciXUybjQEfLihS0x8IGw8DxfqmSioYn5TlxWeFWIDWTvf99m7KiZtUuP7D44CttWmM3nQyaM9tS7b4EzYhWbsOVbJ1i7KQrXDGGV7bTDZW5Tzgu8dom9gTyQJMcDOYbVX99AwXZrLJuFSSjdMblC5b5sz/0EN5GxsaXIoU2Kda637p7mY785hQmfaYo6E+EOB7907anh4e97Y2orE1zC6zb7Vmn+lc53SMs3O8g4lx9f7cL6S+sZIh6tm2PsV8tlH7of/pYpHKmNmUhtA4CLJ5s/tcGsJ6hiMt4lBfp24lct5oPzf15ed0aUmk6RsrEOBh7mEPHvDaxhrqGaQnb74kNTTuteBAW/MY3ZncQMn3MQWQhQuYw052bncDjdRo4KmNQYDXt7gHyF1rFtI/3sA1fAtOOMFrm8laJU2Csd4BhkeqnAc8gvSc+TQHYRp9z3dntw1nqqmLOESjthZqKzP0F+QfznrAPXhrRaBJBujPS5fpe/arZa67ofVuyRX/SaXFuwBva1H6x+oZG3MLvmciFg+FrAc8VcX23gTz2B75OVpIorE65wHfPebqRkQkwAHaaoemEODBQtppzgpVVjoRvn59wR+yMTwD+/zPlPT28mKQHG3+/Gl1hYYG2U8Iir9ica1d7rrv6ZniWpzmrMLBMG8ujFPF7heG/GddKaChtZpBGtj94ihd7IKzzoqn4SJiArzEyArw/lGGBiZoYCBaAd4QpI/LG+37zHcK0JzMuLjaPFyZ9hGX3sIDbZX99PTlpQUc8nczBWhrhSGtz04sZD2Lno4pAK2tdMkedu2pYHzc5R2PS4CH45j1O52IWn7t2blMBp5IJpUUSQa2OzHXTB/MmXOA/zo02o90x273RteGKgyP1VBXG32MdFNNmr6RyedjanCcKjJUNfkZKDZVDtM3sG+2Hl8zNWFRnL3b8/IdxyDAQ897b6/z1iZIxxKaFV56PcMJBkZqaase8L82ormaERJM9A3Q0yO00QMLF0b2+e31aXpS+56nMxHgAEcf7SrITyI7hdC/z/5T0tvLNpzyXjDNJMUNTeIWYRaGoAwFISgRrzMB6DzGhc6FzhPXXhAm2eJPEc9b5K6L7U/2xJqeE6ChvZZBGtjZXemqe0d4js5WTICXGFkBPpBhsHsk8jLG9Q0V+whw32m6mpth70QT2VWlBLmHq/xkXgBorx2gZyAvK0mYd9yXAO9wl1qYezgrbDzkc84iQntiiJ7+qlx7lRnvoSCQE+Av7HYP4I5j/Repra+DARrpCyo5NiXHInffLD/VfZ+nn3V2Gx11mQLqPEwLNyUy9I8lYTwvDtRjhViAzuQAuwemWKvga/ZroRO9e3fkKn6mYgiVmrPA2WvH5lFS/WOxhWZVVUGycoSt/U60tTT4j69NNDgnRnpvmt6Byug94I1j9IzWTyqSk81kMwMBvmSJC/cezz9E0xDgoQd8ugK8saVyag946LTxcN7UzmujlR525iLdSPVlXJhko7+UgPOOcvfL7esGYk3PCVDfkWCcKrYOtjgPuAlwY7aRFeBD4wz++mGXai1KAd5UuX8PuI8c2UBrRyW9tJJ/t0mPVZHwmKKvLZmiJ5UTZ9nKm56ETfvcYEpxg6tY4fuYZtttGadnqCZbDbMuEc+CmvC5+0JfG83spebIac7/HgId7RN0007/Lndww9LqUbJsuSBM8NQL7jzJHtf26AduzfUZ9tJCdrU1kPJczXRu4xA7h3KCwrsAX+wEVZiTG1yo1EzF24FYsMwJ/xf/uJXU4Fhs2YEAmhKjbB52hdNaWvy3FwqoZzclGBmr4ohjamDx4sg+v61V6da2SWEhqeFoBHgm4+rvZAnF7qEI8MrF1NRMv1ZdU1u1uw4LPeCpCW8ecCoqmFPVzc7u3PMhPTjmfaZm/jJ3fLdvTMcSJplPQ6tzDO2ZaKezoqfs47/BBHjJEQrw4cEJtg00OAF+3nmRfX59S/W+HvAwpZSnxR+d86oYoIn05l3ZbemxKhJV/sRiW+MY3an8RZGePeBB6sPuDe64ZkNQPKU9zG+3Z7SB1G4n4uJaUBPqw00TC910YoQet/3R0SHsoYO+XS7OJyytHiXJJByd2MaTG2phcJDhIXc86zqjF4vtjRm6aZ8kbNIpvwPFuW0Zdoy2Zb2ZPivEArQudg/8vd15i80yVSSr/FWIBVhw3lIAtv1+M+mw8E9MAryxbpzN6q6Hlnb/j+DwmfHrR53aP+PKRZHOLLZ1VNBDG+zK3b9Tw0QSggIFxS8P1QO+dy/PVh3HkUdO/yu3dVQ4B1HhIsyUevOAA8xJ9LOzP89JFIMAn7vCOfO2bxnzWnNgKvJPla4u9Tb7PZswAV5ihDfTH+5azaOczJ9dNBzpVE1zRzXD1DOyJ++hH6aU8vQQ7lrsvtTu59wNThVS47UkavxViOucX8Wu8fZsUYdUyl/aQ4C2VfMA6HlqB5AXguJxRTtA27Ht7KWVgQefBKAupni+8DCOUe2mEyOouncgOhbU0ksrPc86mzat8iP6V51UzVODi+Ezn2H4BSc66uZE/xDubBtjDx2TxEY2R7YvAT5ngp10MdHnrn/f52myTqhmlL173CBfFVJj1d5Tn80/y6XEeHFtTy7tYVwe8EZlS1BDrqXTfzhYKGz+a9MSEqQ44axoB4ttc6pJUUdqS650Zbb67Qw94FAQBz6NRZgPjZ/My1427W7Q3g79NJPpHZy0PZ3GecB9CfDGYXYO5z47jpmaxOIuWulh26ZR72u/Csn/WqEmKHdMgJcYYVa136VPBuDtl0Sb+nz+US7+c8fWvAIAA/5SnwF0HuWuvHBh22iQntunAJ+zpJEe2smseQJwhX98Fv9oO94FIPY857Jn+M47HtK+3E3jbfybfwY8x5znkf9M6qwdiHwx5FR0HN2EUsEL3/sdAE2v87Poc+XqLtaxlMwNNzL8oU8DUDcv2nzjAB3tym46J0/tex4ozl1QxThVdD/tBha+Q6VEoK16kO7dTnBnq+95yjseUpsQOmr6ePGZflLdw7EtwgRoaqkkjbvPtBwR/XlTSJhk5U8jq1jEFqqPjnZg2jY/yGSzIfcsyi6knYEAX7jQrcGfUoAfpAd8+w5h29icGQnwsNhQ7+7JIZGpsAKuLwHeNupmowLSQ8Hsl89Fu1VVzKvrZ/umTCxpD/MJZzwAVqw8PKTp4fEty4jmZmhKjPAiC6kiQ8vKaGNrQwG+7cW8BTUzrGp2IDqXuJtqKMCzXrdajwJ8lUvwv+tBN7+ZHhG/MeBz3E2sZ1NQFKfPjTJ8ppQCaDvSHdvXp34AQF1DPJd8Rwc0Jd3Aras6nvpYHZ1uynJtxlUW7LzwZC/trFwlZKhhPccw+MCjANQtmRd5Ox2dQj/NjPbkPG/pNH494Evcw33Hmu2uveGg8qbHUKmOhhTdvc7LFmfu4eXz+vlh+vU8/+xorB7wtnm5+2jr2Su8txem39vOfNrpjjwcrO2YoK7CM3khKCklSXpG65MqK+HIIwtCUA4xBvzZLe46mW4RHsir9llwGxseqYw8/38+cxfX0q9NpNdvBfLCzzyfp/PnjrO9L0nqA58A/BT9morjj8+9X/ln0VRqne2YAC9BwoICnexGVkR7os5f4ETMti15mRc8e2s75zlxuvvJAq+bzzLtxzphunPNNtfmqHiNAW9ogCoZo3u7E94zrRR3sLS2TY6jSzbF480QgdrAa3rqX5wUS5th0bRfcy5z2jK0d/q5vZ14onu9/diPsxPn2Z9zWvThLp2LnGex+7nJnkWvHvCzjgJgxwPO7Zja6+LpfZ6nHa3j7BlthL1781Kf+Rfg13+ghx7a2cjRsQrwI5bmptdbzvGbGx8m57/uYE/k1WHbj3CiuGddXgjKcLD4c4YZl5Yvd9UwJ0JfTEODu7kUxGNPSSbD5q3uHjCTNafh4s3unsn30tRoJclqf6FSc053D/qddz7o2gvj6j2fp/OOqedBzuK/tjtt4XudUkh+wqq61786ljaLjQnwEuSIY93DsPPIBpgXrect/Lht6/IyL+wdcemPWvxMtYVhNbue64OJiXjKtM91n73zaSdusoV/PAlwEWirS9PTK5BOkx4cc/mcm/3mAC5coF93zRu9tpfP2Jg7xquvWxlLe6EA38AxrDrJ30Pj+OPhDW+Ar2y5LJtjOMyfGyUdy9wX2v3Ytuy29Ij49YAf5c7/rAc8hoFix5wqF2rz9NN5Atz/Aqylbzwx+z6uNITgvLohDYvb9rtfVDQ1QV0woOk4e1nknx96iLufz8ucNRKNw+aqq2DTJvjv/w42VFS4C33Pnpf8PwA2bGDLuHugzWSZVNYD3j/5Gh/OVFNX4y9T15xTXNjizvufBZxjynsICqDtLmzxdq4G4qkQG3LPPXDXXbE1V3RMgJcgoQe8/ajo0x91dEBVxTgvbpPsfHB6e4+78Ff6EVLNzVBdOc7udAOsXx9LBa4wLnLns71w//0uvq5mwmvmhbbmcXpohccfJ/XbP7ljOt3ybAfJy18OH70u50FNnu7f4xby05/CX/6lq2gXBytX5uo2zWTK+UCIwOmnQ2+6jo2Lz6WyUr1kzMrODD2d51kcUjcw9ZTLPbwudqwfhLEx0nuC7Dmd/rxuHUc1usWma9eSGnKuzuRc/7HR7e1QVeWEaaKhKnLP8P7IF+BxJHoQyc1sdpy9NPLPD5d3bN+Uca7qgQHnHW6duXC7+GL3umZN3sbOzkkZV/bLk0+ymcV0tmZm5FfJCvDByYP61Fi117Suc+Y5ebbzCbeoPD2YISEj3tPznXza5Gdg4pzTvbaXz8UXwyWXxNZc0TEBXoKcfbZ73bgx+s+uqIBFXSO8oIvhjjtgeJj0A484segplZyIm4beTSc8+STp/iA+ep6/4i3z5kFFhfJ81TJYvZpUSkl0esjnmkdbZ6VL13XllaSfXO+O6RlneG1TBK77aM7L5slxOiXnnAO33BJfNqmaGvj8550Q/7u/89tWKFQfPeZK5swRKjzcScPLbePaQdgWhEql1WsYUUMD1NWOsSPTBn/4A+nbfwpAzblne2uz48gGumln4uFHSJ1zEQDJFUd6ay+kogLmBjNhyasvd1VyYiD0xp5ySizNAbnzdbq5sF+KOXOcA2XLYItzVb/3vaRIkpw78yTnbW3unrV5c97Grq6DE+CPPMIWFrPoiJk5VcKZtV1Dkwehw+O1XmdqwoHNzk0p2L2b1J4hN6vguTb8e98Lr3+9e19drVS+ovxLwhcLE+AlyGtf6159JZY49vgkzyVPgE9+Em66idSIkKz2V5USoHNuJbvogkceIX2uc3skVhzlrb1kElasEB5Z8VYA0iRILouuOMVUzD+mnk3J5bBli2uvZtz7zRQmRynFVVa4WLz//fDkk5NX1PsgFDRr1kQeBZblyCOhoW6cx4eXwBe/CKqkRipJel43MHcO7GAuXHIJqT2DJEghi/xVpevsEiaoZO+td5DqdbNuyeOWeGsvn3ACKq5qfwAnnADvex/8+MexNZld4DbuwWFbUQELFgpbKo+C734X7rqLFHUkzzzxwP98AERc/PakYjxdXdn0sS/Jww+zNbGEhYtnJnOamqCxdoStY3Og1xVSy4wqY1pFXZe/maEwNHPneAd0dZEerSDZ5v8GXlUFp57q3ldWln8u7mJiArwEaWmBX//aOah9sHSZ8BzHouvXwwc+QJoEiQUdfhoL6Jpbye7ahfDZz5Iedk+JxHHHeG3zlFPgkT2L4IknSNc2kzjNY9wCLnvG8yMLSL/mclJnnEticZfX9kIqKuCJJ+CjHz0siovFQijAe3v9CfCKCjj+xEoerz8bHnwQrruOtNaQaPc7jTF3YRU7uk6EvXvdte85VWZ4Tu486zJSnS6+LrnS3+A7n9B2cQ5Mq6rgxhsnh6L45qqr3KuvcLBFiyvY0rgCbrmF0e5+xqmMbFCzePE0POATE/DQQ2zTedMuQZ/PonnjLnf7ffcBkHrBVW2uW+gvhj+RcN73zSddCjgnUeLEeOL5wlmaMBzU8IMJ8BJl9Wp/4cPHHgsDqWp2fewrAKRa5sfyEN5d5x6+aZxXOHHkXK9tnnoqbN8ubGtdxciIkPC88GvFCpiYENZdfwfpeUeTSMZ3+a1aBZ/97GFRXCwW5uadmj5rDK1aBc+MHwO/+x187Wtuav9kv6nr5s2DF5uWw6pVpE9fTdJzIY7lQSKnJ957M6mvfxeIzyN9UpCgpzDFXLmxejVs3QpXXOHn8xctgi3jTunuOO4CYPI1MhMWL3YLMbN0drqRbyaz/3967DFGeofoHmmM5Dm5aGnCefi//GXIZBh+4zUAJBf79WgsWwbPNr8Mfv97Up2LScz1F5aZTwyFiw1MgBtTsGqVe33sFe+BL3yB9IqTvHuIOjth93gbvPe9pK//IuA/OiOMwfz974mlvXAN6xNPBPmcyzwcpJzpypu8WOFRDy9YALtSjWTGBQVSUkeiza8H/Oij4YUtVUw8tpb0shO8XxerVjmv8KOP5uUBj+naCAWp+s96WHQWLPA3AF+0CLam25m4/gY2feVOYGap//KZN885vLPhM+HF91KZUO68k+246Y1IBPjiCrY0LIff/hbe+EZSj68DoG7FETP/8Jdg2TJ45hmBM890xeJiui5Wr46nncMdE+DGPrzsZe5G/eAfBN7/flJVTd4fwl1d0N8vjNzwJdJHOkXju82TTnLf81vfIpb2VqxwC4re+lb4+c9jCf82PFGdlxDBpwCfPx9UhZ13PUTmth+g6v8hvGQJjIzAi9uEVEq8n6e1tW5w+vDD8Qvw44+He++Ff/zHeNorVxYtgkxG2HXNP7D5RbeYNSoB3tnpBkhB+HVe3topwlAefhiuvho+9zm2vfxNQDQCfPFi2NmXJP26K+DOOxmud31Itvq9OJYvh5073XdPp+N7ZtTWulmHtWvjae9wJZ5l30ZJ0dTkHogPuvz/DA1N9vj5IFxQumMHsaQhBJf2d/XqXN5R3+1VV+cVlCC3ut4oTb78ZZcxIJwx8kEoHrZ1nUTjK128hO/zdEmw/nHDhvge+q96lVtn+otfuNh3XwvMp+LCC+Nrq1wJQxa2bMnFa0cVxhDeJ/fsCd7vT4C/8AKcd547aV/7Wrb92SfggWgE+NIge+O6/30bJ5z/ClILLoU3+c8qdXJQzPcXv3ARN4V1HXwS1QDK2D/mATem5MwznQCfmID16/1nlQhzm7/wQnwCHOBHP8q9Xxp9itx9+OpXc+/PO89/e4Y//vZv3UNxBtW2D0hWgG/LJX7wPXALBfivfuXKgMeRHvtNb8q9TyTiTZdpzJxQbK9ZA5/6lDtHo6oXky/Agdyq3XwBvn49nHYajI3B00/DnXeyrc91IAoBHs5yPfV8Av7+7xme4xYJ+z5PX/5y57h585vd7z7rGxjxYwLcmJIzz3TTXnfdBf39fr18AEcFSQ82bsxNQ8chwPPz4p5zjv/2rrkGvv1t9/6ii/y3Z/jFd+roMEvH9u25VGwzqep3MBx5pJsd+vSn4amn4hkonnVW7rqwzAulRyjA3/1uF770iU9E99n7CPDQAx6OSB94wK2oHxtzMdrHuOxZ27Y58RpF7vOlS93MzNNPu9+Hh92r71CpZDKXwQbgxJlndjRmESbAjSk580z3etll7tW3AF+82MVj/9u/uXR59fXxTbf98Y/wn/8ZWx0O3vY26Ovzmz3DKA+6ulyBoY0bcwLcd4YCERcDGnL55X7bC/nzP3c/h1Mp6nKhvX3ywPA974nus/cR4C0t7ma9fbvL57h6tavY85vf5BJY4wT4/PnRLDxNJJyuf/xx93voJIpjpuY738nNEPsefBvxYjHgxpQUVp0PY9F8UVPjbpb33+9+P/54r1XhJ/Gyl8XTTj5xxvIZpUtlpcuE8PTTuVCQOB7Ct90G3/gGfOlL/vKcFyLixIZReojAunXwuc85x0KU2VZCAZ6tvSPi4r5uuMH9fsEFcPPN+yRWDwV4VJxySi5jVpi2Mo7wLIDHHoPubksjW26YB9yYkvzS2jt2xCMY3/rWqds3jMOZFStcpo6Pfcz9HofX7aKL4Ac/iE98G6VPMulqDVxzTfSfW19fkHUwnJL9whfgP/5jyqpGPgT4pk1OCG/c6AbHcXmkm5v9r8My4sdkjrFf7rnHlfaOKyPB9de7RV/vfjd8/evxtGkYs52VK3M1R/IHqYZxuNDRUSDA77nHLVJ6//sn5wTN48UXox1AhnUj1qxxAnzRovjCFo3yxAS4sV8uvtg5GOJCxC3G/OpX3YJ2wzBcWmNwYVm33VbcvhhGMdhHgCcSLhZ8P/T2uuQBUzjGp00YhnnfffC97+USBxjGdLHxm2EYxixm6VKXZc3WDRiHK/sI8AOwYYN7jTJso63NCfqwaJPv2hhG+WMecMMwjFnOkiW59MeGcbhxqAL8+efda5jTPirCrGBLl7p854YxE0yAG4ZhGIYxa+nszMuCchCEHvCow0RuvNHNRj3zjMtOZBgzwQS4YRiGYRizlo4OGBhwRX4Ohg0bXIhIY2O0/RBxXnVLB2hEgQlwwzAMwzBmLfsU4zkAzz8fffiJYUSNCXDDMAzDMGYtc+e6123bDm7/DRssb7Yx+zEBbhiGYRjGrCUsxb5p04H3HR2FLVvMA27MfkyAG4ZhGIYxazkUAf7ss6AKxxzjt0+GMVNMgBuGYRiGMWtpaXELKg9GgN97r3s991yvXTKMGVPyAlxELhaRZ0VkvYh8qNj9MQzDMAwjOkScF/zpp196v/Fx+M53XNXYRYvi6ZthTJeSFuAiUgncBLwGWAlcLSIri9srwzAMwzCi5PLLXRn4O+7Y/z7/+q/w+OPw8Y/H1y/DmC6lXor+dGC9qj4PICK3A5cCTxW1V4ZhGIZhRMZHPuLCS664Ai64ABYsgMWLob0dBgfhT3+Cn/wELroIrryy2L01jANT6gJ8AbAl7/etwBmFO4nIu4B3ASxevDienhmGYRiGEQmJBPzyl64a5Q9/6KpRbt3qFlyCyxX+oQ/BBz9ohXKM0qDUBfhBoao3AzcDnHbaaVrk7hiGYRiGcYg0NcEnP+l+APbudXHfDQ1QU2PC2ygtSl2AvwjkL7VYGGwzDMMyKx4uAAARP0lEQVQwDKOMaWkpdg8MY/qU9CJM4CHgWBE5SkRqgDcDPytynwzDMAzDMAxjv5S0B1xVx0Tkb4B7gUrgVlV9ssjdMgzDMAzDMIz9UtICHEBV7wbuLnY/DMMwDMMwDONgKPUQFMMwDMMwDMMoKUyAG4ZhGIZhGEaMmAA3DMMwDMMwjBgxAW4YhmEYhmEYMWIC3DAMwzAMwzBixAS4YRiGYRiGYcSICXDDMAzDMAzDiBFR1WL3IVZEZDewqdj9MLJ0AHuK3QljxpgdSx+zYeljNiwPzI7RU6xjeoSqdk71h8NOgBuzCxF5WFVPK3Y/jJlhdix9zIalj9mwPDA7Rs9sPKYWgmIYhmEYhmEYMWIC3DAMwzAMwzBixAS4UWxuLnYHjEgwO5Y+ZsPSx2xYHpgdo2fWHVOLATcMwzAMwzCMGDEPuGEYhmEYhmHEiAlwwzAMwzAMw4gRE+BGWSAiUuw+GNNDRCqCV7OhYRhGBNj9dPZjAtwoWURknojMA1BVtRtO6SEilwI/BWfDInfHmAYiUl3sPhgzR0TOFJGLi90PY/qISKeINIDdT6MidBD5wAS4UZIED4q7gX8RkXvBRHipISIXAJ8ClonIO4vdH+PQCWz4QRE5qth9MaaPiFwE/B8KKgXa/bR0EJHXAT8HbhSR20Skudh9KnVE5FXAW0Sk1cfnmwA3So7govgi8D9V9QogIyJzwUR4qSAi5+Ns+HfAB4Hlxe2RcaiIyBm4QfCpwBUmwksTETkX+C7wF6r6sIjUhfdQu5+WBiKyAvg0cJ2qvguoB34tIquCv5sNDxEReTlwH3ANcKEPEW4C3CgpgunuhcBfqeqvROQY4DTgAyLyDRFJ2ENjdhNMka4G3qWqvwHWAW8TkcuL2zPjYAmuLwXejhtILQDelC/C7Rqc/YhIJdABbASqg2vz28C3ReQndj8tGVLAWuDZ4Pf/AVQD/0tEKs2Gh4aIVAGtwFXA14BLgIvzRXgUx9PygBslh4jUqeqwiNQBNwA9wI24RPstqnphUTtoHBARqVfVIRGpUtUxEXkHcA7wAVXdc4B/N2YJgUBLi8irgdcBu4HbVXWjiIjFoc5+AqfGa3GzUScAnwPuwN1T61T1NUXsnnEQiMgi4CvAj4BHgCtxDtYTgE2q+r4idq8kEZEEUBk8p94KXATcC9yjqj1RtFEVxYcYhm9E5AhV3QSgqsPB5hHgn8LtInI1cIeINKtqX5G6auyHfBsCwwCqOhb8/jhwKdAO7BGRClWdKEI3jZcgmJY9Azdr8biqbgZQ1f8MFiu9BrhARI4A2oDritZZY78U2HGNqt4pIkmgXVVvCva5CvixiDSpan8Ru2tMQYENfw18GXgb7hpMqOoVInIscG3ROlliiMhq4BW4QcxzqroeQFW/G9zfLgJ2icjJQKuqfngm7VkIijHrEZE3ABtF5ON520RVx/MEHcBbcA99E26zjEIbFnpGVfUR3DT4rYFX3Gw4yxCRS3DTsYtwg6V3iEgizBKgqr8Evo4TAW8HbilWX439U2DHy4B3Bl7wnwJfzdv1LbgBsc1izDIKbHg5bj3UfwF/D7wTeGOw62uAJSJSbSEoL02woPxWoA64ALg5WB8BgKp+B/gO8AXgb4EfzLRNE+DGrEZEuoArgI8Cl4nIh2GygAsWDb0D+Afgr1V1oBh9NaZmfzbM+3t4H7oReBRoireHxoEIPGmfxC3Uex9wO/BKXIjCRN7DfRlwCnBRMKgyZhFT2PH/4kK/GlU1rarjIlIhIm8DPgC82+6ns4spbPg9YLWItKlqn6qmg/2uxdnwU6qasXCwA7IS+JqqfhR3fG8FbsoX4UADcDTu/rZmpg2aADdmO7txF8XngTfjFusVTvs0AEuAq1T1ybg7aByQl7Rhnrd7N/CRqOLrjEjZiFts+Ti4kBNgCDgx+D18uK8DTlPVp4rRSeOATGXHQQI7BjTjFrq/0e6ns5KpbDjAZBsKsAM4367FgyYFrAJQ1X5VvQ34PPBhETk62GcQOCOqY2oC3Ji1hIu4VPV3AKr6HG7q+20i8pFgn/OBSuCTqvp08XprTMXB2lBEjlHVEYvdn30E8fhjqnpbsOCyMvjTBG7wi4icLiILVfVJuw5nJwdrx2DbDWbH2cch2LBTVe9R1WeK1tnS45vASSLyhbxtdwPP4bI8AdwX5YDGBLgxaymcMgtig0MBd4W4AjxfBmpUdbwYfTRemoO04ZeATDH6ZxyYKeLxw+fGFmC7iLweuB6wa3AWc5B2/EfcAj6z5SzkEK5Fi/c+BIJUjaO4mPkzRORGgGA2thpX6yDy6qKWBcWY9eR5UcfAeVFF5N+B9wDnFizENGYhZsPSJ8+G4WCpG7fQchT4S1XdXrzeGQeL2bH0MRtGR5jQIXAObRORK4Gfich3cGGR5wH/7KNt84AbswYJqlkWbBNVVRE5TYJy5eKK7ywHXq2qT8TdT2P/mA1Ln4Ow4V8Fm5twC5feoqprY+2kcUDMjqWP2TB6ROQMEXmHiIQLVzXwgI+Jq+57JvBy4N+Bp4FLVXWdj76YADdmBSJyGbAtyGaSJbg4zsKlN3sh2LwBVwnzsVg7abwkZsPS5xBt+FHgeFXdEGsnjQNidix9zIbRE6Rv/Dou1/c1wLWB53s8OKZfA0aCOPvvq+otPtdCWCVMo+iIyHxcFa9NuET316vLuRn+/a1Ar6reHYxULT5xlmE2LH0O0YbVedPfxizC7Fj6mA2jR0RWAd8FrlXVNSJyOU6EX6WqIwXHNJYqvibAjaIjrqT8mar6XyJyHvAN4BP5N5xgPxNusxSzYeljNiwPzI6lj9kwekSkHVeP4hvhMRORXwIfVtWH8/aL7ZiaADeKRhjfpqo7Crafi0uC/0lV/baInAM8pap74u+l8VKYDUsfs2F5YHYsfcyG0RMcU8lfmCoitYHX+x5coaIHReQkYKPGmArXBLhRFETkClzZ3GrgJ8Cjqnpv3t/PA27CVUZcCVyiqluL0VdjasyGpY/ZsDwwO5Y+ZsPoOYhjeivwWeAk4K+Aa1R1V2z9MwFuxE0wFXQf8Be4/M8X4EpY/0pVv5+3378AVwGvspXdswuzYeljNiwPzI6lj9kweg7mmIrL930yrojRtRpzRi7LA24Ug0qgHzfds1dEuoHzgXNFZHcQ97YCOBpXStduNLMPs2HpYzYsD8yOpY/ZMHpe6ph2q+p9QBuuyM4pqro+7g6aB9woCiLyJaAe+DtVHQpWfb8dGFXVG4NFKLWq2lvUjhr7xWxY+pgNywOzY+ljNoyelzimGVX9ZxFZDDRohOXlDwXLA27EioiE59xNuNHpB0WkXlW3AfcCl4pIu6oO241mdmI2LH3MhuWB2bH0MRtGz0Ec0zeISKeqbi6W+AYT4EZMhBeEqk4EmzYAdwBJ4Ksi0gEsBcZw8VrGLMNsWPqYDcsDs2PpYzaMnkM8piNF6WQeFoJieCVIl7QuP61SmGdTRBbiYrCuwa3qbgOuU9VHitNbYyrMhqWP2bA8MDuWPmbD6CnVY2oC3PCGiFyIK+36ZlX9Q7BNVFVF5FXAdcD7VXWziDQDY6o6VMQuGwWYDUsfs2F5YHYsfcyG0VPKx9RCUAwviMhFwD8BV6vqH0SkVkQqgouiEfj/gO+r6mYAVe2bLReF4TAblj5mw/LA7Fj6mA2jp9SPqaUhNHxxPpBUV2GqE3chNInI/cBvgIvVpQYStWmY2YrZsPQxG5YHZsfSx2wYPSV9TC0ExfCGiNyCqzCVAW4DuoFTgtd/wp1/E/v/BKPYmA1LH7NheWB2LH3MhtFTysfUBLgRGcFihwFV7cvb9hVgh6p+Lvj91cD7gCtUteirkI3JmA1LH7NheWB2LH3MhtFTTsfUYsCNSBCRy3BlX98ZpPoBQFX/Frg+b9d2YByojreHxoEwG5Y+ZsPywOxY+pgNo6fcjql5wI0ZE8Re3Q5sBrYCO4HbVXVPwX7vAa4FrlUrpTurMBuWPmbD8sDsWPqYDaOnHI+pecCNKOgD/h74a+BR4FjgahHpApccX0SagKMpgYviMMVsWPqYDcsDs2PpYzaMnrI7puYBN6aNiCwGdgBVqjqct/0KYDXwnKp+RUROVNXHgvRAs3IxxOGK2bD0MRuWB2bH0sdsGD3lfEzNA25MCxF5HXA38C/Av4nI8vBvqvpjXAqgThH5KfBbEZlfKhfF4YLZsPQxG5YHZsfSx2wYPeV+TE2AG4eEOBbhFjz8DfBx4CHgVyKyKtwvuDiOxqUHOltVtxWjv8a+mA1LH7NheWB2LH3MhtFzuBxTK8RjHBKqqiKyDfg98BywS1W/ICIZ4Bcicp6qrhORebhcnJeVQizW4YTZsPQxG5YHZsfSx2wYPYfLMbUYcOOgEZFjgFbgeeBfgT+p6g15f/8AsBK4TlVTItKgqoPF6a0xFWbD0sdsWB6YHUsfs2H0HE7H1DzgxkEhIpfgyrz2AmuB7wJfFpFKVf18sNsPgA8DaYBSvSjKFbNh6WM2LA/MjqWP2TB6DrdjagLcOCAicjaupOtbVHWNiNwMnA6cDTwoIpW4/JyvAE4FWnAXkDFLMBuWPmbD8sDsWPqYDaPncDymFoJiHJDgwliqqt8Mfu8EvqmqrxORo4GP4UajZwDvKMVYrHLHbFj6mA3LA7Nj6WM2jJ7D8ZiaADcOSDDyrFfV/uD9POAu4LWqul1EjgBeDPbpK2ZfjakxG5Y+ZsPywOxY+pgNo+dwPKaWhtA4IKo6rqr9wa8C7AV6goviz4GPANXlclGUI2bD0sdsWB6YHUsfs2H0HI7H1DzgxrQQkW8C24ELKZPpoMMNs2HpYzYsD8yOpY/ZMHrK/ZiaADcOCRERoBp4Onh9tao+V9xeGYeC2bD0MRuWB2bH0sdsGD2HyzE1AW5MCxF5B/CQqj5Z7L4Y08NsWPqYDcsDs2PpYzaMnnI/pibAjWkhIqJ28pQ0ZsPSx2xYHpgdSx+zYfSU+zE1AW4YhmEYhmEYMWJZUAzDMAzDMAwjRkyAG4ZhGIZhGEaMmAA3DMMwDMMwjBgxAW4YhlGmiMgnReR/vcTfLxORlQfxOZP2E5FPi8j5UfXTMAzjcMMEuGEYxuHLZcABBXjhfqr6v1X1Pm+9MgzDKHNMgBuGYZQRIvJREVknIr8FlgXb/kpEHhKRx0TkxyJSJyJnA28A/klEHhWRJcHPz0XkTyLy3yKyfD/7fVNErgw++wUR+Xzwt4dF5BQRuVdENojIX+f16x+CPjwuIp8qwqExDMOYNVQVuwOGYRhGNIjIqcCbgZNw9/dHgD8Bd6jqLcE+nwXeqapfEZGfAf+uqj8K/vafwF+r6nMicgbwr6r6qin2K2x6s6qeJCL/P/BN4OVAAngC+KqIXAgcC5wOCPAzETlHVe/3djAMwzBmMSbADcMwyodXAj9R1WGAQDgDHBcI7xagAbi38B9FpAE4G/hhnsCuPch2w3bWAg2qOgAMiMiIiLQAFwY/a4L9GnCC3AS4YRiHJSbADcMwyp9vApep6mNBeedzp9inAtirqidN4/NHgteJvPfh71U4r/fnVfVr0/hswzCMssNiwA3DMMqH+4HLRCQpIo3A64PtjcB2EakG3pq3/0DwN1S1H9goIm8EVwZaRE4s3G+a3Av8ReBlR0QWiEjXDD7PMAyjpDEBbhiGUSao6iPA94HHgHuAh4I/fRz4A/AA8Ezev9wO/IOIrBGRJThx/k4ReQx4Erh0P/sdar9+AXwP+L2IrAV+xMwEvWEYRkkjqlrsPhiGYRiGYRjGYYN5wA3DMAzDMAwjRkyAG4ZhGIZhGEaMmAA3DMMwDMMwjBgxAW4YhmEYhmEYMWIC3DAMwzAMwzBixAS4YRiGYRiGYcSICXDDMAzDMAzDiBET4IZhGIZhGIYRI/8P1ZpnzESOR1AAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# predict results of test_df\n", "new_pred_df = new_pipeline.predict(test_df)\n", "plot_result(test_df, new_pred_df)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Evaluate: the mean square error is 1972492.7909922532\n", "Evaluate: the smape value is 6.915714915664744\n" ] } ], "source": [ "# evaluate test_df\n", "mse, smape = new_pipeline.evaluate(test_df, metrics=[\"mse\", \"smape\"])\n", "print(\"Evaluate: the mean square error is\", mse)\n", "print(\"Evaluate: the smape value is\", smape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6. multi step forecasting " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can do multi step forecasting by simply changing the `future_seq_len` option while creating a new `TimeSequencePredictor` object." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "# build time sequence predictor\n", "from zoo.automl.regression.time_sequence_predictor import *\n", "\n", "# change future_seq_len into the step you want to forcast.\n", "tsp = TimeSequencePredictor(future_seq_len=5,\n", " dt_col=\"datetime\",\n", " target_col=\"value\",\n", " extra_features_col=None)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2019-12-18 15:49:28,951\tINFO tune.py:60 -- Tip: to resume incomplete experiments, pass resume='prompt' or resume=True to run()\n", "2019-12-18 15:49:28,952\tINFO tune.py:223 -- Starting a new experiment.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model selection: LSTM Seq2Seq model is selected.\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 0/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.3/67.4 GB\n", "\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 2/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.3/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'RUNNING': 1})\n", "RUNNING trials:\n", " - train_func_0_batch_size=1024,dropout=0.21806,dropout_1=0.49144,dropout_2=0.45671,latent_dim=32,lr=0.0086638,lstm_1_units=64,lstm_2_units=128,selected_features=['WEEKDAY(datetime)' 'HOUR(datetime)' 'IS_AWAKE(datetime)'\n", " 'IS_WEEKEND(datetime)']:\tRUNNING\n", "\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Model selection: LSTM Seq2Seq model is selected.\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2019-12-18 15:49:29,521\tWARNING worker.py:204 -- Calling ray.get or ray.wait in a separate thread may lead to deadlock if the main thread blocks on this thread and there are not enough resources to execute more tasks\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Model selection: LSTM Seq2Seq model is selected.\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2019-12-18 15:49:29,521\tWARNING worker.py:204 -- Calling ray.get or ray.wait in a separate thread may lead to deadlock if the main thread blocks on this thread and there are not enough resources to execute more tasks\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2019-12-18 15:49:33.583746: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2019-12-18 15:49:33.583746: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 6s - loss: 0.8777 - mean_squared_error: 0.8777\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 6s - loss: 0.8777 - mean_squared_error: 0.8777\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 1s - loss: 0.5894 - mean_squared_error: 0.5894\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 1s - loss: 0.5894 - mean_squared_error: 0.5894\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 1s - loss: 0.5197 - mean_squared_error: 0.5197\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 1s - loss: 0.5197 - mean_squared_error: 0.5197\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.4761 - mean_squared_error: 0.4761\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.4761 - mean_squared_error: 0.4761\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.4626 - mean_squared_error: 0.4626\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.4626 - mean_squared_error: 0.4626\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.4102 - mean_squared_error: 0.4102\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.4102 - mean_squared_error: 0.4102\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 1s 180us/step - loss: 0.4089 - mean_squared_error: 0.4089 - val_loss: 0.1493 - val_mean_squared_error: 0.1493\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 1s 180us/step - loss: 0.4089 - mean_squared_error: 0.4089 - val_loss: 0.1493 - val_mean_squared_error: 0.1493\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.2543 - mean_squared_error: 0.2543\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.2543 - mean_squared_error: 0.2543\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.2184 - mean_squared_error: 0.2184\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.2184 - mean_squared_error: 0.2184\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.2055 - mean_squared_error: 0.2055\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.2055 - mean_squared_error: 0.2055\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 21us/step - loss: 0.2056 - mean_squared_error: 0.2056 - val_loss: 0.2469 - val_mean_squared_error: 0.2469\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1994 - mean_squared_error: 0.1994\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 21us/step - loss: 0.2056 - mean_squared_error: 0.2056 - val_loss: 0.2469 - val_mean_squared_error: 0.2469\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1994 - mean_squared_error: 0.1994\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1793 - mean_squared_error: 0.1793\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1793 - mean_squared_error: 0.1793\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.1748 - mean_squared_error: 0.1748\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.1748 - mean_squared_error: 0.1748\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.1620 - mean_squared_error: 0.1620\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.1620 - mean_squared_error: 0.1620\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.1618 - mean_squared_error: 0.1618 - val_loss: 0.1451 - val_mean_squared_error: 0.1451\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1403 - mean_squared_error: 0.1403\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.1618 - mean_squared_error: 0.1618 - val_loss: 0.1451 - val_mean_squared_error: 0.1451\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1403 - mean_squared_error: 0.1403\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1295 - mean_squared_error: 0.1295\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1295 - mean_squared_error: 0.1295\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.1408 - mean_squared_error: 0.1408\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.1408 - mean_squared_error: 0.1408\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.1362 - mean_squared_error: 0.13\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 28us/step - loss: 0.1363 - mean_squared_error: 0.1363 - val_loss: 0.1758 - val_mean_squared_error: 0.1758\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.1362 - mean_squared_error: 0.13\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 28us/step - loss: 0.1363 - mean_squared_error: 0.1363 - val_loss: 0.1758 - val_mean_squared_error: 0.1758\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1291 - mean_squared_error: 0.1291\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1291 - mean_squared_error: 0.1291\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1414 - mean_squared_error: 0.1414\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1414 - mean_squared_error: 0.1414\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.1385 - mean_squared_error: 0.1385\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.1385 - mean_squared_error: 0.1385\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.1223 - mean_squared_error: 0.12\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.1219 - mean_squared_error: 0.1219 - val_loss: 0.0901 - val_mean_squared_error: 0.0901\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m WARNING:tensorflow:Layer decoder_lstm was passed non-serializable keyword arguments: {'training': None, 'initial_state': [, ]}. They will not be included in the serialized model (and thus will be missing at deserialization time).\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.1223 - mean_squared_error: 0.12\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.1219 - mean_squared_error: 0.1219 - val_loss: 0.0901 - val_mean_squared_error: 0.0901\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m WARNING:tensorflow:Layer decoder_lstm was passed non-serializable keyword arguments: {'training': None, 'initial_state': [, ]}. They will not be included in the serialized model (and thus will be missing at deserialization time).\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 2/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.5/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'RUNNING': 1})\n", "RUNNING trials:\n", " - train_func_0_batch_size=1024,dropout=0.21806,dropout_1=0.49144,dropout_2=0.45671,latent_dim=32,lr=0.0086638,lstm_1_units=64,lstm_2_units=128,selected_features=['WEEKDAY(datetime)' 'HOUR(datetime)' 'IS_AWAKE(datetime)'\n", " 'IS_WEEKEND(datetime)']:\tRUNNING, [2 CPUs, 0 GPUs], [pid=7230], 6 s, 1 iter\n", "\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0920 - mean_squared_error: 0.0920\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0920 - mean_squared_error: 0.0920\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.1052 - mean_squared_error: 0.1052\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.1052 - mean_squared_error: 0.1052\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.1129 - mean_squared_error: 0.1129\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.1129 - mean_squared_error: 0.1129\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.1088 - mean_squared_error: 0.1088 - val_loss: 0.0872 - val_mean_squared_error: 0.0872\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0893 - mean_squared_error: 0.0893\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.1088 - mean_squared_error: 0.1088 - val_loss: 0.0872 - val_mean_squared_error: 0.0872\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0893 - mean_squared_error: 0.0893\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0802 - mean_squared_error: 0.0802\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0802 - mean_squared_error: 0.0802\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0819 - mean_squared_error: 0.0819\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0819 - mean_squared_error: 0.0819\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0906 - mean_squared_error: 0.0906 - val_loss: 0.1481 - val_mean_squared_error: 0.1481\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1385 - mean_squared_error: 0.1385\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0906 - mean_squared_error: 0.0906 - val_loss: 0.1481 - val_mean_squared_error: 0.1481\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1385 - mean_squared_error: 0.1385\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0907 - mean_squared_error: 0.0907\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0907 - mean_squared_error: 0.0907\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0816 - mean_squared_error: 0.0816\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0816 - mean_squared_error: 0.0816\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 22us/step - loss: 0.0815 - mean_squared_error: 0.0815 - val_loss: 0.1598 - val_mean_squared_error: 0.1598\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 22us/step - loss: 0.0815 - mean_squared_error: 0.0815 - val_loss: 0.1598 - val_mean_squared_error: 0.1598\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1915 - mean_squared_error: 0.1915\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.1915 - mean_squared_error: 0.1915\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1312 - mean_squared_error: 0.1312\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.1312 - mean_squared_error: 0.1312\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.1009 - mean_squared_error: 0.1009\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.1009 - mean_squared_error: 0.1009\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 22us/step - loss: 0.0929 - mean_squared_error: 0.0929 - val_loss: 0.0622 - val_mean_squared_error: 0.0622\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0688 - mean_squared_error: 0.0688\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 22us/step - loss: 0.0929 - mean_squared_error: 0.0929 - val_loss: 0.0622 - val_mean_squared_error: 0.0622\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0688 - mean_squared_error: 0.0688\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0643 - mean_squared_error: 0.0643\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0643 - mean_squared_error: 0.0643\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0688 - mean_squared_error: 0.0688\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0688 - mean_squared_error: 0.0688\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0806 - mean_squared_error: 0.0806 - val_loss: 0.0501 - val_mean_squared_error: 0.0501\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m WARNING:tensorflow:Layer decoder_lstm was passed non-serializable keyword arguments: {'training': None, 'initial_state': [, ]}. They will not be included in the serialized model (and thus will be missing at deserialization time).\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0806 - mean_squared_error: 0.0806 - val_loss: 0.0501 - val_mean_squared_error: 0.0501\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m WARNING:tensorflow:Layer decoder_lstm was passed non-serializable keyword arguments: {'training': None, 'initial_state': [, ]}. They will not be included in the serialized model (and thus will be missing at deserialization time).\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0748 - mean_squared_error: 0.0748\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0748 - mean_squared_error: 0.0748\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0679 - mean_squared_error: 0.0679\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0679 - mean_squared_error: 0.0679\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0650 - mean_squared_error: 0.0650\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0650 - mean_squared_error: 0.0650\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0652 - mean_squared_error: 0.0652 - val_loss: 0.1480 - val_mean_squared_error: 0.1480\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0988 - mean_squared_error: 0.0988\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0652 - mean_squared_error: 0.0652 - val_loss: 0.1480 - val_mean_squared_error: 0.1480\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0988 - mean_squared_error: 0.0988\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0799 - mean_squared_error: 0.0799\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0799 - mean_squared_error: 0.0799\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0700 - mean_squared_error: 0.0700\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0700 - mean_squared_error: 0.0700\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0688 - mean_squared_error: 0.0688 - val_loss: 0.1066 - val_mean_squared_error: 0.1066\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0656 - mean_squared_error: 0.0656\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0688 - mean_squared_error: 0.0688 - val_loss: 0.1066 - val_mean_squared_error: 0.1066\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0656 - mean_squared_error: 0.0656\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0744 - mean_squared_error: 0.0744\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0744 - mean_squared_error: 0.0744\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0700 - mean_squared_error: 0.0700\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0700 - mean_squared_error: 0.0700\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0681 - mean_squared_error: 0.0681\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0681 - mean_squared_error: 0.0681\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 31us/step - loss: 0.0682 - mean_squared_error: 0.0682 - val_loss: 0.0751 - val_mean_squared_error: 0.0751\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 31us/step - loss: 0.0682 - mean_squared_error: 0.0682 - val_loss: 0.0751 - val_mean_squared_error: 0.0751\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0967 - mean_squared_error: 0.0967\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0967 - mean_squared_error: 0.0967\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0888 - mean_squared_error: 0.0888\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0888 - mean_squared_error: 0.0888\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0762 - mean_squared_error: 0.0762\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0762 - mean_squared_error: 0.0762\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0686 - mean_squared_error: 0.0686\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0686 - mean_squared_error: 0.0686\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 36us/step - loss: 0.0657 - mean_squared_error: 0.0657 - val_loss: 0.0434 - val_mean_squared_error: 0.0434\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0625 - mean_squared_error: 0.0625\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 36us/step - loss: 0.0657 - mean_squared_error: 0.0657 - val_loss: 0.0434 - val_mean_squared_error: 0.0434\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0625 - mean_squared_error: 0.0625\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0640 - mean_squared_error: 0.0640\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0640 - mean_squared_error: 0.0640\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0651 - mean_squared_error: 0.0651\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0651 - mean_squared_error: 0.0651\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0661 - mean_squared_error: 0.0661\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0661 - mean_squared_error: 0.0661\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 36us/step - loss: 0.0644 - mean_squared_error: 0.0644 - val_loss: 0.1157 - val_mean_squared_error: 0.1157\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 36us/step - loss: 0.0644 - mean_squared_error: 0.0644 - val_loss: 0.1157 - val_mean_squared_error: 0.1157\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0674 - mean_squared_error: 0.0674\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0674 - mean_squared_error: 0.0674\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0601 - mean_squared_error: 0.0601\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0601 - mean_squared_error: 0.0601\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0581 - mean_squared_error: 0.0581\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0581 - mean_squared_error: 0.0581\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0588 - mean_squared_error: 0.0588\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0588 - mean_squared_error: 0.0588\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 40us/step - loss: 0.0573 - mean_squared_error: 0.0573 - val_loss: 0.0565 - val_mean_squared_error: 0.0565\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 40us/step - loss: 0.0573 - mean_squared_error: 0.0573 - val_loss: 0.0565 - val_mean_squared_error: 0.0565\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0501 - mean_squared_error: 0.0501\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0501 - mean_squared_error: 0.0501\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0464 - mean_squared_error: 0.0464\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0464 - mean_squared_error: 0.0464\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0500 - mean_squared_error: 0.0500\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0500 - mean_squared_error: 0.0500\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0541 - mean_squared_error: 0.0541\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0541 - mean_squared_error: 0.0541\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 35us/step - loss: 0.0549 - mean_squared_error: 0.0549 - val_loss: 0.0666 - val_mean_squared_error: 0.0666\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 35us/step - loss: 0.0549 - mean_squared_error: 0.0549 - val_loss: 0.0666 - val_mean_squared_error: 0.0666\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0484 - mean_squared_error: 0.0484\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0484 - mean_squared_error: 0.0484\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2048/8242 [======>.......................] - ETA: 0s - loss: 0.0472 - mean_squared_error: 0.0472\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2048/8242 [======>.......................] - ETA: 0s - loss: 0.0472 - mean_squared_error: 0.0472\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0512 - mean_squared_error: 0.0512\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0512 - mean_squared_error: 0.0512\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0550 - mean_squared_error: 0.0550\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0550 - mean_squared_error: 0.0550\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0570 - mean_squared_error: 0.05\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 40us/step - loss: 0.0570 - mean_squared_error: 0.0570 - val_loss: 0.0674 - val_mean_squared_error: 0.0674\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0570 - mean_squared_error: 0.05\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 40us/step - loss: 0.0570 - mean_squared_error: 0.0570 - val_loss: 0.0674 - val_mean_squared_error: 0.0674\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0458 - mean_squared_error: 0.0458\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0458 - mean_squared_error: 0.0458\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0450 - mean_squared_error: 0.0450\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0450 - mean_squared_error: 0.0450\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0483 - mean_squared_error: 0.0483\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0483 - mean_squared_error: 0.0483\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0492 - mean_squared_error: 0.0492 - val_loss: 0.1001 - val_mean_squared_error: 0.1001\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0492 - mean_squared_error: 0.0492 - val_loss: 0.1001 - val_mean_squared_error: 0.1001\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0539 - mean_squared_error: 0.0539\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0539 - mean_squared_error: 0.0539\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0507 - mean_squared_error: 0.0507\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0507 - mean_squared_error: 0.0507\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0498 - mean_squared_error: 0.0498\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0498 - mean_squared_error: 0.0498\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0487 - mean_squared_error: 0.0487\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0487 - mean_squared_error: 0.0487\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 39us/step - loss: 0.0498 - mean_squared_error: 0.0498 - val_loss: 0.0607 - val_mean_squared_error: 0.0607\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 39us/step - loss: 0.0498 - mean_squared_error: 0.0498 - val_loss: 0.0607 - val_mean_squared_error: 0.0607\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0411 - mean_squared_error: 0.0411\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0411 - mean_squared_error: 0.0411\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0413 - mean_squared_error: 0.0413\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0413 - mean_squared_error: 0.0413\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0431 - mean_squared_error: 0.0431\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0431 - mean_squared_error: 0.0431\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0467 - mean_squared_error: 0.0467\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0467 - mean_squared_error: 0.0467\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0483 - mean_squared_error: 0.0483\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 37us/step - loss: 0.0483 - mean_squared_error: 0.0483 - val_loss: 0.0675 - val_mean_squared_error: 0.0675\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0483 - mean_squared_error: 0.04\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 37us/step - loss: 0.0483 - mean_squared_error: 0.0483 - val_loss: 0.0675 - val_mean_squared_error: 0.0675\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0550 - mean_squared_error: 0.0550\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0550 - mean_squared_error: 0.0550\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0446 - mean_squared_error: 0.0446\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0446 - mean_squared_error: 0.0446\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0434 - mean_squared_error: 0.0434\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0434 - mean_squared_error: 0.0434\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0417 - mean_squared_error: 0.0417\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0417 - mean_squared_error: 0.0417\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 34us/step - loss: 0.0426 - mean_squared_error: 0.0426 - val_loss: 0.0930 - val_mean_squared_error: 0.0930\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0484 - mean_squared_error: 0.0484\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 34us/step - loss: 0.0426 - mean_squared_error: 0.0426 - val_loss: 0.0930 - val_mean_squared_error: 0.0930\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0484 - mean_squared_error: 0.0484\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0440 - mean_squared_error: 0.0440\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0440 - mean_squared_error: 0.0440\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0439 - mean_squared_error: 0.0439\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0439 - mean_squared_error: 0.0439\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0443 - mean_squared_error: 0.0443\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0443 - mean_squared_error: 0.0443\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0461 - mean_squared_error: 0.0461\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0461 - mean_squared_error: 0.0461\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 37us/step - loss: 0.0461 - mean_squared_error: 0.0461 - val_loss: 0.0844 - val_mean_squared_error: 0.0844\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 37us/step - loss: 0.0461 - mean_squared_error: 0.0461 - val_loss: 0.0844 - val_mean_squared_error: 0.0844\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0531 - mean_squared_error: 0.0531\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0531 - mean_squared_error: 0.0531\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0479 - mean_squared_error: 0.0479\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0479 - mean_squared_error: 0.0479\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0436 - mean_squared_error: 0.0436\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0436 - mean_squared_error: 0.0436\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0416 - mean_squared_error: 0.0416\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0416 - mean_squared_error: 0.0416\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 37us/step - loss: 0.0411 - mean_squared_error: 0.0411 - val_loss: 0.0816 - val_mean_squared_error: 0.0816\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0463 - mean_squared_error: 0.0463\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 37us/step - loss: 0.0411 - mean_squared_error: 0.0411 - val_loss: 0.0816 - val_mean_squared_error: 0.0816\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0463 - mean_squared_error: 0.0463\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0446 - mean_squared_error: 0.0446\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0446 - mean_squared_error: 0.0446\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0450 - mean_squared_error: 0.0450\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0450 - mean_squared_error: 0.0450\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 2/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.5/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'RUNNING': 1})\n", "RUNNING trials:\n", " - train_func_0_batch_size=1024,dropout=0.21806,dropout_1=0.49144,dropout_2=0.45671,latent_dim=32,lr=0.0086638,lstm_1_units=64,lstm_2_units=128,selected_features=['WEEKDAY(datetime)' 'HOUR(datetime)' 'IS_AWAKE(datetime)'\n", " 'IS_WEEKEND(datetime)']:\tRUNNING, [2 CPUs, 0 GPUs], [pid=7230], 11 s, 5 iter\n", "\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0438 - mean_squared_error: 0.04\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 26us/step - loss: 0.0437 - mean_squared_error: 0.0437 - val_loss: 0.0625 - val_mean_squared_error: 0.0625\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0438 - mean_squared_error: 0.04\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 26us/step - loss: 0.0437 - mean_squared_error: 0.0437 - val_loss: 0.0625 - val_mean_squared_error: 0.0625\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0384 - mean_squared_error: 0.0384\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0384 - mean_squared_error: 0.0384\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0349 - mean_squared_error: 0.0349\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0349 - mean_squared_error: 0.0349\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0374 - mean_squared_error: 0.0374\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0374 - mean_squared_error: 0.0374\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0403 - mean_squared_error: 0.0403 - val_loss: 0.0803 - val_mean_squared_error: 0.0803\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0529 - mean_squared_error: 0.0529\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0403 - mean_squared_error: 0.0403 - val_loss: 0.0803 - val_mean_squared_error: 0.0803\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0529 - mean_squared_error: 0.0529\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0399 - mean_squared_error: 0.0399\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0399 - mean_squared_error: 0.0399\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0372 - mean_squared_error: 0.0372\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0372 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0368 - mean_squared_error: 0.0368 - val_loss: 0.0616 - val_mean_squared_error: 0.0616\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0368 - mean_squared_error: 0.0368 - val_loss: 0.0616 - val_mean_squared_error: 0.0616\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0387 - mean_squared_error: 0.0387\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0387 - mean_squared_error: 0.0387\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0369 - mean_squared_error: 0.0369\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0369 - mean_squared_error: 0.0369\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0387 - mean_squared_error: 0.0387\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0387 - mean_squared_error: 0.0387\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0400 - mean_squared_error: 0.0400 - val_loss: 0.0527 - val_mean_squared_error: 0.0527\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0400 - mean_squared_error: 0.0400 - val_loss: 0.0527 - val_mean_squared_error: 0.0527\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0363 - mean_squared_error: 0.0363\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0363 - mean_squared_error: 0.0363\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0388 - mean_squared_error: 0.0388\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0388 - mean_squared_error: 0.0388\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0387 - mean_squared_error: 0.0387\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0387 - mean_squared_error: 0.0387\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0376 - mean_squared_error: 0.0376 - val_loss: 0.0794 - val_mean_squared_error: 0.0794\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0376 - mean_squared_error: 0.0376 - val_loss: 0.0794 - val_mean_squared_error: 0.0794\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0381 - mean_squared_error: 0.0381\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0381 - mean_squared_error: 0.0381\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0371 - mean_squared_error: 0.0371\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0371 - mean_squared_error: 0.0371\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0365 - mean_squared_error: 0.0365\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0365 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0379 - mean_squared_error: 0.0379 - val_loss: 0.0698 - val_mean_squared_error: 0.0698\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0379 - mean_squared_error: 0.0379 - val_loss: 0.0698 - val_mean_squared_error: 0.0698\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0351 - mean_squared_error: 0.0351\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0351 - mean_squared_error: 0.0351\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0347 - mean_squared_error: 0.0347\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0347 - mean_squared_error: 0.0347\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0342 - mean_squared_error: 0.0342\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0342 - mean_squared_error: 0.0342\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0348 - mean_squared_error: 0.0348 - val_loss: 0.0547 - val_mean_squared_error: 0.0547\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0348 - mean_squared_error: 0.0348 - val_loss: 0.0547 - val_mean_squared_error: 0.0547\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0582 - mean_squared_error: 0.0582\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0582 - mean_squared_error: 0.0582\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0427 - mean_squared_error: 0.0427\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0427 - mean_squared_error: 0.0427\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0378 - mean_squared_error: 0.0378\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0378 - mean_squared_error: 0.0378\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0361 - mean_squared_error: 0.0361 - val_loss: 0.0722 - val_mean_squared_error: 0.0722\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0397 - mean_squared_error: 0.0397\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0361 - mean_squared_error: 0.0361 - val_loss: 0.0722 - val_mean_squared_error: 0.0722\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0397 - mean_squared_error: 0.0397\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0370 - mean_squared_error: 0.0370\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0370 - mean_squared_error: 0.0370\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0330 - mean_squared_error: 0.0330\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0330 - mean_squared_error: 0.0330\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0316 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 27us/step - loss: 0.0316 - mean_squared_error: 0.0316 - val_loss: 0.0833 - val_mean_squared_error: 0.0833\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0316 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 27us/step - loss: 0.0316 - mean_squared_error: 0.0316 - val_loss: 0.0833 - val_mean_squared_error: 0.0833\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0484 - mean_squared_error: 0.0484\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0484 - mean_squared_error: 0.0484\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0407 - mean_squared_error: 0.0407\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0407 - mean_squared_error: 0.0407\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0342 - mean_squared_error: 0.0342\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0342 - mean_squared_error: 0.0342\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0325 - mean_squared_error: 0.0325 - val_loss: 0.0541 - val_mean_squared_error: 0.0541\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0386 - mean_squared_error: 0.0386\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0325 - mean_squared_error: 0.0325 - val_loss: 0.0541 - val_mean_squared_error: 0.0541\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0386 - mean_squared_error: 0.0386\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0442 - mean_squared_error: 0.0442\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0442 - mean_squared_error: 0.0442\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0391 - mean_squared_error: 0.0391\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0391 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 22us/step - loss: 0.0385 - mean_squared_error: 0.0385 - val_loss: 0.0612 - val_mean_squared_error: 0.0612\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 22us/step - loss: 0.0385 - mean_squared_error: 0.0385 - val_loss: 0.0612 - val_mean_squared_error: 0.0612\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0562 - mean_squared_error: 0.0562\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0562 - mean_squared_error: 0.0562\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0452 - mean_squared_error: 0.0452\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0452 - mean_squared_error: 0.0452\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0389 - mean_squared_error: 0.0389\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0389 - mean_squared_error: 0.0389\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0353 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0352 - mean_squared_error: 0.0352 - val_loss: 0.0642 - val_mean_squared_error: 0.0642\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0353 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0352 - mean_squared_error: 0.0352 - val_loss: 0.0642 - val_mean_squared_error: 0.0642\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0368 - mean_squared_error: 0.0368\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0368 - mean_squared_error: 0.0368\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0326 - mean_squared_error: 0.0326\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0326 - mean_squared_error: 0.0326\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0321 - mean_squared_error: 0.0321\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0321 - mean_squared_error: 0.0321\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0308 - mean_squared_error: 0.0308\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0308 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 31us/step - loss: 0.0308 - mean_squared_error: 0.0308 - val_loss: 0.0530 - val_mean_squared_error: 0.0530\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 31us/step - loss: 0.0308 - mean_squared_error: 0.0308 - val_loss: 0.0530 - val_mean_squared_error: 0.0530\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0422 - mean_squared_error: 0.0422\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0422 - mean_squared_error: 0.0422\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0356 - mean_squared_error: 0.0356\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0356 - mean_squared_error: 0.0356\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0336 - mean_squared_error: 0.0336\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0336 - mean_squared_error: 0.0336\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0342 - mean_squared_error: 0.0342\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0342 - mean_squared_error: 0.0342\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 38us/step - loss: 0.0340 - mean_squared_error: 0.0340 - val_loss: 0.0711 - val_mean_squared_error: 0.0711\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 38us/step - loss: 0.0340 - mean_squared_error: 0.0340 - val_loss: 0.0711 - val_mean_squared_error: 0.0711\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0329 - mean_squared_error: 0.0329\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0329 - mean_squared_error: 0.0329\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0299 - mean_squared_error: 0.0299\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0299 - mean_squared_error: 0.0299\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0290 - mean_squared_error: 0.0290\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0290 - mean_squared_error: 0.0290\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0282 - mean_squared_error: 0.02\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 29us/step - loss: 0.0283 - mean_squared_error: 0.0283 - val_loss: 0.0815 - val_mean_squared_error: 0.0815\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0282 - mean_squared_error: 0.02\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 29us/step - loss: 0.0283 - mean_squared_error: 0.0283 - val_loss: 0.0815 - val_mean_squared_error: 0.0815\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0338 - mean_squared_error: 0.0338\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0338 - mean_squared_error: 0.0338\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0344 - mean_squared_error: 0.0344\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0344 - mean_squared_error: 0.0344\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0349 - mean_squared_error: 0.0349\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0349 - mean_squared_error: 0.0349\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0343 - mean_squared_error: 0.0343\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0343 - mean_squared_error: 0.0343\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 33us/step - loss: 0.0335 - mean_squared_error: 0.0335 - val_loss: 0.0729 - val_mean_squared_error: 0.0729\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 33us/step - loss: 0.0335 - mean_squared_error: 0.0335 - val_loss: 0.0729 - val_mean_squared_error: 0.0729\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0323 - mean_squared_error: 0.0323\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0323 - mean_squared_error: 0.0323\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0286 - mean_squared_error: 0.0286\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0286 - mean_squared_error: 0.0286\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0269 - mean_squared_error: 0.0269\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0269 - mean_squared_error: 0.0269\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0282 - mean_squared_error: 0.0282\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0282 - mean_squared_error: 0.0282\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 35us/step - loss: 0.0276 - mean_squared_error: 0.0276 - val_loss: 0.0430 - val_mean_squared_error: 0.0430\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 35us/step - loss: 0.0276 - mean_squared_error: 0.0276 - val_loss: 0.0430 - val_mean_squared_error: 0.0430\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0461 - mean_squared_error: 0.0461\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0461 - mean_squared_error: 0.0461\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2048/8242 [======>.......................] - ETA: 0s - loss: 0.0457 - mean_squared_error: 0.0457\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 2048/8242 [======>.......................] - ETA: 0s - loss: 0.0457 - mean_squared_error: 0.0457\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0383 - mean_squared_error: 0.0383\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0383 - mean_squared_error: 0.0383\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0351 - mean_squared_error: 0.0351\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0351 - mean_squared_error: 0.0351\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0338 - mean_squared_error: 0.0338\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0338 - mean_squared_error: 0.03\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 36us/step - loss: 0.0338 - mean_squared_error: 0.0338 - val_loss: 0.0566 - val_mean_squared_error: 0.0566\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 36us/step - loss: 0.0338 - mean_squared_error: 0.0338 - val_loss: 0.0566 - val_mean_squared_error: 0.0566\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0334 - mean_squared_error: 0.0334\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0334 - mean_squared_error: 0.0334\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0324 - mean_squared_error: 0.0324\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0324 - mean_squared_error: 0.0324\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0311 - mean_squared_error: 0.0311\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0311 - mean_squared_error: 0.0311\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0303 - mean_squared_error: 0.0303 - val_loss: 0.0789 - val_mean_squared_error: 0.0789\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0303 - mean_squared_error: 0.0303 - val_loss: 0.0789 - val_mean_squared_error: 0.0789\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0303 - mean_squared_error: 0.0303\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0303 - mean_squared_error: 0.0303\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0267 - mean_squared_error: 0.0267\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0267 - mean_squared_error: 0.0267\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0265 - mean_squared_error: 0.0265\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0265 - mean_squared_error: 0.0265\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0269 - mean_squared_error: 0.0269\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0269 - mean_squared_error: 0.0269\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0294 - mean_squared_error: 0.0294\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0294 - mean_squared_error: 0.02\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 40us/step - loss: 0.0293 - mean_squared_error: 0.0293 - val_loss: 0.0650 - val_mean_squared_error: 0.0650\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 40us/step - loss: 0.0293 - mean_squared_error: 0.0293 - val_loss: 0.0650 - val_mean_squared_error: 0.0650\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0307 - mean_squared_error: 0.0307\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0307 - mean_squared_error: 0.0307\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0292 - mean_squared_error: 0.0292\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0292 - mean_squared_error: 0.0292\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0277 - mean_squared_error: 0.0277 - val_loss: 0.0844 - val_mean_squared_error: 0.0844\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 25us/step - loss: 0.0277 - mean_squared_error: 0.0277 - val_loss: 0.0844 - val_mean_squared_error: 0.0844\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0509 - mean_squared_error: 0.0509\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Train on 8242 samples, validate on 1018 samples\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 1/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0509 - mean_squared_error: 0.0509\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0397 - mean_squared_error: 0.0397\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0397 - mean_squared_error: 0.0397\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0320 - mean_squared_error: 0.0320\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 6144/8242 [=====================>........] - ETA: 0s - loss: 0.0320 - mean_squared_error: 0.0320\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0301 - mean_squared_error: 0.0301 - val_loss: 0.0567 - val_mean_squared_error: 0.0567\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0301 - mean_squared_error: 0.0301 - val_loss: 0.0567 - val_mean_squared_error: 0.0567\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 2/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0363 - mean_squared_error: 0.0363\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0363 - mean_squared_error: 0.0363\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0301 - mean_squared_error: 0.0301\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0301 - mean_squared_error: 0.0301\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0286 - mean_squared_error: 0.02\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0281 - mean_squared_error: 0.0281 - val_loss: 0.0732 - val_mean_squared_error: 0.0732\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0286 - mean_squared_error: 0.02\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0281 - mean_squared_error: 0.0281 - val_loss: 0.0732 - val_mean_squared_error: 0.0732\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 3/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0293 - mean_squared_error: 0.0293\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0293 - mean_squared_error: 0.0293\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0262 - mean_squared_error: 0.0262\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0262 - mean_squared_error: 0.0262\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0264 - mean_squared_error: 0.0264\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0277 - mean_squared_error: 0.0277 - val_loss: 0.0605 - val_mean_squared_error: 0.0605\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 23us/step - loss: 0.0277 - mean_squared_error: 0.0277 - val_loss: 0.0605 - val_mean_squared_error: 0.0605\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 4/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0470 - mean_squared_error: 0.0470\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0470 - mean_squared_error: 0.0470\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0376 - mean_squared_error: 0.0376\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 3072/8242 [==========>...................] - ETA: 0s - loss: 0.0376 - mean_squared_error: 0.0376\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0320 - mean_squared_error: 0.0320\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 5120/8242 [=================>............] - ETA: 0s - loss: 0.0320 - mean_squared_error: 0.0320\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0286 - mean_squared_error: 0.02\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0289 - mean_squared_error: 0.0289 - val_loss: 0.0752 - val_mean_squared_error: 0.0752\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8192/8242 [============================>.] - ETA: 0s - loss: 0.0286 - mean_squared_error: 0.02\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0289 - mean_squared_error: 0.0289 - val_loss: 0.0752 - val_mean_squared_error: 0.0752\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m Epoch 5/5\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0469 - mean_squared_error: 0.0469\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2m\u001b[36m(pid=7230)\u001b[0m \n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 1024/8242 [==>...........................] - ETA: 0s - loss: 0.0469 - mean_squared_error: 0.0469\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0335 - mean_squared_error: 0.0335\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 4096/8242 [=============>................] - ETA: 0s - loss: 0.0335 - mean_squared_error: 0.0335\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0290 - mean_squared_error: 0.0290\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 7168/8242 [=========================>....] - ETA: 0s - loss: 0.0290 - mean_squared_error: 0.0290\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 0/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.4/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'TERMINATED': 1})\n", "TERMINATED trials:\n", " - train_func_0_batch_size=1024,dropout=0.21806,dropout_1=0.49144,dropout_2=0.45671,latent_dim=32,lr=0.0086638,lstm_1_units=64,lstm_2_units=128,selected_features=['WEEKDAY(datetime)' 'HOUR(datetime)' 'IS_AWAKE(datetime)'\n", " 'IS_WEEKEND(datetime)']:\tTERMINATED, [2 CPUs, 0 GPUs], [pid=7230], 17 s, 10 iter\n", "\n", "== Status ==\n", "Using FIFO scheduling algorithm.\n", "Resources requested: 0/4 CPUs, 0/0 GPUs (0/1.0 ps, 0/1.0 trainer)\n", "Memory usage on this node: 29.4/67.4 GB\n", "Result logdir: /home/shan/ray_results/automl\n", "Number of trials: 1 ({'TERMINATED': 1})\n", "TERMINATED trials:\n", " - train_func_0_batch_size=1024,dropout=0.21806,dropout_1=0.49144,dropout_2=0.45671,latent_dim=32,lr=0.0086638,lstm_1_units=64,lstm_2_units=128,selected_features=['WEEKDAY(datetime)' 'HOUR(datetime)' 'IS_AWAKE(datetime)'\n", " 'IS_WEEKEND(datetime)']:\tTERMINATED, [2 CPUs, 0 GPUs], [pid=7230], 17 s, 10 iter\n", "\n", "The best configurations are:\n", "selected_features : ['WEEKDAY(datetime)' 'HOUR(datetime)' 'IS_AWAKE(datetime)'\n", " 'IS_WEEKEND(datetime)']\n", "lstm_1_units : 64\n", "dropout_1 : 0.4914392380008718\n", "lstm_2_units : 128\n", "dropout_2 : 0.4567086325546281\n", "latent_dim : 32\n", "dropout : 0.21805827608891876\n", "lr : 0.008663837715873179\n", "batch_size : 1024\n", "epochs : 5\n", "past_seq_len : 10\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0281 - mean_squared_error: 0.0281 - val_loss: 0.0622 - val_mean_squared_error: 0.0622\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0\n", "\u001b[2m\u001b[36m(pid=7230)\u001b[0m 8242/8242 [==============================] - 0s 24us/step - loss: 0.0281 - mean_squared_error: 0.0281 - val_loss: 0.0622 - val_mean_squared_error: 0.0622\n", "Training completed.\n", "CPU times: user 4.67 s, sys: 174 ms, total: 4.84 s\n", "Wall time: 21.7 s\n" ] } ], "source": [ "%%time\n", "# you can specify the look back sequence length with a single number or a range of (min_len, max_len) in RandomRecipe.\n", "pipeline = tsp.fit(train_df,\n", " validation_df=val_df,\n", " metric=\"mse\",\n", " recipe=RandomRecipe(look_back=10))\n", "print(\"Training completed.\")" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "# test\n", "# predict test_df with the best trial\n", "pred_df = pipeline.predict(test_df)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datetimevalue_0value_1value_2value_3value_4
02015-01-10 17:00:0020544.21588720488.97532420003.97226319217.88167718247.222892
12015-01-10 17:30:0021114.13792020863.95598820218.57540919284.43027018182.702733
22015-01-10 18:00:0023327.05178222636.17367421635.03759920404.31684419071.609196
32015-01-10 18:30:0024770.84099523813.61943022561.43639521156.50054019719.400959
42015-01-10 19:00:0025104.99249724141.00225122834.49037321386.29410419924.729628
\n", "
" ], "text/plain": [ " datetime value_0 value_1 value_2 value_3 \\\n", "0 2015-01-10 17:00:00 20544.215887 20488.975324 20003.972263 19217.881677 \n", "1 2015-01-10 17:30:00 21114.137920 20863.955988 20218.575409 19284.430270 \n", "2 2015-01-10 18:00:00 23327.051782 22636.173674 21635.037599 20404.316844 \n", "3 2015-01-10 18:30:00 24770.840995 23813.619430 22561.436395 21156.500540 \n", "4 2015-01-10 19:00:00 25104.992497 24141.002251 22834.490373 21386.294104 \n", "\n", " value_4 \n", "0 18247.222892 \n", "1 18182.702733 \n", "2 19071.609196 \n", "3 19719.400959 \n", "4 19924.729628 " ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred_df.head(5)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAFzCAYAAAB/xLx5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydeXxU1d3/32cy2ReyQYCwJELYEkIIYIlUTaRRWqhaISCPoLZVqSiVtj5u1f6wxcelPLjSIj5YbEFWpWgXVLaqLCJQsLLKkkAWICHrTDKZzMz5/XHuTIaQhG0mCXLer9e8Zu52vucuc+/nfs/3fI+QUqLRaDQajUaj0WjaBlN7V0Cj0Wg0Go1Go7ma0AJco9FoNBqNRqNpQ7QA12g0Go1Go9Fo2hAtwDUajUaj0Wg0mjZEC3CNRqPRaDQajaYN0QJco9FoNBqNRqNpQ7QA12g6AEKIJCGEFEKY27suF4JR177G7/lCiGfawOa9QojP/VDuLCHEYl+X21ZcCfX/tp07IcTzQoiZXtMPCiFOCSEsQog4P9i7ou4PrSGEyBdCfM9PZb8nhPi+P8rWaHyNFuAaTTvgz4dQWyOl/JmU8nfnW08IsUkIcV9b1ElzeQghsoUQhe1dj46IEKIzcDfwpjEdCMwFbpZSRkgpz/jAhj9Fqs/Orb//094v+hfIi8Bsf9VHo/ElWoBrNFc5QoiA9q6DRnMFcS/wDyllnTGdAIQAey+2IKHQz2EfIaXcDkQJIYa3d100mvOh//gaTRsjhPgL0Av40Giyfsxr8V1CiONCiDIhxK+9tjEJIZ4QQhwRQpwRQqwQQsS2UH62EKJQCPGUUU6+EOIur+WLhBB/FEL8QwhhBXKEEMFCiDmG7VNGWEmo1zb/LYQoEUIUCyF+0sTeIiHEbK/p24QQu4UQ1UZ9xwghngOuB94w9vkNY90BQohPhBDlQoiDQoiJXuXECSE+MMrZDvRp5Zj+UwjxcJN5e4QQdxi/XxVCnDDK2imEuL61Y9dknscb2dp5EEKECCEWG/MrhRBfCiESWrDjLqNGCLFPCPEjr2X3CiE+N85HhRDimHezuhAiWQjxL2PbT4D4Vo5LjBDib0KIUqOsvwkhengtjxVC/Mk4rxVCiL8KIcKBfwLdjXNlEUJ0b+Y8n3WsWtun1rjSzh3wfeBfxnb9gIPG/EohxAZj/nVGGVXG93VeddokhHhOCLEZqAWuaVJnv90fWjm3F31sRAv/6WZsThVCFBjb/7rJsmuFEFuNckuEEG8IIYKMZZ8aq+0xyp90vuvZYBMwtrm6aDQdCiml/uiP/rTxB8gHvuc1nQRI4C0gFBgC1AMDjeWPANuAHkAwqvl7aQtlZwMOVLN4MHAjYAX6G8sXAVXAKNRLeAjwMvABEAtEAh8CzxvrjwFOAWlAOPCuUde+XuXNNn5fa5Sda5SdCAwwlm0C7vOqZzhwAvgxYAaGAmXAIGP5MmCFsV4aUAR83sI+3w1s9poeBFQCwcb0FCDOsPMr4CQQYiybBSz2OnaFLZ2r1s4DMM04bmFAADAMiGqhvnlAd+MYTTLOTzdj2b1AA3C/Uc6DQDEgjOVbvc7tDUCNu/7N2IkDxht1igRWAn/1Wv53YDkQAwQCN7ZyHDznubl1LmCfvi3nrhQY0cx/12xMxwIVwFSjzpON6Tiv/8FxINVYHtgO94emx+mSjg1N/tPN2BoEWFDXaTDqunV4nZNhwEjjOCQB+4GZXtt77jMXcj0b6/wSeN9X92r90R9/fdq9AvqjP1fjp5UHbA+veduBO43f+4HRXsu6oUSauZmys42HXLjXvBXAM8bvRcCfvZYJlFjq4zUvCzhm/H4beMFrWT9aFuBvAi+3sM9nPaxRIu2zJuu8Cfw/40HfgCHejWX/Q8siLtLYh97G9HPA260c/wpgiPF7Fhcu4lo8D8BPgC1A+iVcD7uB24zf9wKHvZaFGce7K8oz2vTcvksLArwZOxlAhVfdXUBMC9fQRQnwC9inb8W5a+a6TOJsAT4V2N5km63AvV7/g9+ex4an3k1s+Or+0PQ4XdKx4fwC/DfAMq/pcMDuvW9N1p8JrPaaPkuAt3Y9e827H9hwof89/dGf9vroEBSNpmNx0ut3LRBh/O4NrDaaaitRD0wnKv60OSqklFav6QKUd9LNCa/fnVEib6dX+WuN+Rjbea9f0Er9ewJHWlnuTW/gO26bht27UEKzM+rhf0F2pZQ1KG/uncasycAS93IhxKNCiP1GSEAl0IlWQjfOU+eWzsNfgI+AZUZIx0tCddA7ByHE3UKF6bjLSWtSH891IKWsNX5GoM5Fc+e2WYQQYUKIN40QgGrgUyBaqLj/nkC5lLLi4g5Bi7bOt0/NcqWdO9QLQGQrdrpz7jkpQLUGuTnBpeGr+0NTfHVsmnLWvcO4bj2dVIUQ/YwwkpPG9fk/tB5S1dr17CYS1YKi0XRotADXaNoHeZHrnwC+L6WM9vqESCmLWlg/xoj3dNMLFcbQnP0yoA5I9Sq7k5TS/XAvQYk177Jaq2dLsdpN9/kE8K8m+xQhpXwQ1czvuAi7AEuByUKILFRYzUYAoWKGHwMmory90agwGdFMGVbUywjGtgE0voi469zseZBSNkgpn5VSDgKuA8ahwivOQgjRGxVK8DAqLCEa+LqF+jSlhObPbUv8CugPfEdKGYUKBcCwdQKIFUJEN7Ndc9fnWccG9aKkCru8fYIr5NwZfIVqBWqJYpSg9aYXKoTKzfn+//68PzRX9qUem/PV86x7hxAiDBVG4uaPwAEgxbg+n6L1a6a169nNQGDPeeql0bQ7WoBrNO3DKZp0vjoP84HnDKGDEKKzEOK282zzrBAiyBAx41DxkucgpXShxNPLQoguRvmJQohbjFVWAPcKIQYZD9D/14rNhcCPhRCjjY5diUKIAcaypvv8N6Cf0Ukr0PiMEEIMlFI6gfeBWYbXaxBwz3n29x8o4fNbYLmxX6A8Yg6UqDcLIX4DRLVQxiEgRAgx1vDyPY2KXXXT4nkQQuQIIQYbwq8a1YTv4lzCUcKl1Njuxyhv8XmRUhYAO2g8t98FftjKJpGol6tKoTrVec6dlLIE1SHvD0bntkAhhFvQnALihBCdvMraDfxAqI6bXVHhApe9TwZXyrlz1/XG8+xLPyHEfwkhzEKISahY6L+1sk1T/Hl/aO7cXuqxOV89VwHjhBDfFapz5W85W3dEGmVajPvEg83U9Zom6zd7PXtxI+q61mg6NFqAazTtw/PA00aT76MXsP6rqE6SHwshalAdpr7TyvonUU3lxajm/J9JKQ+0sv7jwGFgm9G0uw7laUJK+U/gFWCDsc6GlgqRKg3Yj1GdOqtQ2SLc3sBXgQlCZS94zQg9uBkVelBs1PlFGkXTw6gm9pOo+OM/tVJ/pJT1KNH+PVRctJuPUCE1h1ChADZaCAGQUlYB04H/Q3ksrYB3Zo3WzkNXlOCoRjXh/wvVfN/Uxj7gf1FxwaeAwcDm1vatCf9l2CxHCZA/t7LuK6hOe2VGXdc2WT4VJagOAKcxRLVxrSwFjhrXaHdjX/ag4pM/RnXe9Mk+XSnnzuDPqBeR0OYWSpUHfBzKW3sG5cEfJ6Usa6G85vDb/aGFc3upx+as/3QztvYCD6HOaQnqnuR9Th5FXc81KCfA8iZFzALeMeo5kfNcz0KIEYDFuA9pNB0ad696jUbzLUEIkY3qmNY0PZdGo/EBQoj/AU5LKV9p77poGhFCvAcslFL+o73rotGcDy3ANZpvGVqAazQajUbTsdEhKBqNRqPRaDQaTRuiPeAajUaj0Wg0Gk0b4jcPuFDD124XakjhvUKIZ435yUKIL4QQh4UQy0XjsLPBxvRhY3mSV1lPGvMPemVmQKghrg8ay57w175oNBqNRqPRaDS+wp8hKPXATVLKIajRqsYIIUaishy8LKXsi+oR/VNj/Z+iBpjoi8qg8CKAkX7sTtSwvWNQKbMCjJRI84Dvo1I8TTbW1Wg0Go1Go9FoOixmfxUsVWyLxZgMND4SuAmVdgjgHVSaoT8Ctxm/QaU8ekMIIYz5y4w0VceEEIeBa431DkspjwIIIZYZ6+5rrV7x8fEyKSnpMvdOo9FoNBqNRqNpmZ07d5ZJKTs3t8xvAhw8I5HtBPqivNVHgEoppcNYpZDG4XkTMfK7SikdQogq1IhZiah8nzSzzYkm81vLiwxAUlISO3bsuKT90Wg0Go1Go9FoLgQhREFLy/yaBUVK6ZRSZgA9UF7rAefZxC8IIR4QQuwQQuwoLS1tjypoNBqNRqPRaDRAG6UhlFJWAhuBLCBaCOH2vPdAjViG8d0TwFjeCTWKmGd+k21amt+c/QVSyuFSyuGdOzfbEqDRaDQajUaj0bQJ/syC0lkIEW38DgVyUcPYbgQmGKvdA6wxfn9gTGMs32DEkX8A3GlkSUkGUoDtwJdAipFVJQjVUfMDf+2PRqPRaDQajUbjC/wZA94NeMeIAzcBK6SUfxNC7AOWCSFmA/8GFhrrLwT+YnSyLEcJaqSUe4UQK1CdKx3AQ1JKJ4AQ4mHgIyAAeFtKufdSKtrQ0EBhYSE2m+1S91VzBRESEkKPHj0IDAxs76poNBqNRqO5CrnqBuIZPny4bNoJ89ixY0RGRhIXF4dKvKL5tiKl5MyZM9TU1JCcnNze1dFoNBqNRvMtRQixU0o5vLlleih6wGazafF9lSCEIC4uTrd2aDQajUajaTe0ADfQ4vvqQZ9rjUaj0Wg07YkW4FcgmzZtYsuWLZdVRkREhE/q4qtyNBqNRqPRaK4WtAC/AvGFANdoNBqNRqPRtA9agHcQbr/9doYNG0ZqaioLFizwzF+7di2ZmZkMGTKE0aNHk5+fz/z583n55ZfJyMjgs88+495772XVqlWebdxeaYvFwujRo8nMzGTw4MGsWbPmHLvePPHEE8ybN88zPWvWLObMmXNB5WzatIlx48Z5ph9++GEWLVoEwM6dO7nxxhsZNmwYt9xyCyUlJQC89tprDBo0iPT0dO68886LP2gajUaj0WiualauBIulvWtx8fh1KPorkZkzYfdu35aZkQGvvNL6Om+//TaxsbHU1dUxYsQIxo8fj8vl4v777+fTTz8lOTmZ8vJyYmNj+dnPfkZERASPPvooAAsXLmy2zJCQEFavXk1UVBRlZWWMHDmSW2+9tcUY6EmTJjFz5kweeughAFasWMFHH3100eV409DQwIwZM1izZg2dO3dm+fLl/PrXv+btt9/mhRde4NixYwQHB1NZWXnesjQajUaj0Wjc7NkDEyfClCnwl7+0d20uDi3AOwivvfYaq1evBuDEiRN88803lJaWcsMNN3jS5cXGxl5UmVJKnnrqKT799FNMJhNFRUWcOnWKrl27Nrv+0KFDOX36NMXFxZSWlhITE0PPnj1paGi4qHK8OXjwIF9//TW5ubkAOJ1OunXrBkB6ejp33XUXt99+O7fffvtF7ZtGo9FoNJqrm9pa9X3oUPvW41LQArwJ5/NU+4NNmzaxbt06tm7dSlhYGNnZ2dTV2bjQFO1msxmXywWAy+XCbrcDsGTJEkpLS9m5cyeBgYEkJSWdN/1eXl4eq1at4uTJk0yaNOmCy/GuA+BZLqUkNTWVrVu3nmPr73//O59++ikffvghzz33HP/5z38wm/UlqdFoNBqN5vy4dZIhe64odAx4B6CqqoqYmBjCwsI4cOAA27Zt48QJSEgYyaeffsqxY8cAKC8vByAyMpKamhrP9klJSezcuROADz74gIaGBk+5Xbp0ITAwkI0bN1JQUHDeukyaNIlly5axatUq8vLyLric3r17s2/fPurr66msrGT9+vUA9O/fn9LSUo8Ab2hoYO/evbhcLk6cOEFOTg4vvvgiVVVVWK7EIC6NRqPRaDTtgtWqvg3Zc0Wh3Y0dgDFjxjB//nwGDhxI//79GTFiJHV1EBDQmQULFnDHHXfgcrno0qULn3zyCT/84Q+ZMGECa9as4fXXX+f+++/ntttuY8iQIYwZM4bw8HAA7rrrLn74wx8yePBghg8fzoABA85bl9TUVGpqakhMTPSEilxIOT179mTixImkpaWRnJzM0KFDAQgKCmLVqlX8/Oc/p6qqCofDwcyZM+nXrx9TpkyhqqoKKSU///nPiY6O9uFR1Wg0Go1G823G7be7Ej3geih6YP/+/QwcOLCdanQuZ86A4fRmeLMDmGoul452zjUajUaj+Tbw5ZcQEACZmf63tXgxTJ0KSUmNuqkj0dpQ9NoD3gH4z38gKgoSEiAkpPFNTg/YqNFoNBqN5kri2mvVd1v4d69kD7iOAW9npIT6eigtha+/VvOuxFgmjUaj0Wg0mrbkSo4B1wK8nXE6z53nfpOTsm3eIDUajUaj0WiuNLQHXHPJNCfAvd/kvDL7aTTthsulBjv45JP2rolGo9FoOipujzTAebIe+9Set90rBS3A2xmHo/V5WoBrOgLbt6vhfmfMaO+aaDQajaajUlra+Pv0af/bc3vAHY4rTy9pAd7ONOcBdzrBZJyZK+2C0nw7+dvf1HdGRvvWQ6PRaDQdF2/RfeqU/+15e76vtDhwLcDbmZYEuHtAyEsV4BEREQAUFxczYcKEVtd95ZVXqHWP53qBbNq0iXHjxl1a5fxQjjfl5eXk5uaSkpJCbm4uFRUVPi3/aqSoSH0HBLRvPTQajUbTcfH2gLeFAPcev88dBz53Luzf73/bl4sW4O1MUwHucqmOl4GBjdON6zaj1s9D9+7dWbVqVavrXIoA78i88MILjB49mm+++YbRo0fzwgsvtHeVrnjcA69WVbVvPTQajUbTcTlzpvF3ewjw+nr41a8aUyF2ZLQAb2ecTiguzmfChAE8/fRdpKYO5PHHJ+BwKEE8aFASjz/+OJmZmaxcuZIjR44wZswYhg0bxvXXX8+BAwcAOHbsGFlZWQwePJinn37aU35+fj5paWmGLSePPvooaWlppKen8/rrr/Paa69RXFxMTk4OOTk5AHz88cdkZWWRmZlJXl6eZ4j4tWvXMmDAADIzM3n//feb3Z+RI0eyd+9ez3R2djY7duxg+/btZGVlMXToUK677joOHjx4zrazZs1izpw5num0tDTy8/MBWLx4Mddeey0ZGRlMmzYNp9OJ0+nk3nvvJS0tjcGDB/Pyyy8DsGbNGu655x4A7rnnHv76179e/InRnIVbgFdXt429M2fg2WebbyHSaDQaTcfEOySkLQS49zOpvr7Rvrcw76jogXiaMHPtTHaf3O3TMjO6ZvDKmFeaXeYWGAUFB3nmmYVMmTKKvLyfsHTpH7jjjkeREuLi4ti1axcAo0ePZv78+aSkpPDFF18wffp0NmzYwCOPPMKDDz7I3Xffzbx585q1tWDBAvLz89m9ezdms5ny8nJiY2OZO3cuGzduJD4+nrKyMmbPns26desIDw/nxRdfZO7cuTz22GPcf//9bNiwgb59+zJp0qRmbUyaNIkVK1bw7LPPUlJSQklJCcOHD6e6uprPPvsMs9nMunXreOqpp3jvvfcu6Pjt37+f5cuXs3nzZgIDA5k+fTpLliwhNTWVoqIivjYSqFdWVgJw6tQpunXrBkDXrl051RZ3gW85bS3AH3oIli+HrCy4+ea2sanRaDSay8MtfIVoFOAFBVBXBwMG+N6e9zPJbr+ynDbaA97OuDsNJCT0ZMiQUTid8P3vT2HXrs8967jFrsViYcuWLeTl5Xk8wSUlJQBs3ryZyZMnAzB16tRmba1bt45p06ZhNgLMY2Njz1ln27Zt7Nu3j1GjRpGRkcE777xDQUEBBw4cIDk5mZSUFIQQTJkypVkbEydO9IS8rFixwhN/XlVVRV5eHmlpafziF784y0t+PtavX8/OnTsZMWIEGRkZrF+/nqNHj3LNNddw9OhRZsyYwdq1a4mKijpnWyEEQg8petm0tQB3h7pcaZ1qNFcXzzwDmze3dy00mo6D2wOdnKw6ZO7fr4aJv+46/9irrobgYPXbbr+y0hFqD3gTWvJU+wuLBYKClFAMCGiM+TaZGkVjeHg4AC6Xi+joaHbvbt5D7wuhKaUkNzeXpUuXnjW/JZtNSUxMJC4ujq+++orly5czf/58AJ555hlycnJYvXo1+fn5ZGdnn7Ot2WzG5RX0bjOSiEopueeee3j++efP2WbPnj189NFHzJ8/nxUrVvD222+TkJBASUkJ3bp1o6SkhC5dulzo7mtawO3VaCsB7h6ASr87aToqUsLs2eqjB0zTaBQWC4SGQrduygP+7LNqvr9yIVRVQefOUFjYGAN+paA94O1IQ4NqlomNhZMnj7Nnz1acTvjoo3fJyvruOetHRUWRnJzMypUrASVM9+zZA8CoUaNYtmwZAEuWLGnWXm5uLm+++SYOI9F4eXk5AJGRkdQYLs6RI0eyefNmDh8+DIDVauXQoUMMGDCA/Px8jhw5AnCOQPdm0qRJvPTSS1RVVZGeng4oD3hiYiIAixYtana7pKQkT6jNrl27OHbsGKDCblatWsVpI79ReXk5BQUFlJWV4XK5GD9+PLNnz/Zse+utt/LOO+8A8M4773Dbbbe1WFfNheHtAW8LseG2odNwajoqV+LIexqNv7FaISICEhKguBj+/vfGZc2Ne3I5uFzq2RQfr6a9Y8Ch4/9HtQBvR9wXY1AQ9OnTnxUr5jFixECqqyt44IEHgXPFzpIlS1i4cCFDhgwhNTWVNWvWAPDqq68yb948Bg8eTJE7Z1wT7rvvPnr16kV6ejpDhgzh3XffBeCBBx5gzJgx5OTk0LlzZxYtWsTkyZNJT08nKyuLAwcOEBISwoIFCxg7diyZmZmtepUnTJjAsmXLmDhxomfeY489xpNPPsnQoUM9LwBNGT9+POXl5aSmpvLGG2/Qr18/AAYNGsTs2bO5+eabSU9PJzc3l5KSEoqKisjOziYjI4MpU6Z4PORPPPEEn3zyCSkpKaxbt44nnnjiPGdCcz7cAryhQd3kpPSvOHZf91dSc6Lm6qKurr1roNF0PKxWCA+Hrl3h4EHlER85Ui0zfH4+w90y6xbgTUNQDH9hh0XIq6ztbPjw4XLHjh1nzdu/fz8DBw5s87pYrSo+Kigon7y8cbz77tf07g35+ZCaKtmbX0rXTjH06B7Y5nX7ttNe5/xKxG5XMXZdu8LJk+rzf/8HTz+thhp2x9/5ktxcWLcOFi6En/zE9+VrNJdLcTEYjXo6BEWjMbjjDvjmG7jzTvWMAPjd71R/iX37wJeP3cJC6NkTJk+GpUth0yaVhzwvTy3vCM8PIcROKeXw5pZpD3g74h3nKoSadvfgtTjLodNxauTJ9qugRkOjl6FXL/VdWalupgDHj/vXtvaAazoq36KhEzQan+H2gPfo0ThvuCE/vXOE+wJ3n6SWPOBbtvjWnq/RArwdcTfhJyUlsWGDSqXnFuCV9UaPBalPkaZ9cYefuAV4eXnjy6MRpu9zdAiKpqPjLcDbKvXZ9Ont79HTaFrDYoHAmBIeKewMvT4DVCdJ8J8Aj4mvh/DTZ8WAT5vWKPw7KlrdtSNukWEyGdkegiw4nBIhoN6pMoC4dNumpp1xe8A79c6HG2ZzurQx+NsYJ8nnuLsJaAGu6ah4C3Bfx7a2xB//CH/6U9vY0mguBasVrF3XU+Uog1t+BUBcnFrmawHuTlf7cfA0+O8ErLZ6zzNjzhz42c98a8/XaAHejrg94EKAjUqIP4BVlmIKkNQ7VC4dF1dQVnnNtxJ3Z7N3IzPhpmf4dG/jKKb+8oC7b6JagGsuBqfT95kWWqI9BHhzfPklTJ16ZQ1Aovn2YrWCPVKN0E3MUWJiJQkJYDarTpm+xP0f/LrhbwDsrd7qeWaEhfnWlj/QArwd8WSREE6qpcpc4pANmALtSJTnW0p9V9W0LzYbEGCnDhUWtaNgv2eZka3S57i97lqAay6GceMgsI36rHtnQTEG4W0XvvMdWLxYdY7WaNobiwVqwlR6ZMLOsGxtPqGhcOON8OGHvrXlTjPYOzQVgK+qN2K1qjzkpitA3V4BVfz24o4uOVVXSAPqbi6dAQhzYyZ57QHXtDc2GxB+2jN9qGIfoDrZ7N/fwkaXiRbgmkth7dq2s6W8bxKCLJ6m8PbA/RxpTy+8RuPGaoXaoBP07tQbgNPBaqjYnBz1vPBl+k73oDsuoX6UN5R4OoFeCWgB3o64PeAOV+N42y6nQASoaSHNSC4t2XJERAQAxcXFnuHgW+KVV16h9iK79G/atIlx48ZdUt38UY43K1euJDU1FZPJRNOUk5qLp74eCD/lmT7pVKo7NxcOHfLPcPFagGsuh7boOlNbC2S8A09FcuC0n5qCWsDt+XP/TwDKytq0ChpNs9hsUG8qIzspmxBzCLtK1AB5blFsDHDtE9z/g2pnKQAWRyWVlRAdDQ5XG8WiXQZagLcjbgEeYAponCddiAB14cTUmUmuqvU8TZyXEOTXvXt3Vq1a1eo6lyLAOzJpaWm8//773HDDDe1dlW8F3h5wYY+E2G8wmyE7W4lvf4ShuC/HpgK8tBQ++MD39jRXPt7XSlsMR11bCyRvAGBb2Ud+t+f9UuHO/lBY2DjP1x3cNJqLxemEhgZJnSgjITyBPjF9OFKhRsNxjxfhy/+mu6xKuxLgtc4qysvBmf42gb8LpKSmxHfG/IDfBLgQoqcQYqMQYp8QYq8Q4hFj/iwhRJEQYrfx+YHXNk8KIQ4LIQ4KIW7xmj/GmHdYCPGE1/xkIcQXxvzlQoggf+2PP3DfUPMLjjHhhgk8/fDTjP/+DfzyoZ9gq7NxTaWNjFvG8vjjj5OZmcnKlSs5cuQIY8aMYdiwYVx//fUcOKA6Oxw7doysrCwGDx7M0+7s90B+fj5paWmAEvCPPvooaWlppKen8/rrr/Paa69RXFxMTk4OOTk5AHz88cdkZWWRmZlJXl4eFsPNsnbtWgYMGEBmZibvv/9+s/s0cuRI9u7d65nOzs5mx44dbN++naysLIYOHcp1113HwWZ6Y8yaNYs5c+Z4ptPS0sg30mwsXryYa6+9loyMDKZNm4bT6cTpdHLvvfeSlpbG4MGDefnllwEYOHAg/fv3v5RTomkGmw2IUB7wGMt1EHOE7t2hb1+1vKDAt/aczp6lNkMAACAASURBVEbPhvdQwgcOQJcucNttehRCzbl8803jb2/PsL+orQWqVG7Oo9avkBK++sp/oSDewsUtwL0HPdYecE17Y7MBQVYc1BMfFk+fmGs4Uu5nAR5Qj9WhcuVaXZVUVIClx2oA1h1d5ztjfsDsx7IdwK+klLuEEJHATiHEJ8ayl6WUc7xXFkIMAu4EUoHuwDohRD9j8TwgFygEvhRCfCCl3Ae8aJS1TAgxH/gp8MfLqvXMmbB792UVcQ4ZGfDKK+fM9oSgOB0UHCngmTnPMGRQLs898yirF73Hd2+7C4C42Fh27VLNOKNHj2b+/PmkpKTwxRdfMH36dDZs2MAjjzzCgw8+yN133828efOarcaCBQvIz89n9+7dmM1mysvLiY2NZe7cuWzcuJH4+HjKysqYPXs269atIzw8nBdffJG5c+fy2GOPcf/997Nhwwb69u3LpEmTmrUxadIkVqxYwbPPPktJSQklJSUMHz6c6upqPvvsM8xmM+vWreOpp57ivffeu6DDt3//fpYvX87mzZsJDAxk+vTpLFmyhNTUVIqKivj6a5VDvbI9e0J9i1EecCXAvxM0lH+ZPyJ1eAU9esQAZ3vhfIFHXH9/Bge7BgDqv/OjHzWuU1OjOtpoNG7+/W9AOGHCZFb/ezpbl2bz8svQqZN/7NXWAkHqwV9k38vixXD33ZCVBZs3G6llfYi3h785Aa494Jr2pq4OCFPe6Jve3cr9KzaS8qADKSXBweoP4UsBbrcD4aWeaZtUHvAYkUwpsP7YeqYOmeo7gz7Gbx5wKWWJlHKX8bsG2A8ktrLJbcAyKWW9lPIYcBi41vgcllIelVLagWXAbUIIAdwEuOMr3gFu98/e+AcpVU9dh3TQLbE7Q4YNB5OLsXfcylfb93jWm3THHQBYLBa2bNlCXl6exxNcUqKaWDZv3szkyZMBmDq1+Qtu3bp1TJs2DbNZvXfFxsaes862bdvYt28fo0aNIiMjg3feeYeCggIOHDhAcnIyKSkpCCGYMmVKszYmTpzoCXlZsWKFJ/68qqqKvLw80tLS+MUvfnGWl/x8rF+/np07dzJixAgyMjJYv349R48e5ZprruHo0aPMmDGDtWvXEhUVdcFlai4cdwhKuCmUf8x5gbWL4YbbjtCtmxIZfhPg33mDk71fBVS+caOxB2gbD6fmymLnTqDrbkhdycwN9/OnP8Hbb/vPXl0diDD10l8pCzw58bduVakBfU1zAtz93zOZtAdc0/7YbECYuhCHLviA6DILP9lq43D5Yf95wA17WOOpk1VUVIAIUb2il+9dTqm1tOUC2hl/esA9CCGSgKHAF8Ao4GEhxN3ADpSXvAIlzrd5bVZIo2A/0WT+d4A4oFJK6Whm/UunGU+1v3C5QAQ04GhwIIQgpEEQ7LAhhROzbHSfhIaEGOu7iI6OZncLHnrhA5eLlJLc3FyWLl161vyWbDYlMTGRuLg4vvrqK5YvX878+fMBeOaZZ8jJyWH16tXk5+eTnZ19zrZmsxmXq7HTqc3orSGl5J577uH5558/Z5s9e/bw0UcfMX/+fFasWMHb/nziXqXU1wOhFeQdCwPquP44FKcfJDBwOF27+l6AN9cdwR1eMHOm+otqAa5pyldfAUn/AkBUJgNg3Dr9gtUKAWGVOACLqYjKGjugoiAPHYJrr/W9PTfeHvCYGIiK0h5wTfujPOBlhHqFDt50DD489CEpwb8EfO8BN0WU4gJMFX2oD9tDXQXEBJ8hOCCYUHMoX536itHXjPadUR/i906YQogI4D1gppSyGhUi0gfIAEqA/22DOjwghNghhNhRWtpx3oakBIKU2iguLKJm0w5SLBb++dcPGJU51LOey6neMaKiokhOTmblypXG9pI9e5SnfNSoUSxbtgyAJUuWNGsvNzeXN998E4cxUkW5EawYGRlJjTHe+MiRI9m8eTOHjZ51VquVQ4cOMWDAAPLz8zlyRMVzNRXo3kyaNImXXnqJqqoq0tPTAeUBT0xU70eLFi1qdrukpCRPqM2uXbs4ZozyMnr0aFatWsXp06c99S4oKKCsrAyXy8X48eOZPXu2Z9urgeeeg7feahtbKq7PwpDTjS94tdvUEMOJiWc3g/uCpvHd9Y56jMuTbt3UtxbgmqZUVkJQn60A2OpUx3bvPgS+xmoFU1glkTYIt0tO1RV6Mj34ul8EnH3NewvwxESV9UFH4GnaGyXAzzCwDEwOJ3TtyncLTSzbvZigINXpzdcecHMnpen2rDzI0hU2XNhoMJ/h+t7XU/yr4g4rvsHPAlwIEYgS30uklO8DSClPSSmdUkoX8BYqxASgCOjptXkPY15L888A0UIIc5P55yClXCClHC6lHN65c2ff7JwPcLmAQOXWSEnpz7yVKxmYl0dVVSUP5uV51nM6GvO8LVmyhIULFzJkyBBSU1NZs2YNAK+++irz5s1j8ODBFLWgiO677z569epFeno6Q4YM4d133wXggQceYMyYMeTk5NC5c2cWLVrE5MmTSU9PJysriwMHDhASEsKCBQsYO3YsmZmZdOnSpcX9mjBhAsuWLWPixImeeY899hhPPvkkQ4cO9bwANGX8+PGUl5eTmprKG2+8Qb9+qgvAoEGDmD17NjfffDPp6enk5uZSUlJCUVER2dnZZGRkMGXKFI+HfPXq1SQm9mDr1q2MHTuWW265pVl7VzJPPw0P/MwP+f+aQQnwGnrVNApwxwEVQpSQAKdOtbDhJVJXBwQ2usGLa4o94kMLcE1L1NUBXVR/EGeIuij96RW2WIDQSra/ZcLyPJy2HaVLF9VR2B8C3OMBT9pInV399wsLlQDv1Il2zUWu0UCjs6a74TDhjjsIr3dRue/fHKn/onEdH2G3Q0BkKSENkFZVyYT90Dd4NzbTGeJC4wgx+7EJzAf4LQTFiNFeCOyXUs71mt9NSunODfMj4Gvj9wfAu0KIuahOmCnAdkAAKUKIZJTAvhP4LymlFEJsBCag4sLvAdb4a3/8gcsFmBowm8wESSeLf/c7AHZ1haiKQBwOSf4HH2Dt1BjbnJyczNpmRptITk5m69atnunZs2cDyqvs7qRoNpuZO3cuc+fOPWvbGTNmMGPGDM/0TTfdxJfNBDGOGTPGk3WlNRISEs4R2VlZWRw6dOic+mVnZ3vCUUJDQ/n444+bLXPSpEnNdvxszut9ww0/Ys2aH9Gvn2qa/VYSdwhm9OfNL99i2oj7/GrKZgMRUkP3KhcMGAAHDmAqOA6oJn5fexlra4HQxlQShdWF1NSokAItwDUtUWu3YY80YpWMTsP+jIu2WIDgSgacUWFz/Qo+4WTE94iP96MA7/pvuPcmlp/5JT/lfykqUn38j1Tvo/RENOrRqdG0D3V1QJCFbm4BfsMN8Ic/MNgSynvFc4Hl1Nf7rndyfT2YIkvpajWBMWZKovkwu2Q5N28vh7B/wA9+0Hoh7Yg/PeCjgKnATU1SDr4khPiPEOIrIAf4BYCUci+wAtgHrAUeMjzlDuBh4CNUR84VxroAjwO/FEIcRsWEL/Tj/vgcKQGTExMmr3HpweyCAIcTR6CKJ3S14DHWNI/bE+TLN+2OhPL0/QeAn/3jfh5+Ot+vA48oAW6hS2UD9O1LZUwoYUUqHCgoyPc5l+vqgNBG1+Up6ykdgqI5L5agb0A4iTjVi++dOgnC5XcPuDOoMe6jd9k+IiPhmmv8kxvfagWClBv8oO1fNDSo1qfuiZJNqanszx7ie6MazUXgbi3tXgNSCBg1CoAfR9zAhlMrYdAqn4egiPBSBtgbPW0JgflYnRX85PefwNixKlazLUbmugT8mQXlcymlkFKmSykzjM8/pJRTpZSDjfm3ennDkVI+J6XsI6XsL6X8p9f8f0gp+xnLnvOaf1RKea2Usq+UMk9K2QbDL/gOlwsQLnr36snXy5d75ge6wOR04Qo0Ol9qAX5RuA9XWx02lwt++lP44ou2sVdaCkSc9EzP+9dSjh71nz2bDURQDfEV9dCjB9bEziSU2qi0VRIc7HsPuDuO0E1tQy01NRAQAPHxap4W4Jqm2EQFAB++Z+GTJS66BB/0qwe8xuLELKs900mV+URGwuDBcPQonpdGX2G1AmblVbC4yigpUboiNEG1RrlCdBoUTfvi9oD3tJoR8fEqPioigrGiH2ZTIHTb5fNOmDKslJT6CM+8rqH7cEmvEcTfeMO/nUEuAz0SZjsiJSBcBBsDXJ4OUomNQ43QXmlMy0sYAfNqpr4eMNdhsbeNSjt+HN7espqRfwtmzpY559/gMjl9GogsAVcA1EVDVCEXkdXxoqmvB5O5mqjqeujaFZmUTFIlHCw7SGCQ9LkHXIWgnMHshNnrwVl6mpoaiIxUH9ACXHM2UoIdC0jIPq3Cl5JDdvvVA15jrybOq8Nwv8oSIiNhiOGI/s9/fGtPhbwowW9xlXn6XpSHNyYP66COPs1VgjsGPNFqwpOntm9fxJEjJIR2h6gi36chDK6md22gZ15C0GEi3TZefBHWrWscBaiDoQV4O6IEuJNgp4qJqhXK4x3q9twGGyONaAF+UTidQJe9VAcdOPtN2E8cPYpKf2a2s+X4tvOuf7koD3gJIc4EqO4JUUV8/fV5N7tkbDaIchruvJgYwlIG0rMaRi0Yye7oWf7xgIdUkXsEfv0ZjPz9Uo8AF4E26HRcC/ArAJcLFny+is3HN/vdlrvpu6dXR8Rk816fe6G9qWmoJN7oK1wSZqantdrjAQd8/lKsQlDUDtmxekLsTjuNfjkuE1arVuCa9sPtAU+wCtVDH9SQyYcP0y08ESJ9K8DtdpCBVrrWSBpEIMURkGAqoqv7+ZCYCB0o8UZTtABvR6QEKVwEO9RN00oYAOFuQRMcglOAdGkBfjF4v6+c8ecT2ODoUSBapUwsr/V/KoLSUiCymGe3QOX/7ee2M1+zaZP/7NXaHHRyGHfN6Gii+2cQ6ILEGjgSstw/HvDgaoKM8xh1XMWAh3eykfHmEPh5Hw7W+V/UaS6Phx6WTFufx3f/9F2/21KjUlpIO904b0D4Yb++qFmcjQJ8b1QUsfYGosPsnpE3fW3bagWCG+9n7hffMw5jmAyTi4LTFb41qtFcBDYbEFxDp3pUbkxQAvzYMXqEdYOoQt97wM21JFQ7qQzryskISJBljQK8a1ffGfMDWoC3AVI2ikIpVQ/5ujp3c6GTkHonBAVhk2FIIKIB1XQTHIwtKBCp2xUvGJcLJI0KvMzif0F89CgQo4Kwq+qqW1/ZB1RUABEnyS6006nBwZubj7HhEwfHj/vHnrXBQrS7Q2t0NKZrrgHgse55VIsC6ht8G2yvvCg1dDHSroWV1ygx03MLh84cggAHu8R8n9rU+J75y461ma26OiC4hsGGAG8wQV/T8bMGr/ElUkKty0uAhysvW4Kp1C8j/oES4IER1QQ3QGeLlwBvKCSxCv6+GE4c8mMsmuaKpi1ag90e8Kg6F5430b59oaGBwfYoiCrCZvOdnqmvB5fZSnxlA9Vh3TkZAV3r7PSxK2emFuAa8vNh3z71u65OeTCPHTPEonARXO+E8HCkK4gG9xkJDoYA2J90DSdj4i/aZkSE6pRQXFzsGQ6+JV555RVqmxt+sBU2bdrEuHHjLrpe/irHjcsFr772KybcMIHJ35vM9J/8mLIy/45QUXBcQowSG1X1/hf8NTVAaAWJNeoJnFDromv0VowxknyO1VFzlgB39O4NQIYtGoew4Yw+5J3E57JRYqqaRIuK6wux2KipAVu3DQSIAIIqBlMjLn30nzVrIDQUv4kzjeGR7r7DM213+rcTlPvB3+8MnDJ15esu0M1VitWKT69NN3Y7uAK9BHiQ+k8kmk/6VYAHRdSw5H04PQdqrcpAaX0hv98YzA8OQ+Df3/OtUc23gvs+uI/4l+I5WHbQr3bcMeARNidER/N/xcXsTkkBIKPSDEFWyut9Nxii3Q4ucy2xlfVYorpzKjSQBCtkNhhhJ+60WR0ULcDbALMZGoyOle6HgRBGCApOzA1OlVDZFYjdnZk9NBQryrNoN9IROi8hFrx79+6sWrWq1XUuRYB3VJxO+M6oG1i2YRnvffxPevXpwa+f/h+/2iytroQgK89ugM9++43vx2ZvQk0NEFRJ5/JavjH1AqBr+hy/jYRX52j0gG8JDyewuJjNaWn0tarrkq67fSo2rFYQodV0tyoBbrY7qKmB+qj99IvrR4i1P1ZTyXlKaZmnnlIPimNt56C96jhyBIhvHDPgWIV/D7a71STOZqLcFE9ZqIkQ52GIPYw/bm1WKxDSKMAP0B+Aa+IOYzKpe74/BHhAeDXj96tp87GvADhVd4L+FjUEZ4mrrqXNNVcp5XXlLPz3QipsFcz61yy/2qqrg8CAGkLsLo526cL9hw4x1OWiOiqKoceUx+OE/Suf2auvB5fJSnR5LXWdunEqOJQEC2RUhaiUWbGxPrPlD7QAbwPMZiW8nc7G1HhCgMSFSUoKiosZcOONPP3UPQy7bSITHn+cWiGwSie3pqXxxjPPkJmZycqVKzly5Ahjxoxh2LBhXH/99Z6BcY4dO0ZWVhaDBw/m6aef9tjOz88nLS0NUAL+0UcfJS0tjfT0dF5//XVee+01iouLycnJIScnB4CPP/6YrKwsMjMzycvLw2IEM65du5YBAwaQmZnJ+++/3+y+jhw5kr1evY+ys7PZsWMH27dvJysri6FDh3Lddddx8OC5b+KzZs1izpzGLCJpaWnk5+cDsHjxYq699loyMjKYNm0aTqcTp9PJvffeS1paGoMHD+bll1/G6YSRo27AbDYTFR5MWmYaJ06c8Gt2gDJrOUj4zaeQWOXyfe+rJlTXSOJc1QTZHaTcqeJru4lCv42EZ3PVegT4LONN8vdTpxJf2YCZYOj6b592xDx5EoKjqulmVbenQIeLusp6ZHA58WHxTPrGQv+yE5dcvjDGgdCRXf7j8GGg03HirbB0JRQe+bdf7bk94LE2E137daLGlaLEcb8P/RIHrkbBrCC+Flwx0RTZBwAQJnZT76gnJMT3AtxiAVNIDQfi1HTU/i0QXI3FUU3vKuXZsZ+59BdTzbeTw+UqKf19uwTRn3zuV1s2G3RCPYj+kZjomb993Dh67FFNtEXOPT6zZ7eDWVoJt9RTF9Odk5Euglww8Ei1GjSug+O3kTCvVGZ+8w27fXzH7m+O4H5ScDgaPeEmE0jpwmyIgINHjvDqHxZxzeC5/PahB/nD0qX8YOZMADrFxnhGfBw9ejTz588nJSWFL774gunTp7NhwwYeeeQRHnzwQe6++27mzZvXbD0WLFhAfn4+u3fvxmw2U15eTmxsLHPnzmXjxo3Ex8dTVlbG7NmzWbduHeHh4bz44ovMnTuXxx57jPvvv58NGzbQt2/fZkelBDVi5YoVK3j22WcpKSmhpKSE4cOHU11dzWeffYbZbGbdunU89dRTvPfehTWX7t+/n+XLl7N582YCAwOZPn06S5YsITU1laKiIs9In5WVlcbook5MEhKLK/nnux+QfdOPqa9XjQz+oNxW7olXBnCcPunXP1Z5jYWeLuPCGTEC3n2Xbs4zfvOA2xw2jwDfY7xBbhswgIDPP6dbzzRO+NgDfuIEBA+oJsHrmDorqnEElXNtcTRz/rWWfXuh9g+1hAWGXbId939R43uOHAE6Hefhz8O5c6+VXW+/C9+502/2VMfdGjrVm4gZFM0dyUOpWPgNJP0Li+UX/rEXUkl8KTQkdCXikUH880/XsnHjC/yB1wmKOk59vW+9b1YriO7VlIUBZyCi6CBEqda2SCMcRVae8qlNzZXP37ceJucovPWBBAqxP/YNQdek+MWW3Q6dpNJP2zt1Itxkwupysf3GG/neihV0Gt6Z0+H7fGbP1mCni1VFBlgiEigsvhGn6Z/EHymBnLE+s+MvtAe8DTAZR7mhofGhL4SK/zYZISk9ExO5fnQWVRFh3HDPPXy2fTt1RrzKmNt/BIDFYmHLli3k5eV5PMElJcrjsXnzZiZPngzA1KlTm63HunXrmDZtGmazkoexzTTPbNu2jX379jFq1CgyMjJ45513KCgo4MCBAyQnJ5OSkoIQgilTpjRrY+LEiZ6QlxUrVnjiz6uqqsjLyyMtLY1f/OIXZ3nJz8f69evZuXMnI0aMICMjg/Xr13P06FGuueYajh49yowZM1i7di1RUVGqs6twEtoAL837I51cZr4/boJfMzlW2cvp2zhyOvWniv1nDKioq6KzW5waSYe7NVT7zQNe77TRyQbVYWGcdjiIDAjgVFQUlrIyEgMHQtw3PvWAnzgB5vBqYuq8XNSWGuwB5dyyTcUPOkxQUnNp3j63B/xbEnXVITl6FEwxBSSUGrGYRZces38huD3g0fWozl/x8cTUuQiI+9ovsf4q20M1XWoD2JaZyVcD4AcvvkjnWhPWBiu1Y6b6fCRelQWl2vMyLG0WiCokpAGCalXoSWCNHxOfa65IVq4/THZ+4/TpdWv8Zqu+HqKNh0F+cDDDIiPpGxrKrv79weHg9n1B1MmLz9QzfjzceqsxBoa3PVetJ+f3xrh43nvpUSb95jdqRkbG5exKm6A94E14JcX3b4ZWK+zfr8JP3CEoUoILJwGGxhBCcNBQBAFmM1II3PIjOELF97lcLqKjo9m9e3ezdoRbWVwGUkpyc3NZunTpWfNbstmUxMRE4uLi+Oqrr1i+fDnz56tsFc888ww5OTmsXr2a/Px8srOzz9nWbDbj8uoxZTOeYFJK7rnnHp5//vlzttmzZw8fffQR8+fPZ8WKFcyZ8zaYnPx9+d/42+efs/4Pf+CwyYbLFXXOtr7C4iwnxeu5Zz9VTLjfrEGVrYpk90RCApaoELrVWznkJwFudyoP+OE+KvtJbkwM75eVcczhICE4GaLexVLXAAS2XtAFIKUS4GHB1UTXOSgNDqRzfQNRVFPIGfodVm9SneqhpLaUPrF9LtrG1SjAjxyBkSNh61aVlMDf1FgksvdxRpSpTAjx+wr8as+TfcHmguhoZHw8AogVZX4JQVHpz2x0rhPs7d7dM98R0QtBAfZum7AVuPClj8tqBWdwOTGGABc2K0SdINEr8VKI1b8dzjWXj81h4/nPnudX1/2KqGD/PZfcFFYXknI6mDJzGPGOCgq276bHA/6xZbdDJ8PLmG82kxMSQlhAAPkBATBkCL//fC+ZGeXnKeVc3BGvCQlnhw7aXFZ6GM6fU4PUU3fdsGFqxg9/SEVDAw1S0jkw0Cf6yNdoD3gbYDicz/KAO51KWAYYevN4YSH/NsYy//vKlVx73XVqgZS4hDpNUVFRJCcns3LlSmORZM8eFU81atQoli1bBsCSJUuarUdubi5vvvkmDuMtoLxc/REiIyOpMfJljxw5ks2bN3P4sIobs1qtHDp0iAEDBpCfn88RI9VGU4HuzaRJk3jppZeoqqoiPT0dUB7wRCMmbNGiRc1ul5SU5Am12bVrF8eMXnKjR49m1apVnDZef8vLyykoKKCsrAyXy8X48eOZPXs2u3btwuWCLZ9v4K23/swH//u/hIWEECFr/ZIJAdSD3xF4hl6G+K0OAkepf5uBq+yVnocwMTFUdY+jb5Wd8kr/xFTYZR3hDXAkSWV6yI2JAeBIcDA9Td3B5OJEpW86np45o46py1xDVF0DBeFqMKqogFKks47EI+oaSKwG62WmfLyasqD8+c9QlvRHJv7FT0/eJtTabUizjT5W9ceIOe3f9Jx1dUBgNZF1TlydOtF7wAB+OX068a4qqmp83/xltwNmG3G1kmL3gCPA6W6D+GH/HyIDayl35fvUptUKDnO5xwNuslkhqpCeXoc2slZ3wuzorDmwht9++lueXPek321VVakRW/tVwi7nUErD4ND6Q36zV1fvJNruwm42UwQkhYTQKziY4/X1MGMGnW0OYi1lF1VmdSu3Dm8PeNgwlX6oKiKC6pkz2RsXR+fNm0nYsoXfn7j0PkP+RAvwNiDQcAw2NDR6wJ1O1QnT7QHvk5LCyrfeYtKIEVRWVHDXA+pBKaTEZTJ5coEvWbKEhQsXMmTIEFJTU1mzRjUnvfrqq8ybN4/BgwdT1EJz73333UevXr1IT09nyJAhvPvuuwA88MADjBkzhpycHDp37syiRYuYPHky6enpZGVlceDAAUJCQliwYAFjx44lMzOTLl26tLi/EyZMYNmyZUycONEz77HHHuPJJ59k6NChnheApowfP57y8nJSU1N544036NevHwCDBg1i9uzZ3HzzzaSnp5Obm0tJSQlFRUVkZ2eTkZHBlClTeP7553E64ffP/garpZbcGTPIuOu/mPW7J/wmwCsqgNBy4muh0hROSSS4ynyXZqk5LA1VxLqfszExVPfpwaBSKLVevGfhQmiQNsIa4Hg35enLMQT40W7duGmv8mzmV+b7xJY7jEY4KglyuNgf25n8hAQig0pIsIC5wcmR+P6YJThLLi2s4Wr0gAsBjJvOv01vUdvg/x2vtduItEF0g42K4EAirQ1+feOx2SBMWDG7JB8mJXEiIICX8/LoXgOnq3zvFXZ7wGNrXRTHxhJiMmFyOqmO7s4P+v4AgDMBvh2e1mIByRnCjffsAHsdRBUxqF55UYtDw4iy+Tfdo+bysdhVk8xnxz/zu61jx4CgGlIqHXQaNoCCiCC61Z2ghUfwZVPfYCfcDoWdO+MCeoeE0CskhNKGBup6qYxdCTUX95xqmq/B+1negJUI45LPNzfK2X2zZrHHYsEJ/Kx7d4/TqKOhQ1DaAHdaKrv9bA84QmJ2gUSFnby4cCEJQUGcqK9Hms0EOBxs2PoFNVERSOlCiACSk5NZu3btOTaSk5PZunWrZ3r27NmA8iq7OymazWbmzp3L3Llzz9p2xowZzJgxwzN900038eWXX55jY8yYMZ6sK62RkJBwjsjOysri0KHGN293/bKzsz3hKKGhoXz88cfNljlp0qRmO3665H/zUAAAIABJREFUPeZuSkpg9aZPGGSxEBYUTn1tDTWmEL8J8MpKILScrmfMlIo4ysKsRJ+5uDf8i8XqqCLGCc7QEKYcPcr6h55h32f/hb3yKJBw3u0vBikbBfiZmBhMQN/QUIKE4GSvXjzy6lySHoITNb4JMbDbgcBagg3P6W9/+d8cHtifiXd8SWdDNxYmpNKn7CDyItM9FhbC8OFwymiguJoEuDfbCrdxU/JNfrVha7DR23iZ2hKXwNjiQhUHbrxU+9yeDTo51VvpBmPo6WC7ndTTgtOWM0CcT+3V14MIqCO0QVIcHk5iUBCV1RXYQjvxgxQlwCsCvwZu9ZlNi62eyPrGizagvhaCLCQb6ToPdEogwZbvM3sa/3Ci+gQPfQHj8g/Cj23+yw6AemkLDqgiyubkO7d35+NlMfQurKC4GAw97FPq7HbiXHDS6F+WGBxMkOHxONG9O/2A7hc5OvXixep7zBhYu1bdt48fh0GDwC5riTQE+FEgMyKCXRYL39TVUWhkBpjTpw/hAQG+2D2foz3gbURQkBIXbl3qcACi0QPuAkJMJoKNi7XS4SDEZFILhKDBoVM2XAhSAsKpQnvMZlwmgRmX3wR4VRUQUkFCnZlS2YUzoWAv8u9w0HWuGmLroCClL8tOn6Y0NJzXxo+nU5XvU725m9pDG6AsOpq4wEAChKBrUBCnxo4lwGEn5xhU2nwTgF5fD0QVejz8hweq/MrWwQ2enMvlXVR6KXkRLzp79kDPno3iG64uAV5dDdSpoaG3FW7zu706Rx29DcfzZxE91Q8/dsSsr28U4LvDVSxofVAQPexdOH2RHrcLtRci1AVUHBpK9+BgEqUJS2QsPSMTCa7rTVWw7zzgUoLVVd7Y8gWYG+owBdWRWC0hOvr/s3fmcXJU5fr/nuqqrt5nXzIz2SAJCVkIiSyRXQTZXK4I/BBQvC4oXi8oiqj3qihXBRW9IAqoV/GKQAC9iiIgm0oiiEKILCHLZCbJZPat96rqqvP741T3TEiY6UC3BM3z+eQzmerqOlU1Vec85znv+7z0xRqoz0msQoX9D/ejovjlo9v51Fo45QUb9+bqVvRNp6FW+ONRXR1WYxOtORvf3bfisAo2ZgGG/CqYjYbBLH+C0d2gJsFtqcxeVff+0Y/g3HNVEibArbfC4sVwxx3gBZQCXtA0ugsFjq1VfVyPZdGdz9Og6/ss+Yb9BPzvBtNUnfbkJEyEigFvnzmT2554gnggQNC3TPGAaCCAkIqQu26V1oz+wSAloLkEPFki4AHpVc0FxbIAI0djVjIkWxgPQWGwekvtUoLlWtTlYfOBE9l0zxx4IIbbWfH28nlAzxFxYChRQ5MfT9USDNJfX08hEmdFL6SsvVM1Xg62DSS2l2Lcw6PquMNLQyXnl2TrYgDkYPmOD7s5cwqPVLr6pZn3FQwNAQEbJDw3WP1y5flCvhSb/KeIek6zG6sXh2lZEHfzSGCdYbAwouwp41q7r4BXvr0wPgE3TdqCQZqBgZoaGB4mnltCOlI5Ap7PA6GR0jtw4eWfZM3i+YhgjrZxDzo6WLd4KY8dehTJCk2G96M6WLdlBzk/9iD/1O4rzZVEOg01Ur2IsraWriVLqbGhc2Nl+uuXIu/YmC4M+kS40TCY5ZeG3SYlw6Eos5Jyr8LgcjmYMwf84t78/vfq51NPAYaKAd/e3IwLLI1GqdN1dlgW3ZbF7CquLlQC+wn43wnB4ERhhqBfQBDhoUlI+4pNPBDA1Cb+JLFAAHwCXthPwMuCmth4aJ6EQAAvoBGQ1VPAbRsIWDRkPQZCM/jW+77I1z9wAZ/9bHXac11As6nPwRa/JPwCTaOvvp6QrDzBUQQ8T7gAQ/F4iYC3BoP02TbZgw5l5U5Rimt8tbAsoGY7dTkVmpX3kzC9OrekgOc7lPUiQ+WvNOy26vm5CDfZx7zq8329oG84S0hk6fkmnHb9/VVvz3LzpeSoTbp6Tm/7XnUV8Ii0GIvFSArBqoSKiw6LOENVIuARskhgp2HQZpo06zoDtbUwMECNtZhcdAOerEzHk8kAkWGasmAZBrecejofvOISRDBP61gBOjr4+qXv4ewvXUVytK8ibe5H5ZHLAbGeUtK+u+GFqraXTkOtp/rm6xsa+PczP8RVF1xA76bqTMLzBYugC0P++9dkGLSbJhqwLZ+nL9rA7HEYt8qbJHqeEi1Nc4KAj/rdvpSAnidmw5aODgAOCIXoME12WBZbcjnm7Cfg+wETiZgwiYCjCLgVVB+GNI3AJKucRCCAoKiA//Ooda8GUoIm1X1F1yGgEZCyagTcsgDNoj5dYO1RB/P08uP43pnv5KtflVWptKgIv01NHjrb2jCE4LBolP66OiJU3n+8SMAjDgxFozT5D29LMEi/45A/eCWH9EuyFVLdigp4c0apKDKopCI3LmnNaUhNo9C+AFeANlx+ct2zz8Kpp0LJIl+32KGtrcg5vx7Qlxxi5ji0peG8R4fJb91U1fYsVz0zAP1HL+aDl13GeH/1PKotC8KeXVr6PshXwPPhBO54ZRx6dmuPPMlolKym0RYM0hQOK+Wvv58ITUjNqVjCq6q8qQp+DfjqIgARaBq1KcycWdqU7a/89e5HZdDVBY0MEfH1tOCWrVVtTxFwtWzyHV+J/sFpp5Ef2L0SdSVguxMhKGFNIxIIYGgabaZJdz7PYLyFWeMwli+v7y7VlzCyfL//Q3DpHDqNeyZ2MHLE7Qkx6oBwmA7T5NlMhk25HCvi8QpfYWWxn4D/naBPSnctkXEh0SS4AfVhkXx3mCYHhELomlZSwN1qMch/MEgJepH5BgLIQKCqBNy2IUKOoCvZMrOptD0i0lXJNHccIOAQLsC22jpmh0K0RaP01dcTlQPTfn9vUXR7iDqCwUiExkkK+IBtk1u2kkgBmvYyIXLK9kJjHJgy2D7J3s2JBpnphBH19fQ15lhx002krfJnOF1dcNBBr4vqxFXBuDO4S7XWzbftuVpupZD3CbhrBvHe3soPzjiDXH31HDryliQsndLS94KwWjkZTiRIDFZ+ZUgR8Bw7i3GtpklzNEoqGiV36qkckFYxVJUKzVJFeFQBroFJjg6BsE79uM2GSfUrcgPVLQS2H68cnZ0wy1bk889tEBoa82Xx6mA85VDjOFiGwRZ/W29DA65fnr7SsAp+CEpdXWmsAEpWhMPxNmaNU3aYVDFqoCvwAL/t/z7UdtM9+8uA74aiq5W2rpkd6ELQbprMMk22+DVEDttPwPcDYHIewAQBV0ptIRBAZ6KQTmswSH1pJz8m/HVMwFMpqkaAXwrPg4C/7DtmGPTUNYPQ8LwqyNEoAh5GdaCjCyZe9njNSEWrQ05uj4BSGQZjMVoMg9ZIBCsYJGjaFVfdiwp4qAAjwSCNhsHI70Y46O4cHjB8iKo2NnN7ZQZ95YKSY3ZSo+8AVWQnkRonF43QkTOgqYmvtT3N+vkL2BYr39kil4NoVJFwRBXLou6jsMT4LgTc/e29VW3PdlXY0kjDxN/oxRWVLc0+GTnLVmFSvgI+0zQJAyPxOA2jr6xi6lSwLIh4FjsbGwFoCwZp9Mn/cCLBz1b/Fy0pSFqV8T9XBDxFcwa6GicK/4T9QhIvTrrPuSrXIdiPV44t3XmafVa5sfgn20tXkL3BSCaliqi1t+MBh+mCgq5jeZUXa2CSAl5bS6NhMHzvME8seILlO3Q6cznGajqI22APl9d+kYD3iCdK2+TQQfCmz3GncXopBGW0ro46XScgBG/130nYT8D3w8d0BDzwMlWaAp5G0yB7TSBjfsDUzp07S+XgXw7f/va3ye6lJcSjjz7KGWecMe1+lgUvbsnx4o7+PWY+l3ucciEl3PDN77Ls3HNZdeyxvO+sc3i6UEC61VHfLAtCqNl2btFEvFm0YawqBFwp4EplGAiHaQ4GafWXFkU0VPHy1/k8YORAC+FpGrVZwfqT19PxqQHqh2F4ZisA9aMVdEHR88wah4EDVL3Ptv5u0tEEHeOQmzuXglDPkS3L674KBRU7L8w0/YnfwHFfRnjwjhf4+80MX2M4nk2LT8AfOjjC/Ke6JjxRq9GeVIm7f1l8cGnbaJNZtfaytqWceia5LzQYBiOJBI2pyvvyKwXcote3W5thmtT7ca8jiQQRJ8+F6yBlV1IBT9KUhe6GiXATM+BbvBUDZIHR0erUA9iPV4+dI6M0+EPtlpY4nTNmVNUffzSbpMaCDb7n4Jsb1CqtrVfHAspy1dg0UpOgXtfp+lIXuU05TvxOnm7Lor91DgBy27ayjlccQzvdP7Cs4TDYuRJbG4Jjv8K20L2g54jZMB6PU+uHGbylro53Njbys0WLqDNefXXmamLaEUwIERVClWIUQiwQQrxNCLFvX9U+iD0T8GIISgDdJ+BSSjxrghTUpnTqRwBL4L4CK4+2tjbuuuuuKfd5JQS8XBQKQKKHjL697MSLVwNPSj74gQtYf9tt3LVmDUefcgrfuOEGpFcday7bniDgg3GDeRlljRdsHaweAdcctcwXCtFsGLT6cdleJFZxa718HgjkcA01uWj+y8R9PP5RGI8IRoI69eMVdEHRc3SMeQz6iTUNQ9sYj9XQMmLz9NKlpX1zRrj8awB+wpv56Noz4PgrOe9v8Is7wL7huoqc974Ox7NLCvgDK5qIZB14/vnqtSeVdeWWDkUWDcdmtDZclbwIgJyT30UBbzQM6oNBhhMJohUKA5kMFXNukfJjzfW1GRr+tYeDn1Oq+2C8mcWDFQ5BCaZozgp2Ns4obQ/5SfvbwxPvQnK8MgnR+1F59I2P0pCDvGFw1eWrmf+//8toFRXwsWya2jx0t6pwvuOa1c9cuDpl2R3PwixAOhymzg6Q+rO6ttoX1WR/22xVDdsbLm9SrJLyu9lir+X86DH87ldbSa9+gGhxGPLzk8ZjcWp8Aq5rGncvWcK5LZWtiVENlCMh/QEICSHagQeAC4AfV/Ok/hExmYBP/F8p4N07dnD6ihWcd955LJq/iHee9k7SyTRSSg49bSmfv/7znHTqm7nzzjvZsmULp5xyCitXruSYY44pFcbZunUrq1atYunSpfzHf/xHqa2uri6WLFkCgOu6fPKTn2TJkiUsW7aM66+/nuuuu46dO3dywgkncMIJJwDwwAMPsGrVKlasWMFZZ51FOq069Pvuu4+FCxeyYsUKfv7zn+/xOo888kiee24iw/otbzme5595lueefo43HfsmDj30UN74xjfy4kvLWwFf/OIX+cY3vlH6fcmSJXT5hqU//elPOfzww1m+fDkXXXQRruviui4XXnghS5YsYenSpXzrW99CSkkiFsMTgjyQy2ZxdR28KpVptyGERS4YZFzTWChVO4HWgaqGoBiexpBpKgXcJ+BOLE4mU1mGk89DUMuSDakBPr55IrC9bSeMCZudoQiNycrEMRZtHZtTLv1NTQhLw8z0kw2HMTMOf5k3Yb04Ho6WfQ0Ij23exDLmDH/MszZW14VgX0FBWrSkYVjUMJJQJLVUdrQKKBZv6mxrw5CCxVteYLQxPmVZ6VeDnKPaG6ypISQE0UCAesNgsCZBvEIOPZOhQlBscv7qU/KGPsS9Sc74NQx/7Wv0Nh7I4oHKK+B1lsZA3cQSe1iqwWT7RGY/qfw/X4jV6wUDKaWAb2rvoGCE8AIB1qarN2FK5fLU5GGgsZEAsNh3XMvFglN/8RXCdm2CLqRDYdq2qyqDseUxtG0O4Sz0tKsVI3e0vCRMywJmq4qhF934e97cN0K04DFnDIwCEBoh5gjGIhFqAgEG7hrgz4v/THr962MSWk4lTCGlzAoh3g98V0p5jRBiXbVP7LXCpks3kV5X2T9ebHmMOV+fSJIpOQ36CnhB09i6cSM//t73OfTjh3Lxly7mu9d/l8suuwyA+pp67v/1Q7TNbuLEE0/kxhtvZP78+TzxxBNcfPHFPPzww1xyySV85CMf4T3veQ/XXXcDUrKb2nTzzTfT1dXFunXr0HWdkZER6uvrufbaa3nkkUdobGxkaGiIq666igcffJBoNMrVV1/Ntddey+WXX84HP/hBHn74YebNm7fHqpSgKlauXr2aK6+8kt7eXvr6ejn4kMWknR5uvedWFrUs4sEHH+Szn/0sd999d1n374UXXuCOO+5gzZo1GIbBxRdfzK233srixYvp6ekpVfocGxtjcMhDAz7zve/x4/vuI5GI893f3ItXJSPwohLW68dgHhSN8mvASIxWNQQlE47jCUHTJAU8H6lnJJVjFpGKtZfPK7u1lK+whTc5BGcE0ep1WvuyjGCz04zRnKxM9U81wcgRcjwGIhHMbBC3oN7HkXic7Y2NmGho2TTJaGzqg026Bmq7APj8sZ/nO/d9qZjbTD6XYt+OEqwMCtg05GBI1GPrKlSCKg38UkIBpUh3trZyQCRE40g/f5vXzvAw+CJ1RZFzlOK+raaGesNACMGsEcGa2hpq7CxSwstE+b0i5C1J2CuQC6t3z96sJqBL/wYjy5Yx2LKQN/7lTzybKd+pZyqk04CZotYS9DXWobkOXsAghFpO3a7rCKly9jPOP0dY1esRI9kRGnLwTPuBpW2P5fOcXqX20nnfwcpPimz2xwo7XJ0ghoKnQlCyoRDNWxQBaXpXE+l1aY7uNelsU+SnMLIXSZjBNLoLsWcnVuwWDsGz34PLl/6eaEEwHg7TputsuWwL1jaLgTsGiC0rb3x4LVGOAi6EEKuA84Df+Nv23dJC+ygmK+ClgcCvhOkKQVtHB2+Y9QYAzjn1HB577DHctCKN7zzpneBBOp1m7dq1nHXWWSUluLdXJRitWbOGc889F4Djj78AKXfP7XjwwQe56KKL0P2lmvr63ZOiHn/8cZ5//nmOOuooli9fzi233EJ3dzcbNmxg7ty5zJ8/HyEE559//h6v8+yzzy6FvKxevZrTT38XaAW0wTSfOu+jLFmyhI9//OO7qOTT4aGHHuKvf/0rhx12GMuXL+ehhx6is7OTAw44gM7OTj72sY9x3333kUgk8KSa1PznpZfymxde4B1nncXqm25CiuoMSkoBt0uld5fWq2UvPZqrmgIeEBbDtcoJoTkYpKagYeYL5KL1DCQrq2oqv+MMaZ+AG5ssIosiROaEaB2AAcem10zQmqrMCoNlgSmyaBL6w2EitkHSUzdyOJFgIJGgXjOIptOMxxJlHTOfB5r/RtiGS67+PcPXwJWPqM/s7OtDKXm1KEibsAMZEebxg9/KPatWVY2AF6unRhzY2tjIgeEwDclRhhrqGBisTgxKvqAIfyoaIR4I0HVVF+87cZTagUbqCvmKh7tnLYtwAXKmieaBtVnFOXX0wNiwRab1IMIFsLsr4w5UVMATlmSgPkFiRHmqh1Dv5XZNo8NR6mbWq054wX68eozmlQL+QpvKb6lNpeiqVpU4IGOpBPpiUmRQ0wjl8xRC1cnHcDyVhJkOmTR2eyCg7mQ1Vh2TDtPZIElGIsgyc4bUimiWI3aAls3xpUNOAWCV/1p9oHsTEUcwZprUeQGsHhWbMvpQdatRVwrlKOCXAJ8BfiGlfE4IcQDwSHVP67XD/G/Pn36nV4kJAi4RUuAJgRACL+0RqA2AACR4GUUao+EoUgo8z6O2tpZ16/a8AFF0USke/5Uk5EkpOemkk7jtttt22f5ybb4U7e3tNDQ0sH79eu644w6uvPJG0Ar8z9du5OTlK/j3L3yBruFhjj/++N2+q+v6Lm4vef8CpJS8973v5atf/epu33nmmWe4//77ufHGG1m9ejWXX3EjmoCCP8k4+5xz+H/vOovLP/Tv5d6CvYJtQ8izJxTwphkE+zcQMAtVU8BNkWfUT7qqf8Fhzelr+NQbPTYfVsdwKgnMmPogewHl8pIvEXCtxyF0aA2aqdH6B/hNPk9LsJaWdGWIlbJ1VIHs20Mhmq0gx/3qPHJzYLimhoF4nCZHYzSTYWxvCHhkiGO2Qf39qoxa0YdXDFfPm3pfgeuCFEqZ+tXpx7DxoMN521cOJ7t1K+VF0e8diom0YQfGwhEONQz0gosbCLBz2KMa+k2+oNrLRCLENI2u/+wCYE5nhIiUOM7k+guvHlknT4ujCHjHiMDLe9QcXcP4Y+Nk+y2c9kVqx83lJZtNh0wGMJLEcx6DdVHCY12MNc3BlGEKmkavEBwlo2wnQ67M5OT9+PsjZaVpyMHmjlkE7Dxze3tJ+wmS1YBVUBPF4USCBj/5LJ7NYIXDFAq72iO/WngeuEIV4skaQRI7XMwOk9BclT90Qj7KFwJjfOW88zhufMs0R1NQrlhZTt4CUtMYfudp8Mx9HObX9MoFXeryMB4M0tYDuBBsDZJZr8rdS1sycPsA9qDNzI/PRAT2rcnplG+qECIAvE1K+TYp5dUAUspOKWV12Mw/CSZCULwSW+7Zvp3Hn3ocPaFz1+/uYtXyVXg5jxKtkYJEIsHcuXO588471SYpeeaZZwA46qijuP322wH49a9vBSYsfIo46aSTuOmmmyj4BtUjIypbPh6Pk/Ll8iOPPJI1a9awebPyCc1kMmzcuJGFCxfS1dXFli3qxXkpQZ+Mc845h2uuuYbx8XHmzVuG0BzGMxnam5vBtvnxj3+8x+/NmTOHp556CoCnnnqKrVtVkYITTzyRu+66i4GBgdJ5d3d3MzQ0hOd5nHnmmVx11VU89dRTeEi6t27D8ZccHvrtb5mzYIG611WAZUFIOiUFfE59M9F8HhGSVVPATfJk/Qpf5t3jeBmPE38XJK83MTJWWUJZKEDYc0iHw2guMFDAbDcJzQoRTcHTfeOk9ShBDwr5V58BalkQEVk8IdgaDPIvc0zevqGN713sK+BC0Bw0CKVzjMUTu8dZ7QH5PBDMsNwvEJib0176LDhQmdCZfRkl55wCdC6cGOzvrWRMxiQUCXjEgbRpEtd1In6tg53DVQoFcxXRSEUitA9MDGtzt4IbiVVcAc/ZivDng0Fm96r24keoYKbcoI02WxHwYFdlqn9mMhDSx9FdyUhNiEAqSciyMESY3oYGPOBAzVfAtf0L1PsqMnlVxXhncxNGJkU8lyNVrcxkVEGssAPD8TiNhkHmhQwrn/KwwlFGKmyWU+xn0EykphEZ8DDbTYwGA2EI2sYCzHFi/HX+PLRUeatvRQX82G0CsXIl/3nZuxkOw5G+Ap4PFtA9jYxh0LJFjfH1p9fj5TycQYctl29hw4Ub6PxUJ9Kt3n1+pZiSgEspXeDov9O5/FMgHp8ci+ghlcEM8w5cwPfv/D6HHHsIY5kx3v/O9+PmXPxCmAh/WfHWW2/lhz/8IYcccgiLFy/ml7/8JQD//d//zQ033MDSpUvp61Od/ksJ+Ac+8AFmzZrFsmXLOOSQQ/jZz34GwIc+9CFOOeUUTjjhBJqamvjxj3/Mueeey7Jly1i1ahUbNmwgFApx8803c/rpp7NixQqam5tf9hrf9a53cfvtt3P22WdTcD0M6XH5BRfwmRtu4NDjjitNAF6KM888k5GRERYvXsx3vvMdFixYgG2DZR3MpZdexcknn8yyZcs46aST6O3tpaenh+OPP57ly5dz/vnn89WvfhUpPb76je9wzOmnc+6qVfzh4Ue47OqrQZT/8q1ZA8ceW94Kgm0rAj7mJ7c0BIO09ufBEGUTcM+DG24oLyLAcfykTz/5S9swcZJ6uoV8f2WLjhQKYFAgHQ4rNx4JZpuJ0aLUFGvAYUeHInW5kVfvLWvbEJFZehsasDSNg3ZOdFHjwRYGHIdWM4iRU2XHd3vI9wBlpagIuJw9i/CP1QT1vVdcwRs+86VXfc77OlRIiIXpwlBzLQzlqB8fZ7VeDf17IpE2UhCkDYNYIEDMV992jFbHcq1INNKRCAe+oN51mdA4oBOsWF3lCbjvupI1TdoGVd8cX6kIuDPoIGbPxhUQ66mM33ImA3XaOMlolLwZoK3T4D+uEoScGNv9vnhB0E+wC+w3KdtXkbUsIg6M1CXQcjaxXI50NQm4p0JQhmNxZuQCPHnwk3z6v5oI5urZ1lvZAkCWBQRsPL9fMQdcgm1BhBAEW4NYvRbNMkR3SzN6qrx+oEjAG/IC2tpojDaw+u3v4PElywBwAhLHd8Nq6CyABvUnKzEs35UnuTZJ/Ig4RyePRhj7lvoN5YWgPC2E+BVwJ1C6a1LKPdtg7MfLYuVK9bNI7AQeni+HG1qAH17zQ6JLoti9NvZOG1x46g+bMMbyZKQirXPnzuW+++7b7dhz587lT3/6EwDbt8MFF1xFoQDz5s0pJSnqus61117Ltddeu8t3P/axj/Gxj32s9Pub3vQmnnzyyd3aOOWUU0quK1OhpaWlRLJf3GSje7Bq2TI23n03bkMdgbkHctVVVwFw/PHHl8JRwuEwDzzwwC7HSiZh40Y44ohz+OhHd0/8LCrmRTz7YpYfXncNTqSZ4bo6lkQiPJPNIsvMugY46yzo7VXtLls29b55u0DIlWRDIXSg95s7+O7lzfz03UnsY8tr7+c/h3/7N+juhmuumXrfogKeK1oPvpgnsjhC9rksohDB669saeNCAXSpCHiT7xwVbA8iNNWZzUoFuO/ck+DhH2GNDxNvm/OK2pFSTUQsC6LklT8u0L5tYnBKffizDNhJZoQNAjlHEfBsFkKhlzssMKGAHzAKLF4Iq1aR1yP85C1v8duWpfCtf0RMVsAH6xMw5nLY8As83rR3ZUHf/W5oaIDrr596v6ICrksdOxAgFghQv7mD2BHQk0wCdVMf4BWgWPgnGwrRsk0pYcE311C3ZpRMSz35fIHyhrvykC8oIpULh2nxV1biKxQB94YKxA4O0h/RiA5VLgmzhmRppe3Ex2Zz1DNBrOgCtjerPnBuKIQ5lidvVMfhYj9eHTxP5WKYBRirjeIlR4nlcpQXjPHKYLt+EbVIhHl/mVh9WvBsC12Hj/OGQyo3CS86dBV8y1qjv4B5shKKgjOC2L02rSLK+uYWjHR5q6W8UROWAAAgAElEQVRFAh6zBcRifH3bNi6/6BIiuRyZ006jOQPpiJp4xjYXCB8QJrJQmRDku/NkX8zS+t5W9HgFY20qiHKCxULAMPAm4K3+v8pVTvknghDqXzEEJSBc3OIvHgQiAYQQaKGJP4sX0ZVjw17E9UkJxHvI65WvALe38KREn7Tq7O5l2d3JdVLKEQqklAgJjq6jC0GgeH/3gl/5ea2MlTF25mybUAEyoRARTaP/J6oK3Yz+WDniLACbNqmf5eTiOA6YWGRDIcw8eNtsao5WthK6FYLhypahdt0JBbzBj24x202MZqWynaPV0Te3hUwohDP+yhNfvvAFFY+YTkNE5tnme7gmtk7clMFUAFtKWs0ggVyBsVgMWUYRC6WAZ6m1NURNDdlAgKsu+O/S50NVLEizL6BUPdWF/toEjArC+Rz2XuZh3XYbfOc70+9XJOCur4Q1dLksuuMwvnYFjCarE3NveX7ISyhE7YBEb9CJtZnE0jBU18D4eGXbtRxlt5YNh2geAKPJwJzpF8QaKhCLQcoIoFeozHgmAwk3zYhf2c92VYc2s6uBnX7+yeyoSTSXJWdMPSHdj9cGxZWoUAFGa8K4SYjmsqS06sXsO9JCEwaFQICGjQUQIIXEzIbo3VHZAlVFBdzV1dgUGPcItqnJYJGAt+kmuVCYPOWt0hRjwOOWZEdTE5d3dgIQ8CRrFy3imvd9ouTFb260iRwcITRbPf/JPyVxUy7hBdVZ6asEpv3LSynft4d///r3OLl/VBTFNqHZeELQNns2j69+orREEkgE0Ot0gq1BhK4hNbk3ERSKtMZ7KUR68ORra0nlSQ/DP4XRsIaRzbM3wdGTSWlZBNz3Vnc1jYAQaEIgpCybgE9uY7CM/innqA41GwpRUxBkN6iZfd1YqOzL3Olz5j2Y0uwGpYCrEJSiIl1U3oJWkNB4ZTvVQgF0n4A3DqubE5wRJNikOtbFWRMvoPHEokXY43sXVPjLX0JzM4yMwJe/DLQ+zca+HUSkXbI91LZP3MTenYpszw6F0PMSNxAgmZreWLoYgpKwYOuMGUT/+Ef+6z0TfuJdFSJJ+yqKBDxYgL5EFEYCGE4eO1SdWGHLAoRdKt7U8Ce15Lf4efAy5T+fnld+V+F4fhKmGSIxJDHbTeL1JrEM9NY2kKpAeNRk2K5D0FVJmA39EnOWSSASoBAWBEZdYjFI6zrBXGUKgKUzLgk3x6hPwOvHlepnWkEy/gpQneVx97/U076l/WWPsx+vHUoKsR4iFzLQBgXH3LOYIx6snjrryDxS82s4bHQIzwuTbHQIZ03Gdkwv0KVScMUVsIeyHbtBXZ9FwZgQa4IzfALeqgh4h98njEbKM38tKuBRW/LgnDkAvKOxkXQ4wtHf+Q4/POOtbG1V1ZgD3Tbh+WH0Gh1ztknvD9T1FRXxfRHlVMJcIIR4SAjxrP/7MiHEf0z3vf14eSgC7qELB1fTVC6mR4mAa7pG+MAwZoeJ8GesQpYv4U5WjdNW9crclgOJLBHwHS1tbGtu3t0fcQpMvpaXCR3fdX8p0QDPJ+D5HXnqRiRSK+/+TY7DLouA2z4BN00O3KYhC4qk1o2aZZOHYlXecmPATemQCwZp9PMHw/PCFEIQyRgEMpWtdFIogOGHoNSn1T006gyMJqVgzEqpwePJgw7C2UsCfskl6h7fcw/qBfjwCv6w8A2EXavkuiJ3OMQOVY4vY72KzMw2TYR/bwfSZRLwYIaYJfn04Yfv9vnWcpY6XscoDoz5cEIlJw+HCNo5LLP8gX9vEoodB3ThkDfV3zD254k8hchY+TaZ554LZpkqvSPVe5g2g0T6PZWnUKeubyTWRHakv/wLKKc9zyfgIZOaEYk5Q52oXa9hjnjEYpKUbhDKV4aAJ/NpavKUCHhz0rcFdQwy4TCGEATWqXdh6V/2E/B9EcX3MBmvBeD0P9Yyd8Mc/v2bOp5bHaHMkXmkrkhvZLND5OAITq1HPKkz3j/9aulDD8HVV8MeTMt2b8sPdSsYYWr817wo1JgzTJwhhxmaeieTkfI8ui0LtECGsCN5sLWVZsPgHY2NSE25ogBs6ujAzIPIy1J7tcfV4qaUelfzxioUHqgQyln7+D7KhtABkFKuB/5fNU/qHx2aBgQcwo4iinrREm0PSQKa5hPwvXg/PU/lHM4cBytXnRLzZZ+L9Ah4kAsGscwog3V1SK/8i5m8azkhGhK1WuBpGgEPnD6HpiGNQKE8sjHZla4cAp4vWKUQlFk96u+3fU6K+qFg2aSlz48hLadKoEr6tHdRwM0OE7cuQCIJhQpX/FQKuEvONKnJgBbSEEHBaPY3aE159BGXyLjNM/PmUUiWT2Q9TynfLP0Z/33vvdC4ASQcMtxPpCBLqp6zwyK6LIoXoNSpzwmFWNhZx9F/hOEyJhz5PAg9TdySPFNXR4thMDM1ocDsSKe55x7wTYT+4VBU3oqKNKkIgUIOyzTKTk4c2guzmEIBgmJiEhXcaCP9WXh8Lyqmrl6tfpaz8uW4BYQwcLUAYT/5y6hTk8SxcDPZ0cquDBUr/uWDJmYWAnG1miBrAoTTsF6Mkw6YhKzKvI9JK0WNRcl+tDmjCL9hBchGI4Q1DbqV2NI3owylYj/+7ii+h+NxlQMxv2ciNGLkmcqXo5cSXJHH09WzovcVCM0M4dZL6kYhnZo+LCuZBEKj9KWmf3+KBNwxQkR93S9QE6C7+yvkDvoFADMyaowc3wsFPCZSSODB+nreXFfHkuiuFZA3dXQQ92+fXq/G+aazmgDliBKI7ruuQOUQ8IiU8s8v2bb/DX8VEAIIWEQK4AYCBHxiqRm7/zk0DTwh0fZKAZfEbGjJQM32vgqd9SuDlCokJBWeWAay9iLrezLpLkcBl34hHk8IgpNcTIxCoKyBfG8JuFUk4OEwLQPqb9Q7O0VNMoCdL+86i8S7nMrgKgbcJmuatPikyGw3kXU6iSS4VNbmTSngLrauE8uAXqvT1/cjnn327fDv12MP2NQNuaw/4ADcVPnq5vAwpLI2nHkeTx98Ohx8Jxc/CX/5Prx1I6TDYWIu2L02odkh7FqN2jGIaho1WcG/3n8wX/48DGfLiwGPkSIVDrMpHOaj7e0cMTLhlZ7K53nb25Ti+o+I4sDo+krYW94YpXlHlIKuMzRW3mR4YC8iOBwHDBQBFx4EtljIleq5rE2X93zumFS/phw3Ilc6OIayyjSGXMw2E71WDcapYD3WeGXtJp1JISjBHARiapDXagLE0vD2revY3DqTsFWZoTLtJEsKeDgLCV9QCOUD5CJRIoEA1vNqCc0K7ndB2RehiqjlsUz1Hs4eNfA09T4kByqzUvLS9ghYuHqYUA60pIrJFo0B6kZButP316kU8OFD4VMv73pWRLGfscxwiYDbsRfYuvVz9Ld+Apr7aU6pMXEsXl4NB9uGGGk2dXTQbxi8qa6OQ2MxYoWJZ3xjR0dJnDEa1PbGMxo5fOPhLLplUVntvFYoh4APCSEOBGVJLYR4F/DaZ/e9jiEEoHmEbYEbDE4o4HqFFHCfhAIE7dc2wczzFWk7MKFAj+2F44TnAdF+qO3cowIu5UvixP0YcE/TCOYmCLDu7AUBj++Eo66hf3B6slBUwLOhEE39Er1WJ1+jpG+nTLIx6vTBp5p4rOYj0+5r22B6DjmfgOu1OoFoAK2hSMAra2nlukoBd3SdeFopGv39ysbPW74WZ8wikdR5ceZM3HIkfB+9vcCsx6jJwXX3wryZt/AWZT3PG3YqAj5zRAMJoVkhvMYAtWPQGgwy/OuJWdJIfnpFNZeDuEiyub0dKQSLo1HemGlh0aO3IzyPdLnZsq9TFJU3R1fLsx+x4fQ738FHb4DesfKe0ckEfLr3qFAAQ9ikIhGaB4C8JHSMIh016fISznp7gWAaareWFZrl4uAE1cAvPDAajRIBz+m1OKnKmh4X/BCUfDBIMCvRYvD008dgfvodxBz1TF75uf/AdPbufXRd2LIHW4y04yvg8ThzfJ/zZE0GMy8UAdc08l1qphJwjPKWDfbj7wrbBlPLkTVNkDArA+P1KgwkM175cTqfB/Q8BSOkLGRRFrKBliCJJCCnFy9SKaC2G4Cto11T7us4gG7hBoIlAp4Uv53YYfFzxJIFDNtmLFZeWIhlQUxmGKhVYTuzTRNNCM5IzyQ8oOyWN7W3q+thQgGXUhKZHykR8n0V5fSGHwVuAhYKIXqAS4FpmYIQYqYQ4hEhxPNCiOeEEJf42+uFEL8TQmzyf9b524UQ4johxGYhxHohxIpJx3qvv/8mIcR7J21fKYT4m/+d68TrxEtMCCBfS589H6+mpqSAC0MgpSSb3YRlqTlOkYBrUj1U5cCVLsuXKg+8nYODvOvMM6fc/9vf/jbZ7N6Fqjz66KOcccb0ZjhFBdw2DPA84tkMA5NK0k13HM8DarZDZIRCYfdZSE8PPP30ZBI+oYDf9L3rSByWoDcziFHQKCfyZXgYeNsH4KRPs4l7p93fcn0CHg5R36eSsTTTn+UPb5q+QSAZ+wtEh+huvnHafUsx4KZJwxglN5JAvU/Ay0yov+kmeImD4x5RjAG3DYNIBgK1AdLpp9WHsTEcewDTDVPQdZK58kuv7twJtP+Zs5+Dj/0ZHvj1Vub4ESwHDasVhTl96mJCc0LQoFM7BouiUVJPqPXGXAhG7PJ8wBMyzUhCqS6NhkE8GGDGkw9z/s9yFHqqUDFpH4Ii4PlSCEp8tRodT7sX+gfKG/gnE/DpclYdB4Ko4k1tfphpzeGNjCcgni0vFGxoCPiX98ClB9AzPLW7jueBFA6OESLmk3W9Vkf3Y8ALMoaVqmxpakeqEJScEcTISmRTL+Pjj6HV9FE/40U+3NbGWF0dA417V5X2jjtg3rzd3WZyrlLAh+tqmTOk3ouhxjGMgsCK1ioFfLt6FwIFg4obn+/Hq4ZlqSrGOdOkbhSiLqRr1VJPLln5oIJ8HnQtS94MTSRFtgWJtMTQJASd6ducrKn8btOjU+5bVMC9gFEi4Dn5HMGgn5PQ3oMYtYmlUowkyifgcZlVlrNAjV+681wxk5Z7rqQumWRnU1MpBCVQ77Fu3Zv5619Xls2XXkuU44LSKaV8M9AELJRSHi2l7Crj2AXgMinlwcCRwEeFEAcDVwAPSSnnAw/5vwOcCsz3/30I+B4owg58ATgCOBz4QpG0+/t8cNL3TinjvPYZpEjgmiaBIjEMQD7fjeuOY9tqdhcIQLBhkEDdIIVygqABT07s19bUxF0//emU+78SAl4uJB4aUNADCE8SyedxhCh/MjHpkvPu7mSrGLZRjFEtxoDv7Onh9394iJkzZuJpEs0TZYlCIyPArMcA2F7zs2n3twu2cl8Ihanp81SFyJgiOjtG1077fc+DXGQixTzrTP13sO0JAh6dFHuqN6kYabcMS6tcDj78YXjjG6fd1fcB93ACAaJpCMwaolAYpa5OeWg77CQs/SRJp/zwl95eoHYrp/pzlNq8It5FpEMhZu9Q8+nwQWHqWkPUjsGnZs4k+YQaFcJ5SOenJ8+KgGdKnXitrmOaELDa+dcfRln1n/t+R/1qYNtgCIusaSI80J7JMV47SCQHyT+WF7c/Pg7oOTjyW/SNTB2vqoo32aTD4dLA2HhAK7kwmG55GsnQELBIxY2u3nDrtO0R2JWAB2oCpIMPwyHriGYD5MpIRt+6VfK29z9POV1hUQH3vCBCgtsw4b/fMPd53u87M2xtn71XavT69cDJl3H5tkVsmjSBz3m+Al5by2yfgA80qxi5XLCOhCNw/MlU0NLx/sGdfV6PUA5WuV3ydzIxNUO1ktVRwEMiQzYUKiXsm20m0RZFfgNlPJZD6Ykwle3TOAk5DgjNoqAb6j0UkLX+RiJxpCLhM3vwevJEUhlGamrLuobBQYjL3C5998iDIyTOe4yIl6BlVE2siyEoudDjjI09RDr9NKnUSyOn9z2U44LyCSHEJ4CLgA/6v79fCLF8qu9JKXullE/5/08BLwDtwNuBW/zdbgHe4f//7cBPpMLjQK0QYgbwFuB3UsoRKeUo8DvgFP+zhJTycanY3E8mHet1g7TrMrB9GyvftZLzL3g3y5efwAUXfJpsNo+UHgsXzuFLV3+N4952OqtXr2bLli2ccsoprFy5kmOOOaZUGGfr1q2sWrWKpUuXct23vwCAres8NzzMEr8CkOu6fPKTn2TJkiUsW7aM66+/nuuuu46dO3dywgkncMIJJwDwwAMPsGrVKlasWMFZZ51F2l8Dvu+++1i4cCErVqzg5z/fcx2mI488kueee670+4cufBvPPPs8T61fz/tOOplTTzud9510Ehv24Gv0xS9+kW984xul35csWULXNjUI3Xv3vZz+lqNYvnw5F110Ea7r4roun//8hZxzzhKOO24J1177LfAJ/zc/9zmu/PiXEZrwQ3jKI/2DQy6YijVkg13T7m+7DqYL2ZBJZERitBgkalS8+3h2egU8nQYaJ+7FcHbqxBjHgZAskDVNwnmBHtfZvPmTyHOPINbUSaGMKnjPPw/MfRhnzvQKfykG3DCIpIFZajmyvl4R8ILRRwKVTJTci1K/vb1AXSdH7FTnW5cH04X7DjuMO487jlQsRvsOgRbRMNtNGtrCzE3rHFtbS27zBLkolBGekMlAYpKKUqvrRJI5GscWqN+3lX3a+xTuukutAE0H21bKWzakJjFYkv6ZGwHI7Shv1SKZBN5xIZzyCX654VdT7qtiwB2yplkixPHGEJYJRplLNFsGJhwaNo5MXfzLcQDN2UV5y9c+yYa+t8PXP0U0Axln+ut8wwf/h3tmLeZ7v7t/2n0LvgKOH4vq1qi4Ec2uw2vfxEF+AuqG2bNx0+Un2G3bBrzxWk7csYGun30XUPzdQingY4ka2gYErhAMR9RKYkZEaZmUrxLOQW4/Ad/nYNsQIr8LAR+PqRyt3Ehlc3dAEfCwyJIpvveoFdNQYwqQBAvTv4v9OVVZ+eAB6C+DgJsiRz4YJJYGraFALreZaHQJkch8tAN7sbdkCaWyDNXUTpvU5Xnwq9/YxESq1HdHdrqsP3k9ZFyWPP4h5nVmiKah0U/uzAeeLX1/ZGT3goX7GspZD3yD/+8e//czgPXAh4UQd0opp6ndB0KIOcChwBNAi5SyGEPeB7T4/28HJtfR3uFvm2r7jj1sf1XYtOlS0ul1r/YwuyAWW878+d/eZduCBaAFPTY4HqYUbOrexM0/vpaVKz/Jv/3bN/jBD+7kiisOBTzq62v44x9+ihk9lFNPPpkbb7yR+fPn88QTT3DxxRfz8MMPc8kll/CRj3yEN7/5PXz7O98EYHtzM1t0Hc8nnjfffDNdXV2sW7cOXdcZGRmhvr6ea6+9lkceeYTGxkaGhoa46qqrePDBB4lGo1x99dVce+21XH755Xzwgx/k4YcfZt68eZxzzu5VKQHOOeccVq9ezZVXXsnOnb0MDfaz8uCD+VuiiZv/715m2mP837PP89nPfpZfvAyJnwwXm62btvK7X/2O//35/7HsgFlcfPHF3HrrrSxevJi+vh7uuO83EB1kZnA22wc9fv3I72maMYNDDlwCFG0cwfUk0xmCD43apUJ9dnD6BFbHdTBcyAVNghmJXqMTivgJWfnpY15UYcCJoM+h7BAza2a+7P62DUFZIGeaRLKgzZbs2PFN0CBw/MMwOn12+dPrPHjviXjA5pFNzKuf97L7Fl1QbF0nlAHZol7d2loV4uSafdRJ39tVKz/bvKcHookttKUcNjTHCYkIc/r7OdUvBXrkpk20dntEFkQYHr6Hnf9yJqz+KYV0gcJogbFaj9oxjUIZ3CaVgoSXKzlI1LgaDf+2lg+hsi6DOf+ZiA4gZdProirm+Liq2LpyJfzlL1PvqxJ382RNk1b/kc7WKwaQL3Ppe3wcWKJsScazU5O7QkGFoFiGUSLgwToDO+gR8ALqGZ6mWGPvyDj4+4zlp04WU0vfDl4gWGova/4eLMAo0GClyBnTE5yRxt8A8H/bfshlvGXKfQueeu81n4A70c0Eg62IVDtWzTjhvCA2lmJLWxu50UFiZSSdbdsGt/1ilEPfA/fcBtz2bfjYt1TITzBFzbiKAa8fg3CbwYolzfAQZN0gC/wEcMsoEM3oZHM5olO2titcV4U7vg4e/dctihPhXLCpRMDzNYO4GgzvqHwIimUVCfhEUmTSe4hs+2lw3vsxRqcvPDFs93D4DnjiB/CjgT/Au19+32KVZsuoIToMgQOH8JCEw/PI57ug+QVyG3MYRzska2v97PiXtyPcsQN2Os9xvOWVCHjmpn6ELpCOZEHn0Zz4pQHecQC8cIRACwky1npMswOAXK6z7Hv1WqEcOaIDWCGlvExKeRmwEmgGjgUunO7LQogYcDdwqZRylywtX7mu+vqvEOJDQoi/CCH+MliOtcXfAYmEGoRaDYOgJ+ho7eCIIxYhhMH557+XP/3pGTwvD3i8850nQUEnOZZi7dq1nHXWWSUluNcv27hmzRrOPfdc+vvhtLeeBRLl+QslX4zf/vZBzjzzIixLzbvq91D55fHHH+f555/nqKOU2nzLLbfQ3d3Nhg0bmDt3LvPnz0cIwfnnn7/H6zr77LO56667ALjjjtWcePIZCAnj6TSf+cCFvPnkt/LtKz7D888/X9Z98jzJk489yYa/beDsM05l+fLlPPTQQ3R2dnLAAQewfXsnX//q5ax9ZC3haIR8PsPXf/hjPvKZzyEKKL6tgeaB600/COccFeaiSZ1CuG9a1bzgORge5HQTPSvREzrR1i1w5J8IWtO/XskkEEwjCko175/GGspxIChdcsEgoRzQMUm+XflXpJw+tu6pTRPqYm9q6nxq11UKuKPrhNMgG3oQwiQaPQRkABqGaLHVuY+Wob4XsbXLZW5Bnfu/Xv4J5t5+Oz847bTS5y+2tREflQTbg/T1/Qi0Apx1J5ln1UiSbVL31ktPzxiSKUnMzTMWi2G48MKS3YPfAzWd8KkWvrH2G3s4QnXwifs/wS/++P1X9N1iol5vGenwxeJN2VCoRMCterUm7ebKG/j70hM+2kPpqcNWigp4iYBryiXE1T10L0AZxUsZHvNDiySMW9O3h+bgBiYIf4YnSp/PCHWSn6YgWSYDesufOaobulLT900F6YBmEPbnInZoM5HIInRRD4kkhfECkZRFf10dudHyLGQ++Umg6QWOnCwrjY2pVTLTV8CjUeJJ5fYQnjUMbT3kCyaNA6qfGmrIEM5BMlvG0hDq/f7KVyAchs9+tqyv7McrhAofVBayzQMgggI3licXBqdMNyKAtdvXsjM1vYd3Pg8hcmRCyhZQhDR6+nwh8Lxb0cqoRpmyMlzo65EzO6du03EgKPJYwSCxjESbrZ77cHguwWALXnSE7OYswWxBVa+cZpUmmwVmPM3BgzAWjxPRNEbvGab2+FpqzmjkBNTxD+yERE6g1+qk0+uIxQ7FNGeTz3dPe32vNcpRwJtRWkIRDkrFzgkhpsyAEkIYKPJ9q5SyKHf2CyFmSCl7/TCSYu/UA0yW/jr8bT3A8S/Z/qi/vWMP++8GKeXNwM0Ab3jDG6ZkVC9VqquJoKbREQqR8kAIQaEwjmE0ommDCCHwPAuQRKNh0CSFXIHa2lrWrduzQi+EIB6H8fBWBBPxwBI1G06nVYzzzp0wf/6ez0lKyUknncRtt922y/aXa/OlaG9vp6GhgfXr17N69R38+xVfRpPw3a98haPecCyfvuo2Ovu7edtHd0+81HUdb1KmZD6fx5MeUkpOP+t0Lr3sCyyfM3eX79x99zoeWfc9fv6/P+fP9z/JGe+6kK6eHs49+iiMAvQM9HDSmSfwyI8eoXXeTJim07H8OPM6dxbDeifj1ji1oZePVyt4BXRPIFwl18n6QWoXXwpfBfO6T057v5JJQLd454Ya3ECWroEhWPDy+9s2BD3ly23mwO1Qy/Nhdzm5ul68UnrEy2N7ZjN+1AhD2ant2ZyCh+6Bo+kYFrjxHYTDc9E0Hd1tptAwzAxbXftYoPza5i/27uCQmFLW/7TyeACunuQDOBqNEsqAntCxHD+B7oDOEgG3O0zYZOEmp5/kjKfztOIxGo9zcI/vFnF0IyN/3k69rW5EtLaTJHDflvv41FGfKvs6Xils12bbD7/Fv9wJPHEI7KFA0FQoEvDyq6cqBby52NvWjePoQK682NNue2LSMpKdWpEuFCAoHaxgkMSgRK816Ov7Hw786qcZ+Oy1pNNQN81jOjxucVE3XPM7OOFzU09KizHgkwl4tvAs9fWnMjLyW5pi3WwZn/o56emB07eP8X+/gK8f2wXTkFEXGy9g+gRcYgU2Uhe5gExgBBLrcMddwhmH/vp68mPlWSBGo8Csxzhkcs2grVsZMg+FyBC1lmA0HCY2JjEaDWpXfBhuhejah6jrV8PaaH2W9p01JDPlhb08+SR87j8dCGb42tdq+cxnlDgEqm+ybWhsLOtQ+zENVAiKqmLcuF0SnGFS25YheM0liAe+Aiyd9hjdO2yO+p+jmF8/n40f2zjlvvm8CgnJhkJERyBQo5FK+ctl4TzB0PSCVMbKc5D/+DYNTr8SpRRwg9Y0iA6lDoRCioCjORBM094TZMthEWQ2O+V6tGUBDS9y2FbB6lM6OHAoQO7FHG0fbkNP6Iz/euK9imVAa3DIZjfQ1HQmudwWksnpc7Bea5SjgN8KPCGE+IIQ4gvAGuBnQogo8LJSge9I8kPgBSnltZM++hVQdDJ5L/DLSdvf47uhHAmM+6Eq9wMnCyHq/OTLk4H7/c+SQogj/bbeM+lYry94sL13O088sQ5dr+G2225n1aoVuG4akCqHR3jEozHmzp3LnXfeCSiy/MwzzwBw1FFHcfvtt6Npkvt+oax/XD8kQKJmk0cccRK//OVNjI46fiEU5U0Uj8dJ+dUpjzzySNasWcPmzcoTLpPJsHHjRhYuXEhXV6eqyqEAACAASURBVBfPPbeFzZvhllt2JeiTcc4553DNNdcwPj7O/IWLAEEmmWR2fRsAt//yVthDvPCcOXN4yrfmeOqpp9i6dSsSOOzow3j41w8zNKRGppGREbq7uxkaGsJxHd50+pv4/MUfZv1f/8q8gxay9Q+Pct9Tz/Lsr56lo62DB37+MDMaWnEL05MN27V513MwdFUnc0Zh++jUYSgF6SA1s7TE5zQ9XfqsNj79IJhMwrx0krvu6uUXd8Bg9/Yp97cdD0N6ioBnJF5TJ0LoxMwjIJHEK0MB77M3c+IWuP8nkO7bPQC6s3PCD90uFDA88IQi2YXIDkKhOQDoogHiKRosgea5jAfLI+CeB9tSW5k/An9dMDHb2NzRsct+wYxES2hkMuvVhrpRMn9TN1qb5/vKZ6cPexnNpUhYMBaLsWyj6vIil8zlGwtfYKBNkfuIv06ka9UrCz0Zm0c2c6pvu8javR8o9p6AqyTMeErZnRpRyIdAZMtzgBl1JtSv0dzUirRKwixgGQY1aeVI0tV1JUbtMIm33FOWrWA6Z3PBekjYcPYfp15KdhxA2Li6HwMeTVNwh0kkjgQgKlLY06zO7NgBcb9/+PgfM9OufLk4EwS8cQhPpIhGD8YwJhTwUM6jv64OK1OeP34gANqq6zh+Z4zueJzPv+99bN66VTnQxHuJFQwyhkFo1ENvnHhOFwSfpbbPw2g2sMIukSyMl6mAb94MnPJxuKIO/u0gHn9uQsNatAiamso6zH6UAcuC/8/em4dLVlXn/58zn5rrzj3cngdoumkGJUyKoKAooiYgoqIRNeKEJsYhmuCEMWq+/hTHKCpGNCGYaAIYFXFARVAQ6Gboppue7zzXfOb9+2Ofqrq3u29VtXFCXc9zn76369Q5NZy997vf9a53WSIeh1XQczqbzn0c84Tt5M/oLBP26n+QRNjumfb1RY4DJh4V2yZTEWhrJwiCGbL2uQDYVnsAXvUdcjHNunGs0rKgWAJwF8c0STjAwCiKYmGaSzCM2Ec8P8fqgykqiQROmyZqrguYZU4eg8KyZZz6sITr+afl6X1+L4rVhO9dRQV1wwEgIp0+GdtehesOIUTIvn3XcM89a9i79/evgXsnLijXIgsw5+Kf1woh3i+EqAghXtriqWcDLwOerijKg/HPc4APARcoirIbOD/+G+B/gb3A48jum6+Prz8DXAvcG/+8P/4/4mO+ED9nDzDPdPKJEyIUbFi3juuv/zonnng6s7OzvOY1LyMM5Q3quyaogiiI+NrXvsYXv/hFTjrpJDZv3sz//I/cc1x33XV8+tOf5tnP3kppSMpswliCIhSFWk3w/BdcydI1WS6/4ji2nrSVf/s36fLxmte8hgsvvJDzzjuPvr4+vvzlL/PiF7+YrVu3cuaZZ7Jz505s2+bzn/88z3/+RTz3uaeSTi9uzH/ppZdy0003cckll0lTXkXlZW9+Mx+67r2cfcVZ+FFw1HF8ySWXMDMzw+bNm/nUpz7Fxo0bAcHajWt53dvfwOtffiVbt27lggsuYHR0lOHhYV515TN46QUv4S1vfTcffs1VoAgEKuq8jF69DX0UtJ9wvNDlGfF6f+UDsG+ydY4/ED5CM0jGzglOdh4Az7Z3mCgWYWCel3X/j3/e4mhwPOm+4OomhgNhVgJiKzkAyRqQbPl8gJnwAHfcCM/cCz3f+fERj6/bMsPqV/81pR9+l8irokdAFBebmVOYprRWM6weyBbJFh3S1Qol0257bZBsY5DZy4ZpuH+TZH3y8QbQKo+hx8U5Zlmg9hYJgpgB75qlsl0C8NRGqXBVOwDgRadExoWZbJYNexS0tEZ2c5K7sy47TpUFsKnfMgB/aOxRGrLkA8eeKt2/H0jM4AftFXwSgHtUbZtk7JyTSto4NqhOZxKUshvfo26aOacDCYqQEpRMGbQlLq4rAby57FBbG0MAP/LYE7PkT9rfnnkzVFemvsvAerlRTyZPgEAnoVRxjdai8+FhsGOJmi6gMLFwY+o48KEPSVAghGz8E+kxAI91Pba9DsPuAdvFK5RI1GAin8fvsAjT9QQbasMcN1rmhW/+O659+cv5uO8zOQlmcghVlWPbnI3QljfBSw9TpGMHptASWB4UO3S12rULOPkGTh6FbHoXH7v//Y3HRuI91zE0Lv5TtAg5DmMHq5qC2lsjkZXFwdbK7R2dYypxT+P3dptE15VSsIptk6mCul7OM/n8uQCYdvux7/gOubh+OeGL2Bj86FEH4K5hYLsgsrOyLkJRMU2JF7Q1RbbskhnlmXLrce26gF6hpyqYy2TY+KiUsqW3pjF6DM6ePJs975EMxNJ9EayW7y+V2oxtr0WIgELhpxw48AFUNYFtL15b9buKTleb+5HyDh1AUZSVQoiW3gFCiJ+yeMXbM45yvEB6jh/tXF8CvnSU/78P2NLylT8BQoQCXdf4wheuJZU6GVXVcd1hPG+Uhx++hWoxDZQRUciaNWv4zneOrO5ds2YNd999N7t2B9jiQT515ev4paqwfMUgN/3859QmI+yeaa5+z+u5+j2vp89awaoeWf969dVXc/XVVzfO9fSnP5177733iGtceOGF3HnnTkZHIZOB44478r1EEXjeAI4T4PvwyKGDoKhs/bPTuf+/HiAw50Dkuead7wXg3HPP5dxzzwUgkUhw++23Lzjftl3TJJ19vPrcZ/GsZz+Hk1eeyHynva/+x12kso9yfJyNug+BUJUGAN/1yDacaA+MJ4iCBO3CFy6TcfXSufthx1xr/+BQ+AilCcBd+2E0ZT2heJxMvr33sOtCLmw6NPTubs32uYEs/lLCGBCnDpG012HavVBE4u8gAH3xoV31q/gqGBEM/mjbwvcTAhu+xccOXEfm6ddx6jnXM6yDEAYgiLQZDEPSYla2l1JmP4mJCrbrUNM704BPTQH5fazfCzdftAUchc1jM9yVyWAOg7cmQgSgOYKoT2YE0onTKHMvpYfnQIG+rXkihlCc9lNYySuSVWEum6V3CqxBi2xOAS8DqgRPSRGihZDt3Mr8/xQf/sJjfHYa/vf00yn4PsfahHNX+X54x5PYtfPtwIdbHlvXnsqFWKBlNHpXT2C+5hPoP3x1R9er+Q5JD8RsP8Vkewa8WYSpoDx5H/VKFK1nqiOLal+4pOLjThmOUe8iFYL1zpuuIRlwdc0YEZBIrAMvjaVVcfXWmpehIUFinudp5e4fk3/Byxp/f/az8M5b/5lH9n6HG978GdlZVDMlAI8zXYbRi5nohRK4pUkSroJvGMx20CwK5Ob67DgB9uBmuTHdF4b0j4ywRBliNpNBDUGbi1CWNTNzmahKaizC2mxRr7IqzXTWXGrnrpD0Snjgc/Lv1774jiNW4UOHYNWqjk73p2gRngd2rAFP1oAnyTSWX+pCNTvbMFW1IXoqULBhuDTMYHZw0WMlAx6PwwqI5XJHles9E8bATLS/RwIkA17SDDKhjxgfR8kevaBYuqDMA+DJIqYhAXKdAe95qcYJr8uzZi/Mri23dM1wHEiqJTQBe1MpXjQD1goLRZPzgJ7ReeppA4wwgz0RoXQX42sNkEptBmB8XJKMxx13Pbnc2W3f7287OrEhvBoYR9r/3QZ8K/73T/FrCBEIRCjirYqKokhGT4IcHctahRCxlrsDH/AobnwTaBooCprvgYAwcMGsYGkJCGwqfuddCxecPwJ6HqNmDB318clJGB+XP1I6IxCKihbKmy1SfSIVRPu3Akhf7/4K9FUC+h1/YddLAYKQxPwFXYkQSpMBD5UiihpBzzQibE/l+JHb2PGfPAaThdYgOhA+itq0P/PUfSTsrVDIkki3Z758H/J+UwZgtwH8ji/tz9RAyj18+yCJxFrMpBRqqomgbXFL6NQw4o8iM77wehMTgF3gzCEpXUrWxtAjEEKHRA2hehiGvJZh9UBXEWuiiuW6uB0C8FoNSI9x3IzKrvVrUIZSJLdIq8zqfU/iJV81WBWTwlGXRCT57qfI1y6msAYtlqyRbi+a254Br/hSgjKbzZCdA6PPIJMB3AyRKr+jlBrxb/8F//6q9taMv454YPc4a2bhog99iJdceimzx9g4ZWfy8wBMH/+Rtt7xvi+1p9U6E5ZR6Vp3L5kLvkn3mV/v6Ho1v8b3vgLVf9mL77S+RyUDLps3pSsgVkmgMbvrSagdAvBAeKTjYdFTE0RDi0uzZOMfD9cwsFxQlkkG3LbXoARpLL2CY7XOzpRrAcl5r8vZ+fCCx4MAes9+Ozde/wP0LcejKi5BnQHP1hf+bqy03Jz61SmSnrw3JzvsRuwELklfFlr6S+T9fb+q8p7icpZrB5hNp0mXQREg+ptSkRRVjHKE3qUT2XKtqMx0Ji16bHwvZ480759/+fe9sH+/7KIIkJxi584/bJ/831Y0ejiYJskqRKtk9q2wfyuq3UFlMlDxagz/f7D7EzBRHm95rOvGmSjTJFlVYMkwmpYhlT4BANNyqflt1gpq5B3Yk+gBwBlZnHeVTeI82R3WAZEooscbX9OUZJ99srzXBoeg0CZL47qQUQpM5nLstW36iypG38I1ZtngPK+fXAnQ0PUcqZTkZScmJACv//37Fp1owN8MHCeE2CyE2CqEOFEIsfU3/cL+WMIZcli1dBX3/fxbKIrRsEBTVZN0+iRMs68h1xBtKvkBIiI0AcVkUra7PWSxbg+EQUCkVckJixOmfZbMdKYRPDzCSIBVIrCPro2uL66KEoN1JUKgYMT/HykeoQZ0kDqXIRo2OVYUEc7TjtfPr837WFQiIqXJgEfE79MIEB3kUv3Ia2jesh6ojx+lL/S8CEWAUGMG3HLwGSaVPQ7hJND19tcLAsjFH9qBtEmm2Bq0u0EdgBuQrBBpBWx7NWZKgmLd9tr6DuvzmpKk5xZO/MPDQGqclAdX/e3f8toPnIkRgRLp1M1k6wy4YfRAuoTxyByZkodzDABc00ssLUXsHujhJWckOPuGEhfdBmd+1+TlNyq8NTYjCbMHAI1sTup56Z4hsS5BV97CsSKMTgB4UCLjwVwqTXpWYPQZsuDNy9C1agd85G2kTJ/LOjPm+T9HFIGSmCA/zyXn1unWhYaHR9Vvfm/jbRbi+sJftSxSjoK6cS+qIRfe1Ja7O7qeEzqcFe+5X/Tz1mOi7h3vGgaWA9HS3eh6nsLwRtRcAb/Nog8QCo/UPAxZGd7f+nrKPADeM4uiWOh6DjXKoJtVnDb1CW7gkZiXkffHFtbzhyEsm5T1FbPpNEmtSqSbCwC4rndjZeU49GozmEJes+x1Bobd0CHhw50nyxYbW3duY6K/j3++3eCWf5cWhPWGI2HXPuoJ5hRldAfUpIqSlBmhaqEzhmO0epBzDoBQVd50wp8DUPvB7QwNAakJeHsfn37oAx2d64819s/t76jHxHwXFNuBqO8AUWBRmR1ESVQ7OofrVrFCWF0Af3trYwSZGQrwdJ1kBaKeIRKJdZimnL/NRJXpWut5xxRljAj2piRXXRtZXC53+EZY2IUGADcMCeDJyhu4fwLm2mSGXFd2ML73+OPlU2cFZr+UklWruykWf74AkItMAcPoRlEUdD2Dba8hDMtY1gp0vbPOm7/t6ASAHwI6qyL5UxxzWMstEhsSCC1AVRfqFOtgPBLy344AeMyAj/X0oAey8YUegql5RIrP0skKyTCkuxr+SuK+IGq9mIQhYM1RVccaxaMo8wG4T6SKoxZhHi0EotGxywrAn8dihyGgho3HQ0VBF+E8AC6IRE1mEBSBQgdFmJFLfp4MIf14a0lIKHyiOgO+XC7a2dwWhGeh6+01dp4nyHvyuN3pDPnK0VkB33cR27bh+tL2UAuMBanv+gSnWzX88uLZDSHAdOQ1JiyDXNlbUFgzPAykx0iFFtc/97l4poZQTRDGPAAeg329G7QAxSlw9k8SbUFOPRwH0kqRsm1z0LY5bb/B0653eetH4dMnyalmY1zg7yf2So177O1Kfg57nU0yCY4dYnitJSiuC6EWF2Emk9gzEUafgaqCrWQ54cI74bT7WL1q3vfcYcfZXzVGRyFvjLBvWTMBe8jtTDJQD2eebGm0MNPiyHkAPNaAi/U7AJjZfg7mYGdeuV7kMBuTyH/5yzbOOT6YcRGm5UCUG8W21+GWZTra9fe3vV6AZMDnDHlPVcePzLj5oc+PvvZBrHt+hImLZxjYDpCfwzT7URQFlTSaXUXQ+t70Q5+ED7efeir/edZphOMLCYbJSeivBkxls3TfeivRhRvwGwx4k3nTk3KhD5wSpi4lb5U2DUfq4QYudgDfOuMMqMFpD9xBpGr8xb5eemsw0dXVAOB+ci+JxDqiaoqEWkVzIrSkxvI/+xb8z/Pwyu3ndiFgJhhiwwxMbzqO/3zWSxFAYeeDch7I7wfgB5VPdPT6/xjj50M/Z811a/jSA0coZI8I1wU7kj0c7CpEXQeI/C58P4miRbHtcOtI1JrkSvR460JMaVkrx2GiAlF2FNteg6paRNUkpl1hutJ6LGfCAjXT5Jp3vYHrL7oId+zome/69Szh4xomhqMQmUVZlIwkFDUtTWjM4ekRA+NQ8FrPebKDcZmD/VK+ok6HGH0GQVBi27YL2L792Wjzi9BTc02gD/T0PC/+9+KW1/ldRicAfC/wI0VR3lnvihl3xvyDik5bo/+6QzVU9KyOED6KcnQwIepfUwe6DRED8EhV6KLJDhpqiBaB4fqU644AnRjyHhY+zUnCD49cWMIQ6HmcuWhIMn1EhGpTEqJYIVbXGIrdWWGSiBl9kJ0S/SCgWpU64jAElBA9gnIiwQMbN6KaOqIOwPUAiIhCaeKvqPL1tvqu6xKUucGVANiTR3r4jpRGWPvRlTy0/xeEzCvCjIux0qn1RJ6F1gkADwJynsA3dA4l8vRWjtzgRCLiHy+wUU4+maXTD8cMuL6AeatPPAmjitOiuMVxIBnWEMC2viWYoYi7rMgYHoaUNcxY37LmZ2JmJAMer/51BqU+ubKyxoZdVscAvFaDjFJk50r5GW/8WfNzmrlNgsl6VsM1d5JKbZFgHyBbJLkhSSIBnhVitmHASyXAKmJGBr5qYM5FmP0mlcpOPvV3b8Sw5Oe9ev28bovHKAc51hgbg151nB3x+wcYOYaxKIRkS195P6yehaGp1pIQCcADHEP6VoslB0EYlCdXoRg+UdT+PlUp0xUP/WWl1scfwYAn5jDNPvzYL75aXXwRr0eI1ICPpuT3Xps40mH2mh9ew7lX/D0nvP48DMVvMG9kZxuaU13JQKqC6reu//BCyYA/66Mf5YX/+BHE5EJgMj4R0e9X+cJFF8n3uKqH0IgBeHcRw+hqMG8AgVvC0uT7rfmdbejcwCURSGcgbXeSvhGXS/4T9p1yOrOveQeHnvrUBgB3jd0kk5uIaklstQI1gZpUWXHajZAtEXZgLzk9DWFqiNVz8N5XXMno83p49gffz+zB/czMAFkp+6nQmY3i0eK734XPfOZXfvrvfdx54E4Afjn6y7bH1sdh1bSwqhBk96OyBN+XO9u66UKrSNeac7W6b3/LY+t+/J5uSMBvzzTGRVTJoCeqVCut6zkyQZFt69bx6NY1vOatb6V4lPVw/vUs4eFrFlokEEaTAQfQ9R6CYIZiOqB/AkptMkOuC9mowlQuhxpCNB1g9Bns2/cuXPcAQTDLTPG/4a++CIZHZM+h600AvmrVuxgYuIJVq65peZ3fZXQCwA8i9d8mkJn38wcTtm0zPT39OwPhAEIESNv0ozzGMTDgSAAeqhrzm7/pkdrQOM6YUjclnGOvOAvnWcJXvSOfP5/sESKWhKhqA1AZmRAzWUQZGCGKOgE6ovFcMwTP93n0UekCUa3SYMDrnbIwDKI64Df9+HXIhVBRpKf49PQ0tn10TagvXHIuVFeuxNUgc5g0QAh47ee+yMeuP8SJa05HKD5CjZm3GBCbZp8E4Eb791fzJeO+Z9Ugv9h0Kn2V8Airp4fHH+FFj8jfrdoUeqSgB/o8BrwLTZPMW0KpUqwsLi+am5Oa0W+ffjrPvPErfPe002Lht4ypKRhQhxmZZ/7rWRnUUGsA8AUMOKA/KWTN3hS1YwHgotQA4LlfLLyPtO54I2p4uMoeUqktTWYjU2LgigEgwHzBzSTM1hu5SgUwSwg9Iy34BOh9sGfPW1i34rFGXd+Swf3NJ3UoGfhVY3QUeplktKcH04WP/q3PmS+b6nj+KRTAFlW+eAu85W4YnukEgPs4poldhbDvAKY6iBfKMRBFrcG/ENAVg4ORZJZkAOFR7rGaX2O4ODwPgEstaGTNYBi9hLGVpVds3z2ozoC/5IPv57PPex7+5JEym/+6RzoGuYaBGRdhJhyByMw2NKe6noVkFSVs7Q7kBt6CWpKHUgvNr0dm5uirCoZiX75EqUTNjCUoXeXGWNA0OQ8FfhHbkL9XO6g9AbmpsgMoJZOIiQTPuu1dvPHTMPnC19H1uQ9x8NJLWVHRAIEr9pBIbCTwkiQUmdHSkvM2o377jMroKJAdZnVB4faNsqL+u2c+lWtPOUv2J8gdIl+D04YkCfCrxIUXwhuOaq3whxGPjstUna23d4ByXYEdBfiqjap5hPYohr4SP94cBm3a+oYhZL3muDMPHrXtSSPqXZMDxUQlJDJmG+SJ8Cw03cUvtgb9majcmKcBdiy2mfzGN8gfeghL+ETCBMtFqN4CAG4YPfj+DOVURP8EFI9C4M0P14VMVGM6m2V5vO/Ql/iMjn6B/v6XomlpHn30cnjJV+HMu4mswgIG3DT72bTpRixrScvr/C6jrYWAEOJ9AIqiJIUQnZXqPsFicHCQoaEhflddMoUQuO44uu6g60cuhjPT00xNlwkdn/Fi6x3r+FiVIJxiylVxPQ0z7rDlFSMCbYqoBqO2T8UpEAU+6tSxsRujUwVCXb6GaHwXGXshszQ6Cl5iCiOCPeYjzNQmCISKq1YpVECok4CCoghM4xHUNs1bJifm2O0UUOM61VlvJ8Wi3EA4DpSDOdSgQDnlU52ZwXRqVPyAQJSYVWrgFokigapOE9SqTJZcbNtmcPDo1eOh8Mg7IPI5RpIG+dmFn/cdd8Ct993PLbJ+BkVxEaoep77rgLiHyLfQ7PbKLSeQNk8v/If38PCq1bzvZ98jPzWO2ScnjSCAc6/8ISOzcMn73sfOdJon3RhfL+46outdjYXf1iotu+C5LqQjh/tiC5t3vvrVPGN8FD324y4WYUBMMNp9EgB/+WXIFk6WDPi868l/pZ2UsSWi999slKAzG8JaDTKUGes+HgRE22v0XNzD9K1ys9N9fheTN0/CshEgJJXa1Ljm8ndnsZZbHDz4YfIvvoHwFh9Y3A3V8wCrRGSk6woayiv/g5mZb7N77xmsX3MPigKJZOWwJ/3mYngkojcqMNbdzZaHIk693wAivHEPa0n7Tcz0NHSH8rs4bRi+OddaguL7YEVBE4Dn95Oy1uNH8lphWGmpkQwC6I3kvXwwN8CyapHSyH7yGxYWNl1w4wU874t3Mbj6h4yKkDDuJR+ZsxhGHyLO8PmV9vNsKDxCPcmDm9bz+k1/wyO3LEzxF4swdGic/QMDrLnpJpZ/+ybcsobtgEjNYJqysZFuZiFVQfdb35tB5JMIwAgCfF3noSUrFjjTjBYnOB/Ylo+bctkGNUsy4Equ1Fj4NU1yU2FQIZnOAAWqHcrtvMgl4UM1YXPcgeZzvjaU4NU//jGVKOKtFRPScwjhYlnL0f0Mmi6XZZGZx4520PNgbAwSyf2YJNmdzfLkh5ZjOl/mfzefyRl7gewh/v0/4cI9UPrgKJm+Vp4VR8bkJHD2h6G77iz8hxc3ffcx3rIf5lbua3us4wdYIQhhQ7ccs+nkaoK4GVg7BnxuDnqC5tyeGGpd+yGLoUMiLOrsQ4MB92w008GbW/yaUQS5sMyOVesa//eoleQF846pVuF7X3k3z3vdtSx76p9j5QKEMOeRQ02NiGF0EwTTuAmFTAkm20j9JAPuMJXLsXZGBSLcZT8mihyWLfsrIGRi4iZ5cO8UIrlQgvJEiLYAXFGUM5ENddLASkVRTgKuEkK8/jf94n5bYRgGa9asaX/gbyg8b5Kf/Wwz69d/ksHBNx7x+NWvfxOXXPZJJr//Fl547Udbnuv0V/4HN0+9jGdffztf/lYXq/5fgYOrZnDNDFnz2Zw90sXzzv0kj/7PFRTedBW9H/uXY3qt513+HsY3Sa/Y92z9V9775y9f8PgLXgCjf3ECxQ/BvtMv50Urd/DX/hoeF2/mGY/uJfP5V7Fj53PYdPz/csKK2+hfd1HL6538t++iePs/EaxcS2rfXt54xQf59FffCcDKlVB6ypv47p2f5qprr2fnmrVsvv8XvOT+7ZQmX81zNv8r4fO+QqDchy6ezcE7ns/LP/DfLa/nCylBufyyF5Ldchxv//oNCx5/+GHQsnKyrVoWWVEh1E1MD+gvoig6mpYh8m00oz3QcGIGfMeg9Ci98YILePnB3fTFAPzxx2FW2Y0dwjfOOQcA5avx9eZJUFRVJ3IsLL1Kqbb4PjkIJACfjTMGj6xezeTQfpbyNECyq71hiZHeXgbG4BX/Cr7+Wr5zvk7da7EOMnRd2lFZa31qQM9Eew9yqDPgVWYzGfqnIJj06bqgqwHAe/+8VwLwBuM+gKrqaFoWYmeZ8fGvAaBWW0sLggAwKniJTAOAO5l7sKwV/OuNd3Du2uM558w0duK3B8D3j83RW4sYW97NSdtc6m1JKw9XOgLghQJ0h/L1njIG18+2vs8cL8SKBI5hYlYhSoyTSj4TP+7eGoatGXDfh56YnRvuGoTR3ZTHDy4A4NUqPPj4Xfz0Z8DPzuPB5wCRCYaH0CoyaxLnW6Na+01/hMt010Dj70ph4Wb2rrtgZTjGg+ulo0P5uK24D+3GdgVRYroBNAw7B2EVNUhIRKEePenrhR62T6Pge9fSlQsen6xO0C9gMpfj7J/C46XDoAAAIABJREFUB65Zyq5n9siNcKaIrq8HQNMkOVDdN8XqLgVOg2qH5LEXSQ141bJ57bx6lSU7QirSBAhrVqAsnUUgnSUSIodvyAxIlGk2S9I6yC5OT8NgNMbjyyWwXhnl8Cb2UjjtAsbLAWSHOCWWwjv33EXm4ss6eyNxfPe+XXDB3wFQ9T5B0mxvA/tEi80TM3z0dnh09x1wZetjq55DVwCEFuTkZJTPrSeIQXUYtmbAy2XoDqrUTJPPX/AULt71SMvj6xpwIcwjCujl+uTitADgQQAJHHYNDtIzE+HYNXZnFm7Un3bxEJfXruV9f/mXvO8Vr+Cir+1BCOsIskb+3oPjHCRIaGQmwIlaA3DHgWzosDeX46SdEoB7y3+BVsuQyz0Fw+jFdYcpFH5C5kVzlKOZJxwA70SC8nHgWcA0gBBiG3DOb/JF/bGF78sFqZ7aPzwipe672V4y4lNF0RIgoO+OKmVVo5SZoGfK4Dl7E7BuHdlUD/dsWIU3tbiea7FwI4er7oUX7ICR2SOZt0pV0Bvjv97dPyMhHCq2TboMYp20MBqekCY6ntP++pqQVd9iXbwLn2rqRw8eBKP3IN2uzmiP/OxK3T3UTJNURaD0SuYt1y3BrKa1X5QC4WBFBt9btYr/evbF9BUWgtmhIVjvjxCqKqnvfAfx3LWEdQlKVwldl1XYoW+iGl5bPXEtcNCxEbEW4vunnkow2kwtjo6CbY8wPd97VTMWMOCGISe5yElgalVKLarLgwBSkdtIpXumyV3zsiqFoiAbVRnt7ubM2CDDs1wJ+BM1FCxUVUqlNC0G4Kvke1wy0hkD7jgytTiXTnNy3A0yc2qGVdes4vgbjyd9ciwnmiexkf9KBiWKAqpVmYIwtNapdt8HNI+q3WTAq/p95HJnk0umKE1k8Ct5THveZ/YbBuAHJ2fprcJYdzcbH4vwLPkeKg93pgMPArkQg6yLyO5q05La87ACCFQLzagh9Bp2agVBIL/HKGqd2AwC6I0Z9z0rpSNB7bBirM98BjbGaq25VBdGCAJz3iaqD3S5uRBtGvkAGFGFQwNNAL7DWAje7r0XVtcKTOckILD92H1BrYHmN60y7RzYLnqgxpq1o4cfeaAnCWL//EdXr2no6YSAWWeGvipMdOW5+pPyOUp1qZSgpIuNhV9VDfBNSFY56d/GSVShJlo13G6GFzkkAqhYFpsfdck8OcPcBp1ThnS2P/nJHJdIcKpno6+S48I0l6CJDCRiAJdqSnv0DgrOazXIiTK7YwC+1kyileR3M+bMoWamGI7FpuLuuzp6D/Nj31RzQ3DfUGeNZp5o0Re7EZ2wr72rmOPLDRaR1QDEXV0bCVw5LtpJUHwfun2Ht191FX/91mv45Yr1Rz1uZvIgweZNDOy9G0OEsodDfL26BCXyLXTDoVxcfM6R9qUO09ksWU+nf3qc0US68bgQcN+h7WyahI9eJjdnfjInm7Y1yKH5EpRufH+aIKmTLoPbRprluIJM4DGdzXL8dgVr0KIi7iGbPQtF0UilNnPKKT8mmz0T1u1CCHeBBvyJEJ0AcIQQh5uw/mZtAv7IwnGktc/iuzeZ9lTU9vZdHjWEnuL4nZB80OV+uxfHGqJ7FnYtW8u+devYfoXNOf/yZb7Vs3g3y0XPHzn8y7fgm/8B2uNHLvwuRXril+kZSWwcKokEqQp0P3k/YagwMS3BtOe1Z4hTkZzYfnDeuUxns1iH6Ufd5F6SgU4hBqilXB7HNEnXgK45THOA/p4seAaq3n5R0sIKD61rTmx6tLDI7+BQwAp/ikMxgC2euZ5I02Xx17xUdOhbKKYndwktwg1cJvpWEKkqZsXnri1b8Mab73FsDJaqQzw0L0MT6ba8XqaEohiNDnmRk8QwqpTdxQGk70M6dBnu7SU1LT+PXW5zYzdXrpH1BCO9vWzaKYGhbwgJwJNVNLU5AddlC0ZvBc8IWDJqEHXgrFOrNQH4CY+roEDqpBRr3r+GJVcsQe8T0Dt5FMlLN74/Q7X6CELI92jorceE74OqOpRTMQBPVvCjYdLpU+jthcnqAL6XwooZ8F8cfzwTnbRq/D/E2JwE4CPdPSwb0aj0HcL7hw8xUf5mR88PArkQ12N5G6tMx/ewQiTz1iXZUjO5nCgG4EHQGjz4PnQFVb572mm84x2XceuZZ+KOjyw45pbvTbNxGq6/6CK6bvsGXqIHQnOBc45qxvdp2B6s2GGZA0ua2s1dyfyCxyenBP21iP0xSLeD2HVFX5j6NlLyebaIJIW42HuMfDxLziHJQpHdg4OEsTxvbk7KaLprMJ7PMRDzBmGUlUWtyeKCVLtuZUmepmJPeVx5AzhKR8ssfuRiRCqGa5Df5tH1rC7Wbcpx2qzFiek0O08/nQ01E3WwXgw9gEq6kZkK7ea8YYj2c121Kl0m6gz4KTsqrNglP885fxI1OdtohsS+9hKLw2O6UMMIIOXCPQfaFyk+EaPfnTdXtJk3qp6DFYAaNMeFmV5BGNSlYK0lKJ4nx/2dJ0l54ANrNhz1uBe+fTWlg0Ms2fUxDBHKpm3zN8JAFCRQTYdyqXW21MahkE6TEib5wiSj2SYDvmsXMLCdjdMq5WSSdAl0sURe76gSlB6CYJYobaBFEFZbb0xrjsf5+wRT+TxL9kSkTzepVB4mmz1jwXGWtZJKZXvjGk+k6MiGUFGUswChKIqhKMpbgR2/4df1RxO+P8tDDz0bWJwBF3GBj6K0ZvuiCCK1SmQk6+ssj52QZ+mLbobzv8dEag23Ll1KPN55oOvo12sVQdicZLr3HrnwO8oUffGm2jGSJHCp2DbZsoDB/czN2rhOGkIVP2ifik6HZYZ6e3n+WWdx2XveQ6o8H7QLqsZeqgm5cD7n2zVeeHMOJ250ILIzmOYAXXkTXAu1A1eShF/kF5s2Nf7eP7iWH3wvpK9Pst/7JiZYXhaNRUv1A0LNlP7D2WKjGCsILFTTbes04wQOhdg7uHuXQzGd5uC8tODoKCwV4zy+fDkDY/DD8yD0z47dHooNxh0g9BLoZpVyC3unIIB06DHU10duykCJIkaD5n56plIk68JMJsOyYbn6pktpybgnag2tOTQlKJpWomb5ZEpQ7cBOr1qTzMZsOs26xyGxIUEl/AXbtl3A5OR/s2vkJfD1y6RZLE0ALifwmQb7DaAbrbNCQQAWMguTK9A4p2Wt5G1vgwOFjThBGi0hF6LTP/tZ/uzXXAtSq8GrXgUnbhXcfNsUM7U6AO9lYMLEOvUuzGd8l9JT3ozowOkoCKA7/o49Fda1KcZyAhcrACW05jFhA/hBLEHxWgPietbkI5dfDsCtZ52Fd5gbwv65A2ychk/8xV8AUE33o0QLF36jXvwdtd/gJMIKBwYGMEJBplxkV/fAgscnZit012Df0qW87jPw5Tc+GU8zMBILN21GWgLwpPDbAHAPz5b3c2ZkikDXmRiXGtuJCSAxQ74GZasJQHzRS9LzwKo0XXoA3UyTOUvHW59h084QR2nvVS/P56IoNqv3gxJC7qwc9hqb2t5ao0DXHXZRlzWlWZqWgjiDEpjzALjSGQOeiaoM9fWxcQqWfXIHl/zwFTzrOzCrToE9w2AxtsJtU6x3tJgp1bj16zB3HYwVf3Unld/XEAL65s213sjizaIAqp5kwNWgmRkyk8sI/LircQcb4XQY8NgKKVf8xaYtR1gJCwGmL3jmP/8zF1/7eoxIkRayhxXQR2EC1axRqy4+X9dbyxdSKdKKSaY4zVi+eZ/feSckuh9EJJcCcPNl8LZPvl4y4EeRoEhZWITRL+dsUWk9Lsp7dtGnruNQXx/Z4Qj9hBlAkEisXXCcaQ40LBz/EAH4a5HNaZcj29GfzCIt4/8Uxx6alqGr61kAWNaKox9jpxGegaq1N67HqBIYqXoGiL/7+FdZdtpueMWXKWvLefTCC7F9jbUHd7Ojb6Dl+Q4PISDlF9n+IdhzFWQPk7AIATVlit4qTOTz3PyU00kICcAzFQXRPUqxmEIhgkKuLQAXQi4QPz1RtmX+wamn0uXMcyVJTtNdrTCZl4P8bR9J8OKbdCp6F6magshI26WUrSFcuyNXEisosX1tc4BvW7+eV/x5gakp2LYNDs6OsLwEu+MiTt3zCfTY/izTrMIOQxPFdBFt5Axe5DKXk5OiNSl3RqO1Gjt3SqnG2BgsCacZ7u3l5LjvQnbsfNnoIFNuyDMAQjeFblWp+ItvNIIAkqHHRFcXKSdJb2GW8XkNdAqOBOCz6TS9UyqoIfrxOyRuTdQa+m8AVbVQFJMoKuKaHqkKVDpgj0u1mmyMk06z5ACktqQYHv4Us7N3cPDgh5ievhUA+69+CigNpr3OgHueFKYGtYT0eI5a2Er6YCk1apZFfg7UtfL+se2VbNkC+50NuEESNVGlvpQd+BX88VvF7bfDl74ED/e+hxf9so8ZsYeeKoQij+WrWE9ppvfL5W1tzzcfgO/KJekptAZHbiAZcDUwG8VfhtFPGEi5ReC114AnhcvOeOG/+4QT8McXjv25cJTBIg2pVKQnJBM2jwE3kvLeUTqQ0iUiCcAHaiHLRw9xqHshWTBRmqG7BkN9fVwWN/NMz+YazFujA19CAvBU5LXcDPuRRy328DZGY7371BS7d8uuviRmUbU0uWKzbEr4XSS1ZuF1PTQtTRiWEKvTrDik4HbKgAsHNLvRVVfv1jE3uERBlelbpnGHXZy9DtpgAdAwjG5UPYncHUOgzwPgbaRZEDPgocNsJsPTfyJfY02v8XcfhuzwbrLMkvLjsVU6dgA+V67R/3r46bcgHDt2uePve1Sr0O805/fywcdbHu/4LmaoYviyqZmCiabniKJ4k9OmcNb3IUhn8Ey5cd69fLmsRp4Xn/wkdNXgvrh5TWik5Ub4MEAsRArFcnBqrQG4LTzm0mk27lPoHi8zke/CjefHH/0I1iR38ejq1aTKkIiHtRYaC7rD1sO2ZV2FtSSWrpYXL0G85Rb43l3b+dr559M9q6C5Am3tZHye1QuONc1mJn8xEvP3NdrODEKIKSHES4UQA0KIfiHEFUKIY2vb9qdYNFRVZ+vWb3P22TOY5tFvHj2RRrg2SptJ1XEAvUJgJBsA3MjFk0LXLM4J5/Fofz9L3RTLRvewY+mxVbV7HvT7BWZOh0OXQ+/s9BGPh3qRvipc/MEP8parLkMzzYYGPMpMUHMzqARQyBGErQF4GEI2qvLYuXku5hYAUmo84eX3Q+8OVhVgtKcHZR5mSk6vIlEBkZQMuKaqCNfqSIKSCMrs69nI3381IFGs8sCGDZgVOWH84Acw6QyzvCgB+Fl3wa0vsImilATgqaYEJfAtFCMgqLXW9bmBw3S+l42PRXRNyol1qBaxaRO87nUwPOqz1Csz0ttbtxnHM+2G5GU+wxB6SVS7QrWFvVMQgKUquKZJzkswMDHNhNUsniy5JXIuzKYzdM9YlK/6Cnzqao7TH5YSFD294Hy6niMMC7iGLwF4B9aWZa8iQX4mQ2ZGYC7TmZn5jrx+6eeN45xwN7qeQ4kBjNSAz+B5oyiKjlvohkQN31mcNZYA3KFaB+Br5D1b3+yOehtxgySKHlLLtK1J/5XC8wDdgaddix5C0follpKhd0oHw0M9cR+TB08BoFx+oO35JAD3+NG1PXz4vS8l6ba+r91AasDV0FjAgAcNAN5ee2oqMNLbhxXAw2vXMlWuLXi8JEZZUoapXI6BMTD95QsYcNPsIxUXcCm0B4fJsMqBgQGW+AqpUoGZw4q/pipSEjKZzxPERNrAUNcRqe96nUI6cvBb1GMEwqeayNI7CR+57ji2PAR3bZ9l40b42McAe5bQytNTn/Ku/BLLnvmfJPU64G8CDU3LEIZlxMokuYKK4nZWfBgIdwEAJ11i3+YT4Z3/xMMveJi7B+8mmAtQ+qS0TlFUND0l7VbVEF8dxjCkVE3T29cxVGuCTOjKTNReBaPf4L+f4+LrguP323R7TXCnlDrr2zA/5io1CnHP7P7HWsuknohRKEB/zee6Sy7hH175SmpD+1seX/UdFFVmZ8nPYWi9KIrSKPyNgtbfme9DuauPTY/C+gcPcai/H/cwm9yf3hUxEN8/mx4FjZUQSgcrBRNVlXU6QqRRbIfAWfyaMnvok5lJcuW7Clz9yUuxazAc11Js2waD6kF2rljBSfN4g/6xumOWuoCwqc+5iX657ivVxRnwBx8E88QbqJkma0flJ6QslRkp21614FjDGJj3+x8YA64oykcURcnG8pPvK4oyqSjKFb+NF/fHEoqiLGAyDw8jkSbybFS9NbhxHOhXR3ESKbnu6QpuGLeOTdbYnvL4SaHAalLY5Vmmsrlj8j73POifVygycNjuu1wGrBJ9FemuAaDpGhXbJuF5CHsOJ8igEIJrte38FQRSK/y0c77JW/gYGgEil5LdNf96DbzyHFbPwUhvL0vnScNTsz0khCw2q/sBC9dG7YABt4MK5/ysh/OHv8dTvl/mgfXr6UbuvL/6VVD6HmN5Ce5fvYpXfgnMQCF01kj7s2STAQ9ihwnHbePRHLk4yio+91qVN90ih+NI3EDpzjvhsaFJlpZhqLeXDbslsLbLXbHveGnBwh8EaVS71tL2LAhA2AkGD8EHrpnhjR/vYyLVnCTLvmTAwyiN6WuIUyXtPtj7ICRq6EZ2wfk0LUsQFHGNgFQFnE4AuFsh40HFymCVBNH6RwiCWVKpkxrH2LbMQtStDuXvkgF33RFMcwmBa0OiRq0FAK/rGKuxBEVdPglomKZMm4rKUpxQZh4qXeai5/lVY2QEXvYy4MI3AzD5Ebj5JzcT2t3ynl27F8UO2L7/eVBJUpxtr5X1fbCtFDxlmldtvZ65rtaZrDoDrvkL3RDqADz0WzPgQQBOVxefe88IX3mHXPAfyDdZp7ExID3KQBl8w+CmF8MVX3uLbBaVKwAqut5FKrbw05T2UrBkWGPd9pW890qN9EyNqdxCDfhsTQLwiXyOilS20D8PgDfrBmJZSVSl2qIjpR95VJJZ/uIbsLRoc/lN8Ni0ZA3vuAMsc5JyOkfvFKCG8PIb6b3gv7Ds+uc5H4CnCcMy6nIJduxSZ+5AgXCJ5gHwiSjuYPO0H2Msm9dyOzfT9DmPZT1YLh7D2LZkPvUOGPBitUY2zkQt3wPpk9L8w/vPYaYnYOmcSVe8x3rqdR/n02c/vaP3sOD887JhK6YWb2H+RI1CAUrdxzE79Ua+9IyXMT3ausGU67soqiUBeK7Q1GPHa3DYpmDf96HQNcBn3gDX/80KhKqy/zAAPl6cZaAMCPjMG+DpP7wWNbaQ1ZRcQ66ImgUjIKq1Ji8UQ+OUB+W6pAqVC78Dk3Pyni9WHfpq0wz19XH8jvh+S1ZYu1eT8kg13yBPoAnA7W4JwLXa0fueAKxYAYZewjFNzvmxXA9F7xhy7l5IHNbHAvAHWYT5TCFEEXgusB9YD7ztN/mi/hQLw06midwEqtF6UnVd2KDuYKSnh2xRpjAdZ1/jxl8Z19KuN1IorkeoaVSPoe12EEC/3wTgy/yFBRzlMmCW6K1Kiz4ATTepWgkSSTnoPJGXDHioIUTrhTgMIWE0qe31wV6cfB66mu2zV83BaHc3yw81QWeymMSyJfCt25EJz5KuJG0iEVVY+rSb4R0f4bzwXh5bsYK83tSC6ssfYm3BYM+yQaJ49ATeKizhguE0NeAxqPPaAHDfr1DVeyFVZo15gK3bS4wmJctsWfDI0CGWluBgXx+rDwTQPU1uyUFZFJk+TIISplGSFZza4sUtQQChneT5/wOWKzhuZxehK19zFEElLJL2FExHggZziSwiza/ehkgtlKCAZMCDoICjSwDudcSAl1g7AyKQ79Mb/AmgsnKltCxLpU7CttfE519YRQ8RtdouTHMJoWdKAH6U7qHNz1fqGGumSa4kUPonsKxlqGrMdlf68WMNZrmrMxeXY4l3vCOWhq39PmkX8i5cMFTES8QAfJ1kBneLDbB/NZXCo23P6fkRD5xxaePv8YHBI5o3XXIJXPuZ3RyYO4AbuuiRiuVq0D2DpuTQNHseAG+vPa3k+9j43ivo/+ilJKs++3LNbN3wMJAeIx0mmz5+gO7L5k262o2iqCS6MhCqqB0AcFPx+LO706RSw/zlzRsoJLN48yQkBX+GvKNQsrPkisCmR6Us5zAAXmfAU6LSEoAHwqOczHLeD+Xfa/cKpjV5X0URdKmTTObzUsGzodkCXD9RUn9HSlDKqHl5X6leZ/dVqDhEegzAlYjJ0o2Nx07e1c3q968GQCSnG6BDs2IAnqzihyMkkzEA74ABL7llMnEmqm9vSGpLiuVbupjt9uiZTbB5EkJV5adbT+LaS1/c9nyHR7lWgVBOkj1/gEnz6dmAYv5pnPuMa7j23x/m4Vrrz7wWOKBacc+IOQwrbooTu+T4bTJZnieYyw/IDeDGx1i9D3bNLVxfJqrj9FcaChCStS60QJde+GpzE6uosRysRZfWIABhmWzdDs7qMtOZKZ58H0zFlqAFDjJYhOGYHAqWjMG3nsvJq78JmYXZWYgLsVUbKy/lSFpt8YxjIgEmPjXL4unfgr4X9VHTt5FIrG/O3XHMB+DzN8JPhOgEgNff7UXA14UQ7buL/Cl+rZGwk0Se1RaAHzoEG6J97Fi1ir4S6GvnqNV20dX1DAD6delcsCWdRLhy4BWOobjG9yGnNQGxNbAQ6NXbfucdELHfrqomCEgiqSMItW6UDgF4EEDQ0wXDsi36mXM7KXb1wtImS7iyAENLl9I3JN/P6BJYOmKg5mK3h3hwdtqZ0hIOTiRTxptW3UM1kSDZN68or287a+ZgtK+fpaPys0gU+kjodc1bnQGXANx3Ww8X1SsRqibcdjHc+HIuvs1nJCNBw8gIONYBlpZlwV7PlA7v/CeMT7yJAesASnohAx5GKUhW8VpMbL4PgZ3k6XO/lBWdfROcsD1NLQzjrpFFDBJkSypkC1jpWLKwbD8kq41W2/XQ9SxhWMQ1Ywa8RQFoPWbZS2/QQ7ISZwlyvyCTeTL9/S/i1FPv5ZRTfoJpLlnwec7/vVJ5BNNcSuhbkKxSrLS2XbRwqdo26QpEXRMLai10rx/Pk/dxNdMZU3m0ECJievp/Fy+i9FK87Wfyuo+sXk0tJQF47bhdCAdGlX6Yy+P77YGK43uY89xo9q1YTlBujmMh4Bt3HOJzj2+kfNLxLJ3bjabMT33LhT8MJbPUCQPuJzOgSnR9+c6fM2unGo8fOgSkR4isnrrEHADLlVpXQ5fXS3UnwTNRtfabfi1lUNg4Bl+7gjXP/w827YADQ1PceWe8UQxm0dUMPdMaaAF85g2suu5F0DMNQm8UC9cZ8KRSpdIKgEc+qrOCJa/+ANWPvJ2lYwq1SN6f1Sr0qlNM5iQDLo6f50Fw2r3xdRYy4EFQQu+S41B32wNwISDAbQLwjbvx/CFWrJBcV6WyndXXrOaMQ2cQqBPN8WHH43HpKIKATGY9IlLR2qwVAEWnTNYFT82gu2CtsFA1hdIKheyczZ8Nw3jX4pnZdqFoDszIzyXXplj6iRjTcy6F4xLw1J+y7m+v5iGz9ffsBk0GXHTNYVoxORRvWh2n9TisuC6KSMI//j187rU8e/sh9pcXri8zzji9jlGvNQdADTTJgOvN7KUeA3CtRdG374OwLPrEJPYNF+Ne/lU27YCpchkhoKLJeqiD/QOs2q9RfMaPAei7+AZIl48A4IqiYNursdKSCNS8xSUoYQim8PFUC8tRSJ6sMjf3I3p6nnPEsXVJim2vRlV//VnM32R0AsBvUxRlJ/Ak4PuKovTRiSH1n+LXFmnbIvRs1DaT2Le/57C+Ns2OlSsZKGuEl3wRgKVLryLwbNJpKSI+KZciciV4LBQ6308FAUydeErj790nrscPPG64Ab7whaYEJRfP/c+9FVaNngRhogHAhd2LFnUOwG1VIApy576xOMp09xKUvocax/RXYGxgCX3DIAhx3vAF1j3jc41iswYA9y3UDlghS3hYgZwRs+kp7BooyyuQGofcQQaUPUzme8iWddIVFTY/TGrZAWyrXmUeA3Ah2S+vLQAv05NszpabD7iMxql62Q76ID01DV/LYrs6wVqZyl27+TZILpzkhCL1oKGz+MQWBODbKfLnyYZEtTN/xskPwrDjyOtZRRQ9LZUDKyX7HT20FfqmoGt6gQsK1GUhU3hGFGvAO7DKFNuYXLJBfkVqiKNvI5s9A0VRyGafjK5nGn61qdSJC64FsmGFaS4jiP2Wy4XF9amSAfeoWRapMkTZ0UYxEMAXPpvAjzXztVRqsdO0jbm5H/HQQxfx+ON/0/i/KJJpahBYqQO8+85D3HbGGWy54Qb+32WXsXQUxHGP4Q8Dhg/FLEHYHoDXfId01Nz8HtrQRXG4mRVyHGDd93jXT2BwWuNk7ycoStw2PT/XGBOhUCHQCIP2RZiKojXYzK0zh5hNNe+Dxx6DLnOIqe4eButZ+J4p+Xuu0CiMSuUT4JloansArqsRq7fcJv9Y/zibdsA73z3LuefCnj0g7FkiM8/AOLB8ngvMWT9DV/KNVHudAU8orSUoQeSiOf1w/vdJnnYvKBHp6eZ77FbmmMzHGvBVu/ADGwKtwYYvlKBIDbielwDccBdPtdcjDAHNxTdiAH72/QAsX/4GQKVSkZkRa7mF5000dK96Mr5n47Fq2yuIXKsjAF72KmRc0Jx4s7IkYmzsK1jHGWSLGqcNWYz0NDfAk8foj58wXOr6ILfnicVMdhLTBQfMJuAbtVq7erihi9COlKDUbeKrTms//opbw/RtOEPWyZw2fojhw+bbOfaTVLrluBg8BO97N91BOQbE8+V88jvXxOIF50EAoZUg270fgOzTf0L3LBQPOLguRFqJ/gqMdPfRN22ib5ZyRSVTgt4pDPPI7zyZPB7dki5Wqr84URQEEoATk2Hu8h/8/+y9eZhkaVnm/XvPfmLVC7R2AAAgAElEQVSPjMh9rX3pfYPGZmmgZbGRZmv1G3VgFJgRARW+EQdRUQb9PhUVGBUccUFwFFmaHVQEbGjABnrvWrr2qtyXyIz97PPHeyIisysjIgtoLhv7ua66qirzbHHinPe93/u5n/shihwKhRdetK1hDHPjjed50pN690P49xg7KcL8FeCHgOujKPKAGnDbY31hT0QnkpYpAaTRe1D91/vOk3Pg2PQUg0vA6HkymZvIZm+kWh7DHJjnp4eHGT7S4EnfupLsOpQvobjG8yBDZ5U/PzXCxtJ5fuZn4FWvagHwMtl4nfDGP4DbPvNfiTYBcD09ghJ54GtEYX8JigEECXnAieYK54aHGUgcJ1+Ht3wZxiowXywyuCAIJo6z66kfRP3xv4Nnf0Ger9161+h7/wASkYsVyfMphVWuvhe8sQD++wj80jR7yjUemZjoAI3/9TpGf/WXsQ/IwacNEmMA7rm9B1XNrWKIDiAZVdapqZuYg+w5NL3A0LICmocSd1BLz7R8TzcBcFUyuEoPot/3wTHTKK4c/Gr7H+KKB+Azd5b59rcBs0yoxwB8WoL92j03ASC04CIJimlO4DjncXUfw4N6pT8Az9a+zbf372dgLYKZM4TUyWSetGUbz5MZDNvueN1uBjmJxH5CzwS7QW29TzOJyKFumNi1iMBe2MKAv/zloMVJvkZKPtvKJdRFtKLVTXJ29t3tn/3ar8EnPwm8/NlMxQuxd9wsO47es38/k6Uq9t5HKJ8CIeoSgNNbsgQSgCeDDgCvFDJUL3R8mltSsOvm4fr3vIff/J0XI1oM+MAahh3rt0UArkEY9F7Yu26Eig51+XyNOeusZDqT+bFjMK7NMlcsyvdi5jR8+HaeMvEhCfgtCcATKT1mwHu7zEQRWCJsL2p9s8mhI3D0rPz/F74ApBYIjZxk+mbOdHYen0NTBtv/VdUkUSiw1BrlHi4Tql/D0TtjWzh5nuJiZ0GWjzZYyWYpLEcwc5rVyhTMjYHpQqS2gb48p5Sg6ANyDDCb/QG45wFak0AzJQDfdxLL2o1lTWNZu6jXJevu++tEkdteRLWcZYizdLo+SOhYOwLgNa+KpiTIlCVwXBp5E0ePvpzdz/5V0F0uW8gyO9i5lxd62DhuF6mwjtTKwdrowGPe4Or7HVWnib2JQY7o/Vy7QZNQNUk6LiJZa5MMQgC+StPpvRCuu030locwMOnPM9/szKHVKrjJE3jJMfk4PPfz8PQ7efbM+6Rc0dwk5zNiBpzeDlKBYZHIy8lOxDYnjaMeZ84ARpWkq+CTRQsU7L0de1j2nOoCwA+jqI8QGC5aDwbc90HHl+Sd1WB9+M8wzSlyue17QFrWRLtB3OMpdlKEeTvgRVEUCCHeAnwAGHvMr+yJaEfKMmVnRbM3uGl4DYxA4IgMqfMBUWGpzfYVol1ow3P81Z4DlH7rBM/95pP4o1+EjT4+1ZvD9yEXdB6Zaj7DxoWO9VJr4rcDjc1yayUG4CKySQ8WUKKYAac/A24ooBjyxS9Q4vToKMPGSd56p8LbvghPPQ/z2QzFFUG4f1O3tZu/DHQsiuQCpv8EYAgfU8j7HBVWOfBIQGO485kny3BifFwCjVwHLBk3SfFoiwEPhRwMnD5pRc2rYW7WxI7NsftECoZPww1/jJo6SzNRkA4o02dRVB9cHXWfXO1vTn2jScCger1ZDd/IIikSUHc/wkAJfv/tJW6/nTYAz5SBiQuEvsLqmes6p9C2DqqmOUkQVAnT8p41S/3AHJjOKY5NTnLDEYE4KNORyeSVW7bLZp8S//1D2547kThAEMgizHq5OzDwfZnV8ISNmtkA1b3I7nMqI4ezh0ZjUNPzE2wf27Vz/1irr86uLzKzLuXR3zx8HQePwFveBoVd30SoIQtnQaEG5QyRaBIE/d7zJolN1ouGplFb6HgQtzJRKRdOTEwwdRYa1pBMfefWMcy4MFmE4GuEQR8XFc9H9xOSpQfy+gbLuQHWVuU1HDkaMRysyFqMWeCwZGsnbvtTmDmLYcr7aye0HUlQggAMEWIo8UJ4bJ5DR0P0vLzHn/kMJJMnaSRjBnzmjNTRnpPfq6F3GvgIoRA4FoZWp+J1f/91v46e6zxHzWvuY3jBhLG74Yq/JetVWc7lKC5HMDXHWm1UAnBAJd8pbkMC8ChyUJMBvhpi9pCEtcJ1YShYo5rKkqyBKJQwTVlslkxezvLyPzA39+c4jvyeW0XEWisTERfXqmoyltv1T1LXvSq6SMtMlOaxIT6BqqZIZe+GN/82x0YPcW54tL197RKdUFKh07ZIFMlQdjT6AYpGs461aQ7LOr0X7m4oGfC0urUpDmoEvobj9SZr6m4TcxNk04bmiWY7gPzBB2E48RCzQ6NyvojrIQaHH5QA3Ogsmo0YgCs9EKDvy8yXPSifOTPZBN3l9BciDh0CzAqRnmZgTYXCCvrgGmtfe37n+rSL5UvJ5GEgwNt3CtXtx4D7CN+CZ/0LTeN+9uz53S1FnT8IsZNP82tRFFWEEE8FbgHeB/zpY3tZT8TmSNlm3FmxD7gJXBRhyrouERKY85imBOBpZReMLOAsOrjH5UQ2cxbKS71f+s3heZAOOqtWzYT1s53qdqkBrxDqmS1aUMUzobiCoY5ip1Oo0c4kKEEAZqS0mWvLXOfc4AhD2llGFGlL5qkqy4kEI2uCcO8xORE/IjtZqlGurQkLPL2vhh7AxMeMJ36hhlx1YRE335lcs03pvzpxNiQ62CmYUy6T/277gMer8UafokTdq2FsahsdTJznmnuAV7wSbn0tg/YxFgqxBeHeeLHzz7e0t98yyBlyMtZ7uKC4XkCgZttp+8TkPBCxW6vJYkGzjGdKBtwfXMKvWaz5HRZsc8ELyJQ3gFKUX7i33nuRc+wY5MMNzhcHuerbYN0kMyO2vbWt8ujoq7nxxnOkUh1nlM16cNs+IDvIqSG1HnUMUoLiEUWJ9qJjswQFIOPK57AZa8C174gB74C3MM7sHD4MxIV8M+vwiZtuojo5yK//doVnH7sAv/Y2NtYHmF0EPaxAORNfc28ZiudUMTexbeONCmdLncWgXAhXqaaKWA3461fA0MlfINEMIFPu2HYpEoAHQe/vrO66GJ4Nlnx/tPwqRjXHVz6/wRe+AGcX1xmqecwVi0yeC3APHd2yvxkD8KStEnk6qtabKfR9MESEFrs+KYbHiL9K0pbA/bOfhWnrBLODgwwvQjh9ko3mEJyUHXZNa3Tr8RwLJVGjWus+3uhBFSvbuYfhZfcxeV6B1zwbXvqT5JsRy9kshbIP+QqVZq4NwDWxFWi0skSaVqNp+Vg7BOBXuie5d88esrUIkesUWo6O/iwAx4+/ivvuew5Au9jSyMhz2dfL71BRbELPRO0zVwA0/TKaNSnH6oNHCWlw8OD7yUa/ADd/mc8988ksZTc5JF0CWQPIjshxkyDNdi7yrH68R1hdw9jU8Kjo9Z5f3NAhVA3SSseJCECoCgQqntd74d30XAw21V2NzmNf6GRp7r8fdqnHOTk2xtS5ECYlcLaL54nSFTR9EwC3EvG5uxfsex4oQsUoSIsxTQupXHGCsdY6zKggtKTMQh2U7/y5h59Hyxd0OwCez98CmIhbP4Xu9WbAjciT2GHPSRTSDA7e3nX7x2vsBIC36IpbgT+LoujTSGXAE/F9irRtEvgGwuz9gnuhC4op5YC5dSLhtQGSpe8Cu8nZd91L5EZ8e0gCsMaZnacFZUe8ziOTUurMH+m0Wv/oR0FLlvHNjEyBKQE85S50T5EAXB/HNBMokbtzDbhvt1kUJb9Gej1NXm8yGuOdhYEBlADG1gXRntOsNUbhnARYmtoBjkGgIXbgA24QbGlvvqeyQr2gYvjw0b+Dp5+VDPjkqYjwoNRpcvf17e1bNkhRzIDX+6RdDa+OKTrbuLuOs/84kJcgMGudZ7ZYlEBj33G8QId7Ojr8zY0HhNkC4N0BTsP1UEITkjUiL42ZcmFwmZm4Hb2hlajbEoAHxRWiss76psLLzU0PoGMtZRbkpOL2ADkAR47AQFDDEUPky1W0w3KRqKpbvZJlwc5WptowhpiYeCO53M1Y1oxkwAGn2l224XlghS5hmIAxWYRsWXu2bJNJyMnIS8Sa3R4LmG6xGYD7vgTQpRJcc/M5xsrwZ5+Cr15+OUMXYPRCGucN7wU15OP/9GNUdDA2AfDW/t1ClJcx2SRbckqcc7amojEqlHIjUqKseQyPrjOUPoFQoo41pxJBoBL4fdyVPA8r2pQXGFzm4DGFn3v9GrfcAnVFeoDPFQpMXAhQdx+nNHe4vXmLrU1qGpG/MwZcV0DTNwGS8VnG4mJZ34dxzsn3YiFCTJxlyZ2AeXkeI7F1kei5UqrUKHf/XjW/jhFnGMvVAtreRxifBV3IrEu+CaVEjoy9ilCg1rQ7AFzZmhXqFIBWadgedg+/41a4LlwVHuXb+/czvqoQpdfahZaFwgs4dOgDDA6+DM+Ti8hE4oA8R1yEaV7uxOdOELj95YoABe8rPLjvMIXVCC6T8oFs9iaG8jLN35iwWJjuLIxr9Z2TNQD5ptoeuw27GjM0PzgR1Va3kCfFoNrT1teLpMQopT8KgOsa+Bqe33vR5DSqGErn+NHYHOmlzrh55gyMRfOcGhtj5kyAv0vOzcLwEIa3JYNoJFoAvJcEJUIRGqpZR1Tlu+Vc9RBD6zEGMKqELQAekxsL7hRU43loG0cSwxjGsp6HesX96E6/IswAzTNgz0ls7fAPHPsNOwPgs0KI9wI/DnxGCGHucL8n4nsUCUvD9zVEHxs9L5SNHNIV2gynacYVwgnpq7zwadno4xt5WfjnnutvCdY+vgfJTcVfWbHBucUO+LnjDpia2KCWzEjJ91O+Br/9q/zI9P+G4gqmPY6pmtIFJVR2JEFJxJOnPOEGh44GmPoIM0tygpkvFBhaAj0EdWaJpdoULMuBLWHvbx8rClXEDlrRC0Wgq00iT4K7jLVKpCW5Zh5efBR+7GGpOZ+YFbDnGKX6aJt5U4Icqir3C2MG3O3RlRJA3wTAm809MDYrpddKkp94AJ5zrs7CwADDCxHh3qMs14cJSpsGUqOzyNBsORkbPTpDOr6LHmmgBShlKfNoXPMQYzUJitJqiY1k7CNfWEVdV6mkO995S1PfipZfd3pUPm9evTe4Kpeh6Cj8/3Pvh4/fhlu4b4vOu1/s3fv7XH31F1EUjTCU99ptdGfWpATFg8BqA/BHtzJO3y6ZFd9S+eF/hI89R6V57tLqzMOwww56nmT119ZAH36E6+RpOXb55Tzt0zrk1zCvvQvbfhN/+TdvoWxC2qnjNuOsTh8GXGwsoW+SLRXCNZY3yY6qVUCv4JopuZh7wafgd9/EjT/734DOoqkFwL2gN1hruC5Wq516pBENLnPoCNgFmUpvaPMM1+BCYZCRBRV16hxLG3vBMeLzSaCqC0Ho6Sha72fE9yXDo+pNKMfZivFZBjwFCsdh4ASjjTIXBgcZXghhbJFFb6S9gHk0qPDiWoFmpft7YQQNjPg9PHnhRozJWVSjweTKNNFb4Te+DD4DtOwlGk0NZqVE5NFAowXAFaVC0/RI7AiARxyoWvyi8dcMXP5pIqvSBuBCCIaHf5IDB/5i0zns+Bzx4jF+5hQlEcsV+z+/M8FXuPvAAa55RKBdMYeuFzGMIZIFOZ7pwxHnn/XCdrvzqtMf1G+OnC8g1vsb9gYb6/3rGx5XUV3DVDpzcjFaY6PHPfJCh0A1sY1WMyw5diuGLhfCbm8GPKyto8UAvFEdhdF5igt6G/TPL0QUwgor6QLDTgUtvwpfekZ7/7bkBdBiAK4o3RlwxwsQiopiNlDK+9iopdAvv4fCRryPWSEwkuTWIRxeBFewZGahIZ/N7Rhw+blnUAor6DvQgGuuDrtPkUxc2XXbx3PsBEj/GPB54LlRFK0DAzzhA/59DdsWhKHS1mB2Cy9y2wA8ulbqoTOZGwFIZGPWLwYhX89KwBDO7bztdis1DBDVk6T0dZbqWxcFyWiNtXRaAvD4XIcOfQyGF7FTU1iahWgx4PRnwuzIBjVECUZBDbny3DqKOUKx5HLn7bfzwVtukXpsq4ExVGe+OQmVOC2bnukcKwbgUY+qbwA0OfFHlXjfwWUKa/l2dzGA1UyW8WUBuy8wX98Fi5JxUzYlhqIYiDs9nBcADL+BochBe3n5StShFZJ1GC0P8X8+Au/6nPTpHVkAxueoVAdouJ1U4mZArFsSgBhh9/va9BzMOO1ouDfRaGj4T/saw9XY+UWss56SGnA1X0IpidbtlPtcxICPkE7fwPhhaQ3p92jsANBoQMa8HJ7/OVBDnOAk+fylN/kAIJLp17BHJ0fPAzPyUXwTxmfRGEZVt9oN5ocy4OrYms9z/lH+rH7s0ti+zQx4CwyVSnBy6q0cWpcTzdHrruNZ34yoP/duIKRQ+Clo5qiYkK7XqQcSuPl+H61scwNDkc9VsFEgq66xQmcyq1Yhoa1TTqXYdZqOdCmOVmYhUiUA9/ukzhuuixEf31L2IZJ1LjtdwxyQ9z0y1xipwnpiCDu7Aqkmc4090JTvQIsBF0IQ+gZKn4VwEIAuQDUbiOpu/EDBn5xloKHC6w7A6/cxXobZgSJDbhmRcljxiu2J/9EspOfKWgG32R2A634dM34PT559HooWwjX3sHdporORn2kDcGVD6QBwY2vzj5ZVp6pWaZoeVrP/NHtqeZ5R76eZnLkLfvn3ANoAfPNx9+59N3v3dgp9W89y65lTVRvfM/rKFSsV0PWTlBI59jwAyoELbVlLckiy3kkuUNECzPUy4xegdolFlElFjrVhNYWaqHC03Lvz8eMtlGqpvWhzVgrktRXmlpe7bu/TxNdNLGurBlyYEoCLPu9hVCujxfe0UTmMsBwmy2WqcS+PC8sVBpoBgT+AErvz+F/pAPDNZI2RkmOn0oMBb7geCB3FbKKQ5IELV5O+/Fvkm00UIjAq+HqSdAXpAb6mUsqLvgDcssZR7Aam6P6M+j4YoU9G24B0lXTuPygAj6KoHkXRR4ENIcQUskbpaJ/dnojvYZgmhIGKUMPuPsN0OqmlK8C195FMXtFub2/n43R+LM5eNZPU7YjoEupiHDdEi9mroDyGaa1T3lR8hOLhNo+yGvvltjRoQglBDbETuzE1E4EHgQo7KcKMj2+IGQD2rK8R2iPYTZ+nv+Y1vOulL5UAfLe0YTsTTEHcWCWROtA+VhBLZ6SRT49QkPpJdxghEjC4zMh8mqlN90lrZDC0JsrIBguN8TbjvuVt0mJ2tg/gVwOnDcD37LkKI1cHs8mexc7kW0qlGFp30YobOOUUDacDwDfbAhpxl0qjh7Sn6bvo8SIqP5DnwRND2Nd8naFKAHs/S0aUWE+lyNUbaMkGYj3aAsA3syitKBZfTG7kDKTLBI3en7dSd6jeJL8XRRwCFIaHv7PGupGQ4CPcpgCyFS0GXPUMmDmDpe++aJuBnEnUsLFVj5Y6QmjdmaHtYjMAd105Ca+tB6yad/NC9TL+8ZnP5FTV4eA5n/yLv4pt76VYvAy8BFVTIVOrUYsXbUHQG/wHbgNNlc+xuz6JZZdYFp1irGoVMmywnkoxsAb+7jNwsvO5TTMGlaoCvobv9Ul9+y56jO9tQ2YrdlVWMLPxdRo1hqoQ+vl2Y6Gz/h6482ny10anZj8KdEQfCYrvgyoUhNlERBkW1gcIZs5RKHcWGbkmlM1hjBGZeVn1s/CPz4HPPJ/p6TdvPV7sF+82ejPguirvw/zic/AdBZ78DaZXRvFUlYenp0mWzTYANxeBhREIFHSruOVYrXdSiCq+EqC7om/H4TuPzHP2mVvvy6OLhQEmJl7LxMRrN51LAikJwBWEMPA9A8VqEIbd38U//VOwaJAsp9HdiCB/qg3AdTNJtDZA3lzghF/jhR+P+MBPQ/TAzrOlAFbMfrurgwgl4lR14ZL2/07C96usrn76MT8PgFovYSgOkatTKyfRsyssnNye5Y8ieEpmkeKTT2ENnodQa9sCKpYJvobSw6UHwHMbbccsz5W1MSNinnf/pcMdd8BcaZVCA6Ig27bHXH/khvb+m8kaM6536QXAHc9DoCGsBgpJTq/ehGK4qFffw0DiApq5QiPuuh2NLCJWItZztBfempbd9riJhFy42sm1bX8PLQ14wGBaYoj0wNU9783jNXbigvJCIcQjwGngy/Hfn32sL+yJ6IRlIRlwIOiRLvZCl1C1SFUj2HuUTOYp7d8ldw1BqEGmjL3XRlETNK0IenRNfHQ0GnXU1uTpTqCmN6i1rLuKR2HkPpINt82AB9Pn4cz0ps+xC1M1IQbg/SQoQQCq2QLgsjPieGMVL7m1yGriAnj7JAA/oUzBHS+C//XzjI39t/Y2YSD1vWGPSvMwBCHkgEOUxLQm8cZm2XVaY7SR4L0/+qPkPvlJ7IoNM2cQCiw4I7DUsnXb7EwhB7i66H1/ldCTg7hnsH9/rO0+cIy9C0VCIfin665jPZEmk5KFMF4pgVfvDGyb3ReM2AVF69Fp0PHdto7QSqZ54MwutGSFwYkHUf7TC8imj0kArscp7dVAEhqleLLYptFB20Jw/3HCHiwjwHqzwnBhHnyVGw58jac+df2iosidhhI3k4jC7t+p1ID7jLAKh45u28gho2lEjo2lObTI2e8EgAuhxedcwfeh4m6AiJiZrfKeF7+Ya8+qKHoVZ/BrFIsvJpMRgMAx0mTqdaqqBNFh2DsVHfhNFE2OA25jGiW/hlfryCA++UlICwnA86UIMXOG4KGL/dQjTcQa8D4d/FwXNQZTdizr0vPLDLZ0xnoNRU2Sqhi0/DlPq1Pwzl9A/MoH2iQAQBBqfTXgvg9qZMmJX0lwZmEKdd9RBlcFIxX4p7+GgyugNrPt89WrKWja8Hu/fFGWxvNssBs4PT6mHjmYSpPIMfGbeUrnLMKnfIOJlWF+5dWv5rK/+ivpAT4+S70qyK03wDPgbb/G+PTPbzlWB4BX8FUf0xH4fToO/9vsOrmRY0SbJH65XP/MkJSgCKLIRVFshBBywWE18WrdAV2pBFboITwb9h8nUFfb2VIAqkUyyjpLgcuhI/K5Vk/sPFsKoBhyLKiV5KJ9tfTYF2GePPlGHnjgBVQq9z7m59IaGxhqk8i1KFcMKK6wenx7MuDP/vEUbzt0nPEbH8L4kU+guPm2pllN2JIBD3sD8MBroqtygIoUOVeoE+d47/9X5cUvhqXqCvmGQHUSMD5Ls5pmXe8QNJvJEyMT+4D3sARtuh5KKLsNq6RA3EjgGHDj1xn8T7eS3vNRyokE6Qoog8uIlYBSHlgpdj0mQDIZA/BEdwDe0oAXMtLkIZW6ouu2j+fYiQTlbcCNwPEoinYhnVC+/phe1ROxJUwTgtj+L+zBVgW4BLrFFS98OyJZIZXqFOspqoJuDjD4SpNrvnYNumLhmiFiB+nRVjRr6yiGHAA0IYs6tSgDw/fDaw/BS36S/auwmskwuBwSTZ3DO3Gwvb9l7XqUBKU/Ay50OYjbmgTgSXuNQJ2glJIDSEHTuHZJx91/FseBOX1QTowfedkWX9D2AqbZXa4QBIDQwWoiSGBbU4TDi+x7BAb8NK973evYSKUkux8zfUvNQhuA23pHc57QZRqu0aPKXF6Yh6HIQTybfTphCPWbvs3uhTx/8fzn85zf/32+ceBJKKNSzhOuWUTh9q4Kui5Bv94LgHsuejzoalaas5XDBL6G9pSvMrhRYKgGZSuNnY2bAy15+Brwyj+n8KkPbXvMVOpa+Y+DRwn7SE/LzQrD+dNEJ/dgDWYu6qx5KdHq7Cai3gDcCANm0tJHeWjy4kp6RQhCx8IUze8CgNfa9Raetywd1+xVrpqH8XtP8eCePbzwiCnrIoRPsfgSFAXSaWjoGdL1Ok2lBcD7MOB+A013iRwLX5mAfAm1LBdIp0/DP/wDZKIqpXSaglhCteuU1mfai6j2ok1XYhvCPu4NnosSv4cJO36fiysU1QbMfAmSSziJvCy8Hpsjqgnm02nwdcTpmS3HCgOtLwMeBKBEUjaiKimOnLsMrbDKiFjgJx4Q3HIabj2hkKzY0iozANa6+wJ4QQISdQKv+1in4WGoDXAtvvavNssnVZShRSYSTf7lGjmOFlYhmphltRIx0HL0+PLNJFNbHXxaLihCVPHUANOBZh/5xunlMpmR40QXZrj22m9w/fX3XdRye7sQQrTP15Kj+L4ui07Xuz9HjhthhQG6Y8LT7gQ0isUXtX9vaEWyYgMlACdmXaP1SytOjtejlMtSotfo0bH2exUtm8Zm81SfLb/7iNwGmuoQejarGxoUV6ie3mYAvOMO3nffubZXO9DuKgugJxLga4ge2W0A32ugx9IzI3ENXlODww8zHXdhXmusYpIit67CyAJuJdEqi5D7bJKgWHarhqD7OR3fQwlb72GSKw8Ms352FJ78DQZrE6RdZL1Q3UXPl/BL4Bs1+MNfQv3Wz5DLPWPb47YAuJXqzYBrUUDSKhHVUl3Z9Md77AR9eVEUrQKKEEKJouiLwPX9dnoivndhWVKCAhC4PXRTOISWRuFa2YQmnb5my+91fQDSZYyigalYuGaAcC4BgDdqKLEO3UhJQJxQTcjEXWmKx7lqAZazOYabJbRcibXSbnjocPw5pjA1s+OC0kcD7nohLQxtG3EKfWCNyJ3g1JhMa//vAwc4eFZB7D3ByipEXRjnlgSl6fT2jFaEnLwECSxrF+roApMXIoQoMhHr+wqrwJ6T+A64VR02cvAbb+XAxN+1j5WOwXBT7X1/hfDR9CaRa6PrOUpLSaLrv8XkQpaVrBx0cuu0i2qVJZ2wyyH1GPT3YsA9t44e6wg1O4WVnqF0fh889Su87Z9z/MM/gCtyMCoZ92jJkWqhtQLqwmVdzpunXhuWTXX6APDU3P1YRpVgvdDTAmsnoeny/gjRuxW9qmoMIDVErbbFj8aZf50AACAASURBVI7AszHVRluCEl2iE0oQVNH1AVQ1g+etMDsL2GvceAEahsEpK8G1f++gvegbGMZoO2uQzUJDzZGp16krLQlKn2Isv4FqNIgcizAxBZZDriIBaKtXSpoq68kUuZxkkFZqM/DTf0PxS19tH0fRpPY07NMQy3Ubbd22ndoPCBidp+D78Ipnws2/Ragl5MJ0ZAF/NWKjNV+6Wxm2MNT6FkP7PiiRAXYTVUty17ek/tO47H5EMMhGMsmJ8XH5XkxcoLahkC3XWRqE8LrERcdzgwTYDQKn+/Om0VoI27zrDyxWYrZ34OAxihsb7Dkh7c2jiQvM1iFfrfK6d8H8my52emiBhWr1DvwYgDt9ChgnVx8mMXkc5vaQyTyJVGrnmtcWAG8VZPq+vHe1te6Ms+N52D4SgF/+IEnz6q02n/lh1NQGe07SdnExZnf+voYh6En5mVfrMwBofZqSfS+ixfI2Go89AA/9pqwXci0WKhqYLv7yxRKUL/zmK8iXkPKl2CI3NDp6eD2dgkCV/TF6ROB1pGfpTIbl+QRc9hC7kaRSaK2galkG1iAaXsSvmJ33ELY0izJNK/5Zr3ohDxUN1BBNTfH8ZxQonc7C0DJPCw0e/BPYSKXI6ZKsqZcBrQrreez73yC7524TLemNbvSeizVkA62omeq63eM9doK+1oUQKeBO4INCiHciu2E+Ed+nME0I4tRk4PRgwCMX0fKsdtIdZjIOTSvgeWt43iq//bNvxrr5s2iXwoA3axjZVaKGhT0ombCUUBCbmj5ct6Ty0NR+BnJnAJh19sAv/y7KB/8WRTExVZOoJUHpARRB+p6aSQlGLHMaVcnKTn61AmdGRshswMDhYzjL61h7HuLcMoSKwuwYKD+9tTAqCOVg0Gj2fukRGtgNFJEknb4eLVmHsTk0bxe6Krj6HjkRh3tOsb4MmXr82f/1GdjFjjQmGduDeVrv+xuJEE1vgi/B8/rcLuzpoww0Bclmk8xGXEM3NkezqWFuhLJ18a/+T2Yqn9hyrDYA79EKM2pW0GIApNsZUpkx1s7shtEFDis2oRAEURpGFggChUY1YCGWoycPd2/V3mjsgqlzRD1ADsDYhbvR9Tp+eDFQutQwbTnZqkr3d8LxAkIjRU5dI2qk2y41jw7Ps9HVJgNxW/vIuzQA7q5vUPlXDzUs4HnLPPggYK9RrMO9e/cyeRbs5TrBobsoFl/UTj9ns1ATAySbTRxFh1D0ZcBDv4mVXyBYG4a4WctovY4XhtTrgAjJRFXqehZ98gwAq5UZqKVIpTpFhcLSYjvQ3qlv12mgthbedgHT3I934BEGS53vMNCTDKxBMDZPs0R74rcv3/rMBKGGUPtLz5R44appac5c2IdXs+HqexndmOFH3/52Dr7//e2F6WolJF+t8uMfAvMLBy46nhclwW4SuD1sCEWApjeIvAQ/8WMa9ZJHZXE3icseIF2v8+evgmseqaIMrHHGgYFymQevgPLrL063G8Ywo6OvZH39w6hDczsC4C+ofxk1VUapHO653bbXHmeCWs4ofiAXY+XSUtd9mr6D6UM2qMHV95HN3rjl92Z2CLIbjCxAvi4zM9bizgG454E1IBe9C1XJ1yX61DZ8b0J+x63OoY9lhIGLqjtEvs3ZVfkcWN65LdtcuBCx4m7Irr+Dy/Ct6+DDL2Vo9X+2t9FTCSlB6WdK4DmomsykZLNJ5s8bRDNnGNdj1yR7lUjPUigFMLSEWNXle/jHr0FZvH6rXNFQiTxNAvAu9QmO76Hq8j3U1SQFu8DaOfn/p5s10i6UEwkytnzOylUwojKBAprdI9sUZz11vdG1NsL3QVFUTL1K5HznWdJ/77ET9HUb0AB+EfgccBL40cfyop6IraFpHQlKPwZcycqXOPX1d1/UmlXXB3DdRUqlLzIzcoqhV7wTa+j0dofaNpxmDWtgkXBhnNSwZKAzUYCRXcb0oFiDXRuCxcw4+pQ87gllN9STmL5kdDZLUOgz4DQ8pz2I29Z+LGuSaHyewUWLE2Nj7D0B0YpP7g2yQ+TxRcmA/9QHYeBPdm05VhBJAN6PAbfSAaghajjR0TYfOoLmTjKbL/KHb4BnfilC7D7F8hpkNnnjKonO62TEKT5f7wPA1RBVaxLFALyx/BQUNSB54EHWkyn+5DXw5t8BxmdZWbdINh3JgN91Exn7pi3HMgx5DF10T3dHzQp6zKJoiTTDmSHWliQjkZxRmfjQh1hJzMDoPKXSABUN7r8KXv9OmHpTd612M9gr9bh9AHjoltHMOj7dwfxOI5mWk56idgc3Tc8l0jMkzVUip7s20fNtdL2G5scuP5cIwJ3Shqz+38jieSs8+CCo6VWKdfjQLbdw7QPADXcTKQ2KxZe098tkoBEWsJwmjinAM/tqwKOgiTl0gWB5ClWVq6Pp+hoLrkujAVz/Hoa8Gl6Ug+mzBNUE5ShmnZIdVkqxDPC1vgA8cBoYaencYCVHyWSuRex7hKHlBJPr8FP3gWMmyZRDlJF56hvgWPCGd8Chj27Nmshi8oCoByD1fVCNGICrSZ7zzATl2SJcdR+FyhR3XiUL0LIbEdHEBRarkIup/8Q2rf3c+FkTPT6nIXzp/+/HriJBmpX5y9H3PUKp1YzmigcA+HYTihvyfiS7tBKcnn4LAMNP+xdMF5qN3qkhJRc3rEkd6rnddnERAx5IwFzd6O464vgOqjB57o1vByBXfNqW31u5YUhXeamfYDDG8eol1Av5Plj5EjQsGu6VRKEgwaW1sv9OomXh6TgXHvNz+ZGLatWIvATH5mVmLWVvZd6f8owqNdtmtLYBpisL9v/4tRSjV7W3MbKxBlz01tiHfhMtBuATEynOnU0j1JDpiYfAqEJyCd/KMRosIbQAbUmREpQP307m6x/YcixNg8gzUBRPrpa2CcfzUOMspaqnyFk5mht1wnIGZXqDP7j9dv7ieS/EiC2N1+qQrVf5+G2Q/5GLM0OtUBST0NdQrQZel0JhP4gQio6h14j8/8AMeBRFNWAQ+BFgDfhQLEl5Ir5PIURHQhG43SeuAJcMknrKzOy56PealqVef4iHH5Y62CgUpJ/0hR1fh9usYxXmCRbHGB2VuudcWCeZmecjH4Ll34NIz5FftWHPSYKKzcmCtCIyC3IxYGomInJ2xIA7notdWIX1LGZikFT6ajhwgpkzcM++fS1VBuK2T+M4AxwtQRiv8tPaVv1kSwPu1HsD8MSAnCg1ZkgkLoNQh4NHUf0Z1Ea8oNlzEpGqMr8O2WrneJsZBjsRW+T1sQAWIkK1q0SenDzXK7fgNNKoz/5nakae8TmACCbPM1exSDU64ExNbT24abYY8B4A3K2105hGMstIZpBKOYBqko0rPNZSRf7fv3CJbvgWD5/bTSU213jgyj5d06IDkGhgGL1tdTyqqFadUPnuB9VUegB8FbUHAHd9l0hPo2XWEN7FDi6tyIg8mlFDiTNNkb9zAB6GHn7iLKwU0WIG/MgRKE5JBvzOa67mmUd0lB++C03Lb9FGZrMQNPIogYNjAo7Z1wVFFRWM/DLByhSaJhnfEeMMt7+6LpsNFo/w0mMaNWUKZs4QLGSox2R1uMmlRrXNHS2EPbeBXVgkWsujm3nS6WvRCiuMNqp8+EPwNx8Dz0xSjNYQhkclVj7ccy0ki1u12UGoIXQPv9qre2mEGr9qup7il15nUZq3YWSRbDLF/jOzvPfV8JJvnkfYTebqkI+bvCTUi184j5ghpvtzoopQ+o6H8h1y3QmWVg4gEg2SuToUVuB33kwYaNxbhYPnzvGeP/gDbituv6izrGkKhduYeMYXYfoMzUpvBlxJyO/ANLs/o92iw4BvBeD1avdpuuk5CMUmk5ojPHmAwcGXbfm9mZHj+/PDiFwzLsLss7jeHK4bYQ+swOw4iWSWsJYiqTz2jXh8fy3++7Fve+/jY4yeIyxPcm59Ar+WIpnfCsAvrJZYy+QZi6Skr2VZq6U785OZlAvhnQBw3WgQ+RpjYwZnluXie2j3vfDmNNqV76OaGWQ8cRwA64zWzkSZma3zoRAQuQaq5ssuUNuE63tt9yNNT6EqKkK4OOf2IaaXeONrXiNl7aPzhKHCkivfw3e/HoZu7V2IGTgmwq7jeNt/Ztf3QTXRzBpRkNl2mx+E2IkLyiuBfwNeArwM+LoQ4mce6wt7IrZGiwF3e5j1h8IhFbPeUz92sW1PvX68/e8z85fjrAyj53buzeq6Zcz8EsHiOLYtU99FdYl0ocSt0vWI+cKYbCSz+xTM2VyIM952C4CrJiIKCEMVRO+Jv+m52APLcH4SYQhSqWsQuRX2LZe4Z89epuaBK49Qqn+K06dfR1npMFP2o5ipMPYxrle7gxvfBytmogxlF4qioduX411xFDcYlQ5k2XW0d72dRq3AvbNgue5mh7d2WCk5aGh9wA1KhFZcIKrJ+1kpXs3cqevgyd/A1dKsFkL49d+C0QW+MSelCi0NuGJt/Yx67EijqW7X1F7gNdsSFM1KMzkwCGwQnNqLu6vKrZ+G4uSdiMwGn/jK86jssOetrsbNVrTe6jTXXERoPsLM9dxuJ5HN5IiaVk8A7vguqDmU/BpqMNR1u7SSR0lUOwD8EhjwcvkuIr0Kd9+A4ubxvBU2NsDMSgZ8IZdn130u0ZO/SqHwgi2ZqYEB8Co5iAF45Bh9GXArLYFVUJpG18fx6ibG5Gnmj5X46lcBvc5UY5DCYgqmz6IsiFaTyC1ZGs2WxV/0WQgHnoM9sEB0QdriZbNPBSCz6yGm17JEyGKsvCVBxmZsLR5VkxHGEhS/stH1fI7vY8cWh7Y2QzGbYuO8fLYT+9bAzbP/fAPe/3IAzjXhSUePcnB1hXHj4gfWV+J3sYfvsCoiVLNBFMqFcz3Yw/KGZDUnWIHLHpLnOn87Xm0AAfzXT37yooX+5ti16zflP2bO0Kz0LsKM1WOYiUsH4B0GXB4kDCUAd50e9zhwEKqJlV4ieuSGi7oMtgr2GssL2H7s1uHuHIDXHQ8zW4K5MTLpFH45S9J+7Hm7FgP+nQJw113paxnZCi1VQ0mXCTf2Uo8K1JfHMSZP4Vc3vU/2Gs1EliFLFoe2ujSr6c5C0bJkK3qh9Abgke9g5RYJVySID6wildm9pK/6OkoIk+EiFwYGGRg8ThgopE+GHQCevvg5jTwdTfG6ZqMcz0ONi69VPZaNqAGV5d0ok3MUV0I++FPA9FlWFsco6bI2AsDskhlqhe9asTXo9mOP63ugmqh2FfiPLUH578A1URS9IoqilwPXAW96bC/riXh0+C0A3kUDLi30mqjZKmElg2VfzDDu3v077X/PLV6Fu5FHzXdvHHBxLKBoPsHqEKpq45TypHMXSCY7KawLg4NMXQiIZs5gnvE5Ow0bGchfIV8iS7MgCggjte/E3/AcOYjPj6KYStvVJTf0CFV1gpk5gXr751HVLLOzb6Shwafe/Gb+6H3vY+hRE3FLglKv9nZBsXN18DRMXYKN/MBNqLuPo4aW7Lb71K/gJ87wsY//PQshaEHAa/4EvnzvVs/eZMqGQEHtA8CFFaAOrBLV5P6GUeD8wj6wm2SKJRLFC/DML7Fy7sV87Og+ks1my+a8JXdsh2kqhJ6Grrp4XQG4rNwHaZc2XRxEdTdoLk2hjC4zdS6C2z6Lpu3i2/ffRMWEt7z//fxmn0nJNCSgVpU+zSQSEhQoye4pyp1GIm0T+Tqix0LODVxQBiBfwqA7uFGVLCJZQ4k/Z9iFmdkuKhXZhIj7r4RyDtddptGICBLzDLk6YT1N0jhLZJXJ55+9Zd9iEZobWaKgKRnwptWXATcy8h6G1TGmpwXl+RTsOclutcxf/RUoeoUH9h7ksqVlSNWwzgV87MXwgdcHjL6yU6egp5MSgPd5Rn2vgV2YJ5yTz2g6fR2ua8DV99LQDnDwr/+aX3jd68gkJQCv9MA+QaiC5uH12Kjputg5+Z4mrT0cGtxPcwGCSgbt0DyGk4DnfU5uvDTI/VV48pEj/NtH/o7UNoA4FLH8poc0CzVCmA1EJFnkRfUK1p0chILRYC2uvIaHH34nNLdvMPLosO3YHWXiAm65R1YqAt2W34GdGt7Rsbdcelxc15KghEgA3uzROt4JHPSsjqIGRO74Rb9vNQGqLZ9p/0y/BAa86jQwUhuwWiCdStEo5TAGZ6nX+/Rh+C4iiiJcVz6D3wkAX1r6EHfdNcjS0t/vaPvEoCy4DCv7EUqayuog7DpN4+QmEsIqERo5cplz0khhThIVm7OXlq1KBrwfAA+aWAPzhEvy+9IGiiyfvBr1wDE+9imTU++CdWsC9fCDLM8Nkyo32i4oVka/6HihZ6CpTtcGS27gocY+4Zoh8URkhqxVpxCGx/O/tQQzp+HmL3Pm3D6qhiTALN9H6WO/GzixN3+XzJAX+IRqAiVRQ4gfTAcU2BkAXwU2o5ZK/LMn4vsYrSJMt4sNoeeBKRqITA2/vP0Ekc8/i6GhnwCgXNuDW8mgFHa+4hdCNlLwy7LAsb6Rg8nzDLkp1m3Bb/3n/8zHnvpUDgaPIEyX/INNail40cdh6AUyJWVqpgTgoQoi6tmZ0gmachBfHkQxFFKpmNXfe4LDRxSGlgRi+jyp1BUYRpqGDlNLS7z+M5+56FhRJB/1eq9JyQ2wclWYH0U35YA1MvgiFN0jd/k3JQAfm0MInaWlm6loOmoY4prgprcOOFZaB1/rC8CTseQlakpmxFbTnF0rQqAwOHQe25Ip1ZX6zxP5KZKNBr/16/CJ2yB15dZFlmFA6OloapNmF21d5DfRzRpRw0JRNMYGk+CuUylNoSZrTFXXYd9RBgZuJWrmKJvwtr/8S3491rR3C9uUz5zeowBUXqNcdCmp754BN9Im+DqK0qPxUNAAIw2JBpbaPS2qqVmEEqHocjLqVbD36HDdRfB12Qq9lCWKHIKghps4g6FmGZ9V4cAxANLpG7bsWyiAs54jjCQAF45B6PcG4FZWskxRfZTDh2FjXcCu08y4dZaWICnKrGYyTERSo6VfcAlV+NYLQpRNRcFmq/irhxUZgBatoifLBPMynaUoOscv7IOn/yvLyRmOT06x+yQkx2WGrVKBP/nDP+T/mZ296FhBoCO0AL/cA4D7LnZuAxoWpjVO0kgiGgq1E1ehHD4te4lNnodqkvlXfZrFGMsoie3rCkQsQTF6uOVECihWA2IGfDFxgFD4sFJkNFqAwioCHcMoQDPHTT8D9/6fP+p531Q1SaOciT2ZuwPwL5/6Grrlg6eRGrz0hWmn86a89gg5drlO98/rBg5mLgZl2YtrO5LJy+V2hixmLGeb6JfQCLNcL6HbdVgtkEiZVDeSiLE5lk4+dl7gs7PvJgiqKIqN76/veF5rxfnz7wCgVrtvR9snBuVnier7MBSLSikNdpON85v6FNolPCtHsnCeanmMZrxA3JyJSiZjAC76XG/gYBXmCFbiDqzpSTYWJKC/zkjzzpe+lLWBcbj8Qe47tg/DqcnGOICW3WZh6mloikeluT2mcHwP3ZBfum7JAxVGdrFWk4v4YeMc/A9J6p1f3E1Dg1/4yEe447P928T4rgTgTmX7Z9QNPJQoB8la2272BzF2AsBPAN8QQrxVCPEbSA/w40KINwgh3vDYXt4T0YogiAF4l0HV88ASdZRMlbDanaGZnn4LqdQ1nD3/ApxKClFcwe8xOWwOVVmU11KJAXg9KQF4fYBaKsFv/Jf/wodvvpmpATmAmQ9efFxFKEBAGMkBIephveQH87Jpx/IgwhDoeh7L3EV48ASHjkB+JSIsnsW292MY4MQTsRi6WGoQxKa0vVihhutKAD43hm7KVyOffxb1tWHST/mC1LtNzGFZM1iWSkXTUGOgGzxqsDfTCng6ah+ZTboQA3BHprv37TaImvNwfpJ8drHNvGnaKHgJUo0Gc+Pwrl+8WJOt6xA6JqrepNEFgIdBEzu70k5j5nKSLVqtyUl4Kn0E7Bqp1Aw4mY4ExdrePaQVSUs+c73kIAB23KBIy3xvAHjkayg9XDUaQU1qnQFT6wHAY2ssQ3ehsML8yjxf+crOrsN1FxEbA4AgWonlDtoyTfM0rp6Vjo4HjqGIJInEVpeOQgFo5ggip8OA9wPg6RphPQGRZIbWqiYk6+w3ZeFZkqp0J0jIBbM2Jxm5RxcM2qnsjqRgSVumz4NNbdlXEldBYY3ZJye54W5433v/DfUlH+HMnc/DAX7uE5/gb++++6JjtdyIvGp3D+CG62DlpHxBteX2Yc1m7cKVqIMrTNRWobDKgl7gk8+6kpoBIaD2AeB6DwmKokeIfAnhSeZXH5gm4a3A/CiDxhwUVtGVYYaHFWjkuWsK5q/b3/V4raisFqSDUY8x9pGlsxhWABtZUkO937PtwvclP9bu+xA7/Xg9vMedwCFhxc/q1K6Lfq/rA2juaLvfQX10CcPa2DGorTViycXaAHZKUC6rYHisnHpkR/t/J7Gycge2vZ/p6V8lity+Uq7NEUUh9frDQKeTbb9IDlWIVgdAKWIoFuVVOc6UKh2rT6wSnjaIOjJLtTzMG98Bp54E1lTne04kVLkQ7tEUB8A0N1CtBsGafA+T2WkaywkIFJauSPBHt76WVy/9C6ghd5zcg+nUOLEX3v1aGLj14oVd4OmoqkOliwTFCzyslHy2LFvODz/x9J+j1JDz6+7wHLLtNnz8Y6+nrsPY6irPPX582+NtjjYAr3U5d+jJhaUaourf/Vzx7zV2AsBPAnfQSXh/HNkNM80Psjjn31n4sfDXc7afnD0PTLWJmt6AWvcHNpm8jOuv/zYiGqdZtUEN2Vi7mKnaLjRN6sXDWgzA1SykakxFCo5mo7tw9T0RySf/C2vnJ6l0me9EJKQEhd4AXEQSUIQrxXZjlHTmBsQ193HFQwFJp0Jor5JIHEBRoJSAn7sV+Pznt7t6AJwerFDNaWLlN2BuDMOS1yeEoHHkcpQr72XXShmm5rHtPdg2lHUdLe5w5z8agKdkl0G1j8wmOSAHIMWXA9zLXgaKexwe2cdA/jSS7gNdHwU3STJmK7Ybqg0DAldHteo03O1BVeQ3sbJLbQCez4MXVFkKJKuRG78fkJ7tOBlmM/G5uhSbtcKyJBuvqb0Xc5YmJx4zt7M0fq8wbYUo0Hs3kwhrWLGOUTe6fwY9ZvCVZB0+fDvlK6/haU/ruvmW8LxF2JD7h4sti60lLP8sq5mcBOAHj5NOX3uRN24LgPstAO4afQF4IlsnXB5BGPJYa1X5vk/nJbhJiirlZJJEZoEoFDjrHslG4yIAnrEs+R72SX0nbdkEylvqyKwKA3uJPI3KkypMngd+/O9hdow73/FO/NZptnFXCOL30K1u37Ib4tqP/BpcmECJF8KLfpqVigSKM5whKqwyGKVID5kg4Pd/CMQLb9v2eEqsATfU7gA8kZXXqvgS3Pze2wZQolmYGyOdnofCKoY1xvQ0sCCBrqmZXY/X/iwNG1JV3Gr3zFC14aJbLmxkMYZ2WHSxKWQbesjlng6AiDuqBl6P4uTAxdLlgsXef3HLe4CEeTnskm5WI3/6cpSPvYTQ2Zk0qxE3xAnW81i2YKUi39Hq0sM72v9SI4pCKpVvks/fgqbJ+elSZCiNxkmCQGaWduqgkipWEKd2oxoKhmpRLYWwUqCi/nN8HMBeI4yGYXiRZiXDw5fBZ96hoRiddzFtqXIh3Oc9TGXkXBCU5DNayE+h+utwdprSZQE3fwnUH/48lVO3cGRhCsNtEinw0ZeCltqGAfc1VM2l0mWh5ngudmYD6jZ6Qo6dmZFpaoEOdZuJcA4GV5icfBMri1fS8iigB8nVCt81ZbOoLgy45/toljygrv4HlqBEUfSbvf50208I8RdCiCUhxIObfvZWIcSsEOLe+M+PbPrd/xBCnBBCHBNCPHfTz58X/+yEEOJXNv18lxDiG/HP/14Icekj1+MoWgDc7wLAfR/UnIaWKckWzX0iYVj4rjxmpdx9MtwchrFGFCqEDTnhhynptLLbXqVhprjln+EPP3wXHDjOlz73UkrdyJwdAnCQC4NgbbBdzDU09OOI9Br7st9CmTojP0viEC3J2XtuAKa2scuLC9+8HjaODWcezXS3AHCA4dMHQQu4LHMXDM9iWXtIJKCq6rzkzjv5v+y9ebxlV13m/V177elMd6pbcyU1pEImCCQMYY4BUZF2CNCKI4PgBCpqI8ILNA60vqgNIvQr2NLQiDg06IuCjYoKKBJkMJAACUkqqdSQSg13PMOe1uo/1trnnFtn73POrdpFB6jf53M/Sd17zl57n7OGZz3r+T0/gB/dsWPDtULLgLsT2MXmbAwrMzgyr1IIfuduVk8cJJw9CQfuQRAQhnOQ1PsAvIiH8n1MqeBal267+HPVmUnkyc6Y+w0C6MmYBzGLlrzKDNccgH/ocrj6pcCePYXXy6NetwDcHWMvp1Jcu/DUKpCgBIFZRMZVVoxUm9A3C5sfbCl9nRvaMdPc6JIzDeEXxydgyTBM2VEDwP2Zr7JnJeH4li3sOpHBwa/SmhmtX5YD8FhMrwEP6hGcWeiD07V4G1nqse3g5wBNgzbrfh1vywnaSwsse7BtaWkUgPs+eorKlK3GCXTmkC0P+rhsLRJ/9UoW93+WrSdBX3KE2/U1fLy2fwDA09E+mCkzDtvdMUVi0g7h3Bk4uhsRmIF9SG/heLQPgF3+fYhtZ9h56XXM233cK78NvKc/o/B6jtWA+2P84ps5AFemnx/cPQ/6EOr4Lty50+jdRwlru9m3D/joG3D+7APctO+m0uv1nyUyQKNXMh4B2t0EN+jB6gze4qhWd1Jcfvnvsn//G2i1TP9ybBGwLCvfDCcqQjYAJZjduqPwNfXF/ZjqSoNQnekAeBQbEJstLxCGcOK0uZekc9u4t51z9HqHyLI149BjT7M2B8DN5tXzthHHR8myLnfc8RP0eveVvqc224Wju3FCh1CGAIbcCQAAIABJREFU+Mkq8RceTTxzC1prHnwQZHAK121Ca51o3cj4amflKTR9B6UmJ2HOzJncj3TFbJj2zO5EOcfgjivgwBLzqyl64QzuzidB1CKZ4MCVJi6OG7FWYkOYphFh6ww8sANZtxfbvx/tteHkVlr7vghuSr1+OTMz8O95N3rpS8c3DKSJYcC7q8VJ+4lKkL4ZC773jcvzTl+FZfPxLuA7Cn7/Jq31o+zPhwGEEFcDzwOuse/5b0IIKQxd9DbgmcDVwA/Y1wL8v/ZaB4El4Mcu4LP8X4/86DYtqSaWJLDgd3FqHUQyWUfYqgek1umhM2YxHA7PXyFbmwVpJpCtO03xhp2tBzg1O2skGj/0XvTKfn7/71/AUg1O3Hwz953ceKQnmQ6AO9q8L1sfbCi2bHkWUizAsz7UPx5tNq81APxtt/Ps9b8rvphrBnOWli9K3dgwfZzegl8bzF6XZiH6wa00b/oQ1NrUapcxMwNae1x27Bj6ppu4tnmWHrsu0Kk7VoKiNTTne3B0NzIYDMUsPsmRrk3getyn8ZztNJuiL0EpC8+DNDaVPJOSBV+KNdz6OtnyINmrN+fR85QpVf5w4/YQBJdC3EA7cMcUxgw1m/Qr/XGOJBFuaABVs14BAx6AztyxGvCINoFvbRfDcgbcr9sx09i4IEyonwJYAH7aLvqHDasYNo+wdwXu276dSzgMftwHSMORA/DISYh8BbGPmlAJUzgKEXt9AL4wczUn7r0O96n/xNzV76PZugsdhHDd51k5uY2lGrzx7W/nF+obix/NBQFKT6EBd7pkcQ0tBsChR8LKl6+htusQj+h8FRZPsv+qK0gCj/c9HP7yCuB1rxu5VqbNOFzvjLEhTO8z0jMLbgDu1LtZUQ1Ya7LYuA/mTxMEO/sAHHJ522h4jk3CdMs/18aMmRektsnXtXnqnWOsrxqNrdh1HD/YaRhw5aG+dPOIw0tRRPaoPe2U99H1XowbRKTdRv873UzUapexd++r+04mMrdUUeWse6wiRFPBWotdi8UAJ2zsgrkVhsXfyZTl5FMr48jas4QhdNcy0jOL4HxlwjvPLXIZjusu4Hnz9nfTA/Cc/W40rqHXu5/l5Y9x/Pg7uO2255S+x5EaogAncAjdkLC3xtqxh0F4hjh+gGPHYNG/D79hxpc8Y2sMnLURng8kWpmKk+OiMbeGTiWqY+buS+Z3ILLTtA9fidPqcGnjywhH47q7IW4SlRv0mGdOJY4bs14CwFXSI5wxALzvuLVrF3LRgwe3weV3AVCrXcHsLJxqgHg98OxnF15vOJLEuKD02iU5bVmC9KxzWnARgG86tNYfx/iGTxPfA/yJ1jrSWh/C6M4fZ3/u0lrfo7WOgT8BvkeYme9pwP+y73838L2VPsBDLDKd+4CXa8AvrdlFTU9GTHPNgNR6HSe96fxZhROh4hqObxaeS/c/ku6Du5l52K2cas0zuwLsOs6uK7+NZPkAZ2qwbXmZS09vzNkVyKkAuLYavvzYGoyJ/45dPww3fhx+/s1IZgmCSw0AP3k1l6bfWnzv0hyQqDEAvJdvblIXd2gh3PPkqzj9pSfDIwx7U6tdxtwckJUfuvi+gNTFGSNByTJozPWM1nXIUnDNV3xFWgC+5QxBsItmE0ga+GnK/Ooqby1g+YWAJPGg3iFZL263VjNDUq0PwOha0zOsxoNG2ye0h+9vB8z3fN22x45c5+yoW3Dn+OUs4533RDiW0ZxrnT8D7nlM1IDrZBkvMN+53yi3IfSaFsm1No6F1Ql7U601SfIg2gJwZRnwevMEl1oAviMw1fHq9dEiK4uLQDRL2wfhJNALJ2pXhaMRiUQGZgwd2HU9hw89BhaWePL3/zyNGA7s/yJsf5CPffB5LIXw3I9/nCe3Ni5kc2FocjEmAHBBanz7h7p7N+lyzxmjP73muj9GOJrrdz8O34e1EG7+AWD3qLtGZhMEu9E4qZL1Uj66uw9ID4n9eGIJ7tvLwq7bwIvx/Z00GsC//Kex9+/Z0yW3RIKiFNRbEWQOrjRSLF/6yO6DnEwGrjFBsItZywXs3Tu2yX50LdOXdcvB1b/8cw8Z9kjiagqOuL5NxhxTeChREU4zgZVZWrPF85jvm82H8ZU10Vu7f6p7SFIDaJV2CUNI4pS1By9DLo5KUKLoKHff/UqSZLqT2KIw8AAcx0dayUKaTn+9HIDPzNxAlq1w6tT7AVhf/3zpexyp+mtFzQuRSYfTK5fZ993KkSOwzTlKrW7WlV13m4I1d2Qbx9usb9bDSRrw1nyb9NQO8Mz3tWfLAipZ4dQZk4uwa++nAPB9A8DjCQx4lrgIP2atWzwWVdLDby3Dya39XAyA4OnXw6nB+tFsXsvMJvMk0yS0J0PFc12qUqQ1Ia8F39xJmFXHy4QQX7ASlZy/2A0Mj+wj9ndlv98CLOsBest//w0baWY6Y5aWA/Dtrhnobm28XhdgbsYl7gPwKSuUOQmkEmFlBLsX9/PAndfiPPJW2guLLKzFMLdMEOyBuMWf5UXwHrsRwEkcMiYDcKVyvfPGbnrgwG+w0PpuAGYXnowQoi9BKZMMCC+w1xzD0OYOM5ncwEQ5L3oRn19/av/ftdplZiFW5cfFUhpw6I4BN2kKfpjA8hzukORlJYTDC014wDAdteZlFoAbZuvM93wPLy2S2QBJ7EKtS1riOxwEBlGqISu19VaAI1f6RSI8sXvgC/zmQ3z4eZOLNdXrDioKcLzyz/dv/i7C8c0XtDBz/jaEQjBRQiGjM3iB+V795hgGvGY3BLWN42ul3EoZMP1X6xTaNfydPrQbCDxm506yexWOze+mvmCO4/u2dEORM+DrPghiw4DrCVUTHYWTyj4rdeW+R/PAA/tgvcFNWzM+/McO1zS/CrdfzWc/8zSWcynYWU42c2Ew1dG3IxJ05qK9AeP71L1PpaNPoW69Dm76J3v5A3gTFBTKMuC9eNy4t8zl6kz/GdNkjpq4H+7bi7fXAHTf30m9Dvzdb/GCe8u1QoEXoqIAzyueO7MMgroBo35t6AGSZY6KwbKSA9J//3e45Zbxz5lHN6qBn5CNOUr5zL/2kGGHJD3/6rAAfs1stDTln3GiI5xGF7U2U1pgy/fN5uPkfxl8tu316SonZ4lZi1ItqdWgk8LxY9fj7LyPbndjsZrPfOY67r//jaysfHyqaxeFUma+E8LHdXMAPr3jSg7AFxdvBuD48f9u/yIKE0+11oYBTzxkKE2F56zL8Y4B4O32bRw9CtvECebnj6Izh0f9qzmxPX3W9VxHoJWcyIC7fopebyEsATY7K0jiDkeV9effbzYLtdpuiFt9AB6UlXvPJPgx3XaZY1YHr7aOXp7rtwnw3Vft7JM1Hrtx3RmzHn71mRysXz/2GfLIlA9SEfVKTvRVgmvnm1r4TciACyF+yf7394QQbzn75xzb+/+Ay4BHAceB3znH62wqhBA/LoT4jBDiMydPTpfh/FCL3MUjTcttCBdtJS2nMfl4v9WCyOKWNJ4SgIvUsLp2MG5vbufIvQYIBg8/zaI2esEgMDrKv69fx0/9ycvh0Y/ecBnpuFMBcDILwOXGbiplnasf+UdcccU7ueqq99g2zd8K6nAAgyI1Wo0BxLlmMnU3HgULwS21R/T/GYYHDAOuXP7ntXDi515ceD09gQFPEnAcPcK469kZziyoftGGWv2gAeDDjHtJAZA0B+DtYvYrDAzDq+JBH2nPhHicgfvNRO65Q0zx8j4WW5MnwFoNsjhEBuXg8d77I0Rg+qgXVsP2qcwby4DLaAnPj6AX4DXrpa+r7zP68Huv2YisJjPg9nPOJMGeAHO+s5Ud247QiqEjd8GeI7jZ9r5d3IZ26+DTpO0JhIinKg1vjIQkjmXAF3YdQNCGz13Pw7e3+fmffg3+/rvglhtYT5qczh+7sRHg1UPXMm/jGXCHBDIXhrrfU/Y+hWsa21m/5Wn93zWb1xkA/ud/whsf9cHCayltBmqkxp0M2XGfyX7y9dvfMsPW3p1w34B69v2d/T3FuLyv0PdQUYDrl7BtKQT1GJbn8IaYPhmtcv/sgH0LAgPAH/lI2D6lXXdkN83o8husyXWcenUAPGwaACoo70epjnDrHbJ2ObsYBAaAt1oDN5tO9/hU95BaGZXCMODrTp37jpl14PSpgU1dkpwhSU7a/z8fBtwmsztBH4Bn2eYBeLP5SIJgOCk1KzyR6o/R1EX6gpoXorMeS14L3W4SRfdx5Ahs1afZsu1OssN72XN8iV995zt5/8HRjXg/CXNM0okjFSKV/byImRnopD0eaDVRS/MEB41lZKOxq8+Arz3zmZwqyMUASFMPgoisXTz+A/cMQmiy1fkNcqunXroA918JwGzLZKq3WsB7P8xv7P9s6f0PR2aLRaXdYuyRZumgGm7tm5MB/7L972eAzxb8bDq01ie01pk25s9/gJGYgMm2G+71e+zvyn5/GpgToi9KzH9f1u47tNaP0Vo/ZuvWzVcaeyhEqszql5Y4JCQJzNsx4tUnd9hWCyI7LtNkfPXCPITIEInb3w07wmFFpfClq2g9/E4WpZlIg2APjgO8/XP86tPeNHIdV0wHwHVmJtVMjJ6luW6LnTtf2Nf7vehF8Iu/CK95TfG1vNAubrr86Du17ZENJrk8fv3Zj4DnvY+td7wVKWtWguLx/GfDiVf9TMn9j9eAp6nR85LJDQz4+170YQPA12xCn7/DAHA94UwRiK0EJSspeBHUzXetk4EEpLn9UmrqBNxt2Bttk9X27TN/H1Psb3DdAFQU4owB4L0kxvEz60E++VmmCZVJHHcMYE1Wcb0EujVko7xNf66F1oLO1mMbfj8ZgNv+m0mC3WZR8aNv4YZH/BvNDJzuPOw5QuiNLrpgWPzFLQ5dL8QhMgCc8U4y+abNqZkv5uC1LTq1M/C56/EXeizssv34zodxLF3gj66F9/3cM0ecbIJAmIV/AgAXwkhQhLdxTGx1HNQ/W+cNVUfKutkA3/793LjzuwqvpWyufJyM2Zjak69UyP7Cf8W+FtvWj7N+ct/Q/VsGHBiTGkHN91BRiBzHgNciA8CHxuF/fNTzOLF98Mw5I7yZ6Mb5vFN+g1uaNrkuqwaA122C87jciET18OprqDEA3PcN+99qDZb7JJ5urVDpRgDepcZSMgMrM6ye/By/9mvwm78JKyuf6L9nM5KRkfaGGPC8MFGaTji+Goo0WgXtonqybxWaf99FTHreXk6eNIIQrSLaDeDENnq9wxw5qtni9Zjb/SXW7zHj/7XveQ/XLYye/illN8JZ+VgUjjLrr914z87Ciog4vSXDud+QXiKr02gs9gF4s9ejWcJKJZkLQURSkp8Qerbi7vpGuaAQgif/5St45Mwhrr7uXQB9Ccqk+bL/vNpaZablSZiOa4sAVUTWPBSjFIBrrf/K/u+faq3fPfwDfOhcGhNCDM9gNwN5SvQHgecJIQIhxH7gcuDTwL8Bl1vHEx+TqPlBbc6E/hF4rn3/8zH2iN+wkYk8ibDENzOBGcd0WL8+mbFstaBncYtKpmPAhZOZggFDC7GurdH7xLdS33mU+csNUxIEu/n1Xx+0c3a4jmcWfiZpwM0kp6YAa2EIv/3blGrR/IZZqcWYY9k0HbCZZydDPf66bdzwqe/h6hf/NGD8szljJlVfFk9wOpVIJy31zo1je4yZSdwhDfjs1j0sL2TwOXOcV6tZBlxJDk/YWyWJhDAi6xT3E99KLHQ2mFT/8If+lNloGQ4Zmzdti+l86lPwD/8wvr08hAAVhzhBOdDopRGOn6J744v6bCaMBGWMlWW2hpQx9MKxAFwIhzRt4Psbwe9kCcqACTMMOLgnnkWz1qF1wKG56sHuo9Sbl5deY8sW6LoNXG0Z8DF9FAYAPE/cFQLW/SV6XzXFUx69668BeMFvPoz1aAunGnD7d43q+H0flHYmJmHm4x5/IwDfsm0b/lITfvk3uHrOyAdyCUpJXhda2DLpYwpwZRaAD2+8Z4IZFlZX+0f85v53ceONsH8/vPa15fdfswy4LOmbaQp+PRphwB9x6WN4YAfwL0/st7fZ6MZ2hyDKGfBZ36CWrCIGvDVvTnPEmNO3eraKDDqouLxN39+O4zRIkoEOOp4SgGsr9VNCEobQETW034a7DrK+/u+87nXwqlfB8olPmipInB8A36gBbwDOpiQoa186Cesh9/ziPQjbR3Nf9SwbzZEaHvdeKKn7IVp1WW+COLGNXvcw9z6wzKX7AmTY5f47rx68uYDR0MoxALxs4GCSPkXi4thE9kYDlgNJr9npn5Z66V4WFgREAwlK2TWTTEIQk5Uk7Nc9ky+UtkdP1N2my/z1+3Ac81m9+tVwxRXwXcX77pHIAbhKSjbFOsH17GnpFHjm6zWm0YB/Wgjx+PwfQojnAJ+c9CYhxPuAfwWuEEIcEUL8GPBGIcQXhRBfAG4Cfh5Aa3078GfAl4D/DbzUMuUp8DLgIxhG/s/sawFeCfyCEOIujCb8D6d64q/T0BaA57rosyNJwLMLZNCYEoDbcadKdqFnh3ByBnyoipevuf9ecwzlP93sy8JwL7/8yya5qah+i+f4qGkkKH0Afv6pCoF1KRkLwHMJSiY3+LTmUdtX6+sl5+aAv3wXwV//MVcuXll4PePQkYx4hOeRJLkGyO0X/gFgfp52U8GHvxNe/AcsLHyrUQ9oyXU/Cb/0u/+h9Bmi2G7UesXIMaj3UJ0GeAMP423N7WzPMjOJf+g7uerq/wmYY/abJjut9SOL/bFJmFEaIYMEKgTgSk0C4Ou4boLu1Uq1roNrNfHDjQB8Mwz439fMRjY7dANx4hJc47LYWYeFJRrzxX0EDABviyZe1jMAXMRjC544wmza5BBbm0ZHOB7tQyceM3tvJ1qfJ6zthqQBH30DP/CI7xu5ju+DVib5a2x7TgaZMwLAZ37pl/j044BbHs/ClaZK7fwE9ZsWOfM1BoBbmV02tDy1ghat9TVOiwF76Lot5ubgnntG0kw2RBAIsjhAlkhQssxuTJfnNrgfcemlBoD/+mvY9sn34Y/xkS+LXmrnHae4ba2h5VtZGNUA8BmbX+GMOX1rpUs4fg+tyseiEIJ6fWOxoSSabq1AJejMQbmCWg26ug7uCtx9GevxlxBWLnnytk/CXQdw1Ox5MuADCYoQAtedIcumZ8Cj0yvQC1n6xyUuu+y3mJt7er9qdJGUJQf8pC5u6NAMQ1IsA/7gNqLe/RxZOsGl16To9SZ3Hx1v49qXoIwD4I7GGWLAhYD6fo/MX4U7zffkSGlIr+EkzLJCOzaHSXeL/14LTC5GOqauSB5XXAFf+QpMKzDQWKvMpMRWWaU4fQD+jStBmeJwmR8C3imE+CdgFwbsPm3sOwCt9Q8U/LoUJGut3wC8oeD3HwZGaotrre9hIGH5hg/h+5C4pUmESdJ3B6TWmuwD3mpBJzELnEqnY8AdoRCpuyEhY1vN4XB9kYNL84j5JWSyAynLtbYAvnRRWQ7AyyecHCyfbdt0LhHM1CH2xrJCOQDPMjkRrM3NAdEs6taibm5CZxLpxCQ6Lw69MZJkwKJsWPhnZrhkcQGIqW8zLIzrAkpypg5HdpdvsOLUJuvGxc42QT1Cr8yOMPxbPQ+UhN9+BTO/NWqXN02oxEd45d9nlEU4foyONl/tr7TNTI5tU6o2rhuh48ltCtEkCE9s+N0kBlypwXf4fn+F1wC3/aPkge0P44YnfJmr/+VjANSb5VUTt2yB9W4LTxkJCoDWGUIUT899BnxokyjXD3HPXpe9d1+GuPIreHfP8Hff+kguBfjEq7mmwAAmZ8BNeylCFGdQCmHcHjhLlrWv2WThDw6wrzfT9wl+5zvhbW+DJzyh5GEdA/hSxthz2jkudQbPPxPM0Gqv0pudbP13dgQBtBOv9HQmjmO8MLJJmEPj8NnP5sTffoyOqDE7e+2m2wXoJmasihIGPMtgxm7ctKqIAW/U6Zx2EWMkKPOcRjgapcfP1bXaw1hf/zyddp16o0M2pVwRHZvEXdeQMF3dQHircP9OHLfH3OJ9LD3h14haX4TPPAm2dc9LA55LQnp3pYQHM6Sc3RQDHq+sgFcjXUppNK7iUY/6e5aW/gkok6BsZMAbQUgsNbGfwP3bSNVpMveLbD+4jviz7+NwfY275uFgySMq5RgiYQIAF6ncYFm73nBxvCXjBQ4od90YEsRNfukZsNiBxz71qYXXi5Wda0qK09XtyUwaXYBKlNJsTMsIxVQnSDeFzEHWqiNsHmoxTSGeL2KA8U9iWOuXaa2nKxV1MSoLx/XGJmi1o24/a7g+Mx0Aj7SGyEdnUwJwmSESuYEB37VtC8d2acRXjRwj0AcmXkd63pSVMBO0ctD+5hfds8Ofr0Pi4YxhwLPMfLbZFJKX3I5szHxp9MlOQlLKgA/Y0+HCPwAfuv567r7jII/5x+sGv1w1LEoZ4w4QWQCnSgC4H8SItSYi3Dj0d77iFbzp5aBeXF6sZlJkqYuY4AMuvR66VzEAL2HAtQZX5wB88iTueU2CcOgL3fVvnFgej8CHGfB2A7ztHrd/LOJ3/vpZgOAxT/9tgJES9MOxuAgr2SxB2oXEslJjchWEY2VLQwtxnBzj8KUpzqcNFTx/yeVcUnT8NBRSmoXftDdu4bfa07M04EIIfvbyS9n3iMECvW0b/MqvQNmeWUrzPWR6jNY13wgPSVBafotmZ41uDfjRd3PJ4b8qefdo+H7eN2NUMsq893oD15VgGIALwd/f8Cge+MR+dr5k8/pvgCgzE4Xjlp9czuYbA1kNAG/WPDPXjQHgc77t1854AJ732zTxIPbIsilPS1XSB+BBAB3dRIq1vnvGJU9+L99xxbugvgK3X4Noz1QiQfnit32Fzz3pc7juzKY04Eq0oVsjPTOQDOZJ08USlAED7gWSeujSlYLMj/vP+JjrP2LG6r89lvuE5vqfgD/6i18tvn/lmJOokqqUAI7E5n4M+uhawyXUJ1H3XAb/+ngObH27+UPc5Lbt8Lgfp1gHCsS5r2hcPGe7js3B0tXN1/1wrFVmGQBXCZ5rbFmHLRC/0WIiABdC/CHwcuBa4IXAXwshJpc6uhiVhgw848VbAlhPdU8hpZk4WlOU+Z6ZsQC8F6LHZOgPh7AM+DB7esUjbyRqLsPnDVB0JvmQAb70pkrCFDpFZ3K6c5oJUZtvTvTlVnZSTUsKegxHGBrm8q1vLX9Nph1ckRKr4uP2Yc25dxYAvyQM+bGH7dnIVB9+CrzrH3n1U15d2mZiyxDqkqM94WjzHZ4FwJ94xRX80Kuu5sZ3PLz8gSaESj2EV76ARFmE6/dQU7DRU7epJLjF32kcQ0AH6fVQyeQ2w7BJEA5d68cfx3uS8eUFhl1QYh+CPQFbiTjdc+l81kgB9KefVegBnsfBg7DUm8fPejDNyVCeuDvUN07XFN3Z0/CX3wv37mXnZaZo8CteAQ8rJ9/RasCAl4XjKEQmEedQJObskMIAPjWuxKjKAfigvZpXY4+SBoDffyn+mUdO3aYB4MZyLeuMAv84HgJTZy32T5mb40WP3lsoSZsmEmGOz4UoBjlpCjO2zzmymmSzMBTo1DPFjEpipm5Z3Qlttlo2D6XRgdgnKzEBODscbb3jPXN61xMNakmb5LTRKDzru+/hV0/b0omfux7arUokKCQe7VvbSDm7KQmK9jrQraFTTbZqC+f0kzmLJChDDHjgGJmNdFFur2/nesO1xpebe/dxqDPDWgifqxU/Y38jXKKJhmLp2VrdZcvaEmdmXXj1b7B4iRUnjLHIzSO2CdGihEVyrIuOktUDYJlXt9TF40KrLtKNjXTQOX8C7qEa08wqXwRu0lof0lp/BLgBmM7s8WJUFjIIIZOoEubodPck0tMQewRzk8FGqwWJck1CnJ6O1ZCONhX4hhajax77nQTiOLz/OfC3z2DX3C9MvI7vTueCInQKSqKD0pdMHY2ZOjrxjJ61JHIGvOdNnnCEgFOnxlfdTbVAioSkJLN9eOH3wykX+Hu/Bdcp35HEOYDLipkFxzFWVvKs9hwh+L5t25BTVPcri2wCAM+StmHAp2Cjp41xEpR2GwIiXK+Hzia3Wa+fBcCBI84/j33PMAMe++DtCriBMzzn6E6W/+Ey7nnVHyM/+itjqyb+4A/CmtpCkHT6DHjfZaEgHMuAe3ODfvCkR99M1jgBSwvwwnexeNmNALzxjXDHHeX3r7SwzzEO8Guc2EXUzx+Ae64B4FqMAeA6z/3Y2M9npcdxS0S7rel35UFgZGXG8WF0LEbJwP3IqVVbGkMLAzQcpyQRLoGmnd+kP56NnjaCAMOAj8mNmAvNqafwx+cL5dVbPS+BKCBKpizaRoJOvT55kjpNGr0u7a4B4E74Fc5c3oJTW1iKdsBasxIGPJdwOWlrUxIUgi7CSoCS0+a7cl0DwIs04P3xmXj4ocR1oSs8tBv1GfAbrvwSar3J8WCepdvMRv7mK28ubL5vShCX59A4jnm+YUa4Xfdodbuc3ArKB9kaWrvu+jbe+ozy1LjYJpuKrBgEC5GiMwcdVA+A3XDOtlE8z0m1ivSiSk9LH4oxjQTlzXooQ0drvaK1/oYu+/5QDC8IzeRSslAuRadw3czYrbUmA0jfh1QH6CikPc5EdyjyHfgG+UKzyax/BBIffuPVLO75jonXCXx/OgkKKaSSdLKiZmI0agE69ZAlCyEMtKedCoAGGADuyHQAtM+K4YW/tqW8quZmIs41vaUAHAs0qmc1VGaO+csS+txoBel30VOw0VO3qSSU2BB2OuATG9CfTgbgrtsskE6M7wvDTFjsw/pR87m/7CuPYOaO53HgUzsJFsd/t7t2gdvYMhUDbgqAGE22v31w3dd/39tQwYDxc5vTAdScAVdjypa7AkQqYdv59xnPswCc8iRMYcFNEpzV3ktewgeeDb/5Stjxgh1Tt+n7AwAeFwDwTs+yjgUnQ+dXHyvbAAAgAElEQVQbus+AlwPwemjdq8LqALhKvVINuNYw45v7ERM8lnPnlyP3Ph6igDPLU0pQSBGpS2rxfbvbpBb1WFNz6CQg019BLSr08Z184VpQq41NlY4/O4YBMYBIGlNLUFSqIOginY0AfFoGPJhx+cIXoOf4Jtn21CJaCaSjce4+wN89N4Hlg/B6zVP2PqXk/g3ITeLytTjfeLsLg3H/7v/4Xrw05cR2iLbKjRv9P/oIL3nMi0qvl1gA7mTFfdPFEGCqAgLs7PBq5nSwDIC72RquG0+Vu/P1HNNIUC4XQvwvIcSXhBD35D9fi5u7GIMIajV06kJJ8tJSdxnHTdFRiONNt4h4QQ0Vh2QTSl/nIQVmkdq68XjrgBpMyt7C5KOvwPfJdJ5sNuboW2eIzCGdP/8deCP0zb2PYcC1tXjs1qrZ8ScIhJsQnyxJ/sorb6Yu4bbJAPzP/xze//7xr4ktoKJEW9c/xrxAABw/RsXF4MpPVnGC7lRgePo2cxeP0e+13QbX0RPdHvKQBcfxQk8C4BsZ8O53D+RfM0eNM0h9/+S2g9lt1OMeKtfwlzDg/edMXcIdgz7jLiziZ+PtC4siX/jHjUMXYTYG289fC+Z5Vvs5hgEXGAeN3vxZr3nta3npru18789cPjFJejiCALLUAT8mKSg60huugFsxAM/7lCPLAXjNfo1hvRoJiu9jJCgl0izDupvPVtbHJ9gJIbjxxowHD/8ExD56jJ3ihtApTuyS5qY1WQ0/7rLeFKiVLWxNlnDnVllr72BpHvRy8zyTMAcSFAAnbk1diEd1FTTXyRyzW0hOJ9z/5vs5+rsnESIgSU4VtDdg3Bt7Ql7+cugKH+F0IHPpnDFMf/fw5ax86+RxqS0D3o7L12JpGXB3aON97fZr8dKUP/wx+OLvjObvjFOERo4Bt7Jk8+0IKwGtIAfr7KjbqsSOU6I/V+uGAa8wYf+hGNPMqP8D+M/AmzBJmC/k/04J+2/qqAUtU42uJInwzEqM9NJN6WszUUOlHtIdX/gjj777wraNo/ryZzyDtyp44W31qRbG0Pf7EpRxzJtUGpFJsgoAeLPmo9LxiUn5UVy3IgY8EYCbEh3vQkEdljiJkEDHk1Ntmp773IkvIckZ8FIAjpnE69UD8MxWVktjhTybvQS8dN0A8CnkINNGfpKSxF38YCOA6XTAlVj3i8ns4upqQX3xCcWPzmbA73rOLP/5/R/jT79o/KoTFy577b6Jbc9u2Up9/XZSPHzGMeCm/2ZabmTWHQcvTXn+u+C/7N5b+N6iGADwMeNQCLN53TN5cz0p8oJYuQ1dUQiVmA3N3FmvEYK3XFWupS8L34dUGQAeFxQdiZIOART6/59vuDaxcpwEJfQziD1qs9WMC8exALxEgjIM+r3GZIs3IRy2zM6j4gDPi1GqPMm2fw/KOHaoefPCJz4uxDvcY70J8clZHjZ3Cnf+FCdYMLr+pSZaR2RZt5+ou5noS1DsCRJRg9SZjgFfWunB7ApfvrvGlUB6OuXunzdl4+u3HKTbvWvkPTkAXwtcglByww3gzQb4qs16AzqHLqex+CD3iH1cNtPgHe8YD4YzOw7X4nXK0uDz9dfbuZGSPnj0KEcugbmHDTZTn/gEfPCDRipZFolrPmeZFa//ji3AxQXAwK0ZI9NxZHHbvlpH+j109xu3CA9MB6RrWuuPAkJrfZ/W+vXAsy7sbV2MsyNsNkymdMnCtbwWI70EFU0/eS1saZBlPq5X7lwxHDJnT7dvZGuv//Zv519/0Gfxg+XuHMMR1utDHr/ljLSrDPOmt1QDwI0v92Tf8V6jIgZcCPAS4hMlDgipaa9doe40zpNvdHGbUpjP1K1I8jIcKnMhiFlbLT6mrotlHC9Bq2qO2mGQvNQpKGncbkMQCuNEMIXH8u7dGyuaOtAvElLe/sYkzEOdiAcf6/PCd5pf/8XNUPMnb3b2bN2KTHpDJ0NlDLhpr+u5eHLjvb3khS/k8F54/JOml2fobDIDLoWtvLnz/PuMb6vaiTEMuFQZInWJ58boxDcRRgMuQCqS7ui4iKwLRCKcqU8Pp43QC9CxhxgHwD0N3Rr1+eqQjk7dsQDct6zmtGW+W7UFdBzg+tHYqqN5uApIXdSiaeenX1LDS7q0G5A9uEhzZ4yQimwtoxcCS6ZfnKsOXKkYoQPAtCc6TbSOS217h+Ojxw6BVDwYGK1j544By+9F++l27xx5T89qtZebEseiXC/YSj2KeHA7rLzpP8GnbuDTyVN4+OIiL3kJvOAF5feQM+BrYwodOY6RngXbNyL57//gB/nIlVfy4p0Dp54nP9nkf4wLZROi82TLkfZs5Ws1Uz0D3mraXICSkyHfMuAq+ca1IITpAHgkhHCArwohXiaEuBn4xt6WPAQjbLRM1b8SF4/VtR7Si8iS6QVbNz6tSZb5yDGJc8PhSLMQu2ftwLf6Pkef+ERuKCtDeVbUZlsokS/85UzYAICf/6IYet5YVghAxjYJs1nNhBMLAW5K8mDx5xvbgiPtArb4XENlOQAvXnhkriOcoEs+l8gyc83VlZOFf6859khYV2O3BqYQD8BKQcWcdht8q6+dZLcGsHv3T3HPJ7+z/28pYBIE7APX1KXdgP+/fQR+5BLu3Q8//TbwXpSOTcDM48CORWQakZJLUMoYcPP7TuDgnXXdGw8eRH/Lt3DZJnxzp0nClALTZ3aePwPuN6wkYwwD7iUGaKTz5a/ZVJs+pJmZQ5L2KMDJN8K9c3Q6GReh76ET31RjLYg0hcDm7jQWKxwXWflcF8fgW0vJoDXdnP2oa+dQSYD0Ygo+wpGQ2qwVYtF8pqEbIhPDgLsPDDaI276wZBjw9fMD4FpHCD3UP9fr9nqTWfDTqw+Y/7qziP0BJz8wmL/k0j663btHJG5RZObulaFci1n/4cytr3N8R8rlx+fgVb/JJcfu5AfG2RD17998TmtllSEz436UaUkwv3EcimaTb9uxo78RmDaU1by7JZt9KcwJtDoH7/1JMdNqoHsB0i1epzzdmTp35+s5pplxfg5zfvuzwKOBHwZ+9ELe1MUYjVrTAHBKNMydlS6OH6PS6VmUbYvbUamP4yZTsRqOo9Cph7f9/Jiaxvxc3+O3SLubh6et9nTL+QNUIQRqAgPuxeZe4ooY8BQHvJRoraR4ktWcdyo89laZzWwvsT1zBKAc/K3VZ9ZkmVmM1pZHNZMALc+y1KK6/XteSObMqdGFu9cDz5ZtFnK6csY3XfY8TnzgJwADPJVcR43ZJObA9cyMpFuHO8SAYf3y1fD6p984VbtXXLKIyHqkExhwpUz/bYfuCAA/l8gfLRsjBXMcSITEa55/n/HrVpIxBoD7yoC3bKH0JZuKIIDUTjNxb1TDHOcAvGL2G6Dm+ejER5QkChs2OoVeSLilupMhnbml7GK3O6iaXJuiZgTAlj3zqNSQNdPk7EswpgH29DJ0Q2RqSrV7xwZMbXDfigHga1Z/fY46cKViYwNiQ6/mAHwKHXjPzFcrzJJeE9C5ffCAbmcPWsfE8QMb39JnwAdjcP6Sp7LvgQc4smcAyl/6t/8dz59Mdii7QVwvAeBJAkIqup6LX0FhOgAcMw/LEgbcE45Zfy8AAK/XHDMuStZjN2nj+D1UhXLFh2JM803u01qva62PaK1fqLV+DpgCaxfjaxeNes2UjS4pLxyvd0yH3cSRze6t+8mUh/BjlqaY94SjiKTEq50fE9ZcmENNI0HRgHJgsZoJxyxK5e35sZkMerPVMNK5tVRSsOjDsASlugkuy3KQNF4DfiEAuLYLYLdd3JnqvrU+mxIMT9Wm1WivnD4z8rfho3bHnY5dXNi2py8DkQIQmuVeuTtDzoAf2y65sjYKoOan8MUHePiBRUQWkZED8OJFMbanNO1QVgLAcw14r8SKDMzGO5IunltBEmbDAyVMMnDZazLjc64WqhkXngeJBThpr4ABt25EvQuRbBYGqMQv1bomCXhuaiQo26obFyY5uXiuW1vTuJ4GJajPTseAh9u2odIA6SXTMeBoC8DN575nZg8i63FmAeRnH8vq0YeRvedHcDhjJCgWgJ+7BCVC2NM/OSPRy7bU+RRe4CI2c8eymKV71VnzYie/zsaHjtoGKC83B2vFc1/yBPacOMaRoarztTf+7JT3b8ZWJy2et+NYDwB4BeMeQFgJSikAt8nXYv4CnAyFmBOSkj7qZR2cYDr72K/nmOaTfdWUv7sYFzBatQCdSUQJAx51ejhBD5VNz07v2n6ZSUz0pgTgMqPnunjnaczfnJ/va8DHMeBSO6ac+1xFgHgMKwTgWfeO3uQ6RlNFDuSSksz2zNqfVQnAhfbRSkApA24kKOGF0IDbRaS9Vrzo1VyzEXH8CnwlbWgLWNdXRv2Jjb7WuiJ40wFwb3a2nyDs2tlxNSpn0ZRNYDqyQ3L5eVQyvGr/LEpFpIz3Ae/1TP9dq7nn5dmeR64BnwTAe57ErwKA+47RJ5cQCQCuzsHbeTcHmIqfaWqeM0tHx2JqdcK9C+B33PADdGJOGYsiScD1TMW/+lx1m2I1Zq04udLGc43uvDllm77nkVkJyrQMuM5cxIIZS9dsuwaZRaZGzdE9nHnN7/PAXzwfVG8DA37uEpQYMg+n5uBt9VDLNXu9yQy4PHI7AGfkLCtXmvHnWZ217pjPZwSAnzIfwjADvnt+F7JzjDuHFCdzPzFdzcJcgtJOi8dhvvHuBLIyBlxaWZ4ssch0McnXYu7CAHCTkzXaR5MEXNE1eIZvUgAuhHimEOL3gN1CiLcM/byLMiuOi3HBohkGhgF3io9us24XEUSbAuCLWy9FZeZ49NjJ8bOq1nYH7ru457nwN+YWyJzJANzFlKN23eoAeFnZcgDfnlMnFbiuACgLDtMSAK5Xze87YYUA3HXRSYAosXdyHEWKJKhVUF70rNC2YlJ7vXjRa1pbNBFOx7pN1aYFrL31YgCes7b9ymsTwp+fJ7Osem7osxaVFx9JV83nfHrO5Qp7pPuUW29l7ZnPZOXw4ekeAlO9UClF0i9QVbwo9uw4XQ+dqbTlkyKXoHRLnBDAFOLpuS7elGz+uPA8IPVMQlnZa7CL80x1C38fgOsCAG6fPboQDHgQGpJjjA2h6yVkcY16RfMcmKQ+UWJD+ODKGtJTFoBP950KIchSH8dLWCqR1A2HFJoUiReY8ec6LjOel9eoYd+9glONDCfrVaIBVypGrUoa1zRw51zUqRyAT2DAowi5asbpaTnLyYeZ76BxdQOn7kA7sNffuD7GZ8y/V4YSFGeDWTrpMQ7t3/z950mYvZKNd5JY6VlQHQPuTADgns39kPPVO2YNAPhoH223oR6YkwCtv0kBOHAM+AzmLPuzQz8fBL79wt/axRiOVj0H4GVHNl1E0ENvAoA7fkCWmeqFHz38N2Nf20/+8s9fe+rOzk3HgIOZxCtg3sBIQsq0mABeqtGZg5qpCPBbcJglJQvWuplkuhXOMY700LGPcEYn8iwzVlaxlJVN4sOhtWHVe51iwBr4tuS2X2EOtzB9I+oWSQsgsKDGDadrU87N9Rnwlx/6EQ69CdZXijXtAMmyPYpuSQ60bUJos0mz12Nm7/R2gABZpknEeAa8+4BZ+Ks6NdFWghJHxUffZuOd0fVdvAqYN88zDh1yjB+/iyZDEkxRkXbayKw9ncpGAXguQbkQALwZBqYoTkmie5KA68ekSViJpCiPcQz48loP18vQ3Rq1KQs2ASjlIbyE/3bn5ANwR2gS4eIO9ZnF2RYntw7u6d6ZDJFFZv5rm9OjTVWvHIpkqY1uS3b91C7cWRd1xqyDk7zAjx27AzeMIPZoeyEP7jTsd/O6JrIpUeu+vc7G+SXNx/0QABdCsCxXSXz4wM1w5Le3TX3/yuZElW2Eo67po+1AVjIOYYgBL3Hoca1jllyoHoAHgZkHiiQonQ74NfO8WlSXF/FQjNJvUmt9q9b63cBBrfW7h34+oLU+d8f8i3FO0ai5KFVeSMang/AStNpcgqRKXYSXcLpEt5tHDsDbgTxvBpxmE9WXgI4B4EKQOc55S17yUEqOdUHxFKAkvlMRA27BVFZyrCjW7aRaIQCXboAqYcCTxOj4Y1lhIs+GMGxR3Ctm/H3PfOkiqE7rKmy58qSgTaMBN33HD6drU8zO9r3Fn/8vH2XfCnS/PGpD1m9jxQDXpabL3hPmHp5666187q/+AG6cLgEzD6UliRivAe+dNN/rekUFYzLrgpL2igF4upIiZEYnqEZzbhjw8RIUifE592V1pzRpaj6vrMCeU1tZT3QBKv7VQsdowEtqLaQpOH5MmgaVnGjkoZRTSjYsr0dIPzFF2zYxD2T2BPHe9dsnvtax88zw3N266lpa8cBh5L66RuvIaMAzF6EDsmzUTnSaSFa7kLrMPmkWd8ZFnZzOBeUNf/PreGEXVmbxZcpylvHof3s0+35lH7Ip0Ws5AN/IgGf29HKltTGX4ag93Pu9n4XGj26d+v7z09IkKl6fovzkq1YdA+57Pip1cQvIGhhY1noL1Z+WBkG5BKXdhqBm+q6W36QAPA89zp/qYnzNwhzZyNKs4ZprJ65NHtko5SPcjNOdB8e+LrFJJ+uhd/478DAk92sdZ0Mo0cZ9oSIAnmXueAZca3QmCSpqT4tcP1gCwDt54Z9KmjPheajUR8hyAB5dIAZc2MpqaVIsZ/ID81279eoAOMIukMkosEoScOXmADiO03dWyfHf2qnRBM880lXT7tqsS+P4Gl96/vM54DzA9f/hxdM+QT8yFQwB8BIm7LRh4qqSLeXJ0EkZAD+dgszoetUBcMOAj6m8adnTqsYhDCQoqkCCko/DC1H12pSFd8dqwB0/Jq3Y71gpWSq3W2n3Nl0zAkBpD9yUFjsnvtaRisjZmLi753FPZ9+J49zyOPPvwx6kIiPxDQhzVJ0sK5d7jYu03YXUp3awhpyVpCfsXJSWj93bboOP/PUKXq0DK7PUVI+VNCW8JMRtugaAr+QSlI0MuIrM+Ey8jWPi6Az4sfnbnmD6HZ0Web5Q8XoY2ZOvtdr5S0DzCFwXnXjIEgDuCrsRvgByRcexOQIFfdRIUOzncB55NV8PcbGi5ddJBIFN1CjQTmoNjdAsLGKTZauy1LC0q/GJsa+LHzQT0HpYAQMuBKoPwMuZMEcIEqdaCQolukgAB4XS1R3xacdMwLrkWFH2bPJXrZqCIwDS9Q0DXsC49QG4W10iz3A4MmedRsGcUuD61QNwxzUAXBXYd0WxIu869eb0iZ85Ay5dc7/tI+Wb09TqYdcXXI498AWuOnyYuYXtU7e1IXSzD8DLfMAT22fiirBpXsgoLXHqUbEyXvaiGttD12ViEqa0ALzKPprZZFNVUCFWdM1YuXAAfLwExQl6JKpa+l1l5XPdWifC8SOyePMAXDiaXjTZWcRxFD3X7W+AAbZe/xT2P/AA/88b4LVvUpzwPXouYL2gRdY8ZwY860Y4gY+QwjDgSwLXnSeOi2sSABw/DjXRwQ/bBoDrDstpyidXVmh8/ONkdQe1UsyAaysRE2pjH/1Pz/2vzK2bZ9i1CQCupCVrkhKXs9M2XygQlZ2U+K5rrCVLTmekgIxqkq+LosyVrN2GmvXkF1O6V329xrgkzPfY//7c1+52LkZZhKGZVIs6bJJAq2aB+SY1U8o6dXSy8Qx4PgGsB9UsxJMkKFprHEeRVagBzzKJ8MoZcOFk6MwlcKpBN0KYFV1lJW3a31d59Cw9H5X4iIICB3EMuClRRWzm2eHa0sY6K2ajvRyAT1H+etqQfr7JGX3eKEn65Z9rmwLg5rNprBjv3+h4uQY8XTPPGjV9vnD8TwF44tXfPXVbG2OOeAIDnlp2TYmKNomW7S+TDalEgZuZcVgBIDZHz3IsAy5kRqZd/AoZ8Cy1GnBGn9OJzDi8EEX3zLw9DoDHCDcj2UT9hmlCaQchU7Qe3dyvdnrIICLb5I5D27XC606SK2qQmdm0DX+He/fyiHvuIXPh9uskvhMQSRDCgtm0fs4AXKsUR5rB7s66pKspnreVJCkH4FEEoejih+uotRkaSZvlNOWtR4/SUYrTQYZaKtaA94UB2cYx8YTHPZv//cpX8jN/+7fsnML/Ow/l2XksKSZjUrvxTisa9wCB56JSr1QDLoUmFZLgAgFwlbmFJ/rtNoR27yK8b+yaj+O+zUcLIXYBLxJCzAshFoZ/vlY3eDFMBAFo5UDBkU0cQzM04EZuUjOlbPXCniqfqAAye+QWy2qOwNSkJEwFyAyFs4FFOZ/ItANjJChCZmglCSpi3vIsc61KwEa//Hd1k6r0AlTqQ8GCH0caHEUkxaarpk0Tvm8BeAF7G8fgeQpij6BZHdiQnrmWLtjk9JIY6WpIJfXW9ONCOWZMWCIcdbL8GDuzC6PreOg1c4q0Y5PJl3k4YjuxM14Dntp8gpSqJSjFDHhmwWkqqtGeBoFZeMucF8CMQ6VlpQA8r4SpC/zxZf6MF4gBz1IX4ZcU40pMkmCiqrUFVUqCl5Bko/Prei/C8WOyTe448pyWMJoAwDONcFNSIXGHwZsQ/PDRowBc2WgQyJCeC67uoQU4ceOcJShaZAibyChnJCjw5OJYAN7tQk338GprpO0W286c5kgUUbPz/2qoyZbzpOizGHC7QXb0WWPikku47qabeMtzn7upOVZbttwpYcAza0OYnd3eeUQOwIVX5phlAHiV43A4dOoi3GIGPHRtAbVppYNfpzFu5f994KPAlWx0Qfksxh3lYnwNw/etrq/EN7MemJ2z3KRmKrNOHWvxKUpkoACkueatoqNoPUGCohIFMquUATe6SFXapnAUusLkL8exgLQsjcL+XuoKAbjvG8atwPYsOhMjpJGgXIgIQtP3isBwktC3PvNb1TEqXmiBdQFj3EtjXFdDL6S2iTZ1zkbZt8gxJvlaWf1qJgisQXJ957n5nLveLpJ+KfoSBjyplgHPbMJxmQY8tgmKCdWM+zyXRTopqoCdBcy419W4ruSRZLm9YwEAt+AmrVe/Kc014MIv8XW3GuVYVw/AhczodUafd63bQwQ9sk3uOHJXp/oYW04AHWtwU/MdnjV3b/3Qh7jFdXn/Ix5B4Ab0XKjFEUlNQFw7ZwbcnKRax6NZaz2qxwPwTsdIUNxwnaTb4OpDhzgcRXzZjuOTXkq27ABylAEnQWeOKRY3HI4D73gHXH/9pu5eB2atEGmJzbAt2qYq2nhDDsBdHD8eOSnR2khQEucCMuCqXAPeL6BWq+609KEY41xQ3qK1vgp4p9b6gNZ6/9DPga/hPV4MQAjDgBfZ9sQx1O2RjTtlwZE88uqFMad52cvKXxfnOklZgQacgQSlDAzr1LC1SstK/IcBMuu1msbFYEPIDKVcgooAuJvr13QxAy5E9QDcDUIDwAuY/txBI/KqBxoAtWb583Z7Ga6fQbdGsAnrs0kRhHbhKihNECUJrmfa9DZjt2aZvpwBD1fGFOKxwN+99zBXHjNgyls8NwCu6luHciOKN2154Z/y1OVNtmlZw7TEhjCxG+9UVCdBUZlEyoSkBIALmaEq1p7qNAfgoxIULzGftboAhgthaBjwspO3SJ0GqFwDrrUDUtFdGQW07SjCOQcAru24qKXjS2GqWPUlKCOnl/PzPO7JT2ZnEBC6hgGv93rEdSA6DwmKSDcy4ICrFsZqwDsd2DrTQTiaaG2Oa756FwCfWjXjfa0G2UqGlPURBhydGYeQsk3kJsOpm3nMScsIKdtHLwADjh+PSF/SFByhSBz3AmrAixOFOx3w7ZIv69UVbXsoxjQuKD8lhHikEOJl9ufar8WNXYzRUCUAPEmg7psB5Aeb3THaSdVf4VOfKn9V0rPFKhyvGgAucqBRDE51oitnwFObMKN6Ja4kjjISlIoAuOca/VoROAT6QLVKAO75NaOtK1jwk9NmEYncCwPAW605AJyC5z12eg3pZdCpE1TIgNea5ohSFPSjKI2RninzLRvTs/45KM0Z8Hq7HBTk/deNFTfddYbIcazLz+Yja2zFmnWUMuBZao+iK2PA7RF7XDwm0r4EpZq8gRyAO05KoooSyvVAA17hwq9smXJdoAF3bZETV1afmBwENtG1JPckyUx+QcwFkKAA7ZXRhMksWUG4KdkmakYAaOs41EwnFG1LNHgJKeOLN9W8kMiFerdHVBOIbo00PTcJiuGGbdEfy4A7yRaS5FSp01a3CzvmbTXiM4tcc8cd5v7t3x/cBulSiiMaBRrwDK0c/Iq2wqJuyAuZFV8vteO+SgY89A0DThCNAPAkMoX3YkcSVESAnR0mp62EAbdNuo1vXgkKAEKInwXeC2yzP+8VQvzMhb6xizEaaowGPLQAPKhvDoBrmyi4nXV27S7fzSc2+Sulmgp8faZPjWHArRa0KgY8t5dLo+KEM8OAV8e85acRQoxnwB1RnSTEDxqozC3WgC8ZljO+UAB8fs7+3+h3+ul/X8O1YDjYBBieFI1Z099FgaY4ShOkl6B7IWITRVaUs5EBr0WTAbiXKHasp7TPo+8kC3v6n1xZEmYfmFek4deWoSwH4NVKz6TMiYRiBlxnuXxB4le48Ast0ZEPYpTpdzMLwHX1TF++4RBuhipgN9PYyJvSqgG47bxry8sjf/O1Yd3VJmtGaJsb0ShIst7wutjM3SMa8LOi5gV9BjwKQXfOXYKinQxhk+fdGStB6S0CWakMpdOBrfOm3y+vbOGyo0cJbB8XwP27bN0CFY64oAidgZJU1WNk05A1TgkAz61sswoBeM03PuD4sZF8DkXvjPH/T5wL54KiVDFR1O0OALhX+yYH4MCLgRu01q/TWr8OeDzwkgt7WxejKHJd39mRJBBayzS/sbn82Ny7+eHLmu17ypmNnAnLKhr/+XDXBSwYDDHgwqlMC5rlALwzBoDr6jRvQZiDw/EA3NXVAdIgrBsf8IKJLbV63ion8eFoLZjnLbKY+0KbobAAACAASURBVPwXEqSfkEW1fnXKKmJmtrxNw4AnqDjc1KZR54mQLty6bY56ia85GACuMwc/LxV9HqBRz+5ECwWZgyoBOX19fUVH0crNGfAShjYa9Jmq3Hqy1DBfhQA8HeiHq1z4HSEgDtBidKPhWBmcK6oHGo0GZPbkLSuQ+ejYSlBEtQBc26V9ZXlUPlXDgP5Mb/KkxlrltbKUtCyxnNy60p5eTmDAey7Uo7wa5nlowEWGsN+fnLVSlPYeALrdQ4Vv6XRgYSFBrzVZyVxcpbjC3u+jooh7d1oAHtdGfMAhRWunsm1T0LRVKUvWQ2WTr6tkwA0Al4UMeBYNNlH+JuwUNxNlVplxDK6noBfgt6odFw+1mAbZCDZSWhlcoBX8YowNrUQ5A24BeG12kwY1nhn4r/i0QzBT7u+axqbdqsDbgAEvkaCkAwmKWxUAtwthUqIBzzXnjYoWfumb78KRxe3lUo0qAXitVjMbtYIj78yeYugLNHxnthm2wilgwO8+lOD4CVlSq7QI0PzivGmzAIDHaYLjxajNGjxbAK6e9UxONhdoJsXsMJhkLJQkUIrvu7nJL377t2+uraFo1mqkbgKxTxoXbxJzbbioSrbk5T7qJa4rNukzq9Cpx1SkTYolKHbjneLib8LGbVI4OOjYR4sCG0LbdzynegDebEKW5V7ro21Ly4BnTsU+4HZOWV8dBbShNKy43mTRNmxy8i/fAuvL5ba1KjKfZ+qMn7tr/oAB74YavR6idVTqgT82rAvK248d434798mVSwDo9YoBeLcLcwsgDl/KWt18N9fYPvnIf/gH7tlhnkP35Mg9CYxjlieq0YD71qWpTIKSn3xVCcDrfmAAuJeYU4uhSLq6nwx9oZIwdUkSZpKA62vo1jaVPP/1GNPMqv8DuEUI8XohxOuBTwF/eEHv6mIURqYdKEnC9D3z+2BmbuTvY8Me8fg4tLPJAFxVtA73AXiBTRbYhTj3Aa+KebO6yLhUgqJQymW2ognHC0xBFlkrTlrKGfBmdXV4aNRqpRKU3MpKVdjecDTnTMKMU1AsKsoSHD8mSWqVFliZ32rKPTsFpwxxFiP9zfsdO7ku+sUvIAnnmIkVq1FZImZqvOOV4s+vTjl0xcFNtTUcjSAglQlEAaoUgJvndFRFEhTro05aDHoyO+5FCTN3LpEpxxT36Y2OfZ0MGPDZCpk3RzjoJCiUoORexBcCgDcapv4AQFIAwN3UgGHlVsz0WTa4U5C/EGL6shabBOCuGUeZK+ndd3fpy/J5Jp1weln3jQ94PYpohxq9aiR7aToqmxkXWmtwMs5k8JN33smbV44DIM6Yip293j2F71vvZLQWBNx/CcsNM0c/7Z47ueFLX+LA8eOs1MAJHUjlaK6SNgB8E8q2sdFomGd3S5I688I/flp+8rDZqIe+SRAOohEJShpZFzJxYYq2QS7NKgbg0s+gF1JvfJMDcK31fwVeCJyxPy/UWr/5Qt/YxRgNrR2Eo0ecQ5IEfFdBN6S2ySObvHiBIyVZ74HS12WxabOidR9hU12mYcCr8uXOE5OSbvExZy5BmalIexoGC2jlIGsl7dmFf6ZKAB4GZJlbmPSVWpazosT9kQjqPmROIRudpClOEJGkIbJCBrw+NwOJi1NQ0CFRBvRv1u1B5tU10xRdX2QmgsPL9xe+VpMYJkxp8Hoszp67lUYtlCRuDLFPVlBNFAbjJSyxK9tsOH7uo148DjMrrZEl/sTnEplNSoxXCiQZfemZZK5SAO6iYx+c0dMMYfurK6s/7vb9AQMeFUhQpDJg+P+w9+axsmXXed9v7zOfqrrDG/r1626S3VR3i6QoSqQoyZYoyZps2bEhA4IdeIAdyLCRWI5jOIFhQ1FsOAhsQLBjyIOQ2LIixomDIDFsQ3EkSLIjyZRFkBRbTYmUyCabZL+e3nSnulV1ztlD/tj71HjqvXvv26fdbL0FXHS/unXrnKraw7e/9a1viYBsPywcS2Ydcruh8ISAPN9YjWP3fag0YXr3Xgy4GzNKynsW7Be5ZCojiqritAB7x5FBTXPnXPfVas5P/bpW+bdlDhPS9FGm0+7DQqVuku9oeOltvDpyxZ/P/o//Db/6Qz/EcOo7S5cSq+QGABdCY62kCLSUld5ONd5SE9Uy8MkWl5SLRJHGGC2dBrxeA+CzNhMVkfcEwK3vy2HWGKG6sXPL2sGonwLQN0uc6ZO11v6atyX8MWvtJ/u+qYfRHe1Crte6/tU1JLG+UMpG+k3HRJIXox/Z+rw2RR1KAy6tBi23FmG2VlZaRMEY6TaNXk+32Gh5+7NQALzMcvRkuBWAIzVWR4wCphWHeeZdUPRG9b/xcoJtOsMHjTiV0CSdDLgyDSKraHTYdoNxkrjW5h3XrFWFTGfo5nwAPPa6aNvUyNFVdir4ws1XO59rcd9h4lPHj+xfHIDnOTRR5QB4syVL42VLRaiNuPDfx5Z5qD3jFm8B6BcJrT0AP9nM0rT2o9pKdi7oJtMVkYwdAy67GHCD1ZKdgMXQy9Fax1UdXuuRcWuDSAJ3AfJZnGa6OY4Gsb+P6HxzMfX3eDIcUt3dbu/X1poocW/ypCxhKjLKqmKcgb3tALhS5wPgpjIgDcp/f7eMIhpG6GPNYPC1jMfPdV9/+An3Py+9jdcGU2Z5zAd/w0mClgF4JwMu3F6xv62R3Dmj9Haq0RbHlra5Wbqtq/IFIk2F6xCbVag1AN5qwDEEk4CuhzExxIrTyep7qpqGOFWYWcEg+x3OgD+MN0/YuYZ5FYA3DSSJcg1Hds4HHiMPblUcY8xHONjSZrit4N/aPOOcIa0BI/nX/3Jb56/WBUXMO5M9aBjj3ms17S6qE9KgbcROIDaqzBL0ZIQstzDgwoG3nYCS7GGRzVPexqyOE+WbOUQBWZTlEEJgddzJgGtbIfOK+pzOC2eKJkV2NKiimTi/Y30+JjX2WSGjFdFol8TA4c1uCYpFYW1E7BnpS8OLA/AsAy2dBtxsYcBb68oy0HeYliWoCLEVgHs9bRMQgFsHwNXJJhvdNuDCWmRAVjgSMaZJIdoE/UI6OcFuTx3/5hKUanPdicQEtCQtw2rARQvAm81xVCZexpSdr8137rMlx6MB1dHtrc9rC/YbKdm7B3lSljCROeVsxqQAc3Po7/kCADzSNN6a81bTEO1GqCPFaPQNjMefROvNg8hXP/PP0HUEv/YBxsCXrpeUfpgP/GHJegC+7uwkhLOs3d0CmM8bw9Iz4NtsDT0ALwJKUJIED8Br6moVBC8D8L6ibYx3+86q9LVSrl7I1DllT3PyzRIPAfhXULQuHrPT1YXcMeAOgJ+3yUmbbq+yhCsTqHR3wVnbACTUCVyiwUi+/NKW4q+ZY8LQBHNfML5T2qyDAbfW+k6YMpj2tAXg0TYA7q+3E1CSMcyz+UFDq9VNx/rvti8GHHBykGjz9WXsPoPmnGD4LGFV3OknK9QJImnQ5wT9iZ8TWlVE+07XPn59W32ExhhJ5A+mw+x8jbCWI89BSceAb3NBaYFAGUiCku+UWB1tbRZlvfQkZOrbaN8mfbw591sJilQ4z8JAEUWOARcdBdEy8gC8p2Kztvi77rB6jGQF0yK41jXyWTzdbB44Sq+7Ffn5xmqROpb2dFCgDrd3h21m7vUt3FO+UJYwpZi7oNhbF5OgtAx4wwKAxzsx+lgzGn0TAB/72NdSVQuJpbWWZ9/5sxx8+mk4HTI+vcSv7S8+q5YBt4XoZsClxljJLmEIqTJ3a068ZW3WPvOVB5SCZRmoxo27ul7do9TMQKzYYuAVJKy3/Ty4tZpNqRpnH6vrIlj915s17gnAhRCREOLfvVE38zDuHa2P9exktVmBa/PdYGYFMj7fmaoF4E0Wc/UUKtUNwNtUdLbFLeG8IXEMeNTBSAEoz4ALHU6wbPyE7wLgGLwLiiQLxYDnCWoyRA62AXC/8ctwi8yozJyuDzBrbi/tISreUvgaIqyOO9noOHJjtrE9WFqp7mumuM6U5204knhnkFldk15xRc2zW92Aw6IdA+4lKMPswRhwq0+9Brw7S2Nx868MNC+KsnSf35ZUuplLUMKlvhsTQdrQnG6uNXMAvsUN4qIRR5FjwOMuBtyxmfdiax8k1LwD7+Z3msQzV2y2E3ZeSF8waTqKawtfsB+f02O58Az46bBAHW0H4NprwCOl70meDAYwoaBobQiPnaXouTXgnq2tWwa8rol3Y9SR4vLlP8hTT/0tqupLfPSjT/H887+fprnLZPJpBuUh4xe+GoCDm4/xyUtuvfzi7oIBN4XENl0acINFsh8oI1wUAqsiog4HKQDj3Y9CZb7AZ9wan51pVveoNgMt+qrYZ+HUc3h3dSw1ukFmNfqc9rFfiXFPtGZdtZ8RQry1+4F+hcQ2AF7XEF3Ebg2noQWo05SrE5htSX0bvwHnW/yCzxsRxrXyjbY0AJm1ADzI5QCw3hmgmm0C8Hnq2wgItBHnmURNh8hBd3c3Ia1PfYdLRDkA7mVFa04a2lfSJz0CcHTUqceOEw/AA7fcBrAq6QTgmXAA3JzT7zjzALxqKrJLzkpSH3Qz4BZXuNtmFR4UgKPGzoawI2Xuwr3P0RbJyHmjHI6wJkJsSaUb0zYaCgfAle9K2Yw3D6atBlwGYvjbiGSKVhmiY70RUjv3o6Qfz2HtgUYz2QTgcVzDLGdnJ+y1k8y9nu2w9MtTn9UYng+AD71OeVrk1FvmAyw04NF96gbKEqZ2QFlVzHJgUiJILqwBbwH4qTGIkUQdK6RMeMc7/iof/OCn2Nv7Lu7e/RleeulHOTj4eQBmn3s3WsL4pWf5tDNU4tcfXTDguhCwBYAbG448yXOwJtqqATf0A8Cb2u0VTbO6R5kqPAG2EZ4QO1wbS7VukGmFOmfx/FdinAVpjIFPCSF+DpgjF2vtX+ztrh5GZ7Qnxunpqh51VisGaXPuYjOA2Hu71mnM3my7BKV1SShmgQC4sGAkSdwNNHRtodDIQEADwHgA3nRYvLWuKyEBeJqCmpXIcosNoXTs6W4UjnkbFvHcbtGs6T8brwlPe2Q1toHhJHYLvLLhQY7VMbLDziqV3uJNnA/0p96ab9bUiCv7KCmho6MgAMI15BDGgIS98ny62uXIc0AdQ53SbLUEdZ/tIJAdUbkzdLKhLSfd1gUl3WJTeJFovCZadbgR6cpCHJ4BT+IY02SIuAuAG6yN2E/7aTiiTZt52xxDcVpjZwXDx8LOi7RwB8Eud5s80VClZLvnK8IcFiWHQJWnmNe32XKC8j7g0X30ymUJE0rnA14ACGJ5iabZri/vCjNz5EklFkSGGknsS4tsx2DwLt73vv+HT3/6T/LlL/9tAF585Z2Y15/iZGThpffyqd/nEqGffKTkj7zk9ogmF6T1pgRFeAnKXiAA7rJf0VYNuGmlZwEBcZ6DVr6ubK3ZmKr6yUQth/Xwc3KyOpYq1SCz6kJ45istzkK9/QvgR4BfAj6x9PMw3uBobfROx6sDdlxNiZL6QgN2nm7PMwfAt0hQTAvAAzFh8RyAb5G8zFotaLgFp2XAmw6HiTb1LYx11SkBIk3d5tvldQpLhTwBU995LjBt5701AK58e/Mk4KFmPayJEB0MeCndISR0y20As0WCkgkHYg3nAxqFt1urdc03PXuZb/7xH6e4083KWZwbQtuh8u17bzvXtVbuNwNdOQbc2C0acC/KHAXSnhaDIVZHiC0bf9XWfgQswlS2dejYzAwprx8OzYDHSYbR2yUoxkTs99Xxr828dRw44sSl2odpWLu1xNvaCVbXa2shTRVMC/L9873fodeMT4oEfdCd1YOF7jy+z5gpS5ia4aITJhBzjbrebofbFW0R5kxIrvq1W+1Kmrube9W73vUT7O5+OwD/4he/j2w2ZDyyMH6UL8eP8C3/WcI/esfX8oTXJY8z2ylBQRoMkv1ABgF57oiESHbvrwvpWbh5EccLDbjWq9+nrhVIi2h6rBfy82I2Xsvo6wqRVijVz3x8M8VZfMB/Cvg/gV+11v5U+9P/rT2M9Wg1zNXaxjWpJy5l05x/wCbeWmqWpezN7iFB8anMsg6zEUcCB8A7GsYAqMZAFDgVLVt/5w7tqU99Cw0EWlSzzB+atgFwqbFWkAVk3rKMhQZ8DYBrD8DzXhnwGNnRLGoYOQBuRHhfV6uTziLMQeQBzzn9jnMPxGrvGvNrzz7Lzu1u2zWLS0WX47tgBU/uXxyA5zmoxmnADd0HUyHcfNgJ1Ip+OCqwNkKKLQC8bQDSUcx30VCeEVbVZmao8W4McUC3B4A4TtEqRXSsN8IXYRb5xeVD9wrtx3zTIX2L0xpdFwwC+4DnhcvEtLaVbSgFaeosa/PL5zuYJn5eNFkEx1usXAHtGfD4PlmTsoSJHVG0EhQgMY8xm335XPelKw2RYSYkj7dz90pEc7vBrjHGUma8730/w/vf/yI//fH3MzgZcnBVu+zTa+/no8W7uKMusXt6ytW65jDRUHVJUCzGRuwFKhROU9B1Rhxv8f/33+NOYAerxmvAlVr9Ptuuyds6cwaJuVf9+sH0BCEtqoeC/Tdb3BdpCCH+EPAc8DP+318vhPjXZ/i7fyqEuCmE+I2lxy4JIX5OCPE5/999/7gQQvyYEOIFIcTzQogPLP3Nn/bP/5wQ4k8vPf4NQohP+b/5MfFWV+sDBj9g15iUcT1BFhNUc/4NJPPMS52k95SgtEUgRSAALqwAI4mTqrMxTKsjDJkCE627Rcd7XLgvhAOnaQrGSETSuG5t6/cjLWiJCAjA4xi0lyesM+AGD8B71PVZEyM62OiBlxpp0YMERXW3NC6944VIzgc0Rt5/+ouTxUF37+7d7icLhbGSncNX4PhxRuXF31+Weau6OsV2dGwE1wIbCGZduVNmGL0dgNdetjRsuteFi4Ty65jpKEqczHyWJtA600aSOXegrnEipXYNs7J+Ut7WZ326ijDjrEapnGFg9j33+m65VtRX1wsGvLx8vv2i/XxUIhEn3UXCALppD1H3B+BTM1qSoECsHqOquptebQvrAf9MSJ7wn+P0kgQDzZ3Ne4iigun0ScgP2TkqObmqee97gZ/+cfKf/ucYNWKaCJ4+PeV2orH1KgC31rqMmxFzudqDhhCgm5QovXfmay8weaI8ANdmFVM0/sDdpwSl7UGiqjUALl2G/yEAd/E3gG8CDgGstc8B7zzD3/0vwPetPfZXgV+w1j4D/IL/N8DvB57xP38O+HFwgB3468A3+3v46y1o98/5s0t/t36tt1y0AHy9pfG0PnZdBuvzW6ClHoA3WcLuvSQorf9woFS0tNID8IYu5yXliz3jgLZLtE2H7BYALg1RQMY9SRayofXupeAYcIwkCgjAhQDlNbbrzVxaFqUI1c60I6zuZsAHsd+wewDgxnTbEBaZ+55lvHOu13tyWICK+OxSavTSFts1K1wqujh8CQ6f5EGIzCyDqnI2hMgtjLM0WCO5HMh9YZAnXjbUPa8rL60ZzsIBcO0BaRcAP5q664Qs+gSI08wVsXf5xXs3ItkXAI98B8m1+dg0IFPXHXYQsOkQQD5yvgliTdtfVZBkNeZ0SLlzXgDu3odNBElHh8022q7JyX2yJoMBzMxoUYQJxNVjKHWAUlual3Vdr3LXUVLyuJ+A40tujatvdt/D4SEU0THlacLsquFtbwMOn+JrHvkaqIdMUsHTR0fcjDW2WtWAt3uFMCACyRVhAcBtJ8j2B+9AvuNtNKpt7rfKgE/9gbuvnhEAsiXE1jrEysgBcK36KYp+M8VZAHhjrV2vCLrvKLDW/hKwTht9P9DKV34K+MNLj3/YuvhVYE8IcR34fcDPWWvvWmsPgJ8Dvs//bsda+6vWUYsfXnqtt27MXTzWFnLr0uMXYcB3ixSamDpP7i1BmQPwMBPysUcdAI9iRddee+It9O63iJ8nWmsuzOZr1rWGSAdtuR1FzAsire1IfQsLRiADF39Z3650XWrT3kPeZ2G7jhCRRq1lEkrPgMu4BwmKihEdoL/MWwb8fCZOIhGgI+KlTffq4faiSGsiovEX4fhtPAiRmedwKlIakyK2AHAhHFu7I8LIpAZl5LIWW4owlc+ajKqAEhTRNjraXGuOvf1bUoUF4EmeuYNGZDayUVIaV3wdEEytvH7kmeO1jNTJCUS+O+wwNADfcfaZcu1gVdcQFzP0bEhxzvcrMwlNjI0F2XSbTz1M/Zqdd3T+XI6yBNsMkWrBgEeT6wC88sqP89xz33MmOYrxY6WOojkDfuxpuuZm9zg6OIB3+sLD5hHDD/yAe/ybvxmoh5yklqvjMUepASWxZvE5tl2ahQIZ0DlHNwnkM8y0A155BjwLvH7q2u8Vawz4TPVvWZv4fW+9X0U0L9h/a7ehh7MB8N8UQvxxIBJCPCOE+PvAr1zwetestW1P59eAa/7/HweW8043/GP3evxGx+Nv6TBew9xUqwNWcdM9foE235cGKaiYJkv4+tchevmV7mt79nQ30EZc5hHoiChWdMk9TyoHHrOAG3HkfWwtm+/h7rQBaYgDn/jbJhymA/QLqUGHB+Dza64dptqCrEGPANxoJ0E5Oln9Uoepb+3cAwA3JtrCgPs0ar53rteTiQQVE9+nzbQ1FuELd8fiCMbXH6h3TJbBlJJKJIi47pYt+cJdGQgsOvsz2Vk4C6D8IWQYyH4UQEsPNrsAeNUy4OEAP0Ca5UvZqDU9b6RASx4ofXGPEL6BjVqT8UynILIZtSkoAwPwcugOnevuNnUNcT6jmQ3P3WVQZm5eEEEx286At+zpoNr+HHAAnKYEvSjCTI6eBeALX/grHB7+Ai+++N/d975ar3olo7kG/K4H4PXr3ePo4ACertz8Mo/Bn/gT8IUvwB/4A0A9YpxYismEk9SCjuZ2nAC2XjiEREm4tbtRKRRT9KRj3fHfowh4PVhowLVdzUZVfu/okwFPvK2lWNsbY+EZ8IcAHID/EvgaoAL+OXAM/KUHvbBnrnuEAosQQvw5IcTHhRAfv3Wru5jqKyI8AFfrm5NnwBt9fgnKziABHaETNxG/90/+9c7ntRKKS4EAeJHFvhGP7mTAx34ByAIyb2lZuI2WzQvenXkAHlLywrIEZfOaQmpEDwDcmJYBX//sfCFtwMY/62E9GL51uLr5ltkUVESahW8tbHSEiDsajhQVNDFJcT5rwJYBT5b0syflZnZpnorWUEWKeHb9/De/FHkOU1tSyRghbPeYEY6tDXWQaQuFuzIIANrfgxQBm9R4AG7Npqxl7Od71tE18kEiybO5jevy52qN64CLEb0B8Nh7w5u12pPZTCOzmlpnRKEZcG+HGa0x4FUFUTmlqYcU5yw2l5mEOkVEUN7jgDTzv7sXSIcFABd6wYDL20+T5181f87h4b/tPIguh20BuJC8qywZSMntXfc32wD44SG889RdVD7lxsVTT8FwCNRDxgmUp2NmGaBXJSit73ikbdC1u1GOAdenm3OxrdGQgQG48gX71q4y4LUfq6EJqeVIs24Ankt3L7oHx6w3W5zFBWVirf1h4LuB77TW/rC12zyy7huve/kI/r83/eMvA8v2AU/4x+71+BMdj297D/+ztfaD1toPXr169YK3/h8/ROQGrF4DVqb2ANyeX4ISFY6JbgvnBje3dTjzALwOA4jzLAMjkVsA+GmbxqzCbcRJ4dh+RAcAn9QQ6ftaZ503jO2Wg1TGIIRBaEGcht18W039erFpW8CXRv0tbFY7OcidDQDuWm4XRXjwb3TUWVyXZTWMh6TnbHLSAvBoiQE/GWzOLVMb3zQG6giSBwTgSQITBtTC+7ibzWVWSA1WBtOeZhkYlSI7DjCwaACCDAfAhfCfZQcAn3j2NA148AZI8nxuz7kCwH3xNVr2JkFJS1cQadeAxmzmJRA64YG0Sx0xzF3dw7oEpaoMsphQNcN7tonvCpEJ1zU1Moxqw6TpLsSsmrZu4N4woSiAZoA1FVUGJgV9oHnqqb8JwN7e76GqXmI2+8I9X6e1yI3jmG8cjdiLY24NDXIgmX2x+x4ODuCJyQ63rsBwb7E+tAD8dgnFnTuomA0AfjJTDoA3JqgEpdEx5DOaDgA+l4jFPRQmzjIMq99lo9umbf31ok8LTxiuZaRK3zVZB1xz3qxxFheUbxRCfAp4HteQ59eFEN9wwev9a6B1MvnTwL9aevxPeTeU3wUceanKzwK/Vwix74svfy/ws/53x0KI3+XdT/7U0mu9dcMX89i1ttBR7TyKG3F+AC4Ll1ZUvhjz5rPblDxuASgIA6CKPJsz4F0SlKlnwPNAgB+gGGbQJAixecHDmeoFgGvfvXS90ORu0zgG3NCDBMX9d32ctO+7LX7pI4x1YPjg7qpVZuEBeAeR/ODXNHEnA57nNZyMSPfPCcBjBzTiJQu3k8Fm18AWvEXaUEeQ1Y+e/+aXryuglgMqur153XM8Ax6IrRUCtEo67fkARHsICWS3BiCl33jF5jWnfr6HlqAUgwHWbkpQ2g64QtMbA17MO06ujtHK2zAqnQS/duFZ9/WC6KoaI6Rl1pTIcxqHyVRCkyClYVTBjeMbnc+rPXgbTO4NwKMIYluihEJaQ7MjUQeKa9f+ON/2bROeeeYfAnBw8O/u+Tpts6HH8wGxlOzFMYdaUzxdMH2hm4U/OIBHT6/x0ttgf2lRagH4C5dg8Mor6AgHwJfWgqOqcfNe2aAAXDUJFFOaqguAtwx42HFihIUqw64ZE6i2a3KPDHhW+EPimlNPEbnvzPZIFL1Z4ixH4J8A/ry19klr7ZPADwE/eb8/EkL8c+A/AF8thLghhPgzwN8GvlcI8Tnge/y/Af4N8AXgBeAfA38ewFp7F/jvgY/5n7/pH8M/55/4v/k88P+e4b18RYdIfHeztfbCmXYd1pQ8fxc+mTsAbpKI567BbKuNmtegBZoUZTlwDLjsZsDbIpCQEpR8kHsAvnnBptLBbQhhocfW10MG7QAAIABJREFUa/rPWcuAKxHc/kzbbgnKHIAn/XUYs8Yx4Md3FkWL1kKWVthpwTDvgQE3mxKUuoa0qOF0QHbOhiNR6bJCyw2LTovN+oqpP7RFyjoA3jwYAw7QRAOmjbtWXd3c+L0UBrQMuhEblSLSLb7jLQCX4a4XRS0A37ym8dZ1MrDdWr6zO5eDmaX1Uy0V1IXqgLsew91dZze6Jima+X4OSsfBeg+0kSQS2yQdRZhur6jUBcgarwGPpCKxkhu3upnpxh/8B7P7r925HDBNoGwa6qXmOVFUUJbvJkmucXh4bwCu/AZyzc/R/SThUKl7AvDT1xoePXwbv/Fe2FsH4NNLfO4yDI9P5gz4Mktb+8yXMATVgCsvQekC4BKDVREiMAC3wris8JpJgG4BeI9N2/KRt8pcI8TK2MtheiSK3ixxllmvrbW/3P7DWvvvgfvShNbaP2atvW6tTay1T1hrf8Jae8da+93W2mestd/TgmnvfvJD1tqvstZ+rbX240uv80+ttU/7n59cevzj1tr3+r/5C/Z+QrG3QMisTdmsLuQFbiG38fk14LKQrsgkavgP73on0RbA255SQ7lYlKOhY8Cl6WTA20U8pLv7cCd3i02H5VpdOT1vpyfiA4RqAfgak18p43S3PTDgynYXfoqeCnmWw9oYoobTuwsArjVkWYWpCkY9FGFqHW10Gz09hTSvYDwkv3K+4uRo6AD4JWH5G08+CcA033yNm6fVPBVdR1CoB68Db+SIqnLfz+xgsyOgxLiDa0j3BZUi0nvPexGFA6dJ5Jgv0cGAt3ICE7g8qBzuOhtCVhnw42kDsXIMeE+tJHb3RtiOg3/tW3ArFR74RxHQJERrtovTymVLK3X+vUKki8zQJ559ltO73R0rtf985Rm+wiwqmcZQ1DXVjkAdLL4bIQT7+9/D3bs/u1IEuR63vdb8mm+ktBfHHHgAPvvCDNNhLZt/5hBpJR/7RtgbLbJbwyFw5xleuATlbLbCgLcQo2mzJoag5EmjYkgU9WRT2tNa1obKfLVh/DhZd+lSbQfce3zuDxqDkSuOj9Z6EIwSlxkKrXd/M8ZWAC6E+IBviPOLQoj/SQjxe4QQ3yGE+EfA//eG3eHDmEeUtgz36qTI5Ri0JMrO74LSshoJin/3we9AbnMd8ZMkVPHXcGfoGXDTyYDjJ74NJHkBGA6H2Cbt9DxuWiYsMPM2L4hcY8DrSnsWJbz9WdtnR60x4K0jgoh7ZMCtA8Onx8fzx5oG0nSGrot5k5uQ4bqNNtgly6zJBJKiwp6MGFw6p9+xB+DvylP+wuMOVI8HA3eSWIqjOQNukPYRCnE+u8OukPGAunaAbHr06srvjLXOhtCKoDIi0yT3ZcBFwOulmQM8IuoA/Z6dNoHB8GBvD9uhAT+eqoUEpae4sr/jM2+rF1HjtuFIeOAvBFi12SF2Wrl6oZk+/zwUQmB1QkzDf/uDP8jsYIuhwZw1vf/BoohLJgkUdcVkV6Durt7vlSt/GKXucHz8ka2vcce7rTxaLgD4oVIM3zfENpbTX9/s2nn5C3eo0hmfeTc8tr8/f3w4BA6+ihu7ksFstmDA3RsDoG48Ax5YgtIo3xTv9HDjd9Lbj4ZmwI10+/86ADf+3zLg/rse+aAtFF6dF2XqDiAy/x0MwIG/43++DngW1xDnbwDvBr6+9zt7GBuRlL65wrpmKp3C6YB0cH4mRUgBJiKxmru7+0Rb0obt5hHqVJpfKh0DLuwWAO4eDNRxG4DRoHSt0jsAuGrTioE7f7WEullzdag94EcTHIArvLXUmgZ8DsDT8x/UzhzWdRucHS0AuFKQZBWqCe93DM5rXaTNCnN0eurs1lQ1ZFic75rRMHKbkm7Y8drn47JkfaC2qWipLXHzdJA6ukRk1DN3zWr8+srvGmt7kaBondyXAZcB9Zh5NnCMcNTVEMtdL3Q6c7g3XGLAlwB4pXqRni3HpSu7WJUg5Or4Ub7TaitTCx22iTdcUCYzJ2uamYvNQ2lTCtNwWhTUh3e6r9tmGM4gqyljL0GZzZjsCJqD1c/o0qXfC8h76sBrnzUp/d7UAvC973AM669/769z9CtHvPqTrzJ5YYK1lsdfu8NLb38ZHcMTg0U2IIqgSFNk/HbKqpoz4Mvva0HWELSJWmPaRnsdABzftC2wXNHKGNshQWk7X9uAma/1yL1kKFpLlQySKcwystFbvwhz6zu01n7nG3kjD+P+0RYtiHUGPPOp9uEFC6VMQmINh6M94i0toKU//UeBUmDF5YFzmhDdPuBiXn0drvhrNBpw2sEKATS1AmmDa0+VZ8DVGgCvGqc5FzU9MOBtc4U1FxTZSlD6Y8CxKSJpmJ4sCgiVgjirmKmCweD8qe/7RavtnZ2ckPl08nhsicoJ09mIwTkLCEUkwEYY3ZBISdLUHA0GTli+dIBo2iyGFojmwbpgtpHIHKUUqIhar2rAa183YI2YdyUMEVrFkHUXzM0lKAEZ8HxQYJoUEXWcvNuDd7Cr+WsO404JythnMYTqj+nbv1RwUyXz+deGnrk50pfM1qpkQ5pVT+/ALjTqYuNH2JTUKo7Lkvpgi2OWbQ9R9wdQZeIY8HI2YzxigwGP4x2Gw/dxdPTvt75GSzRkibveXhxzpBTJYynD9w8Zf3LMJ7/1kwAMv37Iu//Zu9mfNXz02QOyuuby2vp75Qoo8wTl7DWHvc3yuMlomnbeh2bA3f3X1fHK47Y9eBsZXK4oZYxVCWb9MNwC8h6dSBYAfHUC5NkMpgXZ8HcwAG9DCLGHcxl5cvn51tq/2N9tPYyuyIYuVbbs4qE1FPkMTgfkw4sxKcJGxCgOR/vEVTcAdx34RDAAnu/mbkHZwoDPN0kRDoDv7Qx4VSWdlnXaHzxEYCaslaDUszWbJ1/02YcExQgJRqDXinXnbGafAFwkkNRzizVwADzKpzS6YNCDDYq2blk6Pjxg97HHADg9nSJjTdUMzw3AAYRN5sXOWVVxNBw6AL4UjbJEkUaYiEYXQRjwTOZYeQKHe9TlGgC31mtBRdDiL90kiLTBWoNY67A5P3iHBOBliW0yZNzBunuZjw1clFgUdNoQzipNGmmEDrfOrMfufo7Vm5k3U3sAHjbpNg+rEqI11l3PbgPQmAsCcJESM+VoMKB+ab3RtX+OJ4jsGdbuQeo04OVsxslIoE80pjGuGZaPvb3v5OWX/wHj8W8wHL534zWMHzOpH6N7cYwBxlrzgV/9APVrNUcfOaK52fDCX3qBj733YwB8+mtrrh8eINbkTu9+Nzw3HVFWX+pmwBs376W2Qdfu2vg+H9Wq+5Gy1rsfyXkzuVAhZIrVMaw1p5P+vVrZXzOcwgNwucaA54m3rN172IgHnEPJk8CngE8s/TyMNzgGox1XTb+kJTw+hrz0DPjOBTcRG5MIzclwl2QbAy6MY6wDAfBoGIMVWwG4mAPwcKfgvTLH6k0mCkC3NLwNuxtqD8Cr2aoOsfbd1IS2wR0QbIRztlljwKV/31EWnoVuQ4gUERmapdbGSoHMZlS6YNgjAz4+WgCCycSxczM1OHfDERfRvP10XlcclyVmuvp5tgy41JbahgHgaZRjxTHcvURlVlsbVEr7pjGSOOAhSuvW9nDTMWJxaAsH+POywNRptwa83fhFeADeZUOoancQpicQDJAlEaYj86aVL54PvOa0YVWMXGPArXJzRJ+Bne4KKVIi2XA8GJC8drvzOe3aLc7Ano7ygWPAp1MO9rqb57z97X8NKTNefvkfdL5G2xcjixxg2/NuNodKIVNJ/vaca3/sGk/8V0/wzD96BgR8fABffGrAYyfHG6/3nvfAnZPhShEmLMaNajXg2gZ1zlF+HqpmFYDX1joNuA4vQZFRjlUJVqwDcG+C0KMTSToH4KvjP80qbJUzGvZIFL1J4iyjJ7fW/uXe7+Rh3DfKIsdOkjmQAldsluUVvDKk3LnYYiBMQhQpxsNd0i2dIF3xVzjtaWv1JoXtlqCY8AA8TzKMihHZZpW5mft/h01FLxjw1RR/U2tSafrZ+KVzK1BrjXgiD6bifNPTOlQI6YHaUmvjprGIfEZlc9IeALj2wGp6vHBemc0OyTIHwNcZrrOEIJnrILOm4WgwYHpUM1hqC9Y0hjzSSBVR6ZwQ5FQW5SCP4MYT1G/7/Mrv2uIvDMQdriwXjdaFQ1cT4jUnpbZuICQDXowGmJMM2eU97tlMHdgSMI4XxckrNoRtI57+zB6IffHiuie3Ni3Q6kd/bnS8ke0T5gBOS6L4YroXIVOkcBKU/NVuBry1rCW6P4M5ykqnAZ/OuHnNPVa9VJE/sZhMaXqV3d1v5+joFztfoy2+TjsA+NvXnvv4f/E4l37gEb7z2/4N1y4/yrtffmXj9d79btAvDhC6WinCnDPgypBJQ6RNUADeWDfHmjX//9qYhQY8D5tBjKLMM+BrPSPaQ1TUXyFk5IssoyUAbi2kaYWuCgZlj7VKb5I4C83wvwoh/qwQ4roQ4lL70/udPYyNKBLXyXGZAa8qSIoZjIeUOxdL2QgiIqGZFEPnOtJBSct5C+xADUCkwCCR3IcBl+FSw5GMXCq4Q4JivI5QB3ZfaGs6m3pNguKtrPogv2wLwNUq6G9ZlHj04G4d20L6BVssNXao6ylCWhqVIYbn96q/XxgvQZmOFxvXzBcyzS7gdwwgRDzfcItGcTwYMD5c/Q6Vct+h1IaZLoJowPM4Q5pj9CtPYPIbK1aSVb2QLQWVoGi3bqhq0y1iLkEJyLwNBoVzI+qQoLTzXgXu+CfE4qC2LEFpC+oIXPuxem2B6ZC+GevGqziLX98FwqoYGa3L0I5gPCTJLnbikFGKjBqslKTH3XUDol3UzrB2j4qCSQKD2YxXrri/q768WZy7t/cdTCa/RV2/vvE709oeioUGHBwA74ojk8DOMa9fucbTs82szyOPAE0Jep0Bd/uu8mu3VIEZcC9B0XotW2qtI92MINrZC3Y9gCjNMTqBNalSy4ATmHFfuUYcYVWEjBaboFKQpLVzzCrC7xVvtjgLAK+BH8U11WnlJx+/5188jF6izFJQq80V6hqSYkpdDxhd2LYncdXyUnJ3ZwfW2Fq7pEGTATVvxsrtDHjbACQgAw5gdLcGvGXAdeDUd8uAN/XqQt94Bw3bx8YfOxePdUmBFI5F6ROAR7FPKy4xKk3j5Ci1SaEPBtwn8ianC9lL03gJirkgACfB+vdQaMPhcMjhkrc5LFLRUlumqgzS5TOPc6SeMr37OAjDbPbi/Hf1vG26IA6oBdXKu+Z0AHDhAbgsw22GgyLBNGknA94WX+sePIBNW5y85A5UV/0dhJej8+BvT2CWkaT90O+mA4BH0fGDAfA4c24uFtLT7g9t3tnwDPrhQSmZypidyYQveQA++/KM08+crvh37+19BwCHh7+08RqtR7j4yQ/D5ctc9qD4dqe9Fty8CTzupCfPdtSHFAXQlGgadGQ7JCiLDrghAbimZcDHK4+3xddoSRwYgKdpidExiHUA7j/TvD+5IuDxzOJ7bhqIshlK5+wOd/q99psgzoI2/mvgad8J8yn/886+b+xhbEaSCG+jt2DAZzNNXMyYqSHDC4pQBYv27AejEUxXgVs9B+AibAc+BGKLBny+AAQuArEdaVkA/MavAgPw1pFENauHGtUjA94CcKMXAMd4FsXqKPgivhxJ4ivbl3L6zcRtdrVJVlxEQoXB++dOlws/HQM+sRecEzKeuznsNg2v7e9zfLQOwF3zJqks41lBCHK/SHKkmnJy+0kAxuPn5r+r64V3vAzITCnd2p91MOCt/ehOuM1wWKSu+U8XAPfMm+qhUFj77W7Zk19VBmJF323cnBxkTfYhT2CWk+U9AXAdb3SIjeMTGA9JB1v6PdwnojhDxIqsgrTpXivbIkxxBvKkLGEiMvbGY17NNdFOxPGvHPOx93yM53/f8/PnDYcfQMoBh4ebMpS2Fb343/8PuHuX655AerXutta8eRPK6w7kvmewOa7LEmhKJonf97ZqwE3Q5k3tOqb0aqat9v7/GEG8G3btzvICa5KN5nTz9bvoG4DHKwx40zjHrKbpp2D/zRZnQRsvAJui2YfxhkeSeGspuSxBcWnMiRkyuDAAX4D6g+FwA4BXxiCFwQbuwGfY7oIi2wUgoP8wuHT7emGS/4X7zwUcM+4Vxqe91VojnnYR7wOAiySGJlmRLzS+kKdvBjzxBZ7L3c2asQOujY576TZoPHO0rLPXvuHIRFzsACdlghUN6kTxRz58mSra5eZxBwMeaSKtGc/KIOR+nuSgZ9w+eho7WwUczZIGPKSUx3iAUU1W35+2diFBCThmhp4B7wTgns3UATXubcztOZulw+HMfYd9OZG04cDw6roj5Rg7yynSHiUoawA8TR0ALwYX04DLNIOkYTgGK7v3m3bMiDNowAcDmHoA3gDFe0pu/0tX3Hn4bw/nremlTNjZ+SZOTj668RqtNKRVZl594QUi4JWqu7nUzZuQvT0iaRrevbcJaBcA3Pe/6ALgkcYGHjRaujGvWZOg+P1XGEEyDLt2Z/nAjc01CUoLwGXPDLgjFBef43gMMquoTUHRQ7b0zRZnAeCnwHO+G+aPtT9939jD2Iw4bnV9yxIUz/SZB2DARTzvDtklQXEpMO1cSwIDcEG3BEX6RdVcoLvnPa9puhlw22rA48B2ZNazi2t6bOVdUEwP1JvMYtARZlmHbYwD4Doi7WB9QkWSOdZieVFVp23Hv34ajhgPsptlr3XlAfgFD3AyT7FG8eIPv8j7fnmfH/i/4cVq9WCqVMuAG05mZRAGfJhloKcc7kTYL3wNx8f/Yf67utWAawhyMR+tBrw6XXWEqI0hwmBVhBiFK9wdFomTgnU0/xHeFFsnPQBwX2BtljrENpX1YKo/H3Dw0rc1AB7FJ5i6YBjYhnRxzQgRNytrTJqNMacDhoOLrTvREgBXSU5X6kCcwzveMeA5u6cOdOZ/aH/l9ye/tqjrGA4/wHj8qZUiWmDeNbk988vf+i2upek9GfDq6Sf49uefZ/jooxu/LwpAFR6AbzLgWrmDsAktH/Qdio1YXWdmWrvspREkgW0IB+UQYxJY2xPbQ5Qc9KvDtmrVVOL4GEQ2ozI55UMADsC/BP4H4Fd4aEP4HzWSxGsJlwZsC8DHYsCguNimJcQiBdUlQanaFJiWQTt/WUAI6yz51qLVEdo+AHgHA279KUAFLPqEhRfuekFka3/WR+o7SjInQVkuNmutrIwgDVzgthyJL5yJl/CMmrYAvJ9rWumLl5ZkPpG9BdOcJrvYRYsnhxApXv0J1w4+0vDSmlWG9gV8kTI0OgwDvjfMsWbK4R5wew+lFqC48YBfGAjieehDtQz4dJUBr+dZE4EMqMcsi8h5jyebDGU7701gtwcAbVsJygKYtd9hzwS4B8Or4ycd3kYdXWZ0zk6tZw3tAXi9xNTG+Sl1PWT3gtplmeYQK4ZjmBTDDbIGFnUDurj/d1iWMKVgb+wkIeKPX2L3Q7tc/v7LAIw/sdBDj0YfwNqKyeQzK69hzSoDzuc+x/V7APAvHjRMrj7K937843D9euc9LRhwtQnAvfTMBE5fyiyDaY5dA+C1n/cYQRSwLwZAORyhO0gp6SWpsuzPMQva2ohlAG6QxYxGp4gL4pmvpLjvLLTW/tQbcSMP4/7hGPBkJa2o1CFRBCeiIL6gvlZG2TwFdbcDgLsTuMEYEfREbIRECMNhdQe4snpPbRFm4FR012IDIFTLgIdloyQOKK1bAqrGQtEDiwLESe7aCy8VYNXGOOmSliQ9NldI85IJEC8z4NVrADRVT9f1qXC9BKxiDmA8xObdm/D9ItnJITGYyeJ9vCZWN1ztXVBipan1IAgpvT/KsdoBcDFe9XJXtSZq6wZCak99lmY267A/EwasRA7DbcRpynYGfJ756gGAzxnwpfWz0pCoNwCAOz22tYuvLtm9xfTGB9nZ70fr2l6z0po8irDWEOcTTtWQ3QtmMp11XMPgFI7LEo6OPGW8iHn31DNoeMsSJpRzAH68L/jdv/x+AD76zEc5+sjiULiz8y0A3L37MwyH71u8SOuY1eK4mze5nmW81HE4APiUH+ff+Nu/DY8/vvH7tghzkvhapA0GXENk0IEBeJ6m2FkOci0D3ZI1hgtZqt4rhsMR5s6mMcHcsnbUbyGky+gvAPh4PCWKoFFJ8P4Yb8a47zsUQrwohPjC+s8bcXMPYzWShA07q6ZyDPjUZhdmxaI0h7hGaviRH/xBmmq9bbqZn8BlwAlpkQhpuVW9vPG7dgEgsAbNmAiRdLXAbt0XwrquSJ+GVWoVbOimZd7Cp76zNMeaGJY6pjbWIqXCGkkUmOVfubZnLqNocbCw5iUAqkk/TR1M7K5p9OL9xvEhnIywRbcO9H4hRAJL7hTFFMZ2lU1vmbBIG2oTCIDv5Gg75WgXRBNjlwppG2Xpo3C3tXGcTVfdFxprHZupJdFOOO2pEKCbGJFufjet9tSUPTRsaoswl1xQjG881sc8XA5rIkSk5tyGMYp45y6z8RV2B/2wjFq5ta72TLDWJwhpmZohly6YyYzzHGLNcGw4GgwcAF+LtnDXnoGsWQfgy9aBe9+1x+EvHs7dUIriSUajb+a11z6MXU4drmnAuXWLd2QZL85mq8/z8dvC3fNXv/4SdEirlhlw6GLA/ZgJnL7Msxxb5Yh4m2NW+DG6s7OLNjGs1QrM/f8H/RXsg58XSxn98Ymzmayqt778BM4mQfkg8I3+59uAHwP+WZ839TC6I44dAF+27zLTOwDMTHLhtrhxPoCsYu8QjoZDfn6tKrLy7guhAbhzQTHc7gDgcyurwKlot9h0MOC+YFEH1LgDRF7Xp0wHAx7peWFYyMiy0jVXWLKWqoyZ6wj7jNxLhpYlKEbcgKMdWNduBgrhAXjbuRIgTQ5hPCTONn1+z/SaIkEsAfC9Q6jMmgRFLWwIaz0IIkG5tJNRS8XxjtospPXzsDcAPtu0P2v9h+PAlmBGJZDWGwBJtv/Ow2tP1VyCshiH2oNTEzi1vx5Gx4ikmePVpnkdERmmp1cY7u7f+48vGFq5Q85s4uZA6ww0Zsj+BaV9kWe7d09dcyp1cGfjOfMizDNYV5YlnIghux0AfP+799HHekWG8vjjf57J5De5c+enFy/SOma10qxbt3jPYMCx1ryyJkOxFl6//DrXb75Mut998FlmwCOzCcCNL9hvArPRZT50ADzazoCHjr29HbTdZMDlnAHvGYC3EhQ/72cnX3b/nb71LQjhDADcWntn6edla+3fA/6TN+DeHsZatAz4sgTFVq4b2Qx54bR0XDoAfumumwRiDYDXTdusIqwbghXu9Hu36QDgLZ0RWIOmTYSQZu4d28bcfzgOq8fM8hSqFGtXNwJVuUU1dOMfgDwfOAnKMgPeLuI9FUK2UfgNetlMxsQ34NZVInkxMHy/kKlbrJcbrCTZMZyMSPOLMeBRNMSmi41w/8BSrzHgptEgLWiLVmGKMPd2JdNIUueVA+BLhbTNXAsalnmzwh06Z1VHAxA01kjiwL7cWseIyKx8Z7B08O6hULi1IWyaxTi0vnBXnaFt+oNEW3sy9ZKmypMO0/E+2e7lXq6pdAyJYnrkvtcWgJ+IIZcuaC8XlW4c7B1XHA8GNHdubTyn1YCLnfuv3YMBHNudOQN+tMyAf6cDfwe/cDB/7OrVPwrA6emnFi+yzIC/4x1w8ybv8fKXT/vizn91+zZ/4bOf5cZNjXpqwtd/7rPIp7rdlOMYIlMyjX1jqA0A7sZsE9iydjQYYqsCkax3TfaZrx7Imv39PSfLTNTKYbitM+ubATc6cplZjznUxAHw6eQhAw6AEOIDSz8fFEL855ythf3DCBxxDHoNgFM7AH4xmOEiGQ4hMnz1z7viltM1W5KqWfgPh0xFW1MgsynjarO7WV9V2MYD0HVAvHBfCAs0iqKAOsWyJkGZNSANqgfmbVAMMSZe8Xat52nMfgF44guvVlQu6ctw8xGSqFuT+aARpY5BFEuMf1Kc0MwGDJOL0UZRNIRkCn4junTXUq0phbVuU9EGTBaEAd/ZgZlIkDgAvjxO59aVocsGvF/zMjCFpQYgRpKcwVLuPKGVu6Yxa82i+gTgfq5V9dJBwwNwHfUPwIkbxkeuqLaqbgAwO90j3+sRgAPVkQPecwDOgOEFGytF3p99Z1JzNBhQ37298ZyWPBFnqBsoSzhml30PwJeb56RXUwZfN1gB4FJmQIRe8sqWws0R2eAAuGfAAT5xcsLP3r3LH/6N3+AfvvIK3/OZT8IVyYd+87OU7/rarfdVxCVN1K0Bb6VujQytx97F1NlGh9im6Y8BH14q0T4D1r4/WEhAk6JfJtqoDBnXzFqLV+3litOHALyNv7P087eAbwD+aJ839TC6I449c7QEwIU+hNMSG10cgicjtxg/dsNtTGO1xoB78CYUJAFTUkYXUEyRa6lv27ovAFFgAN62o15O7cPCf9iGBuClA+CINQA+bSDWqB4KTcrhPtbEK9q6prau4UjPEpQobxnwxXVE8SrcukqW9APAZeEAuFwC4HFxQt0M2b1oVij24CGrkLlg9xiUWEW+Ri9pQXUWhAHf2YFKpCS2AhWDMBstsEN7VgvpQJXWa6nvJReU0IW7LQDXzWqLifnBuwf3BeN5o3q5K63359cBOxp2hfUs46kHrHMAPtmh3Hukl2s2/jOenfhGWBNH1kzIkBd0mJDecWg0dRIUfbgqQXFrt5sn8gxkTVnC2O6QNQ1X6pqX1yQj+9+9z9FHjtBTD+qFIIpKjFmMGyHXAPjxMY9Yy1cXBX/txRf5vuef54ks42+/8528YMckx2P+01/8JYpv+fat95XHBXUEkamXALhbX1rHrDrw2j0c7Th//LXupQsNeNDLAVDuxOj5+1t89tIXnGdRv04kukmIkoqJB+CSGzAeYHXPnbHeJHEWF5SWGVngAAAgAElEQVTvfCNu5GHcPxwDHiOX7LsETutKstnF7qyR7A7hED706iP8EwPjDglKHLmNOArpSmJLRKJIp4crDytrF1XYgbWndr7YrB5YWvcFnYbVnA9HQ6jT+SbRhp6669c9MG+D0Q5Gx0QrDHjLovQLwFsnnpYB1/qUKD9C37rG8FI/ADwdOAedFoBbq4nLUw7ViJ0LNlaKIoem978/oxheYfrhm6j1j04tAXAVhgHf3YVKJEhbQ+NArzEVUVSi+tqI/aHTrDn1tAy4NYI4sESjBeCqOqWVI9ulxj9pDx34WplJM11ye/HF0Soww78ebUOu2dHrwNNU1cvYOqGZZZR7V3u5ZuMZ8OmJAzfVkQPLU5u4gXaBiCK3Hn/Lb1Z87JtG6IPXVn6vlsgTeQa5YlmCUSNOUnhiMuHGmgHA/nftc+Pv3uDg5w+48of8PJclWi/2O+kdvESNA+AAt27xV97+dv7i5z7H3336ab7/yhWupSk3//FjiJ97lq965RX40Ie23leRZDTSa8CX5iEsekZUoQH4zg5WpRvNkxpvlal7KKEpB2JeA2JMTRQNVgiwNO63G6VWKTKtODg45DIQJzfg9hWiuJ+94s0W911VhRAZ8APAk8vPt9b+zf5u62F0hRDeT3apCDOK7sB4SJRevFlp7J1G3j5NuXyngwFvDKVPfcuAujeBm9xFvVb85bWnAFHABiAAxkswlKpJl+ot564radgT/2C3BeCrn6mducV81gMAH+2MMCZ2hyYf7SJu+mbAS/f5Se+CMpv5lOLxVXau3ejlmnnmGXD/GTeNS1lP9IjdCxYmtwD8mZ94G7f+XkpWi/Vuzdi2e6owYRlwUiTN0sZfOwDuXVCC4+8igTrZyAq1HXCVEeElKB4c6mqxbmlridqNP+rBq96z+PVkAd6sX+tU4OLr9bDe6vH08CYAs+lLiDuXEaIm6snqrWkbLE3cgWMBwCV0dIA8SyTJJQCK7IRHXrqC3vn8yu/r1jkHkGfIlraOI8cZPH5ywo2qQluLspZMSva+a4/i6YLP/+XPc/kPXu5mwFsJyhoA/8H3v58/de0a8RJQ/uJnIv7Y0Q1uPTri6tXtB58yS6kjSLTCNCUSMMaBwlavXAfumrxbDjhQCVHcUS8kTS8F+0ni6qJgwYAra4l8/VAa9eNR34bWGSKdceCzNGn5CrxylSjup17ozRZnQVP/Cvh+QOG6YrY/D+M/QigVw5J/bjz6Erz2KHF88a8katNMWcWlu5t2a/VSC+yQIYRDLIXZZN7ajTh0FXbLRI2PV0/YLQOuArf6He66tKJcY8CtT33XafiN/8qV0mvAlwG49p03+2bAVwF4VTkAPj1+hN24H/15kRTYOkH61G1VfQmAw+oaexf8fKPIHfy0PiG57F4jn66C0JYJO0wM6DQoAI+onQSFpY1xLkEJm55NB7GTSa1lhZq25bYN3wCkTXuregGk6iUGPOmhWVR7iJhOlsCbt3nUgTsMbob7LsenDgRX05fh1lWEmF7Yvep+0ZhVAH46/rJrTmXEAwBwr1ffOSaqS8y0q226J092zgfAHzs84EZV8YO/9Vtc+8hHmGlNVEQ88ZefYPrClNmLbs12DPjiO4yiNQkKwC1XHBqvsdSf+eJt3nez4fBdT977vrKUJoJEKbRx87+tV2gBeBVYtrQ3KJ3N8DoDfnwKkV5rAxYmhHBWgLCQZbbSM6slWY9N2wCMThFpxdGJI+Gy0ctw+wpZT/VCb7Y4ywh6wlr7fb3fycM4U2gdIdIGpTWRlMT7X6a++XUUw4tPTyl9mimruPa64vTJVaTd+IYjoVPfLctYrC0tKxtxYI9c463Iju6OeWSpC3HLgKvA1xvu7FDfSpDr1od+EZ8F1pwDPHEl5lUTI+IFAFcnU+JIz7sB9hXS64kjVgH46eQRHk37ARpZnGLrbA7Ap9MXAbilrvO7i4t1wmzHptZj4stumSxna/fvNeAHuQETB5GgZBnUZAxMtZH61sq45kCBv8N0N3fXspu1H3GkMTZ8A5CWAVdLBZG1MfN5mCfhAXHix181W7BronW06EHyshxWuHk+m3g5yOwVuPs4Ulw8c3m/qD0D3nh3m1n9Irz+KEKOuehgjWPHgDM6wZgRarp6/1UrW9KS6IydMKkHjgG/c5vbTcOHX3dF+f/bzZv8mevX2f02R4oc/fIRxTuLFQbcWouMGqwRiCiGtrX8zZsb1zIGXj14jqfvwuff93X3vq+8ZcA1RrcA3IFCodz4OQnsmLU7KDoBuBpPXcF+T+RJmxVuD/qNP0RZHZFG/WaGjE4R+YyjW6cYo8iGt1y9UPo7A4CfZSX/FSHE9nLhh/GGhlLutDqdjKnrV5HpjMnhYwztxYAGgJQLBvz664rTNaQ9LwIJbL8QJQ7sFmvyjGUWJQ5cBGK93u3urdXiIeHfcxRYgrK7v4NR6RwczsOnvqsLNsS4Vzy6J53t2XLDpuMJxKp3Brwt0mo7Yda104ie1JfZvWCn1vtFnjgAHrUAfOL6hL3Oo1y+qNvDnAEfk1xyQKaYrm5GrQTlIBXk+ar14kVDCGhkTrSkAW83Rj1TIA11YPuzYrd0MimxNg8rd70+ZEstAK9m3Qx41gMjXeQpNDHNUqGfbP3/s34BuPBWj3XlUu1Kn8B4iOgRgDeeudU+y9DwJXj1OkTjC1vWtgy42j+mmCS8vtbAaP4dGkl8BtlSHENkHQP+wc/+9srvnvfOKIP3DIj3Yw5/2dUKLTPg2lqXXVQJohzAI76g9damPeKNG/BVyS8igZ0Pfus972uncBrwRCm08p12tT+4Wfff0yTsXrFTphi92ucDQI1nEOngvuNtGNUy4A70zhnwHtyP1kPbDLKa8eGUun4NIQ3cukrZ0aTrrRhnWck/BHxCCPHbQojnhRCfEkI83/eNPYzuUD51e3p0xHTq9HfHJ4+xs6bfPE+0EhSTzXjkpmGyhrOV6qf4K8kds5FFqy9cLxWBJMG1oO7zOzhYtc9qG4DEMuyJf2d/F6OSOTicR1tJ34P2VErh21AvALg6nrg0Zs82hEJI7CwjkW33vTFWRcyiiGHggto20kRim0Xx0uTo83Ay5E5WcumCvvUtA67UCfElBxbzdQbcy4ju5lEQ9nv+sjIjNgsJSpsa1qczkIYqcCfTnUs72CZBitUsjToa9yZb0sYD8KWCyOWDdxaYXQQYjnJQMXpJ8tbaj6oifOOf5YiEY4Mr5dhobU5hlhPRJwB3n6FRU6y1qOQlJ1e0B/f5y+0RRSOEiFGXTtg9gi+tHarrpYZfZy3czeSAkxS+9VOrsOK3vFRISMHut+5y9O+P/D0sGPDGWqKocX0PisIVlyZJJwD/7Gfh6fQ5AK583e++5z2NBp4BX5GgeAbcS1GO07BjpiiE9+Re3Svaed+cCa6dP1pjgjbT1ixJUELWfHWFMQ57zE4n1LXzxtd3rjDqaJb3VoyzzJDf3/tdPIwzh/I+1pPDI0TiitoO62vs8rkLv2bLgFejiqu3La+sX7Mn+7OsdMVzebwGwJcZcBkWgFs/5E+OVjehNvWdBQbEu3uFYzXWAbiXL4ie7M+MSlYW8pZF0T0DcAAzK0jjGVZrtD7FVjkqVcQBmzgtRxxDU2fz4qXZ6Rfh1euYZEp+Bh1qVyxLUFoGPJ+tjQ0vI7qTxUH0321omRPbCmoPoFoJyqSCSFMFLv66evUy9nCzULg5OPHFX0EvBzD3vz85Xjgg1cbMGfAiCw/A93YHG578wnsfR0m/bg9xe6CzDgxbMUHMcsdG9xSNdZ+hVRVKHUBygrp5nezyZvv4s4YQgji+hN07dgB87eAyL8I08swAPJclhzkUr93h//qar+HTp6d86vSUjx4fz5+z+6Fd7vz0HepbzqljNvvS/HoyakClTs8iBFy50gnAX3oJvkq4fTJ6+pl73tPOMKKZCGKtNwC4FG4+niRhAXgcO+92ESus1Qg/R9SkhlhRi3702NpjijkDrjVC6rk0pc+wwmEPNZ2glJdnNUN24n4ztW+WOEsnzC91/bwRN/cwNqNpJSjHR/NuanfNZfYfoMBtDsB3ai7dgdO1BgPKd+ALfSbNh05PmMdrRZ8+jWl1+BSY8JvC5HR1ExLeuzYNXBRZlMJ3L13LUHjfcdFTiq8F4K1sqAXgqicWZeXaVUGSTJkcHzi7sFmOSmuynUu9XC+OcYWu/jOeVl+E1x5FipMLX3NFgvJIghGWvcPVDVCoFoAnQRlwFRWkutnw5zXTuhcA/sj1K75QeHWGNwfHDoATfjM0wo3748PFQbgejx2baQR5YCkYwJUrQ+/JvzhoSC/dS3t2QUlLd/g0NBhTuQZHs5xmeLe3a9a4z9DqitnM1UWcHl+nrB+MdU+SS7A7ZvcIXlmTeNXGIDwDfta1u4hLXhtCcvsuP3D5Mj/y5JN8w2jEl6uKW14uNPpGNx/Hz42RcsGA18a4ea9iLyjHyVBee23jOjdvwtP169zZzxfP3RLDIdQiJtEaHQnQ6bwIU3gAXvVg0afNKhsNXnqW1sxET3tF60jk+wDUs5nPYrwBADxyC6dqqrm15IyC3Z59+d8s0f8n/DCCRuM35dn4mLp+GTvNuZsPuPIAwDGK3EKidhr2DiWTtbSTnjW9aNDKy9cAyJI1AN4WgfSgQYu8xKSeLVLf2lqiOfMWlmXIc6d3Xfd2bT2rZQ+pdgAzly/4Vtun1RsGwHWVkyYT7hzeRc1OkJOC4/1Tst1+AXiU1FhrafgyvHqdRBwjLkhNOwZc0DQ3sfGEwydf59prGXp5qBr3Hd5Kw1gQzl82LsjqGk3LvLUacDcPQ7svPHp5hNHx3MaxjeZkCklD08NGbLwl4PJBuDo9RSYzTBNT9OAO9OgjOxuWoK3dadpDMfRyFLsu2xdZhTEOaFQmR2Qn9/qzB4ra+lOhreaFySenj1I8IACP48vI3RP2Dw131z632lpkUmNUfGYGfCAv8eoIpNJw20kDv837lP/SkRsfw69zE2z83JgoWmjAG2uR8ZIEBeDJJ+HFFxcX0Bp+9Ef5hn/xw3z/F4+4/Y77+66PRtAQkyjl+mGpbIkB9/OR8GOmlQi21wLQtYasoqIfAN5KUFTjxmV99/ANY8CFJzqMXgDw4zS/sHvVV1o8BOBfYdEy4NXpiaukv32F8dDy/7P35mGSleXd/+esdWrvqt6X6dk3BhgYBkYWISjBPUpUjCZueQ2vJkbjEo1RfybGmM28aqJR1BgNGI2JMeKKoogKsg0gMsAw+9LT03vXXnXW3x/Pqa6eYRmYrqdnGs7nuuaq7pquc0531Xme73M/9/29c5mTz69tRsCDjEd2Vqd2nHWTV6yAaWO3uRgrlRcC/FERcM+bE+DtbgCi6eGWl9Pa3pzvvtBuAa4o4HnGo9oLz1lnqbIEeNNBQwzkXlVET2V03jwez46hG1WmSjPYhSLULcq5ArGuvhO/+CTQdeZ2GWz7KIFSh6N9JNzpk3Z7UFWdTOZCpqe/z913byb/xVfTf8RkZmZePkaoxitqmwW4lsCybdy5FtFhCkrdAdOm0uY6hXw6IQqFj3dfsF2w6jhOeyPuAFrorlCvzssBbzRQ9Qa+YxDT2y82MmEEfH6nwaYAtyQUQ8+no1uMdYrizQmNqUQcU2Kgz1FCR6fAnouAT9f7iXkLK3AzjDxqWuSAz8SO3aloNGwUs4HvPHkB3pvsZbR5/4yOArA1nSahqtwyK1KUjE6D2LIYpe2lYxrx2L4vUlAcDXJikcPq1bB3LzRNA/7zP+E97+GKOz9KzYBb3/M7J7wmEQE3RA642hTgIgLetJRVlPaP3Z53bEEkgOcEEGvgBHIj4OWK+Fvb08Ww9kP+XKEbYqEVeM7cwnQkb5LIywnWnG5EAnyJ4YT5Wo1amXr1MMpEN55RJ547+W5qcy4oWY9UWacRHDvheqUqxBrUgvbOFpmMBTWLmHGcDWGpJNqoS2iBHQvz9gK/lXtpBwG6JialhNX+YizPe3RhTTPaqElq9RvMRcDFpGFXHdBdXEX+1p5rx9FiNWZKRZyKEOB2apJ435CU8+m6aGmsmI253FCO9pFypk5agAN0db2Mcvm+OfHSd1Tj0JF5HtJhAZ/ntseCsElgxok5ztyE24yA+04dNJ96m5tjaKoqIuDacUWYDRF5axZ+t5Nmhz3HPk6AGza+o0uxP0tkRA74/IXGnABv88L7eLq6RRdHfZ4An0jFiRvypmBHE+JGUUQKSlDOMBtLEvMX1lLRMDpRUwWSFZXCcU4gzuQsmDauqz1pAT7UlWM0GX7GfvEL2LIF85FHuDib5aezrRqBjud0MP2DaVTi+H6VIAhEzrluQ0OFc88VP7h6NdRqc2Kez3wGNmzgTy66lm1vguRZ553wmlIpcBAC3NWA+RHwUIAHQfvHbs8TQS7PbVllBq4Lmo8rKwIezutTM+Jv7cyWwLTxPfny0IgLoa0E3lyH2rG8gt4ppzvs6UYkwJcYdugeUK+VsRtHYSYHepVYV+9JH1PTUqhqHKOzhBIo/J+PH/vhdyv1UIC3dyJOpw2oJtCPT0GZnUXVHLynMIg/WVJxESUJmCfAHQc9bH1rtrmyHcD19WO6lwJzrijNiHy78UMP4Nmq2NJ1G76IZgZyhQaA51ioVpXZchm3XsazLTRtEqu7X8r5LAs810A1GriumETcSoZ0bVL850mSSGw45ns9WWRkf0sQKKFriOO0pwnP3HGNhBDgYQpKMwdcbTbkkZAL6nnGoyPgDU/sfEmYiOPZLHgqvjvPB9y2UY0GnqtLsT9LZYTd4vyFRvM+jEm2Icz1iTFVUz3ssDX80Q6LeFzegjhQwg6xODjONEGhg2IG0trC3k9dz6PGxe9gB8fuvNozRYg1ntLY3d+nclQT9oaNf/kC3HsvvOENXNbRwa8rFSbDPPCeq3vwCh61BwMgwPfrcykoOBqcFwrrVavE4+7dMDMDt90GL385N6QHGMnCcHb4hNeUSoGNgeF5wg10fgQ8vE9k7F464S7zfH91n2bKiyRLwHChPzspvNMbFVssvB25FoQARlosTDXfozEuxtbJrIfeffJ6ZikRCfAlhh1GNt16Bc8rQSWJ6RdIdJ28uFEUBctajtklClc233OsSPPqNpg21TZHT820DtUEhnmsAHfqdVSrhvcUtjGfLPmMmJQUpbXFZzcaaLqIgMckCHDP11AMUdnepJmCEjPkTPxBmIJyYEIU6to2EGsQID+3znMtSFQpTtTw3ApV1cJqlKU5vsTj4Dk6itkQ9wRQVhOka8UTvPKJsazjJuqecab2ttwVmu9hw461NQKOmQwF+LF5/AFhKorS/vfweN94CIuvrTq2hAh4Nt8pCiLnbbXbdjN9QWv7zhdAKqZBI3ZMU6ymc04y3t4GXMeT7hWRPkP1qB0QhadH8hbptLwOnIqZJKhbqKqN55VQKhalVEB6gQ4zhtGJYlTBsPG8Y/9udq3xlCPgfX0wQj+uohB7UNgEcugQl4R54HeUxD2df16e5FlJCj8SAtjzyqLoU7fBUVsCfHPYZOeuu+CjHwXfJ3jxSxjp/xymn2VTz6YTXtP8CHjdClBscy4CroURcBm7l25YhOmUWwtTJRTgvqSxWw1z2YuzYmxr1B0hwN1FEOAZIcCNwKMxWQRHp5StYHbLSVc83YgE+BKjEa5KXaeEF5ShmsAKpkh2Dy7ouLHYcrQeIcBt41jfMdf2RRFIm1NQFE3Ba8TRTbuVrwfYNRusOp6to7XZ8zjf2wW+gq608iDten1OgFtG+63y3HDXwnFbUQ09FG+J2MnZ5J2IILTOOjwmrCpt1werMWf7JBPXj0OiSnnKwadK0YhjLrDw64mIx8F1dBSrhhNaWU0l4nSUT95uDcQ9cQw94xQPtxo4NQV4tWa1NQKuxZLEbBtHOTYFRVXFZ9SXIMA9T390AxDbD2s/2r9w6u7vgUYMhXn3oe2gGjau2/77HsCKaWEKSkuAN3/nTFxuzqkRjxN4KrrmUTsknE8OdVkk0vLsD814Er+WQNXquPUSSiWBY9WIdSzsd53rhpkpErjHfvCdMFjjuiqa8uTew74+aDT6uLe7NTYFo6OcZ5qowJ2hHaGiKWQuyuCNCsHourM0fB9Nc1B8TRRfAvT3w9q18O53w8c+Bm95Cx8cvR97xbd5QeY9ZGInrpcSEXATw3WpWRDME+BNS1mtzalgwFzBc61Smf8sgLSxWw87YVeq4nNZrzlg1XFd+emKVlIIbUOr05gpENQtnMQMVu/C9MxSIRLgS4yGK256zysSKDW8hoWlHiTW2bOg41rWCgxzH3c/60F0FwK/JYh92wXDpfGkbOOfGl4jjmo6UGiJJbvmShsAMoMdULcwlZbYsBsNdF24LyTa7O0KLQFeKMyLnoaRt4QlpzmN4otJamZc5ET7YZtxZTEEeJACq4F3xAejxmwsju7UTvzCkyQeB6eho8TrlMtCID8yFCdbX5jDhK4ftxjrGac21rLNa76H1brV1gi4ZVhonoPDsZ0wlWbuaZuLMAFcO4ZiHbtI8sIIeLsX3gBdy4QAb+bTAtgNEXnzHDkTv6qpouGQ7uE3O98278NYTso5myiKAg0LQ3WoT4ut9qmkipmTJ/wty8KvJ9D0OnZ5FmpxSp3TxDoXtr3f7IZJuoRVi1GfZw3k1MLoqaeK3/lJ0NsLFAe5ZbX4/PmAEgSkjhxhUzLJD6an8cMAjZbS8KdC1y53FqfqgeGIgsj553vhC8Xjli18+rUb+Ov7r4HpNfzz773tSV2TiIALAV61gLo51wmzaXeqS0gftEMBXi23du+aEXBFUr1QzBRzkF0PfbibtR+LEAGPGUK3WEYVu1jCty3SjTJxSQX7pxuRAF9iNFxxEyqaWK3OWAl6CuMo6YVtocbja1DVKfLbbkYNFJxiK0oUhFvgDQkFfI4dRzPrUG7lZDvNLTBbggAf7oS6hTHPCUEUfzXwbZN4m9sLA7i+GMimp0fmntPCIsx0XE4EXAubNhSmRQTcCyP+qgTv2uPxVLGI0Y+KhVRFs9C8+gledfJYFtiNsMHS4f0APLgiQdZZWNRdURRisSEsa7XIqe8Zp1psRaaauyaNRpzlyx/vKE+duGGheg62cmwKihpG3AMJBYqObaEmq8ekSbmOBzEbz29/3UD3QCe+E5u7DwDspniTGHnzXRPVcJmuTUMQoIYtr5Mx+a4LfiOGrtm4dTHW+V6Alu+Sdr5kLIZfj6OZNdx6iaAWx02PkuodWNBxDSP8W73qP8kUoTRfgNfD/GH3yUuLFSuAsc18/EJ4x/Pg5a8K/2P/ft46OMidpRLfnhILay2lEUyF3tFuoSXAj7dz/Zu/gfe/n+C66/jHOz9BdvbZbL1jB8t6n1yAJZ0GOzDRPY+6pUC9FQHXNYfA0bEkWFc2Cy1L8zo1Nwv2ZY3diVRYF2WHPtwNTwTAPPkCXNcTBLaBaVZx62Vs3yJeK2MY8lKzTidOiQBXFGV/2NL+PkVR7g6fyyuK8iNFUXaFj7nweUVRlH9SFGW3oij3K4qyZd5xXh/+/C5FUV5/Kn6XxcZR0mIr0xA36Fg6TkdxBhZoLzc4+BaCoIvOc+4GoDw9fzs69JKWEAF3XQvNrOPMa8jh1B2I16TYn2UGcgR1C2NevqszJ8AN4hKiGg1HTBjNaDS0Im+ZpCQBHheDdbUSNvoII/6aLrflNoAbFlTFy3WI1ynrFlqwMOeFJ0JVoeGEW7djB8E2eHitSlL1TvDKE3PBBTu54IIduE4n9IzTqIX52EGA3uy8WY9z8cULPtUcSTMpBHhYMNtsOtKMFqsSJic77LrpOK0i0yBMfXGD9gv+7t40gW0e0yHWabjSBbgTGKiay6HpcVzHQQ8XUalYp7RzNvHtGKZq49lCgMeqHuYCdy6fiKRl4jUstFgVzy9T0eJ0VsbpGFiYG1EyeTYAwSW/oHfsOAEeFu46T6Fwd80aMKe2ciQDn7gQtjfLmXbv5vV9fZiKwq3hDqmW0qDSFOCzOBXRpEbBoFAv8MjUI+K18Th85CM83K2wb3Yf1Tt+l4u2PfnP8VwE3POoxSGoiUY8fhBgKA6BY2CZ7ReozcLr8uz43HPNnS9ZY3e6NwWOjhI2h2s0/HAXQ369kGEoeJU0plkhUKrYfoxYo/ykd0+WOqcyAn55EATnBEGwNfz+z4AfB0GwFvhx+D3AC4C14b9rgM+AEOzAh4BtwAXAh5qi/emMG89CLYFpCGF1JB8nU5k9watOjKYl0bSriPeMAQHlqfntmsPiLwlV2LZroVo1qhOtFb9jexL9hzV828LQj42Aa0Yd3zGwJDTGafhhE4nxg0DY+CcUHrmUnMibmRGTVFAJc2zD8xkSUmyOx7dEODijiKhVSbdQ2t5H9VhqjdC+qz5CUI9Ty0xDZuERI01LoKoxFL8HesbxPZG64AQBuiYiYq6XYMOGJzrKUyNtplA9h4afAE+bc3ZpfmZ0vf0Fg05YW9Iotu5DgqbdWvvviURcFe44ZisH3Ak7/skU4G5goOou+8YmqFUq6JrwrE6aclLB5uM5JqbawHOEADfLHvEFFM+fiKRl4jYstFiNQK8wkUgwMDVFz/ITu4A8EabZTV/f36KkKmzcV6Pstu5tO3wPn0rPCFUF+8A5UOlGPXQphxNJyhkL7rqLmKpydirF3WEhppbSoCzGMM8r4BREzrmimJz3ufNY/6n1eH5rQfDLw78EwNn5HK688sn/jiIHPBYWYUJQNfD9Kk4QYCgNfMckIcG60g2bJ9UrrfuwWfQpa+zOD6fBNtHCtKx6XThmeb58Aa7r4FWTmFaZQKti+3FMu3LiFz5NOJ1SUF4KfDn8+svAy+Y9/++B4HagQ1GUfuB5wI+CIJgOgmAG+BHw/MW+6MXGT+bwa0liMSHAD3QnSNfLJ3jVk8OyNmEmapCboTozT4DPdf5q/8Ro+3FUq8rMeMIEhgkAACAASURBVGvAcRtu6L4gqfGAHUOf58tt2zaqKXJPZay8G4qY3OtTosjV8TyMULxlEnLWjMm8EGmaE06OTdcVCT7njyItbMCSSfH7zppJJJhaHEPNDoey2Diuk2BgepIg1z6hamgD0D0BYW2EbdtzKSiqkljoBtQxZOIpVN/GMRSopXAcca9roVe9DKtMxxGT7dTRVuStKcBlFH0qCnj1JPq8vHO3JiJvtidRgKOj6jYHJsao1WqoRp3ANqX4jh+PU4sTixdw/SKBq5Ms23QNrJZ2vlTcxLVjGLEKWDXGMnEGJifp6F+54GNnMmKRva5wlGK9lV5Wrze945/ae/jP/y/By/Yc4W2Zn0JxmJ2rs3DHHQCcn06zvVTCD4JHRcDdmRrEGviBzp6ZPQA8MP7A3HHvH7sfxU1wwdrVc2nhT4ZUCpygJcApJHHdArbjYKii02c23v770FbFfGDbrWJvI9w9jCXlOPX0r+8Ex0APy77qoemCuwiWtYkEuNUkplWCWI06ltR6odONUyXAA+CHiqJsVxTlmvC53iAIQud8jgLNSpFB4NC81x4On3u855/eJLN49ThqTtyg+3vjGOrCOpvNHToZ2jOt2E9tsnXMpgD3JfgPu0EcJWYzMjo295xj+2ERZvsj4CB8qjXdIQhaYkoxRAc+GTia8AC2S2KRYddqxBApLylTzqCaHRCpLXoYiWpu9Vtx+ZG+eFxM8PEukfM+YybRTLlDTcUNF05dkzS8OIOTk3j59i1u0okV0DWJGqa12LXanHd8ELQ3N7MzlQLfwTaBSgbXbQpwcR9aEqK1ri+i3AcPt1p4q574zPiSurV61TRaoiXAvbLo+Ge3ud/AfHwMFMPh6PgItVoNzRDRzMXY8q4VM2idEzhOEa8RJ16v0ZORFwFPxWO4tgmdYq4YSydIl6aJdyw87zyZFFH0dHKc6T3zdi+r3km9h299K3zzGzq9PQpBYYg7h3R48EEoFtmaTlP0PHbVakKAVxOAgusW8AolSFaPSZe47dBtc1/fdfDXBEfP5JWvUHkqb7FlgR3E5lJQKKWF60q1gq428F2NrNV+C1k/ngdXI3BapgSm3+zS3H6HLoD+FRmwTXRVzIeO44Dh4iO/YD+ZBKceQ0+UwKpTJ47m2yd+4dOEUyXALwmCYAsiveSPFEW5dP5/BkIZBY/5ypNAUZRrFEW5W1GUuycmJk78gtMYM57ArycgI7bkSrqGn23PSjWbDQX48gPUj7ai6nozf1dC7qkXCAF6aHZ67jk3LAKRFQH33Bia2aDYEJXmtuOgGQ1cSe4LuiWKnpxwa63RaGBiEzgGCUNOYU3nMiH6Y2E7YSNsGpNKyxnE55NJ9hM4BgyLlJsZ0yLRTp++x6AU5oBjOtT8OANTUwTDC9tqn09/zyWg+XQuE3n8jWoVTW/gN0zMNgvUznQKB5tiBiimcBxRH9F07pHhnOMhxMTkaEuA62Fqgb9A3+jHw24k0eKt7Wa/JGwP67IajgBoJorqUxg/SK1eR9freA35xWYAlVICuibxvWkcJ8nyIwekpLw1ScV1XFsDXQi4qUQcvbHwdEUAK0wzo3eM4o7WrolfcUH3qJ/kllBXFzC+ie/mJ4Q17V13sTU0GLi7VBICPFDRyOC6s/gVsbhw5qVL3HZYCPCKXWH70Ttg9DyuuOKpXYeiQKBbxGxbRMCLGSCgXhlD02w8V6cj2f4xzcjlxLmCloNTLJx/ZTlmpfMxAttEV0Vti98IA24SbBaPJ5UCu2ZCtgCpMiVSGDwz8r/hFAnwIAhGwsdx4JuIHO6xMLWE8LF5V48Ay+a9fCh87vGef6zzfS4Igq1BEGzt7l7aLU4TpoVrt26MVKFBY6A9lfTpdB+1Wgye+2Ma460VeMwLJ+J4+7dpA13YDc26rYnBbbhgOjQkCXDHsVANWzghAHbFQTXlNBwByHesAE8lQET77FoNU2ngOYYU1xWA/DKxgRRD/E6xQLyH6bR8t4eOVBy3kIPlQqye9dBeMhJzXQGKduuzWVUSDE5OYqxs3/Z+z/IXETg6XWseAloRcJG+0N6t2s5MEsUtU8hCMJ3GDVNQmhNx0mr/IkoxxI5JrTg695zZjIBLEuB1J4mWrFANixKDqg+mgy1hp62JYor7zZsap9ZoYKgNvEWwWwMoVRKg+bDsELaT4Nn33HbiFy2AeFzBsVtj2mQyjuq3J7/WNPuFXeTAERq7W2JRqYrPTEM7ubG0uxsY2cYv+sIo6O23c0YigaWq3NMU4IDqZ3HdGYK6EOCN0Op12+C2uQj4Nx76Bo2ggvbgqznjjJO4GD1GploVAjzMO6+VR9HSBRq1ONlE+yPg3d3L8ctpFL0VADNpOmbJSVdUVAXfM9BUKNtlFDu87035AjyZhHrRhPwM5KcpKSlW1hbWv2EpsegCXFGUpKIo6ebXwJXAA8ANQNPJ5PXAt8KvbwBeF7qhPAsohKkqNwJXKoqSC4svrwyfe1qTiXXgNVoTfsd0DXeoPZ6ZqZSC4xpw5g6c9P/MPW/6oQ1SrP1iMZkV6Qqe2hpwlKpIf6lqciLSdj2Nli4wFbZpd4rhtqkkAd63sg9KadQwZ9huTvyOgarIuQWzfUJQxdCp2JU58SbLdWU+maSBPZuDDjGQvvTHd5AdXCX1nCWvFR0qaUKAJ1atb9vxdauD4MgAiY5JgkC8h6bSwLMNYm3OH+7NpVDsAjM5UMopHDsU4KEbUTrRfgFupcUYEszLPZ277yVstQM0bDGeTMzubj4BgK3Kyz0100JIWQWbarWOrst1XZlPsRr+Xqv24tgWyyaOSD1fPA4NuzW+FHVrLhq+UBRFZXamB5Ydwj/QSldUw7bxzkmO3evXA4e3UYjD7HAv3HMPuqqyPh7noWp1ToDrXhe2fRQl3B0qByJq+lvrf4u9M3sZLY3yD7f9A6naRjYkL8Y8mVtUi5OpVEQKSjGs45mdQOmYoV6zyEuIgA/3rsOtZlDNVmpWU4Bnk/I8JnzXQFd9xipjaE7Y+MeSn4KiaVAqhp8VzSc3XmKoU75V7unCqYiA9wK/UBTlV8CdwHeDIPgB8LfAbyqKsgu4Ivwe4HvAXmA38HngDwGCIJgG/gq4K/z34fC5pzV5q5O601qZ5scrMLQwW6kmmgZf+85vA+DH9sw9Hwsn4piEKuzu1WcCYMRaURStKgbxmiQBXqvnUJMVJkfExO/NumGnTzm3w/DyHEE5jR4TxSWNupj4PYkTvx5PEHgqlqJypHSE2NwgLt9uLZVSsKdbgvjiu3bQs2Kt1HM2gn6wRSRzUs3TPXWUXBuKzebjFzuIpYrU66J7qqHW8VyDmN5ewdibS+G5BQpZoJiZK8KMKTaBp5JNtH8runtgOdQsNLVlB2rM3fdy6hTq4U7e9IH7gZZ4c9u8ozCfTJ/4/CcbMerTouOuI2nhfTzFcnge3UOrBtgpOQubJpYFtUormqiUder59i3eZksr8IYPo89bR6iheHONk9tVWLcO0v4KDD/FvuE03Cda029MJo8R4JrdQ6MxCq74vM4GHplYhstXXA7Ap+78FA+MP4B177s4c9NJjut6vBUBL4l7wC5NCJOCmkVewvvXlY/h1lJo84qTzbBgvyMlb+z2PANNdxkrj2G4YafPuNzPZ5OZYivlZOPO/cT7FuZTv5RYdAEeBMHeIAg2h/82BUHw1+HzU0EQPDcIgrVBEFzRFNOh+8kfBUGwOgiCs4IguHvesb4YBMGa8N+/LfbvcirosLK4JbGNGHgqr/zhz1HWrGnb8X+1ayvukWUoViuvz2xWYUtwX+hbN0xQSpGwWikoehgJaxhyJkbbEWkYszvExO8VA4jXqEsS4L09Gl6xAz0h3je70EDJFGjU5W3xKYqCN9VDMj3DSGlkToAvht9xIgHVmVYUwyzD8NqNUs8ZxAbww0myUdEZOPRrOhPtbXLiVNLE4iUKBbGIMrQGjqu1vSFHby5JTbepJRpQSuP5swSBR8wq4FWTpOPtjxD1rRmC8R5i8ZYAj5tiUawbctL27LCN+dhesRDWEWNATZG3S9O3StS5dJkK9WlH6s7X8TQKGQjrTKxSDbeNYvixiMehPi+n/9k/e4jqsvZ1GCzXN6L2H0Ev+HPP6V6YP3ySHtmqClvPUzCKG7mn14e9e6FY5IxEggP1Oo1wyNTqPdj2KAqijmeCBj3JHrb0b8HUTD76i4+iKRqF26866SZZppEmWa0cK8BrRyBRo9wwpKSgpNPg1JPoidaOsJWcxi2nyKflRcDrpU5i2Qkmju7DCNMVjbichffxjJdan58zH3qEVF/7andOd04nG8KIJ0EirpI+vBOAIFB57p2/xFrWvkifTReN2V7UdEuAW5pYjcfM9k+My3qyeEcHyHS0wiiWKrbBy5qkrahATEKFMeG84pfrkC1StOWcL58Hd7oLMysERmPahs4pqhW5EYb61ADxzlEOHt5NTBPR90xcXuOPJokE1CZb25clH/r75KagqLEhYmEdwStv+CH39wZk25wrXbeTmMkChQLYBWFdaXsq8TYL8M6cQcHQ0NQiHBkAJaBSfIBY1wj1yW4phbsDK3twZnqwkq2FcDw5SeArmKYccynHFwvhqXFxHxqaiNbWNXmLxIG1mwHIJR3qMy4kqosmwEl0woj4W3ZOzxAMyL0XLQtmCq3dkj/77Nfx1ravZWu98RwU3SU13LL9i+lhO/MF7JZu3AjuyCZu6As/i5/6FFvTaQLgTkQQQyl24brTaJowVTgYFOlOdBPTY1yxSlRcvnTN1TjFPAMnGVBNaGk0p8psB3MpKI4rFjQFWyNptH/8zuXALmXQsjOiK20QYKSncEpZOhLyUjOqpQG07jGOPrQDSwsbRRnygzUAh2qtCHis7JNZ2camCqc5kQBfYlgW1GfDjni+x5489KbbF9XwnD5qhV7UXMstxsqO4TdMElb7J4xMMkb56BCpvj34od1SMinE+BRyIm+pjNgxcBsiwqd6Ihd8wpEjiFMpcAodmJkpfN+nMdOArknKVbkCvFZeht53mIm77sdKT+CWU5iL0AkzkYCRo3MbVYxmdOk+y6Y1iBo2yVlxoMgDfcm259fXHAs1VWL0YAV7sgEds9RtHcto7++m6zBrxNCVWXhI7BzMTv8SvXeEykynlMLdvv401XIXZraVxWelJ/GKHWQl5JwDaIhodDXMcTdjIvquKPK2oBPZ5QQ1i0y2QGW6At0TlOqLs9Ve7xyEgyK6l5spoA/JLUyOx2Gs2BqzM5UG6bPObNvxFe8qnGqa5Lm3zj1nJUTwxNVOfuxetQrskU3c0D2Nc9kl8NWv8hsdHViqyrdLM5j9Jv6oWLyZHXsJXI3DSolMTIjk6666jo9c/hHevvZTAAye5PoxoadQ3ArjPUAxg+Kb+OavAZi1NQyt/cW7PT3QmO5A0V1q9YMEjoPeMUW9nCYdkzd2N5w1KJpPZc9R4nFxPzbtZGUzG2tF9vUSdK45e1HOezoQCfAlhmXBgZrYGlL8gN15OKP7ZEq8H+f4Rh57No+amcXzROTbyo1hT3eTScqZqGamO1CTFSZ27QAgkT1MUEngKe1NIWjSv/xcAPSw0EXTRLR/0pdj86QoUKgnUE2bPRMP4ZamIWZTqsmd+D02oiRq1A7UMXNj1GflO6AAmCbsnJdeM9khv6gmF+/GDgMpxjQ80tf7xC84CeywTfSOOx/AmWnA0GEmigkSZvtzlktGnIQ7RaG2DMVOMTn5XdTuCUqFDikR8ERSpVbpQMsU8EMfXrNjAnumi4yElBeAWO4SaJiYqkgjMCwhwOOGvOY0iqLQGFtGqusojeJRiNnMNuQXJgM4fSuxfiWaU7lpMAaXneAVC8Oy4GGtFfGejcHqtee37fid+TjTB85C39iKgFspEcxQtJO//1avBibEnHb0jOWwcydx3+eqri6+ODqKutzE2xvm8q/7Oe7+NUyrDZKmGE/z8Tzvv/T9VCbFeHeyAjxlpnD9GvU4OEkTY+osSIk5arQhJ6CQTsNsQRx77677cSo1tI5p6uW0FMHfROk4DwCjZhNPTxG4Gr2Z9hWxPxFlq5fQYRW3Bl1DcuuFTiciAb7EsCzY7ooIUe5X8FBnd1u9ZFNGBmc2rPiuCx9nMz9GY7aTtCVnIh6dFcrp0K+/RxAEpIYfwh5ZQcKUc76hM4dhvJtMh1jp64aI9k8q8prUTNeESPv1LXfgVsSW+6wtNwc0t/wqADriAVrPUWqFxREaigIjRj/nvB02/hWUuuSfdyjfyXgYdLcmYGrovPafxBLv4ezo/Xj1ETAdRsqWlJbUZT1J/8w0D56hov70+cxWvgPAxEQPcV2OO0FlOoeiBpTLQlAZuQnqxRxZSVvfqQ1ZnKODdOpCeFvWLH45RT4ut5/a7OH1xFfvoOyHqW7u4ljTZtMZuGMXq/8Fll8HiWF5Cw0QEfAdynpiRyF7P9zfCxu621eLkc9D4dBy1N4xqiVhORrLTuDN5EkuoOHXqlXAuNgd2d1nguPA7t388eAgVd+nOKDh3roBRRH3XfngBqapPiolZCQ0JT7ZFJSslaZi+qQaDWr9Guo+kb7ERBfbkdMsRlFgvCRk2YF77qC4W9jzlSUHa/o3XkHgGHR2lLDSU7iFHAO59u2sPxGOtZ41nxRfT7kaqrpIKWGnAZEAX2JYFtzNGs79Izjjw7Crq73FbVkzhzMtJvhafT+BY6P1jFIp5ElKahozVSrjj/VStr/N0aNfJjawn+lbn09KkgDvXmVQO7ySrswIQRCQiB8gaMSwNTkRd4DxaXFs78BN2FNiYXNYlRsZ7l13Pv5sB2emHoShw1SKi3e735vYTGO3Qu9PwOmXn3fe22Vy0315nv18MIrQldva9nPEY8PgqXTnf4KPcAnaU1fosNpfHFWOdbDu0CFuOw+8f34dsYPPg6+/kkcmu6Q1b5odEe/TIw/+iMKenWiDhxkr9tEtqXlTR06hVOgkObib0sg4qZ4D1IrddCfl3YcAs8WLwHQ4t+snANTUxWmg3JPOs30Alv0XJI5AesU6qeezLCjVVjF8DZz7drhnIE4+3r5dsHweSofEZ3/s8O0AxLqO4Ez1klmAdeWqVUBxGTHS/DghdgzYsYPu0FmlPqBh71bo7/t9gmqCsb0XUHEeLcAfeUTsxp2sAM+nUhQsSNdqlHpV1BteiX3fZcx+/Q+oBOUTH+AkmZ7pxi+nUN0fsvfOW8FwGbHlitKB5Wnqu9cyOHg/ya6D1Epp+rLyij7nkzFWseNh+I3LYUbSbtvpSiTAlxiWBXtLl9DYD3oV0hc+r63H70xlaZTE6v7I/oeY+PX3UVIVjk4ukzbxd8xWGbn3xTBwGzt3vhF+fSY/Uc8hKcF3HCCTgbFiDmPwEA/98FPEz7qVI7svptOUl3vqjl1B4d5n03Xu14lfeC32dA+js3ILEzs7FcZv64eLbwPN58h448QvahO6vYZ3PS/g5hUwccUF0s/X1QXX5S6i4cGXN8O6zOa2n2NLbjn2zjMZXP9LjNh2gmKG27UKvfH2f26q8U7WHT7MTVcARgeN1/8Zpev+kB1r90pr3jTu1wmm8syOfppH7nk/ALdVu1neKScS1tEBh7YPomSKbL/rbLSND7Jv71n0puUK8PrwG3EnOuGyn+HW4zSsxck5XZtfx19eqrC9T+F/10PX2vZ/RuejqmBOb+EbYYzm6Kr2pSqCEODlw8LV5fDEr6iVD2GtfJjx/ZsXtGuSSkFPt8qa0u/zidkfECgK7NhBRhfnKq7WCdyAgfrf47/k24xPraXiVOZSUJrcdRds3gwn6YhIVyZFMQbpapWDW3Sqt1qY7/gLHhz5TRxHnnSytK3sufU1xNdsp7LujQT1GHeOyPXkHhiAA7dlYMUBWP8I42MqqeTiRKI79WH+4WLYn4V7L1ixKOc8XYgE+BKjpweCw5ew4k/gjD+EN772BW09/kC/wqy3G1yN6Ycf5MDDn4NqnB8ZGWkC3PLiXK+9FD72Lvj8m9h5/Qe444IZUpIEuKLA/rvyeA9vZDz2NpR0mZ/PPotOq/15w03qg2dy587LUaoJlHSBm3f9LpohNwc0n4cf/TTH6C1ncuftz+PBve2dgJ+ItLuCr2yG57wBBp7zQunn6+qC2tR55N8L/+fSFTyr9zltP8fq/mVMPHIhycEDaOfcwt6Dl3E0UWQg3f4IaiPTw9rDh6nHYfIry1B/E/7mfdBgVl7zJn0Z9978dvTcISrd32Dq9hcwVj9EV0pOClE+D9VbFUZveRV0jGEfWsX2iRg9GbmRt1XDvRgfL3Db4csZ++IqOqz2OYM8Ed0dcSYaa9n65oBXv2KAjkXw5O831/LO58FLfwfKV76ircfu7IRiaQLGu6mM3M++Wz+Fogbc2ti04LSl1ashtvtVVIxAWCc+8ADZUICPbRY50gf+5gCar1LPl6geFwH3fdi+Hc5fQMp7T04I8IHJCb7zCoXMxRlcI+DmK2fxkTdX6EOb2T0ygL9rLYqn8vP7/hh3Sm6zqHwefrB9A5M/2cC/Ft/Czh84J71weapsGlzOTath5TvgyJt+e3FOepoQCfAlxtAQMH42tdFns2/mtWzua2/0ZmAAguoBqrvOhsEvUBn4HmN3/BZTxkFpkTelYxgnv4svn/EiVp7zQd7352l6pg5IyzkHyO3M8+Vdfwn/+1Ju++l7mS4X6Y7Ly3nThvp57i3f4AN7ruNPRr/GA26elCXXBSGRgO3aal79Fw/wnvfdSDElV/DPZ33urLmvzx9sX+HX49HVBdz3BlZX34H3te/Q19P+CUtdt477Gq20gc/nfgvKZfLJ9vvlqtk+VoyOkHZdvrOixq53NfjlRWAWJtt+riaZ4Uu434gx+3cfwfmPP+Cdw39CfHIKRVFO/OKToKsLRg5t5VvBRj57xxe4OvcZ9JlxUgm5kbcNGxR2lTX+/LU3M3zHDroSi5MDns8D4+K+yHtyffGbDA6oePe8hRt6VvPCDVe19di5HIzXi1TGVxDr/CHjsb+nfveF7ExPk08sbNG2ahWMPyiKAEeX52HHDmKqSkxRGFsGeqfOxH9OUMgGTK8VaSrzI+Cjo1AqwZkLMH3py6UpxOCMffu4369xzi3n8InPTzHbe5RYIE+Ax1YOcOX93+T18U/xlgPf4Z83XEzgyatPAhGU2tdxJq/4q4f50lXXUnTkNcM6nou3tBbc5w+2P3XwdCYS4EsM04SBXgP+7WesfeDf0dpcsDAwAMGsy7d3vQ1G+2DvSj46/BrM8kF5EfCeDfzej2/iSy9U2LhtPzPZBMMHf002Ic92yU5to7t2M6+45E94/288nzN23UtPUt6gmu9U4KDCW7/6di7f/Uv+5GtfImvK3WpXFHhQW02zG3U1s3gNDi5ccwbUxMDak5SfA97VBcyuoPa//w8mNrFRhr5ZsYKu6e1887+v42M7ryU+XoRSH3197ReouUSekuHwyj37+M+JCd5lGFiNBtT9E7/4JElsWMvv3PoNXv7ui3nRK17DWBcYUzVp5+vshF/Zl3LtJ/6WyexO3vyt/6Jv9yPEJXfAXrcO7l8m8trjDnQvkgAfHga2XwNAt7o4Tg8DA8B3/wX+aTfnr2qvq0U8DtPKAL84/HwUx4B6jE9rbyZVOkhfamHBjA0bYGR3nk6rm13dGuzaBZ5HVtcpeh6b/msTwx8Y5t3/EJANRKfI+RHwg6LMRvzNT5L+ThEBP2vPXsqexz67wY5Oi56ZCRKBvDGtu1/HeqTOn17/Pi5O7+dT//RPOLq8ualJPS+CC5rvMy55bprPli0K3PZOAM4fkB+sOZ2IBPgSpDmodEuYNwYGYETtYedgket/eT3/NnEt96/OoJcOkjbldMbqOeu3eN2NN/KCHXewPpGgb2qawQP3MJSVF5EurDqPf/jsZ7n8lnfyyJveyKaHbl3wpPFE5PPwC/e5vPLuA7z+P/6VZUf2kDHluqAAOI0edvRA0QQtsThV7SDEFZ/cw2snDi7K+brC+WLfPmE71iEja0LXec2vfsEDA79mp5/mqp/+EEoD9EvYyOhJ55lIwLu/dyMbEwkKqsrWnTvxdXlisXt5gnPue4i3fvF9/I1S5J5rrsF25XXDMww4kDmbdKXCb1/3Sf72C1+g7unSBTjAQyvEvdBbEX/rxSCbBWvkSvj3H/GC2F8vyjnnfzZzEjJ7ZqxV+NNjfPam/+LmA9/iO+cOkyqO0LvAYMbVV0MQQNpezwOZGrguHD5MRtcpeB65y3N0fmiY3WtVco6obZkfAT90SDwuW8Cm32C3EOBbdu0CYM0dd7A/leLK239GSpF3H/b2ws/sF/CWH93Di79/La+6+WZcU34QY+JQF83l/fginK9Jby984kX/wE9ecpDelPyFxulEJMCXIM3WujIEeH8/7A9W8+qbf8i//rbGv28zWH70KI5bkBbJ7NywhqKu8rrrP8a9mzcz+oqXo9hTLMvJS9EI1q2njsFld9xLZuooRROpxV/5PFxn/yFaAOfsKlKwIGPJb/X793+V4/tr4PYhSEvoZPp4/O7vwlUvyPF371+ctBfLgi1bxNcL2XY+EfH16/jy3/49H//Tf+TZd/4IxjdJEeC92RwTSejes5e7zzuPX+3cyTc/+EECQ97E2NcH9wbn8ZYbb2fFju9yxoEDNCR58Tcxu7PcPnwmf3ibKPwuqolFEeCTywb5+hnw2hfHSSXk5tfOp14H9l7BxVsWR/Q3HUBMUzR4ajfV9Nm84cYf8I2XWHx4fQzddUlN712wkFq3DlauBGZWcG9C+MSzdy9ZTaPgilbptxZE182VJfE4PwLeDgE+1JtgKg4XPPww/9HRwdsHB7n+hv/hitt/TEaTdx/29sL/eK/B8OHZ/3sPAL4lf5fmsgvyfDbMAJmIyU2PPJ63v03l8i2LlyJ5uhAJ8CXIRReJx3D8aSvLlsG+6Sv4P9/7Hn+9+25+sP9gEAAAIABJREFUUCrxwBvfiKd0tz3dpUl3j8KvY8OsODTJr3ffBkDBQpr7AsDQco0fmBfz6gegq1CnqJtSc0/zedjNOm5fIXLrijHILcAr98ly9poc778Cnvc6yMbkR9ybdHbC//wPUsTp4/HBD4rdoQ99SN45Er/5QoZKcK77MMWYT7xwrhTBuLIvx9EUGKNHUBWFsycn6SoWQaJTT18f/MC9ig1TMP3LHwPQUOUWCnZ1wVeXt3KTi6QXRYB3pjt51dVwS083VvvaKDxpLrtscc6zKjRasuXYVjPYcQldkwf59+v/kR8PDTHxspdhlott6U0xPAzu9DB3xsK6hz17RAqK6xIEAZ89coRcucyzjwq1fXwEPJlc2E5YJq1y0BJj9KsnJ/nE2rW88J47qRiQ1eUK8Ls5n3tX5Oks+zgqmKZ8S8B//rtO3vYC2PhHUIwtjjXnM51IgC9BXvIS8ZiVoKcSCXC0F6MGAct/+AWunJ0lVa/jKfKUVHc3/KT2Si4Yge/f8P8AKKqWtAYgAOeeC3+vvJvOGmgBFLW41Im4GYn67/PFwHbZfsjG5beF7062Iid+dfEi4KeCl70MDhyACy+Ud474lS8CYLBRoWRCTyDHSu7Ss1azvR+y02PYIwdxi7M0NEiY8halPT3wTa6irmtcfcNeABqG3EhtVxf8WHvR3Pe1ILUo7gtDuTBCW88tiuBvctNN8MlPio6Hi4Fsob9qMMP+ZIKVd97Kc4COSoW60p5xZtkyqBwZZl/aIzBNePhhsrrOrOvy1fFxvj01xXtuuIHAEDJmfgR8ZEQYFiykflhR4Eg8FNphUrlfKVExocOUtzDtDT+a/3Fx2J3Sh6Qh/wPT35HD0+DhbrB4es8VpwuRAF+CrFwJN94In/60nOMvX5PlULID64GdPLDvDvGkNiTnZIRRMPf3UYEz/+27AJSC3IIGzxNx9tlwp/18vr1OnMRqmFIF+Nq1oGnw3fVnUIjB316ok4jL91kdyrTetze+JhpUF4qybh33LRO7GKUYDKVWSDnPmX3ruD186976vs1MHN1L2YSMxBzwWAzKuWG+eOFlZOsBAK4uNwLe3Q0zI0O8NgyC7030S73vm6zpbUX4FlOAP/e58La3Ld75mmJOSlEyQiQ/Eqxn+YECtz34QwAaanvGmeFhKBwYxlehdPYG+MUvWJ9IsKNa5U07d3JRJsOffvWr1GNiHJ0fAT9y5ORb0M9nJjmID+z91U+59u5roVIREXBL3liazYro/c8Gt3EgC4/kIaXL3y2dv8MdCfDFIRLgS5QrrwwL3SSwdi38xHsFz9urcO9DolucqssT4IYBk7l1/GjjNl640wOgHMjNPU0k4IyNKh+5REQ4dqRzUgW4acKaNVAvDNDxZ/DBC7sWZeKf7/Bw3hmLl4LydObG3xC5ihsnYOMKORFiRVFoGH/JgbTBh/53lkN3/ZiyCVmJkTcQKUP/tupqdoQfG19yMdaGDXB0Ty9f2axgvR92pxbHk3tNb7glZVQXVYCfCmZm4M475Rx72TK4ceqP6C/DT7/yEQD8NqVLDA+DPyvutcPnrITt2/nLbJbX9fZiqSpfXr8erVymaIjSwY55ovjIkZPvgDmfVKyfIymNn99yHW/59puxC7NUTMhJFOCKInLgy2MDrHkbnPNmSEkyQHjUuUNJOH0kEuCLQSTAIx7Fpk1wXf1VpBoBr/vaQwCoptycsO5uuPasd8x9X1XkN6k47zy4N7aC3HvhusG10nNBN26E4pF+UABXbspLk/kezrJsJJ9pPPSbwnv/vq4YZ2yQt4txeer/42r7LnK2xgUPFdB9yJpyU0JWrYKpkRVc/Up455WgSrYjO+ccwNdJaGkaBpi+/EgfwFAmHM/0GsmT75q+JOjoEN0lZTA0BN8LXoqja7z2B6MA6Mn2CPD+fqAgLL/uvHgl+D7m3/0dX964kbGLLmJN+HP7nUnSZppVOZHwHgTtE+Dd8V5+sdzj9+4H/8PQf6TAI52QS8gNZmzYABP7+nE1qJmLU7APzDmdZRaxYP+ZTCTAIx7Ftm3wY67gpgtbzVQSplx7oJ4eOFzcxltfABUDRiz5RSBbtoAzNcRsHLA7pAviCy6A6T1hhC8+vejFX7IaqjzT6OxZweA74Q8vXs66dSf++ZNlYADubGzmM++8AoD7eyFnyS3GWr0ajj4yxIM98PGLIKHJFRrnniseDV+cx1QWR2gMpIU6y3TW5FhWPkNYtgym6OKnl72YZaFZSTzbnkVidzfQyJDUsmzvccXEdI9wBTFUVXTaAXY1Rtg6sHWuQ+z0tCg6bYcAH8j28kcvgk9epPG18+N8Zy38/dakdOec9ethYndr1zkTW5z7oin0P/Px6KZYDCIBHvEozj1XpEz8y7Nex7QFD3VBRnIuaG8vzB4Y4toLdVJ/DgVTXspLk+c/H5gJbQIaaWKSm39dcgkwFTbDsApSbCQfi03dmxbnRM8QNnZv5EgGasnqnICUQdNBZvT855L9M7j6lZCz5EbAV6+G2ljLDiwpOfe0p0dE+2YPivu9U0JX0ceiKcB/5+yXL8r5nq4MDoqUiW9uex/XnwU/HwZ39cq2HLvp7Z/XhjlYPChyLmdmWj+wYwcAP9NHuGDwgrmnjxwRj+0Q4BevPJ9pLcWDf/BX/OsfX8xLfhfKQQ6J/gBAuDCdaq3uuzKLs01zTt85AKwejnZLF4NIgEc8ilhMDAC79p9B13tEDtrqfrlb0cuXw8H9Ois6VoACli8/BWX9enjppasB0BNlVMl3wwUXQLfS6ka3YYPc8zW56w/uYva9s4tzsmcAZ/eKFBStY7Qtk/zj0Tx2xllH0YJyDIa75UfAabREdz4pPyXkqquAotjxWj68OFOSpVuMvmuUT73wU4tyvqcrhiHsKwtj63jty+HS34ee4fY4ZjUFeNof5mDhoOgkND0NQBAEFH/yfQJF4eeD3jEdFNspwH/vwivgb0qcU3ofa3Jh0ku9Q7oAv+wyjrkPzzprcXYvr7/qer728q/NpfNEyCUS4BGPybZtsOuuFQQq2DpsXidXEK9cCbUaDCWEILYC+QIc4LJzxcSfG5qUfq5YDMYPtH6vxcoIiRtxslZUgNkuzuwRnX5k59Q3I+BmKYyE+RprhuVaV27deuz3l18o/3Pzl38J/Yaw6Ujl6tLP16Qv1YehLYLn4dOcZcvgP/61tTDcvLY9uzTZrHCOshrD7JvZR9DRMRcBf+F1z2fvv/4jh1fkKFpw/qAcAd7fL67joYdgQ1cYMTHL0gt3s1lhq9pksxy300ef18ryqjNftTgni4gEeMRj86xnQePI2rnvz98kVxCvWCEeRx4QK+/ezOII8BduE+Lm6t+Q2D7xOL77qpv41TUPLtr5ItpLwkjw2Rd9lp+/8edSzzMUZmHVRlYJd4JanuFhuau2nqbpSUOkgrz4N+VHwA0Dfv7RP2fN/o/ysde+Tvr5ItpLswMtDbE47GxTEaaqiqyTROlsCo0CswkVCgU8xyb1nR9yzhj8xZYSaTPNskwrbaopwNvRBExRhCnB/ffDpcsvFU/m9kuPgAN885uQ/P5/wE8/RE5+H56IU8Di9eCNWFJcfDHgt6JDq/vlR8ABdt2xGp4HZ65aHAG+vmsd91xzD5t6Fi9P+oUbnrto54qQw//d+n+lnyOREAvTXQ/HyKxdQaGuz23Ly+Taa+G2R+5i9XO+R29+cXJBVy+32PVv71uUc0W0l09/Gp79bHjvgxdwmJ9gambbjt3dDfrEedABB9QiOeDQvvv48M2woxu+tMlhQ3btMQXmo6Oi83C7itzPPRe+/GU4qycMQ5f6yCyOWQ8Hv/fqZq1pxNOQKAIe8ZgMD4dfHBR972Vv1a5fHzaLOHQR1LNctH7tCV/TLs7tP7etk0ZERLvYuBG+9S0o7LgAo7RWep0CwDXXwJc+tp4PXvGOE/9wxDMeVYXXvAZuf8+/c82Wa7hwqH2taLu6wB05i5gW45flh8X5PvD/sXESPvAc8FUYTB/rmNUuC8ImW7ZAuQz79qq83doOX7hjbsdWNvm8qI+KeHoSCfCIx+Uzn4GPbb6JI+88Iv1cug733Qe3ff1CfvfQLK94gVzbw4iIpcAZZ0C1Cnzri7wp8/VTfTkREY/LYGaQa19yLTG9fXZSXV0wPW7xxxf8Md+d/CUAw/91I/f0gXqVaJ/adLRpMjLSnvSTJk2no3vuAefgFrIMRykhEW0hEuARj8ub3wzveluc/nQbR7MnwDThwgvh+ut52jfHiIh4Mrz2teLxsovj/MsnI2uwiGcWXV0wOQnbhrYxMW9OePfVWV6y/rcAmK0f6/C0fz9tjVBv2iTqFG65BT7/+Va6ZETEQolywCMiIiJOUzZvhocfFj75ERHPNLq6YGoKOmJ57hyEe7/+T7yj9F84eFy87GIAtg1um/v5chnGx0VH13ZhmnDWWWJHGIgaN0W0jUiAR0RERJzGrF9/4p+JiHg60tUFngeGmwcF9p85xMPffYQXrX0RazvXsvdtexnODs/9/N694rGdAhyEJeA99whnoo9/vL3HjnjmEqWgRERERERERJx2NLsFB1XhLb53Zi9jlbE5T+6VuZVoqjb3800Bvnp1e6/jAx+APXtEess557T32BHPXKIIeERERERERMRpR9N20ymJqsdfHhaFmOu7HntbaM8e8djuCLiitP+YERFRBDwiIiIiIiLitKMpwCvTKXRVnxPgc10pj2PvXpGjHbmURCwFIgEeERERERERcdrR1yceR0cV8vE8R0pHMFSDlR2PbUWyZ0/7008iImQRCfCIiIiIiIiI047+fmEBeOAA5CwR1n7W0LMetzHc3r1RqkjE0iES4BERERERERGnHaoKy5bBwYPw7ovezRvPeSNf+e2vPObPVquiSHLNmsW9xoiIkyUqwoyIiIiIiIg4LVm+XETA37TlTbxpy5se9+duvhkcBy6/fBEvLiJiASz5CLiiKM9XFGWnoii7FUX5s1N9PRERERERERHtYfly2L1biOsn4ktfEh2UL710US4rImLBLGkBriiKBnwaeAFwBvBqRVHOOLVXFREREREREdEOXvYy0d3ywx+GIHjsn7npJvjv/4Y//VOIxRb3+iIiTpalnoJyAbA7CIK9AIqifA14KfDgKb2qiIiIiIiIiAXz0pfCG94AH/kI3HgjbNwIvb0wPCxaz+/aBV/5isj9fu97T/XVRkQ8eZa6AB8EDs37/jCw7fgfUhTlGuAagOHh4eP/OyIiIiIiIuI05fOfh23b4HOfg1tugdFRsG3xf6kU/N7vwV/8BVjWKb3MiIinxFIX4E+KIAg+B3wOYOvWrY+ziRURERERERFxuqHr8OY3i38AlYr4l04L0a0op/b6IiJOhqUuwEeAZfO+Hwqfi4iIiIiIiHgakkyKfxERS5klXYQJ3AWsVRRlpaIoJvA7wA2n+JoiIiIiIiIiIiIiHpclHQEPgsBVFOWtwI2ABnwxCIIdp/iyIiIiIiIiIiIiIh6XJS3AAYIg+B7wvVN9HRERERERERERERFPhqWeghIRERERERERERGxpIgEeERERERERERERMQiEgnwiIiIiIiIiIiIiEUkEuARERERERERERERi0gkwCMiIiIiIiIiIiIWkUiAR0RERERERERERCwikQCPiIiIiIiIiIiIWESUIAhO9TUsKoqiTAAHTvV1RMzRBUye6ouIWBDRe7j0id7DpU/0Hi59ovew/Zzqv+nyIAi6H+s/nnECPOL0QlGUu4Mg2HqqryPi5Inew6VP9B4ufaL3cOkTvYft53T+m0YpKBERERERERERERGLSCTAIyIiIiIiIiIiIhaRSIBHnGo+d6ovIGLBRO/h0id6D5c+0Xu49Inew/Zz2v5NoxzwiIiIiIiIiIiIiEUkioBH/P/t3XmQZWV9xvHvwzBhG3ahgopUWAQhEUSKIajsiwrCWCNhC8tAMBBjKYlCASEBS4WAkihiQIRMsRgwbCEUOIqixEQpkGERMYwEIQaIgMIgy8DAkz/O26lL2zPTPZy+5763n0/VVE+fe6bvW+8z5/TvnvOe942IiIiIPkoBHhERERHRRynAYyhIUtdtiImTtEL5mvwiIl6nnEvrkQI8qiVpA0kbANh2Tjx1kbQ/cB00+XXcnFgOkqZ33YZ4fSTtIOm9Xbcjlp+k9STNgJxL2zJycWgypQCPKpVfGDcCX5I0D1KE10TSnsDpwOaSju66PTFxJcMTJf1e122J5SNpb+AfGLVSYM6j9ZC0D/AN4BxJl0las+s21U7SbsAhktaezPdJAR7VKQfH3wN/YXs28LKk34UU4TWQtAdNfh8DTgS26LZFMVGSZtJ8AH4nMDtFeH0k7QJcDhxl+w5Jq46cO3MerYOktwGfAo6z/WFgNeC7krYqryfDCZL0LuBm4Ahgr8kswlOAR1XKLe83A8fYvkXSpsB2wAmSLpK0cn55DK5ym3Rn4MO2vwc8ABwm6YPdtizGqxxbBg6n+SD1JuCPeovwHH+DTdI04A3AQ8D0clxeAlwi6dqcR6vxAnAv8J/l+z8DpgOfkDQtGU6MpBWBtYEDgQuAfYH39hbhbfZn5gGP6kha1fbzklYFzgJ+BZxDM+H+Wrb36rSBsVSSVrP9nKQVbS+WdCSwE3CC7SeX8c9jQJQi7UVJuwP7AE8AV9h+SJIyFnWwlYsZ76e5E/V24DPANTTn0lVtv6/D5sU4SNoQOBe4CrgT+BDNhdW3Aw/bPr7D5lVJ0srAtPI76lBgb2AecJPtX7X5Xiu2+cMiJoukjWw/DGD7+bJ5EXD2yHZJBwPXSFrT9jMdNTXG0Jsf8DyA7cXl+3uA/YF1gSclrWD71Q6aGUtRbs3OpLlrcY/tRwBsf7s8sPQ+YE9JGwHrAMd11tgY06gM59v+F0mrAOvaPq/scyBwtaQ1bC/ssLkxhlEZfhf4InAYzfG3su3ZkjYD5nTWyMpI2hl4N82HmAW2fwZg+/Jybtsb+KWkdwBr2z6pjffNEJQYeJL2Ax6SdGrPNtl+paeoAziE5hd/ircBMjq/0VdGbd9Jcyv84nJVPPkNGEn70tyS3ZDmw9KRklYemSnA9reAr9IUAocDF3bV1hjbqAxnAUeXq+DXAef37HoIzYfh3MEYMKMy/CDNc1DfAT4OHA0cUHZ9H7CJpOkZgrJ05WHyi4FVgT2Br5TnIwCwfSlwKfA54KPA19t67xTgMdAkrQ/MBk4BZkk6CV5bxJWHh44EPgkca/vZLtoav21J+fW8PnIOOge4C1ijvy2MZSlX006jeVjveOAK4D00wxRe7fkFvzmwLbB3+VAVA2KMDP+JZtjX6rZftP2KpBUkHQacAPxpzqODZYwMvwbsLGkd28/YfrHsN4cmw9Ntv5yhYMu0JXCB7VNo+vdi4LzeIhyYAWxMc26b39YbpwCPQfcEzcFxBnAQzQN7o2//zAA2AQ60fV+/GxhLtdT8eq52PwGc3PYYu2jFQzQPW94DzZAT4Dlg6/L9yC/4B4DtbP+ki0bGUo2V4W8oGRZr0jzgfkDOowNprAyf5bUZCngc2CPH4bi9AGwFYHuh7cuAM4CTJG1c9vkNMLPtPk0BHgNr5EEu2/8BYHsBze3vwySdXPbZA5gGnGb7/u5aG6ONNz9Jm9pelHH7g6eMx19s+7LywOW08tKrNB98kbS9pDfbvi/H4OAZb4Zl21nJcPBMIMP1bN9k+6edNbY+c4FtJH2uZ9uNwAKaGZ4Abp6MDzQpwGNgjb51VsYHjxRxs9UswPNF4Hdsv9JFG2PJxpnfF4CXu2hfLNsY4/FHfmf8N/CYpA8AZwI5/gbUODP8W5oH+JLjAJrAcZjx3hNQpmp8iWbM/ExJ5wCUO7HTadY5mLTVRTMLSgy8niupi6G5kirpBuAjwC6jHsSMAZP86teT4ciHpadoHrR8CfgT249117oYj2RYv2TYnpGJHMqFoUclfQi4XtKlNEMidwU+P5ltyBXwGBgqq1mO2ibblrSdypLlahbf2QLY3faP+93OGFvyq984MjymbF6D5uGlQ2zf29dGxlIlw/olw/ZJminpSEkjD666XAFfrGZl3x2AdwE3APcD+9t+YDLblAI8BoKkWcCjZTaT/1cOkj+kmeLs52XzgzQrYd7d10bGEiW/+k0ww1OAP7D9YF8bGUuVDOuXDNtXpm/8Ks1c30cAc8qV71dKn14ALCrj7K+0fWE/noXISpjROUlvpFnN62GaCe/PdDP35sjrhwK/tn1j+cSacYoDJPnVb4IZTu+5BR4DIhnWLxm2T9JWwOXAHNvzJX2Qpgg/0PaiUX3a1xV8U4BH59QsKb+D7e9I2hW4CPib3hNP2S/F2wBKfvVLhvVLhvVLhu2TtC7NWhQXjfSZpG8BJ9m+o2e/vvdpCvDozMg4N9uPj9q+C81k+KfZvkTSTsBPbD/Z/1bGkiS/+iXD+iXD+iXD9pU+Ve+DqZJWKle9b6JZqOiHkrYBHnIH0+CmAI9OSJpNs3zudOBa4C7b83pe3xU4j2Z1xC2BfW3/oou2xm9LfvVLhvVLhvVLhu0bR59eDHwa2AY4BjjC9i/73s4U4NFv5ZbQzcBRNHNA70mzjPUttq/s2e9LwIHAbnnCe3Akv/olw/olw/olw/aNp0/VzPf9DppFjOa4o9m4Mg94dGEasJDmts/Tkp4C9gB2kfREGf/2NmBjmiV1c8IZLMmvfsmwfsmwfsmwfUvr06ds3wysQ7PIzra2f9ZVQ3MFPDoh6QvAasDHbD9Xnv4+HHjJ9jnlYZSVbP+604bGmJJf/ZJh/ZJh/ZJh+5bSpy/b/ryktwAzPAnLy09E5gGPvpI08n/uPJpPqSdKWs32o8A8YH9J69p+PiecwZP86pcM65cM65cM2zeOPt1P0nq2H+m6+IYU4NEnIweG7VfLpgeBa4BVgPMlvQF4K7CYZtxWDJDkV79kWL9kWL9k2L4J9umiTho5hgxBiUlVpk16oHd6pZH5NiW9mWYs1hE0T3evAxxn+85uWhujJb/6JcP6JcP6JcP21d6nKcBj0kjai2aJ14Ns31a2ybYl7QYcB/yl7UckrQkstv1ch02OHsmvfsmwfsmwfsmwfcPQpxmCEpNC0t7A2cDBtm+TtJKkFcrBsTrwWeBK248A2H5m0A6OqSz51S8Z1i8Z1i8Ztm9Y+jTTEMZk2QNYxc1KU+vRHBBrSLoV+B7wXjdTBMm5DTOIkl/9kmH9kmH9kmH7hqJPMwQlJo2kC2lWmnoZuAx4Cti2fD2b5v/fq0v+CdGl5Fe/ZFi/ZFi/ZNi+YejTFODRmvLQw7O2n+nZdi7wuO3PlO93B44HZtsemKeRI/kNg2RYv2RYv2TYvmHs04wBj1ZImkWz/OvRZcofAGx/FDizZ9d1gVeA6f1tYSxN8qtfMqxfMqxfMmzfsPZproDH61bGYF0BPAL8Avhf4ArbT47a7yPAHGCOs6TuwEh+9UuG9UuG9UuG7RvmPs0V8GjDM8DHgWOBu4DNgIMlrQ/NJPmS1gA2pqKDYwpJfvVLhvVLhvVLhu0b2j7NFfBYbpLeAjwOrGj7+Z7ts4GdgQW2z5W0te27yzRBA/1QxFSS/OqXDOuXDOuXDNs3Ffo0V8BjuUjaB7gR+BLwj5K2GHnN9tU0UwGtJ+k64PuS3ljbwTHMkl/9kmH9kmH9kmH7pkqfpgCPCVFjQ5oHH/4cOBW4HbhF0lYj+5WDZGOaaYJ2tP1oF+2N10p+9UuG9UuG9UuG7ZtqfZqFeGJCbFvSo8APgAXAL21/TtLLwDcl7Wr7AUkb0MzJOaumMVnDLvnVLxnWLxnWLxm2b6r1acaAx7hJ2hRYG/gv4MvAj2yf1fP6CcCWwHG2X5A0w/ZvumltjJb86pcM65cM65cM2zcV+zRXwGNcJO1Ls9zrr4F7gcuBL0qaZvuMstvXgZOAFwFqPziGSfKrXzKsXzKsXzJs31Tt0xTgsUySdqRZ2vUQ2/MlfQXYHtgR+KGkaTTzdL4beCewFs2BFAMg+dUvGdYvGdYvGbZvKvdphqDEMpUD5K2255bv1wPm2t5H0sbAX9F8Kp0JHFnzmKxhlPzqlwzrlwzrlwzbN5X7NAV4LFP5BLqa7YXl7xsA/wq83/ZjkjYC/qfs80yXbY3flvzqlwzrlwzrlwzbN5X7NNMQxjLZfsX2wvKtgKeBX5WD44+Bk4Hpw3ZwDIvkV79kWL9kWL9k2L6p3Ke5Ah7LRdJc4DFgL4bsttBUkPzqlwzrlwzrlwzbN1X6NAV4TIgkAdOB+8vX3W0v6LZVMV7Jr37JsH7JsH7JsH1TrU9TgMdykXQkcLvt+7puS0xc8qtfMqxfMqxfMmzfVOnTFOCxXCTJ+c9TreRXv2RYv2RYv2TYvqnSpynAIyIiIiL6KLOgRERERET0UQrwiIiIiIg+SgEeEREREdFHKcAjIoaUpNMkfWIpr8+StOU4fs5r9pP0KUl7tNXOiIipJgV4RMTUNQtYZgE+ej/bf2375klrVUTEkEsBHhExRCSdIukBSd8HNi/bjpF0u6S7JV0taVVJOwL7AWdLukvSJuXPNyT9SNK/SdpiCfvNlfSh8rN/LumM8todkraVNE/Sg5KO7WnXJ0sb7pF0egddExExMFbsugEREdEOSe8EDgK2oTm/3wn8CLjG9oVln08DR9s+V9L1wA22ryqvfRs41vYCSTOBL9vebYz9Rr/1I7a3kfR3wFzgXcDKwI+B8yXtBWwGbA8IuF7STrZvnbTOiIgYYCnAIyKGx3uAa20/D1AKZ4DfL4X3WsAMYN7ofyhpBrAj8M89BfZK43zfkfe5F5hh+1ngWUmLJK0F7FX+zC/7zaApyFOAR8SUlAI8ImL4zQVm2b67LPO8yxj7rAA8bXub5fj5i8rXV3v+PvL9ijRXvc+wfcFy/OyIiKGTMeAREcPjVmCWpFUkrQ58oGxfHXhM0nRmazuaAAAAxUlEQVTg0J79ny2vYXsh8JCkA6BZDlrS1qP3W07zgKPKVXYkvUnS+q/j50VEVC0FeETEkLB9J3AlcDdwE3B7eelU4Dbg34Gf9vyTK4BPSpovaROa4vxoSXcD9wH7L2G/ibbrm8DXgB9Iuhe4itdX0EdEVE22u25DRERERMSUkSvgERERERF9lAI8IiIiIqKPUoBHRERERPRRCvCIiIiIiD5KAR4RERER0UcpwCMiIiIi+igFeEREREREH6UAj4iIiIjoo/8Djf/L+o16rfQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plot multi step predicted values and actual values\n", "# plot at most five step predict values for better view\n", "plot_less_five_step_result(test_df, pred_df)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAFzCAYAAAB/xLx5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd5xU1fn/32fKzuxsb3RksSEuW5CmsYAighFbFNEgUZNYYgs/jZFYMdFYYqIx+o0mEY3RBBSjQDR2ECOoEaPSlSpLWZbtMzttZ87vj3Pv7Gxflrlb5Lxfr3nN3HbOuXPb5z7nOc8jpJRoNBqNRqPRaDSa7sHW0w3QaDQajUaj0WgOJbQA12g0Go1Go9FouhEtwDUajUaj0Wg0mm5EC3CNRqPRaDQajaYb0QJco9FoNBqNRqPpRrQA12g0Go1Go9FouhEtwDWaXoAQIl8IIYUQjp5uS2cw2nqk8ftJIcSd3VDn5UKI/1hQ7jwhxPOJLre76Avt/7YdOyHE/UKIOXHTPxFClAkhvEKIHAvq61P3h/YQQmwXQpxuUdkvCyHOtKJsjSbRaAGu0fQAVj6Euhsp5TVSyl91tJ4QYrkQ4sfd0SbNwSGEmCSEKO3pdvRGhBB5wA+Ap4xpJ/A74AwpZaqUsiIBdVgpUhN2bK2+puNf9DvJg8C9VrVHo0kkWoBrNIc4Qgh7T7dBo+lDXA68LqX0G9P9ATew7kALEgr9HE4QUspPgHQhxNiebotG0xH6wtdouhkhxN+Aw4ClRpf1z+MWzxJCfCOE2C+EuD1uG5sQYq4QYosQokII8aIQIruN8icJIUqFELcZ5WwXQsyKW/6sEOKPQojXhRA+4FQhhEsI8bBRd5nhVpIct80tQog9QojdQogfNqvvWSHEvXHT5wohPhdC1BrtnSaEuA84GXjc2OfHjXWPEUK8LYSoFEJsEkJcFFdOjhBiiVHOJ8AR7fyn/xZCXN9s3hdCiO8Zv38vhNhplLVaCHFye/9ds3kxa2R7x0EI4RZCPG/MrxZC/FcI0b+Neswy6oQQ64UQ58ctu1wI8R/jeFQJIbbFd6sLIYYLId43tn0byG3nf8kSQvxLCFFulPUvIcSQuOXZQohnjONaJYR4VQiRAvwbGGQcK68QYlArx7nJf9XePrVHXzt2wJnA+8Z2RwObjPnVQoj3jPnfMcqoMb6/E9em5UKI+4QQHwL1wOHN2mzZ/aGdY3vA/41o45pupc7ZQogdxva3N1s2Xgixyih3jxDicSFEkrFshbHaF0b5Mzs6nw2WA2e11haNplchpdQf/dGfbv4A24HT46bzAQn8GUgGioEgMNJY/lPgI2AI4EJ1f/+jjbInAQ2obnEXMBHwASOM5c8CNcCJqJdwN/AIsATIBtKApcD9xvrTgDJgFJAC/N1o65Fx5d1r/B5vlD3FKHswcIyxbDnw47h2pgA7gSsABzAa2A8cayxfALxorDcK2AX8p419/gHwYdz0sUA14DKmLwVyjHpuBvYCbmPZPOD5uP+utK1j1d5xAK42/jcPYAfGAOlttHcGMMj4j2Yax2egsexyIAxcaZTzE2A3IIzlq+KO7SlAndn+VurJAS4w2pQGvAS8Grf8NWAhkAU4gYnt/A+x49zaOp3Yp2/LsSsHxrVy7TqM6WygCphttPkSYzon7jr4Bigwljt74P7Q/H/q0n9Ds2u6lbqOBbyo89SFOm8b4o7JGOB443/IBzYAc+K2j91nOnM+G+vcBPwzUfdq/dEfqz493gD90Z9D8dPOA3ZI3LxPgIuN3xuAyXHLBqJEmqOVsicZD7mUuHkvAncav58FnotbJlBi6Yi4eScA24zf84EH4pYdTdsC/CngkTb2ucnDGiXSPmi2zlPA3caDPowh3o1lv6ZtEZdm7MMwY/o+YH47/38VUGz8nkfnRVybxwH4IbASKOrC+fA5cK7x+3Jgc9wyj/F/D0BZRpsf27/ThgBvpZ4SoCqu7VEgq41z6IAEeCf26Vtx7Fo5L/NpKsBnA58022YVcHncdfDLDuqItbtZHYm6PzT/n7r039CxAL8LWBA3nQKE4vet2fpzgFfippsI8PbO57h5VwLvdfba0x/96amPdkHRaHoXe+N+1wOpxu9hwCtGV2016oEZQfmftkaVlNIXN70DZZ002Rn3Ow8l8lbHlf+GMR9ju/j1d7TT/qHAlnaWxzMMmGDWadQ7CyU081AP/07VK6WsQ1lzLzZmXQK8YC4XQvxMCLHBcAmoBjJox3Wjgza3dRz+BrwJLDBcOh4SaoBeC4QQPxDKTccsZ1Sz9sTOAyllvfEzFXUsWju2rSKE8AghnjJcAGqBFUCmUH7/Q4FKKWXVgf0FbdbV0T61Sl87dqgXgLR26hlEy2OyA9UbZLKTrpGo+0NzEvXfNKfJvcM4b2ODVIUQRxtuJHuN8/PXtO9S1d75bJKG6kHRaHo1WoBrND2DPMD1dwJnSikz4z5uKeWuNtbPMvw9TQ5DuTG0Vv9+wA8UxJWdIaU0H+57UGItvqz22tmWr3bzfd4JvN9sn1KllD9BdfM3HEC9AP8ALhFCnIByq1kGIJTP8M+Bi1DW3kyUm4xopQwf6mUEY1s7jS8iZptbPQ5SyrCU8h4p5bHAd4DpKPeKJgghhqFcCa5HuSVkAmvbaE9z9tD6sW2Lm4ERwAQpZTrKFQCjrp1AthAis5XtWjs/m/w3qBclVdjB7RP0kWNn8CWqF6gtdqMEbTyHoVyoTDq6/q28P7RWdlf/m47a2eTeIYTwoNxITP4IbASOMs7P22j/nGnvfDYZCXzRQbs0mh5HC3CNpmcoo9ngqw54ErjPEDoIIfKEEOd2sM09QogkQ8RMR/lLtkBKGUWJp0eEEP2M8gcLIaYaq7wIXC6EONZ4gN7dTp1PA1cIISYbA7sGCyGOMZY13+d/AUcbg7ScxmecEGKklDIC/BOYZ1i9jgUu62B/X0cJn18CC439AmURa0CJeocQ4i4gvY0yvgLcQoizDCvfHSjfVZM2j4MQ4lQhRKEh/GpRXfhRWpKCEi7lxnZXoKzFHSKl3AF8SuOxPQk4u51N0lAvV9VCDaqLHTsp5R7UgLz/Mwa3OYUQpqApA3KEEBlxZX0OfFeogZsDUO4CB71PBn3l2JltndjBvhwthPi+EMIhhJiJ8oX+VzvbNMfK+0Nrx7ar/01H7VwETBdCnCTU4Mpf0lR3pBlleo37xE9aaevhzdZv9XyOYyLqvNZoejVagGs0PcP9wB1Gl+/POrH+71GDJN8SQtShBkxNaGf9vaiu8t2o7vxrpJQb21n/VmAz8JHRtfsOytKElPLfwKPAe8Y677VViFRhwK5ADeqsQUWLMK2BvwcuFCp6wWOG68EZKNeD3UabH6RRNF2P6mLfi/I/fqad9iOlDKJE++kov2iTN1EuNV+hXAECtOECIKWsAa4F/oKyWPqA+Mga7R2HASjBUYvqwn8f1X3fvI71wG9RfsFlQCHwYXv71ozvG3VWogTIc+2s+yhq0N5+o61vNFs+GyWoNgL7MES1ca78A9hqnKODjH35AuWf/BZq8GZC9qmvHDuD51AvIsmtLZQqDvh0lLW2AmXBny6l3N9Gea1h2f2hjWPb1f+myTXdSl3rgOtQx3QP6p4Uf0x+hjqf61BGgIXNipgH/NVo50V0cD4LIcYBXuM+pNH0asxR9RqN5luCEGISamBa8/BcGo0mAQghfg3sk1I+2tNt0TQihHgZeFpK+XpPt0Wj6QgtwDWabxlagGs0Go1G07vRLigajUaj0Wg0Gk03oi3gGo1Go9FoNBpNN2KZBVyo9LWfCJVSeJ0Q4h5j/nAhxMdCiM1CiIWiMe2sy5jebCzPjyvrF8b8TXGRGRAqxfUmY9lcq/ZFo9FoNBqNRqNJFFa6oASB06SUxahsVdOEEMejohw8IqU8EjUi+kfG+j9CJZg4EhVB4UEAI/zYxai0vdNQIbPsRkikJ4AzUSGeLjHW1Wg0Go1Go9Foei0OqwqWyrfFa0w6jY8ETkOFHQL4KyrM0B+Bc43foEIePS6EEMb8BUaYqm1CiM3AeGO9zVLKrQBCiAXGuuvba1dubq7Mz88/yL3TaDQajUaj0WjaZvXq1fullHmtLbNMgEMsE9lq4EiUtXoLUC2lbDBWKaUxPe9gjPiuUsoGIUQNKmPWYFS8T1rZZmez+e3FRQYgPz+fTz/9tEv7o9FoNBqNRqPRdAYhxI62llkaBUVKGZFSlgBDUFbrYzrYxBKEEFcJIT4VQnxaXl7eE03QaDQajUaj0WiAbgpDKKWsBpYBJwCZQgjT8j4ElbEM43sogLE8A5VFLDa/2TZtzW+t/j9JKcdKKcfm5bXaE6DRaDQajUaj0XQLVkZByRNCZBq/k4EpqDS2y4ALjdUuAxYbv5cY0xjL3zP8yJcAFxtRUoYDRwGfAP8FjjKiqiShBmousWp/NBqNRqPRaDSaRGClD/hA4K+GH7gNeFFK+S8hxHpggRDiXuB/wNPG+k8DfzMGWVaiBDVSynVCiBdRgysbgOuklBEAIcT1wJuAHZgvpVzXlYaGw2FKS0sJBAJd3VfNIYbb7WbIkCE4nc6ebopGo9FoNJo+xiGXiGfs2LGy+SDMbdu2kZaWRk5ODirwikbTNlJKKioqqKurY/jw4T3dHI1Go9FoNL0QIcRqKeXY1pbpVPRAIBDQ4lvTaYQQ5OTk6B4TjUaj0Wg0XUILcAMtvjUHgj5fNBqNRqPRdBUtwPsgy5cvZ+XKlQdVRmpqakLakqhyNBqNRqPRaA4VtADvgyRCgGs0Go1Go9FoegYtwHsJ5513HmPGjKGgoIA//elPsflvvPEGxx13HMXFxUyePJnt27fz5JNP8sgjj1BSUsIHH3zA5ZdfzqJFi2LbmFZpr9fL5MmTOe644ygsLGTx4sUt6o1n7ty5PPHEE7HpefPm8fDDD3eqnOXLlzN9+vTY9PXXX8+zzz4LwOrVq5k4cSJjxoxh6tSp7NmzB4DHHnuMY489lqKiIi6++OID/9M0Go1Go9Ec0rz0Eni9Pd2KA8fSVPR9kTlz4PPPE1tmSQk8+mj768yfP5/s7Gz8fj/jxo3jggsuIBqNcuWVV7JixQqGDx9OZWUl2dnZXHPNNaSmpvKzn/0MgKeffrrVMt1uN6+88grp6ens37+f448/nnPOOadN/+WZM2cyZ84crrvuOgBefPFF3nzzzQMuJ55wOMwNN9zA4sWLycvLY+HChdx+++3Mnz+fBx54gG3btuFyuaiuru6wLI1Go9FoNBqTL76Aiy6CSy+Fv/2tp1tzYGgB3kt47LHHeOWVVwDYuXMnX3/9NeXl5ZxyyimxUHfZ2dkHVKaUkttuu40VK1Zgs9nYtWsXZWVlDBgwoNX1R48ezb59+9i9ezfl5eVkZWUxdOhQwuHwAZUTz6ZNm1i7di1TpkwBIBKJMHDgQACKioqYNWsW5513Huedd94B7ZtGo9FoNJpDm/p69f3VVz3bjq6gBXgzOrJUW8Hy5ct55513WLVqFR6Ph0mTJuH3B+hsiHaHw0E0GgUgGo0SCoUAeOGFFygvL2f16tU4nU7y8/M7DJ03Y8YMFi1axN69e5k5c2any4lvAxBbLqWkoKCAVatWtajrtddeY8WKFSxdupT77ruPNWvW4HDoU1Kj0Wg0Gk3HmDrJkD19Cu0D3guoqakhKysLj8fDxo0b+eijj9i5E/r3P54VK1awbds2ACorKwFIS0ujrq4utn1+fj6rV68GYMmSJYTD4Vi5/fr1w+l0smzZMnbs2NFhW2bOnMmCBQtYtGgRM2bM6HQ5w4YNY/369QSDQaqrq3n33XcBGDFiBOXl5TEBHg6HWbduHdFolJ07d3Lqqafy4IMPUlNTg7cvOnFpNBqNRqPpEXw+9W3Inj6FNjf2AqZNm8aTTz7JyJEjGTFiBOPGHY/fD3Z7Hn/605/43ve+RzQapV+/frz99tucffbZXHjhhSxevJg//OEPXHnllZx77rkUFxczbdo0UlJSAJg1axZnn302hYWFjB07lmOOOabDthQUFFBXV8fgwYNjriKdKWfo0KFcdNFFjBo1iuHDhzN69GgAkpKSWLRoETfeeCM1NTU0NDQwZ84cjj76aC699FJqamqQUnLjjTeSmZmZwH9Vo9FoNBrNtxnTbtcXLeA6FT2wYcMGRo4c2UMtaklFBRhGb8a2msBU0xvobeeNRqPRaDQ9zX//C3Y7HHec9XU9/zzMng35+Y26qTfRXip6bQHvBaxZA+np0L8/uN2Nb3I62aJGo9FoNJq+xPjx6rs77Lt92QKufcB7GCkhGITycli7Vs3ri75MGo1Go9FoNN1JX/YB1wK8h4lEWs4z3+Sk7J43SI1Go9FoNJq+hraAa7pMawI8/k0uLrKfRtNjRKMq2cHbb/d0SzQajUbTWzEt0gAdRD1OaH3x9fYVtADvYRoa2p+nBbimN/DJJyrd7w039HRLNBqNRtNbKS9v/L1vn/X1mRbwhoa+p5e0AO9hWrOARyJgM45MXzuhNN9O/vUv9V1S0rPt0Gg0Gk3vJV50l5VZX1+85buv+YFrAd7DmAJ8wYLHmDFjJLNmzeK995bw178+AHROgG/fvp2///3vFrayaV2jRo0C4NNPP+XGG29sd/1f//rXB1zHs88+y/XXX9+l9llRjgZ27VLfdnvPtkOj0Wg0vZd4C3h3CPD4/H2mH/jvfgcbNlhf98GiBXgPYwrwRYv+j8cff5u//e0FTjnlHK65Zi7QVIA3tOavQmIEeKQ1U3wHjB07lscee6zddboiwDW9DzPxak1Nz7ZDo9FoNL2XiorG3z0hwINBuPnmxlCIvRktwHuYSATuv/8adu3ayk9/eia/+90jLF36LL/+tbLcXnXV5VxzzTVMmDCBn//857z//vuUlJRQUlLC6NGjqaurY+7cuXzwwQeUlJTwyCOPNCl/+fLlnHLKKZx11lmMGDGCa665hqih6lNTU7n55pspLi5m1apVrF69mokTJzJmzBimTp3Knj17AFi9ejXFxcUUFxfzxBNPNCl7+vTpAHi9Xq644goKCwspKiri5ZdfZu7cufj9fkpKSpg1axYAzz//POPHj6ekpISrr746JvyfeeYZjj76aMaPH8+HH37Y4n+KRqPk5+dTXV0dm3fUUUdRVlbG0qVLmTBhAqNHj+b000+nrJWr/vLLL2fRokWx6dTU1Njv3/zmN4wbN46ioiLuvvtuAHw+H2eddRbFxcWMGjWKhQsXdvaQfisxBXhtbffUV1EB99zTuouWRqPRaHon8S4h3SHA459JwWBj/fHCvLeiE/E0Y84bc/h87+cJLbNkQAmPTnu01WWRCPziF0+yatUbPPnkMk4+OZdf//rZWBIeKaG0tJSVK1dit9s5++yzeeKJJzjxxBPxer243W4eeOABHn74Yf5lOuo245NPPmH9+vUMGzaMadOm8c9//pMLL7wQn8/HhAkT+O1vf0s4HGbixIksXryYvLw8Fi5cyO233878+fO54oorePzxxznllFO45ZZbWq3jV7/6FRkZGaxZswaAqqoqLrjgAh5//HE+/1z9nxs2bGDhwoV8+OGHOJ1Orr32Wl544QWmTJnC3XffzerVq8nIyODUU0+NpbI3sdlsnHvuubzyyitcccUVfPzxxwwbNoz+/ftz0kkn8dFHHyGE4C9/+QsPPfQQv/3tbzt1bN566y2+/vprPvnkE6SUnHPOOaxYsYLy8nIGDRrEa6+9BkDNIW767W4Bft11sHAhnHACnHFG99Sp0Wg0moPDFL5CNArwHTvA74djjkl8ffHPpFCobxlttAW8h2k+aMA8eWxxR2bGjBnYDefbE088kZtuuonHHnuM6upqHI6O36HGjx/P4Ycfjt1u55JLLuE///kPAHa7nQsuuACATZs2sXbtWqZMmUJJSQn33nsvpaWlVFdXU11dzSmnnALA7NmzW63jnXfe4brrrotNZ2VltVjn3XffZfXq1YwbN46SkhLeffddtm7dyscff8ykSZPIy8sjKSmJmTNntlrHzJkzY5boBQsWxNYrLS1l6tSpFBYW8pvf/IZ169Z1+J+YvPXWW7z11luMHj2a4447jo0bN/L1119TWFjI22+/za233soHH3xARkZGp8v8NtLdAtx83+lrg2o0hxZ33gmtdNhpNIcspgV6+HA1IHPDBpUm/jvfsaa+2lpwudTvUKhvhSPUFvBmtGWptgqvt/Hksdkafb7NwW5SQkpKSmz9uXPnctZZZ/H6669z4okn8uabb3ZYh2iW096cdrvdMWEvpaSgoIBVq1Y1WTfe5eNgkVJy2WWXcf/99zeZ/+qrr3Zq+xNOOIHNmzdTXl7Oq6++yh133AHADTfcwE033cQ555zD8uXLmTdvXottHQ5HzPUmGo0SMkZrSCn5xS9+wdVXX91im88++4zXX3+dO+64g8mTJ3PXXXcdyO5+qzCtGt0lwM0EVM1OXY2m1yAl3Huv+uiEaRqNwuuF5GQYOFBZwO+5R82vqrKmvpoayMuD0tJGH/C+graA9yDhsOqWyc1tFNymBTzeBSWeLVu2UFhYyK233sq4cePYuHEjaWlp1Jkmylb45JNP2LZtG9FolIULF3LSSSe1WGfEiBGUl5fHBHg4HGbdunVkZmaSmZkZs5q/8MILrdYxZcqUJv7hVcbV5nQ6CRtmzMmTJ7No0SL2GXGKKisr2bFjBxMmTOD999+noqKCcDjMSy+91GodQgjOP/98brrpJkaOHElOTg6g3EMGDx4MwF//+tdWt83Pz2f16tUALFmyJNamqVOnMn/+fLyGwty1axf79u1j9+7deDweLr30Um655RY+++yzVss9VIi3gHeH2DDr0GE4Nb2Vvph5T6OxGp8PUlOhf3/YvRsML06g9bwnB0M0qp5NublqOt4HHHr/NaoFeA9inoymBVzKli4ozcXOo48+yqhRoygqKsLpdHLmmWdSVFSE3W6nuLi4xSBMgHHjxnH99dczcuRIhg8fzvnnn99inaSkJBYtWsStt95KcXExJSUlrFy5ElADJK+77jpKSkqQbaivO+64g6qqKkaNGkVxcTHLli0D4KqrrqKoqIhZs2Zx7LHHcu+993LGGWdQVFTElClT2LNnDwMHDmTevHmccMIJnHjiiYwcObLN/2zmzJk8//zzTdxU5s2bx4wZMxgzZgy55pXYjCuvvJL3338/NuDU7FU444wz+P73v88JJ5xAYWEhF154IXV1daxZsyY2WPSee+6JWdsPVUwBHg6rm5yU1opj8zTrS92JmkMLv7+nW6DR9D58PkhJgQEDYNMmZRE//ni1rLIysXWZPbPmY7+5C8qWLYmtL9GItgTVt5WxY8fKTz/9tMm8DRs2tCv6rMLnU/5RRx6pTqSyMhg2DLZvh4ICybrt5QzIyGLIIGeX61i+fHm7AzQ1XaenzpvuJhRSL4kDBsDeverzl7/AHXeoVMPmC2QimTIF3nkHnn4afvjDxJev0Rwsu3eD0fGmXVA0GoPvfQ++/houvlg9IwB+9Ss1XmL9ekjkI7O0FIYOhUsugX/8A5YvV3HIZ8xQy3vD80MIsVpKOba1ZdoC3oOYN22bTbmcxFvAvZFKyPiGOrm35xqo0dBoZTjsMPVdXa1upgDffGNt3doCrumt1Nf3dAs0mt6HaQEfMqRx3lhDfsbHCE8E5piktizgRid+r0UL8B7E7MIXotHn2xTg1UFjxII8uEM0adIkbf3WHBSm+4kpwCsrG18et22zpk7tgqLp7cQL8O4KfXbttT1v0dNo2sPrBWfWHn5amgeHfQCoQZJgnQDPyg1Cyr4mPuBXX90o/HsrWoD3IM0t4CR5aYhIhIBgJABAVPdtanoY0wKeMWw7nHIv+8obnb+3b7emTnN8hBbgmt5KvABPtG9rW/zxj/DMM91Tl0bTFXw+8A14l5qG/TD1ZgCMeAkJF+BmuNq3XFfDLf3xBYKxZ8bDD8M11yS2vkSjBXgPEm8BD1ANuRvxyXJsdkmwQcXSidKHosprvpWYg83+nnYcnHYnK9Ztii2zygJu3kS1ANccCJFI4iMttEVPCPDW+O9/YfbsvpWARPPtxeeDUNpGNZG1laxsSf/+4HCoQZmJxLwG14ZVL/+62lWxZ4bHk9i6rEAL8B4kFkVCRKiVuwBokGFszhASZfmWUt9VNT1LIADYQ/hRblGf7tgQW7Z5szV1mlZ3LcA1B8L06eDs+pj1AyI+CkoC0yUcMBMmwPPPq8HRGk1P4/VCnecLNeGpYMEb20lOhokTYenSxNZlhhkcllwAwJe1y/D5VBxyWx9Qt32gid9eTO+SMn8pYdTdXEbsCEdjJHltAdf0NIEAkLIvNv1V1XpADbLZsKGNjQ4SLcA1XeGNN7qvLmV9k5DkjXWF9wTmc6QnrfAajYnPB/VJOxmWMQyAfS6VKvbUU9XzIpHhO82kO1GhflSG98QGgfYFtADvQUwLeEM0zClHqVTv0YhA2FWSGCEdSNoPtvzoo49S303D8SdNmoQZwvG73/1uu1kyX331VdavX3/AdaSmpna5fVaUozFucillsem9EaW6p0yBr76yJl28FuCag6E7hs7U1wMlf4Xb0ti4z6KuoDYwLX/mdQKwf3+3NkGjaZVAAIK2/UzKn4Tb4eazPSqJnSmKA4HE1WVeB7WRcgC8DdVUV0NmJjREu8kX7SDQArwHiaWdt9kb58kowq5OHFvUhRTtW8APVoA3dNFh8vXXXyczM7PN5V0V4JreR7wFXITSIPtrHA6YNEmJbyvcUMxTurkALy+HJUsSX5+m7xN/rnRHOur6emD4ewB8tP9Ny+uLf6kwoz+UljbOS/QAN43mQIlEIByW+MV++qf054isI9hSpbLhmPkiEnltmmVVh5QAr4/UUFkJkaL5OH/lZE/dnsRVZgGWCXAhxFAhxDIhxHohxDohxE+N+fOEELuEEJ8bn+/GbfMLIcRmIcQmIcTUuPnTjHmbhRBz4+YPF0J8bMxfKIRIsmp/rMC8oTbIRhOi11fLjy+9gEunXspFU85j2VvvAODz+TjrrLMoLi5m1KhRLFy4kMcee4zdu3dz6qmncuqpp7YoPz8/n5///OcUFhYyfvx4NtmsChsAACAASURBVBtK6fLLL+eaa65hwoQJ/PznP8fn8/HDH/6Q8ePHM3r0aBYvXgyA3+/n4osvZuTIkZx//vn44/qO8vPz2W+YXJ577jmKioooLi5m9uzZrFy5kiVLlnDLLbdQUlLCli1b2LJlC9OmTWPMmDGcfPLJbNyoBmls27YtloWyrWyTc+fObZLmft68eTz88MN4vV4mT57McccdR2FhYazd8Sxfvpzp06fHpq+//nqeffZZAFavXs3EiRMZM2YMU6dOZc8edbE+9thjHHvssRQVFXHxxRe3cwQPDQIBIFVZwLO834GsLQwapBJIAezYkdj6IpFGy0Z8KuGNG6FfPzj3XJ2FUNOSr79u/B1vGbaK+nqgRsXm3Or7Einhyy+tcwWJFy6mAN+1q3GetoBreppAAEjy0UCQXE8uR2QfwZZKiwW4PYivQcXK9UWrqaoC75BXAHhn6zuJq8wCHBaW3QDcLKX8TAiRBqwWQrxtLHtESvlw/MpCiGOBi4ECYBDwjhDiaGPxE8AUoBT4rxBiiZRyPfCgUdYCIcSTwI+APx5Uq+fMgc8/P6giWlBSAo8+2mK2aQEPR8KAUO6ELieP/vlJ3NkN1JZJZp17Ljf98AbeeOMNBg0axGuvvQZATU0NGRkZ/O53v2PZsmVtpmDPyMhgzZo1PPfcc8yZMycWE7y0tJSVK1dit9u57bbbOO2005g/fz7V1dWMHz+e008/naeeegqPx8OGDRv48ssvOe6441qUv27dOu69915WrlxJbm4ulZWVZGdnc8455zB9+nQuvPBCACZPnsyTTz7JUUcdxccff8y1117Le++9x09/+lN+8pOf8IMf/KCJyI5n5syZzJkzh+uuuw6AF198kTfffBO3280rr7xCeno6+/fv5/jjj+ecc85BmEHV2yEcDnPDDTewePFi8vLyWLhwIbfffjvz58/ngQceYNu2bbhcrnbdbA4VlAVcCfCC9O/wgeNNCsZWMWRIFtDUCpcIYuL6zBvYNMAOqGvn/PMb16mrUwNtNBqT//0PEBG48BJe+d+1rPrHJB55BDIyrKmvvh5IUg/+XaF1PP88/OAHcMIJ8OGHjbkdEkW8hb81Aa4t4Jqexu8HPMoanevJ5cisI3l7y9tIKXG51AWRSAEeCgEp5bHpgFQW8CwxnHLg3W3vMrt4duIqTDCWWcCllHuklJ8Zv+uADcDgdjY5F1ggpQxKKbcBm4HxxmezlHKrlDIELADOFUplnQYsMrb/K3CeNXtjDVKqkbrhaBgBEHWCiPD7hx7kotMu4qrvX0r53n2UlZVRWFjI22+/za233soHH3xARiefKpdccknse9WqVbH5M2bMwG5Xri9vvfUWDzzwACUlJUyaNIlAIMA333zDihUruPTSSwEoKiqiqKioRfnvvfceM2bMiL0AZGdnt1jH6/WycuVKZsyYQUlJCVdffXXM2vzhhx/G2jh7dusXyujRo9m3bx+7d+/miy++ICsri6FDhyKl5LbbbqOoqIjTTz+dXbt2UVZW1moZzdm0aRNr165lypQplJSUcO+991JqKMmioiJmzZrF888/j8Nh5Ttq38B0QUl2eJhinAOnnLuFgQOVyLBMgE94nL3Dfg+oeONGpwnQPRZOTd9i9WpgwOdQ8BJz3ruSZ56B+fOtq8/vB+FRL+jVckcsJv6qVSo0YKJpTYCb157Npi3gmp4nEAA86kTM9eRydM7R+Bv8bK7cbJ0F3KgPXy5+WUNVFQi3GhW9cN1Cyn3lbRfQw3SLuhBC5AOjgY+BE4HrhRA/AD5FWcmrUOL8o7jNSmkU7DubzZ8A5ADVUsqGVtbvOq1Yqq0iGgVhDzcOFpB2/r30FSorK3j53ZdxRnI47YSx1PvrOfroo/nss894/fXXueOOO5g8eTJ33XVXh3XEW4Pjf6fEDROWUvLyyy8zYsSIxO1cHNFolMzMTD5vo2ehMxbrGTNmsGjRIvbu3cvMmTMBeOGFFygvL2f16tU4nU7y8/MJNBvh4XA4iEYbB7Kay6WUFBQUNHkpMXnttddYsWIFS5cu5b777mPNmjWHtBAPBoHkKrLd2Zw/8UjuWg/5x23G6RzLgAGJF+CtDWkw3QvmzFGXqBbgmuZ8+SWQ/z4Aono4AG63dfX5fGD3VNMAeG27qK4LAcoL8quvYPz4xNdnEm8Bz8qC9HRtAdf0PMoC3ijAR/UbBcDSr5ZylOsmIPEWcFtqOVFAVB9J0PM5/irIclXgsrtIdiTzZdmXTD58cuIqTSCWD8IUQqQCLwNzpJS1KBeRI4ASYA/w225ow1VCiE+FEJ+Wl/eetyEpgSRDbQgB0oa3rpbs3CySXcl8svIj9pTuIRKNsHv3bjweD5deeim33HILn32mRhanpaVRZ+YKb4WFCxfGvk844YRW15k6dSp/+MMfkIZT+v/+9z8ATjnlFP7+978DsHbtWr788ssW25522mm89NJLVBh3/0rDATK+Xenp6QwfPpyXXnrJ2G/JF1+oOKEnnngiCxYsAJSgbouZM2eyYMECFi1axIwZMwDlhtOvXz+cTifLli1jRyvOyMOGDWP9+vUEg0Gqq6t59913ARgxYgTl5eUxAR4Oh1m3bh3RaJSdO3dy6qmn8uCDD1JTU4O3F6q9++6DP/+5e+pSfn1eUl2pHJ51OEDMr2/w4Kbd4ImguX93sCGIeYoPHKi+e+Eh0fQw1dWQdIS6ngN+1bsXP4Yg0fh8YDMs4AhJmb80Fukh0eMioOk5Hy/ABw9WUR+0t5ymp1ECXGmB7ORshmcNp2RACS+seYGkJKUvEm0Bd2QoTeesPYoGESAqgoQdFZw87GR237y714pvsFiACyGcKPH9gpTynwBSyjIpZURKGQX+jHIxAdgFDI3bfIgxr635FUCmEMLRbH4LpJR/klKOlVKOzcvLS8zOJYBoFHAqs4YAkDbOPG86675Yw/STprPk5UXkH5lPQyTCmjVrGD9+PCUlJdxzzz2xAYtXXXUV06ZNa3UQJkBVVRVFRUX8/ve/55FHHml1nTvvvJNwOExRUREFBQXceeedAPzkJz/B6/UycuRI7rrrLsaMGdNi24KCAm6//XYmTpxIcXExN92k3nIvvvhifvOb3zB69Gi2bNnCCy+8wNNPP01xcTEFBQWxAZO///3veeKJJygsLGRXO0quoKCAuro6Bg8ezEBDhc2aNYtPP/2UwsJCnnvuOY455pgW2w0dOpSLLrqIUaNGcdFFFzF69GgAkpKSWLRoEbfeeivFxcWUlJSwcuVKIpEIl156KYWFhYwePZobb7yx3WgvPcUdd8BV11gQ/68VlACvI92VhsfpYVDaIDZXqQG9/ftDJ71+Oo3fDzgbzeC763bHxIcW4Jq28PuBfmsBiLjVSWmlVdjrBZKrsTekA1AW3E6/fmqgsBUCPGYBz1+GP6Su/dJSJcAzMujRWOQaDTQaawDSXeq6uOq4q/hsz2dsCX7cuE6CCIXAnqYEuMtnRAVw1xCwVZCTnIPbYWEXWAKwrF/d8NF+Gtggpfxd3PyBUkozNsz5wFrj9xLg70KI36EGYR4FfILSpkcJIYajBPbFwPellFIIsQy4EOUXfhnQMgxGLyYaBWxhHDYHe/d62bjvKzJz05i/dD6D0wYT8nkoj37NoKwhjDz6GKZOndqijBtuuIEbbrihzTpuueUWHnzwwSbzzCggJsnJyTz11FMttk1OTo5Zp5uz3XR4BC677DIuu+yyJstPPPHEFmEI32glS8bw4cObuIHce++9rdYHsGbNmibTubm5rbqQVFTA8uVeamtV1+xDDz3EQw891GK9kpISVqxY0WL+f/7znzbb0GvI+QpuGMFT//0zV4/7saVVBQIg3HWkudIAVGgpwwLudifeylhfDyQ3hpIorS2lrk65FGgBrmmL+lCAUJrhq2QMGrbSL9rrBVzVpAePpcrxEZXhPaSmQm6uhQJ8wP/g8tNYWHETP+K37NqlxvhvqV1P+c5M1KNTo+kZ/H5iAjw1SeXimF08m7nvzuXl3b8DFhIMJm50cjAItrRy7MJOSjifOgBXDfWykpzknITVYxVWWsBPBGYDpzULOfiQEGKNEOJL4FTg/wFIKdcBLwLrgTeA6wxLeQNwPfAmaiDni8a6ALcCNwkhNqN8wp+2cH8SjpSALYJd2NWIeWkHh+p/T7InYbep96NwpPcHlO9NmJagRL5p9yaUpU+9jFzz+pVcf8d2SxOPKAHujd1Qj8w+kq8qvgIgKSnxMZf9fiC50XRZ5ivTLiiaDvEmfa2ioFTlq7j1Imq5BTySVE22VMG66iLlpKXB4YdbExvf5wOSlBl8U+B9wmHV+zRosGR5QQEbJhUnvlKN5gAwe0sBUpKUP1ZqUio3jr+R98pegmMXJdwFRaSUk+PJIRkjAISnAl+kihzPISzApZT/kVIKKWWRlLLE+LwupZwtpSw05p8TZw1HSnmflPIIKeUIKeW/4+a/LqU82lh2X9z8rVLK8VLKI6WUM6SU3ZB+IXFEo4CIYhM27HZA2gxfFCXAHUaCnoZI19LRb9++vc3whN9mzNxCXcwxdMBEo/CjH8HHH3dPfeXlQOre2PQT7/+DrVutqy8QAJFUR1qSsoAfk3sMZb4yqgPVuFyJt4DH+xEC1IfrqasDu11ZF0ELcE1LAqJK/dg3CuwN4K6y1AJe540QcdSS68iHiAOv3EdaGhQWwtat0M7QnC7h8wEOZVXwRvezZ48y4iT3/waAqFuHQdH0LKYFPNmegk00yst7Tr0Hh80JAz9L+CBM6Sknz5NHit2IDJe7kShRBqcdfEwOq9GZMHsQKWkqwKONHkFKgKvpvpBStTcRDAIOP95Q96i0b76B+Stf4fh/uXh45cMdb3CQ7NsHpO2BqB38mZBeyrp1HW7WZYJBkHECfGTuSAA27d+EM0km3AKuXFBaCvC0NPUBLcA1TZESQhgnRaXhC5paZqkFvC6kRkJmurKgPg8fSoAXG4boZh5zB41yeVF1eqP7Y2MvKlMag4dZ2ROm0XSE6QOe4kxtMt8mbPRPHgTpuxIfhtBVS6Y7k1SnMVarvwoWMSxzWOIqsggtwA1kD9y5lACPYLfZcTiAiDO2LMmehMOI090Q7ZoF/FAlEgH6raM2aSNRGe1w/a4Qf75s3YoKf+YIsfKbj9reKEEoC/ge3JH+UDsU0nexdm2Hm3WZQACksy7mgnJMrhrsevzTx/N55jxrLODuxhFl8QJcOAOQ8Y0W4H2AaBT+9J9FfPjNh5bXFd/1TdUR6julLOFW6HjqwirsSLYnE3z9YgK8sFAtT/RLsXJBUTsUwhdzsdsXMQLkR234fFqBa3oO0wKe6kxrsWxgymBIS6wAD4VAOn14nB7SnIYF3HDPPCzjsMRVZBFagANut5uKiopuF+FSgjQs4EKgEvEYCCGw2wRE7doCfoDEe+xUWPAEllJSUVGB2wgyvHUrkLkNgMp660MRlJcDabvJdg6EukGQtovly62rrz7QgHQEYoMwD886nAuPVRlOt7gXWmMBNyx9AL6QEuApGQFKniqGG49gk996Uac5OK67XnL1uzM46ZmTLK9LZaVUb2XOOmUBzxhcZumLmjeiBHhOihLgEbcS4GaOtETX7fMBrsb7mfniW9FgpMmwRdmxryqxlWo0B0AgALgajTXxDEobDOmlibeAO+pJSUoh021YwAcoC/jQ9KFtb9hLOHSzi8QxZMgQSktLsTJGeDSqspVJCZWVKjrH/v0QrtqNz+UmXBZm/54A1Co/vg01GwgGYb9vP16Hl/B+Xwc1aED9v+XlUQip/7GWIAMzW2bnPFjcbjdDhgwBDAGepZywa/y17WyVGKqqgNS9DEofwu7aftD/S95+W7nCHGbBS78vrJSE6YJit9l5acZL3PzmzTy26v+Q4QYSeStRVhRDaEiBL+RXYmboSjX40w6fiSdR47w1vZUnF2yDn3ZPXX4/MXGa5D2CMJA2sIyq1nN/HTRSQn1UCfB+6UqAk72ZtFQsyfgHSoA7U2sxg4/GBHi4MRPWln27KTg88fc7Td8nKqNN/LKtwLSAp7laCvAhGYMh/XUCAUlssNtBEgxC1KEs4MnuVJACUvaR6c6MGYx6M1qAA06nk+HDh1tW/uWXw4oVSqh9/jmcfDKMGaNO1s3fO5kfHz+TJ856gmMnroPrzsQu7DTc1cD69XDmXy5gwuEFfHTTS5a179tERQUUnL4arj4TAHv1Uey/+yusDOW94xsJw5QFvCZovQW8rg5IrmJQViHUDlH+4Nmb2bLlSGsEeIMSNs2tGiUDSmgQAcj8imj0WGwJurcrMVVLEimEQja8QWUBDxzzHnZhx155LHWurmf/WbwYLr5YvQDHJYTVJJD6emDQp7HpUCREkj3Jsvriw5+5g4fhi9rx5JVR6ms0fiSSUAiiTiXAB2RmGj1Ru8nOkrhcSlxYIcCTUutiArw+oF58y4OlZDjyqGkoZ3vFbmBUYivW9Hl+vOTH/HPDP1n1o1WMyLUm4zU0+oCnu1sGfzg8Ox+SfFQGy4F+CakvFIKoox6Pw4PHY4NgOrhrYuOUejvaBaUbyMkxBs7RmEzBZoNwGBpsjeHd8A4AYECq+k5JAUIp1Ie19buz1NUB6UqcDfOfQyTza/7fzyxMhweU11bHwoPVhbpJgLtqGJSTAWsvwSYdcNL9lmXC8zc0jetqMnqgSmrEgM8TKjZ8PhDJtbhFOoQ9MQEeTN/A0TlH4/aNwGfb03FBbXDbbepBsW1b4tqsacqWLUDuxtj0tipr/2yz18QpXLgcLogk8VX/+yF7s3oZSDA+H+BWF9wRgzPVi7AjyOGjKrDZwOGwRoDbU+Jcs4LKCbzMv5OCzAkA7KhKcFpaTZ+n0l/J0/97mqpAFfPen2dpXeaLcLq7pQW8ZKAaHLEz1DKjdlcJBiFq85GSlKL0UkD5f43q1zdeQrUA7wb69VM3T5+vMTGE2w2hhjBRW7BR2Piz4d37eHv22wB4PEAolfoGPeKss9TVEXswnjFO+YIufbfC0ugA+31G0hhfLnVh6wV4bZ0EVy05KRnI8mMoyC2BtD2WZcILRJWCMeO6mozIGYEDFwz4X0IHYu7dC670WpJtSoD7gvXU1IB0VZLrySW5YSABx+4uly+M3k8dMcI6Nm8GMr6JTW+r7g4B7iXZnsr8+ZC77Vq14OillviBqyyYyt969EhDgAPOwesINgRxuxMvwL1esLkbfcC9gSC4avE21DK6n0oovbu269eF5tvJ5koVlN4u7Hy+1yKfLAPTB9x0V4yneEARALsiXySsvlAIIvZ6PE6P0ksOddEV9itMWB1WogV4N9DP6G3Zt6/REu52Q1Aqq6npq/TOO4LHZtzGyDzVfWIKcH9EC/DOYlqHAUoOU9EQKuorLI2TXRkwBHjV4QSjfsIRa1PEV9Z5wRYlw6Xe9vNScsCz3zILeKBBWdqap/V12p0MdIxKuAV8585mAjzsp7oaGpIqyU7OxhMZRIOjlvrwwZk2w9YepkOaLVtQAtzbH4BdtdZaZtXA3TqS7alMnQrlLzxMP8cRkP++JQK8vh5wVyMQZLjTueQsJcCnL5pEzkM5ONMrLbGAC3ejBdwfCkK68v8+Ju9IqM9mb70W4JqmvLZKCfCzR5zN5srNhCLW9QiHQqgwhEktfftyPbkIX3/2yfUtN+wigXAIKRpIcaYog8q6GaRH8znjiDMSVoeVaAHeDfRXzyD27SMWu9XlgpBo6ls7eTLEZ5VPTgZCqTGhrumYeAv44VmHq5nJFZaJU4CakCHAq9U4gtqgtQMxq/zqBcMc9d0vLQeSKyyzgAcjrQtwgMHOkZDzdUIt4Dt3giOlFo+90QJeWwshuxLgqVKlw9xT1zU3FNMCboVrgkaxdSvYsnbAruMB2FVnrQBvLfzZUSljIW9dzO0vkShLXy1uWyo2YePhu4bElvnCPuqnzU54Jl4VBaXx3lIfCsQE+FH9h0LdIPYHtADXNOWldzeDFBwWOIuGaEPMIm4FwSBgD7b6rACwBfLwywOP1HPBBXDOOY0GzFh9Ru+sx+lh507g33/gvrxtlvq5JxItwLsB0wJeVtZ4AgWDEEY9GTxOT6vb2Wxgj6YQjGoLeGdRArwGt90T86XHU2HJQ9jEGzEt4EqAWz0Qsyagys9wKwt4v5Rc8FgnwEOGAE92JLdY1t81HNJ34vUnxpwspRLguGpJcaRDOJm6gLrJ+qkgOzmbNLu6oMrruxa16FAU4Fu2QF6eNSnSW6POK5Hp35DsP5LkSD/LLeCmAI9PAJKTrK4LKyzgKvxZAJdNXRP9U/rHlgkEoYHLCQQTm4PA54OIqzI2XR8MQroKQXhU/yFQN4jKBu0D3tsJNAS4e9ndlhtqTEprS8HXj4WPHgfAO19ssKyuUAiwh3DZXa0ut4cz8MsDt4b985+wdGmjMdMkEFUP9pSkFI4wwv+PG3fAxfcYWoB3A625oNTUQFi2LWxMHNHUxgxvmg4xLeDpSRnkJOeomckVloktvx8anEa6vep8oFEgW0VNSN3ATBeUHE8OuGuorLbGpyIk/UDrFvAB7nywRdlZXdpiWVeoqFD/adRRh8eRFhuEicNPGL9yQXGo7k1f6ODeqqx8KettPPcc7M//Ixf97apuqa8+FFCx4225JAUHd5MFvI7UuPBnuZ4ccFdTU5f4RGahEOAIkGRX14TdZo8tO3vE2UhnPZXR7Qmt0+eDBkclIqSu+/qwsoALBEMyBuEM5+KLVnZQiqanWbxxMb9c8Ut+8c4vLK+rpkZlbPXYMihbp6zC9zxhnQD3ByNgi7QZ8cgRySAoDuz5WNvOe0q8Bfzmm2H1apgw4YCK71G0AO8GzLe2PXsaXVBqayEslZNgW901AE6ZSlj4eiRTZ1/E9AHPdGcqYQqWWsCrqoDkRh9wgKqAtckwvOGmFvBcjwr5VO6z5uFrvii2dp4O8iir//bq7Qmpy7TiB0UNqU7DBSXkjw14y07OJtVlCPAuRgc6FC3gQgDTr+V/tj8ftO98Z6gPqXMmKy0Z6qwX4IEA4PSTktTYm5ibkg1Csq8m8f5nMQu4vfGaSHGq8/K7R34XgAp7YtPTer3KDctRPwiAQDgI6bvol9KPJHsSSaQTpHusqpqu4w0pg9oH33xgeV3btgFJdQzITuPOuSlQPYwqx3oaLMrtFwwrX8S2BLgzkklQHNj1uGlT0+loXMeS6UWQ4kzB4YDjjjugonscLcC7AZdLWcF37mxqAY/QtrAxcchUpIgQjCR4RM+3FJXGvJrM5Aw8To96QFpoAa+uBpIrcYs08Crf5P31+62pzMDXYAhw0wJuWPor6isSXpeU7QvwwSnDANhZtyMh9YVCgLOe+mg1ee6BEPYQaKiPveRkJ2eTmtQ1C3hpKQwYAF8aUbAOJQEez0elH1leRyCszpncDDfB6hyq/Na+lAYCgD1IsrPxHO2frq6Lfd7EXxetCfCrxqjehe8epQR4lTPBAjwQpMHmwxlU9xl/KKhCvrnSAUi2pRM6QOuipvvZWavchvZ4ux5KtbN4vcSikvzyl1DQfyQyZwO7LRoq4A+1L8BdMoOw7cDO0eefV9/Tpqnv+npYb4zjDMlGC3hfRAvwbuKww1SmQlOAV1QAjo4FeBJKbJhvzZr2CYUAdw1ZyWqAYrY7Fzz7LRNbNTWAu4o0RxbUK0v0so+tFeD+qBq8az54+6UoH6fK0N6E12V2tQMkO1u6Spn/c3WC3G6CQWIDywZ4hioBHvVBshJR2cnZpLsP3AL+xRcwdGhjDxQcWgK8thbwq2PVHQLc36DclnKz3ASq0y0fF2EKYk9S4710YIYhwOsS3zNk1hd/7/7NlN+w+6bdDM0Yiss/jBpX4gS4lMTcS5KChgW8IYAtyR9rg8eWQdQWItigjTW9mcXLlQCv9FfSELXIFG2gBHgtacazYnjmcMjYyfbt1tQXbOhIgGcStlcfUI/+M8/AJZeoQZgAL7wABQWwcCFE7Y0+4H0RLcC7iWHDVGSACsMYEy9s2hPgLpRP48H6ux4qhEIYLihx1mELXVCCQcDpx+1IRgTUA//J56wT4FIS6w0xz5uhGUMB8Np3Jry+QABwtO0DnuVRUSfqgnUtlnWFUIjYwLJBKUMhkEWAKkhVLxcDUgeQZgjw2kDnD+oTTzSbIaLUeRM7SK43s38/YFcPx3Xl6yyvzwxdOSAnGQIZ1ARqqamxzo3OFMQpcQJ8SK5KyW6lBTz+mrDb7AxMU9bpNP8ovJ7ECfBAAHArAe4KmQI8iEjyx16MU51KZHXX4D5N1/h8izIwRGWUMm9ZB2sfHF4vkFRHhlvdp4/oNxA8FWzeZk0owoDhguJytD4I0y0ywBY5IDc4vx/y8yHVGN7x/vvq+7PPAKcqp71xdL0ZLcC7icMOg6+/VgJqiBmxqjMCXKizTlvAO0c4DDj9sS6pvJQcS11Q1KjvIC67ixS3U2Xi8uznttusqS8SAWzqJue0OwEYkq5OqHqnVQK87fPU43ZCgyth52cwCGSo/RicOhTqc4naQpDzNQADUweS6VECvKa+8wK8rvn7we0engqdnIgm9wn2VtRDkroI1pStsbw+M3TlwDw3BDOQRPnBldbdw0xBnJzU+OA3LeD7LRgbEauvjXt3RrAAf8pGojIxL3k+H+BRLxKusBL5wYYgIikQEx9pTmV0sLq3QdN1/H4gbTdEHID14TlNF5TMZPVydtRAFRnsq92J7y0F9VIIbVvAPUL1wnX2HI1GoaFBufGaArzK8GaTknZ7Z/sCWoB3E0Maw8Ry2GHGj864oBg+hqZFSdM+oRAIRzB2A8hNURZwqwS4insaIsnuUnHb65XLy/33W5Np0QzzBI03ObfDTXI0j6Drm3a27BqmALdhx2FztFjucgHBNLzhxFvAB6cPjrn10G8NTptT+YAnJ0HUTnV95wXd2rVw5pkwe7YxwxGkaCXL2QAAIABJREFU1LYyIW3uC+ytVb0y9mAOG/dvtPx+Ygrwwf3dEFQP/zVfWScMY4I4zgc8O1lZwKsCFgrwpNbv3R7ykLZwwga8qsybaj+SG5QAD0QCCGejC0qKQ1vAezvbt6OOY5mRFdLi8JymC0pWirKAH5Z9cDkUOsJM8tOmALerl8TqQOcGYsbySzjr+XPZVTAnn63OpY0rOFXvrLaAa9olK6vx9wFZwI14mnoQZucwBap5A8hJzkFY6IKiXImCuBwuJVYNAQ5YMtI8HAbsKtyg0+aMzU+XQwklJ94CbgqNJNH6DS4pCQil4UuQAA8GAXc1HnsqeVnumAC3DVjLgNQBCCFISREQSjkgF5Tt22HECDjmmIQ0s89RE1Yx052bLyQcDfP+9vctrS9gCPAhA9yqVwiIOq0ThoGgBGdTlxAzHXZtIDHnZjytCf543LbEumapJDzqBSY5osJqhSJBcDS6oKQlKQFudRhUTdfZuhUV0am8ALDeAl5TFwZHkJxUdT4OMlykyuqtEeAd+YB77Af2kmhmk91uf4t/l/0ZMnewY9ivACMaSic0VG9GC/BuIiOj8ffAgcaPzghww5eqLw+s+eADEp4Vri1CIZCGSwioGNnSXYmv3hp/X9MFxe1wqUQAvjxI2de4zJL6QghsTWIPZ9gGE/XsSbjV3bSAJ9laP0ddLiCUiq8hgRZwp58ku5vcXGICPJq7PpZYKTkZCKdQdwAC3O+HlBQlwhGJjwvd2zFj7wY/Pw+3w81bW96ytD4zeVN2unJBAYgmWScM/UF1scXfS512JyLiStjLYTytDfqMJ9kQ4ImyRisBrvbDI/NUGyLBJn7o6UZUJG0B771s2RFQVtvKI4HOW4K7SqVPnTNZHiV8zTEKFSFrLeBtJeIxQ3V2tmfIFOC7xMexeXL/CDjtdl5ynqVdUDSdIzOz8fcAI0FjZwS429G3LeDbt8Mp39vAxFsf6ZZY5s0t4LmeXLBFqfZb8/BXD2IlwO+7D6gdiqvfzsa2JBhlAQ/hoKmFIcWeAa6ahL/omPGV2xXgwTTqEyTAY4Pb7MmkpYEjlBtbZj48PB4glEJdsHMCvKFB+c4Ll5ey9Ndg4q8S0ta+RDiqTkbpz2SAZ7DlIdDC8cmbDAv4gSbgOBDqQ63nVHBG0/FFEi9IWxv0GY/HYVjAQ4m0gKv98KCuiVA0oCzgRve7GRUpURGJNIlnd6XhwOzrh1O4EtZD0hZV9eqcSXep8zHPo17ezB6xRBPsyAXFiNPfWQFuPkO3RlZQlDMOdo8hZK+AU37NN+7X2w0Q0BfoUIALIVKEEDbj99FCiHOEEM6OttM0Jd4C3lyAtzViOH5ZX/UBr6gATp/LJ9k3sfSrpR2uf7AEQioTl/m/mTGyq8PWRCaJWcCdLr77XXhgbj5BWyW4aq0T4LYwDtH0BpfqzABXbcJ93U0LeHy843jcbiCUhj+SQAu4Q/m1CtF4/AAOS1eDJ0wLeGcjA5kvJc9xOtetnA6T7okt84f9CWl3b8cU4DS4SLalW24lbRI73vABr/TVWDIuAsAfbt2YkSTTCEQtdEFpQ4CnOCxwQUmqwyGcKpIEEI4GkfbGQZgZyarOqnprRZ2m6+ytMQS4Pwu3SEvYC1pbmONkUpPUCEan3YmjIYO6iDXPw3C0/UGYqa4DE+BqUP4OtoRWctYR5zZx8QQaNVQbFvfeTmcs4CsAtxBiMPAWMBt41spGfRuJF+Cx344ADpGETbR9GJKdfdsFpbyc2AN4yaYlltcXauaDlpWsnO/rwtZ09Zk+4G7jOA3PylcLMnZY6oJib/YOnJaUDu4afL7EKhxTgLvbGOSSnAwE0/BHExgFxdlo1esXd+HkZ+YDpgU8tdNxwAMBQET5Jvpxi2UV/sSHqOuNNBhZd4kkkSS7T4AnO5J5daE6hg32mnbTSh8MbQlwt0gniIUCvA3LW4pFFvAUZ1rMuBCOBonaGwdhZnjUNVNX3zeNNYcC++oMAR7IIgnrBXidv6WLhuv/s3fm8ZJU9dn/Vm/V++27zL0zzM7AsG+CBMQVRREixlfyxrjHJeqrxrjGnajRYNyi0bhrNFESFRQMKLIjIAiyL7Mx+933Xqu7qvu8f5w6VdXd93ZVj/fCDM7v87mf7ltd1VXdXeec5zzn+T2/+gAVbZkIKR8GPG0z4MVqFwB8vawY+rLjFwDgiVliWhxNlTc+xCIIANeEEGXg/wD/LoT4S+CE5b2sp154AbiuJmuRKjGt89KJSvLpRoIyMQFf+EJzydYnKyYmcMqIT5Qmlv18Rksp3Fxcan9K1vIAcOmCUnUmSut7ZGVIcruXVYISDTV3cFld+qvOFJaW0Q3KgFfFUjLgBnH7vl8xEAJLflYFwBMJoJai3A0Az+0G4OPP/jgabme9HNVDD8awsG/GeoxIPbusA78QYHmq/J7/rBVohCC736mDsNShAHgrE5YIZzBD+aXPjagKW3q2cLtQhU/mKksz43ArGmaJRTU0K06NMo2wJwkzIR/zlT+NVZ1DMWbKtiNPpY9wI73sEpSi0T4xTTKAEVoeAG41fAB4XALw+YBLtdUqEJPkzurefmKmm2Ml33AUPXxo6r8hIADXNO1s4FXA1fa2cIf9D8cCsTAAN4iGOi+dHAgD/oEPwPveBzfc0O1VLn1MTABJqTd7QgC4/T2pgViVa18u/aliwJX/sPLkJju8jAx4uwSlJy4H/In80n5OyfRVFnV7CIchZKUxlgiAq/MlbVAxMAAYchVjXY+UoCSTgJXAqAcDGoYBDErv6wuOvoATBl3+YKay9BZ1B2NYwgXgjcryMuCtRcb0iM5gbD30bZcFgZYhlESvFRAnwhmIFeTEdQmjXF1Yc65CFahSSXB/bCgGPKtniEZBq/VQDU+B1nCuIZOMQCNEsXqYAT9YY9aQZFQ63EvYXH4GvFRtbxfp0ABmdLkkKJ0L8fQk7CJqlS4AuF1sJxVL0p8cgJiHeMmMLJqfdChEEAD+LuBDwM+FEI9omnYkcNPyXtZTL2IevOQF4IsxiyoUsOuGAY/a6oRt27q5wuUJCcBlY38iAHirDZJiwA2WUYLiYcDV+ZZVAx6uNVkQAvQm5ERjurC0wKo1qXWhiDTSmCyNBEWBt2RMAvDNm4Hb3w/Apr5NgM2AW3HHa9ovDAPnHjwicwTnrD3Hee1PocBVvQ5Ckzfj+jU6s2PLC8CVPAPcgX9jdjP0PwkAPJRdHgC+iORFRZ9t+zbdVgHqwEJpwHviWSIRCNV6qEZkFUUl10qlNLASlIzDDPjBGoWq7G9yyTSamVn2/qfaQkgBZKP9NPTpJbfJbTSgrnXWgGfitkzK6CIJ0wbgyWiSF521rnmHzAjxpyoDrmlaGLhICHGREOKzAEKInUKIv3tCru4pGg4Y72DvpiKpqyTM4ABc+Yzv2nUgV7e0MTkJpJ44BtyxQYo0A+JaaBklKLYLCshOIkRo2QC4AsStEhRlMzVVXFoG3LKAkEUsvHjedZQEDc3CavzxPbrSgCt7t3/8R7jtc+9h7J0lp7BKMgmYCekCESAMA4c1SUaTvPKkVxKty/tiqQqlHMyhJm0Azzw7xuieJwaAa4Sc4k1H9x8N/duYnFyeLExFULQD8Azo+SUH4JVaZwDen0lCI8R0cSltCPP0xCUDTrWHanSs6RrUxLRUO8yAH6xRMmQ7zGV1hJFZdgmKIim892lfXOqoZ5Z48c/bzywGwFPJMFh6YACuGPCwFiEajvK5N1/QvENmFP0QdUABHwAuhKgDz3yCruVPIs49t5kB97PPSdoMeKUWHIDXbZvjnTsP5AqXNiZnq9K/tiqT5oI6V6jYt09aOL73vcH2r7aUwk3H0mgihBkKDkxvvx2e/exg3uVOKXobgGuaJosNdAHAGw342tdsnadPKBeUaEsH15+WDPhMaWmBlQLgkXB7FUwVUbtIz1I4iigXFCVBCYfhnHM0hvqSzj4KaNQaXUhQovK+S8VSPHv9s7lo9D7gTwOAK5kUwMknxKjOZ6nVa+zYvTyJ3WoSFfUkR20aWAN6gdGp5WFnFwIaYEtQ9KVnwBdL+lSRyWhQSzNXWToGPJQokI1nHQBuxSUAVxpwNTEtVQ8z4AdrKOlSX1anXll+CUq10X6fDmX6IVZm7+jS3ieqKjQsDsDjccBMdpeEGS0TD8v+fyDVz4ee+SFWj75F7hCpHrJVMCGYBOU+TdOu0jTtNZqm/R/1t+xX9hSMRgOuv747CUoqLpnHUhe6PpWDM7H8hLNvFC17mj0lSxB2y4Lv2AHz8/DFLwbbv9aSBKJpGtFGD7VwcAb8L/9SFg8KIuExahaEGk1LfKlIdwD8iivgHe+AT37Sf19HEtLCgA+kJQM+W14eBjy6QBl6FbGQDcCtA+/QhZATx2oVtGjniakC4CrRzy8UAx4i5PxOqiBEUCeVQzm8zNSaVTHHleiii7ubrL3ylfDOd/rvpxjwqCfBfCArJRmj08sDOGqLAPBkOAuxEkZ1aYsvObkmi2hdMxmglma+sjQSA1VSPBvLkkhAo9xDI9EsQZG5EXFncnA4Dq5oNNxcjP6eGFZp+RnwhdrFUE6SNbtHlkeuCEsPwBNhl4D5zPM/w4njn3bf86nKgNsRB6aBc4GX2H9/vpwX9VQNTZN/DgDX551yyYtFPK6BpTuFJoJEpQI89xK2Dn7mwC92icIBZSNPB+DWPbd2dbyXFQ7iZFCrt2vedJHDigQH4KN2jZK5AIdUau1JJ6moBODVgD/Z9u3ysR4AIzga8BZJyEBGdqpLXYSjXkcC8A4MuALgf4xX/SWXQCRi/94eG8KFIhyGkIg7Vnd+IRnwMolIymFk010WhDiUwzswrl4ZdQB40exuAL7sMvjqV/33UwA85kkwV4VAxueWB3AsxPSBawc4t0RA2Dmf2RlopNNALU0xYLEovyiVQMQKZPQMuZwE4ISkzZX6zCo5+U/F2/5QC7USFSJMX2+YWlEy4MtZoM4U7RPFlb2yTeybWNq26GXAF/PlljUckpRq3WnAE5Fk0/as7lY2TB6iVTAhAAAXQvzNAn9veCIu7qkajgY8t4cNfes67qvrgBU/AAD+SaZO+QhmfYnXXrsMw7Sve8+zGdI3cMWWK7o63gvAg0hCzAVskHR6qEeDAXBvXzgZoFhYxWwH/Olodwz4yIh87Ovz33expMhcyi7xay0to+sw4B0AuEqC6Xbgv/JKGByEmRn41KeAlfexbWx/IGlWTEvQ0EzqDf9Zi5KgxD0sSkqX1/ynBMAjxDjiCM0B4IZYHh14tUpbsaiMDcDnjeCDfqMRvJqs2Vi4qFkqquwAlxZs1Ox+tTUZWkU6DZgpil1K7haLYqmOiBbJ6ll6e4Gqa6ulvlu1MnSoFm17qodTw4EYvb1gzGdoiMay9kFNBbHsWD0g28TIlH+bKBTggx+ErVv9z6XkmODPgHdViCdaJhFtBuC5bBgM+TkWc+g6FCJIJczNmqbdoGnaw/b/J2ua9tHlv7Snbug6cqaYGWHTQBAArnelAffawN66+/YDu8glCkM5VZgJjogcz0hhpKvjvQB8dtZ//9oCNkhxrYdGNBgz7D1fIABea2cYMrHuAPjeve3nXiwkA26iR1oAeFIC8Iq1tJ15EACuZFTdSlDe9S75Hf/yl4DWgLc+jVuPPQPh8TZeLJS8IYg7kJKgJG3ZCUBcD4GZWDKAdDCHGhgjWoxVqwBDskf5LopTdZNQLPMULCIecKpW+rpJ/vzrv/asFvqdUyw88KejNvBfYgBuNswFz6dCSlCCe9X7Rd6QnUMmlpEA3HAB+GBqEHA14H+MFOxwLF9422FfH1gFybgspxXqQgB8ZZ8tB5vxb4s33ACf/Sw897kBzuWRurWu0KqQdSNSgccpBcBTLQC8pwfHnnaxarSHQgSRoHwbaUNoAgghHgResZwX9VQPXQey+0ETHNm33n/fuu4yyQHCC8AfHXlyrVCqio2x4oQb6a5tl7oF4AuVwtW1FI1wsAbvLRQSBIC3+o4DZLsE4GMylypQlUDHBaWlg8skFAheJgY84gHgQsBVVzkXrOQi3TDgjYZkvjnpx3z5mmtgYIs8X3wcQg1/BlyB/gDnVAx4ygvA7YFAaRF/+Uv47/8OfPmHVDgMeCgmmdmKHLiq2mzg5MRu7AMtC+lV78kbUCxtsYuks5/8RD4GWaE369KBp5WRVgB8qQriqFBuS4sBDcWAl62lkb7kba3wQgz4iuQKwAb9XdhzHo4nNpx2qOnyN6z0A8tXjVcIqGvyXvC2i5yqGTHv3xbzeSA+y1jBfzBUADxMpLm692c+A//xH4ArQekWgCdjCwDwipzApGJPYQkKkBRC/L5l2xI7SP5pha4DPXsAT+XERUIuK3bHgJfK7oi1a2r0QC5xyUJpM6nrhKzuAXjJgyeDAPCFKnHpoSREy4E01t0C8OoCyVjZeHcAXAHv+QAkverkWhnwuB6CWhKj/gQw4N//Prz0pfB30o3UAeBdMG/T01Ao1+Dlr+K+4y+E43/a9LpfZrtu23cGWW5XGvB0zAXgug6YSQqGvMEuukgyrk/FcPIGbEnIO98sATjx2cCl4btJ6FZOPRHNHfSzdmXIkhkMgO/f7z4PIj2rC1sS0joxjcnz5ruQvgQJ00eCohhwo75EEhRbr5/RbQa8POC8NpCUz+VYkaAa0B3ocDyx4QLwmP0b2gB8marxOow7zaXa1WS4bAWToPDW0+D9g777ujUqPMtWDzwAH/kI/M3fwN69kviw4oHHKaUBT7UA8FwOh0gYSPUGeq+DMYIA8ClN0zYBAkDTtIuBJxfVHeIRjSLLqxYHnep+i0UqBdR1yl14u3odU/bMdif5WOpw2BgrjmYeIAN+5r/By16zIABvNJpBupN04k3CtAF4EEA8PQ1kRuCcf2F8MoC+eAEGvCeeBX0+MACfNcfg/Su4redtvvvWakCoXYISjQJmEqOxtAy4SsKMeQH4j34kH6++Gup1ErHuGfDRUWDdbe6Gky5ret1PgqJ050EAeKUCxEqkdLcT7zYb/1AO1zte3qOf/qg9YCVmAyUaQzMA92OkFQPuBcNKglKuBwPCo6PIPjK3K5A0q87CgFiBjaX2PbdaJSj1OjzrWbB+PZRKxGKgWSkM0V17rNfh8cfbtxfNFgZ86hjnNfU9a5qUZgX1xz8cT2yoJMxYqJkBnywtDwA3DKQbEc2riWoyXAmQA1IoADlJFu6a3d1xX9MEItXmKs1XXuk+v+MOj4VsMEJRMeBpfQEGPCR5YFWgrSmWMbF1KSMIAH878E3gWE3ThoG/B3yRgqZpazVNu0nTtEc1TXtE07R32dv7NE27TtO07fZjr71d0zTtK5qm7dA07UFN057mea/X2ftv1zTtdZ7tp2ua9pB9zFc07zTvIA5NA7a9BD4/LgtUeEMIuOACuWyDvZRp6U6yX5AoedwNRvNP7lxJJUfFo3EaRopirdhV1nexCFzwd3DKfzE1275e/qEPye9IMXl12hnweLhLAH7Rm+C8f2A71/jurzTIXgZ8fc96iJUZq+z1PyGQT98DqSn2DH7Dd1+XAW8GGpoGmCmqjWCA8pvfhHvv9d+vzQdcCLhPemgzNQXj404WejcM+MgIsNqzsDbQnOXjx4AriUpwBrxERm9lwFMUA2bjH8qhBn5VvCkdSxMiDPHZQKsu0AzAKz4/s6MB19olKJVGMAA+NQW87LXw90cyPN156avRAKEtzIBnHQC+xAy4aJGg7N4Nt90mEzruvhuAGGlqXQLw//kfOOqodreZSl12cA4Anz6m/WBkUSxTHGbAD8ZQLiGRUDMD/utblxeAR7TmRAo1Ga6KgBIUO67bfnPHfV0G3APAH3wQVq+Wz3fskMRHXXekon7hAPCFJChJ+b1t6t3UfMALXgCnn35IgPAgLig7hRAvAFYAxwohnimE2B3gvS3gvUKI44GzgLdrmnY88EHgBiHE0cAN9v8ALwaOtv/+Fvg6SMAOXAL8GXAmcIkC7fY+b/Ycd36A6zp4Qwh405vgV7+SyzZIcPn9m/bx/654KPDblDxLSxOVJ5cBr9lJIGtXxpkZS2M1LEc/GSS87Nf26e1tr197rXz87nflo/JZ9QLiRCQVGIDPzOAws/t6fuy7f81qB/zPWv8sALYav/U9vtGAStIFn37Z4YrN1KMtyV+miWYlqQZgwCsVeOtb4RnP8N213Qd83z6pBXrRi+T/w8OOBq9rBjy3Cxphz8lcpqY/2d/x+Hg0eOKnTMIsk24D4MmuC0MditFaPVXTNNKRHMTnAjPg8/NApAJnfYmxmc4Dt7xnmhnwdCwNgBFg0AcbgB/3cwB+suVH/ucLL8CA//rXHLlN9ptBtOe7dgkueuOjlAPMyRQD7pzvscfcF++4Q74mUph0d389+CDwwvfygb3HNfV3auKSiUkbQuVk0xqxUHB//MPxxIaShMQUALcZ8FvuXl4A3lptOxVLgdACuSB5Kyvvm+msQ1sUgJ91lgThCoBbwQH45CRosTLJhZIwEzJ5tYkBv/VWmTl6333w+1bl9MEXQVxQ3qNp2nuAtwBvtv9/o6Zpp3Y6TggxKoS4135eAB4DVgMvBX5g7/YD4C/s5y8Ffihk3AnkNE1bBbwIuE4IMSOEmAWuA863X8sKIe4UklL9oee9Ds3Yvh2+9z33f8OgpzjM67dP8rpbg7Gp4GGZqhmmzScXgCsG/Flnx9m9XQ7C3chQpiuuEHvb3MNtr2/eDCB4eP9u6nUQofYkzITNgBuG/4x4cqouK3cC5dhu3/0XsiN72hEnQy3JHvMe3+OLRZrYXz89oHJBiXslKO97H6RSnDyuURP+6OHRR4GNN2Ju8Gf4HQZcAfBHH5WPXgCuB2ejVYyOAr07GTBPAyEXrlL505zX+xMtALyFzehJBT9nqQRabOEkzPIhzID/7GcwPOy/30LWlT16LySCM+D5PPAXr4fz38OVW67quK+6R70APKSFiIoUNYJJQR6fcPutbTNb/M8Xku3QuU9/+1t48Yt5xgf/EoBCzf+8Z7z5e/xy3Ql8/bprffdVE33nO1UAvL9f6l6BKCnqoUogq0wVe/cCz/gildQWbt8nHayEgCouAx6JwMUXw+CDn+HL5zWvmunhBJZ2mAE/GMMtoqZLy9l6DKpp9k5MB5JZdRsSgFfbAHhocoqwlaKG/6R0vLLPeT463zkTuw2AG4aspHfiiXD00c0MuPAH4I0GXHV1DRKz9Caadd65HHDvGwHYkNvgvnD//e7zX//a9xxPdgSRoJwBvBUJnlcjgfj5wLc1TftAkJNomrYBOA24CxgSQihdxBgwZD9fDezzHLbfc87Ftu9fYPshETfeuECp+Jtvlo+ftqs8Pfwwvb+Vg109oLjmE5+A4UnZsLTpY8g3RpfV6L9TWBaIsARIZ50Rp17uHoBPNdwvaW9xR9vrxSJw4dv5XnYjw3OTC1biSkSSoAmKhn+jn5p1afJabMx3fycZywM24noYaplAiSb5PNDrij6nyp07OdWJx6P2+SwLvvAFME1esb1ALQDjdt/9DXjd82n89YXsmGn/Tr3R5mixy3bVefaz5ePwMOm48tQOPvAPD0OofxcD4U1Qk8C413BUZ05iGSAdV2Ix168R6MsE14AXCtg2hC6L4jDgXteY1MST1la6jfl5WbH1pS/139eRLXnyFHrjvV0lYc7PAydKW5L5cuffuW3SZoeuZWhECoFWokZn3JmBX3EpBfhDRNxks+uuAyBkmeQKUUdD3SlmBq4G4Bd7v+u7r8OAq3b/6KOwciUcc4xjGRPTbG/+gJ7He/fCZT935TZ75qT2VuYw2Ay4Lan56U9h/PIP8XfPeEvTe8QjcRpa9wx4vX5IrNgf0uFowMPShvAHP5ArfY34tFz5WOJQBbGaqm1fey0MDfHh20LUNP/GP11zZ/gTxc7kkHeCAcCePfKmOuoomRuxZw+aBmGhY+E/Fu/fDyPmIwjN4pShU5pey2aBmz7J4LcqzY5Z998Pa9bIvzaAdfBFEAC+BniaEOK9Qoj3AqcDg8Czgdf7HaxpWhq4HPh7IZrXPGzmetmbvaZpf6tp2j2apt0zGcTa4gmI5z0PNm5s2fib38ARR7ij6rZtJO6VLMhYduFs+9b413/F6azjpWNoaKZjc3TNNfDRjwbT/i5FqCUwgP6eONS6B+AljwXCrNHeARQKwNO/DsDI/ARE2pMiVQb1fIC1ZaW1D4kIVmLMF5C1LUUD4Xvv5oLtjUDLbPk8ECuiWfIaxwtBGHCPC8oWlx18/v48ZgAG/N7tLrs4WuicI6CSMB0wtXOnRK+nnCJLUg4Pk7aL2pSqwQH4rt11Gtk9DEaPBF3eD0ONRQD4978vUd0Xv+hs6u+RnW4xgEVGviAQ0WJT1VnJgKcpm/a9mNsF7x/i83d8PvBn+GPjPde+h/95+H8O6FiVqDcaIMXDGRg9qya5eA4Ss8GtMovjzvOpYmfdimKkYy167ISWAb3QlDS9WEzPuRc2Xw12vjCe893mJvieNJLwdV8plYAjpHZ7d/GxjvsCWKIlCfOxx+C44yQDblsp6TYALwX0An/f+4AV7rn3zMkJpypDDzRXTn700baMzUQkgQhZWI1gRmX1ukw3SiTgwx8OdMjhOMBw26Ecm177WuhL5kCfl9LHgHHHvjsC1dNwJCjeqpR2H/qBO4pYmv9JC55KrsFWZ6tum1BkzcaNMDQkE0mEIKLp1AMA8HIZWCXzjU5bdVrTa70yc5CL/6LFrvb+++G00xzAf7BHEAA+CE3flolksSst29tC07QoEnz/SAihSiCO2/IR7EclLBoG1noOX2Nv67R9zQLb20II8S0hxBlCiDNWrFjR6ZKfvCiVJEJ+2cvgyCPltscfJ3SnBOCJWrBlzHPPBf7vxQBkapsBCbL27oULL5Tk+iWXLPnVLxhyBi5vkVzaBeBBBySgqQJo3mz366lNAAAgAElEQVTvMAold6CZKs4tyIAr5jNf8QenKqkyK9ZDxGC+2pl9UwOdA1BHRuDMM7n6ykk0IyADHqmStOTize6JAAx4yHQ/n5pNnXEGgxUTU/P/bveVXNbbj3E3rQZoopkB37hR1o1ftQpGRhwP8rxfdp4nto7uh5DFEYkjnW1D2onO81zcLTXs2N885OZBDOTkOSfn/M85XzQgZDnsIdgMeC3j5kv0SSDz68efmGXLWr3Gl+78Eq+4/MBKKijcFbx6ahXd0yYkAz4X2Ad8T82dtc+UfdrEAi4ofPe7PPj53fQ3gi23T8+77b5QC3a+sMf2kAcfhBe/GIDjJ0K+KyXDw0BMtp286W96rpK9o6GoZPkWAuAhG4AHzDNIpXCdgYqD7JiWAGJqCkhOoWup5kqfJ5wg2cVGw9mkipIElYPdfTd85GMmZniOSy9tTrrL57vzfz8cncPJ3/G0w2eMa9x80y1Ut+4O9B579tc453vn8Nz/eK7vvgqAO2SUEHCPlEWmzQYZa3zxg+1wHNXyq5lZgADzhiNBUZ9PMdAKgNdqkM9LAK5VfcmtahXo30pEi3FU31FNr+VyEl9/+cuejZWKJKROPfUpBcB/BNyladolmqZdAtwO/FjTtBTw6GIH2Y4k3wUeE0J80fPSVYByMnkdcKVn+2ttN5SzgHlbqnIt8EJN03rt5MsXAtfar+U1TTvLPtdrPe916MW998ob6IILJB2xejXceiva7t1UQyFStYb/ewB6XEBUNpqVjTMAGCmMODjttNPgppsbgQfe1tiyRRL0P/uZ/75eBrw3ox8QA660lgAl0d4BeEtbz5QlANfQmpa/lYl/EACuEkR7Q9Kffd9sZxmK1eo/fLtbefSIGX/jcgnADXLhI+T5pn2W+cwGhK3mpe9IBM4+m75qDRP/zzhWcwH4QkUgdu50/dBrll3gRJ1v1y7YsEE+HxiAmRmSiRBYOsWADHijAXsLkh1ZnXKXgXqt45zn4ZCdnCkEzvrsuDtgDPZJoDE15w80ZituApuKdBqoZqgoW7xQy0RqmcNP+uMX3QPwZga8LyklKMGtMl3GbbbSmZFWEpQmBvwTn2BlweQ9O7YGAuDFin1htRRFKxgD7viOz8/LG/isswDorbiVKxeL/ftxJu9FMeULDhzbw3BUTrrzeTj+ePmD2I0nHuqOAQ+HIXT2VzgheS7sfq4jQZmYADKjDMSPcHf2Xp+nz+k2IXrHDuD8d8MHe+Edx3DnIy6HddxxcLDyVYdiSBeUahM59OkfbOc54/Mc87NPB3qPN31Uapy3z7QbErSGYWCvltoAfNcu6TJw7rkA9ASYaJZNF4DP14JpwHUvA67rUpo1aPuIT0wQtV1Z/NpktQrEiiTDmebCPnasWyeHPiceflgOLgqA798vl3g+9jE5CfjowVfAPYgLyqeQuu85+++tQohPCiFKQohXdTj0HOA1wLmapt1v/10AXAqcp2naduAF9v8A1wA7gR3I6pv/zz7/DPAp4G7775P2Nux9vmMf8zjwq8Cf/GALVXlivV2Y56ij4PrrAbhh5Wr0OvbI1jnK9oz10udfymr9WABGi6MyLyhWQvzVX1B6V5rr7jkwfdSVV0pJrjdXdLFQGrSoppPJaAcEwNVSVbzRj7HAklnRk1w1W56HcJUwsZbCA3IgDOL5XLMZ8BVR6c++a7LzGr8DwJUE5c47ndfWT/kv8eXzQLjKUFIOriOznQG4UWtZ+t65UwLiwUEyloUm/L/bmbrLDEyW2jvVTSfOsO7N72HOmHMqDDrAdHxcMt8gwcbMjOPt6vWf7xTDw2Bl5P23sedIp6CCrmXad56cdBlwDwAf6pNAY3o+wCqD0ayfBQXAs1jCpGRUn3AA/tDYotxFoNi9G0jMYFr+Cj4nb8DDnvYnZRJmtRpMAehMrqpp5oxggNgp3lQo2L6TcML8vK+NIYBpF9SitIJSPZgG3GHAFfN2/PGIaJRMVXNyNRaL4WEkALd0GlhtK1+GAZdeKvs0IdzCP7FwzP4xgE2bJANeqUClQsJ26lHFuvyiWhM00sOc1n8OFI5goiz7nslJIDPCytQqd2evL+SIOznqNiF62zbg1O/Lfwa28aV7P9n2to1g3M/h8Ak3f8duh/k8q8fl5GzF478L9B5TCXd8CcQge6VgjzwiH5/3PAB6Lf/xyVAAvLCaQj0YA+5M9CcmJPgOhVwAPj7uSGL87lFlQRgPpzru54RKhD7hBKkisCwpRfunf5Kk5tq1nY9/EiIIAw5wL/BT4OfAhKZpnavHAEKI24QQmhDiZCHEqfbfNUKIaSHE84UQRwshXqDAtO1+8nYhxCYhxElCiHs87/U9IcRR9t/3PdvvEUKcaB/zDnGoZFAtFMrOQHlmqiQ34Pcr7G0BxJOlmhzdEtEEx61dBUJj++RuHn4Y+i78AvcbV0K0wv/uOLDFAsVeLSanNgypZZyf9xQC0OJyefVAGHB7qbcntIp6bFo2Su/1WO5AOVOZc3xWnbjjDj7wptfw+vsgX/H//lR2tmKbRuc6s9htFfjuu092AMD6Gf8kFzVJ6UunwehhLN+ZZahaCwBwNfADPQFkL2WzLBMfzQQjc83nq9eBo6+mfMqX+OvL/7oZgAsh0YCixWwArqylglZrnZoCcrsIEWZD31r42iN8fsMW6WV+4yd5XvLv3J132EzxmWfKA+2lm9WDslOeLvh/XuWAoQpQgKpUKAH5xHzeAeCLVTZc6vjsd1znm6AAzRvbivfCP/Szbd0HffddyLrymXfu4SvXmlgB6wRU1EBcXEneR5OtJCEx5VX/4IOoMrRry0ag1TfHJaE0SEUE1IAr33G1PLBpE410lmw1CAMuZCJnSbb7VmnW178OH/rl5zjzc/9XfpSwR4KiBLwDA047ZHramfAoWZtfqMl1XzYOxZUYjRIzxSKP7R+B9Chrch4ArvS10KQbUfkYQVejtmyro2kaa9LrYeJ4Hp3/Q9s++/YtcODh6DpUEqbjYGU7downNaIBK7WWw67vxHChswWSZMBNt2aEahf2ylCf6T8+OZaW+dWUxExH0K8K8TiSl5kZd4nOw4CrJE2/fk9VME6Ekx33c0LppYaGnDGYH9tWwt/+NrzlLQsf9yRGEBvCdwLjSPu//wWuth8Px1LG8DAkk7bBJfC2t8mb99vfpqhL4BoEgKuM+2Q0yXOekYCpY7ll273s3w/a2rs4OnsSTB7HnRPXHdBllkrA657Ho6sXHvi/+U1pyvH5z3sY8JB+wABcMeC90VWQmGmyTavXafIynavMyYIj3sIDV15Joljgw78lUNEVlTg5kJQgc7Lgoz8VLfZn27fD6aczFY+wMh/gfHanlUvrUB5gyifRxTA9Az/ITvXII52OLmcE8MU2a9ICqzzQZi01MQHE5We+d/TeZgBeLMpRZMBOkLSX2xMJuqrWWqkA6TFy0UGO3Rwh2VjFi59+DKEQcOvH+Mu0R9inAPgznykf7STqlf2yU54LMik12yUomQxQlf9PFQrtNnbLHPdtd9n8ffnuEc6W5LcAmD72X3xdNtQ95gz8QnDev/0v7/w9nHb7Fzseq8KRNBRXNk16Fz1fqAWAA3efuI61RTMQAFfSs7AxRFUUaIjFaVi38I99PqX93LgRkcmSrbnJ0otFsSLv84QlAfhkqTlZ37KAF36AB+s/5b6Rh5z7JRr2APC+vmYAbk94gk6wVFXdvqwOxZUArPzbN3FJfjX072BDv0eC4k2+9ABwpQHPl4O1xa3jOxHREh9/zsdh77OZrElg7+Q2J6fYsuXQ5bUOpmhjwO2CZrdsEOgBK7Uqgg1gotTZl9thwL0APJOBY+XKeL9h+kqV6rajTswcQlDv2Ne0GQTMzqpsSQmKoYkB95uYSglKSbqYBYnpaanj6umR1ofgAvATT1z8uCcxgjDg7wKOEUKcYLPZJwkhTl7uC/uTi+FhyX4r6cSqVXJG96Y3YaoyrAHAhrK+S0aTnH02MHI6d+y+hzvvhHL2Xk5ecRpMH82kEcBAeIEolOqw8WYmN392wdeVSkDXPUkgoQNnwFWyU5++EhIz5PPuYFAq4bgDAHJpvLUQgK2PXD8HlbI/y6CWvodScsY+XezcMdaFhzktl6WU6OijKUcixCx/pGFZQMSgNxOHcj+z1c4AvOot/JPPw9yclKDYA3+fga/vsGHVCAkJwFtdV4aHgZT8ESPEmwG4chBSDHh/v2TAddFVtVZVGj4ZSbNpk/wdjz8eXmdnhjz/+Z6dd+yQneqf/Zn8f0xq8nOZGNQjlAJMqlSipVeCIu/HDOftgI2vfTXhUMX+nMvPgDcaQNIFeH4D6UJR9uiKx4udk6ncgd9uFw88QNIupnPsNn/PawCjbqCJMJHaAKV6UA24PZl58EHI5Xj8qHWsqAjqRf9JYl0V1LJWgCY6lpJ3rTLt3258XHZAPT2QzZKtClfSskiodpVqLMyA1+s4lQtv3nWzk2sS1sJuwkRfn8v4zc46QCsoA16t2/kyWR1KErCYx7guOaszHgZ861Z3rPCwEkoDPl8KxoCPlqXTytEDR5K2NlLRZshX81IRmZqAD6zgaw/9U6D3+lON3XO7A9mXqmRopx1u3Uolm2R7P8TNQiAfSGclCoJJwcIeCcrjj8vVUrv/XlFeOAfIG3XNAKGRRJIundphGwCfmXEBuJqYTk05DLnfxFRJUJLRBSQo27fDXXc1b5uelu1P0+REY+NGSRqtXesSmwdZBAHg+4CA5RoOxwGHAuDesDvYmp1EWC/4z5IrlgQkiUiCgQEIT52CSI9C/zYqkTHOWHsqVPoo1v0TBBeKyWrngkCzs8DRV/MH/XNNPqThsOsKcCAAfDCxCsIWY7MuiPbac4FtV+b1IbXLptcyWWINiI/s9j1fzWbAV2ZlJzVT6nzrN0lQFFu7eTOVSJi46a/Zr9UEhKskdZ1QtZ9ifWEJilk3EUJQNT0SFO/Stz3w95fpWGlUCFm9MxqyGfcWDfjwMJCWILdcqywMwL0MuGWRpgh1HSMgAFel4Vs71nPOkdcniyvZsWWLnGCssQ2PbO1rMgmYqSYgulBUq1APtzPgoRDEtSyXXQ4Dv/sdJ1syqanJym6ZYnQUCW4asvud9/G5XiiMujsQj8531nK2AXC7VPrPjoO1E1sXP9D7Hg2DCAliogeDYAO/s/S9Zw9s2kRZLUMHaIdKepYU8piFviOzbnLFY1fINuRNwpyYkEve9kCcrTV8GXClEe+N2Ax4uZkBn5wENDmxzRtF23c8KnNNZmZc5i1j32PFIkk9GNBQofZLxuLkIivdFy77BT1b387Fx1/sbtuyRYKpbLaJAb/wt1cyfSnkfbzaQba1GUtKGtZk17AisgGQgHJ4GMjtBuDG0lcCXf+fYty1/y42fnkj37vPPylKlaJ32uG2beTXDVGIQVjUPcsOHd7D6hKAexnwPXskKNV1yrEEA2V/a8FGyCCMTiosAWwnVzAFwJ3PNzvrTkhjMZl4MzPj+Hb7TUyVBKW1CiaFApx3nnQ58i6nTU25QB/goovk40te0vE8T2YEAeA7gZs1TfuQqoppV8Y8HEsZk5PuMk1LmDYANwv+daMNuzR3MppE0yCN3ZE/858BOH7oKLRqL6VGF8ajnphouAP2RKH9PebmgFf9Ob8of8BjgyQbXDoZ5owRnRf/80/h5z8PdL6GJhvpqrRkf4Znp3noIWkNPT+PC8CrafI1mYTpMOCjo1AuM/Wc8wDo3e9fTVRJUHqSSailFiwCMlIYYf2/rufB8QddN4RQ1E3G2riRSiRCIkDSbM2yINQgGYsTrg5Qob1DbIgGsX+K8a5fv4uqDa4XW/ruq3QG4IYBDc1mKcr9zFQXAuCSUa3Ui80AXGnsvBpwIFWdAUt3ltD9QjHgqYWYjdZ4+GG5fKg6cvszJxKAmaTiU+yoUMD1UPYw4GzZwu92vYNeG6ecU5EJPCGWX4IyNgakJmHmaMB/IG0NIVy2FGD/VOfJdNvS99atNOI6Dw9CtG4GSu5uhCpEiJPQclS1IAy4Z+CfmoIVK6j3yN+wOuuvO1fSs0xYAvCFvqOP3fQxXv6Tl3PXxE3S9jDUAsABLZuVAFx0BuCqzahk6Nbk5PGJhlMht1AtNQP+6WnJ9Gmand2LBOCxLhlwy61h0Mi7Y8GuX7+UP3zqq2zs9RSOULaHLQD8JVd+iz4DyvP+q33T01BPSQC+OrOaFVFpALB3fq9sZlkpjSpx4F6E114L//7vB3z4QR+37LkFgD+MtmvnW0NpwBP2fcG2bVQ2riGvFJMBqmJVGxWncFkwBrzmtkNPuyglMvRV/B166ppBhDiZmMyf8WfAq3JsEaJZggKORaeTGxGIAS85dTyc+PCH5WRidhauuAI+8hE5sE1PNwPwD38YXv1q6YJykEYQAL4Xqf+OARnP3+FYypiacpnFlrBissGZ8/6sdVW4EhSAmGW/52n/AcDG3g0ktT5MreTrDLBQzODap923p90KadZziYoBVzPeWAw+fKPg6dc+LMv4Tfgvvdc1OTCu7pEAfPfYDCefDG94g53DogB4YTV5I98sQbEZaeM0accYC7CCoJK/skkdjJ42D2Ih4K3f/C575/fy7Xu/g9A8DLhaih4YoBKJkgjAgCvZRiKqE6n1U9HaB7uHx2X2+tfu/lqzBEV92b29zhKbX8LZ3Bz2ICAlKAWrGfBPTeFIUKqNivN9LMqAA+nqNFjxwExfpYLdsfoA8GpV2jSceKLbsdoAPNSweO9dNZJzncFBqYRTmMpJwjRNeM97OLWy1ekAT61I3bCTyLeM4TDg05Lq7xaAz88D4SohU3bDwz52l20+4Fu3Yh65gYIa+H2kbULIirZREiRDOaxwYUGZU8WsMJwfdiQojgvK5CQMDBBLye/fKPn3Y4oBz0VtBnwB5u3yO+UStGHWJCAOe4CGTWZouWAAXLWroWwvmHGGZ5vvq5GZOQjJz1yoFiFcI4xnqV1NEBUALxQ8DHgwr0c1qdIjOvnRQdj1PD59ys/YsEGS3U4IIZfgN29uA+AqDJ/kcbDvw+wwmXA/iWiCFbbsbrI0Kd+yx81N6KTB7xTnnw9vf/sBHXpIxKPj2wCaqzEuEtWqgHCNRDQmAeO+fVibNrrtsNB50lSv20mRBTkW+vUbst2bkpGu1+X4ZJMntViCVM3NKVosGqEqUeJk47LtdlqtU4A/EdVlJ1+ttgPwmZnA0iwlQUnrnnGiWITvfAde9SrZ1l7xCllJ6uqr2wH44CD8539KJ5aDNILYEH5CCPEJ4HPquf3/4ViqsCwJphYD4HYSpuWTEAhQbdgSlKjUAoYqzUau63PrSYVlo5g1upehVBpuJ7Fnqr2qqBeAKwY8bttxTYxanLvXZDahyw5h//6241ujbjPg63plp7N1r8u6X389EM+joUm7slqlOQvbTlQSJ50EEKgwjtKephMxqGbbAPj118Mv75Gm6uuzG5uT9xQj3d+PEYkSt/wHLWXFlNTjxKwBzFCxicG2LHju39wEwOmrTncmTW0A3B74s9XODLhaBtXDMaLmABVmm6rm5fNIcKj2t5NcI6GIjd5xO9WcLJYTr+Whrgdm+iQDXiTtB8Aff1zeJ8cd555Tfcdf+AKfv22a//OHzlULazUc5jIds8HRt78Nv/oVd2fPQv1CvQ0pixKNoMZQBx7DIw1ITsH0gTHg09NAxCAlZJsYm+u8muUwYR4AzubNlJTaxgeAyzyFClEtTjoif/OFmLDz/vM81nxpTbv21GbAYyk5SayW/FffVDvsj8v+q/U7yudhx6jsfyqm0cyAj483M+Cm5UjFFv2M9qS1Pycnpvtmmvu20bzbJoq1ktScKwZ8ZsYd+D0SlJQNwEtGsHah5G/xSBxEGH5wI+9+0cvbd5ybkw159Wo58VYA3FNDoDbvTzaMjQHZ/QwlpLxrlS27mypPyUle1gXgQYsJeWNyEjjns/CSN3d97KESl/1GAvBAlSlNCzRBMhZ3kqXi644MzIBL8qRCuLoChCbrXnQIJUHRI/ZqqRBOuzBjSdI1KHcoBNBoAGGDiBYnF5dtt7Xdl8vwrd/9iGt3XOtqwKOesclbqMBO2ncAeEANeFr3MOC/+pUEFm9+M/z5n7vbh4fbAfghEEFcUM7WNO1RYIv9/ymapj2FF5WehFA36yIAvBGXnXoQDXit0cyAa0bze2b1LNmYBDMzle5lKF4N2sjsIhIUOxQAT9jswEk8RE9NcM2JttY9QJk1odUIiQire+XnGJlzB5nrr4felXPEtYxdVrzcDDR27oRQiMjx0pIoFMAhxGHAUzpUeyhZzd/5ww/jaCPnK4Vm+7rpaVkZIJOhGo2RNP2rlxoeBjxWl52V93fZsQNmNbnS0KP3OhKUJg14Xx9EIlQiMV8ALhPWpFVjJjLQdr75eaQLSl2yl4YtN4iEIi5Do0BGVrIi8do8WLrjoe4XSoKSifsAcK+tVCQiz6c+849+BEAh0nmSY1lAtERUi7vFHG6+Gdau5d1Pu57j3gEPrVhNri4BhpLcLGfsHrPZ1PxawkI/MAY8Yjh65fFC54m0UatDqOG2i+Fhwhs2UlK5yj4AXLqoGES1BNmYHIhbr7lchtv3yYRn0xJuJUzDkKzVwADxtDzWrPgTCQ175WswtbAG/PbbcSaK+eq89B1XVSm9EpSeLFmz3lTQa6FQbWagLwblFYy1uANNlr0AvCgZd7XSppK/wM7uBYpF0nEJNIqt3qmLXUPDlaColfVEYoEd7URkhoaaGXAlgQNq8/7f8fQ0kJimPylBy2BvCiydyZIC4C5B0kl6sFhce882OO+DcPp3KNeCJYUealFryPFwOO9vaqBcovSI7qwmZtdsoqDaoQ8DXiwix9NwCoweJn0kqU4uRjTalkBv6klSJpQ7TA6VQUCUOH326lXrStRzXrKft/zm1Zz/o/Od8VdvJYdU2Ax4UGmWYQCxElnvOHHTTXL8eeYzZWGdZz1Lbn/ssacmAAf+FXgRSHGqEOIB4Nkdjzgc3YUCGosB8IS8+es+jhyAUwlRAfCQB4CfcYSUYvTqcrCYrXTPgFcbnQF4qexmcleMBoSrjjXWC1ZKKcVN620AN9nOoLdGQ6sSRmdNv7xmr+58716IDuylP7oWzKR0gPFW/hobgxUrSKyQjTISAIBbtva0JyUlKK1FQPbvx9FIz1XmIWxKN4RQuCkL24jESARgwCuKAY/FiYXkb+a1hnLkCsBcJY+pNOChaFsnV44myNSCAfBoKEYuJr8XbyLOfF5IWU9RsqtVLwAvFqW7RNRm/mwArhuSAVcAwi9UEmbWD4C3duKqyqBlSRYX0H0Gdqc8stea8ne/g3POoSeZYk/8KPZG6/TYy/+1AM41f2zsnZSfKxPpI9bo6RqAq4GxJ5YDS2e66AfAbUeRiC7BdrlMeGgVpYjd/S9m6u89X1Qy4D26ZMBbr9mr81WJsdFQtClvIJGRv6MVIOlUacBXZm03oha27+67gYTsC2Tuhw34W60ys1mS9TqajwxEuaQM9EahPMBkxe2bhIBZw+13SrWSnMQuxIBHo7KNFAqk4t0y4C5Ae9nLZP2QBUNZTa1cKdugAtsew24RJGHfnghn7dyIgX7NsSbN5yGUcSchBwLAd025rPA9+x/s+vhDIiKy/9k947+aq8gWPewC8PTqjRR0u+qvDwBXE2E9Egcjx9QiK+IzlRkmShPNDHgLALfiSVI1KFcXbxfuxDvOQLqdARcC7tnn/q4Fc84lwBRR4gXgyrY2FowBN6oComUycQ8Dfttt8IxnyKTnE06AW2+Fs8+WlcSr1ackAEcI0WpU60/tHY7goXxrF7t5bADeKPon1tSwC/FEbOrEdG/eu98s3Q/6kwcuQak1DMJWFhohxvLtCYNV3AZaMmpyxm5LUP751Y9QC2ncPuTRhvpEIyS1lmsHJABvtU2qJneyUt8IZlImqKgkEHC0oJlskmoYIgF8qhVT1mMz4OVGcye3d7/laKRnDcm8hWgfiKtRnaTpbyvldT6Ihdqr2I2N4QD+vJF39N2OBCUatS1BoKInpQa8g7bfkSOEdHqiEqR4LdfmihXJzhYku2qG5Od3GHClcQVHdx6rSAbcDAjAnYE/sQgAr1blTGchAD4zIyu62aAy6VP8xwHgiq3M5+V7n3YaAwNQHz6NuUyBXhv8VDtMXpYqxmx9bjqSI2LlyFfm4PWvh8svD3S8AuCpeBwqvb4rWUrnGQvHHPCmrVyJoQpcBGTAY6E4ucTCAPyq69x2qdpMa95AKivbcN3wB3NO7kdO3qPjLYzu5JRwNdnmvFvxr3Xp254kJvzuE7tdpZMxKK0g7ynTPTcHjZj9vvNrJAPutT30asBBMnTFIumEDcADMuCmV4LSKRQAHxqS51LAzQPA6wHGinIZiBWdlai+PqA8wG33TTI/D6HkLAgJEQ4EgE/Pu5PjO/f4JykekhGR/YZ3hWSxUAx4PBJ32kVocAjLXon0k6DUakDUrrBq5NompSpWfG4FQ58fapaCtQDwejxNyux8bzoMeChOX1pO0mbLbjvctg0YcgF4sT4LYUtO9BeSoPT3w+ws6ZhsNxWfSpiVqgmhupuEaRhyCdouJOTEunVOrYGnIgDfp2naMwChaVpU07T3AZ2Fl4cjeMzOSjsdWJQBJxkMgDca0Ag1M+DHrS3zjV/CKz0ExIrMgUtQzIZBTEuC0ctUsf14w5NEWKoaEijYDHhk26M8nkuzP16VM9gAEpSGViWCLpMGa2nma95zCsqxXaxOHglWgppoYcDHx2FoiLgephyFaIBS6Yp5S+oxNDNDVRS58UbZb+3fD7smJiAkme15QzJvYeWc4VmKrkV1kgHKhCuwrYd19LCcNFWshRnwfNVlwB2WQfmeApVYgkxACUo0FCMblZ2VF4DPlOQgoBUlAK+GZEfqAHAlPwEH3ERtBtypXugT5eBpFNIAACAASURBVIpkNpo04HfcIa2lfvELmaC7dq0LKLxesjMzDvsNkPCxPnQkN5oNwNV7rlvH+98P1vDJzGVL9FjLx4BXKvDGN8JJJwt+8r9TzNgrT5loLyEzx9F3bYcf/AAuvtipGOn/mapkEnEwepmr+jDg9iQvFo65ic+Dg1QCAnA1EMe0BL02AJ9tkZHsntvjPFc+4dFwMwOetgF4IwAAbyC96vtzMTATbcvtE7PuNZesvMuAtzJv9j2a8gHBigFPx2NQ6afYcNvExAQO205+ra0Btyd1tZpsF16gkU7bEhR5z5WDAnDhYUg7hReAp1LuCoY3p6bkb/WqcjF6EnJSrQD47ug1TOcrkJglUZXOKAcCwGcKFWIWZAx8K/weiiEEDgCvinLHfhegbE8CvRIUVqxARO0kwYAT4VQsAdUeZivtAFwIN2G2atZBE83t0MYYIp4iVYNKBw24lwHPZSNQSzFVdNv9LbcAgw87/xfqsm9py09SMTgIjQYrbKtkv5WhvWPy+3DcsvbulR/wyCObdxwaci0cn4IA/K3A24HVwDBwqv3/4ViKyGTgRS+Sz9euXXCXeDyJEYZ6vjMAV0kL4CZh/vyCb/OWP8B373E9xlfadmBTAdwIvCEEmBhcedk8n7u+3rQsq173uniUjCpEDJK6zejs3s2+XA9VrSQbig8DLgTSbcAGT6FqP6WGhwFPTmOGiqzNSAbcoiyTMBUDbidjaRqUIxALwoDjdpIRkcQUZV76Utl/PfAA7J11l1XnbQY87LUjszuAWlQnaeJboMGbeKXsGg3LYMsW2adIyzrZsRXMvAMUoort83Rwhp4KqAGvEgvHHF9sry/7vA2OIoYE4A1mOHuvR4LiBeC6DrEY4WIera5jBQTghUoFNNFsQ/jVr0pR/6WXwi9/Kbf913/JyYUqoqAYcFsDOx+LkeowgMACDPhe24py3TpZHK1wBPM6ZGsmiM7f3YHGb34D3/sePDxwCX/1hxXMCJkcnNN70Ywcz7nFBa888IDv+ylAnIjGCVX7KFid23GTc44Cb4ODVEP2bxlo4K8QC8fpS0oAPpFvHvzn6q61YKVhA/BQtIkBz+Rk2xAB6gDUQ1XCIiY10EZOyr084ZWiFRdiwFsAeLLq4wNut6tUPAq1tJzMI81GxseBhM0GF1ZRMouu5lydzzvwp9NQKBCPa2DFqPiw7841CI9GWMXsbLtEaGxMEhh9fXL1S/1+HgZcCwDAy2WkFMxeiUomkRVyQ3XuqH8Foc+Srq8DDgyAzxUrXP9DyF8Kc+XgtR8OlSiXcQA4+CdTt0lQYjHIZonZVpt+JWJVO0zHJQOer7af79/+zX2uakZEQ9G2BHqRzEgNeId707vylU4jCbCy21fcfDNEB3eBKcetopBtvS0/ScU6eS+tsgmfYgcAftVV8N83PgS4ZKKT47BhQ/POqr4ALE5iHqQRxAVlSgjxKiHEkBBiUAjxaiFEZ/f2wxE8IhGZ2Tszs+jNk4jqlGLQKHQeKJVxfZioU1I7MyLZwvjMvJ3WDKt65SA6FsCqyhvS1sjgvB0V3nfvHPPmdNvr9YjbUZdrNgC3JSgMDzObzWKFCpJS9gHg9ToQrvKcXXX4xjdIiD6sqN2wc7thQC7ErMlIDbilSQY83iJBAShHQ0QDDISKAdfDOlGRwtRKMvkFuPFG3AqilV7mKnkIWS4A90hQarE4eh0sH9Cvklr1iE7cBuCTswbHHQdvexsMj5qQlN9z2So4LJnDMjQB8HTgJMxoKOZosL1esIWqnOTpNakBf/uj13PH96Dvvq3tEhSQ4Hh+nogWHIAXbUcFx4awXodf/1o+91Y327ZNvn/I7qYUAB8dhUiE4XSWlI/VYxsAVyBFTXZLg8zHIdqApAm1A7Dm9Avp/2vAcz4FwFxClqDuTfQSKWY46+FZOPdcubNdnrpTyN+wwjt+fBvPGRW+nv4KgOth3WXAh4aoRroB4AbxUMLRgnoBuGlCQbgAvEmC4mHAe3pskBoAgAutRhjdBuDtOnkveVCqKw14ZFEJStpnoqZsCtOJGFhx6phcd0OdzZvhS18C4rPERS/UMlSsEp94+FE+cM3YwkDDlqBEInTlDqTajyNBUYVMXvva5h3tlT1CIcmA12rypti3D2ud9AoPVfwdn8oVYWvAZZt+3vPg/OhnABjjPurRebLiwBnwuVKFZ9nz3WIAB69DLVQyNEU5xvjlVJXNFgnKihWgaUTDcjz28+NX7VCufOWk5rolbrvdzTuqWh6L3Lk5Cfjj8t4SyYwvA+6sfIXikneppZmvuG33gQcg3LebyPQpABRFCwMeCjUTNnafO2TnV3RiwO+/H/izL4MZ5/yjzpcblVR3/frmnb31U55qDLimaf+iaVrWlp/coGnapKZpr34iLu5PJjSteammJRIxnVIURDEAAI/briAqdu2Sj8Wi44s90BeBaoYxnwp6reEACTtaB35ZmdJl6cvVqp00ojtG+fN9OUTYoBFP+Fb+UmDxyh8Mw9vexlEDvZCYBq0Bf78R3iBzgQczA2AmESELoiWZ5FEsSorCbpylqIbu43kKsvJmXwkiP/hPYiSkDaJdAe+//gu0Fbb8YeR0mREebinIYXcAlr0CUS36eLV6GHA18I5Py+/llltg6357kjKzCYGgFpadfJMERb1XPE2m1tkHXH2nsXDMYb7KpjtYF0050CYtyYCfPS47vYHfP9TOgIPjwhBGd1YP/KJYbVlavOsu2WGfcoq7k1pmtK0OAReAj4zAypWUY3HSPk4z7ue1WcV9+yR7uMou610cYt5+qWfXaQfkjd8pRkbgNa8Bzn+Xs62ckSz3QKqX44frpKoC3vpW+d3ee6/ve5omJDA47+aHufHqOzDoggFXAHzFCmph2xc9iAQlWmH9nMn6mrw/vEvRMk/BBeCGXTg5qrSnoRD09pLqleBdC2Bp19Bk7kc8jrQDbQGAXrBTqs9DyJIFRxZhwFMBGfBELEaoLtvubXdKKdj11wOJGdKRXqilqFoFPv7QTt5806hLIiwgQYlGAUsP7I9vtUpQvvQl+Xj55c1lyhUAByf/g0oF9u2jsflYAMIBLFfzZbkSpew5QyH4xj+eCjufD6ukZrsvdOAAPF9xpXSJkfGujz/YwwHgti+3X05V1XRXVx0ADkSjso9r1AIw4NEKPckEGDlH6uWN8bx7DSr3w2HAczlHrqilZHXoWmXxJHYn6TOsAHiKfNVtu/mygREbITF/KgBlbYKM4RmbcjmXPAEHgK8oyD6oEwBfuxZpBjB2Gmt7bLJkzx7Zd7dWDH8qA3DghUKIPPDnwG7gKOD9y3lRh6M5UrpOMQai2LlTrVaB3scZjHqqNuza5bJ9tna2rw+o9DHpY1/WGmpGrCJaa9b1FYs4RU8AymYFonYhnhEp3SgN9ELEwGxEfGf89ToQcRvpOeWw1GL27mzab2W23002jc/JwgMerStAORJG92HBQPqOf+i2MNob38hfjNnnicpOamICIqsfoje8GubXS4/wkCmLt1Qq8s8eiE1dDuKmD/Ojim8kSjWOKstBanxank/X4ZH9NmM7Ia0Ue62dnLnf44LimbjV4hmyVah0mGgoQKqHdXIp+Z0pRrrRgFJdDrSphgTgm+dlJ5+78/52DTg4DHhU0x3Pdr8o1lp8uX/1K9lRf/CD8v9TTpElk6E9i77RkMz4ypUYsTjpmliwKIwKN+nUI0E54gi58gRQGmTOJhxz5eiSS1D+4R/sdnnkDc42q/8BQiJKbybBceP2APi0p8ms/sf802tqZoOUZ5JVC7W345e/HD7179vZM7fHYWAdCUpPD8TjmBFb2hOQAb/sny/n5X+/Ea0Wb5IUyOqpY87/qlS944LS3w+hENFEhLoGmukPDhUA7515nFQl1pQXATBv2pP/8gCV+jxnjhfpL9cX1YCnq537GpV8HQ1HiWqy7U7Py7bZaACJWXJ6L9TSnDjsYfBvvlk+tkpQHAY8FrhCbF3zSFAaDVnuV4Un72FBAF4owPAw2rESgAdxfCpU5efwSsHWroXjhzZDvyRrVHXM+QMA4AWjgiXxHrkx/4T7Qy2mZy2SdYsrrh7l7L3+DLhKOmxiwAE9Iu/VuuFTrbUmIFKlNx7jaZNlDPJtfd9E2Z3olOueifD8fBOZEbJtBRsdnFdcBlwnV5+Gaopi1SNXRC5vZEoSgGeLO8lfCqf89LfNZehVDAxAPE5fXk7WO8lfEgkgbEI96m685x446ii371bhBeCt5zzIIwgAV5/2QuCnQoin3lrSQR7JWJxSDELlzp3qvn1A/3bWpmSBD0ZGJFh5/vPl/zsloJQAvJfpcncA3DRBC7vXcGShGYB7y34DFE3ZuOORuD1Kg7GyF8IW1QAAXIHF3X2SETpzvCrlGKuaM+pX5frBtF1fooasxOVNVAIqkTC6j8YOJAAvxeQt//JhO8Ek6gEogw+xIXkSVDNU6h43BE8RHoC6nblt+VhHmo0qkTqccuxz+M4vLgIBk3Oyox4ZAUO3l90mTgTgGw//iLu+A8kde9s6OSshJShlwyexJlzjjK0T/PNnoqyZjlIw5OeTVSPtsu3aEfSXYGXFTkrdvmdhAG4z4NGQjtCsQBXzZpH34fqcvZR4661wxhnwV38l/eV++1u3epkX2KjnjzwCq1ZR0aXtYqclfi/jD8hG4sm1iNQGnUIYWaPz6kHHaDTgmmsWT6Kspeiv/JnU2EYNklovuR6NEybnKcTAWLtKThan/dV9hlkj5fmJQ+SbiikJAVdcv4+PT27mwh9fSK2VAbcnpQ27qE7QJMyQTcI+Z0dceuDbsW8fkGlnwB0XFBtoRKIaRlgjZPqDQxGqsmFO44xXHMW/3rkbwzIol+WqUKMBJaV7n1uHZRa5678n+dbfXiYbTSTiSqVsAJ6t+fQ19u9+5Ds+xpWPfAuQSYQgF9JCSRuAmylOHfV8+ddeKx9bGfBCQTLg9WD++EK4+SfxSFxKkfbvh/fbXJc3N2BszG0fynd8506wLMLHHkVdg1gAAJ43JJhyJsLIefD7X3mm839ffAWYzb930KjUKozZbz0w0X3C/8Ee03NVNk/Dy/aPc8f3AjDgVosG3G4XsagE4IaPHahyLHnvV3/CH/7wbY6eal+ZmDFcAF5qyOtxGHCVSwOEbFcTyou3fTVWrCrUOOelA7z7gWknX0gIKIUlqZZrHI3WiPA0W+566td/3l6GHiT7vmEDuek9TZ9noajXkTU2GjYAL5XkZPeCC9p3VpKUDRukzOYQiiAA/H81TdsCnA7coGnaCsA/m+1wLFmk41KC4gfAf3WdAT17OXuzDcAvuUQ+vuUtsqO25Si5HFDpa0ui9AvLggRuJzFoyHL23/++rA7bJkGxZ+BeAF5fI3XuRj0UEIBXmU3JRrWhYEF8tinzGuCInM2AC/inG+Bl//G75mIVSAAeD+Bw0dCqhIX0ZV2rssyjZWk92LOXenYn61ObbdeVCmfPjHLmPssFTjZIFDYDXst3nq/WGjWO85BDfRWYsgG4LAdtiyinjgPgmKKc9PT88H8kq+Hp5EQ8hV4Ho8OyogKkF97yKADP2xll3u7483mcCVQuMsSx9vzq1nUQG5uQ2utWDXhfH0xNEQsF83YFmItskZ+l/xh5QffcI62lNE0C8UzGGZywq5g65wI5ETjiCGq6dH0xOthZORrwsIcBt5OBAL7z9QRF+6WUqTlShK7j5pvhwgvh3e92NjUayqJZQM9ejtBOhxm5OpUO95PNwtPzYzwwBPO1grx3AgDwimmQ8tzKq/PNCWCGAWy6DoBHJh9xPpMe0ZvyIkKRHGaIYAx4uEo9JOnMzZMRB7yBTc6mRwnn5apFjXlW5T0uKHZui6aBEQ4RtvzBYSNU4/X3yus6daaIUa9w8cXw3OfKAqkiboOd/FpWTXqAz1VXyTZhL7W7DLiPVMlmwHNXXMOLZh5Ca7grUQBacpbeeB/U0hw3CaWIhhXWXMnQYhrwgBIUle8CNkD7zW/kC29/u0TFj8r26hQaamXAbYY8tG4tpUiIWIB8F7Xy5QBww4Af/pDXHvkyLjhaAp3B1BDUMkwHqEHRGiYVZ3LbO9s9gD/YY3reaJoI5+c6WxEqoqBVgpK0C+NVKp1zI0pVeT+e+ICsvnnMdHvi5xy7ned9cw9y+X9Dqlh1JSh2OAC8Q9uXY4XJpgn52/3t9hHKlty/WoVGWG7PxLKErRxnDsvVWj1fkhPhhWS1xx5Lz8gWqEc7JidbFhAyWb/O5n+vukqe9KKL2nceGpIswLZti77fwRpBkjA/CDwDOEMIYQIl4KXLfWGHw41UXCZhhjsAK4BbH9gHmuC4lfby/fbtcM45EtwceaTDgCeTgNErfTu7CNOEJO41rCjLDuANb5CVYSUA9/iA2xo1LwAPrZOdTiUAAJeDUo2E7afdnzelBWBuT9N+PekYmEk2zMFHfgvP++ndcNll8kWPBCXhk7AH0v4sbcpmMaicF6JleP9KePd6GtECvckcmEkaWNxx841c9fW9skIXOAOxsBNPqz5aTLNRI+3pxDfNuEvf8sPtJR3pgcIqohYMVuX76b/7vXzd08k1dMmGmR2kSpLNrCLsYjrHTIbIV0rcdJONJezfLxPLcsK4HD1/cazn4FYGfM0a2LePmO1U0wkMq5gJbUWvraQn3iOBRbkMZ57ZvJPS8h59tLvNC3I2b6YWT5GuBQPgejgmwcv+/U0M+OteB+cc/0IA0j76+Y6hBjKPDcHHPmYburzu+ZCYkyW/J48HYG3iWFZE53h6aQ83bvz/7L15mCRXdeb9u7HlvtS+d1V19SJ1S91a2ZFYxA5GAozxwGdjY+MZW17G8A029szYYzN4wMzY5vF4jAF77AEDxmYREgaBWY0EQohubS31LvXeXXtWZsb+/XFvZEZWZUZmNS2+Qeg8Tz3VnRUZkUvce9/7nve8Ry2kUaOhLlFzWxf+0Upr+jsuBUtpmYaspiFBUWPCElnqBkoj0zlk6tuhrhrLTKzoHDvdBFSPPAJ6+TTZ+jYAphePcOq/w66//WcJNGLF5XVdx3CT75EwBDSHQdXUK+2H2H6Nz39e/v3LXwbyZ9CCNFRGGgABkHNc3BUhlyNAUHRIlCp5oYMZmx62L8CZC7HXmVmgnJEa8F3n4cEhwZmhvAStut4A+kCrBtxP4fSwqYtkPgIhMwf79sk5e3payrEiadLSkizGiQB4xIBHxcVDQ1RMnVQP1odrrpKgRMXQb30r/OzPot18C5+9+RN87c1fY3fpaVL7W9t8K3pP1EgrDUqx8uTrhFmxWzfC3qn17VJaw4nkhr4m2Q4FwPOm3AjXE9hoUD7isVKA2cVWAF6pgJM/3Pj/TYc+y2sOwHX/8zMbAHh03+gJrHvUyGfLBTm+iq5Pza9QrSpDEkveP8V0AeEUeeaJGKG3f397OciuXeROHsS0k92BJAD32DZryrn1fe+TxMkNHXpATk42G8T9CEUvRZg/CbhhGPpCiN8F/g8w/oS/sqeiEREDbtS6GNer1G6D0Xj88SbbFwPgqRRQ62NtkwDc8yAbxgD4WmtjnA0acKUnbmjAMxnyU3ISqHk9MuCGTdaRsoa+JXXt8rGmpACVdfKy7InX+fzDP8jfajGuGwbpXgC4ZpN3IgC+iO4DVuvE2JctgptlKE5YfPzj8rdiwIUVFWEmLzxe4LRM4nOLqhlO6Thc/+dQfJyJ/BTCy3H5BbCCkLoO5n0qJR2b5IRyNXESinUjBnxoXn5P154JeORolRe8QNpvk1rBECaFbIrtFwzqOnwpbru6flKdmoJKhf5ArgzdHB8cB5bEYYZ0BawjYLFnT+uBz3ym/P2sZ7W/9s6deOkcBUemuru9X0u3JBi07Q12n+/+iT8DIOc0pQibjjZM0qc+pf4xKzdnA4UcLEiQuqUwx/bjd6ITcuecWkgHBiSg67LRXs+Aj6y1pr/jmSgnqDcKfddLUEzNwtUg7FIbYatxY3gSwE6uhBw7WWmorh4+EBLmzjQA+JXnjgGw573/W26wooJXJAA3u3SljGo/ovc4V6ngxljzO+4ASscZ1GfAKbDjfI0AODep7o9IngGgaVRMq6s7kB+6zMbIxOtPqhqW8e/ClR/FN5dkAzMnz+UX4OHhgHMjCnTHvPgBCcBtGyN0wetNgiIL3GXXXyGEzOBFxWZXXCHnsw9+sAm0o880YsCjYtBcjrUe612qbkyC4jjwyU/K1/6Vr6D/7Ju5YfoGCgUBbo6V+uYBuK/VyLryc+lbe/IlzWtO60ZYO3W688E0C+4zi2rhaADwEq4GdpfPuOrUycTG/dbF1tbwDzwA9DUBeM6Wa/Pw9w+2YcDlfSMSpEoRCJ46L9fxQdvGr1fI5eDyy2nMMaV0gbGFFNuWXD50dewE7RjwXbsQgc/uswa1hB4OEftu6SZ87GNw773wnve0FnU+CaKXd/MfwzBcFUI8B7gJ+BDwF0/sy3oq4pHPSAbc7GJc38J0BUErAJ+dlRKUMGw4C9SCzaUVJQPenEiHqnB6qbnrlRrwJgCPtKANBnxignxGMcOB2AQDLgF4fkFNUH2H2d7fZEaFgJSWZe8ZCICz29Xi1NfX0ITVDJOM173JSaDZ5By5aOgEjFaAbGsBUX+uCG6G607FHrzrLvlbAXBdNR+qd3GuccONDPiaXYc3vgJecSv0H6I/20fGyHKVUtV8JI5VY5OcUK4mfsI1HdcHzWf4rARs15xzOL8kFwTbBlIr5IwiuaxgbEVwqgAnYuReS8ELNMDstKqO75Zuf+QRCFNLjKimLI204bZtrQe+9a1SLhJ3RonrwXfuxE0X0ENYW+os82kw4IbVtLGKSVCAhqxGMuAXKUGpxHZj6r7etUteO4qfvuKNUJPve6/t8aw/ewNntH6+NRUD4NCVBbc9ewMDvhxr7y43wkqrSYity/NZoSbPrb5DS0/h6hB0kWZVHQcRQEq5NEyu+pBa5RvfkGz08bNLBJpNwZXymssWz7SeYLzJ19iajtVlHEabppzKfGUCn/6VJlP3+c+DMXSMifw0OHm2L7g8VoKz2xTwjgF+gKqZlh1ik9yBcNgWI/CedhLqXg3eej289o2g+Qzm+jEdi7FVOFqGC2MK0KzflKosUcqtKAa8RwCemScjlE73zJnmWHvLW+TvX/xFeLHM1qCKLRsAPLJ7zGSoGiaZHgB4zY8VYd5zj9z4/e3fwm//tgTjp08r/+dcw7loM+GLWqMbcN/apbf3/P871m+EU2eSmw01APhSKwAvWiU8rXu2tO62kjWzS62Zr/37gf7DYMv5bGpZZp0Lx07JGqW4Bjwr16ckAB510hy7IHGCFQZsOxvLNimyrS+X59oT8nv+m6sgMKSEsy0Av+kmAivFW+9zqSVkwiIJiqkb0pOwUFAM0ZMregHg0Wz5CuADYRjeDvxoKd1/xKOQkQy4lVBcB03w0GC6XLfJ9m3dKlP9585JAO6le7aNi8LzIBvEAPgaHDjeXLX+6Z/AyK0gVOGE6y/wykcgg9kA4JHVnkvvGvCMsprLKdaW4imKqSJ/9MI/4r0vei8AaT3D3rNwqB+WZtRCHEtFu7qB1UOXQQkkmv+fWgHGWr2Z+xUDfo0iPL61ozmxRSBKUwy4s9aFAQ9bC+rmFgTLa/VGu3vKxyllCg0AXjUE/zIbO0Esvd8A4Am6vppqOJOp2njZIsN1j77YJorUCnmzSC4Ho6twugCLmdgJ4ul9aNxfW5R/eDcG/OGH5TUmCjkpkH70UQmIM5nWA4XY2JhqeBje9jYpBJ6ZwVcd/KoXOtcytADww4odmptrPUgB8JwXNvygNx1xAK4A9OIiXP08qeH/61f/NdfvHoB7/h3c/ev8hzsPIYKAv0y/nkBTTFaPALzurWPAK63dU9dnogLjOC8+BMUDcgPeAOCahadB0EUvbLsu2dj1JtccsCrcfDPcdBNUNTkQCkwg/DS75he4azJ2ghggtvXuADzaeOedZr59y3wTnHgeUDrGeHYGnBw75uHgAKyOq7Gw7h5dM9Nyc5VgMemFDn3qIzyfGuD6U1D3W8fucKGPiWodDXisBEsTCnivtz5T95PlVMC3egfgQw8zZspaD86ebTL5r3yl9EB93euaxeU7d8rfkQQlAuDZLFXTJNNDwflKSurKZ8oz8B0laXv2s+E5z5H/PnpUvhU319CLbyYCUW1sogaq3bOPP2pR81oZ8NSZ5Ixy1GgpHenhFQAvWCVcHVw7GYDXXLuFrNm62FqEeewYUHwcfUE6Zs2uSE267rjyBottFPW8nG+1hO7QrhuC7pJ13AZpcc2Zpi1vtMnvy+WZUlPwgUHwi0qm2E6CMjJC9bkv5XmPu4nuQFERpqWbcmdx5ZVPOvYbegPgJ4UQfwn8FHCHECLV4/OeiksU2bRBzQCzW6esIFbkoTy/GxXCka/y0aNSguKnCPASdZEbzu9CNtZsZXgNHnmsCRY+/WkYm17FdOTEcuOJ/dz293DV+z7SAOCRx61DdwZc7oJt0srBQJ9foKDaZxdSBd7xnHfw9me9HYC0Lhnw/SNQH1UL8Y4dzXPpJpbfvTV8KBTLoJilqWWg/2DLMf35ArhS8nK4rHFwKjbhqEYHeloB8C5ygrgEZXFgjrkFwYkzNVCFoKRWKabzZM0ce8/A/UM6Z/OxdHdUrAjoWfk6wgTQb3sOlg+6H7ByzY0A7D0ZY/hTqxRTEoCPV3xOFYDY5TYAcHVfXb50Wp0/GWzIQs9V3vax70ngcvfdrTrvbvHHfyz19oZBkJXUfG2h88LXkKDEAfj6VsYKxOSdAO9iGfD4pkeBoYUFMEfkvTNbnpU41Ckw8s+/Rer2Ozj/8+/g9/TfBTbHgLfTgNfc9QC8uSF446k7+cL/gW0vfoN8QG1sLENKUIIuzaJqTixLYxhMOfUWgF8zFADXRjFqw1xxYY3vj0KQUjxNnAHXiL8TAwAAIABJREFUDVJdNsLRd5Z1A0KVGZlddIAQBh6F/kN4qQtMFabBzrF9Hh4dAK9PpWqCVieempGm0IUBD3Ab4/De4WdwzWnQndYCt9FSH1N1+b4fK8GKKijfADQiAG6vgm/iB93Bp+OEMPgAH/7Icdk2dWmpCcCFgDe+UT4eRbRhXc+AZ7NUDYtsD3K7Svk7FJ2d9GX64MABuZkfHm5agEYA3MlRdTcPwA3W0NWUO7SWbBf6oxg1t94CiLPnkgvuo/XZWlDHqbm7lC7iaeAlgGF5vWbmayE/ztZFWvzxT58JITtPqjrLUAVGqxU+sSt2gvhakZPrlJaw+bYV8ZWxXbjiCs5ZeZ5/lEa3bVKrpLUspYLO1IpP1YALWQiUvW2n3ibB9AwTFT8RgDclKIYE4Oslik+S6AVIvx74AvCSMAyXgH6e8gH/oUYmI3CEgdFl4XLDGAP+9a/LB5/xDPk7mlSPHEEI0EMlBemxSxtEDLi8hp0pMFSFY2daJ50wtYTlyYE+WZFszczf3SblBFNTDQbciU6YEL4PlrAxghAmJxFBwI0ZyRAVU8WWYwdEyLZF2DcKQaR1i3XMcnUTKwg3LM7rI9Rsck7YYJgmV2i0gm9cK18ETzLu+0ZCzvcrFipmgWSk5STkdnGu8WiCm2OFPcwtIr3Ww+bQLFgFcmaW7QtwYMhnMRsrNokBYj0nF/4gobCmHmNR7GfcyKJp8qJjsdRpaoVypkg2C2NVl9PrTE82APDRUbj+el547G55zi73U60GxWCFG756QH7Bhw41u0BuMkLlZessdG52FDHg6QiAj442QUsUhkFgpci7waVhwBUYWlyEw1t+j5SeYtfQLoSQjqD/48bPQBDg//SboC7v1aX6UnPBWur8fgDqfpMBX84NSQC+ngGPScGuWD3WeoIIgOsRA5686ag5sdT3zp0UbJdC2Dx/mJL0V9EYZPrsEH31kH0jEESfc5wB1wzSXZonRY4gOSdAXH45rtCYW0DKeX51J/ya3LCNFIYYrIWUbTjYD6j7v6VpDVC1Mj0x4NG4uHv6paR8eM5Kq93pcKGfWVfOd4+XYHVajYX1DLiSoJh2BQKzp7qCI+dPM2Wv8uwHjzYlJ3Ete3Te97+/td94GwlKzbAaWcNOsboK1dL3GPaulw8cONCUtUStvo8ckW/FzVHzNw/A06F8zpKZob8Ga7VkgPqjFvFM1NG8RXF+NfF4T8k31wPwtCk3wt1a0dsxCcr54d3kXPDONuVeJ86vgu6Stme4VmVnP9kJgCsGXE8A4DUlOUvbLuTzfHX6Kl71KGRNtR5aq2TNPPk8bKk4PFYCRHcArk1OUHQDjISi00iCMrKkHFx+XAF4GIbVMAz/CVgWQmwBTODAE/7KnopGpFJy4dKDsLPPMOs6qX31qzJtE0kUooKe03JkGkJplHtwrYjCdgKyis2pDU3LIszV2CDSXM6GD1GsSt3u1hW5KIggkK97dlay84DbIwPeYNwVa3mdJnPbRasVgO91pb533wjoCvzGGXBfV6C1yyQX6rbULU5MEOSyUoKyDoAPFopkbcH2edg/GnJhQF0vtvAbigH3ujHgoUPelsNw5MV7magEZKhsAOB9hmBqBQ73hyzkYwA8ZgtoKEAaJoD+utcEGv1b+/jc6ASvOLpM2nRh2+chvURftkjJrFJ2PU6vMz2JT+KNuOUWdpw/TF+1OwO+WrW58YT6DqK04psusrFuXoJXd7nzwt5oPGRa0j98vdZcRZjNkfN8/EsBwFVB3MKSz3zqHn75+l9mKCc/ty99CX46/SnYto3MdbvBzaJhSAAegakufsC2V29IQhb6ZhhZUwWD8ZdiVaAqgeHlq/Psi0v3J+UYShlSA+7ZXYowvZhMSo2pCXuVhiWD1exsuudxOa/sG4XVV9wk/x5jwB3dwPSTN8FNBtyHUolj6QG2L7CxGDqXZ/ua/O4PDsDxV98IP//z8M53thxXN9MUnOQizEA0x8VDW17MqgUvWf1u6/UyfWxFbjYeL0JtUrWD7yBBMe0K+GZPm7rvPHSmtaYENkqwAG69Vf5EEZegaBpYFraZItcFgP/FXwDWCru3Dsh56+GHmwA8k5Hg/9ixBgN+MQA8E8jnnMoOoAHVM8kuIZckKhW4/fYn/jooAO6AZ1g8lsvQv9B53IYhXLF6nN/5GmgHD0mvekUUZSwLV4ewy9pUj9V+LE/JNVY7fIIPfEBmn08tysxZzplpyCO/EJ/uWsgaOU6NRAZcvp6UAuDfufLZ5Fx4obhTNt7KLFCwCuTzML1WkwAcmvdkTHMeD22LxCJ9i13mbc1j9oRi+H9cAbgQ4ieEEAeBo8DX1O/PP9Ev7KloRjoNjlB+mAlsVUMDrpmyqCZykgBpk2UYjYYxlpBAeDMAvObYjYXfGZ1hqArLkXfp4AEY3Ycb1hmqSmnD3MoyDw3GTjA7G5Og0BMDnosYVaXb3eFKkGnqrZZDexwpudk3Cqd+5mbZxvnf/tvG3z1DHZ9gzxUEyOIvJ5CL6OSUlKAMPtJyXDlTZK97Bk1db3FgI/NmKj2216Vw1g9d8o4OqRTjr5Al5NdVTiFiuo9CqsA2TgBK455LNU8Qc18wookvAfTHwVRqIM8XZ7YxWA940WX/Fd70chi7j1K6yJAjC3hOFkDDaALvdo0OlIXgtae7M+BL9VWeeQJ8XZMt6JeWNhZF9hh6Xk7wfgIAjxjwyXNVqXNt18gBIJ8n7/kNP+hNR6XS7NB24QKeh+yUKkKmS81MDEtLsnLxllsoFAUgSIflVgDeZdNm+82FeGVgltEKrNSai/9ttwHWKlplEkLYtbTGN+MfsZJMpAzJgPubZMABJitBs0utalRVSOXYdk4uKQcGYfGP/0BuemJ1Cq5mYHaRgjUAuONDLsf9+SmefgIotXbA7S/k2a6aiR3sB6NQgg99aEOWpm5lu1pM+qErN8KZDHbYx5e2wstXv99i+9aX7mNHcJLTeahZYGRz0qHhV36l9WQKgBu1VcmA9wDA7z+4yHWnIIy7qfSSGcpm5RzgOBI4C0HNSje0151icREwbHZuTUn/0fPnm9lSkFmLc+caGnA7uAgArhyzTufl7q9++ocAwN/2NqmZ//73n/BL2SoT5aUznEznGFjqvJbaNvz7k3fxh18B8b/+lxwTStOcTclx2JUBj5EnlW1yrcgePMEv/RLccgucUz0i8oyzbV5wMm+yko6dIEaeGAVJEBkJY7+uGPBU3YF8nqW9z2DVgldwO7x9DHZ/kmK6QKEAW2prDQAejI10PCeAOS0B+MByZ99zmQVzmX5MZQOvuCLxnD+q0YsE5Q+AZwCPhmE4i3RCufsJfVVPRUukUmBHADype5SEtUzf+jtyob865gkkRIvPsKkpCUqPbZIB1pwm8+ZNzpBzwV1dhJH9cOvl8Jo3AjBSvwECnR3La3xnInaC2dmGBMWGnhjwXJQ2VgB8pibB50KttfDu8tojLKWkNjOdL8Nv/EaLL6gf2RYmTDhR6jvryoVf27KFyfOlDcxbMVXk2hjjvjykUm0RgwRYGdUJs0tHOh+HnKtJ1uCGG/AFvHD+MbR0c3IqWAVmA6lfPtwPwsi0PZfesJZKWAjcmJ43n+eBy66grsPLane0vL/BNfn+jpXBJCN9iaNCrfVxzTWAtG7rqgGvr3L9SVjcoQov1/uKbyL0omrhvNLZzScC4JcfUKna1762/YH5PDkvwMMmDLvXCmyItbWm5On8eakiycix1p+JaYRvv13e2K95DZom374ZlCQAj3S93RhwtfAHmQxO3yQjFagoAH70qHLgtCpkvUkmVqDkBDw4BOGQAsIK5KUjDXgXBtzx3CYDru7xiRVgyzdg5quNDNFwX44tCx6LaVjKQCpTUFYwzZBSsGQGPCrCTDse5PPc1b+bLSswW/pmy3GDhTw76ufwBBztozG3bPi8rJzUgCdIUHzhUHDkOLzr6xnu2A7T9jK7YuURw7lhtnnHpdwFlWn8yZ/cWFOg7mmjLhnwXrIqjz6+xLWnob57h9yY7tu3seV2uxCiOYbUBs42M1JGlxC2amueMlKqet6Am29uHjA4CBcuyFM6OZzwYhhweU+ez0sJkn365KbPsemIbBqPHEk+7hJExIAH2SwnrSLDy+4G+VMUtg1TMcvA+HEZy5QSlC7roe03rTmd3VexZAnGHzzR+PuCsgQu6APMLukcK62DdzEAbhYUA+52Hvu2Jwv2rboNuRxXXjHCF+fg5e5XGxvTUiZPMWUz5jQB+MqfvAd+67fgxhvbntdoAPDuEpTyYk1mCjqw6T/q0QsAd8MwnAc0IYQWhuFXgOue4Nf1VMQinQZbdGdwPWzSLhT/8XPygTgAhxYAntI2L0GpOs2ik3CLBBvp1XkoqklgUFrKFcUEw0tFxtZ89o+Afb16HVu2xCQodJ1wHDcgF0luFAAfWJHPifuPA+xYu5/9I4CATBuA6hvdAXjDd1wBcGZn2bHktrBgIAHxVe4RVi0JUN2BskQ9n/xk4xhL6eCCbgw4DgVHSNasXOb+0T5euHAc32rqgAupAtOeZPgP9YOppdqeS8vJ9y0S7hHbjwHwXI7iwAR3zsHLzu1rvM+MkWFgRXZNPVYGU6QlI3b99e1P2tfHfHmM3eeT2wuDBOCDVXBGBxOP6yXMyMpwpbP2MmJT+6LmRh3YdpHPkVf3Y5JUoWNUKnJ8FYtw4YLsO5WRm8SBbEyi8KlPyc9SZQ1KJTC8snRB6ZEBd4I6BRuCfBZ3YJysB45K5zaUMKlV8voAV5yV88aDwxA+8oj041eRVhKUwOmW+o4x4Dt2EArB7Lks3PAuePPz4Xn/BYAtYxlm19Y4Wo7OvxEQe5rZEwMu9DpZx4Ncjjs8mX6+ka+0HDdQyLPdOcPRPvD0zgC8buW6MuBBtBHO5/mz/57m8yp1/3JVf/2R13yElJFi1jnMo+rrjOayDaHAQvqfPw2BgR92L4hcrC5w3Snwr7la3hubSbmvA+CulSHvgp9gL9mQF+gp+Nd/lZvouJRGAXBNA5M8gfA2NS6CAIaULOpcn9yg+GeTfbIvSUQg84cAwKONcJjNccoqkfHCRoY5Hlf/5dX8j2+/j6n6CvtG1aYqcrMBMikDTwPRDYDHJCjZ4QLfHsmx7dGmBjxISwa8aAyyZSnkWHmdDCnWLCoC4GbC2K+7rizYD2RG+GU3DnD7dpiyK42eGwWrwEBNrv8RADdGx+Hd75YNqtqE6JMTRD6hr0kkQclV3Sct+IbeAPiSECIPfAP4iBDiT5HdMJ+KH1KkUuCgAHgSgxs6smgQ5K5RMZONGBiQE8T8PF/4zjt5832bB+BblsFJpxrOFfm1RYTZPEfWyJE1M+w5JQf4/hGofPYfpZF+KtWQoNiEXQF43XUYiwDFli1QKjG2Jtm7l217WfPASoXty/fwLSWZzJrriuyAwFSLZdIGxgOh1cko5o3rrqPfq7JVmWzc+f/cyS9e84uYuskVzkH2j0ipdtbMSIuwGMNgKYu8oAsg9XGk77iSjzw4u4enn7XJxZ6Wt/JM1g+zZGksZMDS0vCZzzQLbVU0rKUSGHDHa2XABzND3LYDZlZsdqg9zf5z+yktHsMVGqcKoMXT4h3iwvBWLrsAlS4bjlVnhaINFH/wSdUqKwC+1jmVabs+aAGliElJtwdpopAnp+7HzRQmN6JSkd/h0BCcPy+bYigA3mDAazVpYn3zzY30c6kEmqMkKKmUZDR7YMBnlyCYmsQbkIV6xhn55VWrIE27V8hoBa44Ld/vI0MmWl9/S0Fk2pSp7zCBBQM5Dhv3TH8/wbYd7D1lycyXipSWZXJCY9ae54hKCLUDqK5mdHUj8n3IRG40+TwP6ds5n4XnVR9oOa6YzrPDP9FgpDsBcCeVJe+Cm9D4IxBuYyP8htcbnMwb7OvP8JJD8M2f+yb/5sp/A8vLDHpnORgBcL0DAB8ZgV/4BczPfJK51WpPDHhf9SgDNTCue1rXYzdEBKxUBsVRnS3rq53dgSIHinLFg699DZ7+9NYDFAAHSGnyfGubsCJ0XdiuvNuPTcmNe3D+bNJTLk1EzHLU4OsJDMdXbkS5HI+mRtpe98SJkO+f+T6//623M1lf4xtzWfj1X28ppLUsgauJHgB4cyOcH8lx92CZubMr5FEERJRxM0pMrfoc65fnO/sH75BsdGweN9M6jiYwkzZpntuyVgxkBhpN2Z4t3VUZyg1RXpH/Oa423vEmeW1DbRgzCZm3yAUlu+a0dvB8kkUvAPzVQA34DeCfgcPAq57IF/VUtIZhgC16AJDYUrMMMq24vjVrf7/ceX/lK1y5coS//gzo9z+w4TydoubW2T4Pi2OjWJNSZ1msLmGVmy4aQ7lB8nm48pTc6e8fgXT/cGMz0HRB6Q7Aa67NzujUO3fC1BSFE+eY/w/z/OYzf7N54Ne/jhF6fFlNDhlzIwMeRGCgCwM+Wa1L15Xp6QZL+XRF8N+09SY+8KoPQBhyef2AZNyBfHrj9dIKUHezePOFQ85tAvDH5l6KGcALjzaPyVt5xmuHOFRKgQBLS8FP/AQ897kt54p0fXrCxGb7dsukOlIYauiDbw2uo2AV+LWn/Rr5C0d53OrD18GnO4BYHN3GjnmoVJPfb8VdpWiDdglYjXS/8lyvdAbgdQUuSwtrG10lYiEKBUoKeG9mU9qItTW5aVPA5YEHQC/IBXEgoxDbF78oEfJrXtN4WrEIwlYAXAgJonpgwC+7AOHOnfhD8j2lz8tr1WrAdf8LMouMhtdw+VmNc1lYzm3clEbuC2EXBtzxYhv7kRHEtddwzYUaZJoAL6PnmBgLmHXPcTQC4G0Aqq9bWD6JMh/Pg3zEtuZyvPgFWb42Dc+bb61SzJs5tvvHGox0ZwAuN8P+amepkizCFA39tl6Z5ptbbZ5+ErJRxukb3wBoyOo6MuAAvyvtJW89cqCn8VOuy/eW2rqjy5FtYj0DnpJzib3c2R8/koq96vf+Xj6wbi5hcFDKGF2XjK4A+CasCD0Pti/b1EyDxYm9BNDs1vlERmTheeJE8nGXIOygTtEGvVRkX1pOouE67fkzb5Rz02BVNpQ6U07Bn/xJSyGtaYKnCYTfJSMcNBnwse157uobRg/heu6RRde5c+hCZ6tXwQxoZKLqt/47acoQC8OAmq6TSijWtd2Y9CyXo5wuc6IEFzJwtSLet/dvp7gkAXjEgCeOC4BUClvTyCatxX4Imk+m6vx4M+BhGK4BQ8DLgQXgE0qS8lT8kEII8EQPDDiOdO2A9hX0pZIsilIdpXwBfZ+4refXUXPqbF+A1Ylx+ndKtnfQXcEoNSfWwewgfX1wxVmPMzk4n28FxA0JiugOwG3XkaxqIS/Z+6uugvvuoz/TjyZit+4HPkAl1d8Aku0Y8NBUu/IuDPjcqgI/c3Owezd+Js3T1ksX9+2jGKw0AXhq48Kfyee6Xg9k6rtkh41F9OTMizifhTc2yUUq9ipjK49wWDHcnYBGo7AmAYA7fisDPloc4sAgLKfg6qM1Vn57hVfPvIT+736RezIqddwDgFgd307BAXEymeWqustq0WpvUbWZyBZkC2c9gTF2VNvz/OLahg6JLVEuNwD4ZuoiAEn3HToknYYUA/7wwzC4ZR0D/qlPSWuumDayVIKgqgA4SADehQE36itMrYC4/HKcWVkUaew7y4tepHzWBx+mYJTZG/4cuy74PDissibrIm1FDHj34q+dF8Ae6IdyGe3aa9iyZjMc2/dkzRyTxhnSodtY+A1to4bZ001SPngJ3tiuG1L0mwz4v//VNF+dgelqnekYqVs8dppcWG0w0p3GhZuWYytY7VysGwhH6qbVRthaupK7pgIKDvQdPiWlO696FZ4wGk2GOjLgANPThD/xan7j2H62n+u+oSu6cg4V7VyGuj5ZMeAKgPtpuYmwVzoD8LrKBpRPzcO1126sjYgKZxcWyBqbZ8AdJ2T7ksepwX4K+TILGdASGmZdsogkIF2sPC9FOH6Nyy+AvnMHJ7VR5jPg72sF4Cfm5Q07q+7bs30byRrLAlcItG6STN+mZENomoxNW+wbkjficwofg3cW4OoPM5geYfuqfA37FN/QblwIEQHwztd01jHguqZTzvRx3xiNrszb+7eTPXMEH63RMdnUzLbni0fFNMnaSdeWf0v/uDPgQohfAL4DvAZ4HXC3EOLnn+gX9lS0hqN1Z8ADEWPAI9vBeERtv4H9/VdwqB+MU2c2Htch6s4as4tQ2TKFrqyEttRX0QtxBnyIchn2LNTZPwIGqRaw3JCg9ADA667Dznk4P66Q7tVXy4XwXMwW8Nvfhs98hm9e9avU1bhvpwEPFfBP0mR7HsytqBlnbg4MA/eqK1sB+Pnz8PrXs2QM8E+qaV07BjyjAHXYpctgIBxmltyGT3vaGuCTu6T29P+95tcQAfzEf/4oAyvH+NKIXJw7LfxGPrKW6gyoHD+m583nmeofItTgvlGYPK4WrU99CmNpng8WpMynlxR6MKjA7fnkRbbCA1gBFIcnE4/rJfKqQ6zexfUFIL+wmsiAUypR9iXw3TQD/q1vSeT7kpc0GPDlZUiV5hEIyumy1FV89rPSoSGWmervB3d1HQDvwoCPKCZYv2wXwdgECymNvocv8KUvSTkvZpWsmaeYh12LdR4cAktrc49aUgNOl6Ytju+yYx5qW1WRqeqU+NzjzWMMTad/WaZtIgZctJEu+bqJ5SfrsW3PawAWZmYYLOX56oz87wuOys8uZ0PxKimb6CZB8RUADxOKdQPhkndpMOCZlSu5V7knFh89BnfdBcC9W38S241cZJKZPvFffh+Ay871wIC7itMavIjaiIgBVxKUUMnf3NXOINT2bbQA8mcX4UUv2thlMHodFy6QNTfPgFdtl9klONs/QF8uz6kCmKd+iAz4xQLwCxc6FlKuj/LqBSkb2nslml+QksR1ADySoe1UL+vx0SLrwzTBExqiS58PJ3CYXYRgiyTXzKEBvjNi8kr/i/KAwhnGi2NsXbwXVwjuV2ZAHWsjNB3L61wQbbutABwkmbB/BK44J5Vuk8VJ0kcf4ogxjqP227rWXvsdj4phkU9ap5Q0Jr1W//FmwJFNd64Ow/DNYRj+LHAt8I4n9mU9FevD1ZIlFEEAoeYwvgrhwMDG1t4gCyNUPDywl8eLkDp9buNxHcKYP40VgDsxAZkMp0pZdqxWCDPNiXXVXqW/6LF7WTLElmhlozcrQZlZguWRGAAHuC/WGv5DH4JSibuf/bbGQ+0YcBRL7VQ6s4u+D9uWXFxda2QQxNOfzjWnIR3NFZ/+NBw8yLv3fpxzOaGut/GzzmUz+AJEF31t2qsyWvEaRaYZrcAd2yHvwpsqswT/5gDFz/wzD1zxU3xwRuruO02oVlrD1pILa+JWVuRyTA9KUH9gEEYeX5CLz4c+hLdlli8bzwboyZrPLEmWwl/pLAcB8HRpoJTqH048rpdIpwWODiRoe6PCsczCaqMFe9solyl6NURwERrwe1XDluc+t8GA16ohfvY0Q7khuSA98oj0fnvhC1ueOjgI9eUSVbcqXTqy2a4M+NCSajG9bTvTM4L9/Vn2rEjE+jd/A1hr5MwcE+EJSq7XkQHPRA1AEnSgoBjwebDnVDOva6+lohs871jzmFV3Ce2YLHw7kpDciCQoSQV9dcdhW7SP27aNy4d28NCg4EIGnndMjrmf3Sf/fNaa5G61l+s0LryMAuCrne/NBgMeAfDqdo6WIQAyj51uFK9+9gV/CnX5BhMZcPXaAeYWkue5MIS+QGWOLgaAr2PAhZKg1Cqdi5Nt32ZsFTTPb2lY1ohos3riBDlz8wx4xa4xtgrLpT5KmRyH+qH0+BOsAQ/DRp+LiwLgn/iEHL8f/3hPh09fkMyM2LMHk6zsQfHgQ629OtJyXF52QbLcZ0faA3BX09C9Lo32Alv64W+X99VQoY/PXAZPqx5nSN3a48VRtp76JvtLZWy1z+8IwPXkpliO3+wOG2WGclaOA4OQ8eB52ixXL1gYn/okD2qbk05VTIu80/narpLjpCv1H28GHJgH4iN5VT32VPwQw+vCgEd2a6NrAtEJaLzgBfAG2Y76XHmOE0VInbnQ/tg2kVbMWzAq2c6TQ2V2LNdwjAuNNPtCbYGZxfvIBD73TEBqHfMWsUaOCOSEmWBJZrt1xldhbVilZa+6Sv6OA/ADB+DKK9HLTTu7tkUgppyEqpXOi4jt+MwthZzr72tUcFuvvJm0D697SB10+DCYJo+OPw98OcO105xn0roEh130tTMVxcqpxTqjF/jKjJQHDX3nwcaC8uAzfxE8OQl2Yt4sC6qmhpUgQXEDh/4a+NkMGAbjQ/KcBwYhs1qTDP899xC+7BWEjpz4wvU2MO2uXZagJEz4fAE0Q2lrihsXos1GKgW2LhAJEoq6XyPlglW1k8FNqYRGSN65CAb87Fn54Q8MyGvYNqyt4WSPMVOekcd8VzV1WeckMzAA9pL8nJft5Z4Y8OFlNWanp9m1C45M5LlyeQVBIJND5hpZM8tETTrnPDoAab0dA678h7tshM3VBYaq4O+YUw+Y3Dkww2sfBl2tocvOYmMjcjyBsPL0FGaQXBBZ9xy2L4BtWTA2Rs7KEc5fztdm4Mbj8oKXXQBKJd50w+OsKnzRkQHPqAZVCW45oXAoRP7/QIZ+bBNOFsE6fkICcNNEGxpodC/tWmyWy3EqlWfbQpCoef/akbsYso7h6vrF2XJGz1EgSUvJ77q+0nksOr7NdJQtbQfAI9/l/fsppDbPgFeWFumvw2p5gHzG4mCfRt+phcRGcj9wvP/9shg6k5EAfLN2ou97n/y9b19Ph89dUGD/yiuxtDT7R0Cr1lodWFSdxM4LcLiYQrc6SVA0RNAFgPs22xZAbJNgt98a5Ruzcu6LsrTb/BKTj/0rnxuabZ6/w31a1w1SSQy459IXTUWKhb569Grgeb8cAAAgAElEQVQeUZKvf3nGX5B9i+y1cTycbXOGzlE104kA3PGVBeJTDDiHgG8LIX5PCPGfkR7gjwohflMI8ZtdnvtUXKLw9B4AuGEzUhHJTN/v/i5cfTX3zL2SE0XInF/seVJMLyq5ipK3nBsbYOeiiyuWuXbsWt77ovfy0dd+lKmjXwPg69MthdcAaEJDCy1sTQ38hMVfmz+NGUBtSLGlfX1SqhEH4I88Ajt2tPSHaZf6Ri1K9mrnRaTmOMwtwLmhph2XeMELONQHPxPNyYcPw8wMqawOgQLgbSQvlgWODpqXzB5vjQC4YsC3b7VYS0lAXHj4cAOA+8Nj4EqGK2O2BxqmCRVDI5UA+t3AYXoJvCmZXy+XgVBwIMKm3/42rKxgbJsBu3eQnFIAnASWESDrqfd7iQC4own0hCxDzV9jIFpEkgC4YlnKdQhPnuTEd8/wzW92Prwlzp6VY06IhhNOdu089fQ6AJ7LNRrZRDEwQGs7+h4Y8NHlBVYs0Wj1fGisTNH1mUZpQswq+VSO4eoxQFpJptvco9mUlKB0c18YPifPG0YAHFh48zWMVeDmo3LhfdGjAfzpn/Jp85YG89YuAmUH6tSTxqEEGhdGhpoTyJmr+cYWmF72GV2FsVVgbKyFHOsEwAMFwP3lzgDcCuoMrXmNLqFDBUkoHOkD/chROQ5HRxke1aAmP/eqm/w9ARzJDLB1Efyw8xx78NxxBqtQy/VvnDB7iVX1vlSGUFc9COzVzq/P9u1mYW27eqH+fvlZ7NtHMZNjYA3cM+tbdXYO96T0417rGySTgUPFNKbnN326n4j49Kdlp9bf+R2ZKe6ykW2JIICHFMvSY7Ho9gvnOJ3TYHAQS0s3JEtSB6ZCMeDbFuBQWW97j0YSFKPLOlysLFBwQFPdaIczY3xvTJI116uv5qbPPIAWBnxyUG6gDNLt10MUA57Auru+29ykKfvW9734fcw9SzUze/jhhub+L/xfS3zt66Nqpik4YceNqRtI+YsWhD/2APww8GmabsifQXbDLKifp+KHEEGUQu4gQYkY8JE1kgH47t3wve/hFSc4WQTND1o11QmRW1Cp73G5SC3MjFG2YdReJG/lefuz3s5VI3sZ//rHeCA9wZkCVIONhU+psISjqfeRsPinz8lKdnskpt29/nppm+V5kuU4dw527twgYVwfuqUaAK11npSrdp1tC3B+KCaPEILzL38eL3xMl5PN4cMwNycVPoEUvbVjwFMppLVUFwnKXARYFQB/3evkf+8bhcwDB+CM3PSEo2PgSCYqY3VmwCumTqaeUIQZSFmPr3SEfX2AbzVlA8rpQUxv2RQAt/okc6itJYOSQvR5XCoArmtoCRpmO1hjIHpJ61uGxyMGwK9/2s1MXj+2wRiiY0QAHBogP1M9x5p5nJnSjHz8u9+VTkDrvHE3APAeGPDxlWWOFfUGWDs2Ka+5B5VdsNbIp7L0rx4nQPB4EdL6xoU/6sDXFYBfUI4SO5tp5uqLr8LR4KcuSLT99m8Bc3P8SvEjieeK3IjcWmcAXncdts/DfFyzXx3kfvURv9rfJu1Jx8ejpp5AZwAe5tS9lrD5nqwpEDszA8B7/4scEIf7kIzmqVMwPi7J4jMS6HZ1ewCWzCzlenIToErNkQC8kHB/JoWyC+SGGwAwFACvJ8jtHN9hKPo4hjvIwa68Eh54gFImx4X3wque+5aeX5Kvul7Wy0Ok0/BIQXULPnCg53NsKoJAjrGbbmqO883IUA4fbpro9+igsmN+ngcH5T1g6ZIBd0YG4Q7Z1My2aWjAp5fh2IBD2tx4z0gGXEf3kxtUTSwqCY+yAB7Nj7KWgocGNZ57NsXekb3c9I0TPHbdLTyQkhtjnc67YVs3SHmdswS250qyJpdpdM8dyA7w17/wOZkpOnwYTp6Ed7yDx1KbaxVftdKyOVaHWhDX8yhHicgfZwAehuHvJ/10ep4Q4sNCiHNCiAdij/2eEOKkEOL76uflsb/9thDikBDiESHES2KPv1Q9dkgI8Vuxx2eFEN9Wj39cCNElH/ijHX6UQu7AgEvfTJvhtbDzhBqLrJVmOZoLEoqT4pFfPo8vwFIMeP0K2RVvb/0x8paaYG+7jdzD9/JneYkk621aGKcp40ZtrBMW/5TS2LnxhfinfkoCni99qclYXH55V+JIRAz4WudF2D17mqIDCyOtxXrP/PX3SK3kbbc1AHg2S1OC0okB1wR6F33t1pUaCxmzAQCj9/H9UdBPnob774dUCmOw3GDAsx0YcMuCVVMnaycz4DNLEExLRiOVkkDi8WiOi2jfLZsD4KkBBcCrncGjF3gUow59l0qComnoCfeQHcQY8CQArib58jr1SU9Z7DgAVwx4LjhIIBymy9PyHr/vPrhuY/+yi2HA+6tVzuaaC+vZqXHZzdT6snzArFJI5SgvHeOkWcI12m8SsympAe/mvjA6fxpPgLa1yYBrhSL/ugWe9bAEf5ctCHjWsxqZpk4RqEyeZyeAQ1t67y/GXWvsIg8pJdqfz/4Kz9JnYGwsSgIAnQFxmFU0eQIAn47Al5JjbJuQJz7Sh2S/Dx2C8XGJz7/8LrRP/BPPn3l+x/NFsWZkEoEGwFrNpb8GbvEinYH+9E/hXe9q3F9GZEeYAMDdwGawCmHUIbldbNkCJ09SyuY2/ZJC1fXSHhglnYYHymq833//ps/VUxw9KjMB11zT1AxvBoAfVB2XhoclqKzV4Jd+CY4f7/iUqZVVDpXlXJzW0yBg8dnXSsu/MJS8VmaBYh366nBswG07d0sGXJdkWEJMLSlmXgHwyZIcH/dMBFxzMuD7b7mH9PlF1rbuAVvVPYjODHddN0knSFAc32VmCZzJ8dbMjBAyO/LNbyrD9+2bns7rVpaC09lxKmLAgR+oW/L/7dELA36x8TfAS9s8/j/CMLxK/dwBIITYBbwB2K2e8z+FELoQQgf+HHgZsAv4aXUswH9T59oGLAK9b89/BMM3ujPgaaoU7TCZAVdRyKZYi7YsCaA0HsXlBc5nIZ+TYKv0TKlnvWq+1gTg//W/4m+/jL8OOxvlZLUyrqWQTsLiby3LUoNwMLaheMUr5ILxwQ82tXp79sj54c8f5DWVO9ueS1dOJW4CQ+uflXm8tfUL0nXXyQnnr/5Kblbm5uSEoxjwdsyblKAItAQAHoawbaXG4/35DX+7L8Ien/88jI6SL4gGAE+t93dXYZqwahpkEiQoZm2F/jotus9C1qJugt1farg9sGVLg3HvJSz1HoxERxJbNuGBSzKpSgmKhp7gn2uzxuAmGPDSuvWgi4ukjDYMeMGXLFp/pl+yfvV6bwC8Bwbc8D2cmNPA1NBVfG4HvNb/GPruj8DI/Qw6BoP7/4Vjpnxd7WRLOcWAd1v4LbtKxQIr3bwfbN/mU5fBxPEFHnjG38nW9Fu3bmg9sD5CxQB6CQy4fvo4VgDLcScnu8CZPKxkdfSHH0GcPr0BgLdYk8ZCy6vNbQIAn4nmBcWA92UUAx5NBUePwtiYHDaBSfDQLR1T+/FYMzIUnC4MeN2hXIegcJFM39wcvPOdDScTUwFmNyHb5ygA7pcKnVvej43BhQsMpmJ/T7DBbYkFCRaDPsmAL+p5zpXTTxwAj2Q4/f0NadamAHi0Adu9W8pkvvY1+MAHNtozxsLyA2xD3vDRGrC4e6uUsJw5I+t282eZVi/jeBnSbbKXpikZ8G4SlKnleVk0rebuqT5JFN0zAeVVV8oHwxB/dAIc1QguoQuro5uJDLirALg7Nb7xj1NTEHme79y5aZK6nspSsDsXvLt+qwf5kzWeMAAehuHXkb7hvcSrgY+FYWiHYXgUqTt/mvo5FIbhkTAMHeBjwKuFnPleAES9v/83cPMlfQP/l0VoJDPgrgvDkb62BwBezksLN6BnAG44NdYsyKtugrNbd/LgELz4ME0AfuQI2vNvxFvtXJSR1cp4PQDwQBVqmZmYq0kqBW96E/zjP8Iv/7IETlu2SAB+fhdbvJvanivSRboJ7W/tmlyE9fVgRQi45Zamtm9uTuI1X+5g2rGLpqnAYcL7832YW7E50b+RPrgvIuHPnIGJCVkb5qoiK739pCkEVAyDXIK/arkiF0Ztoqn7jIp0nInR5osfGQEkwLh6uEML+lik++XnayZ8vo8esS8pqyE/Yx0z4TN24hKULkWYQLPoSEXX5FAYShlUlHVSDHjJl+nirJmVdQoAl1++4emDg4Atr71cX+6JAdcDHz8GwK8auY6P7IEh/zw3XfUmAF565zFS5x7nv5Vk0XW2TfFXLi014FqXBiDCd/G01mKumlvjE7sh0AS7P3wbIgxhbq6lFqNdhAqo+PXO4DBzQhaxVcZjVpV2EQQcGbGk7aNtywLNHPCvb0+8ZgTAtQ6ANAhgqlrDF8C4BBvRe21xdBkfbwCNdnWL7aIXBvwb33Lkxu8SeONDE4B7CRu5iAH3BhKuqT6Lucqx5mM9yjOi79dMF2XzWS/NwbF8sxg5HkrGwGLnzp1dI9oYWFZTsrCZ80UA/OlPh+Vlub5Aa73RurCCAE+LCvHlfb2wXc2r+/bJjyp3ltkFOVaPlyDbRoKi6+Chy5bvCTG9vMTxktHYME0O9EOgc29E1tx+OwDhRBOAJ/VwqBsmmS4AfGIVvPE29q2TsbG5Z8+mGXA7lSXvSKOFduEFXotd7pM1nkgGvFPcKoTYryQq0eifAOLVGSfUY50eHwCWwrCxvYsef9JGLwC8FKiFuwfbnnLRYM1Qi3iPAFzzHFytCcAni5N87Ap43nEYX/Ily3f+PGJqEpzOACurlfAstTgkgKdQpaes9T7b7363bOcN8OxngxCNDFknyYChzuElNW1RLdz1dhrrWPdC5ubkHJ9QhKnr3QG450G/7bftUriYpVH4wtatCoCr6ySkFSumQc7pfM1iVdIx+mgzvR+BDX9SMR1TU01f4D85yh1v+HLH80WRyWmsGQKz3hmAf/5Oe4Ov7A8SQoAjNIyEz7jeqwRFrSD5dQTfcufeLTI8T7VuzDfOE5omQ8iNTtbMNv33ldNNPDYw4Om0HEcJYQQ+nmiyktdOXMUd22EpBT+pVFnX33Uc55pncLvxYvk6rDYMeFpJULos/Jrv4upg6k16+4bpGzhbgOVnXSPt26AnBpyIAa93HodC+VcH8UyUmk8OjlqwX2ndx8akFOzO9/LmY52BhJVKS7/4Dtkv34fhusNSNrVBo394HQAHSfx9+9sdL9cSa0aOtA9uwvv91t0u5TqI8qUB4CmVoQySAHgoAXjQSX4CjcZVM+e+13wsQZIRj+j7TWXysl7GS/PN7UVZuBd3CQFZPPqe98DXv97TudtGOwDeo7QSaALwW26Rvz/4QflbiPaLShhiBmEDgEcM+Lk5BVYfeICTJ4H8Wa49Mogv4OEhyLZp2iYEeJouOzAnRNaxWUo1789SSUC93OgEy1e+AoA+NdEYL0kOVo5ukk4A4L5bZ6AK4UgbSWtUuDs1BcWi/MgPvoxt2WsS30MUnpXDCMGuty/ab5Gg/Dgy4EKI/6B+v18I8Wfrfy7yen8BzAFXAaeB913keTYVQoi3CiG+K4T47vkfRjvcJyKUt7Vvt59UXRdygVq4e7hhCwVYE2oy6BGAC7UQZxTNNZIf4ZN7JBC45quPNLxyG7vj01fz1ivetuE8eaOMl+oFgMsRmE6vm7SyWfjbv4UPfxj+7u8ASYwDHRk4M6NYoQRw46tJXKTanCRekbd1q9zjJBRhggTgRgK76LpgBhCsSwE3WpdHjOncnMR3inEP6QzA1wyTbIK9U0kBcGNkIwD3diiAGM+gLM0w2ANbnclAxdRIJWg2jj0eA+DZNl7tFxGObiSmbmveGn01CDOZ5k3SLhSAXg/Au67hkQVihDyFIBwaZiaQTGHOzEl96dhYW9Y/mwWLPCLUJAA3zeY5O4QeBPiiuRCPFAZwDPjyVrjpCBTqMHXoHNorXw51CUbybbTZmZSOp4HeJfWt+S6u1trh7rnTz6X+O3X6fu6XmwdefbX8GP7hY7znqs+2PVeoxkqneQwgcOQYNWKs/V/+mdwgPToSA8hjY412B0lJg7RlUrFA76CJ9jwYrrss5DaCo/n4baoA+N69PSUZ5esy5AmClc47OU2rU7KhMHmpALi6ZsJc5ykAHg4mbEoVAB8/dU/zschnu0v46jtMZwqKAc/wxZ1qk/qFLzQPXFhouo78IAx4NO+kUj8YAN+7t9UVxvfbS8LUGPW1KAsq753VnCGvf/y4ZMDzZ3nOKbh/GCopyHWYg1xhdGXAjcDDjbkNFIuAk2c5A5W+XGNXaGwZbzDgSeEYFpmEqSa3toAGhO1qyiI5nSr8LRSAj9zBu2fv7XpdAD+lMtIdutN6vteUoPyYMuAPq9/fBe5t87PpCMPwbBiGfhiGAfBXSIkJwEkg7oU0qR7r9Pg8UBaiQQNFj3e67gfCMLwuDMPrhi6m1e//DWHJG7YTg+u6kAvVRNHDDSsBuFpdemXAfRdHEw3toyY06rOT3D0Bu760r5menJyUBOpffo8/vOGPN5wnb5bxUup9JEpQVBOVdmCtUICf+7mG3u/nfx7e9jbpstguLJWW9RNYIV9N4rrVhsbTdakD/fjHIZNREpRkus/VtERw43lgBiGh3nqeR3/1UY7/xvFmcdToqPxKQwk+kizNVk2TnJ0AwGtyUdJjhaZTRTnE7N3KIk/dY0oO21EiGo9USjqwpBI8yOuubALkZlIbO+9dZLiaLu3NOl0zWJOgutuYyGQIEBQ2C8Cj+zf2IdWf8yJeXr0Hy4sx4Kpwan0IAYMDGmZQkgDcsrrqbM0gwIu1ed++TYNQ8OVZ6bZwizKaMJ5+bYNdbwfAUynRk/ZUC3wJ1Nd1uEsZqWZmKJeDbFZugB/8KW4ce1X7kykmPokB920J3qxYM7GdM3LzcmAodt9EDDjJsvmMZbJqgdFBHuX7MFR3Wcq1fkb/8JP/wOff9PmW6202qqaSAqx01iP3GRL8FScT2OhNRKMLbwIAjxjwRFmW0uCPn4ot9z1a+0WbqHS20JSglAOZ8rnvPv7gD+CP/oiG6xJw6SQokR6ia/oqFpWKHMOW1bQKjb7vdpOAup6vyIucYrZt35aZy8ce48TJECt1lqedW+BbE3LsdHKw8oWO4Scz4Ebg4+nN+79UAkL5/+UtCiTncqQmBnsC4LZhkfEgCNsD/3xFKYjbAfBXvUpunD70IaD5kfe65wlVPYnTAYC7wcYmQE/G6LgKhmF4m/rnx8Mw/N/xH+D2i7mYECI+g90CRA4pnwXeIIRICSFmge3Ad4B7gO3K8cRCFmp+NpTmkV8BlGkbP4u0R3zShlDdyPwO7gGuC3mh7v5eGfBQDdIeAbjut+7AQcpQPrIHBh890WQ2Jib4wz9sXmd9FM0ynqlGVxIAV93y0pn2rh/xSKfhj/+4s7mGpVbqwE5gwJV7iN6JRp+Zgde/HlAqnwXJGHdqdOBoejID7oSYAYR6K8Ltz/SzpbRFNk4C2LZN4segOwCvGhZZL+jo7V6K7NZiC+9HX/tR3v+y9zP+jBerFy4/97vvhn/5l46XaolIf55JAuCeZMD9bPfvs9dwdQMzoYjQDtfIuwLRbUxoGo6Z26AB77qGr2fAgeUXv45SUOV5x2TnOA4e7AjAQWISwyuzZPfGgBtB2LIQCwGaJviWoip+KZLZXn11A4Dn1meRkFjDQ+8uQQlcXK1DwWG5LLWnStsbfQyd3oKIGPAEcBi4EQBvbryLKTmw94/FXsf4ODfeKFsD/Mf/2Pn1ZxQDblY76E09GK75LOVbN/qv2/U6XrrtpRJsqOttNmqGvO+ChBup6MkxqfVdGgY8oyz/wqS5DpuSDVqS7GVkRAK6h2I66B4BeKjIk3Q23wDgdmDLZmrf/z7/6T/Bb/82krWN1pRLBcBzOXnOzTLg+bwcTBFLHXVejgo846Fu8EAx4JHEq+7VGwD82JklXnTMJe+53DarLGQ7dWvVjK4SFCMI8GKb4FyOBgCvzKqs89at9PWLhgtKUrgKgPsd1qiiAuBitI0GHOQaoj6rd75T7lte1WHfvT4iAN6JAffDH3MJSiy+I4R4RvQfIcRrgW91e5IQ4u+Bu4CdQogTQoi3AO8RQtwvhNgPPB/49wBhGD4IfAJ4CPhn4FcUU+4BtwJfQDLyn1DHArwD+E0hxCGkJvxDPb3jH9EwFAPu1xIYcF2xLE8QANcCD3ed08BUcYpPXab+81d/JX9PT/NbvyWLm9qs+xStsuzAB8ld+NTf0rn2Eo/NRJSWTVyU1CSupboJWRUA//TfkPrcR7ls8LK2x7haMrvo1uXf1ktQGvGWt0jB6U03qclWAfCEjmlrptoMVNpr68q1irSfjKVCh3PD3Pq0WxG7dslrKlnPyAg8v7vTWiOqRrIDix0B8EvwfUbhaskA3AnXyDtGT1khx8oztG54XQwDvrj3+dSFwUsOQa7qySLNHZ1bNQ8MgLDLrQx4gv+hEYQtEhQAgeDBYXBNnWedgIWS7CKJm4Mvv4ufvvL1G84T+Q8bQZh4Pd338DoBcICXvxwuk2OgG4YUCqg4CQ4dgSMzUanYxruQkoDiVC72XRcKlMtSUnx9Qp1wKiVYtcBKYsCrAav5DvPm3/+91CdfRJv4uipODzoAjTCEgqfG6iXyO85GrEeCHMwPa+Qc0IsJ1xRi433ba3Mb18UTkEqZDQ24G9ZZmNqL8737Eajv8d57Yc8eOaFeKgmKEJKJ2QwDvrbWXDff+1544QsbXaOTGXA5j0Z1UXWvLiUsjz/OicWz/Mw+WE1l+fK43Ah3ssr0Ra8AvHXjvX2bnAdW9yjWXtcl6dWTBCXZkSiSK2qj3TM/O3dKs6deBQZhRt6j9cX2E6wX/HhIUHpILvNG4MNCiK8C40iw+4JuTwrD8KfbPNwRJIdh+C7gXW0evwO4o83jR2hKWJ70kbIyOBr4HVK3rgs5oXbqPQLwaqDo4h+AAZ8qTnGyCM5AH9b58zJtmc2SZNCVT+WYj06TwPZFDULSme4NL7pFLp3C1iFMWJQCxd7q7TTg66JcBuwSwb52t7kMV9Mx/c6MsF9XLEonAC6E1CSi8J1iwDulDAGqUZX96mrbBb2/VuF8VqPtsqvrzeKji4i6bpBN6Pxp+xEAvzT6bwBPN7ASALjLGgVHg1L3MRHm8s3mJCouhgH/xOeyXFfawS9+7yH0zylbzC4MeFgrSReU6Dy+31H7s54BB9n91dOhums7pX0HsK6NTY3feCe722SRJQOuruF5dKqg1ANf2p/1EB/+MPz5n8Mzn9n+75rSdXsJbjmh+kzN2LiPGHA3SHZsaRepFKyZGmO1Dhauaw6jdshKp4U+l6P3rkytUTeUHKTDjeT7UA4UAO+heL6XyGXTOBoIp/NcZ/lraIDezfpwxw647z7O5CxG13rvLilcD1cHy9AlCeNmcIIan3toKz/j1xnWj3P25X+A/6/3oN/yGjnQLhUDDnLuuxgGHGTtzZe+JP28of15IgZ8nQSlwYDPz2Pk7+c1j8Ht174C1zkIPNaxWZSvGZhdJChmEOCty5bqaj12rrqy8VqFoCcA7kUAvFqBwsadc6kq71l9uAMD/gOEUIXC9lL77rReKCUooaYhkmp3fsSjl0Y89yOB8b9Fsta3hmHYmxfRU3HJImVIyzC/w6S6ZtfIR2CvRw144OepG6JnAG76fssOHGCqNAUCaleoHXgbp4f1kU2le2PAfQ9fQDrVyz4xOTIpC1sHEhalQE2qeg8MeIRtk9QCUh6RwIDXIvZU73hMS6zINGMnxh26M+B5p85yqsfrbTLqhkkqqSulYsDDSwrAzY4MeBiCp0kJSi9jQivmGVqLSxzu4exSFwTehgH//d+Ht+58BYGA7L9TLZrXtaCPx+AgeGsxBhwSdeBGEBJoGxlwAPcmmbLIj7RpL74udF0Wf8kndr6Rdd/vLEFZF8PD8v13kvg3AXgCkFOvxco2F96CJYHslSNXSqrt7rt7ej0gP9KarmF0eI/+vGT6qk9AqttWr7utjIF17lWXiAHPZ/4/9t482rakrvP8xJ7PcIc35EC+TMgBJJOxJJVEUEFBBKW7HGirG21Ru7BLUMtV3bi0LC3L6l7laldV27Ql3baCIrbdy2q7dKFCKVIiKrSgSAKmkGRCDmS+l2+40xn2GP1HRJwx9plu7Fcvk/tb66773r3nnr3POXtHfOMb39/3G5IGiwF4UipQ6W0t8Y/T120/VgTGygC8UI27ceSrzbYiIWfIpw7UdfmsL/sNnnPLO/EvX1EBTqdOuQHgBqyty4BPAnBTWws+O308A8DbSQCVNwbgwDdm7yOQ8IW7vgEuqoZ6UUNNVSIkkCzZ+arm5t+R9/0LXqgyMt75Tn1+y8e7XAPwsmefKyJtAxxs6k+/oLy2em+zA/uxC+2CUrWT6RCgp1gtBeBCiF8BfgR4AfC9wHuEEG9p+sROarpaYUzujRuUZuvi4OJaTQumg7ofeWsw4NXcRPxVN38V57bO4b9S+28v9SGDTrQaABdlQeFBuCpAXXTMJCZbAsClHlSDFQB4kijm8hd+of4xy+QRhgGXq3Q5Ajz0NfCrH+Cffs0/rX2I2VasmyhVQ10z7qOZHxEv0mOXBoC7AzpFEBLVMEdZBjLo0c3ESvdEuDsDwL//xfx6viRewMKAAzzWDfjVL9fv8/d8j9UD3NQznwnZ/i4Xj/aWi6hRjbulX3PNvPnN6lg/+IMAvPWtC9UvYzvDBfdhUFWUjq4ZT2s/y+GChCP92uOJXoFW2OIDb/wAv/Nf/o4Chffcs/IxowgGgUdYI4/K++q+lxaP5uNWHi2W+RUFbFX6XnWU+JckgtQHb8E11EKBXbHsmC9StnI3Hg4ZBFAt8ag35WkGPIkCggBElVDIIX/xiALg3/ZVD/BK40b4ylceH4Cbnc1JBvy4AHxRZ2E+vXtpZJpwbIMAACAASURBVDb//j1D/uf/RwHwbxqoRaK846vgwnMB+Ozlz1oPXxqHoQX3YVhVlLM7XxrQdzq78J73jFxJjEXuoir09V7WSFCE9q4Pl6TbblJeR723xWENACejk0H1FNZ/w2oa8HuBr5NSPiilfB9wD7Ca2eNJOatWGFN4UAztzNilwRN0MiiCYCXbCqUT66gwnhq2dLaCqiSfYd7uvuluHvknj9D90X+mAnLe+talz9NZmQHX7gvi+AC8m0RLWSHDgAfJ8olYCLh4Ed6yYClaLAHgxcBM/MsHy1F9/hUEXv3nmwV6AqoB4EFVOgNTtmPHCxxJMgPAHWr6yiAkrgHgvR4QpHTyaiUAHp3pct1g+vN6xPvQ4j+aYcBH/Yxhn595bVcJlN/xjoUszhveAKS7XOqvxoCHlaSa+Qzf+MI3ArDzjGfDpz+tWEWUvbLJAbKePssZcK9anQFfVkGim6EXSFDQ6bFxZ/o+fMWtr1DJomtWHMPQ8wlr/PGzgRoTxDr34coHV9edrLkfp+xjHd0XcQypL/AWXENtsbfaMbXdXDvPGYRwcPniSucgioLMhzhUY3dIQiUK/ran5Aytg/v48sfh0k5LpRq5YsBdSFBMLQLgRgOukzCDACgSPvV3Q37+/1UA/LX7n+ZyC3ZvvQs+qaSK33rnt1oPX/rLAbhfyakALqhPfwXg/lfzC99Q3xpX6H6Mql8HwAsKAf6C+WbTivTOS1mTTlswUHOFI7vaa7VWkaD8vHYdMf/fl1I+pWPfr8VqRUqCUgfAr6SKAS9aq12wUQRB1eUwgL/58xWTMC0M+KjiWDXvvfrVS5+nm6zHgC8CnKtWJ4nIfBALJqWR9nQFDfgqVfgh0YLGmsywgKsy4CtUFi5mwH3ZLAO+KNghq9LVLAHXqCqIiGowf78P+BntXK4mQdnqMh8yuuS9mmHAzdv+gq/okXS7yqJjyRbqTTfBqWSXjEMqEwRTB4ilcs6ZZcDf/rq3c+G/vzAVlrNKlWI5467szxwBcO3/u4gBFyMJihu3HCVB8WvlUYO++tBE6Oa+nyoDwGuSP/McuiaO2xHbZwC4X9OPISV02F/tmNr55UMv+2YGAXzoP15a6RxEUYwkKABZX7GoF4MuZZTgXbiP267AQ6f0e767u150/Gw1IUFZgQGX+pr5xCeAIoFgyBe5iQpBICX33Rjywhf6cOV2+GnJ1zzD3ktQeavsfM0z4O/+tnfz+ue8nudc95z5P3j3+3jTV3xf7fOV4YQG3FKBnn8XgvwNK9QAvKoh/wqGakf/S50BF0I8Swjx74QQnxZCPGC+rsbJndS4WpGRoNgnriuDPa2ZWn3FeGa7Sy+qePT+1bYVg6qi8F2w0cm4qWsBAPfKklLM+w9vUiMAvqBJ0Fhn+S1HANyr1ycD5IYFDFcD4L/1W+OE5LpaxoD7VUnVwIAKqqknKRa83lL5gIuum612gDKIlHbSorXv9QAvV8FEqwzkFpAu5JL3aoYB7/WA7Uf4RPDLHGWr7SwBnNFx6QNPv466haJ+neWMLCvwAq7rrJ9xUIjlzJtNe7ppBVqCUi1ohhaFYt5c9H6AwmQD3yfM7Su1VFsiek0AcP166+5HxYC7BeBRpAF4DZibsqxdtjAVAsqSv/xHP8cghMHBaiy1VygJSicxEie9mApTjq47xc6lK9y6Bw/s6PGiCQnKOgz43t68h22SqIvnooX11/enkQ/+yI8wAuAFIY+jmP77b9/lBS9YfvhK6PNeKEGRc/PvC254Ab/1X/xW7cJ70aZOofsx6hlwtQMtGtBgx9p9R9ak0xYMlQvK1lPXAQVWk6C8E5VgWaCaMN8FvLvJkzqp+epEiWrCrPFZvryvNFNijQa3kA5pIIlZHH1tytVE3EniMQO+yAWlKtxJUFqqCdPPFwBwPfhFiZuJuPTDWnYWINcs4KoSlNe/fpx7UvucOpGtVoIiK3K/IQAeJrQWKIoMA+450rrCWLdrc7fp9wEvXR2A2/LF5ZJrb4YBPzoCnqViEg7S1QHAjTsKgPfIpp93tvQ1Kh0shEG5Lyw8Hua+dzMJh5ogkIsY8CJXO1+OXqNiwAPFgFua3DJt7erV+f8fo3ydwEuN73meQ7fKVDO8o50wz4PU8wiLBQAcvThcZTfK87j59GkGAbREnyW28cCYAW8laqx56Yv1uBQMua9zwJ0HMTcfCO7f0df7qVMKRK9qczhbZsFq3sN1GPCqgkuX5j30hFANGvffP/8neh6u9H1/zz1wdjeBYMDLXgaf5HkA7N1xDs+DX/qlcX+k9RT0jlZdjxeY3o/Vxu4//VOlBl2EnSsjQanZnfH1/NtEtY3/fE1PQSmGaq7onADwlpTy/YCQUn5BSvnTwDc3e1onNVsGtFY1zNjeYUYnB7G9+gV7601dhgEkYjUGPCzdAPCtJKE0T7PAJUSUlbMtsG5LMeB+zaQEE1vfjgB44dc3CMJYTiQcSlCKJQDct+iHnR07imkVUJT291iWfZJyBeeFdUqzlrZkxV4PEjI8yWpA44d+aOq/XsUo6KK2DHDVn+HREeApkPwdz5333q6rW3Qk+BUdQlPLgI/sz9xcM+UKzFvgsHE3MozwAimYKBV76kJ6BkYDHih5kWWhYTTgXuBeAx5HMUOfhQC8U2b0I7fORKnvE9R8pmsDcGAr2mEQQov+ShjZK0pyH1othQDf/CbdyNe6zH2tHi98OCWQkgd29PhvDOQ3ZcGzbOwBDooBz7KFXuij2t9X85DN5/3Lvkwl2c4ezoQ6TZAnp4JzcOoB7r4b/pH3Nn7/Dp/zX6/sQN/0JtWLXVdS+4nnNUF7YAD4atfJV3+16v9YVKVmwGUNA+5V6jNsolractOruZhKoSQonsPd0muxVhlVUyGEB3xWCPGDQohvBZ7ay5JrsNqxkqBUNZ38+0dme3/1bcx/8K0dhgG0/BUBuGULbJPaaidUZmW+gE7x9ArcxRZYEiprrkUAXOrfhW03bgiVX69PBsgN2xG5m/iLaLEGPHToaDFbZajYzWHPzjyFubLzWuo9vEZJEwFtsdLq9aBrGtxWYcB/4Af4n971347+G1Sw2JmXMXDVE/EDFx+Bl/wvALz7W1ffKLz9RjX5P7KnP7c6RnoE+N3MjKtoT126oERtrYle0AztafbUxc4XaAbcgHnLfVFoNrOJJswkChkGIGoAeFFAp8wZOAbgme8R1gDwLIOucV5ZEYC/9MUJA9+jxXAl0yy/KMg9MVKEGP/r7/+Jv+XhifX3R24qkFIeH4Cn6Vh+AuvF0RuJSR0A/9zn5oii7MgA8PExn+7dAzfcy8fa/yMP/tRdfPN/XXL9MyzabEtJfR/maQ0gLXXztaOFN4DUDLisYaGDsnS28zVb290W/QC8/gIAnoFwSdZcg7XKqPqPgTbww8DdwHcB393kSZ3UfHUT1YRZN1HuHxkJyuoA/NzO9QwDiOitxGqoJszjT8Q77YTS3NcLGHBPu6C4KCEEmScWAnADpgJHTZilHxFV9VG/Rs/vcuJfyoDL5gC4GdCHh/ZmqkRHbgfbbgJHAIRecBzszQPw4VCxi8DKQOP7vv1/4K3foP4dllD5RwuDj2YZ8Lf+1X8OZ5TV2DoNkc++RU3+Dx/oybCGIZa6kbA2vGnNKr3lDLhfuZMthToFVSxITPU0A+6i9wO0BtwsNCxAOF8jgGvdaoURg9B+XDBNmDlD1wDcq2fABwPoyvUA+PY2FHFIS6Z1qoGp8stShQHpcd4A8Bue9ykenlh/f+IGyMrMHQNuyniqr6IDXwTAb7tNPffjj0/9OB3MM+DP3b0HvJI/S/7Z6Ge37Cz34weQunenqAHgea4ZcEcLbxjHwdc1CHuypGjIgrvd8tTCtGYhnlVKgrIOnnky1iqj6q1SyiMp5SNSyu+VUn478PSmT+ykpquTKAZc1miYD/tagrLGivGWnVtItQRllXFvnS2wRbXdXk2C4lUlpcMGkNT3CGrAMCjtKYAfuXFfqPSgmg5rOr2NBGXFJsxVKo+0zVsdq+HoM7SV1A4X6ZEdgMc6cnth/PWaZVLSjvbmablNGtzOts/yuuco7++gAoRUATl1NcGAlyV87sKjK5/7ZD3vdjX5f9H44tY10PXX9I5fUnIFF5TQZRNm7KsQ8gUSFK90y4CHIQy8+ubkQi+Evci93Vo7iRkGQI3tYp5DpygYrJA9sE7lnk9Qs7t4eCjplqnahWyt7vGchzEtma3IgE9bV968rULE/sPn/gN/fBtkL/pyfubcNyA9lQ/gnAE3APy4DLjpV5l50UVPfZ5iYtH2/a8fh9C95Svfwj3n7uFlt7xs+fEZS1CKrOY6ySSBZOyS5KCk9vcuaxoh/aqkbIgBTxLIfDGSfc5WLrULylM4hh5WA+A/vuLPTqrB2mopBlzUWGkdDpQEZR3N1C3btygNOIMVAXjlBLx1kxUZ8MrtFljmebWsEDACU66asQwAzwZ2AF5lZuJ3OPmGMRX1ur5AzltZOSvt8TyoYZ1auXofXGrAfS1B6e3bAXjX6NHXYFK6bcXQhxq/LGymnGDAz58HmW3G2Nx12w6UAY+Za6UGoGZ904TpBixWnmYNlwBwV30DYSSUG9Ei3/HCrQbc92FoGHALADc7UX4DTZidKGYQAAM705fn0C0KUkeOL6Pn9XyCmrH1if0e3RzSSc30ClXGMa0qX4kB98pyarf0udc/l1bQ4iOPfoTHn9Yl/OjH+Bc3/31Ax7e7YMBtEpTjMuDGVWwGgOfGDnjimOd2xpHtr3nma/jwP/wwN3RvWH58AJ2omVt6WWBi4e2SPNHjddmzg36/Kskd2Y/OHTqB3BMIC6GY5yDF4EvChrD2rhdCvBb4JuCcEOJtE7/aRjminNRVrK5xDqkBkP1USVDW6Rq+rnMdwwDiYJ8vPtHnuSxwUJFqBV442BZOwnhFBrxy2oWd+V7tpAQTDLijRDyp5SB5TdKYYd6Ew63vIAgZhBANetg+qdASY+6qREtde73L9kkvqTQb5ZDV8BL1HvctgQ6qwS1f+5hCT6qBBuCHqT1GHJhiwPt9VoqAtlWSCLzhWS6aYy1jwB2xtSZKe6EERUoKVxKUcDHzBcp9IffcSVAA0gUMeJk1J0FpxwnDANo1+Q3qGi0ZJm4Z8MILCCv7WHdh/5BuBlmSsE7GoUxatKpLXDlMgcVjZFCVFNEYvAVewN033c2HHvoQt5+6HSEEgUjIgLRIlQ84uJegHJcBNwBwZtVR9A0DPv7cduLxzt6N3RtZp4SJhc9rFmoDdX+6lKAYAC5rdNiBYwJs6tAJ9DxhTWvt9aAtNBHxFAfgi0bVLwIfBYbAxya+fhf4xuZP7aQma6utJCiiRsNcSi1BWQNoeMIj9SEp4f0P/cHiB+sbxcUA4AmPUmoAsQAQu94Cyz2faEnwTynAd+SGIPWgmg3tANww4L5DDXjoBwwCe2NNWSoJStUQA+5py7XeXg0DLlf0Hl6j/ERBiOyoBoAX6zPgd96oLMRelf8LAA4WAfAJBvzwEBAreLTVVFye5XKlj1XDgBsA7sw5xwDTpRIUd3KQzAN/gQbcd5iAa2q4wB+/HGnA3TdhdrUExauxXcxz6OYlmWPwX/gBQY0D096h0tcWawYdpaEkKSt+8TPLN8D9cj499Z5z9wBwx6k7AAiFGh+HxXA9zbb15GqaMJc83yMHj/Bnf/07yDiyj0u1DLjevZwA/ZNmAU/rPm2Nkx8D8DoNeDFwKz0D8Ewqbb+GAZfNSVDiWO1Ie5b5uN+HDvr9fopLUGo/TSnl3wB/I4T4P6WUCzrXTupqVKcV8JhXL0ER1YC4ZO0L9s4bX0JSfJhLvSXMgwHgjrbAKhkDxVIG3KUGPPN8ghpWCMbJm84mfs2k57UAXGvAHU6+ka8Y8C0LAM9zCGRzGnC/ra69/r5dctM24NIpADcuKPbX2zWa/zWO2W4rMHBrqBwMLh4umMQnGPCjS0D7CQD+5I0fXPl4puLyeo4CzcbVMeCaCZOOFomVr0HYkgAQV4s2xYB7eAuaoY39mcsEvsww/ZZmyFK/1400YSYeg0Dg1eQ3FAV0iorMkfXp6Hm9gLBGA753lHJTBmV7Hf4bhn5BVMLnjz619LGBBYC/+Jyy5Lv91O0AhELfu2WqLow41j6eG9SsBGVFBvytf/CTvOq+P+N5W1vs2OYaA8BnxtPKWFfWyJau71y/2nmbMgx4jQ94EwA8jFU2Rh0D7jv0/58tA8Btpgi93gQA/xJmwAE4Ad/XRinNlG9dMQIkpR4g1rxgX3L7qwgruHx0YfEDNVicjcDetGSlmYMFNoS+cw14QFQscl3JnW59i8hIUGrCBjIz8btj3gLDgFuOmeeKAXeqI5yosK36D7JDO2Pcle4BeKAnyNzCbJoGN2C9+0JPcqe0w8rFgxUY8DBk/6CC9iW+5/af4GtvtUdOL6p2fjNHLQXgazXgPeOc4+Y+FP5yBtxl465iwAVeDZEA4OsmTJcJfKlf7w5kdqJCxyAYtAe57+Gn9aE4nbwiS9zI3kyVflCbwrvfUwx4tUZoG8Arbv82ohK25HJ2NyjLOeecl97yUgIv4HnXqx2myJtgwEGNCzVjx9Kqk6Bcvlz7J5/8JPxfv33A2T5c6dRAITNuzDZhmgb6mmtmHQckAC9c0oSpd75cuR8BxEGgG4TtuzNBgwy45+meLIspQq8HXbkZnnmylfu275NqpOIYCuHhWRhjKaFdbbZi7Owq0HR4dH7xAx0HgEijIVzEgMvKrQTFr2eFAITe+nbV/EVo2Fk7Ay5z981fkR8wCO0uKHkOkZROO+mnjq0dA9LDeRarqqAj3W8rhlqCkluaTtOsolPobfh17gstCbpxO4EUvnhpBQ14EHDfpU+DV3JuZ73tZ1Od6hz9RC+EawBxOtATv6vGXW0PV+VZLRsTVpLS0aI0CJQbkb9Ic25hT49buV/vj292ooIGJChxDAPfI+gtSKXMJUXLLQAv/JCwsktQDvsqkZat9QD49aefhgcMVkh4taUm37x9M/e95T6esfsMACK9KBoB8K2t4zHgk1K+MFSNnU88Ufsnjz0GBEPO9uHxdsGttgfVMOCjxt2ZXZM/+M4/4LOXPrv26Xt6rqgD4OVQM+AOHbOiQJE1dR71flVRhA35EKJ2pD0LIdbrQWdNm8wna9Uy4EKIX9ff//HVO52TqqskgRwf3wJY8xw66AFizQs23NIsxHAJA24AuKMmECk1I7VQA+52Cyz3A6KFvuPaf9iRBMUw4DZ5BExowB0yb2ZQtW0rZpmREzQDwGMNwAvLJJrnzbAaJtq8sNi8pXmugAasd19oluncrvpcHru8GgP+exd+EbI2r7/zH6x+rInqynNkob4+6zTg+nW6Y8AXb30jJaHDRdt463lx8qZr94UsqAfgUn+GYewWBIMat4e+T1DD+JeDjLCCqu2W6asWpPAe9LXH8vZ6x4y62qljUU+ELhsAB7jj9B0jgsMw4GmhGdhud3MAXpbjGHpT1123EICnKRAOONuHh6OB3e+/hgE3UfRBa1pH/5pnvoYfumc6UXeVMta3ZY0vdhMSlDjUDHhNf0LQYGYEQO779Qy4CYp6ijPgi97du4UQNwHfJ4Q4JYQ4Pfl1tU7wpFTFsZagWADkVLLZmhespweQbFg/UAHIzO0WmBTLGXC/qqgc6kBzL1gYDW+SN11JULyRL7ZdY2cmfqcAXGvAbQBcSVBQvmwNVFs78OQWRkVdo0PSwJ9mqo5ZkU5+LSzAapgrZ6DS96b1octKn9/NZ9U1er6mqRSYasK8mH4RLj+LZ1xncVNYoXa4mdxc7jUMuIlNd8aAG+atpvmryrT7wlUG4K61p3mwQIKidaiRowTcyVIhQAFhjQSl1E2Cck05yLIqFwDwo2FKJ2NtsiboqHuozFdgwMtqqXNObGPAN5WgFMX8uLYEgA8GjBjw80nFlYGlD6qGAZeaAQ8cjd2BtlPNavziDQPucuyMQ7Vb6tUw4C4TcG1VZ5WpGPA1EoyfxLUITf1vwPuB21HuJ5MjotQ/P6mrVFGkGHDbijHPJ7Zs1r1gjY1b7yLD4ei/c1UOcwLcrcAFyxnwQJb0HU7ERRAQSKmOaQEUnmP3BW8JA07ufus7CgLVWGNhNfK0wpdudYST1dnWALxGf94tU4ZRuMTAbL2K9QRZWtLchkXG2RyKVmy1ZKwt/f7cuCshT7i0CBRMNGEOij7k7Y13TXf9m8jMidYx4Fp76so7fqn2dFAQ4w6AJwlkwsNf0IsRVA1IUExCrAVsVOY+bEoD7gVENQFq+ZHWKK9hH7tKyTAa+djP1uFAu6CseaF6Wm4hs+UgeZXwpljvSqTlBAO+KQCvY8Dvv7/2T/p98L0+pwZwsQ376T5n2memHxRFaq6YZcCzjEJA5MgO1ADwtG9no8cA3D0D3rXMFVKq+TdtyAcclFNPmM+P273eRIDal6oERUr5NinlXcA7pJS3Sylvm/g6Ad9XuYSAQgT4FhePLIOO3PCC1Yg7Ty/xgz9Y/zDnTSBiOQD3KuksgQ+gMJZrNeDGtf9woG2espouc8Nyhg71n3EYkQbo/dXpygbqvZYuvWQnqqu3tEvLsQfDkm5ZMHS8zZ90tZetRUJhJCj5usymZpk6cQHZFld6q9kQDss+omhvTFK1wy65+WhqGPDCuC84WrR5wWLtqdn6ditB8QkXNUNXbns/AIpAO35YGPDRfdiAC0qSKAAe1LzeoncJWC9AbZWSQYgvsY6vvVRpwMW6x9S7SLJcLhMJquUMuImnn2rC3FSCsgED3u/DzekhHvDoNuwPLY4pQigWfJYBz3MKD+LQzX0R6Xm4qJGDlOm418RVxaGSK9oceopCOWa5nH/njuHZG4X7feiW+pye4gB86acppfwBIcQLAdPW/0Ep5SeaPa2TslUhfHxLE2Geq+19YH0GXAOixD/gwx+uf1jez2nhDoALfwUNuOMmzMJYt2WZNYLZc2xDGOio37xmW1EWhnlzB0qTICb1sXa2GzCFo0ba2drWDb2lRc7wxUsq/CNN1rM+W1ZtzbpXFgCZFkqCsnaDm7nG85yg2mJ/uJoNYVr1COTm6rx2mFx1BtwP9Q7CEgDuatEWx5AJn05RH0UfNqABL8MFAFxLUIIGNODq9YaEhZ2OrjQA97ccA/BwrO33Z/Tl+fCIqNogkda8P+XyLPqoqsiXLNpapkndaMCPI0GpY8AvXlQd4BYgORjAnQcK8P/dGcWAW6vTmWfA85LSg9gRAx4aIqzGkaQYNV+7G7uTSElQfAthUhQQysqZ65mtihqnnl4Pusae8CkOwJcub4QQPwz8BnC9/voNIcT6XQYndewqPHu4QpZNbNlsKEFJvCNuOlevj857agCQjjRo/goMeOAwAhuULhKwssOgggdy3x0DbkJiCos8Qv1Ca8AdRtG3woQ0AGGToAzcsyiTtb2jQERlaST6/z6uALhY03lhWbVMI5mNAS8UA16uGTgyorCLgrg8w5Fc0B8xwYBnsk8oNn997Xg5ADcMmSvrStP8VdToQIuh0YC7i4XPPL/WIg+MBtwt8xZ4kY6EtzRh6sWA5ygBd7LiGFKhHUks5EnZUxIUf3tn7nfHKRkqtnpgYZQD7WKy9jE1Ay6qVRjw5d7xrdBiQ+iSAb/xRjW/1LDg/T48e18x2/edrWHAwcqAV4VbBjzWhFBek5hqUpPX6mVZUq0oYhiAbxlrVGaE2/l3tsogtLqSDQbQMTtGbbfzxbVWq7y7/xC4R0r5U1LKnwJeAryp2dM6KVsVwn7BqjjjDbdsNACPq4obbq7RKjOeiF2BN98w4It8wB13YVfBYgmKmvjdBYBEelCtahhwYSb+yN3E34pU8p6wvEbzGbq0spqs9q56HdLCpv71JxQY9k65ZcCN7lxaQH9aqHTY0rLbsbAmGPBueQs9/9H6x5qJXwgy2aflb9401I5iKg8FXGoWicY73pUExQBwW+MsTOyaOFy0ZV5AsBCAuw8ACf1Q++NbFsO6r8Z3eB+a6nQgY2Lnbbb6qvEv2nELwIUGt0cH82x1mCmg6W9tBsADmVFU9U20gHLOWUJkjBjwcoIBd+mCcttt6vuDD1r/pN+HZ++lXIlCnuisx4DLXKUmuwLgiellqbvvDcHgsAmzFalFqW+RoKjU5GabMMvA3iicZdAtCrI4aMww4FqpVd5dAUzSlCXTDZkndZWqXMiA65toQwlKq4B4uz41rEjVJeA5mog9T4OihQy4dDoAFAaA1zHgGoC7Ks9McDU+4GbidwnAO7GSoHgWDXETOsLJam2ryUFagMbnHsx1+IdbAG505+QWzXuR08mgOgYDvuPdTBo/XP/YPB+9nxl9do7B2HSNDjQMrM2CMGFd6WjXJIx0kFEd82Y04A77BvIFITGgG/gcJW+OntMLGQZQWfzihdmJaoAB73YhFQvGHc26xrunnB5X6DHlaH+eVIlyJfMItnfXe1INwOMCjrIFQFmTKnLJ2N2KLAx4mi4MhaotGwN+u25VqwHggwHceaXgM1unQCxgwMNw7pxkWWgJiiMGvG3ciOz3obnvnbkfoRb8wwACS4Ow0YCXju/DyapqALjyxnefDnst1irv7juBjwghfloI8dPAh4FfafSsTspalRcSWMIV1IpR30Trsn16UA1L6JXLAbgr/+EgXA7AfcdbYNJ4Adc2Ybp1XxCnlR1duG/XEHujrW93A00njklrthUNmHL1Gc5W0DLAdf7YaakB+Jrx18uqs61kL55lEsnKbKPEv0kG/ExwCzI65KAufKQoIAyREiqvz+ljSGw6ejGcRQsAuHHscLQVHYxkUjX2Z2bR5pCJymuar0bnJJc7aKxbobbnrCwOPQaA18WKH6cUA16/8yYGasxNTrkF4MaxpHcwD5QjDZ7D7TWPqd+fqFwCwPWYvmzsbkczPuBmF2Bvb73zMsecJRZuvVV9f+ABJOxXWQAAIABJREFU658c9UuefUny4NaNgGLAL/Uv8ecP//n0A4Ng3OuhSxaKrEkcabJbHdNMbl98mLAol2N3O4kYhBBmFrKmVAvhpjIjAGQQEVnwTJ5Dt6jIWu4WG9dqrRJF/2+A7wUu66/vlVL+fNMndlLzVXqh+sBmQKuSoOQMIt/abLKwNNsXVtBfAYB7jpiw0F+BAXe8Aq8Mw1XDgLuO3g1OnaYUEO3bG4tEaZg3hwA8UQy4b2GRXMuI5srzKASIwqI/Lwqlx3bsdxz6EZkHnoUBz6ucTg5yXVZ6ggG/oXUzAA/t1bDgmgG/8EQF4ZCzO5u/vlbiQxmSh349ANdAwBUTFppG4Rrmrcy0c86a0dqLqljixx9UlXPmLTISFAsDbnaigmjNnZJVjhtBvoAB93SDb7K7Jhu9pHxta9e3SFCSXIFnf90mzAkAfrggjEdq/a5cJkFJPCgiBoWWBZ3RFoCXLq13XmBnwNttpQP/3Ofsf3J4gXOH8NDOTXhlwv5wn9f95ut42TtexmDSHs8CwClySgFJ7GY+NAC8rLGrND8XTiUogWbALXPFVWDAZRgRlVDNgPAsl3RySe44HfZarJXeXSnlX2lbwrdJKf+66ZM6KXtVxkZv5obJMuiUBcNNdKH6hg4q+Mutn6x92IgBD9wMAEmQUIjxYD1bUioJinQYxGOcAeoZcLfa03Yr4UoCcU1nvyiN7aE7QNxN1LaiX5Zz+nqzvdkUAw6Q+WLEKE4du1IMuOvAEd/zyfx6BryTgeyuKcuaYMCftqVi5R944nH7YzUD/pkHFbN6/anNX1+SAEVMtgCAjxw7HAHwSAPwOu1plev73iETVvgh0QIG3JdupWcAka/YPmljwMucQri9Dyer8BeMOwM1NrR2Nwtvqitfy5kGh/OvNy4UKBfrOq/oHZplDLi5Zpaxp+02kLfp5/ocjwPAbQw4wPOfDx//uPVPrn/8YwA8evocXr7D3nCPDz+irMDuu3jf+IE2AF5qFxRHGvC2luZVNXNTped8z2WIWSQY+D6RJaW1LBUAX6bjP+YJEJXQG0wff2QfewLAT+paqsq3A3C1ZVMwjDeYQPSgFZbwWOuP7GlgjJkwVxrw2E+oBPy7/9sOwKtKR+E6XIFL3fRTDmoAuHSbwNeOQy63IDm0T1ZCJ28GLgF4S0lQgDnGLdeNPE01YQLknsC3SFCqMqWTQ7UuGF6h0gC8cv6YuZa9rN0XMcGAn9GSkkt7dYBYMW/nLysQcbq7OQCPY6BISAOvFoDL0a6Jm4m4FSXkHpS12lPduOtQA174IXGxgAGXbhNwQTHgwwCkpSFalO7vw8kqg/qdN39wSCmg1XXLgJtgl6ElBKylAfjaDfuTDPiCMJ5Rs/cyCUobyDscpQ4AuI0BB7j7bvjrv7a637z8c++mF8K9t74Av3czX9j/Ap6GRJ964lPjBwbB3E6t1KFtgSOA2t7W40aN/r3S45srAgzUMNf3feK8mHt9qglzuZPNcUpEEb6ES1emd2mMe9Xa9rFPwjoB4E+iGjHgM6txxYCXZMdgwE1q2qgjfaZKxxq0JIwpPXjwczWBI4ViwpyuwLXmMLOwQqACQCrhHoC3j+xNmKJUnfSubA9BMeCpeboZEFdpmYZLFmW2Ms/DK+c/06DQi5AGooUzT9glN/mApNzgmBMM+Okddc1cPrDfF2qvNhiBiG68+etTDPgSAK7vfVc2hJ0kolgEwEcMuEMJih8S1yvPmmHAg7DWhtBvYCE8WdUCBtwf9jiKoB25vS8C3WthB+D6PTgGAF/EgJvd0mUSFMOAHwz0+NgEA/7iF6vvz38+PD6xiyUlL33sffz2XeDtnoELz+evvvg3VKUG4BdmAPjMnOs5HrvbHR1yVAfAM2NZ6zCIJ4YjYy86Y7NYFBBWslENuGkU3r88vZhLc9U8X6zbPP8krIWjnBDCF0J84GqdzEktKTMJWhjwTlGSbhLoYgC4nhBTi34XoNCTh+doIm4FiR7AajRvoxW4SwBuWCG7L7cvHUtQEg3Aa6LoDQPuKvgHYKtdz4CX2kNaNKUBBwrPw7cA8Fg7LzQRrJD5wnrMYHTMNbfaJxjws7vqmrlyWMOAlyX4PodDA8BdMOBiqQTFFQPejqOFDLjZ+XLZhJkFsQLgNf0fQSWd+w/HgWrCtAFww4C7XAhPVmUazi0MeJT26YXQDh33RuhmfFsKb/uYADwu4WCBBtws2uSSa6bTAfI2h00y4K97HfyrfwVf+IKyJXzta+HyZfj0p9nN9/jj22C71SJ/5AVcGl4AXwHti/2L4+ewAHBRKRcUV4u2pCXIvXoAbna+XJIncQw9w6jPOHWNJCgNAnBPy6QOrkwv5szOZdn5EgfgUsoSqIQQbk1KT2qjkr7xWZ6eLLMMunlJsQkA12Cse/gsYMISaqZKPTC4Am+tKKH0wBM19mcFBHJ5J/06Jcy2bI0kxJduGfAk9rjcgk4tAC+dT/xbbaUBB+Ym/EIz4C4beWar8D0Ci0dwXKgJe2099gqV+R6BFYArN4Vg3WazCQb81Ja6Zg5rvNwN8zZmwI8PwAd+PQCX+r2NHMWmd5KYwhu7q8wdL3ffuJtpSYbVkxuz89UUAz7/vnqyIPebY8BFoMCwtAHwbEAvGseyuypja2cH4BumJk8w4JePFkhQ1mHAsw5HqQZ/W1tq8euSAQ9D+LEfg3vvha//enjve+Hnfg7+6I8A+OAzYKeTUD32/Kk/O8on5gibBtyM3Y7IkyRBWeBa+mdgDMx9h/JBxYDruWDGf31EgDmUns2W6VM43J8+dmYA+LqObk/CWuXTPALuFUL8ITBaJkkpf7ixszopa5kmwmLYZxJCDbOCTi43u2A1GDtz+auBz9ZLUMzWtyvmLVzOgMeVXMqirFOe9jy2TUrgPvgnimAv9ujUgDevdMuiAHRbwViCMjPhG5DVhN2aqdzzCUoLANdstFiXjV6hMl8QzE6QQJgphwmvuyYAn2DAtzvaT7mWkVbMm7Ep3G1vzvAnCVDqBdQSCYqrJsxuKyL3QVqsyGDMgLvcNSn0TlTZPyKYYWGrarUQl3UrCVUTprg8/776mgFvNQTAGY07h8xSJEk+5CgSCIcLf4BINzvnlrGnUw4ZBILWup/pBAC/0quXoIydc1aToPQyDSuEUCz4xYsL/85adQy4qTvvhN/7Pfiu74Kf/VkA7m3dzgOnH+B7b96G888aPdRPz067vNgkKFVJKdxpwONY9c8IyzgGE70fjhbeoMabnukrm2HAi0IZMyxbRB2ngpYaB3oH8xrwTg4XHWdGXIu1Ctr4beAngQ8CH5v4OqmrXZolSYfTg99ROlCJf5tcsBpsGP6lToIy0oA7mojbmgH3vXoNuOsubE97Hmc1wTh+VTm1IYwiSD2foMbpRUj3EpQkEaRCg7MZEFc2EOYwW6XvE8j5SSTJN2z8WqFyzyeo5q+jsDCBI2tu4FkY8H6NS4iRoDw+eAiAp+/est6xJmrMgFMvQdETceBKA64lKFWd9lQz4E4BuG6GLiwsapmrZhTnEpRQNWEKmxWgdMtmzpav9d3ZYB60tvKUfui+Fcuk8JbZ9O6blNApUvqbBMhMuKA8cbBAgqIbd1lRAz5yQQFlG/h4jePQoqpjwGfrV34FvvZrAXjb2dcA8Pfu3IXeDXB0PRQx8ok7pzXuVgmKckFxyYCnvrDmN8CYPHFFgIF6WUcGgM8y4HmFh9sArtkyMqlZq8y8SOlkUD7FY+hhBQZcSvlrQogW8HQp5d9dhXM6qboysdH96Zuln/XpZHC0yQWrb+hYKuBZK0Ep3G6BBUIz4DUSlLKQ+BKnXdi+8TyuZcClU/eFOIZc2OURAF5ZOm/CjGM0AM/nGfCs+SbM3A8Iq/nPNNFNmN66cpAVKvM9Qoue2Bwz3FrTYWKCAd/tKtDRyxZLUC5knwcpuPXU5gDcNGEOfAlHdcfTDLgj7/huWzVh1rkvuF54w5gBz3sHzAovimFBiHvmLdYSFM+ysPGrvNEmTD9Ri86sPw9aW0XK3pZ7AB629Fwwc90WBXTLjH7kc2bdJzUMeBbxyP7yJsxlfQPGBaWfTwCwW25Reu11SsrRQnhpxTG8972kD53nl9+gZCjPe+YOSQLDx78ctr5I1d/mMD0//psaAO7ymoki6AWCqAaAy9LtDrSpvmkQntWAD9V4IP2GdoWAWBOG/Rnw76WHeIA8YcBBCPGfAR8H3qv///eEEL+7wt+9QwhxQQjxyYmfnRZC/KEQ4rP6+yn9cyGEeJsQ4n4hxCeEEC+a+Js36sd/Vgjxxomf3y2EuFf/zduE6z28a7CEbubJB9M3y1HWZyeFamsDdlFPrBHq7auToMiRD6mbib/KYioNwKXFkWykI3QoQfH1pFTUSEKUBMUtA54JX3keW16kaIB5CwJIsQd/VCZ5s0EGvPIDgmoeDLdKdc02AsA9n8gie4m0jjNaN/HPXHN5zultNUH108USlCfyz8PBObbam98fhgHvB9LaLAiMALirKPrtdkzuU6s9HfV+OJyISz2OFT0LA54ZD2m3oDSJQnIf6xa/X7rvxZisQDvj5MP5nbd2njFw5CU9WZEe62Q+fd1mGWyVGf1Nrh8DwNNoMQOer6EBz9sMygkG/JZb4OGa0KvaA2oLr1UXia0WV3ZuhUT1iJzp7PK85wHveTvJe34Tsi6H6WIG3EhQXF0zQkAv9IlrALhr/39TfdN7MAOCm7Afna1YW7YOD6fvC19LB2UDjlnXWq0yyv008GJgD0BK+XHg9hX+7leB18z87MeA90spnwW8X/8f4LXAs/TX9wNvBwXYgX8O3KPP4Z8b0K4f86aJv5s91lOvDIM7nN5WHA4O6OTA7ga9shpsJCiAWCtBcd0EUowlKJUlk8NEYEuHrFTQMgy4vSnSl5XTre8wVOAQsDo++I476UEN5KlJ3puzIdTbmA51hLNVBgGRBYC3GwTghe8T2o6pJSjh6TVDToQYTbrttoAiZlBzXxjm7WLxedi7lePI6xUAj+n7Vb0EZTTxu7lmOkm4kAEfuR859B+u4gUAfHTfu9aAq9cpLHIwT5bkHniOvcdNhbovIJvRTY8TjN2zjJEBLzMMeJrCTp5z1NrgQjW7pVnI3goacJYs2owLSjoJwJ/+dLhyZQ4QLiwDjtcga/b2gHgfgUc36nLLLcDebTz3+ueuDsAdkye9wKdV40Y0YsAdj93DGgZ8BMAbdEFJNABPZ9JpTe9OEw3711qtMuLkUsrZjPL6GDNdUsoPoqLrJ+vvA7+m//1rwLdM/PxdUtWHgV0hxNOAbwT+UEp5WUp5BfhD4DX6d9tSyg9LKSXwronnesqWF5l0s+kLVh4+AYA4vUGYgxAQhqPmoDoJijQSFEeTxTe9eixBsc39o4nY4QAQttQNXdaAm8Cx/7DvQy70+2VhNppwQQHIPHvwx7gJs1kGPKwqipmglVahJll/XT32CpXVAPBt3fjpnTq9/pMGAeQ5QqAaI/PFEpQ9+TAc3GJkshvVWIJSD8BFmevmL0cAvO2Te3ZmGCYYcIfuCwaAl/15kLVqiuK61YpCBbKr+d0oX9+HTVWiAfjwaHrhf3gI3SJnsEmA2pKK2mqsExYGfDcr6G0SciIEMgyJ84i9wSwkGNeoCXMJI21cUIbVjAQF4O1vh1e9Ch56aPl5GXJjDZnUlStAskfH30EIwbd/u/r5PfcAWZfeEheUJsbufuiT1DRDo3cvQ0e9H+NjaqnSrAY8de9+NFvtLdOcPH1fhCbk6YQBB+BTQog3AL4Q4llCiP8V+PMNj3eDlPIx/e/HgRv0v88Bk/tOj+ifLfr5I5afP6XLNBGmM0Ey4ugCAMGpNbfaTYUhkWHAa11QDAPuZgW+29UMuMjnHJ5gYhvT4RZYrG/oaljvguK6+WsRAB9tYzpu/sqFXYIy3sZsjgGXYUhYwf7h9IfaKtV73gQDnvsBoSXafMs0Uu1usDANw9GkK8qkdmFKUSB9n0P5GBw97Vh22WMJSqkAuE2bVbn1rE4SKIRAWCQ86nBGeuZuIpaJXghbWNRxiqJrAK7cXtRBpl9rULlNwJ2tRDv/9A+mX+9goALU0gYAuDmmyKfHgBEAb2+2UhRRRLtoc6V8tPYxhj0VK7qglOTkpk/m+doO8Ed/FN7/fvipn1p+Uhsw4AaAb0dqbPjO74QHHoBv+iYg26JfHCHN/WcB4P7IBcXdZ9cLAlo1O1FURnrmmgHXOusZBty4IjWZmtzZMdKsaTwTNZgZca3VKmjjh4DnAinwm8AB8CPHPbBmruvziB2WEOL7hRAfFUJ89Iknnrgah2ykAs0cpTNBMt6R8k0Nz67dVqOfOBgx4HUSlMqxDWEraFEK8ERhZcDHW2DuBoCkpY5Z1ThaqCZMtxPxSIJieZF+Qwx4YRjwGdAv9WTsKkXRWmGoXBL2pq/RTtkn9yBM3LMahRcQWxnwHpmHnunXLM2AA3hVUrswRTfSFmJAMHza+seZKMOA9/xSgW/r1pDbrW9lf+bh1TLgJgHX3cQvjBTMkhA71g+7XQi34nDMcs+8r74snfZ+zFZ7S4HhdIYBT/sl7bJk2IAkLNbgxcvnJSi7acmgtaHDRBzTKTv0/Hqd9jg9dQUGPFfnMXJCed7z4I47xg/64z+2L0QnawMGfG8PSPbZTcaL89tu05gv61LKcnzP2xhwWTmXoPTDgFZuvw/N8QPHTZhZYGfAr4YEJW6bHWk7AG/CsvZaq6WjnJSyL6X8CeCVwNdJKX9CSllDBy2t81o+gv5+Qf/8UWDSPuBm/bNFP7/Z8vO61/BLUsqvkFJ+xXXXXbfhqf+nL9NEmM64eMgDpfQJTm8IwMOQeAkDbnxIXTWBtMKWHsCungSlFUVkPsg6CUrlPgK79BYw4NJtJ72p3EusxxzLiBpkwKOIsIJL+9PvcbsccBRBGLg/duEHROX8JL2V9dlPPCWzWrcmJl1fxqRlvQQlFQoAhMcE4GGIkqAEehK2XKeuI7DjGIa+R1hrQ6j7BlxuRWspWH4434th7nvXEpRES1DUgWcAeFWSNwjAuztq1yebIU7yffX6swYAeEuDF2+WAR9W7GSSwaYOE1FEu2iRh5en7QMnalUf8FYLyNW1MHouIeBnfkb9+xWvUA2ZDzyw+JyOwYDvtqYlcQaAA2MrwqvQhAnQD0Laud2y1jRfu85w8PyYfiBqAXiToW1RS73PxcyOtAltEycMOAghvlIIcS/wCVQgz98IIe7e8Hi/CxgnkzcCvzPx8+/WbigvAfa1VOV9wKuFEKd08+Wrgffp3x0IIV6i3U++e+K5nrLlx8bFY4YB31cAPDyz4eIiDIm0rL9uq71yvAI3DLgvCrsEJVt/UF1WnUQBcLL5RYaUzSTwZZ5+v+okKA34D0uhAfgM0JBaR+gnzQFwL4pUUt7B9HXUrYYcRc1YveV+SGjp5N3JBuy1Nnxvw3D0/vkyIa/qJSiZ9j2Psxs3O5YuIcAn5jDU1/6hxWlCN+66umaEgIHvE9UBcH1zupSgeFoTbWPAV23gW7e6OvETmJcTNMyAb2kAPmt/mu+p1581cD+aBrdZAJ5fOcKXkG6qr40i2pUaXx45eMT6kFUZcN+HQM4w4ABveAP0+/Bv/636/wc+sPicjqEBP9udlqetCsB9x0mYAMMwopPVAXA9FvluAXEgIgaBmJMrmgTcJm0IDQCX2SwA1w376waoPQlrFbTxK8CbpZS3SilvBd4CvHPZHwkhfhP4C+DZQohHhBD/DfCzwDcIIT4LvEr/H+D3gQeA+4H/A3gzgJTyMvAvgb/UXz+jf4Z+zC/rv/kc8AcrvJYndRkAPttE6PeUnVJ8+vrNnjgMiaQCMHUSlBEYcSRfaIdtbUOY2xnwFRt51qlWFJH6IC2ezmXpPvgHlDwCqGHAq0YkKJXQ7NbsG6sBeJMacC+OCUu4fDAeVKVU6XtHEYSee0al8EPiGQY8y2C3GHKYbHj9TEy6AQlZVS9BGaLe5zg/HgNujnW+oxcTFrmca/9hgEHgE9cCcPe7Jp5mwIujeQa1qa3vbtIaa8BnXmtQVRSOF96TtbPTpRDzxEmxpwBelriNoQcIQo/UBz+fHneqy2quyDZlF6OIbqWuhYf37TKUEXmywtideOpa6OUzi7FWC+66C264YTkA39AFRST7nLIx4APVtH2hpzfobQy4lqC4vQ8j2nmNv0VVkDewWxqIWJNSM7ulWgMuGnDoMRVpOeIsAE8MAN966ktQVnl3Synln5r/SCk/JISoESqNS0r5X9X86pWWx0oUsLc9zzuAd1h+/lHgecvO46lUYaIA+GwTYdxTHenxmRvm/malCgIisUSCoptAIkcT8ViCUtOEucYgvmqNGfB5MFwUigF3rT3NDeC0AJxAlhTCvf1ZZRprZl+n8QF3qOedLS9WDPjeRJBMWWoGPGmGAS/9cE6C0uvBbp5x2NkQ8E8w4IGIKaiXoPR8dc+0iuP3gQckXDDkZA0Ad731rQB4TRNmAwl8fkeBv9IGwM0WvGMAvpW0xhKU2SZMWdJvkAE/vdUi86GaTabVCYBFyz0A933o+xAU02NAfkn1CxWbgpsooj1Ub+TecM/6EKmtHsUKDfSx3+YI7HIWIZQTynvfq6ORa8aOTRnwG/emNOCgAfglFUv/mUuf4cXnXjwG4FKO5GyerJzfh8MoIqp078fM/SYcS89MhV5E5su5uaIwdogO7Udna8SAz/QptDQAD7Y3aJ5/klXtzC+EeJEOxPkTIcT/LoR4hRDi5UKIXwT+41U7w5MalWHAq5lQkHh4SCmgdWpzCUooCygDBjV2ayP9sCMGPPZjNaBgb8Jswgapm8Skwfy2LGgGvJLO3ReqBQy4qKpm3Bd83Vgz+8aWbsOUbBUkGoD3xtdRnkO3TDmKmgk7KYJoDoD3+3AqzzjcNBhngvUKRVIPwIuCK/kBnex2WuL4FouRl/CEAeAXLsz93nMsQQEY+gGxxR8bxve9ywCQULOv0pJI2xQDvt1u1TdhVpXz3o/JOrvTJg1Azmzzl9oVpWi5T/wTQkebzwFwtagrtjcH4CYz4iA9sD6k1J/hKt7xrcAiQZmsb/kWuHQJ/uzP6p9kEw34XomMDuwA/ModePjcd/E+9UMzB03I3JqQoAy0zfCsIwkoAO76eAChZ2fAy3yiAbWhEtqz1Zvpr0m0L7zf+dJmwP/1zP//+cS/r4p7yUlNV9RWF+Ssi0d7eMR+DKeiDTvbw5CAHMqYgUUfDeMgAFcTsRCCyhP4tS4o7hP4DAMu8nkwXJZaA+544s99DQAtANyXpXPXFQD0tu68BMUsotwzbqbCdkJUwv4EAC8K6FYpj0XNsIylH5GUTDFUvR7sZjn9De3WJhnwyEso5iINzMFLLst9to+++lge4KPDinjMgFsAeBMSFAXAF9sQBpGDF6erlSSkPlQ9SxNmQxrwrXaoGy3n3WUCWTXahHlmJ1EgZ4Y4qTQDXrWbuR9TXxDMJJwaAC43CW0DBcC1K8lhZk/DLPTY7a/QcN0OtAQlmwedALz61eB5Soby8pfbH7MBA26SPHfi6ffB95VUMalunwfgOvUWxhIUl4RCGup77OhozjpVVDmlB6FjDXjkx2SBRGYZk3dAqTGGy96P+YOr68Of6a9pFwP6AYRRc/PUtVK1766U8uuu5omc1PIyQTKzDHg367GXwOlNwVwYEmSF8iCuAeCmCztxgTJ0Sc/Hq2nCbCKBr5NE7Ft0kQBlXuHhNnkToDIA3CZBach/WBhrqRnQLwwD3oATiamw2yIu4WCC3SwK6JYZvagZltG8xzLPEXpQ7x1Jbs0Kep0NB/EJBjzyYirP7h0vy5L9qk+795xjpWCaCr2EC4nqfRBWCYraio4dTsRpENKq0Z7KBvoG2knIIAAG87sKTTV/JQkUVQSklibMZhnw7S2PyzadrW5CrTobEidLKvU9gnJ63CmvKAmKf2ZDAB7HJCjAuz+oAeAm8GsF8NYOlzDg29vwghfAhz5U/yQbMOCX+ko+M8uAA5w9C9nwZh47emz6eYsCs8r2pNQ2uu6umyyuZ8ApcwrPfQ9N7Cl5lEyHUwC80gx4ky4oYwA+QyiW/cb6ha61WsUFZVcI8cNCiH8jhHib+boaJ3dS0xVpAC4mGPCyhO1swEFyjIEgCAjJoYjppTUSFJ3AFzm8IaXn4VNaGXADwF0OAN2WYsA9ywGL1FhnuZ34y0UuKA1N/EHQUZ42cxKUq2At1WkRF3A4mGbAt8qMfkMAvNTMUTHhJzu4PCCqJMNN7dYmGPDEb9cD8FwxUzJrO2HAYy8BAcWZUwslKE4Z8CAiKaupLXZThgEPXQLwOGIQghhYJCjGQcOx9rTVgtykHczcF2FVNgrA223IPG8uFEceapeNpgC45xHOLDbkngLgwdkNQ9uiiIgCiohLvToJimFPl18zHb1rO9eEOVlf93XwwQ/CJz9p//0mPuBav76TzC9E7roLBgcdBvlg+nkn3sugcu+ck0X2UBwAIdXC2zUDnvgKgJezuzMGgDeYmjwG4NNzY1s7Zrl+rddirTLq/D5wK3Av8LGJr5O6ypW02pQC5ARLfXAAu8UxAfgKEhS0Bi1yqQnz/FoNeGEGBIdgsZNESgNezB9wtPXtWKNcLpWguJ/4x6zG9GcpdINtGLvXnJoKWm0CCfkEozVmwJsJdah8BazS/hgQZOevqO9bG4KbCQa8HXSR4ZENnyJ1c1SVx04AeOQrFiy//gw8Mm/zJrR3vEt2KDU7IhbfceP/Hybudr7asWLAxdDSi5Gurh9ep1otyKV+nXNNmBWV3xwA9zzFRs8u/EVfA61ugwz4zFgntGVtfN0xAHiVQrbFXt/OgJcmwGqFuWIrmfEBt9WP/7hinn/hF+y/34ABPxgq4wIbA/6c50Bvrz0+JwsAV02Yjhv243oA7ukEXNescBK0VYPwDADPtVNaXCmAAAAgAElEQVSYS+nZXGkAHsww4J1yQO9LhAFfBU0lUsp/0viZnNTSMjZ6kxrmfh92ypSHW8cAxmFIKPPFEhS99e3ypjAMuF2ColkUh3KJOFAM+I4F8TfV/LVIguLLZuzPEl9ZrgXZcOoGF6W6bqK4mQkfINC7NGU2BsNFLukWOYMGAkcAKs205YPxxJU/oe3WtjfvizCfWSfsQnREv29JR9YL0yqLnEhQYg3A+7eeo/2pz8793riguGSHskBPsoPBXGqokaBEDqVn3ZZiwD0b4NfNoK4BeBBAIe0MeFBVlA00B09W5nnz0jcdfuJtNxM4knseUTljn3d4hYMItje9L6KIQGaQbtcD8GJ155yteIkEBeC66+Brvxb+5E/sv1+TAS8K6JX1EpS77oLywTaHw3oArlKT3Y7dRWJPpQTAAHDHrHBLM+CzALzKrwIA19dHUI3vx5FlbfuEATf160KINwkhniaEOG2+Gj+zk5qrVjhvo5emsJunm/sdAwQBPgUUca0LCqX7rW/p+/iiRoKSu28C8T2fzAO/rGfApeObvgwXMeBVMwy4n5B7UKTTW/yiyikEREFzg6pJa5UTW8rF4QAP6DfEgMtAMUfZYDxxlZfUBFvubAhuJhjwbtSFcMjB0fxKURbqviiz2AkAT/Rnc/SMp8HnPz933ajQGLf3YT4JwGfKNF+7BOCdJGIQgJ/OL/ZHzdeOr1EhoGQ+oEpK5f/fOAD3ffzZnbe+ul79hhL/Ut8nnHG3CXt77CXQ3dR7PIoIqgzSLfaHdglKsYZ15ZZ2gKltwjT18pfDfffB+fOWA67HgF+8CCSKAZ9twgS4/nogb9OflaCU4/dSuaA0A8ClBYB7pgnTMSvciQ0An74XKx3I5zu87+fK88g9QTghQSkK6Mj0RAM+URnwc6hQHSM/+WiTJ3VS9mrHWsM8wVJnmfI77rWOcbGGoVqFljEDi0UfoAC4cOzj7AX40s6AV6NGHresqWpMmj+g2foWrn2qtTyiDoA3oT1NAq3rm/GLN408kd9cE6ZhwCcBeKXt1gaOLCxnq9JgLZvYupWXlQSlOr1hmtoEA74VK4D0xL4FJBSKkc6H8Sx5vFElgQJGB0+/QWmyH3xw6vdNbEXnhuXqz7OQTUhQOq2QQQi+ZbdtLF9wf62URgM+MeCoAK6KqsHEP4Dc9+fGHTE4pB9A0pALSub5hDPHjHr77CUQb7rAiSL8MoNsi4PUzoBXJrRtFQ1424O8tZgBh7EDygc/OP+7NRnwCxeA9kUAzrTPzP2+1QLyNsPi6jLglZbj5AfzCxvjfuR67O7GWoIyIwerMiNXbNaJJPcFgRwvTJVl7ZBe2Ow8da3UKlfQfwc8Uydh3qa/bm/6xE5qvsJQKBu9CSYl7ZfsFDlHxwTgfqUkKHVJmKKB5i98H5+qpglTnYfLBD7Qk5IF8ZvmL5fJm+r59ABmAeCBrJz7joMKOcr9CR29Lr/KGgfgoQ5XIB+zOCMAfpxdmoUHVe9xOgkg9xQD7p3aEIBPMOAGgF86tGwNl2piTHvxvDxlg2rp13Lpdp2q+fGPT/1e6AAQl+4Leai1pxYG3DjnxK4lKAEE6fw9ketrVjTg1FNZGPCyhLCqnCfgzlbuB/MAvL9PL4JOQyxj6gVE5XTjQjI4YC8ZL/TWrjhWADzd5iivA+CaAV9h7G630WzzEgD+ohdBp2OXoazJgF+4AHTOE4rIyoCbcxpWfaSUtRrwyrEnd9VWADy9Mg/AvaqZJsxuYvqFZhJTNQMeOFx42yrzPMJqBoBXKYMoQDRh0XuN1Sqj+P3AkrvjpK5GhaHydp1s5imuqEGwt6nfsX5iBcDj+ij6yj0DLvyg1gWlGklQ3A44me8RlPOhI+MmTLcgUfg1ntyYRp4mALjyHS5mWA1RXT0GXEww4MbtoSkGHA0g08nmpT3FcIkzx2fAd/Si4tKBDYCrhWnaj+h05n+9biUagF+440bY2poDHJ4sKYVwOjkVxm/XKkHRXugOtaBdzYAHtkRafd8HDYRFlZ5eaEwAqaJQEhTX7kezVfgB0cy44w0P6YWQNBSMlVmO2UoPFQPuH5MBT7fo1QFwY125CgPeAbIOh8skKGEIL34xfOQj87/bhAHvPs7Z1g3W+8gAcIBhMbS7oDQgW5JtNc5ke/tzv2ui+RpUQqwtiKfSDftR4wy4p/rPdB0dQafK6MfN3o/XSq3yKnvAx4UQHwBGM7qU8ocbO6uTslYQQOaJKReP6rJi+jYOHNFP7MkCyphhadeAN8OAB3hUCyUoLv2HAXLLtiyMmzCFYwbc00ETZTpgdrgOKknVgASlHarY7WLGZ9mrcnIf4gYBuNDaUlGM1+wGgKdNAXANIPMJBtw7Mn7HG8YZTzDgu3pivGxrjiqVBGXoiAHvajZ0QA5f9VXwF38x9Xu/KskDt8xQuYABpyrIHd/33ZZyQYksfvzj3o8GrlExz4AXBYRSNi5BKYKQqJy+foLhHkcRdCMHKzdLZV5AVEwz4J3hEXsJ3LEpAx5FKkk47zAoLfcDk+FNy+/3dhs43+ZouALH96IXKSeU2aj2TRjw7nlu7N5g/X2rBRTqnujnfVpXSYLiaQY8359f2Ph6/nXNgO+02xqATxNEMr86ALzwfcJq/L4eHMAtRU7aoFPXtVSrjDr/Xn+d1H/iCkPo+R7+xEBgAPhw08AR/cReqSQoWVkvQXHdhR2FCb4oyDIJTIMKE4XrNSFBKS1BPJoBF44HOF/LF/JBbx6Ay2a2vtuRkqCUszaE+jPcalJbN4oXHoO5EQBPmjmu0AAy649ZNP/oIkchRMmG4GaCAT/VUZ/hlf484BBagkIRO2HAd7vqPh7kQ9UNdv/9U79XW99uAXhlXHEsGnC0/79L5q3d8hkEEFp2hcx971p6BiANAz4DwFuVdO5+NFtVEBLOsNFbh4/z4JZu8m2gMj+ck6CY0LbjaMBFnkHeIqvsc0Wpd03WkaAcrgrA0xT+9m9VOM/4gOr7Wgz4eW7aObfwnEAB8DNWAF4hHe9eRnFCL4TiYB6AGw246yj67XZLp0PPpibrnaiGJSi57xNNAPDD/YpuWZA1fNxrpZZesVLKX7saJ3JSyysIVLhCMLla1VrXYfcYADyK8IoMipi8ZlAVmumLHDJhcdTGl5K97BJwdup3VWlYFMcMuB8QWlj+sfuCWwAeJhqADwfMfkJ+Q+4L7UhJUKqZbUWvaiZNbapGAHyCjX5CORf0tzeUgywpoQMsion0zah/5Xha1wkG/LSmtvd6FsavUK4kFG4Y8FNbCeTQS1P1Xs4sojzpPgDEAPCy359bJDax8xVFMPB9Ilsgltn5Ct1PwMImQcklUQVVw5ZnVRgRVxVSKkcWgN3Dx3jkRrihIQCeeyHxJACvKrbywfHuCwPAi4SsqgmnMuFNK9iOKrDb4ShdIkEBeOlL1ff3vncagK/JgD/0EPjnznND50XW35smTIBBMZiXoEiJL3E+drfCiF4IlWWnzW9AegaKAX/CEk5XaQAetZplogs/IJTj+bh3UV1T+ZcIAF8lCfNBIcQDs19X4+ROarrCEIYz4QpS68XS7jHotyRBpEMoYzJZJ0Fxb38WR138Cp5IH5373UiC4rhBKffmdZEAuQGrjiUosQbgw948wxNU0nnwD0A3VhKUWWspXzPgfpMNZ/rz8ovx5Bw+/jAA+2ebcS/1YnXtZxOuL/HgCldaxwAaEwy4AeD7AwsDXqmmSMrIDQDfVue73xsqpDprQ1i5t64UGoDnFoa/Cf9hIWDgB8S5xY3INF83IUEJNNM/2YSZa4DasARFhhFRWY1VPkXBqf4lHm2QAU+9kKiU4x8cHuIhj60BF0WByGMKalKT9fy0inWlYZt72QoM+K23wj33wLvepfwjTa3JgH/m/oKqdYEbuzcuPCfQ/uSzAFwfz3UDfTuO6UUgD+cZcK8qKRwvvAF2O4oB92d1oKPMiGYBeOn5RNV4Ps4eUem/vd3msiqupVplJP8K4Cv119cAbwPe3eRJnZS9ggCGnk80MXGJfR04smniH0CrhRgOoEgoZA0DLkvnTZitpIMv4aIFgJsAkNBxE2YRhESWSEPjvuDa/swA8PRonuFpigHfStrkPsg5BrxoZBCfKj3pBhO7DOHjD3Mp9vDb844DLsoLDYM7BuDJ8MrxgEYYjsDvWR2UcjC0SVAqJUEp3UhQTm+r8z2oA+Cycv4ZCj3JDixNpqJ0H8AFMPQi4qKYBlKMG/j8BgJA/MBYZE5IUIY6gKsB28PJknFEXEn2TX/d+fP4suKR7SYlKBGtfOL91bulx3VBAQiLkIqSoppfRMl1NeB5e3EU/WS9+c3wqU/Be94z/tkaDLiUcN/5B5Gi5FlnnmV9zCQDvgiAu5YPduM2vRCkZadNpSY3AMC7iwF4EDWtAQ+mALh8WKX/HpxtZrf0WqulAFxKeWni61Ep5c8D33wVzu2kZkox4NMA3DvQgSNbx5j9Wy3EYIBXRfUAvIGt6HZrm6CCy7kFgBsrK8dNIKUf40vm4qhLfTzhWB/dSdoMAsh709u1JgBEuvYdRwFwW2e7LwvyqwTA/QkNeHThYR7e9mmHzTSbedqlpBqMWbR2esCV4wCNbncUCX39rnr+w9lt8qpCSOlUgrK740EZcjAY1kpQnDd/aeea9GAeBDXSfA0M/Qhfyjl3ION+5NJ1xVTgqw9oMqDK+P/TdOpelBCVMBhoQPyoGvMebRCAp0FMVDFmiCcA+HE04ABdqd6vYWFJM60MA766C8qgWNFo7Tu+Q32/997xz8xYvgIDfvEiHEb3AXDn2TutjwkC8KsFAFx/dw3At5I2RxGIviWKXroP/gE4vaUAeFiU04vhwviANyxBCUItzVLHFo8qAN6/ccPm+SdZLb1ihRCTQikPxYh/aXjEXGMVBDDwAqIJq0ADwKvtY4CbdhvKkjYh/ZptRa9yz4AnO2eQGRwUF+d+Nw4AcQuITWgLWTY1YGd669u1Bnw7aTMMIO9ND6pVpRjwJpq/dlodcm+8iDGlvGSvEgM+0UsQX3iYh7cl3bAZoCFaWwDIiYmrk6nAkRuOA8D7fShLrtsxAHyGmdLAxkhQXDDg29tAkXA0GELUnVtEeQ24LxjryKxnYSG1BCV2DFBTf8L6cKLPoywbZMBDdZ1kwx7m1YwAeNMMeBgTF3A4SIEEHlFAo1kGfOI97nZHAPxKcowdDf1ZbRFwGRjkg7nzlxqghms0Ya4MwONYMd2TDcNmkbqC5OUznwHOKgD+7DPPrn1cK2hzhAHgGgzOSlCEWxi0lbTphyAG8++FXzXDgHc7HpnwgVJbAunrYsSANwvAszAmKWCYZ7SimPC8ui/Sm+YDkp6KtcoV9K8n/l0Anwe+o5GzOamFpSQoAdHEYOX39jmIBHFyjBtFN1psVz5HoqCS1VzQh5CV8wa+4NQuWymkFueVkQTF8UQ8FYwzEV1YjCQobgfVbtJiGKgGt8kqcklc0QgDvt3qMPRBDKdZ/qAqGmFRpspsUf//7L15mCRXdaf93sjIiMi9Kmuvrq7euyW19n0ByQJZLB5A8oINxmMY88l4bOMPvOBlvODB2GN7jBcYjMRgwCDbfIDBHsBiHRCbJLSgXep9qa7qqq4198zIjO+PG5GZtXVXd8XN7pbu+zz9VFV0VkZkZca9v3vuOb/T9p46U0c4ckGDrriaCHjEF+DtNnrJqvQ73nSmAjzlP2exiJ1KQT1KvrqyAA9SUMKIgAcCvFCpgJWVK7V6vbm9bjbqoXdPjfgCvJZfPvEHC++wU1AWicNMKzUpWDSGfd8DWIEArxQJPomNih+BVyzAhe1gNSBXLNIuwJXmgPuffa9YRLQJ8JxjnXkxXyDA/ejvihHw0+ie2mp6s8YUFCHkL61TgPc6A3THuld9nGPGyCMXGJi+QUCwW6MoBzwdk3OFWKFDrOE1cENeeIP8U1axgJKcE30BLhpBIa1aAV6zbOIlKFYrxCwb58RR5i2B2a0mXfFcYy0uKLd24kI0p0YK8Ch2rZUzZebnZE7fetxCAgGOwTGg4laIRRffeIEPaZgFfGZXGqMBjaWRRYCgAUgs5InY9F/Xkq39wH1BhFz8FQyqjeLiFJSg+EtFA5BUzGbBYJFfPPiV9J3KAQ8i4IUCdmGWw12tYsawiST8CFUwKdfrpN0Cs7F1bLUH15rLQSqFqCUpuks+p35ELEhBCSMCnskgI+DlcktQVCrNxaKMgIc78dv+wshdwYZQVQpKzWwT4G0E7keWE37uqePIvNJquSX23LJ/jyhOQRF+Lm0hNw9kYWyMihHhRLxOQlFqVrDIcQs5ovQ3BXh+PQ4TvpNRjyfHr5UEeNA9de1FmAkqftfJNS0M4vFmehhwWgJ8zx6g71ku7F89+g0Q8114qvXq4vsQmvd92GN3Oi7TFY3ScgEe8RpqekbEoerZNAV4MIg1izDVFkPWrBjdNciVyvQk08RnjjKWEsRN7QMOgBDCBn4C2Nz+eM/z/ljdZWlWQggoiyh2W3MFOzfNrAPx9USMfAGe8uTgV3bLywS4ihbYRkZGpCKF5a13CSLga8gjPB08f0VfL1UXWa41FHXgS8elAPeWCI3Ad1xFBDwWE9SEiViS5x5p1Kl1KAJuNfzUiSPSAeVIBq5YT53CSTATUhSIwAVldlZ+WW8OOMjWbECkvoIAX5SCEmYE3KZYK0OQftW2WyMn4nDFouPEqERWEeBBB76QBarrF84uE+D+fagiAp5Myc9Jue2cFf8zE/bCeymGv0NZyPtj3dGjjDtJDFFR5kpU9T/7tfwCUaAxPYsB5GPrWNxkpZPRgB8hXTkCLsedtVhJBhFwjwbVenVtC+bVIuBrWLQ997yHsfMZLuz9qZOfwp93qvVqc36k7L/WupqxOxOLM2tCZIUIeMRrUFcQAY9GoUrbrrCPEQjwqOIiTMshXoMFfwc6tXCUfRmPeFS7oAR8HngdMv2k0PZPcxYoRxYL8PT0fg52ecRCEOAZ/wZfKSVEbkWHHD31oynR0gofp2AbM2Qbwoif01acXRIB9wefsDvwdSVkDnhz8A7OF6SHqIiAp6AqTIylAtwLP31hGasJ8LTMTVdBzI5RjoARdP48dEh+6VqHAA9SUHxLMLORpNxYOQIuU1DCsSEMUlBK1XIrN7ptYjS9RujOOQnbXnGXBiDiu6CE3QCkvooA9xTd9wBdGTneFBZa56z696Uw1QrwiL/wL+Z8G5SxMY46MSzU7AoB1HzbRbcgP8P1A4cpREwK60lX7JG5uQP+/b2SAMd3RjHX8Ddtt/xbsxPKUgEejK1r+Mw8c/AEDXt21QLM5il8AV6pV1rC3v+seq6/Ax2yAA/mCnOFDrGRRl1JBFwIcPE/D23jjGjUqBlgnekO4hpx7TjxGhR8Ad6VP8rR9ItHgK/lEzTied4rlV+JZk1UDAun7jUrlrtn9rF3GzjrmUD86FrGf86Ku3IOWj0SsgD3RU50hRSUIIoSDdkFxfC31PJzRVJtx5sd+ELOBc34EXC7sniiavhpRJ6Cre9sFmpEl1lLmY06NZUe4NDKAfcjZO0RcFW5rrZpUYqCEUzEBw7IL+sR4Esi4FEvScVbOQLeMAQ0zFBSUGwbcB058S/d+kZNEWbCtqlEwKuskE7gSf//sBuANIK0iyUCnKaHdPiRt2yXFODFtlz3aoci4EGefaUoxXBj7BjHYjaOUBdhdP1t/Jq/w+gdOMCBRJxoZP0R8D7fZrTkLl+0UXdx11iwH48DVfm3KdaKZGNr6BWwUgRciFO6oDQasG/+OWB1B5TmKZy2CHggwP3xpVGqEAFqYc8ViZgvwJc3qIp4HvWQiz4D6mIlAe5KAa6yazKyCVi8BoVqGVyXrvIER9OQeJEI8LWM5N8VQlyi/Eo0a6Ji+DdEuQzj41huiX3d68h1hVYKij/HrhTVMFT4kPoC3FnRXznwkg13gor6E+H8zPyi43VXTQOQ7pQcVI0l24oqI+CZjBTgpru44ZCpaBtzEX7U1vbfPyYmABhPQsJSEwF3ohbFKESWCPCDXevwAQ8i4L4At0hSZWUB7gkTx1lzI76TIgQYnkO1sXIEPOJ5odufxf0IuFdaQYA36rgK3Bc83x9/eQ64fK32etIkVqGvO0nVgHKx9Tprfgt0I+R+A0sxY1JQVPNy3PEWcszb4EQ6FwEXBw5wIBnDMtbxt/Uj4H0N+XdbLQLurrFuwDQh4vkR8OoZRsCDrrGn+JwePQrV9MktCAPSsbYc8CAFxf+s1vPyqxt6uqJFOQJRdyUBriYHHKBu+GK3bZfWqNeUpJ4tO7edIOZCoViEiQkiSG/8F0sEfC3v6EuAh4UQzwkhHhdCPCGEeFz1hWlWphIIinIZ9u0DYF92nSvVZg64f46VUlC8hrIUFLu8ggVVIMBDbkltBQJ8bokAD3zH11PMugJdyUCAL95WDCLgKgS4EFAzLMz64oZDkUadugLbw0UYBkXTJOHvYJDP44oIFVNdBNyKGpTacycPHGDWjDG/nk6Y7UWYgGMkqYmVU1AaIpzod0DEszsqwFMxh4q5cgQ8aIEdNsIJrCOX3PtBAZ+CBiAD3QmqEai1daVtNuBSkHPejunnn7u+AKdQoGB5JEx1ArxuBg2q8rJ9+pEDHEjZWMY6XmsqBaZJtn4SAe7WTqtw1zZaEfA1sZoAPwWBA4plOIxmRk/62FTCT0FxK8si4HV/AVcL+TMTiwnKRnRRn4+AiILUswAv2I1q32lrSAEeZs3XSjSCRnW5+UXe+C8WAb6WO+RVyq9Cs2YqRpsA962sDmfWEemDlguKWD0FJaLA/iyIMsaqq1fShy7AE/KchYXF7X7r1aDqO1wBnklGKUfEsry+SkG+vrA7bwbUTBt7pQi46hQUoGjZJKsF6WpQKFCMOCAKytweTBOKpiBaln9j7+BBDtjdQGn9Lih+BNwxktQjqxRhYoaS/x1g4lDzZldMQTEb4UfC+jJJGQEvL08nMBpqnHOC5kmluQUWTbX+fe8oiIAP9cjX6bblulcDAR7yOLOUaFraqtUL8+B5GKUCBSutbFEK4Pq++/ViHmZnMXILHEj1Ya8nBUUIyGbJ1uS9sHIR5un1jHCMOEVOQ4AnEs06D0DeH2sowDxyBOh9li3pHacsfE0nI9AwVkxB8fymavWQI+CmCWVhEW0UFlmPgpr7vknQn6EtAi78CLhy/HGgtjAPVTnOzDlagDfxPO/QqR6j6Ry1dgHurxiPpSBlp07yW6cgiIAjBfhKeX1GQ0EEPBDglRXyCBt+HmHIW2COH6osLCx2XqlW/eKvWLiDaiwmB9WlAryQD3JP1Qhw17RbtQL++xZpNEKPnq5EyXJIVwvS1aBQoBixgIIysWGaUDINov4iytt/gAPxNIJxYmdqZ7UkBSVuJmksLcIMcsBFNNQIuImD660WAQ/ff3igWwpTc8Uc8IaSBiBmQgrS3MzcIgFuuBUagBMP34ZsuC+xbKERpKOE3fBrKVZGWmV6xQWoVBCNBgWnTspWJ8CDPPtGodCqi8iYWOsJ1gBks3S7Ml1k5Qi4e1rpCzEzhCLMNUTAJyeBrgPs6N15yscmk0DdkgJcCPn8QQpKwY+EK1i0yRTTwiLrUQDHbVBVFKwRgXZoj4DX6+q7JgP4O2Fufh7q8vUVoixzYXuh0ok1jiZEFnWQGxujZMZYsCFtp8/8SYMiTOQNl6vklj3EUJGD5qegxFeIgJ/uIL5WYv45y0sEeN0ffJyQfccdB8rYRJcU1pTnpZgTCvyOAeqBfVTboBptNJR03lxKyXJIVfzJuVAg79ctqMoBlxFwg2ilCp6HOHSQA4kEFokzLx5MJuXEOzkJuRwbagZeNN/s6g20fMCJhhoBjwoHl7Zt9XYXlIYHIQvwwWySSgTECgI86rpUI+FPE5YvwAtLUsHMSplSdJ19DVZhsMdZ5khU8aPh1nq8sdeA0+U3fSnmmh7WBadG2lEYATfl/VYvtgnwbnDWEwEH6OkhU5XvW26FXROzVpELujVGwBOGLLycLk6v7fxnmIIyOQlkjrA1e/L0E/DX33WLil+TIAfyoAhTTQoKQLm9xquNWL1B1VJThGnGgp2S1gJINFzcDghwEZcCvJZruy+sF08EXAvw84yaIVeGXqkEx44xFe8FsU4B3mzEI2+4hcpyX26n7lIxQ/64+KolUVue8iLqay/kOR1iWTkRVhfmFh13K3KgdRLhDqpCQNmILSusKc/7zgRxNQK8YS8urKnXwfS8zghwO0aq2hLgBX8RpTIFpRSJyEXOxASiXOZA0sYx1iFuTBNuuAG+9CW47DK+9BcfAivP7KzXekyQguIpEOCiLQLuL6LcmodTb1Czwl2UZlNxv05huQCPuTWK0fCniURadhcszC2+D81qmZIJtoJoXzQqKEcMjEpbDnhZ/m3tsBt+LSHWLccd0SbA87Eq6ZjCCLi/4+S1C/CudRbsA2SzJMty/FoorrBoq1UpRdc+dg8kBgA4Xji+tvOv1IhnDQL86Il5sHNszGw85WNlBNym4H8+iMWaEfCGn4LiKXDqqbbvcPt4HsTcBjVFu6VWXC6Gi21zolF31TdtA0RM6pZ6vk2AR7UA15yjBN3N6sUCjI0xYcutzZS1/hSUwIZwtrRcgMfcOhUzZPEWiVA0IySry31PcWUHvrBbYHf3ycHezc8s/g8/kmNnwp8QqyK2LB+7suCnMyjYagcw/K3toAFQuSwj4I1TWHWFQdlOkKr4qUz5PHk/YqsyBaUYiWBXas3c0IOpKE5knYL/jjvgscea4gU8jh5vi/gFrei9cIswrYhNQyxPQSkt1DA9qIYcHY4YBhUjQmQF/2HbdcO/74F09yAAxfnFAjxSrVCKqrM/qxhRjFpbDrgfzbTiagV4wl/4G+V8WwS8QpdCAY4lxU0gwKupLLlEhfh6t/d7ekiUZLOrucLyvO2oW6V0Gi2yrQQAACAASURBVBHwkd5uaJgcz5+GAC8Wm1a8a84BX5CWqBvTaxXgFsXK8gi45y86XCv8sbtqLM43B6gV5X1fU7ArBOD4BcKz063dqGi9pmTnaykRv4lao21hWtQCXHOu4kZ8b9diDiYmOOZX0a8rAp5MQixGjx/5nsmvHAEvW+FPxHkrSmIF31PTrVKJhB8B7xsaBsAtLBbghu/EEk2HPyHWjPii5kkAtZyfgqJIgJuO3NZdmDsByOBN3G1QU9DgZCkVO9GMgHuFAvlIBDxx5o4kp8BxoBQxpXuAH1GdSdSJr9dh4oLFVmW9RTg62ZYH7n9uq41wmvAE2IZDwygvS0GpzMrPaC3kQmGASiS6ov2ZU3cpR8O/7/u6+qkLqOQXC/BotULJVGd/VolYmG01LsG2u5VRszsTkPLt+yKVQkuAx6t0J9QJcC8oriuVYGaGaroP4tNkYz3re+JsFqc4C67FTGF+2X/bbvW0UlCGBg1EoZ/x3HH271/DL8TjUnwHInWNEfCJ0kGAUzqgwAoCvC0C7ubl+6cifbDG8oLI8qx/XkUCPJmSc8XcidnmMcetKtn5WkpQC0KxoFNQNOc+gbdrPZ+DXI4ZP7q4LgEuBGzaRO/CGDQMZoqLBbjnQaxep6JgIi5YFsnqctslu1qhYIUvwIdGNgDglRZP/IYfATfDVFI+rpHEakB7AnHNX+REk4q8seNyi/+IX6hbLELc9ajb6otbqk6CdAWK1TJerkAhKrBFMvRmLgGxGBQjJk7VbdoG5mJVEtF1vpejiyfqjfMwNtUmwP081KKwQ42A26YvwJekoAQTcV2BAK8a5ooCPOaqEeADmV5KZus+CAjSF8Le+QqoRhyibTarXkm+n3ZmHTuIa8DJyvHZLBcXbbWrFOBR06YQRZ4vl6NiJ8DO0RPrXd8T9/QQrRSw8hmmi7PL/ttyTy8FZXAQvPwA33hwkm1v+03+4uv3nPwXlhRIr6UI0/NgbOhurEaG3f27T3lNgQAvVZdHwGtBI6dY+GOpa/ivrb1OYS6479UET7r83aiF2VYOvlOvUo6q3y2NJP3UrEIeikWqIoIb0QJcc45S9SuW3YVZvHyeGV/UrEuAA2zaRGbuEFRTzBUXF2HWalKAVxXckEXbJrWC76lTq1CIckq7qNMl1d1FAxClxZGbSMWPhCUzoZ4PoOFHYhttBUu1nFwA2L47QtgkU30AHDs2DkCp6BF3obGeNtRrxHVSpCqyQMsrFMhbAluoizDGYpAzo8QqLQGej1fXn3O+adOiH0fnYXx6uQDPe06oEXDHdMCo4wY1F74IqM3L87kKCgarEQvbXX4fxtw6FQX3/XB3llIU6qXFY020VqZkitDv+4C6GcOqtxYanp9ul8yuoQPjOjBitrTmq5QWRfqStrr7Im5ZLNgg8gXI5yn53uq9ifVHwAF65tLMLglkAFj1mvTlF2t7DwcHgUI/xxYm4Ka/5Lfuv4tSbQVnrICMP0YH9QNriID//ufuobr533lV+rfWNFcmk4BrUwx6C7QJcNdPuzEU1O/UTyLAPVuNKO3rkUGp3EJrVzjm1qgobk4FYGb7AYjmFvDyBQp+EaoW4Jpzkorj50zNTCOKRXJRDwNz/dv7mzeTnj4AlTRzS3LAy4U6VsNTIsBLlk2qWl923HErFKMKIqZCUIgKItXFE79ZLVCOQEyFLZgpB9X8/InmoZq/y+Ck17lwWoVMlxzYpk7ITpQL00HRp9qtdoBqLE3chWJBbisWoq1mGyqIxWAhYhOvNWBWRuRyidL6Ld4yixdjGxdgcm65AM95TqgRcMcvkqtG/M+/L8Crc/J8dQUFgyXLWTEVLF5XI8B70jFKJlBabO1ouVXKCguFG9EETsOl4cmUMFH2Gy2lu5WdU55IjjtWtdSM3OYtdXURADFbCvBILg+5HEVfUPWtV4D76TTZhThz5eURcMetUTbFmne8BgaAhQ24/Q83jz0w9sDqv9DlBy3aBfhJ0kHe/+D7+ZPH74KZ7fzdm96+pmsKIuDl2uopKIaCCHjDlGOO19Yhtrbgfx9TM4YO9cuc+FKuTYDXXSoh+5yvRKRHzlP2wgL1hVbBvhbgmnOSmuOLgnEZ2czbDeJGev3b+9u3Y+emeeujLvPlJQLc3/pWYYNUcmKkao1lx51aTY0ABwrRCNHq4ok/Ui1RVOQ/6lnyPZufOdY8Vvd3GRJdaiLgPT1yW3F2WhY25abl9qLogACv+5XtlblZRFF2/IspbLntODAfODsck3/jXLy8fos3IWBkBLZto2FbbJyHqfkVUlCILQ2Wr4uYbyFZMvyFqZ+CEkTAGwoi4AUnTqZaX5Qm5dUbxOoNagr8jlMpQSkSgcriIj67XqWsslDYSuC4MFOSYsMo+42W0moj4AAF08CulReloKgU4AnbZsEGY6EI+Tw5fyE1mF5nCoofAf+Nx6bJ1ZZHwJ16jfJpjN2bNwPHL1t07OjC0dV/IRgz5/1dzJNEwD3P46++91dk5l7K1Q88xcaBtf29AxvCpgBvi4DXi0UqEbAVpIREovK1Vdpy60tzcq4QigT44ICcKyptu8JxtzMC3EjGKUfAyeVp5AoUTBOBoSwF7VzjrAhwIcRBv6X9Y0KIH/jHskKIrwgh9vhfu/3jQgjxt0KIvUKIx4UQV7Y9z8/7j98jhPj5s/FaOo3npKgLEGO+0HDqJKIhRFF/6ZeoZnp507P5ZTaEwRZYTYEAL9sxUhWo1Rdvf8fcKgVLzcezFDFlJKqNaM0X4GfauOUk1BNylZ+fbE0qnr/1nsyqEeC9ffKcuflJee4ZKcANhTmnAW5KRsjqE5MYpSIFu0HcVCf8DQNygUgcG6NuWtRiBTLxEF7rc8/BU09RGx5kdB6mcysL8JtuWv+pAgK/9Hm/MVZwHjfnN29SULhbDNw45luTcHnOz3lVYLeWSEDJiBJZch/abo2yooYjAIaTwnHhyIy8LyL+QjyeXmdUeA0UogZ2tbI4BUWlAHeCCHgRcjnmfVu54a51vtZLLwXgjiNT5NzlEXC77lI+Dcva7dvBmr560bGxhbHVf2GVFJT58jzPTz+/6KHPnniWA3MHKD7ws9x43doFZbMRj7s8At4oFSmb4IRsBwoQ8V3NigutfOzinPwbR2Jq6hQyXSZVA1x/59t15c6XCp/zpZhRwXTMIJGXArwYiWCJuLJ6oXONsxkBv9XzvMs9zwvuvN8GvuZ53g7ga/7PAK8Cdvj/7gI+CFKwA38IXAdcC/xhINpfyNiWjGpExmVqQd6pkYyGcGMmEszecie7Z8vkq4vzo6vz/tabiuIvJ0a6AgvFxRNxXGEVdsm0cJZ0+7R8Aa7CqcNLyQhDabI1qXhlOQmnFeWeZvrkxF7My4G8MC+/mkm1xWYAtd4RAKL7pSVgwXaJr7cg8hTkg4XT2BhVKwlWnkwYEaN4HGybxsgwGxdgobxcgFej8aWGKesi5YuyEx6yHbUvNKoLctFmKHgPy74dWJDCA62Fd8MK/56wbShELOzKcgFeUSjAo/E0jgsHjk8BYFZlNDMeU5MK1k7RNKUAb0tBydjh15wEJByLeRvMghTgx/x05pGedQrwvj4Kf/BndNVqsKQIs16HWKN2Wj0jDAOqhy6HQh/GkZsRtSRjuZMI8KURcL8I86q7r2LX+3dRb7R2cb539HsA1J57GbffvuZLagrwSr3NB9y/3xvFAiUT4goi4EZS2uSWp1uWjMV5+Tc2E2rG7lQKyhGDhh94K5elY5arYOG9FNOEGdsgni/iFQoUzAi2eHGkn8C5lYLyOuBj/vcfA+5oO/5xT/J9oEsIMQS8AviK53kznufNAl8BXtnpi+40sagtB9VxGcHJJcp0O+GsO9wLdtNbqeHMLt5WbAnw8CdGN54mVYXJ+cUpIXG3SllREUjJdHDcxc1/rFqF0mnkLZ4ORkYK0vLkRPOYqMjXm+pWs2ZM9srBs+pvtZd9v2VLUc55O40B+Xpj+6Xv7kKsrqwLZkDeagnwcjQF0TJdYUTAA0Y3sXEecpXlAtxz4oTZJDZozjK1UJBiY0a+hxVfcEQV7GJ4SbljUppoRd4C28OGguIvIWDejJEqLW7kIht+qYu8OYkuHBcOnZDjp1ktUlToO97OjG2TLZVhYYGqiFA2YcAXXCpIxmQE3M7Jws9jFZnq17NeG0LA3iFzrvrnZvG8VnOqUgliDZfqaY7df/dXce7Yd4y3p/8vzG88uQBfGgEvFsmZdfbN7gPgycknmw99/PjjCDfOtTu28epXr/16gkY81aATZibTFPyNcoGyCRkFHu5Gt7TJrU61BHg5L89rp9SM3akUVIwIXk0GhUoliNc83A44ZsXjMO2YJPMlv15IYBtagKvGA74shHhYCHGXf2zA87xx//sJIBiZNgBH2n73qH9steMvaGJ+ZXvUj+DkE0W6Y+GIOLFb2jNtGl/skR0UgaiwPyOZIebC+MTiNsTxuqtMgFeiMeK12qKJw3ErlBRF3O2sL8AnJpvHIpUiJRMStpqoRiDA3YqMnlRz8qudUS/AI0PSvi99QN6e8/EqScUCvBg4noyNUfTTXcI8p7lpCxtyUCu3LU59AV4PuWCox7dUmZrPy3xbX4DXfM/sqIJFVCQjJ/5Jv5ERtBbeDUfNhDgfTZIuLy78lB3/1AnweLobx4WjfgqK5ZYoKlp4L2UsmWR4oQQLC+SjFgjo99PTVJCMyd3S1KyMbE7iEiUeSp2LuVXe4yPzDQq1VlfKclkW8NVOM3/4V34F/vUzJgP9Am9+hEOzR1Z/cCrlr+DmpUVXLsdMW7D2u0e+2/z+ocNP4E1czE/9pMHpvMWOA9Qtag1fgGezUvA3GnglX4A74Y9psa5BagbUJqeax6q+VaedUrNbYppQNqJEAgG+UMNqdMYxK5GAGcsiWZSpWQWrQdJUk5Z5LnK2BPhLPM+7Eple8stCiJvb/9OTyshb8TfPACHEXUKIHwghfjA1NXXqXziHaQrwed/vOFGkJxGOADcvkwJ8y/HF0ehWFbaCiTgrC4LmDi0uuom7LmVFjQeq0QSJGoty3a16lZKi4q/kgIwWVaZaLihGTQpwVdXeZlLOSJ6fThSIt5iios924oNDlCPQc1jWKcync0qFBkAxiNJWqxT8NKKeeHh5veZ1NxDx4JLjz7SdtEghClYk3K3anpSfgrKQh+7uZlqIG0TCFCyinB4pqE4cbhPgvuuKquKvhWiGrvJiB6RYvYGrUICnuruJeDA5J3ej7Fq5Iw1HAI7FMwzlazAzw4IZJdpIK2tOBZCMmTJdsS4j3/lYlVRknQWYAX7V8aY5mC210lBKOZeo551x05jeXmByN09NPUmtvtyVB5A5K5mMFMT+vTEbb72H3z0qBXihWuDhiQdg/Cpuu+30rkMIMA2LasPfKc1mpZn4/DyiUqAUhS4FO1E9yW5mYlCbbHPMKviOWYoi4AAVwyJSL+F5HsVZqS1ULbzbSSZh2rLIFMpE5meZTdTotV/wcdQmZ0WAe5435n+dBP4VmcN93E8twf8ahAvHgPbesSP+sdWOr3S+uz3Pu9rzvKv7+vrCfCkdJ245LLTNT/lUjr5kOALc2TzIjOnwU4+XabS1pXbzcptYxUTcGJETf3Xf3uaxerWO02hQVVQEUrNSJGotJwSQRZ+qGg/0DA/jCvBOtM5n1kqUFLmuAE1bLuHKwbvhD+IJRSkv7XSlYoynoH9MbqPOJyuMpNUOqiWz9bpyvpVVbzwksQGIl72MqgE3H3+2dbAYpC+E+zntScv7bCZfWBQBd33nnFgm/EhYqn8LALnx1kK4uuBHNhW1Sy9YXXSXoRTk1dfr2HUPV9U9AcS75WuZCwS4W6GkoNHQSkwkskQ8aDzzLPNRg5ShdlEaiwkW2sa0XLxMJhrSonRoiIoRZesszLXtCgWFu/UzHLv7+oCx6yjXSzwx+cTqD+zqkuLbvzemHbnIuG7Ddc0I+Gee+QwVr0Dk6Tdw0UWnfy2WYeF6/jwYjJszMzi5WU7EIaPAUWoo08dMDLwTrR3huj92x7vUjd01w8ZyG+SreXL+PNUJx6xEAsZiMfryVcyZ48ymymxIDys/77lCxwW4ECIhhEgF3wO3A08C/wYETiY/D3ze//7fgP/su6FcD8z7qSr3AbcLIbr94svb/WMvaNJ212IBnijRG5IATyQFJcPixqNQ/fDdzeP1vIyARxTckNGt2+Q3hw42j1Vm5MRfVdT5q5Lqpa8A06W2zl9ujZIqAd5rMOsIxGyruNWslSmaAkMougV9AW41qhSqBRpBw5Ee9RHwdCLKoQyk/Y5x8zZs6h5Rek43OtT8fj4i38cwBTjJJPuzJpsKJwgylxqFPMUo2CHnDw/4InEmvzgCHjSNSWTDF+C9w/I+LE+NN4+V/OKviCLnnJItgyEzEwcA8PxC7LqlToDHuuV9UchJAe64VUpmZwT4VFq+XvHkEyzYHllbtQCHhbYGWPlEkW4nJAFuGBxObmDXNMyWVyjcPcP84V27gKPXAfDQ2EOrP3BgACYmmgL8uC2j5a/d9Vr2z+5nPDfOX3z3L0iWLuSCxE2cSUA+atjUvbYUFIDZWVK5WSYTkFVwXwx1ZZmOgTHXWtQ0/AVqKqtSgMdwXDheOE5+zg8UhVlDswqRCByJyzRMo1FnNlXk4k1agKtkAPi2EOKHwIPAFzzP+w/gz4AfFULsAW7zfwb4IrAf2AvcA/xXAM/zZoD/Djzk//tj/9gLmqzTw3TbztCCDT2xcJw0IhG4a4tcA7lPPd48HghwFW3ak7t2AmAda+X8BQK8pqgIpNIzQlcFpiZavtxx16WqyH0hm4VZ28Sab0t5qZUpnYZTwGlj29SFIFmFY7ljTdvDVFa93VoyKdjX1RI18w5s6VErwEVEpr0AjPsCLlQBDswkbfprC80mdU0BHnLRYCDA54uLc8Ap5XEFpBTkgI+MbKUQBTHZuidKfuFuVJH7Qi0uBWnu+GH5c+BzrrA7ZCwrPxuVolxoOAqLvZcy5RfYCddlwakzkFBXgAlyDT5pthZrk11F+hLh3RMTma3snF4cAa8uyJujcZLGOCdj505INTYTbSR5auqp1R84NCR7Yfj3xni0QtpOc+vmWwHZfOfJySdxHv11Lt59ZuOsZdi4wr/Z2yLg6fw8xxOQTYb/Oe3ORJixLOyFVqM4w/cET/eqG7vdSJx4DY7nj1OalX/TiKL7filHk63xbDYGG7u0AFeG53n7Pc+7zP+32/O8P/GPT3ue93LP83Z4nndbIKZ995Nf9jxvm+d5l3ie94O25/qI53nb/X//0OnXcjbocjKMJWU1SV1EyNmEVoQJ8M2uG3muBxqHDzeP1f3OX9FU+AK8f9MGZh1IHG9F3qqzvgBXVQQysBmA2edaaS8qGw/09MCk7ZBsG1S7SgVmHYUNR4RgKjXI1lkYy41h+O4dsYx6AR6Pw95M6285b8P2frUpKIlILyf8hekRR547DLeHdhaSSfqrxab7WaNQkNaVIecsD3T7PuDltgh4vU4sd4LZGKQU1GIM9qQ4nBYkplpOPQ1fjDd61aTtBfachQm5+C4elOkvhYy6pjiRLTLlLTstzxWr1zomwOeyG6n6M+5CvMZIt/oI+FhbzvdYb46BVHj3xEzvTrbNwNxCW8FgUDdwhs45hgFXXyWILlx4cgE+PLxIgB8xC/Qn+rly6EqsiMV7v/1eIiLC/PfvPOMmWU4kQd3w07CCCPjYGLFqhcmEmhSUVApmzBjxXKtBVWL+BCdi0KUwAr6QGmHTPEzkJygv+LaHqc4I8GPJ1iJxJgbDKS3ANeco8ZjBmD8B14UBgtBsCAFikRSHMmAcbkWkG/4Aayoo4BvpTfN8Dwy05Z7WD8pzFxQ5dtgj2wEoHvAXGeUyvRWX6ZSayFs2C0esLvrmWm4BA4UC40m1jQ5m+7excxr2Tx8h6nc5Syie9EEK8H2pVgQsb8Fweugkv7F+UpFeXH80O2IbCC9Cxgk3VaOY6aa/XGkKcK9Y8LunhpwD3h0F15ae49u3y+Kv556j78QR9mTVFO6m03Ak7tA100oniI4fpAF4w2oWT2ZGlvDkJ+R9mN9/EIBCVmGdzq5dAIzOTNHwGiRrLhWFRZ/txGMZ9vj6NxevsKlXfQR8zGidY7x3nuGu8CLgU1tfitWA9P0Ptg76HZpL60iTuvBCcMd28/TU06s/aGhIim+/8+2hSI6+eB+2aXPbVllx+brtr6e2kGX4DPVcPJLCM2pU3EpLgD8ra0COJyERVRAB74bxaIZsrtzsSpuen2E8BV1xdUWR+YGL2TwHY9MHaJyQi/BIB3ZLASbbTCRmY7AhpYswNecojgNjfrvahm+rFKaXbDyS5mAXRI+2tqJjx/dSNMEcCl+8pRM2jwwYbB8fg4YspBHPyIF3fMNg6OcDyGyTk3Dt8EEAvENSABzvVmPzlEzCWKSfoYUaXqMBnsdAocRkQm2VeWXkEnZOw/PjR8guTHIiJjA7kNcXj8Nj2dbklI4OKvdZTps91P3R7FCsgeP1hJ5fX+vpI1vxmBzzi5KnTjDngBPyzolpArUE+Woerr1WHnzwQQZnj7GnR03hbjoNR5w0/XOtXRp76igTSUgrKPoEsAYvB6C0bw8AxUP7AXB7FEbANmygELHYOd1gKj/JSL7KVFr9PQGQdlI86+vfggUbs+oj4BONlphxTdjWt/Ekv3F6zF55J9MxGP3SA81jkTHpopMfPvNF1NatUB3bzUR+YlGh/CICVf3YY2CajBtF0rYM2Pzjnf/Ie259D7+24/0AbDhDPRc35eciX83LbUzbhu98B4BJxyQaCX/npL8f9tt9WHUPjshAVHduhvEkpGx1n1Nv9FIiHsw99QSR8YMAGJu2KDvfonO32cXOOjoCrjmHcRw4asrBrSGARoSL+s6gxHsVEmaaQ11gT881fY6TUwc42AXphJoI8SP9MZKVKuyTjRTM559m3oZib7g5vAFJv4mEeUwKb3ePLAKbVNSVUgiYtDYSc2Hm6B6YnSVWb3AiobYgsrHjUlJVKDz3DAML0xxKq282AmBZsCfVem39jvqIRrfTioCPZeZJEX7EPT4qn/OZB/eA62Lu288zvRBX4NZjuEmKtYKM2KbT8IUv0JefYa+iCHgsBmN2lt58Faqy8Cxx4hiHM5BWYT8KOJsupmSC8by876tH5H1oDGxTcj4AhOBgZpRLjsPE/ieI1T1OdGBXCKArluLT/lDdXYIBxdacjgP1ymIhfFHfhaE9f3YgxtdHTUZ/uL95zBqXArw6dOZBoW3bgCn5h1o1Cr7RX0j8y7/A5ZeTd4vNZl/ZWJbfu/n3KJyQ4/mZCvCk1SbAo1G45pqmAD+iKHiSSsHBqEyT8vbKFMnu3DzH4lElgj8gcoGsxXKffh576hA1A7o271J2vnYcupr1O/Mxg77E+e1UdzpoAX6e4TgwJmRk+DtDXSTLu0L1kk1G0xwKAl5+Hnhm5jAHuyClyBf0gUFf+H7jG+B5xB+5nyf7IK6gAx9A12iaIwmLocPStdLdexCAaYVFLnOOTHuZeu7R5rbptOIJuHbdSwAYevRJNuQWOJrsTIcxISBSHObld+7iDbeNMJxUW4AJMJLt4Z4r5feHR/czbF4S+jm6/IXbxA8fhX37MKo1nupX05LarKco1hdkUuzP/zx8+tMAPDQMMVNNbcTB1EY5ITwtRU9meoIjGcgo2vru7jF4PmOTPiDvB2/8CDMOdHWpXbDtGbmGG4/A7CMycjufVf/5BOkb/c8Xw3uueTnvuVltF0yQiyqKPRzKwIMDUrBe0HtBaM+fzcK3B1P0TuWa0Vp7fD/HkhBbR6Hw1q3ApOxJsaoAv+kmGZEGuOEGCrXCspSQMd+U+ExTUDKOzIHOV/OtcwITyThPd6tJj5TBGjmQzT71A/A8egpFjivy4g+wrrmMiiHY9Ph+EieOcSwFwz1qdqCXkvZG+RW/S2k1O6jOGewc5MXzSl8gOA7kq8Pc/ovdvP6OKN3Vy0J9/ozVzcEgeHnoEDQa9Mwd4UA3JBQ1jTmU3sKhtA2f+Qx8/OMk9j3Bh66GpKXmfNksPJruZeeYb+/26CMUTSh1q5sQp1PSWqv2uc82Bc5cUu1Wm3PVbo47Ua5/9DBbZwuMJdWkEqyEVdjC13ec4J+vyiu3IAQY6LX4nxdu4mV//XJmBsfZHLs09HMkbr2NuoChx78Aj0uXoKf6oCvEGowA2+um0PDzsd/9bnjjG/noJS/lvu3qmjc93y8XLbVvfwsOHWJgaoxHB6FPUQe+ri54NtHNtgPTMD9P5vlnOdhFqE4dKzFx0ctx6tD/kU8BUOzdqvR8Af2pLAj4s0uT7OtR2wUTfCfS3DCb3wE33NlHrNFPNiTHLJDj6AMZf8x85BEAkuPyPUyvo0vk1q3AwkZsUtx/+P6VHxSPwy/8ggwZ33knhepyAf7883I37kwFeNZ3/ZrO+wL8He+AN7yBP73pYiINdekg9dhNzDpQ/8yn4dFHsRoNDiTVFSYDDGyJ853uIW56epqhiaMczsBgRn3PCIBsZBP/+yoQv5Ul2aHF8LmCFuDnGY4DTFzOV4Zmmes5xst23BDq8/ckMxxO+akKBw/C/feTqOT5zkZ1E38Xm7nnMhu+/GV485s5ceH13HsJJBTZEKbT8EhiMztP1PA++lHsz32Kz14I3Y46QVzpeS2futDgog99hsbbf5VDGTgwHH6Utp1sj+DurVt42dMzmB482R9e/uepcMpbID4NsTm2KXZAAb+D3vEr+Mbc1wDYmQ53YQqwadtVfHsUbjx8P3zuc5TTSR4fgIFY+J+buOimjC/Au7vhk5/kT659OQh1zZuq2SsYT0Ljr98Hf/iHAPzTJbBJUSSsqwveP3wDXQUX75JLGH1+D5+8FAZSagV45YbXsq8bLvr2E8zZUBnszFb7juxOaBgUBr4CwGBSbYTRq2OHxQAAIABJREFUMMCakdHUxuAjXJC8PtTnz2bhaVumS/DMMzA2xvDBB/mP7evbNUkmob/PYHvuv3DvE/dydOHoyg/8wAdkO/pbb5URcGuxAH/oIbjsMpk9cib0+rUB49N+XcTAANx7L/90URdmXV1Xyo3xS3n3LdB3/8Nwww0UTcH/Gd2h7HwgFykf7b+KC6bq7Dw2zreGYyQTnfHH7zH9z1B8ho2ZF08BJmgBft7R3w8cubH589vveEmozz88JDgmBnEjAvbvh7vvphiN8fkL1Anw3ugm3vsjOdy//yC897188Z3/QD0CSUUCXAj4+PBP8P0NIN7yFiILc/ztddDjqIuA93Zb/N6VV1KwBWLqBL9xO8RNtRNwNgvv3XI9v3N7mp+50+LL269Wer52Uu7m5vdXbQg/Gr0UKcB90T27hesHXhb6ObKxLF/c5bA7Pw733stjN1xMzYRhBVX7qWg3tcjsomNlr4Co28q2aLcmL+Wu14C97yB87GP8++WXcDBl0ZtUU6uQzcK386/nL28EceQIhzb08+EroD+tNvK2ZXMvr/1pgw/euoGX/BdId40qPV9AX1cMZraDVcSpDdPlqG+KNWS1hNv1w+HOFT09kKtuYCwdkbt6H/4whufxT5esP21p2zaw9/40Da/BDyd+uPoDhaDhNSjWiosi4I0GPPywTNs+U/p9P/7js/lFx0uRSWxX3e7Fxt4ePnjBFvZuzkAkwjtv76IUUesilc3CvdlbeOft8Huv3sUfXLHpjBcup8vuDS2fyGtG1c8V5xJagJ9njIwAk5fCoZfiPPdzXDYY7gd2eBjq+WEe39kFf/7ncO+9fP7C2yla6iJvQ/FNeBGPQz/5Cvid32Hab2yiKuccICZeyWvfAM/81K3c/1u/y0Mj0BdTJ4h7euDQ7I+w4/+N8IPvfYZP74auqNpik3gcyrU+/uyGHP9yWZWEoTay2M6u7lZ0/5oN65gF10hvL/DYm7lo/h1w778z2B++x7oQgu9f0SoQ/P9+9EKoJsgqaFjRZWepWzPNrpsAFTGDVVe3Fb2rdxf/Z3uUj7z7J+FP/5Q/eMWliMIgQggl5+vtBQ7ewu/fCh/92Dv4r++4gwWvh2RcbeTtggsET6ey/OoNJZ4agN54Z4q+sllgUt4X2Xp4xZAnY8OwAQ/9Esxs4z9tf22oz93dDRT6eaK/gfepT8Ef/RGPbn8pe3sgG1/f4mLrVph8Wu5MPHvi2ZM+tlSTjeLaI+Dj45DLwcUXn/k1DHbL+3pybrEAr5pTOA11AnxgAKr7XsHVv+BSmznBPVeVcRpqx24hIGP38r4b4W+vLkC1M4XJADdd2VpwX7Ohc0GicwEtwM8zLAuGB6LwD99ix5MfJ2KEO1kNDwP5Qd51Zy9s3gwXX8yHL3kVoC4CviUjRc2DB54BYN5vuZ1RaJm3KXEhs9Fe/uyNG/n2jXKbtl9hZ7psFmoHrmfSqvKFoozoZCz1gyqlbhBSxSUincnpA7hh+0Xy3KjPdQVfzM1tpvS5v4Kp3VyoSN90XXQZO948wP9848M8bBchN8zgYPgCNRvrBjvPzFyteaxsTmLX1YnFkSELjl/KB3qPwm//NtPGFJGS2kUp+SG6Ijv5THQPU405KPbK4kGF7NwJaUsucAD6OiTAR0eBh++S5zTUphQEDA8DX/hf8Ld7uWZruKk2sRiY1X7efYsnJ6ZYjLtf+kZg/ek1F1wAY3uz9Dh9pxTghZrsr9AeAQ/6yI2uY3NjqEfOPycWWgLc8zxq1iRxT60AZ9+PMl8v8PWj99OIlIh56j25e+PyHHnjKGa1c8GaK68U8N13AnDNsPpgzbmEFuDnIcGg0qdg3ggE+IPxGdizBx5+mAlT+nOnLDWdsa4augbqJl/b+y0ApsqyEcBIRt3kPzggiB6+nS/t+RITeenCoDInM5sFxmQh5lf3yTzltNWBoshSK2KaMtVveQf09AB/s4+fmzp8yseGQeBYeeCAtB1T0DMKgJftvJa9m4/zO/8xyFjuCOSGGVKwO9yfku/b/vFWm+9adIqYwsjb4CDw1Ot5ZOr77JvZR0Ecx6yoW5RGo5DJwFD5R/jWoW+Rq81AOaNcgANkrNZ9EfytlZ8zA87Y7fDxr/Aq+086cs72z2a3gvV3SvTz/Y2w5/FvwL59PJWWeQsD6wxmvP71sv9UqrqL52eeP+ljC1VfgLdFwH1TlqZb4ZmwoU8K8Jl8yxt/vjKPZ9RICnWLtoEB4MDLMDD4zDOfASAm1I/dU4dbIt90OxesGRiAv/6xv+Drrzms3BnoXEML8POQoLWuCgE+NATMb2LBnWamtgCWRcEYg0ZEWSRz40ACxq7l/rGvAjBdkd3UNnary3sbHITKkz/GVHGKB058GTyhtPgrmwUWNhA1LJ45IV1Q0o76Vr9//t9bA2nK6pwA/9mfhTtf1c3/+L3OFH46Dlzp2xCuZ9v5VFy7QTbGqfU/yOHKEzC5W4kAH/AdCA6MtxqR1KxJEqib+AMBDvD55z5PyZjEqqndvejthfj8VSxUFphwn4NqqiMCvNvxRXclRTIefrrSapTLwP7buOnKzoj+wAHEsvwGTyHTa8n6hwPuCRgaItc4DqzfYnHnTtiyBZjdzOH5ky/iV4qAhyHARwbi4Almiy0BPlmYBCAdURwBL3exJXEpXz/wdUB2qFbNLde2PpNWvXNzBcCvvd3g1is7ZxJwrqAF+HnIjX4NZtASO0w2bgQOS7/T+w9JC6iCeRSnNhx6uktAXx/w9E/yfP5hHpt4jJmaFOCq3BdAvs7GcZmnsLfwGFTSSnNPZY8fQdYaZKY8DUB3TF0lfcCl21sCPGN3zoawpwc++1mUiNPV+P3fl7tDvoGHEi4MGpls/SpVkSM2f4USwbhlUL5vzx5uCfCGM0UCxRHwuc0Mm7v54p4vUjXmsOpqI2G9vVCdkR+SOe8IVDojwPsSvtgodUtnqQ5zyy2dOc9W32HR760UOjuSV4Fn8J0jskFN3juOUc2E0ptidBTcmVGOLhyl3qiv+rjVIuCJxPp2wtIpA0pZpopTzWNTBfl9xlQswIG0N8K+WdmkKt4BAf53/6MVAbe9zgrwFytagJ+HvOY18quKDtHxOAx71xJpOHzksY/geR7l6FFiNXX+nH19wGNvJkqMDz70QebcCSinlTUAAbjiCiAnw0PTtaNQ7lI6EQeRqKTXWlRkYupbYLd3FWsUX9iD6h13SOv6G8J15lxExs5gGzHY8UUA+r3w7Q4Bbr5E1kV8a/8DVOtVym4Zz8qRjqiLgPf7mmKofj2PTTxG3ShhoXaR2NsLpcm2VVo13RH3hZHA87/c3RHBH/DVr8Lf/I20r+4EqoX+1g1pjMnL+ep+uXtZMCaIVsNJI9i4EQrHRnEbLhP5iVUft1IEfGxMGhasp35YCIhWB5guH28emy7J4EmXpS4nOxDgVrV1XySi6j8wQ12txbbDC3uuOFfQAvw8ZMsWuO8+aYOqgp3bbDbs/SP+7bl/k5Ew5yiJujoB3tsLlLvZzc/wySc+yVzjqO++oOyUXHopiFIfhufvy5YzSgX4jh0QiYARFLVV48Rj6n1WR9Kt9+0tb9SD6noRQjAQH4Zu2TZ9JLlZyXkuHtwJnuBr5jvY/NebefjYwwCkTXUC3LZlnrCR39gUGrZiAd7XB/NHW0LDrKeU3vcB2wda1pGdFOAvfzm8/e2dO18g5lQVJW/cCI3HfpbvHf0e9+29L9S0pdFRmD8kC55OloayUgT82LEzb0HfTtwbYKE+ydf2f40P/eBDzJZkTUZGoYVkJiOj916uFaxJmup3S9t3uLUA7wxagJ+n3H67X+imgB07oPDVdzKUHOKeR+6hFjtKCnUG+dGonPi7crKl8IR4WKn7AshI/0UXGq0oQ0WtALcs2L4darP+66qkO7PV3ubwcNVFnUtBeSEzkvG3MzzBhZvV5PIKIbhk6j1Y01cwVZzi17/8GwBkFEbeQKYM1aZbi7a4ofYzc8EFMLFvAIFU3VGvM6Hh7QP+exgtdlSAnw1mZ+HBB9U898aNwIO/zMbEVn7zK79JiRmSRjif0dFRaMzJvOCTCfAgRaTdV/3YsTPvgNlOlzlAMXKM2/7xNt72hbfxjf3fBKBboQAXQubA5ydaC9OkIgOEZef2JeHMMS3AO4EW4Jpl7N4N05NRrum/mYeOPYQXLZAUaoux+vrAm5EJi7nIoY7YIF11FdTn/FFacQQcZBRq4Zg/qLqxjuSetns4q7KRfLGxscv/zBR7uOgCdbsYt8d+l8iHH+HGkRt5ePwHwGL3DhVs3Qrzh1sCPGaojbxdfjnQMJs5rlZDfaQPYCTtBxTMEokz75p+XtDVJbtLqmBkBKjb3N7zNp6YfIJKfF+rwHWdSEOAU0fAHz72MCkrxdZuOX94XngCvC82gJs60Pz5Y098BIDuuPqF6dSBlgDvRME+tJzO0h0s2H8xowW4ZhnXSbc8jNwmjuWkRV8qolYQ9/dDebzV5CTqqvc9vfLKtmif4gg4wLXXwsw+38ImNtPx4i9VDVVebGwIOl8We9m5U915hoehVILNqZ24DReAbkdtUeS2bTDxfFsEPKJWaFxxhfwabcjzWKIzQmM4JdVZuqekzLLyxUDgMmLl/bHbKoRm69jXB1TSJCKZkwrwB489yNXDVzc7xM7MyKLTMAT4cEbm8NgRh6FksFuaVO6cs2sXTO1t3YdpuzP3RSD0P/g+fVN0Ai3ANcu44gqZMlEYa7WITZtqBfHAAMwdGsE05MCmsuNfwCtfCcz6NgGVFLat9nwveQkw7TfDcOaV2EiuxO6+3Z050YuEphOKlW8KSBUEDjJ9kZbKDyu6uBrbtkHpeMsOLKE497S/X0b75vyoe4+CrqIrEQjwn7n0JzpyvhcqGzbIlAn3xJbmsfZivvUQePtnI6McXlhZgFfcCj+c+GHTHhRk9BvCEeA3bbkGKknetPEP2N3vj6PlLhT6AwD+wnS6dd/3pjuzTXP54OUAbBvVu6WdQAtwzTJsWw4A489sbh7bNqQ2Ar5pExw+aLK5S57TaaiPgO/aBa+7WUZuzHgeQ/HdcO210Cda3eguuEDt+QIe+n8eYu5dc6d+oGZNXDpwKQCRrvFQJvnVCJ47XWtNxKN96iPgVFqiO5tQnxJy553AgtxV2DTamSnJMR3Gf32c97/6/R053wuVaFTaVxbGNjePjfaHs0gMBHiqMbosAu55HmMLY/zw+A+pNWqLOiiGKcDfdMNt8Kc5Ls/9Dtu7t8uDHRDgt9zCovvwkks6s3v5iTs/wT//xD8303k0atECXLMi110Hex7a3Pz5sp1qBfGWLXK7fSQuBbHTgda7ALdcISf+7pETys9l2zB5qPW6OpUREovGyDi6ADMsLu6XnX5U59QHEXAr5wvwRoTto2qtK6++evHPt96g/nPz7nfDUFTuKiS7y8rPFzCYHCQa6YDn4QucjRvh3v/dWhhetiMcAZ7JSOcopzLKgdkDeJ7X/L9XffJVjLxvhA8/8mEArtmgRoAPDcnreOYZuKDXj5hYeeWFu5mMtFUNuEyN2+ny8zoZfvrin+7MyTRagGtW5vrroXJsR/Pna3arFcSbN8uvY0/KlfdAujMC/NXXSXHz+h9R2D5xCV/46a/yw7ue7tj5NOESj8b5+x/7e+5/y/1KzzPip4CWxrZKd4JSltFRtau2wAucikwF+U8/qj4CHo3C/e/9XbYffC9/+XP/Wfn5NOESdKClIheHPYlwdmkMQzp9xXOXMl+Z5+DcQQDqjTr37bsPgE88/glSVoqN6VbaVCDAw2gCJoQ0JXj8cbh5083yYPdB5RFwgH/9V0h86V74v39Id+c6w2s6SOd68GrOK266CWi0okPbhtRHwAH2PLANXgEXb+2MAN/Vu5NH7nqkld/XAV59wcs7di6NGn7x6l9Ufo54XC5M9zxrk96xmfmy2dyWV8mHPgTfff4htr3siwxkO5MLum2Tw55/+J2OnEsTLh/4ALz0pfCup6/lKF/HilihPXdfH5hTV0EXPDL+CFu6t3Bo/lDz/0tuiYv6LlpUYD4+LjsPh1XkfsUV8LGPwSX9fhg6N0i6M2Y9HP7iG8jlOnMuTefREXDNioyO+t8cln3vVW/V7trlN4s4ciOUM9y4a8cpfycsrhi6ItRJQ6MJiwsvhM9/HuafupZobofyOgWAu+6Cj/7lLn7/tneoP5nmvMcw4I1vhO//1se568q7uGEkvFa0vb3gjl2CHbH57LOfBeDZE88uekzTlcgnLAvCgCuvhHweDuw3+DXnYfjwA80dW9Vks7I+SvPCRAtwzap88IPwl5d9lWPvPKb8XKYJjz0G3/3UDfzskTl+8lXhtDPWaM5nLroIikXg8x/hrelPne3L0WhWZUN6Ax96zYewzfDspHp7YWbS4Vev/VXufeJejuePNwX4j1/440DL0SZgbCyc9JOAwOnokUegdvhKMozqlBBNKGgBrlmVt70Nfv3tMYZSIY5mJ8Gy4IYb4BOf4AXfHEOjWQs/93Py6y03xfhff6OtwTQvLnp74cQJuG5ENqc4XjjOcyeeoyfWw2t2vgaAufJih6eDBwk1Qr17t6xT+OY34Z57WumSGs160TngGo1Gc45y2WXw7LPSJ1+jebHR2wvT09BlS2eV2dIsz04/y67eXdy08SYArttwXfPx+TxMTsqOrmFhWXDJJXJHGNCNmzShoQW4RqPRnMPs2nXqx2g0L0R6e6Feh6grBfhMaYbnTjzHj+34MXb07GD/2/czmhltPn7/fvk1TAEO0hLwkUekM9H73hfuc2tevOgUFI1Go9FoNOccQbdgrygF+P7Z/RwvHG96cm/p3kLEiDQfHwjwbdvCvY7/9t9g3z6Z3nL55eE+t+bFi46AazQajUajOecIbDdrOVn1+L2j3wNgV+/K20L79smvYUfAhQj/OTUaHQHXaDQajUZzzhEI8MJMEtMwmwK82ZVyCfv3yxxt7VKiOR/QAlyj0Wg0Gs05x+Cg/Do+LsjGshzLHSNqRNnStbIVyb594aefaDSq0AJco9FoNBrNOcfQkLQAPHQIuh0Z1r5+5PpVG8Pt369TRTTnD1qAazQajUajOecwDNi4EQ4fht+48Td4y+Vv4ZM//skVH1ssyiLJ7ds7e40azZmiizA1Go1Go9Gck2zaJCPgb73yrbz1yreu+rhvfANqNbj11g5enEazDs77CLgQ4pVCiOeEEHuFEL99tq9Ho9FoNBpNOGzaBHv3SnF9Mj76UdlB+eabO3JZGs26Oa8FuBAiAnwAeBVwEfAGIcRFZ/eqNBqNRqPRhMEdd8juln/8x+B5Kz/mq1+FT38afvM3wbY7e30azZlyvqegXAvs9TxvP4AQ4p+B1wFPn9Wr0mg0Go1Gs25e9zp485vhPe+B++6DCy+EgQEYHZWt5/fsgU9+UuZ+v+tdZ/tqNZq1c74L8A3AkbafjwLXLX2QEOIu4C6A0dHRpf+t0Wg0Go3mHOWee+C66+Duu+Gb34TxcahW5f8lk/CmN8Ef/RE4zlm9TI3mtDjfBfia8DzvbuBugKuvvnqVTSyNRqPRaDTnGqYJb3ub/AdQKMh/qZQU3UKc3evTaM6E812AjwEb234e8Y9pNBqNRqN5AZJIyH8azfnMeV2ECTwE7BBCbBFCWMDPAP92lq9Jo9FoNBqNRqNZlfM6Au55niuE+BXgPiACfMTzvKfO8mVpNBqNRqPRaDSrcl4LcADP874IfPFsX4dGo9FoNBqNRrMWzvcUFI1Go9FoNBqN5rxCC3CNRqPRaDQajaaDaAGu0Wg0Go1Go9F0EC3ANRqNRqPRaDSaDqIFuEaj0Wg0Go1G00G0ANdoNBqNRqPRaDqIFuAajUaj0Wg0Gk0HEZ7nne1r6ChCiCng0Nm+Dk2TXuDE2b4IzbrQ7+H5j34Pz3/0e3j+o9/D8Dnbf9NNnuf1rfQfLzoBrjm3EEL8wPO8q8/2dWjOHP0env/o9/D8R7+H5z/6PQyfc/lvqlNQNBqNRqPRaDSaDqIFuEaj0Wg0Go1G00G0ANecbe4+2xegWTf6PTz/0e/h+Y9+D89/9HsYPufs31TngGs0Go1Go9FoNB1ER8A1Go1Go9FoNJoOogW4RqPRaDQajUbTQbQA17wgEEKIs30NmtNHCGH4X/X7p9FoNOtEj6XnD1qAa85bhBBDQoghAM/zPD3wnF8IIV4HfA7k+3eWL0dzBgghomf7GjTrQwhxvRDilWf7OjRnjhCiTwiRBD2WhkUQHFKJFuCa8xJ/wvgi8H4hxH2gRfj5hBDiR4F3A7uEEL9wtq9Hc/r47+G7hBBbzva1aM4MIcQrgA+ypFOgHkf///buPdiusj7j+PchSYEQ7sJUBZkJoAitRGCIBeUagghCmEC5FUigWKh1lFZwgNKiow0C0grigAjNcLFguVjKgFEUpbbKcAkBEZtII6kFyj0JBEIuT/9Y63Q2h5OTc8I6e+93n+czk0n22uvs/c77ZO3z22u9633LIelQ4PvApZJukLRpp9tUOkkHAMdL2nwk3ycFeBSnPjj+AfhL29OBFZJ+H1KEl0DSFKr8Pgt8Adipsy2K4ZI0meoL8O7A9BTh5ZG0H3AjcIrtByWN7/vszOdoGSR9EPgScIbtTwEbAT+RtEv9fDIcJkl7A/cAJwNTR7IITwEeRakveW8DnGb7Xkk7AHsAZ0u6RtIG+eXRverLpPsCn7L9U2A+cKKkIzvbshiq+tgycBLVF6n3An/cWoTn+OtuksYA7wIWAuPq4/I64DpJt+dztBivA48B/1k//nNgHPB5SWOS4fBIGgtsDhwDXAUcBny8tQhvsj8zD3gUR9J428skjQcuAl4CLqWacH8z21M72sAYlKSNbL8maaztlZJmAPsAZ9t+YS0/Hl2iLtLekHQgcCjwPHCT7YWSlLGo3a0+mfEJqitRHwK+AtxG9Vk63vYhHWxeDIGkbYHLgVuAh4GjqE6sfgh4yvaZHWxekSRtAIypf0edABwMzAHutv1Sk+81tskXixgpkraz/RSA7WX15uXAxX3bJR0H3CZpU9uLO9TUGEBrfsAyANsr68ePAkcAWwIvSFrP9uoONDMGUV+anUx11eJR24sAbP+ovmHpEOAgSdsBWwBndKyxMaB+Gc61/S+SNgS2tH1Fvc8xwK2SNrG9pIPNjQH0y/AnwGXAiVTH3wa2p0vaEZjZsUYWRtK+wEepvsQssP0bANs31p9tBwPPSfowsLntc5p43wxBia4n6XBgoaTzW7bJ9qqWog7geKpf/Cneukj//PqfGbX9MNWl8Gvrs+LJr8tIOozqkuy2VF+WZkjaoG+mANs/BL5NVQicBFzdqbbGwPplOA04tT4L/j3gypZdj6f6MpwrGF2mX4ZHUt0H9WPgc8CpwNH1rocA20salyEog6tvJr8WGA8cBHyrvj8CANvXA9cDlwCfAb7b1HunAI+uJmlrYDpwHjBN0jnw1iKuvnloBnAWcLrtpZ1oa7zdmvJreb7vM+hS4BFgk/a2MNamPpt2AdXNemcCNwEfoxqmsLrlF/wHgN2Ag+svVdElBsjwn6iGfW1s+w3bqyStJ+lE4Gzgz/I52l0GyPA7wL6StrC92PYb9X4zqTL8ou0VGQq2VjsDV9k+j6p/rwWuaC3CgQnARKrPtrlNvXEK8Oh2z1MdHLOAY6lu2Ot/+WcCsD1wjO3H293AGNSg+bWc7X4eOLfpMXbRiIVUN1s+CtWQE+A1YNf6cd8v+PnAHrZ/1YlGxqAGyvBV6gxrm1Ld4H50Pke70kAZLuWtGQp4FpiS43DIXgd2AbC9xPYNwCzgHEkT631eBSY33acpwKNr9d3IZfs/AGwvoLr8faKkc+t9pgBjgAtsP9G51kZ/Q81P0g62l2fcfvepx+OvtH1DfcPlmPqp1VRffJG0p6RtbD+eY7D7DDXDettFybD7DCPDrWzfbfvXHWtseWYDkyRd0rLtLmAB1QxPAPeMxBeaFODRtfpfOqvHB/cVcdNVLcBzGfB7tld1oo2xZkPM7+vAik60L9ZugPH4fb8z/ht4RtIngQuBHH9daogZfpXqBr7k2IWGcRxmvPcw1FM1vkk1Zn6ypEsB6iux46jWORix1UUzC0p0vZYzqSuhOpMq6U7g08B+/W7EjC6T/MrXkmHfl6UXqW60fBP4U9vPdK51MRTJsHzJsDl9EznUJ4aelnQUcIek66mGRO4PfG0k25Az4NE1VK9m2W+bbFvSHqqXLFe1+M5OwIG2f9nudsbAkl/5hpDhafXmTahuXjre9mNtbWQMKhmWLxk2T9JkSTMk9d246voM+EpVK/t+BNgbuBN4AjjC9vyRbFMK8OgKkqYBT9ezmfy/+iD5I6opzn5bb36SaiXMeW1tZKxR8ivfMDM8D/hD20+2tZExqGRYvmTYvHr6xm9TzfV9MjCzPvO9qu7Tq4Dl9Tj7m21f3Y57IbISZnScpPdQreb1FNWE9xe6mnuz7/kTgJdt31V/Y804xS6S/Mo3zAzHtVwCjy6RDMuXDJsnaRfgRmCm7bmSjqQqwo+xvbxfn7Z1Bd8U4NFxqpaU/4jtH0vaH7gG+NvWD556vxRvXSj5lS8Zli8Zli8ZNk/SllRrUVzT12eSfgicY/vBlv3a3qcpwKNj+sa52X623/b9qCbDv8D2dZL2AX5l+4X2tzLWJPmVLxmWLxmWLxk2r+5Ttd6YKmn9+qz33VQLFf1C0iRgoTswDW4K8OgISdOpls8dB9wOPGJ7Tsvz+wNXUK2OuDNwmO3fdaKt8XbJr3zJsHzJsHzJsHlD6NNrgS8Dk4DTgJNtP9f2dqYAj3arLwndA5xCNQf0QVTLWN9r++aW/b4BHAMckDu8u0fyK18yLF8yLF8ybN5Q+lTVfN8fplrEaKY7NBtX5gGPThgDLKG67POKpBeBKcB+kp6vx799EJhItaRuPnC6S/LDTbHjAAAHT0lEQVQrXzIsXzIsXzJs3mB9+qLte4AtqBbZ2c32bzrV0JwBj46Q9HVgI+Cztl+r7/4+CXjT9qX1zSjr2365ow2NASW/8iXD8iXD8iXD5g3Spytsf03S+4AJHoHl5Ycj84BHW0nq+z93BdW31C9I2sj208Ac4AhJW9pelg+c7pP8ypcMy5cMy5cMmzeEPj1c0la2F3W6+IYU4NEmfQeG7dX1pieB24ANgSslvQt4P7CSatxWdJHkV75kWL5kWL5k2Lxh9unyjjRyABmCEiOqnjZpfuv0Sn3zbUrahmos1slUd3dvAZxh++HOtDb6S37lS4blS4blS4bNK71PU4DHiJE0lWqJ12Nt319vk21LOgA4A/gr24skbQqstP1aB5scLZJf+ZJh+ZJh+ZJh83qhTzMEJUaEpIOBi4HjbN8vaX1J69UHx8bA3wE3214EYHtxtx0co1nyK18yLF8yLF8ybF6v9GmmIYyRMgXY0NVKU1tRHRCbSLoP+CnwcVdTBMm5DNONkl/5kmH5kmH5kmHzeqJPMwQlRoykq6lWmloB3AC8COxW/30x1f+/1Wt+heik5Fe+ZFi+ZFi+ZNi8XujTFODRmPqmh6W2F7dsuxx41vZX6scHAmcC0213zd3Ikfx6QTIsXzIsXzJsXi/2acaARyMkTaNa/vXUesofAGx/BriwZdctgVXAuPa2MAaT/MqXDMuXDMuXDJvXq32aM+DxjtVjsG4CFgG/A/4XuMn2C/32+zQwE5jpLKnbNZJf+ZJh+ZJh+ZJh83q5T3MGPJqwGPgccDrwCLAjcJykraGaJF/SJsBECjo4RpHkV75kWL5kWL5k2Lye7dOcAY91Jul9wLPAWNvLWrZPB/YFFti+XNKutufV0wR19U0Ro0nyK18yLF8yLF8ybN5o6NOcAY91IulQ4C7gG8A/Stqp7znbt1JNBbSVpO8BP5P0ntIOjl6W/MqXDMuXDMuXDJs3Wvo0BXgMiyrbUt348BfA+cADwL2Sdunbrz5IJlJNE7SX7ac70d54q+RXvmRYvmRYvmTYvNHWp1mIJ4bFtiU9DfwcWAA8Z/sSSSuAH0ja3/Z8Se+mmpNzWkljsnpd8itfMixfMixfMmzeaOvTjAGPIZO0A7A58F/AN4GHbF/U8vzZwM7AGbZflzTB9qudaW30l/zKlwzLlwzLlwybNxr7NGfAY0gkHUa13OvLwGPAjcBlksbYnlXv9l3gHOANgNIPjl6S/MqXDMuXDMuXDJs3Wvs0BXislaS9qJZ2Pd72XEnfAvYE9gJ+IWkM1TydHwV2BzajOpCiCyS/8iXD8iXD8iXD5o3mPs0QlFir+gB5v+3Z9eOtgNm2D5U0Efhrqm+lk4EZJY/J6kXJr3zJsHzJsHzJsHmjuU9TgMda1d9AN7K9pP73u4F/BT5h+xlJ2wH/U++zuJNtjbdLfuVLhuVLhuVLhs0bzX2aaQhjrWyvsr2kfijgFeCl+uD4E+BcYFyvHRy9IvmVLxmWLxmWLxk2bzT3ac6AxzqRNBt4BphKj10WGg2SX/mSYfmSYfmSYfNGS5+mAI9hkSRgHPBE/feBthd0tlUxVMmvfMmwfMmwfMmweaOtT1OAxzqRNAN4wPbjnW5LDF/yK18yLF8yLF8ybN5o6dMU4LFOJMn5z1Os5Fe+ZFi+ZFi+ZNi80dKnKcAjIiIiItoos6BERERERLRRCvCIiIiIiDZKAR4RERER0UYpwCMiepSkCyR9fpDnp0naeQiv85b9JH1J0pSm2hkRMdqkAI+IGL2mAWstwPvvZ/tvbN8zYq2KiOhxKcAjInqIpPMkzZf0M+AD9bbTJD0gaZ6kWyWNl7QXcDhwsaRHJG1f//m+pIck/Zukndaw32xJR9Wv/VtJs+rnHpS0m6Q5kp6UdHpLu86q2/CopC92oGsiIrrG2E43ICIimiFpd+BYYBLV5/vDwEPAbbavrvf5MnCq7csl3QHcafuW+rkfAafbXiBpMvBN2wcMsF//t15ke5KkvwdmA3sDGwC/BK6UNBXYEdgTEHCHpH1s3zdinRER0cVSgEdE9I6PAbfbXgZQF84Af1AX3psBE4A5/X9Q0gRgL+CfWwrs9Yf4vn3v8xgwwfZSYKmk5ZI2A6bWf+bW+02gKshTgEfEqJQCPCKi980GptmeVy/zvN8A+6wHvGJ70jq8/vL679Ut/+57PJbqrPcs21etw2tHRPScjAGPiOgd9wHTJG0oaWPgk/X2jYFnJI0DTmjZf2n9HLaXAAslHQ3VctCSdu2/3zqaA5xSn2VH0nslbf0OXi8iomgpwCMieoTth4GbgXnA3cAD9VPnA/cD/w78uuVHbgLOkjRX0vZUxfmpkuYBjwNHrGG/4bbrB8B3gJ9Legy4hXdW0EdEFE22O92GiIiIiIhRI2fAIyIiIiLaKAV4REREREQbpQCPiIiIiGijFOAREREREW2UAjwiIiIioo1SgEdEREREtFEK8IiIiIiINkoBHhERERHRRv8HzfBNVSbiG6gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plot only the first and the last step predict values and actual values\n", "plot_first_last_step_result(test_df, pred_df)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Evaluate: the mean square error is [ 1741473.00570013 4340678.51999395 7704365.03016982 11124998.65989569\n", " 14944043.70242228]\n", "Evaluate: the smape value is [ 6.317403 8.62655514 10.83740387 12.11209905 12.92543761]\n" ] } ], "source": [ "# evaluate test_df\n", "mse, smape = pipeline.evaluate(test_df, metrics=[\"mse\", \"smape\"])\n", "print(\"Evaluate: the mean square error is\", mse)\n", "print(\"Evaluate: the smape value is\", smape)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stopping pgids: [7181, 7220]\n", "Stopping by pgid 7181\n", "Stopping by pgid 7220\n" ] } ], "source": [ "ray_ctx.stop()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }