The Open Source Fortress

@iosifache

- Previous lives
 - 1.5 years in the Romanian Army
 - Tech lead in a cybersec startup
- Now software security engineer in the Ubuntu Security Team
- Bucharest-based
- Powered by Americanos
- Long-distance running as a hobby

Roundcube Webmail

- Open source, browser-based IMAP client
- Hosted on GitHub
- With 5.2k stars (as per October 30, 2023)
- Written in XHTML, CSS, JavaScript (with jQuery), and PHP

Q: What are we missing here?

- 1. /installer/index.php route stores the user-controlled configuration in rcube->config.
- 2. When an email with a non-standard format is received, rcube::exec executes the output of getCommand.

```
private static function getCommand($opt_name)
    static $error = [];
    $cmd = rcube::get_instance()->config->get($opt_name);
    if (empty($cmd)) {
        return false;
    if (preg_match('/^(convert|identify)(\.exe)?$/i', $cmd)) {
        return $cmd;
    // Executable must exist, also disallow network shares on Windows
    if ($cmd[0] != "\\" && file_exists($cmd)) {
        return $cmd;
    if (empty($error[$opt_name])) {
        rcube::raise_error("Invalid $opt_name: $cmd", true, false);
        $error[$opt name] = true;
    return false;
```

A: Input sanitisation

- CVE-2020-12641
- Many vulnerable configuration items, leading to arbitrary code execution
- 7.66% EPSS and 9.8 CVSS
- Used by APT28 to compromise Ukrainian organisations' servers
- Added by CISA in the Known Exploited Vulnerabilities Catalogue

But ... Was it preventable?

- Yes, but not with standard linters or scanners
- Taint analysis as a possible solution
 - rcube->config as a tainted data source
 - rcube::exec as a sensitive sink

The Open Source Fortress

- Lots of OSS tools that can be used to proactively detect vulnerabilities
- Structure
 - Factual information
 - General software and software security topics
 - Brief presentation of each analysis technique
 - Practical examples for analysing a vulnerable codebase
 - Infrastructure and access
 - Documentations
 - Proposed solutions

YES,

- Large scale use in:
 - Profitable companies
 - Critical infrastructures
- Permissive licences
- Publicly reviewable code

BUT

- Unpaid maintainers
- Unmaintained, vulnerable projects
- Lack of ethical security testing
- Low-hanging fruits for threat actors

Ubuntu Portrait

- WebGoat-like codebase
- "lightweight piece of software that runs on an Ubuntu server and allows users to control it through their browsers"
- On-premise deployment
- Written in Python and C
- 12+ embedded vulnerabilities

Setup

- Only docker compose up for:
 - Pulling the images from Docker Hub or GHCR
 - Creating and running the containers

Threat modelling

- Identifying asset and threats
 - What we need to defend?
 - What can go wrong?
- Advantages
 - Secure by design
 - Prioritisation
 - Stakeholder confidence booster
 - Legal requirement (e.g., USA and Singapore)

From AzureArchitecture/threat-model-templates

OWASP Threat Dragon

- Threat modelling tool backed by OWASP
- Usual process
 - i. Threat model creation
 - ii. Diagram creation: STRIDE, CIA
 - iii. Asset representation: stores, process, actor, data flow, trust boundaries
 - iv. Manual threat identification, with type, status, score, priority, description, and mitigation

"You do realize the key is under the mat."

Secret scanning

- Searching for specific patterns or entropy for a secret (API key, credentials, tokens, etc.)
- Community (generic) rules

Gitleaks

- Detector for hardcoded secrets
- Analysis of the entire Git history
- Support for baselines and custom formats of secrets

Dependency scanning

- Iterating through all dependencies for finding their vulnerabilities
- Usage of the dependencies declaration list

OSV-Scanner

- Client for Google's OSV database, which embeds:
 - GitHub Security Advisories
 - PyPA
 - RustSec
 - Global Security Database
- Support for ignored vulnerabilities

IT'S LIKE YOU RAN OCR ON A PHOTO OF A SCRABBLE BOARD FROM A GAME WHERE JAVASCRIPT RESERVED WORDS COUNTED FOR TRIPLE POINTS.

IT LOOKS LIKE SOMEONE
TRANSCRIBED A NAVAL WEATHER
FORECAST WHILE WOODPECKERS
HAMMERED THEIR SHIFT KEYS,
THEN RANDOMLY INDENTED IT.

IT'S LIKE AN EE CUMMINGS POEM WRITTEN USING ONLY THE USERNAMES A WEBSITE SUGGESTS WHEN THE ONE YOU WANT IS TAKEN.

Linting

- Static analysis tool for finding issues before compiling/running the code
- Issues
 - Formatting
 - Grammar (for example, non-inclusive expressions)
 - Security

Bandit

- Linter for Python
- Abstract syntax tree representation of the code
- Custom modules for:
 - Patterns of suspicious code
 - Deny lists of imports and function calls
 - Report generation
- Support for baselines

flawfinder

- Linter for C
- Lexical scanning with detection of sensitive tokens

Code querying

- Searchin a specific pattern in the codebase
- Optional abstract representation of the codebase
 - Abstract syntax trees
 - Control flow graphs
- Query types
 - Lexical
 - Regex
 - Data structures specific to the abstract representation
- Community queries (but generic)

From Trail of Bit's "Fast and accurate syntax searching for C and C++"

Semgrep

- (Partially) open-source code scanner
- Support for 30+ programming languages
- No prior build requirements
- No DSL for rules
- Default or third-party rules

Demo

Fuzzing

- Running a program and offering random, unexpected inputs
- A crash = a security issue
- BFS traversal of the CFG
- Optimisation
 - Instrumenting the source code
 - Knowing the input format
 - Defining the states
 - Testing all input streams

From AdaCore's "Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0"

AFL++

- An American Fuzzy Lop (AFL) fork
- Additional features compared to AFL
 - QEMU emulation
 - Persistent mode
 - Optimisations
- Embedded in Google's OSS-Fuzz

Demo

Symbolic execution

- Investigating all CFG paths by replacing the concrete values with symbolic ones
- Components
 - Sources
 - Sinks
 - Patterns
- Path explosion problem

```
int f(int a, int b){
    int x = 1, y = 0;
    if (a != 0) {
       y = x + 3;
        if b == 0 {
           x = 2 * (a + b);
    return (a + b) / (x - y);
```


KLEE

- Generic symbolic execution with security use cases
- Built on LLVM

Demo

Other techniques

- Stress/load testing
 - JMeter for many protocols and services
 - k6 for Kubernetes
- Web dynamic analysis
 - OWASP's Zed Proxy Attack

Security tooling automation

- SARIF Multitool for performing operations with SARIF files (merging, paging, querying, supressing, etc.)
- Make and Poe the Poet for running tasks
- IDE workflows (e.g., VSCode tasks) for running the tooling while coding
- pre-commit for managing Git pre-commit hooks
- act or GitLab Runner for running CI/CD workflows locally
- GitHub Actions or GitLab pipelines for running CI/CD workflows

Security checklist I: Proactive vulnerability discovery

- Create a threat model.
- Choose a suite of security tools to scan your codebase.
- ✓ Automate the suite of security tools in local/development environments and CI/CD pipelines, with quality gates.
- ✓ Request the integration of your project with OSS-Fuzz.
- Periodically check for vulnerabilities in your dependencies.
- Constantly validate the warnings from your security tooling.
- Keep the threat model updated.

Security checklist II: Secure users

- ✓ Design your software to be secure by default.
- ✓ Have security recommendations for users.
- ✓ Create SBOMs.

Security checklist III: Established security reporting process

- ✓ Have a standardised, documented process for responding to vulnerabilities.
- Create a security policy with preferred way to contact and report format.
- Find backup security responders.
- Be transparent and verbose with the reported vulnerabilities: mention patching commits, attach security tags to issues, and request CVE IDs.

Recap I

- Roundcube Webmail vulnerability
- Open Source Fortress
- Software development model
- Software security model
- Open source software

Recap II

- Techniques
 - Threat modelling
 - Secret scanning
 - Dependency scanning
 - Linting
 - Code querying
 - Symbolic execution
 - Fuzzing
- Automation
- Checklist

