{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Defining Custom Display Logic for Your Own Objects"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In Python, objects can declare their textual representation using the `__repr__` method. IPython expands on this idea and allows objects to declare other, richer representations including:\n",
"\n",
"* HTML\n",
"* JSON\n",
"* PNG\n",
"* JPEG\n",
"* SVG\n",
"* LaTeX\n",
"\n",
"This Notebook shows how you can add custom display logic to your own classes, so that they can be displayed using these rich representations. There are two ways of accomplishing this:\n",
"\n",
"1. Implementing special display methods such as `_repr_html_`.\n",
"2. Registering a display function for a particular type.\n",
"\n",
"In this Notebook we show how both approaches work."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before we get started, we will import the various display functions for displaying the different formats we will create."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from IPython.display import display\n",
"from IPython.display import (\n",
" display_html, display_jpeg, display_png,\n",
" display_javascript, display_svg, display_latex\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Implementing special display methods"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The main idea of the first approach is that you have to implement special display methods, one for each representation you want to use. Here is a list of the names of the special methods and the values they must return:\n",
"\n",
"* `_repr_html_`: return raw HTML as a string\n",
"* `_repr_json_`: return raw JSON as a string\n",
"* `_repr_jpeg_`: return raw JPEG data\n",
"* `_repr_png_`: return raw PNG data\n",
"* `_repr_svg_`: return raw SVG data as a string\n",
"* `_repr_latex_`: return LaTeX commands in a string surrounded by \"$\"."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Citizen: pandas"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A prominent example of a package that has IPython-aware rich representations of its objects is [pandas](http://pandas.pydata.org/).\n",
"\n",
"A pandas DataFrame has a rich HTML table representation,\n",
"using `_repr_html_`.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import io\n",
"import pandas"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Writing data.csv\n"
]
}
],
"source": [
"%%writefile data.csv\n",
"Date,Open,High,Low,Close,Volume,Adj Close\n",
"2012-06-01,569.16,590.00,548.50,584.00,14077000,581.50\n",
"2012-05-01,584.90,596.76,522.18,577.73,18827900,575.26\n",
"2012-04-02,601.83,644.00,555.00,583.98,28759100,581.48\n",
"2012-03-01,548.17,621.45,516.22,599.55,26486000,596.99\n",
"2012-02-01,458.41,547.61,453.98,542.44,22001000,540.12\n",
"2012-01-03,409.40,458.24,409.00,456.48,12949100,454.53\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
" Date Open High Low Close Volume Adj Close\n",
"0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50\n",
"1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26\n",
"2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48\n",
"3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99\n",
"4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12\n",
"5 2012-01-03 409.40 458.24 409.00 456.48 12949100 454.53"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pandas.read_csv(\"data.csv\")\n",
"pandas.set_option('display.notebook_repr_html', False)\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"rich HTML can be activated via `pandas.set_option`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" \n",
" Date \n",
" Open \n",
" High \n",
" Low \n",
" Close \n",
" Volume \n",
" Adj Close \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 2012-06-01 \n",
" 569.16 \n",
" 590.00 \n",
" 548.50 \n",
" 584.00 \n",
" 14077000 \n",
" 581.50 \n",
" \n",
" \n",
" 1 \n",
" 2012-05-01 \n",
" 584.90 \n",
" 596.76 \n",
" 522.18 \n",
" 577.73 \n",
" 18827900 \n",
" 575.26 \n",
" \n",
" \n",
" 2 \n",
" 2012-04-02 \n",
" 601.83 \n",
" 644.00 \n",
" 555.00 \n",
" 583.98 \n",
" 28759100 \n",
" 581.48 \n",
" \n",
" \n",
" 3 \n",
" 2012-03-01 \n",
" 548.17 \n",
" 621.45 \n",
" 516.22 \n",
" 599.55 \n",
" 26486000 \n",
" 596.99 \n",
" \n",
" \n",
" 4 \n",
" 2012-02-01 \n",
" 458.41 \n",
" 547.61 \n",
" 453.98 \n",
" 542.44 \n",
" 22001000 \n",
" 540.12 \n",
" \n",
" \n",
" 5 \n",
" 2012-01-03 \n",
" 409.40 \n",
" 458.24 \n",
" 409.00 \n",
" 456.48 \n",
" 12949100 \n",
" 454.53 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Open High Low Close Volume Adj Close\n",
"0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50\n",
"1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26\n",
"2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48\n",
"3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99\n",
"4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12\n",
"5 2012-01-03 409.40 458.24 409.00 456.48 12949100 454.53"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pandas.set_option('display.notebook_repr_html', True)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"
\n",
" \n",
" \n",
" \n",
" Date \n",
" Open \n",
" High \n",
" Low \n",
" Close \n",
" Volume \n",
" Adj Close \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 2012-06-01 \n",
" 569.16 \n",
" 590.00 \n"
]
}
],
"source": [
"lines = df._repr_html_().splitlines()\n",
"print \"\\n\".join(lines[:20])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write a simple `Circle` Python class. Don't even worry about properties such as radius, position, colors, etc. To help you out use the following representations (remember to wrap them in Python strings):\n",
"\n",
"For HTML:\n",
"\n",
" ○\n",
"\n",
"For SVG:\n",
"\n",
" \n",
" \n",
" \n",
"\n",
"For LaTeX (wrap with `$` and use a raw Python string):\n",
"\n",
" \\bigcirc\n",
"\n",
"After you write the class, create an instance and then use `display_html`, `display_svg` and `display_latex` to display those representations.\n",
"\n",
"Tips : you can slightly tweek the representation to know from which `_repr_*_` method it came from. \n",
"For example in my solution the svg representation is blue, and the HTML one show \"`HTML`\" between brackets."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Solution"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is my simple `MyCircle` class:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%load soln/mycircle.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now create an instance and use the display methods:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"c = MyCircle()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"○ (html )"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_html(c)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_svg(c)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/latex": [
"$\\bigcirc \\LaTeX$"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_latex(c)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"application/javascript": [
"alert('I am a circle!');"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_javascript(c)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Adding IPython display support to existing objects"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are directly writing your own classes, you can adapt them for display in IPython by following the above example. But in practice, we often need to work with existing code we can't modify. We now illustrate how to add these kinds of extended display capabilities to existing objects. To continue with our example above, we will add a PNG representation to our `Circle` class using Matplotlib."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model citizen: sympy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[SymPy](http://sympy.org) is another model citizen that defines rich representations of its object.\n",
"Unlike pandas above, sympy registers display formatters via IPython's display formatter API, rather than declaring `_repr_mime_` methods."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sympy import Rational, pi, exp, I, symbols\n",
"x, y, z = symbols(\"x y z\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"3*pi/2 + exp(I*x)/(x**2 + y)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r = Rational(3,2)*pi + exp(I*x) / (x**2 + y)\n",
"r"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SymPy provides an `init_printing` function that sets up advanced $\\LaTeX$\n",
"representations of its objects."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFAAAAAlCAYAAADV/m7fAAAABHNCSVQICAgIfAhkiAAAA9xJREFU\naIHt2l2IVVUUwPHfzDQ4hc1UFpaVTvoiKNoHaTCmU/lQaERR9mGUZBSkUVEQvcR9CSKIoCgoom5F\nBX2T+RD6EBQVZI1BBoVSFA0JUkNiiX1MD+uc5szkOPfjnHvvyP3DwF4z96y1Zp+91l577Uubuuho\ntgMNYikG8TU+wwosxs9YjTvwWy2Kj8mMV2IeZiTGythem78txwjmYitOxHs4G7vwthonbyL7cHMy\nvga/4/g8FLcAx+FVnIVesXDeRScW1KM4uwIH8V0yHkV3PYpbjFnifzsDt2J3Il+Mg9hTq+LJcuAr\nYnk/VKviJtKJe3AIv2I2Hi3SWJZzcR8O4LGijBbM0yKynsCbOKkZTtyGzzGzAbaWGJ9K6mEh/hC5\nfD1uETmvcC7AXpFkU0dGcXUDbJfRn5Oua7EjJ10VkYbwXyLnDSfyfPyJnY10Jge+FZtCSofYNAqr\nd9PQ2YHnsBn/iEJzrditsvTiGVyBnkl0jmIVPszb2QoYEnnvLvyCY7El8akQqnkzHaLoHMKnuEpU\n9d/jbjwldr6D+Fi8iEooo5ToOaq5CZdl5NfRlYy31KG3LL8c2HCq2f1ezIxPSJ79W1T5p+Tp1HSi\n1vJhPT5JxgvFRE7FC+JQP5G5WCbCfyIbRTnV8oxO8TORnTg/Ga/BN3XYLqsshKfysSk/6QqsZjNJ\nuzZfJHKvWEU9xpcQeTOVj53YJHZeeKRAX8YZrZZ7sc1Y2A6LyVudl1M1sgbviIlbjvMaYTQ7gcvF\nIbwkJmjlJM8sxbMZeQg/qO1l5MkCXJ+M9+DMRhqfiYcz8jrRDzy9AbbL8iljZhjrX76POTnorJgl\novBNm4u9Ikmua4Dtx3FqjvouxAM56quIDhHCaaJeJCbwnEY7Uid9eLDZTsBLCmxCFsgm0UnvVt2m\ntjlPJzaKnWy63djdIC6H9olO9OIqni3l5cRaMYFEadKfl+KcGMAG0S2/EbfjLdF+q4fSJL/vElee\nz4vTEpwsczrKlh6rxP3BVpHUL8VpdTqWJ73i2FjGB7hTtO/3i4qhCK4UTZPsYroIP6YfSMN0Pr70\n/xZ+n5zuTHOgR1QKh0TJNWJ86VUps0X7LZuiVuCjjLxfXKj1JfJuMYEH8GQiT9c7I0QIpWfxviN9\nsEJKR/jbdXgjI+8Sl29o/umhGi4XJ6V+sUEMiVW0oWC7c4zdG/cn8n9XHV2HeaBVGRD16SxxXbBM\n1KmvidCqh0GRVw/HXvFNjW7xAofxcp32jjrur/Bz20St2aZCFuEnkSoG8JWxdhmmVwg3g04xefNw\nifjCwUhTPWrTpk2bFuJflVvSLV1580UAAAAASUVORK5CYII=\n",
"text/latex": [
"$$\\frac{3}{2} \\pi + \\frac{e^{\\mathbf{\\imath} x}}{x^{2} + y}$$"
],
"text/plain": [
" ⅈ⋅x \n",
"3⋅π ℯ \n",
"─── + ──────\n",
" 2 2 \n",
" x + y"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy.interactive.printing import init_printing\n",
"init_printing()\n",
"r"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To add a display method to an existing class, we must use IPython's display formatter API. Here we show all of the available formatters:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" text/html : HTMLFormatter\n",
" image/jpeg : JPEGFormatter\n",
" image/svg+xml : SVGFormatter\n",
" image/png : PNGFormatter\n",
" application/javascript : JavascriptFormatter\n",
" text/latex : LatexFormatter\n",
" application/json : JSONFormatter\n",
" text/plain : PlainTextFormatter\n"
]
}
],
"source": [
"ip = get_ipython()\n",
"for mime, formatter in ip.display_formatter.formatters.items():\n",
" print '%24s : %s' % (mime, formatter.__class__.__name__)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's grab the PNG formatter:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"png_f = ip.display_formatter.formatters['image/png']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will use the `for_type` method to register our display function."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"png_f.for_type?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As the docstring describes, we need to define a function the takes the object as a parameter and returns the raw PNG data."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"class AnotherCircle(object):\n",
" def __init__(self, radius=1, center=(0,0), color='r'):\n",
" self.radius = radius\n",
" self.center = center\n",
" self.color = color\n",
" \n",
" def __repr__(self):\n",
" return \"<%s Circle with r=%s at %s>\" % (\n",
" self.color,\n",
" self.radius,\n",
" self.center,\n",
" )\n",
" \n",
"c = AnotherCircle()\n",
"c"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from IPython.core.pylabtools import print_figure\n",
"\n",
"def png_circle(circle):\n",
" \"\"\"Render AnotherCircle to png data using matplotlib\"\"\"\n",
" fig, ax = plt.subplots()\n",
" patch = plt.Circle(circle.center,\n",
" radius=circle.radius,\n",
" fc=circle.color,\n",
" )\n",
" ax.add_patch(patch)\n",
" plt.axis('scaled')\n",
" data = print_figure(fig, 'png')\n",
" # We MUST close the figure, otherwise IPython's display machinery\n",
" # will pick it up and send it as output, resulting in a double display\n",
" plt.close(fig)\n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00'\n"
]
}
],
"source": [
"c = AnotherCircle()\n",
"print repr(png_circle(c)[:10])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we register the display function for the type:"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"png_f.for_type(AnotherCircle, png_circle)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now all `Circle` instances have PNG representations!"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAF8CAYAAADYXlxuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1HXiP/DXDDAgwwwzwyngAQhoItGotR1rB5ZbqXmV\n9e1a92ttaK7Z9NvWyqx2q83VvliQbrrZYamlVLqtdx5pbYUIiniAeAJyODOcg1zz+8PV1UAcmOP9\nmZnX8/Ho8Yjh8/m8X34iXn6u90dmtVqtICIispFcdAAiInIvLA4iIuoWFgcREXULi4OIiLqFxUFE\nRN3C4iAiom7xdcRGFi5ciOLiYvj6+kKtVuOJJ55ATExMh+VKS0uxaNEi1NXVQa1WIz09HVFRUY6I\nQERELiJzxHMcOTk50Ov1kMvl2LZtG7Zt24bXXnutw3KzZs3ClClTkJKSgtzcXKxevRpvvPGGvcMT\nEZELOeRU1bBhwyCXn99UbGwsTCZTh2WqqqpgsViQkpICANDr9aiurobZbHZEBCIichGHX+PYsmUL\n9Hp9h8+NRiNUKtVlnwUHB8NoNDo6AhEROZFDi2PTpk0oKirCQw891Plg8o7Dtba2OjICERE5mUMu\njgPA2rVr8eOPP2LOnDkICAjo8H2tVtvhtJTZbIZOp+t0e9u2bUN7e7uj4hER0SX8/PwwYsSIHq1r\nd3G0t7fjgw8+QGVlZYfSMJlMkMlk0Gg0CA8Ph1KpRF5eHlJTU5GTkwO1Wo3Q0NArbrezU15StG7d\nOowZM0Z0DJu4U1bA/rxNrU0wNhlRe64WpiYTjE1GVDZW4qj5KIpNxThVdwoVDRUwNok/ZRrkF4QI\nZQR6K3sjQZuAeG08eit7Q9dLB12ADsH+wdD4a6D2V9s9ljv9HDCrc+Tm5vZ4XbuLo7q6Gps3b0Zk\nZCRmz5598fPp06dj06ZNAIBp06YBAAwGAxYvXoxly5ZBrVbDYDDYOzwRAKC5rRmVjZWobqxGlaUK\n1Y3V2F+9H3vO7EGRqQjmc9K/CaO+pR715nocNR/FrtJdHb4f4BOA2OBYpISnYGjEUPQO6o3QXqEI\nDwxHWGAYghRBAlKTN7K7OMLDw7Fq1apOvzdgwIDLvo6Ojsaf//xne4ckL3ehJKoaq1DRUIEiUxE2\nn9iMvIo81LfUi47nNE1tTThoPIiDxoNYdei//8/5yn2RpEvCHX3vwHUR16G3sjfLhJzKYdc4iJzB\nz88PjS2NKKsvw+m60yg8W4gNxzZ4fEl0R2t7Kw5UH8CB6gMXP7tQJnf2uxPDew9HH1UfRAVFQder\n82uKRN3B4iDJuVAUpXWlOBh8EAuyFyCvMg9t1jbR0dxGZ2XST90P9yXchxt63wBlrBJGi5FFQj3C\n4nCAxMRE0RFsJtWs5fXlOFF7Avur9mP14dXIrchlUTjYidoTeGfPOxe/jt0Ti/EJ43FT9E3oH9wf\nfVR94OfjJzBh56T6M9sZd8pqD4dMOeIMW7dudZu7qqj7WttacaruFI7XHMf2U9ux8uBKVFmqRMfy\nWgE+ARgVOwoTEicgXhOPvuq+vD7i4XJzc5GWltajdXnEQS5jabXgeM1xFJuKkX0kGxuPbURTW5Po\nWITzF96/Lv4aXxd/DRlk0Efo8ejgRzE4dDDiguOg7aUVHZEkhMVBTtXa3ooTtSdw+OxhfHLgE2w+\nsRntVj7YKWVWWLGnYg/2VOwBAAzUDUR6ajqui7gOcZo4BPoFCk5IorE4yClO155GsbkYXxV9hc8P\nfc4jCzd2yHgIM7+dCRlkuCXmFvxuyO8wKGQQYoNjJXlNhJyPxUEOY24y44jxCLae3Ip/7PuHJJ7G\nJsexworvTn+H705/Bz+5H+4bcB8mD5qMQbpBiFLxvTrehMVBdjtecxz7q/Zj4Z6FyK3o+TQG5D5a\n2luw+shqrD6yGhGBEZg1fBZuib4F8Zp4+Pv6i45HTsbioB5paG5AsbkYW45vQebeTNScqxEdiQSp\naKzAn3b8CT4yH0xKmoSHr3kYA3UDERrY+Tx05P5YHNQtZxrOoLC6EEvzl2LD8Q2i45CEtFnbsOrQ\nKqw6tAoJmgQYrjdgaMRQxGniIJPJRMcjB2JxkE1O151GTnkOXvv+NRyvPS46DklckbkIT216CkF+\nQTAMN2BU7CgkaBPgI/cRHY0cgMVBXTpmPobdpbvx+g+vo6KxQnQccjP1LfV49ftX8eaPb2Ja6jSM\nTxyPJG0SFL4K0dHIDiwO6qDd2o5iUzG+PfEt/vrjX1HbXCs6Erm55rZmZOzJwDu57+CxwY/h0cGP\nIkmXxGdC3BSLgy6yWq04YjqCtUVrkbEnA5ZWi+hI5GHare34sOBDfFjwIe4bcB+m66djcMhg9PLr\nJToadQOLgwAAJeYSbDy2Ea//8DoaWxtFxyEvcGGKk4cHPYwnU5/EQN1APlDoJlgcXu503WnsPLUT\nc3bNganJJDoOeaFPD36KlYdW4mn905g8cDKSdEm8C0vi5KIDkBiVDZVYV7wOd39xN57e8jRLg4Rq\ns7Zh4Z6FuGPlHcjMzUSJuUR0JOoCi8PL1DfXY+epnRj/1Xg8/q/HUVpfKjoS0UVNbU2Yu3su7lh5\nB5YfWI4z9WdER6JO8FSVl7BarSg8W4h3ct7BF0e+EB2HqEu1zbX4w9Y/IEmXhPm3zUdqeCqUCqXo\nWPQfPOLwAqV1pViybwnuXHUnS4PcymHjYYzJHoPZO2fj0NlDkOh757wOi8OD1TXXYfvJ7RibPRZ/\n2vEnTm1Obmt54XKMXDUSHxV8hPL6ctFxvB6Lw0MVVhfi2W+fxYSvJuBYzTHRcYjs1tjaiGe3PYtx\nX47D7tO70djC28ZFYXF4GKPFiFUHV+Guz+/CmiNrRMchcrgiUxHGZI/BG/9+A8drjouO45VYHB6k\nsLoQT216Cumb0/kQH3m89/a+hzFrxmDnqZ08+nAxFocHuPQoY8uJLaLjELlMaX0pxn05jkcfLsbi\ncHM8yiDi0YersTjcVM25Gqw5vIZHGUT/ceHo468//hWnak+JjuPRWBxu6HjNccz5bg6e2PgEjzKI\nfiEzNxOT105GfmU+n/twEhaHG2lrb0POmRxM+GoClhcuFx2HSLIOGQ/h7i/uxpoja1BzrkZ0HI/D\n4nATxiYjPi38FPesvocXAYls0NTWhCc3PomXd73M/2ccjMXhBkrMJXhu23N45ttn0NreKjoOkVv5\n5MAnmPDVBOScyUFbe5voOB6BxSFh7dZ2/Fz+M8auGYuvir4SHYfIbR2vOY57V9+LVYdWoaaJp67s\nxeKQqIbmBnxd9DVGrxmNsoYy0XGI3F5Lewue3vI03vrxLc53ZSeHTKteW1uLF198Ec8//zxiYmI6\nXSYrKwv5+flQKv87NbLBYLji8t6ssrESH+z7APN+mic6CpHHWZy/GAVnC/D27W9jgHaA6Dhuye7i\nWLt2LdatW4f6+voul5PJZJg4cSJGjRpl75Ae7XjNcbz03Uv4V8m/REch8li7Tu/CuOxx+Ojej6CP\n0PNVtd1k96mqsWPHYsmSJdDpdFddlvdUd21/1X7c/9X9LA0iFyhrKMOYNWOwvmQ9LK0W0XHcikuv\ncWRnZ2PmzJl45ZVXUFBQ4MqhJa2lrQXbTm7D6DWjcbTmqOg4RF6jqa0Jj3zzCJbkL8FZy1nRcdyG\ny14dO3XqVCgUCgBAQUEBFixYgKysLAQGBroqgiQ1tjTim5JvkL4pHe3WdtFxiLzSK7tfwTHzMfzx\nV39Eb2Vv0XEkz2VHHBdKAwCSk5Oh0WhQWVnpquElqaapBh8XfIzfb/w9S4NIsI8OfATDtwbOc2UD\nhxbHpdcwTCYTzGbzxa9zc3PR3n7+l2NhYSEsFguioqIcObxbqW6sxsLchXjhuxdERyGi/9hwbAP+\nd/3/4qiJp4y7Yvepqg0bNmDHjh0wm83IyMhAXFwcpk+fjhUrVgAApk2bBgDYvn07li5dCoVCAZVK\nBYPBcNlRiDcpry/H6z+8js8OfiY6ChH9Qk5FDh5c+yA+Hv0xBoUMEh1HkmRWid7qtHXrVuj1etEx\nHO5k7UkYthmw9cRW0VGIqAthvcKwcuxKXBdxnegoTpGbm4u0tLQercsnx13oqOkofvuv37I0iNxA\nlaUK92Xfh+9Lv+ejBL/A4nCRYlMxHvnmEeRV5omOQkQ2qm+px6SvJmF36W6WxyVYHC5QZCzCw/98\nGIeNh0VHIaJuamprwv1f34+dp3fy7sf/YHE4WZGxCP+z7n9QZCoSHYWIeuhc2zlMXjsZO07t4JEH\nWBxOdaE0+DQ4kftrbmvGQ+sews7TO72+PFgcTlJsKsaj/3qUpUHkQZrbmvHg2gex6/Qury4PFocT\nlJhL8Pg3j+OI8YjoKETkYBdOW/1Q9oPoKMKwOBzsZO1JpG9Kx0HjQdFRiMhJmtqa8NC6h5BX4Z13\nSbI4HOhM/Rm8uPNF/HzmZ9FRiMjJ6prrMHntZBw8631/SWRxOMhZy1nM+2kevin5RnQUInKRKksV\nHvvnY143txWLwwFqz9ViSf4SfFjwoegoRORiR2uOIn1TOk7WnhQdxWVYHHZqam3C6sOr+X5wIi+W\nU5GDP+34E8obykVHcQkWhx3a2tuw4dgGPLf9OdFRiEiwDcc2YN6/53nFmwRZHHb4sfxHPLnxSdEx\niEgiPjrwET4t/NTj32HO4uihg2cP4tFvHkVre6voKEQkIa/sfgXbTmzz6AcEWRw9cKr2FJ7a+BRM\nTSbRUYhIgqZumIq9FXtFx3AaFkc3nbWcxes/vI791ftFRyEiiWpqa8Jj3zyGYlOx6ChOweLohqbW\nJqw4uAKfH/5cdBQikriyhjI8u+1ZlNd73p1WLI5u2H5yO17e9bLoGETkJnad3oV397yLmqYa0VEc\nisVho/zKfPzvhv8VHYOI3Mzi/MX4Z8k/0dbeJjqKw7A4bHCy9iSe3PCkx99iR0TO8ey3z2Jvpedc\nLGdxXEVdcx0yczNRZOYb/IioZ1raW/DkxidxvOa46CgOweK4im9PfIul+5aKjkFEbu54zXG8/fPb\nqDnn/tc7WBxd2F+1H9M3Txcdg4g8xPLC5dh0fJPbPxzI4riC0rpSzNg8A42tjaKjEJEH+cOWPyC/\nKl90DLuwODrR0NyAJflLsK96n+goRORhzrWdQ/qmdJyqPSU6So+xODrxQ9kPeCf3HdExiMhDHTYe\nxt/z/47GFvc8o8Hi+IViUzHSN6eLjkFEHu69ve8h50yO6Bg9wuK4RH1zPd7d865XzKdPROKlb0p3\ny1t0WRyX+KH0B3xS+InoGETkJcobyrEkf4nbnbJicfzHUdNRTNsyTXQMIvIyi/IWud0pKxYHzj8d\n/s6ed3iKioiEcLdTViwO8BQVEYnlbqesvL44SswlmL6FT4cTkViL8hYhtyJXdAybOKQ4amtrMWPG\nDJw+ffqKy5SWluKll17CzJkzMWfOHJSVlTliaLs0tzbjs8LPeIqKiCTB8K0BZfXifzdejd3FsXbt\nWhgMBlRXV3e53Pz58/HAAw9g4cKFGD9+PDIzM+0d2m4F1QXI2JMhOgYREQCgyFyEjcc2Sn4uK7uL\nY+zYsViyZAl0Ot0Vl6mqqoLFYkFKSgoAQK/Xo7q6Gmaz2d7he+ys5Szm7p6Ldmu7sAxERL8057s5\nOGQ8JDpGl1xyjcNoNEKlUl32WXBwMIxGoyuG79Tu0t3YXbpb2PhERJ1pbG1EVm4WGpobREe5Ipdd\nHJfLOw7V2trqquEvU2IugWGbQcjYRERX89nBzyT9xkCXFIdWq+1wWspsNnd5estZWtpasPLgSl4Q\nJyJJM2wzoLy+XHSMTjm0OC69oGMymS6WRXh4OJRKJfLy8gAAOTk5UKvVCA0NdeTwNimoLsDbOW+7\nfFwiou4oMhVhy/EtomN0ytfeDWzYsAE7duyA2WxGRkYG4uLiMH36dKxYsQIAMG3a+Wk8DAYDFi9e\njGXLlkGtVsNgcP2porrmOmTkZPCCOBG5hTm75uCm6JsQr40XHeUyMqtE7/vaunUr9Hq9Q7f5Q+kP\nuHfNvQ7dJhGRM829aS5mDJ0BucyxVxZyc3ORlpbWo3W95slxU5MJf/nhL6JjEBF1y1s/voXDZw+L\njnEZrymOvRV78UPZD6JjEBF1S1NbE1YeWomWthbRUS7yiuKoaKjAS9+9JDoGEVGPvLf3PRw8e1B0\njIu8ojh+LP9R8k9iEhFdSZu1De/nvw9Li0V0FABeUByn607jhZ0viI5BRGSXzw5+hgNnD4iOAcAL\niuPfZf92i9kmiYiu5t0970piKhKPLo7y+nK8uvtV0TGIiBxi3dF1OGwUf4eVRxfH3oq9KK0vFR2D\niMhhPj7wMc61nhOawWOLo7qxms9tEJHHWV64HEdMR4Rm8Nji2Fe1j3dSEZHHabe2Y82RNWhtFzO7\nOOChxWFuMmPeT/NExyAicorFeYtRZCoSNr5HFkfh2UL8VP6T6BhERE7R3NaMDSUbhL1i1uOKo6G5\nAVm5WaJjEBE51ds5b+Oo+aiQsT2uOIpMRVh/bL3oGERETtXQ0oCcMzlCxva44th8fLPoCERELrHg\npwWoaqxy+bgeVRzHa44jc2+m6BhERC5xtOYoDp11/d2jHlUc+yr3oa65TnQMIiKXWV643OUPBHpM\ncZiaTMjYkyE6BhGRS2UfyUaxudilY3pMcRw2HkZeZZ7oGERELtVmbcOu07tcOqZHFEdreyuyj2SL\njkFEJMT/5fwfTteddtl4HlEcx8zH8PGBj0XHICISorKx0qUXyT2iOArPFqK5rVl0DCIiYVYeWonm\nVtf8HnT74mhsacQH+z8QHYOISKh1xetwrPaYS8Zy++I4aj7q8gtDRERS09Le4rLTVW5fHHkVebBC\nzERfRERSsnTfUtQ31zt9HLcuDqPFiPf2vic6BhGRJOwu3Y1jNc4/XeXWxVFiLsFhk/j37xIRScXe\nir1OH8Oti2NXKa9tEBFd6r2978FoMTp1DLctjoqGCizJXyI6BhGRpBwxHUFJTYlTx3Db4jhZexLl\nDeWiYxARSc6B6gNO3b7bFse+qn2iIxARSdLHBR+j7pzzZgp3y+KoPVfLKUaIiK5gb+VenKo75bTt\nu2VxnKw9if1V+0XHICKSrCJTkdO27ZbF4cwdQkTkCdYcWeO0uavcrjia25rxxeEvRMcgIpK0zcc3\nO+10la8jNlJaWopFixahrq4OarUa6enpiIqK6rBcVlYW8vPzoVQqL35mMBgQExNj81inak/h25Pf\nOiI2EZHHOtd2DidqTyBeG+/wbTukOObPn48pU6YgJSUFubm5yMzMxBtvvNFhOZlMhokTJ2LUqFE9\nHut47XFOoU5EZIOdp3fijn53OHy7dp+qqqqqgsViQUpKCgBAr9ejuroaZrO50+WtVvsmJHTF4/RE\nRJ7g66KvcdZy1uHbtfuIw2g0QqVSXfZZcHAwjEYjNBpNh+Wzs7Oxfv16aLVaTJo0CcnJyTaPVXOu\nBl8e+dLeyEREXuFE7QmU15cjpFeIQ7frkFNVcnnHA5fW1tYOn02dOhUKhQIAUFBQgAULFiArKwuB\ngYE2jVNeX46DxoP2hSUi8iKn604jOcz2v6Dbwu5TVVqttsNpKbPZDJ1O12HZC6UBAMnJydBoNKis\nrLR5LFe+jJ2IyBN8X/q9w7dpd3GEh4dDqVQiLy8PAJCTkwO1Wo3Q0FCYTKbLSiU3Nxft7e0AgMLC\nQlgslk7vvrqS3Ipce+MSEXmVr4u/xtlGx17ncMipKoPBgMWLF2PZsmVQq9UwGAwAgBUrVgAApk2b\nBgDYvn07li5dCoVCAZVKBYPBcNlRSFdqmmrwZRGvbxARdcepulMoayhDSKDjrnPIrPbe5uQkW7du\nhV6vv/j1wbMHcfOnNwtMRETknj4d/Snujrv7ss9yc3ORlpbWo+25zZPjpXWloiMQEbmlH0p/cOj2\n3KY4SszOfTEJEZGn2npiK+qaHTfNulsUR2tbKzaf2Cw6BhGRWzpiOoKqxiqHbc8tiqOysRI5Z3JE\nxyAicktt1jZUNFY4bHtuURxVlirUnKsRHYOIyG1VNtj+zNzVuEVxVDY67g9MROSNfj7zs8O25RbF\nccx8THQEIiK3tu3kNoddIJd8cbS2tWLLiS2iYxARubUjRsddIJd8cVRZqnhhnIjITm3WNoed9pd8\ncZiaTDCf6/zdHkREZDtHvZtD8sVhbDKKjkBE5BFK6x0zA4fki8PUZBIdgYjII+SUO+a0v+SLg+/g\nICJyjP3V+x3yTJzki4MXxomIHONYzTHUNHl4cZibzNhftV90DCIij9Dc1gzTOftP/0u6OGrO1eBE\n7QnRMYiIPIYjrhtLujjM58xoaW8RHYOIyGN4fHFwYkMiIsc6WXfS7m1Iujgc+eIRIiICjpqO2r0N\nSRdHfUu96AhERB7lqPkoWtta7dqGpIujrK5MdAQiIo9S3lCO2uZau7Yh6eI4arb/kIqIiP6roqEC\nja2Ndm1D0sVRbCoWHYGIyKNYWi1obPHg4jjTeEZ0BCIij2Pv9WNJF0dFg+Nerk5EROc1NDfYtb6k\ni+Nc2znREYiIPE5DiwcXBxEROZ69fylncRAReZnmtma71mdxEBF5maa2JrvWZ3EQEXkZc5PZrvVZ\nHEREXsbYZLRrfRYHEZGXsXdqdRYHEZGXOWs5a9f6LA4iIi9ztsm+4vB1RIjS0lIsWrQIdXV1UKvV\nSE9PR1RUVI+XIyIi5znXKoHnOObPn48HHngACxcuxPjx45GZmWnXckRE5Dzt1na71re7OKqqqmCx\nWJCSkgIA0Ov1qK6uhtls7tFyRETkXG3WNrvWt7s4jEYjVCrVZZ8FBwfDaDT2aDkiInIu4UccACCX\nd9xMa2vHVxPauhwRETmPFVa71re7OLRabYfTTWazGTqdrkfLERGRc8ll9v3qt7s4wsPDoVQqkZeX\nBwDIycmBWq1GaGgoTCbTxbLoajkiInIde4vDIbfjGgwGLF68GMuWLYNarYbBYAAArFixAgAwbdq0\nLpcjIiLXkdt5zCCzWq32nexykq1bt2LkrpGiYxAReRx9hB7zEuYhLS2tR+vzyXEiIi+j9FPatT6L\ng4jIy4QEhNi1PouDiMjLhPRicRARUTfoAux7DILFQUTkZYIDgu1an8VBRORlgv1ZHERE1A0BPgF2\nrc/iICLyMn4+fnatz+IgIvIyHn3EoVKorr4QERF1S5AiyK71JV0cEYERoiMQEXkcj35yPCqI7yMn\nInI0jz7iSNQmio5ARORR1Ao1evn2smsbki6OOE2c6AhERB6ld1Bvzz5VFRYYJjoCEZFHiQqKglqh\ntmsbki4Oe8/DERHR5RK0CZDJZHZtQ9rF4cfiICJypHhNvN3bkHRxaAO0oiMQEXmUSGWk3duQdHEE\n+wfbfRGHiIj+y94p1QGJF4c2QMs7q4iIHMgRZ3IkXRyBfoHQh+tFxyAi8ggqhcruKdUBiRcHAKRG\npIqOQETkEeI18Z5/xAEA4YHhoiMQEXkEfYQegX6Bdm9H8sXhiAs5REQEpIY75gwOi4OIyEs4ajYO\nyReHNkCL6KBo0TGIiNye1xRHaGAoboq+SXQMIiK3FugbiLBeXlIcAHBrn1tFRyAicmspYSnec8QB\ngKeqiIjsNLL/SAT42veu8QvcojgilHyFLBGRPQaFDHLYttyiOEJ7hfKog4jIDo78C7h7FAcvkBMR\n9ZgjL4wDblIcAC+QExH1lCMvjANuVBx9VH1ERyAickuj4kY57MI4APjas3JpaSkWLVqEuro6qNVq\npKenIyoqqtNls7KykJ+fD6Xyv+/XMBgMiImJsWmsaFU0/OR+aGlvsScyEZHXGRI6xKHbs6s45s+f\njylTpiAlJQW5ubnIzMzEG2+80emyMpkMEydOxKhRo3o0VlRQFIZHDsf3Zd/bE5mIyKvIZXLEqGz7\nC7rN2+zpilVVVbBYLEhJSQEA6PV6VFdXw2w2X3Edq9Xa0+EQ4BuAcYnjerw+EZE3Sg5NRlRQ52eC\neqrHRxxGoxEqleqyz4KDg2E0GqHRaDpdJzs7G+vXr4dWq8WkSZOQnJzcrTEH6gb2NC4RkVeamDgR\nQYogh26zy+LIyMhASUlJh89DQkLw0EMPQS7veMDS2tra6bamTp0KhUIBACgoKMCCBQuQlZWFwEDb\n54aPCoqCwkeB5rZmm9chIvJmyWHd+wu6LbosjmeeeeaK36usrOxwWspsNkOn63wa9AulAQDJycnQ\naDSorKxE//79bQ4bFRSF6yOvx67SXTavQ0TkreQyOWKCHHt9A7DjGkd4eDiUSiXy8vIAADk5OVCr\n1QgNDQUAmEymy4olNzcX7e3tAIDCwkJYLJYr3oF1JQG+ARifOL6nkYmIvMq1Ydc6/PoGYOddVQaD\nAYsXL8ayZcugVqthMBgufm/FihUAgGnTpgEAtm/fjqVLl0KhUEClUsFgMFx2FGKrRF2iPZGJiLzG\nxKSJUCqUV1+wm+wqjujoaPz5z3/u9HsXCuOCZ5991p6hLuqn7odg/2DUnKtxyPaIiDyVo14V+0tu\n8+T4BdFB0ZiYOFF0DCIiSdMF6NBP3c8p23a74pDJZBgV27OHCImIvMX9SfcjWuWcWcXdrjgAIDY4\nFn5yP9ExiIgka2T/kU7btlsWRx91H9ze93bRMYiIJEnho0D/4P5O275bFoe/jz/uT7pfdAwiIkka\n2W8k+gQ5b0ZxtywOgLflEhFdyf1J90Ph2/3HHWzltsXRV90XKWEpomMQEUmKDDIkaBOcOobbFkew\nfzCevPZJ0TGIiCTltr63OfX6BuDGxQGcf7hFBpnoGEREkjEleQoC/WyfPLYn3Lo4+gf3xx197xAd\ng4hIEvx9/JEUkuT0cdy6OAL9AvF48uOiYxARScL4hPGIVcc6fRy3Lg4AGBgyEP4+/qJjEBEJNylp\nEnx97JqC0CZuXxz9g/tjUuIk0TGIiIQK9g/GAO0Al4zl9sXhK/fFhKQJomMQEQk1JXkK+qr7umQs\nty8OAEjQJCCkV4joGEREwtwVe5fLxvKI4ohRx2DW0FmiYxARCTEkdAgSta6bTcMjigMARvQZAbnM\nY/44RESFVaFVAAAXf0lEQVQ2mzVsFnS9dC4bz2N+0w7QDsDYAWNFxyAicimVQoWUcNdOv+QxxRHg\nG8BnOojI60xLnYbYYOc/u3EpjykOABikG4T+6v6iYxARucxdsXdBJnPt1EseVRzhynA8d/1zomMQ\nEbnEHX3vEPKKCY8qDgAYFjmMT5ITkVf4fervofRTunxcjyuOeE08fn/t70XHICJyquigaCSHJgsZ\n2+OKw0fugwlJE3hrLhF5tJdvfhm9g3oLGdsjf7smaZPw8DUPi45BROQUIb1CcEPvG4SN75HF4e/r\nj8cGPyY6BhGRU7x444sum5eqMx5ZHAAwUDcQo+NGi45BRORQKoUKv475tdAMHlscSoUS6fp00TGI\niBzqueHPIV4TLzSDxxYHAFwTcg1ujrpZdAwiIofw9/HHnbF3io7h2cUR7B+M527gA4FE5BmmXzcd\nCZoE0TE8uzgAICUsBTdH86iDiNxbgE8AJiVNgo/cR3QUzy8ObYAWL9z4gugYRER2mf2r2UjSJYmO\nAcALigM4/5KTMQPGiI5BRNQjaoUa98bf6/LJDK/EK4ojSBGEmUNnQgZp7HQiou547ZbXEKeJEx3j\nIruLo7a2FjNmzMDp06e7XK60tBQvvfQSZs6ciTlz5qCsrMzeobvlmpBr8Lshv3PpmERE9opURuL2\nvreLjnEZu4pj7dq1MBgMqK6uvuqy8+fPxwMPPICFCxdi/PjxyMzMtGfobgvwDcDjQx6Hn9zPpeMS\nEdnjjV+/gT7qPqJjXMau4hg7diyWLFkCna7rd91WVVXBYrEgJeX86w31ej2qq6thNpvtGb7bBuoG\nYtawWS4dk4iopwZoBuBX0b8SHaMDl1zjMBqNUKlUl30WHBwMo9HoiuEv8pX7YlLSJAT7B7t0XCKi\nnnjr1rcQqYwUHaMD366+mZGRgZKSkg6fh4SEYO7cud0aSC7v2FGtra3d2oYjDNAOwFu3voWnNj3l\n8rGJiGw1dsBYDI0cKjpGp7osjmeeecYhg2i12g6npcxm81VPcTnLbX1vw3Xh12Fv5V4h4xMRdUXh\no8Bzw5+D2l8tOkqnHHaqymq1Xva1yWS6WBbh4eFQKpXIy8sDAOTk5ECtViM0NNRRw3dLeGA43rz1\nTSFjExFdzcs3vYxrQq8RHeOK7CqODRs2YPbs2TCbzcjIyEBWVtbF761YsQKfffbZxa8NBgPWrFmD\nmTNn4uuvv4bBYLBnaLulhKXwFbNEJDl9VH0wJn6MpN9iKrP+8lBBIrZu3Qq9Xu/UMYpMRRi5aiTq\nmuucOg4Rka2+uO8LpPVLc/o4ubm5SEvr2TjSrTQXSNAm4K1b3xIdg4gIADA6fjSGRw4XHeOqvLo4\nAOCOvndgWMQw0TGIyMsF+ATgj9f/UbIXxC/l9cURrgzH327/G58oJyKh/nbb3zA4dLDoGDbx+uIA\ngOTQZPzl138RHYOIvNSImBEYFTtKMrPfXg2LA4CP3Of8wzYR0nzYhog8V4BPAP7y678gNFDM4wk9\nweL4jwhlBObfPp+nrIjIpdzpFNUFLI5LJIcm4/Vfvy46BhF5iVv73OpWp6guYHFcwkfugzEDxvAu\nKyJyugCfAPz5lj+71SmqC1gcvxChjMDfbv8bAnwCREchIg/29h1vu90pqgtYHJ1ICUvBOyPfER2D\niDzUA0kPuOUpqgtYHJ2QyWS4q/9deGzwY6KjEJGHiQ6KxvM3PA9tgFZ0lB5jcVyB2l+NWcNmITY4\nVnQUIvIQPjIf/OPufyBW496/V1gcXegX3A/vj3qft+gSkUO8detb0Ec4d/JWV2BxXEVqeCrevv1t\n0TGIyM2NjhuN+xLug6+8y/fnuQUWx1X4yH1wT9w9mJgwUXQUInJT4YHhePnmlxHSK0R0FIdgcdhA\n20uLF258AXHBcaKjEJGb8ZX74sO7P8QA7QDRURyGxWGjWE0sPrjnAwT5BYmOQkRuJGtkFob3lv47\nNrqDxdENKWEpWHbPMsjgnvdeE5FrzRo2C3fH3Q0fuY/oKA7F4uimX0f/mm8NJKKrSuuXhievfRJB\nCs87S8Hi6CaFrwITkybi8cGPi45CRBLVT90P826dhwhlhOgoTsHi6AFtgBbPXf8cJ0Mkog6Ufkp8\ndM9Hbv+QX1dYHD0UrYpG5p2ZCOsVJjoKEUmEDDIsu3sZUsJTREdxKhaHHRJ1iVg5diVUCpXoKEQk\nAZl3ZmJEzAjRMZyOxWGn6yKuw2ejP4PCRyE6ChEJ9MrNr2Bs/FgofD3/dwGLwwFujL4RH979IW/T\nJfJS01Kn4bHBj0GpUIqO4hIsDgeQy+RI65eGrDuzREchIhe7P+l+zBw2E5oAjegoLsPicBA/Hz+M\niR+D1255TXQUInKRETEj8PJNLyMs0LtukmFxOJBSocQjgx/B09c9LToKETnZ4JDByEjLQLQqWnQU\nl2NxOJjGX4MZ+hl8QJDIgw3QDMCye5ahf3B/0VGEYHE4QZgyDH/61Z/w8DUPi45CRA4WGxyLT0d/\n6lGz3XYXi8NJIpQReOnGlzB54GTRUYjIQfqq+2LFmBVI0CWIjiIUi8OJIpQRmHvTXJYHkQfop+6H\nVWNXIVGXKDqKcCwOJ4sMisQrN7/C01ZEbiwuOA6rxq5Cki5JdBRJYHG4wIXTVrxgTuR+EjQJWDF2\nBY80LmH3W9Nra2vx4osv4vnnn0dMTMwVl8vKykJ+fj6Uyv8+WWkwGLpcx5NEKCPwwq9egEqhQube\nTNFxiMgGqeGpeH/U+159IbwzdhXH2rVrsW7dOtTX1191WZlMhokTJ2LUqFH2DOnWwpRhePb6Z8+/\nuH73y6LjEFEX7ux3J/52+9/QV91XdBTJsetU1dixY7FkyRLodDqblrdarfYM5xE0/hpMGTIF7935\nHue2IpKoh695GBlpGSyNK7D7VFV3ZGdnY/369dBqtZg0aRKSk5NdObxkKBVKTEycCI2/Br9d/1s0\ntzWLjkRE/zFr2Cykp6YjNDBUdBTJ6rI4MjIyUFJS0uHzkJAQzJ07t1sDTZ06FQrF+emGCwoKsGDB\nAmRlZSEwMLBb2/EUfj5+uCv2LmSPy8aDax9EfcvVT/cRkXO9OeJNPDjwQQQHBIuOImldFsczzzzj\nsIEulAYAJCcnQ6PRoLKyEv3793fYGO5GLpPjpuibsHbCWkxeOxlVlirRkYi8klwmx6K7FuHeuHsR\n6Oedf5ntDofdjvvL6xcmkwlms/ni17m5uWhvbwcAFBYWwmKxICoqylHDu7XUiFSsm7gOQyOGio5C\n5HXUCjW+HPclxg0Yx9KwkV3XODZs2IAdO3bAbDYjIyMDcXFxmD59OgBgxYoVAIBp06YBALZv346l\nS5dCoVBApVLBYDBcdhTi7RJ1iVh2zzIs+GkBPjrwkeg4RF4hSZeEpb9ZisGhg0VHcSsyq0Rvddq6\ndSv0er3oGC5najJhzeE1eH7H87BCkv9piDzCuAHjMPfmuegX3E90FCFyc3ORlpbWo3X55LjEaAO0\neGzwY/j8vs8R5BckOg6RR5pz4xzMu22e15aGvVgcEqTwVSCtXxr+OemfiA2OFR2HyGP4+/jjk3s/\nwe9Tf8/bbe3A4pCwlLAUrL5vNSYkTBAdhcjtxQbH4ptJ3+CeuHt4EdxOLA6Ji9XEYt7t8/Bu2rvw\nk/uJjkPklh4f/Diyx2VDH6GHTMYZG+zl0ifHqWd0ATo8OOhBDAwZiCc2PoHjNcdFRyJyCwE+AXh3\n5Lu4s/+dUPurRcfxGDzicBM+ch8MjRyK7HHZeHTwo6LjEEneQN1ArL9/PSYkTmBpOBiLw830D+6P\n1255De+Peh/+Pv6i4xBJ0lPXPoVVY1fh2vBreWrKCXiqyg0F+wdjYuJEJGgT8Ny257CnYo/oSESS\noPHX4L0738MtMbcgSMHb2Z2FRxxuSiaT4drwa/HJvZ/grVvf4oVz8noPDnwQGx/YiN/E/Yal4WQs\nDjcXGRSJ3w35HTbevxH6CO970p5I46/B8tHL8ddb/4oEbYLoOF6BxeEBfOQ+SI1IxfJ7l/Pog7zK\n5IGTsfH+jbgn7h5eAHchFocH4dEHeQuNvwafjv4Ub936FhJ0PMpwNRaHh7lw9PHp6E+RdWcWVAqV\n6EhEDiODDDP0M7DpgU24O+5uHmUIwruqPFSEMgIPDXoIQyOGYtn+Zfh7/t9FRyKyy/DI4Xh9xOtI\nDk1GgG+A6DhejUccHi5Rl4iXb34Z6yetR2pYqug4RN2mDdDiH7/5Bz4d/SmGRQ5jaUgAi8ML9PLt\nhRuibsDKsSux+K7FUCt4eE/SJ5fJMXPoTGx6YBPGJ47nbLYSwlNVXiRcGY4HBj6A68KvwxeHv0DG\nngy0treKjkXUwV3978L/u/7/ITk0Gf6+nCFBanjE4YUSdAn44w1/xLeTv8XvhvwOMnBKBpKG4ZHD\nsXbCWrw/6n0MjRzK0pAoFoeX8pX7IjksGX/59V+w+YHNGBM/RnQk8mIDNAPw+djP8dmYz3BLzC28\nW0riWBxeLsA3APpIPTLvzMQ3E7/BjVE3io5EXiQiMAL/+M0/sHbiWozsPxIhvUJERyIb8BoHAQBU\nChVujL4Ry0cvR35lPub/NB/fl30vOhZ5qN7K3phz0xzcFH0T+qr7io5D3cTioMtoA7S4re9tSA1P\nxcGzB5G1Nwv/KvmX6FjkIQZoBmDOTXOgj9AjWhUtOg71EIuDOqUJ0ODG6BuREpaCg8aD+LjgY3x2\n8DO0W9tFRyM3dF34dZj9q9lICUtBuDJcdByyE4uDuqRUKDEschiGhA7B1JSpWH14NZbsW4JzbedE\nRyM3kNY3DX8Y9gcMDhkMXS+d6DjkICwOsom/rz9SwlNwTeg1eGTwI8g5k4N5P83DydqToqORxAT5\nBeGp1Kfwm7jfIFGbyHdjeCAWB3WLr9wXibpEJOoSkdYvDYeMh7Bs3zKsO7oOVlhFxyOBrgm5Bobh\nBlwbfi1ig2P5ylYPxuKgHotQRiBCGYHre18Pg8mAHSd3IGNPBoxNRtHRyEX85H54aNBDmDxwMpJ0\nSTwd5SVYHGS3Xr69MCRsCIaEDcF9CfehyFSE1YdXI7soG81tzaLjkRPc0PsGPHHtExgcOhjxwfHw\n9eGvEm/C/9rkUH3UfdBH3QcjYkZg1vBZOHz2MD7Y/wF2nNrBU1luLj44HtP00zA0YijiNHG8duHF\nWBzkFL4+vkjQJiBBm4A7+t2BYzXHkF+Zj8V5i1FQXSA6HtkorFcYpl47Fbf2uRXxwfEICeST3cTi\nIBcI9AvE4NDBGBw6GPfE3YOTdSdxxHgEqw6uwo7TOzhDr8QM1A3Eb5N/i2vDr0VfdV/0DuotOhJJ\nDIuDXEoToIEmQIOUsBSMjh+NU7WncKzmGNaXrMeXRV+itrlWdESv4yv3xa0xt2LyoMlI1CWir6ov\nNAEa0bFIwlgcJEyAbwASdAlI0CVgZP+ReHb4szhZexKHjIfw5ZEv8fOZn9HS3iI6pkdK0CZgXMI4\nDIschv7q/uij7sM365HNWBwOcPjwYSQlJYmOYROpZpXL5BcvrN8cczP+Z9D/oLyhHMVVxTjeeBxf\nFX2FnDM5PK3VQ/GaeIxPGI9hkcMQo4qBT6MPkvpK7+egM1L9me2MO2W1h13FsXDhQhQXF8PX1xdq\ntRpPPPEEYmJiOl22tLQUixYtQl1dHdRqNdLT0xEVFWXP8JJx5MgRt/lhcZesvfx6IU4ThwPfHcCT\nY57EI9c8gvKGcpTWleJk7UlsO7kN/y77N8obykVHlRyVQgV9hB4j+41EgjYBMaoYRCojL3vGYt26\ndW5THO7yMwu4V1Z72FUcN998M2bMmAG5XI5t27bh/fffx2uvvdbpsvPnz8eUKVOQkpKC3NxcZGZm\n4o033rBnePIigX6BiNfEI14TDwB4+JqHUdVYhbOWszjTeAaldaXYfmo7/l32b5TVlwlO6zqXlkS8\nNh6RykiE9gpFeGA4FD4K0fHIQ9lVHMOGDbv477GxscjOzu50uaqqKlgsFqSkpAAA9Ho9Fi9eDLPZ\nDI2GF+Go+2QyGcKV4QhXhmMQBgE4XybVlmoYm4wwWUwwnjOioqECuWdykVeVhxJzCSytFsHJu89H\n5oO+6r4YHDIYw3sPR191X+h66aD110IboEVYYBhLglzKYdc4tmzZAr1e3+n3jEYjVCrVZZ8FBwfD\naDSyOMhhZDIZwgLDEBYYdtnnU4ZMQUNzA0znTDA3mWE+Z0Zdcx0aWhpwpv4MSmpKUGQqQnl9Oc40\nnEFja6PLMvvKfRERGIFIZSRiNbFI0Jw/taRSqBCkCEKwfzC0AVqoFWpoA7Sc/4kkocviyMjIQElJ\nSYfPQ0JCMHfu3Itfb9q0CUVFRXj11VevuC25vONbaltbeaGTXEOpUEKpUCJG1fk1uLb2NtQ216Kx\npRGWVgssrRa0tLWgub0ZzW3/+eeSfz/Xdg6t7a1oa29DO9rR3t6OpqYmKAOV8JX7Qi6Tw9/HHwof\nxfl/5Ir//vslXwf6BSLQNxAqfxX8ffxdvFeIekZmtVrtmgdi7dq1+PHHHzF79mwEBXU+BUFlZSXm\nzJmDv//97xc/e+KJJ/Dmm28iNDS003V27tyJlhbeiklE5Ax+fn4YMWJEj9bt8amq9vZ2fPDBBxdL\nISDg8nvATSYTZDIZNBoNwsPDoVQqkZeXh9TUVOTk5ECtVl+xNAD0+A9ERETO1eMjjsrKSsyYMQOR\nkZGXnYZ6+umnER8fj/feew8AMG3aNADnb8ddvHgxamtrPe52XCIib2L3qSoiIvIuHa9YExERdYHF\nQURE3SKpuapqa2vx4osv4vnnn7/i1CWA+OlLujN+VlYW8vPzoVQqL35mMBi6/PO5Kp/o/didDCL2\nY2ds+RmVwn4FbMsqlf1q6/RFUti3tmaVwr5dtGgRDh06BJlMBj8/Pzz++ONITk7usFy396tVIr7+\n+mvr1KlTrQ8++KD11KlTXS77zDPPWPPz861Wq9W6Z88e6+zZs10RsUfjZ2VlWTds2OCqaFar1fZ8\novdjdzKI2I+/ZOvPqBT2q61ZpbBfrVar9eeff7a2tbVZrVar9dtvv7XOmTOn0+WksG9tzSqFfbtv\n376LWffs2WOdNWtWp8t1d79K5lTV2LFjsWTJEuh0Xb/svrPpS6qrq2E2m10Rs0fjW114/4Gt+UTv\nx55kcOV+7IwtP6NS2K+A7f8/AeL3K3B++qILd2fGxsbCZDJ1WEYq+9aWrBeI3rdDhgyBXC6H1WpF\nWVkZYmNjOyzTk/0qqVNVthA9fUlPxs/Ozsb69euh1WoxadKkTg8VXZ1P9H7sSQZX7seeksJ+7S6p\n7dcrTV8kxX3b1VRLgDT27aFDh7BgwQJoNBrMnj27w/d7sl9dVhy2Tl9iC2dPX9JV1oceeqhb40+d\nOhUKxfkJ6AoKCrBgwQJkZWUhMDDQYXl/ydZ8UpgGxtYMIvZjT0lhv9pKavv1atMXSWnfXi2rVPbt\nwIEDsWTJEuTl5eHVV1/FwoULOyzT3f3qsuJ45plnHLIdrVbb4RDKbDbbdEhuq66yVlZWdmv8Cz84\nAJCcnAyNRoPKykr079/fIVl/ydb944r9eDXdyeDq/dhTUtiv3SGl/Xph+qLOZqIApLVvr5YVkNa+\nBYDU1FScPXsW9fX1l00P1ZP9KplrHJf65XlBk8l08Q926fQlAGyavsSRrjb+pVkBIDc3F+3t7QCA\nwsJCWCwWp94F0lU+Ke3H7mQFXL8fr+bSn1Gp7ddfulJWQBr7tb29HUuXLkVBQQHmzJlz2S81qe1b\nW7MC4vdtfX09cnJyLv73//777xEaGoqgoCC796tknhzfsGEDduzYgZMnTyIyMhJxcXGYPn06AEhu\n+pKuxv9l1rfffhvFxcVQKBRQqVR47LHHkJCQICSf1PZjd7KK2I+/dKWfUSnuV1uzSmG/Xmn6ounT\np2PTpk2X5RW9b7uTVfS+ra+vR0ZGBsrKyuDv7w+dTocpU6YgJibG7p9ZyRQHERG5B0meqiIiIuli\ncRARUbewOIiIqFtYHERE1C0sDiIi6hYWBxERdQuLg4iIuoXFQURE3fL/AR8SQcFGS9m7AAAAAElF\nTkSuQmCC\n",
"text/plain": [
""
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c2 = AnotherCircle(radius=2, center=(1,0), color='g')\n",
"c2"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAF8CAYAAADYXlxuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1HXiP/DXDDAgwwwzwyngAQhoItGotR1rB5ZbqXmV\n9e1a92ttaK7Z9NvWyqx2q83VvliQbrrZYamlVLqtdx5pbYUIiniAeAJyODOcg1zz+8PV1UAcmOP9\nmZnX8/Ho8Yjh8/m8X34iXn6u90dmtVqtICIispFcdAAiInIvLA4iIuoWFgcREXULi4OIiLqFxUFE\nRN3C4iAiom7xdcRGFi5ciOLiYvj6+kKtVuOJJ55ATExMh+VKS0uxaNEi1NXVQa1WIz09HVFRUY6I\nQERELiJzxHMcOTk50Ov1kMvl2LZtG7Zt24bXXnutw3KzZs3ClClTkJKSgtzcXKxevRpvvPGGvcMT\nEZELOeRU1bBhwyCXn99UbGwsTCZTh2WqqqpgsViQkpICANDr9aiurobZbHZEBCIichGHX+PYsmUL\n9Hp9h8+NRiNUKtVlnwUHB8NoNDo6AhEROZFDi2PTpk0oKirCQw891Plg8o7Dtba2OjICERE5mUMu\njgPA2rVr8eOPP2LOnDkICAjo8H2tVtvhtJTZbIZOp+t0e9u2bUN7e7uj4hER0SX8/PwwYsSIHq1r\nd3G0t7fjgw8+QGVlZYfSMJlMkMlk0Gg0CA8Ph1KpRF5eHlJTU5GTkwO1Wo3Q0NArbrezU15StG7d\nOowZM0Z0DJu4U1bA/rxNrU0wNhlRe64WpiYTjE1GVDZW4qj5KIpNxThVdwoVDRUwNok/ZRrkF4QI\nZQR6K3sjQZuAeG08eit7Q9dLB12ADsH+wdD4a6D2V9s9ljv9HDCrc+Tm5vZ4XbuLo7q6Gps3b0Zk\nZCRmz5598fPp06dj06ZNAIBp06YBAAwGAxYvXoxly5ZBrVbDYDDYOzwRAKC5rRmVjZWobqxGlaUK\n1Y3V2F+9H3vO7EGRqQjmc9K/CaO+pR715nocNR/FrtJdHb4f4BOA2OBYpISnYGjEUPQO6o3QXqEI\nDwxHWGAYghRBAlKTN7K7OMLDw7Fq1apOvzdgwIDLvo6Ojsaf//xne4ckL3ehJKoaq1DRUIEiUxE2\nn9iMvIo81LfUi47nNE1tTThoPIiDxoNYdei//8/5yn2RpEvCHX3vwHUR16G3sjfLhJzKYdc4iJzB\nz88PjS2NKKsvw+m60yg8W4gNxzZ4fEl0R2t7Kw5UH8CB6gMXP7tQJnf2uxPDew9HH1UfRAVFQder\n82uKRN3B4iDJuVAUpXWlOBh8EAuyFyCvMg9t1jbR0dxGZ2XST90P9yXchxt63wBlrBJGi5FFQj3C\n4nCAxMRE0RFsJtWs5fXlOFF7Avur9mP14dXIrchlUTjYidoTeGfPOxe/jt0Ti/EJ43FT9E3oH9wf\nfVR94OfjJzBh56T6M9sZd8pqD4dMOeIMW7dudZu7qqj7WttacaruFI7XHMf2U9ux8uBKVFmqRMfy\nWgE+ARgVOwoTEicgXhOPvuq+vD7i4XJzc5GWltajdXnEQS5jabXgeM1xFJuKkX0kGxuPbURTW5Po\nWITzF96/Lv4aXxd/DRlk0Efo8ejgRzE4dDDiguOg7aUVHZEkhMVBTtXa3ooTtSdw+OxhfHLgE2w+\nsRntVj7YKWVWWLGnYg/2VOwBAAzUDUR6ajqui7gOcZo4BPoFCk5IorE4yClO155GsbkYXxV9hc8P\nfc4jCzd2yHgIM7+dCRlkuCXmFvxuyO8wKGQQYoNjJXlNhJyPxUEOY24y44jxCLae3Ip/7PuHJJ7G\nJsexworvTn+H705/Bz+5H+4bcB8mD5qMQbpBiFLxvTrehMVBdjtecxz7q/Zj4Z6FyK3o+TQG5D5a\n2luw+shqrD6yGhGBEZg1fBZuib4F8Zp4+Pv6i45HTsbioB5paG5AsbkYW45vQebeTNScqxEdiQSp\naKzAn3b8CT4yH0xKmoSHr3kYA3UDERrY+Tx05P5YHNQtZxrOoLC6EEvzl2LD8Q2i45CEtFnbsOrQ\nKqw6tAoJmgQYrjdgaMRQxGniIJPJRMcjB2JxkE1O151GTnkOXvv+NRyvPS46DklckbkIT216CkF+\nQTAMN2BU7CgkaBPgI/cRHY0cgMVBXTpmPobdpbvx+g+vo6KxQnQccjP1LfV49ftX8eaPb2Ja6jSM\nTxyPJG0SFL4K0dHIDiwO6qDd2o5iUzG+PfEt/vrjX1HbXCs6Erm55rZmZOzJwDu57+CxwY/h0cGP\nIkmXxGdC3BSLgy6yWq04YjqCtUVrkbEnA5ZWi+hI5GHare34sOBDfFjwIe4bcB+m66djcMhg9PLr\nJToadQOLgwAAJeYSbDy2Ea//8DoaWxtFxyEvcGGKk4cHPYwnU5/EQN1APlDoJlgcXu503WnsPLUT\nc3bNganJJDoOeaFPD36KlYdW4mn905g8cDKSdEm8C0vi5KIDkBiVDZVYV7wOd39xN57e8jRLg4Rq\ns7Zh4Z6FuGPlHcjMzUSJuUR0JOoCi8PL1DfXY+epnRj/1Xg8/q/HUVpfKjoS0UVNbU2Yu3su7lh5\nB5YfWI4z9WdER6JO8FSVl7BarSg8W4h3ct7BF0e+EB2HqEu1zbX4w9Y/IEmXhPm3zUdqeCqUCqXo\nWPQfPOLwAqV1pViybwnuXHUnS4PcymHjYYzJHoPZO2fj0NlDkOh757wOi8OD1TXXYfvJ7RibPRZ/\n2vEnTm1Obmt54XKMXDUSHxV8hPL6ctFxvB6Lw0MVVhfi2W+fxYSvJuBYzTHRcYjs1tjaiGe3PYtx\nX47D7tO70djC28ZFYXF4GKPFiFUHV+Guz+/CmiNrRMchcrgiUxHGZI/BG/9+A8drjouO45VYHB6k\nsLoQT216Cumb0/kQH3m89/a+hzFrxmDnqZ08+nAxFocHuPQoY8uJLaLjELlMaX0pxn05jkcfLsbi\ncHM8yiDi0YersTjcVM25Gqw5vIZHGUT/ceHo468//hWnak+JjuPRWBxu6HjNccz5bg6e2PgEjzKI\nfiEzNxOT105GfmU+n/twEhaHG2lrb0POmRxM+GoClhcuFx2HSLIOGQ/h7i/uxpoja1BzrkZ0HI/D\n4nATxiYjPi38FPesvocXAYls0NTWhCc3PomXd73M/2ccjMXhBkrMJXhu23N45ttn0NreKjoOkVv5\n5MAnmPDVBOScyUFbe5voOB6BxSFh7dZ2/Fz+M8auGYuvir4SHYfIbR2vOY57V9+LVYdWoaaJp67s\nxeKQqIbmBnxd9DVGrxmNsoYy0XGI3F5Lewue3vI03vrxLc53ZSeHTKteW1uLF198Ec8//zxiYmI6\nXSYrKwv5+flQKv87NbLBYLji8t6ssrESH+z7APN+mic6CpHHWZy/GAVnC/D27W9jgHaA6Dhuye7i\nWLt2LdatW4f6+voul5PJZJg4cSJGjRpl75Ae7XjNcbz03Uv4V8m/REch8li7Tu/CuOxx+Ojej6CP\n0PNVtd1k96mqsWPHYsmSJdDpdFddlvdUd21/1X7c/9X9LA0iFyhrKMOYNWOwvmQ9LK0W0XHcikuv\ncWRnZ2PmzJl45ZVXUFBQ4MqhJa2lrQXbTm7D6DWjcbTmqOg4RF6jqa0Jj3zzCJbkL8FZy1nRcdyG\ny14dO3XqVCgUCgBAQUEBFixYgKysLAQGBroqgiQ1tjTim5JvkL4pHe3WdtFxiLzSK7tfwTHzMfzx\nV39Eb2Vv0XEkz2VHHBdKAwCSk5Oh0WhQWVnpquElqaapBh8XfIzfb/w9S4NIsI8OfATDtwbOc2UD\nhxbHpdcwTCYTzGbzxa9zc3PR3n7+l2NhYSEsFguioqIcObxbqW6sxsLchXjhuxdERyGi/9hwbAP+\nd/3/4qiJp4y7Yvepqg0bNmDHjh0wm83IyMhAXFwcpk+fjhUrVgAApk2bBgDYvn07li5dCoVCAZVK\nBYPBcNlRiDcpry/H6z+8js8OfiY6ChH9Qk5FDh5c+yA+Hv0xBoUMEh1HkmRWid7qtHXrVuj1etEx\nHO5k7UkYthmw9cRW0VGIqAthvcKwcuxKXBdxnegoTpGbm4u0tLQercsnx13oqOkofvuv37I0iNxA\nlaUK92Xfh+9Lv+ejBL/A4nCRYlMxHvnmEeRV5omOQkQ2qm+px6SvJmF36W6WxyVYHC5QZCzCw/98\nGIeNh0VHIaJuamprwv1f34+dp3fy7sf/YHE4WZGxCP+z7n9QZCoSHYWIeuhc2zlMXjsZO07t4JEH\nWBxOdaE0+DQ4kftrbmvGQ+sews7TO72+PFgcTlJsKsaj/3qUpUHkQZrbmvHg2gex6/Qury4PFocT\nlJhL8Pg3j+OI8YjoKETkYBdOW/1Q9oPoKMKwOBzsZO1JpG9Kx0HjQdFRiMhJmtqa8NC6h5BX4Z13\nSbI4HOhM/Rm8uPNF/HzmZ9FRiMjJ6prrMHntZBw8631/SWRxOMhZy1nM+2kevin5RnQUInKRKksV\nHvvnY143txWLwwFqz9ViSf4SfFjwoegoRORiR2uOIn1TOk7WnhQdxWVYHHZqam3C6sOr+X5wIi+W\nU5GDP+34E8obykVHcQkWhx3a2tuw4dgGPLf9OdFRiEiwDcc2YN6/53nFmwRZHHb4sfxHPLnxSdEx\niEgiPjrwET4t/NTj32HO4uihg2cP4tFvHkVre6voKEQkIa/sfgXbTmzz6AcEWRw9cKr2FJ7a+BRM\nTSbRUYhIgqZumIq9FXtFx3AaFkc3nbWcxes/vI791ftFRyEiiWpqa8Jj3zyGYlOx6ChOweLohqbW\nJqw4uAKfH/5cdBQikriyhjI8u+1ZlNd73p1WLI5u2H5yO17e9bLoGETkJnad3oV397yLmqYa0VEc\nisVho/zKfPzvhv8VHYOI3Mzi/MX4Z8k/0dbeJjqKw7A4bHCy9iSe3PCkx99iR0TO8ey3z2Jvpedc\nLGdxXEVdcx0yczNRZOYb/IioZ1raW/DkxidxvOa46CgOweK4im9PfIul+5aKjkFEbu54zXG8/fPb\nqDnn/tc7WBxd2F+1H9M3Txcdg4g8xPLC5dh0fJPbPxzI4riC0rpSzNg8A42tjaKjEJEH+cOWPyC/\nKl90DLuwODrR0NyAJflLsK96n+goRORhzrWdQ/qmdJyqPSU6So+xODrxQ9kPeCf3HdExiMhDHTYe\nxt/z/47GFvc8o8Hi+IViUzHSN6eLjkFEHu69ve8h50yO6Bg9wuK4RH1zPd7d865XzKdPROKlb0p3\ny1t0WRyX+KH0B3xS+InoGETkJcobyrEkf4nbnbJicfzHUdNRTNsyTXQMIvIyi/IWud0pKxYHzj8d\n/s6ed3iKioiEcLdTViwO8BQVEYnlbqesvL44SswlmL6FT4cTkViL8hYhtyJXdAybOKQ4amtrMWPG\nDJw+ffqKy5SWluKll17CzJkzMWfOHJSVlTliaLs0tzbjs8LPeIqKiCTB8K0BZfXifzdejd3FsXbt\nWhgMBlRXV3e53Pz58/HAAw9g4cKFGD9+PDIzM+0d2m4F1QXI2JMhOgYREQCgyFyEjcc2Sn4uK7uL\nY+zYsViyZAl0Ot0Vl6mqqoLFYkFKSgoAQK/Xo7q6Gmaz2d7he+ys5Szm7p6Ldmu7sAxERL8057s5\nOGQ8JDpGl1xyjcNoNEKlUl32WXBwMIxGoyuG79Tu0t3YXbpb2PhERJ1pbG1EVm4WGpobREe5Ipdd\nHJfLOw7V2trqquEvU2IugWGbQcjYRERX89nBzyT9xkCXFIdWq+1wWspsNnd5estZWtpasPLgSl4Q\nJyJJM2wzoLy+XHSMTjm0OC69oGMymS6WRXh4OJRKJfLy8gAAOTk5UKvVCA0NdeTwNimoLsDbOW+7\nfFwiou4oMhVhy/EtomN0ytfeDWzYsAE7duyA2WxGRkYG4uLiMH36dKxYsQIAMG3a+Wk8DAYDFi9e\njGXLlkGtVsNgcP2porrmOmTkZPCCOBG5hTm75uCm6JsQr40XHeUyMqtE7/vaunUr9Hq9Q7f5Q+kP\nuHfNvQ7dJhGRM829aS5mDJ0BucyxVxZyc3ORlpbWo3W95slxU5MJf/nhL6JjEBF1y1s/voXDZw+L\njnEZrymOvRV78UPZD6JjEBF1S1NbE1YeWomWthbRUS7yiuKoaKjAS9+9JDoGEVGPvLf3PRw8e1B0\njIu8ojh+LP9R8k9iEhFdSZu1De/nvw9Li0V0FABeUByn607jhZ0viI5BRGSXzw5+hgNnD4iOAcAL\niuPfZf92i9kmiYiu5t0970piKhKPLo7y+nK8uvtV0TGIiBxi3dF1OGwUf4eVRxfH3oq9KK0vFR2D\niMhhPj7wMc61nhOawWOLo7qxms9tEJHHWV64HEdMR4Rm8Nji2Fe1j3dSEZHHabe2Y82RNWhtFzO7\nOOChxWFuMmPeT/NExyAicorFeYtRZCoSNr5HFkfh2UL8VP6T6BhERE7R3NaMDSUbhL1i1uOKo6G5\nAVm5WaJjEBE51ds5b+Oo+aiQsT2uOIpMRVh/bL3oGERETtXQ0oCcMzlCxva44th8fLPoCERELrHg\npwWoaqxy+bgeVRzHa44jc2+m6BhERC5xtOYoDp11/d2jHlUc+yr3oa65TnQMIiKXWV643OUPBHpM\ncZiaTMjYkyE6BhGRS2UfyUaxudilY3pMcRw2HkZeZZ7oGERELtVmbcOu07tcOqZHFEdreyuyj2SL\njkFEJMT/5fwfTteddtl4HlEcx8zH8PGBj0XHICISorKx0qUXyT2iOArPFqK5rVl0DCIiYVYeWonm\nVtf8HnT74mhsacQH+z8QHYOISKh1xetwrPaYS8Zy++I4aj7q8gtDRERS09Le4rLTVW5fHHkVebBC\nzERfRERSsnTfUtQ31zt9HLcuDqPFiPf2vic6BhGRJOwu3Y1jNc4/XeXWxVFiLsFhk/j37xIRScXe\nir1OH8Oti2NXKa9tEBFd6r2978FoMTp1DLctjoqGCizJXyI6BhGRpBwxHUFJTYlTx3Db4jhZexLl\nDeWiYxARSc6B6gNO3b7bFse+qn2iIxARSdLHBR+j7pzzZgp3y+KoPVfLKUaIiK5gb+VenKo75bTt\nu2VxnKw9if1V+0XHICKSrCJTkdO27ZbF4cwdQkTkCdYcWeO0uavcrjia25rxxeEvRMcgIpK0zcc3\nO+10la8jNlJaWopFixahrq4OarUa6enpiIqK6rBcVlYW8vPzoVQqL35mMBgQExNj81inak/h25Pf\nOiI2EZHHOtd2DidqTyBeG+/wbTukOObPn48pU6YgJSUFubm5yMzMxBtvvNFhOZlMhokTJ2LUqFE9\nHut47XFOoU5EZIOdp3fijn53OHy7dp+qqqqqgsViQUpKCgBAr9ejuroaZrO50+WtVvsmJHTF4/RE\nRJ7g66KvcdZy1uHbtfuIw2g0QqVSXfZZcHAwjEYjNBpNh+Wzs7Oxfv16aLVaTJo0CcnJyTaPVXOu\nBl8e+dLeyEREXuFE7QmU15cjpFeIQ7frkFNVcnnHA5fW1tYOn02dOhUKhQIAUFBQgAULFiArKwuB\ngYE2jVNeX46DxoP2hSUi8iKn604jOcz2v6Dbwu5TVVqttsNpKbPZDJ1O12HZC6UBAMnJydBoNKis\nrLR5LFe+jJ2IyBN8X/q9w7dpd3GEh4dDqVQiLy8PAJCTkwO1Wo3Q0FCYTKbLSiU3Nxft7e0AgMLC\nQlgslk7vvrqS3Ipce+MSEXmVr4u/xtlGx17ncMipKoPBgMWLF2PZsmVQq9UwGAwAgBUrVgAApk2b\nBgDYvn07li5dCoVCAZVKBYPBcNlRSFdqmmrwZRGvbxARdcepulMoayhDSKDjrnPIrPbe5uQkW7du\nhV6vv/j1wbMHcfOnNwtMRETknj4d/Snujrv7ss9yc3ORlpbWo+25zZPjpXWloiMQEbmlH0p/cOj2\n3KY4SszOfTEJEZGn2npiK+qaHTfNulsUR2tbKzaf2Cw6BhGRWzpiOoKqxiqHbc8tiqOysRI5Z3JE\nxyAicktt1jZUNFY4bHtuURxVlirUnKsRHYOIyG1VNtj+zNzVuEVxVDY67g9MROSNfj7zs8O25RbF\nccx8THQEIiK3tu3kNoddIJd8cbS2tWLLiS2iYxARubUjRsddIJd8cVRZqnhhnIjITm3WNoed9pd8\ncZiaTDCf6/zdHkREZDtHvZtD8sVhbDKKjkBE5BFK6x0zA4fki8PUZBIdgYjII+SUO+a0v+SLg+/g\nICJyjP3V+x3yTJzki4MXxomIHONYzTHUNHl4cZibzNhftV90DCIij9Dc1gzTOftP/0u6OGrO1eBE\n7QnRMYiIPIYjrhtLujjM58xoaW8RHYOIyGN4fHFwYkMiIsc6WXfS7m1Iujgc+eIRIiICjpqO2r0N\nSRdHfUu96AhERB7lqPkoWtta7dqGpIujrK5MdAQiIo9S3lCO2uZau7Yh6eI4arb/kIqIiP6roqEC\nja2Ndm1D0sVRbCoWHYGIyKNYWi1obPHg4jjTeEZ0BCIij2Pv9WNJF0dFg+Nerk5EROc1NDfYtb6k\ni+Nc2znREYiIPE5DiwcXBxEROZ69fylncRAReZnmtma71mdxEBF5maa2JrvWZ3EQEXkZc5PZrvVZ\nHEREXsbYZLRrfRYHEZGXsXdqdRYHEZGXOWs5a9f6LA4iIi9ztsm+4vB1RIjS0lIsWrQIdXV1UKvV\nSE9PR1RUVI+XIyIi5znXKoHnOObPn48HHngACxcuxPjx45GZmWnXckRE5Dzt1na71re7OKqqqmCx\nWJCSkgIA0Ov1qK6uhtls7tFyRETkXG3WNrvWt7s4jEYjVCrVZZ8FBwfDaDT2aDkiInIu4UccACCX\nd9xMa2vHVxPauhwRETmPFVa71re7OLRabYfTTWazGTqdrkfLERGRc8ll9v3qt7s4wsPDoVQqkZeX\nBwDIycmBWq1GaGgoTCbTxbLoajkiInIde4vDIbfjGgwGLF68GMuWLYNarYbBYAAArFixAgAwbdq0\nLpcjIiLXkdt5zCCzWq32nexykq1bt2LkrpGiYxAReRx9hB7zEuYhLS2tR+vzyXEiIi+j9FPatT6L\ng4jIy4QEhNi1PouDiMjLhPRicRARUTfoAux7DILFQUTkZYIDgu1an8VBRORlgv1ZHERE1A0BPgF2\nrc/iICLyMn4+fnatz+IgIvIyHn3EoVKorr4QERF1S5AiyK71JV0cEYERoiMQEXkcj35yPCqI7yMn\nInI0jz7iSNQmio5ARORR1Ao1evn2smsbki6OOE2c6AhERB6ld1Bvzz5VFRYYJjoCEZFHiQqKglqh\ntmsbki4Oe8/DERHR5RK0CZDJZHZtQ9rF4cfiICJypHhNvN3bkHRxaAO0oiMQEXmUSGWk3duQdHEE\n+wfbfRGHiIj+y94p1QGJF4c2QMs7q4iIHMgRZ3IkXRyBfoHQh+tFxyAi8ggqhcruKdUBiRcHAKRG\npIqOQETkEeI18Z5/xAEA4YHhoiMQEXkEfYQegX6Bdm9H8sXhiAs5REQEpIY75gwOi4OIyEs4ajYO\nyReHNkCL6KBo0TGIiNye1xRHaGAoboq+SXQMIiK3FugbiLBeXlIcAHBrn1tFRyAicmspYSnec8QB\ngKeqiIjsNLL/SAT42veu8QvcojgilHyFLBGRPQaFDHLYttyiOEJ7hfKog4jIDo78C7h7FAcvkBMR\n9ZgjL4wDblIcAC+QExH1lCMvjANuVBx9VH1ERyAickuj4kY57MI4APjas3JpaSkWLVqEuro6qNVq\npKenIyoqqtNls7KykJ+fD6Xyv+/XMBgMiImJsWmsaFU0/OR+aGlvsScyEZHXGRI6xKHbs6s45s+f\njylTpiAlJQW5ubnIzMzEG2+80emyMpkMEydOxKhRo3o0VlRQFIZHDsf3Zd/bE5mIyKvIZXLEqGz7\nC7rN2+zpilVVVbBYLEhJSQEA6PV6VFdXw2w2X3Edq9Xa0+EQ4BuAcYnjerw+EZE3Sg5NRlRQ52eC\neqrHRxxGoxEqleqyz4KDg2E0GqHRaDpdJzs7G+vXr4dWq8WkSZOQnJzcrTEH6gb2NC4RkVeamDgR\nQYogh26zy+LIyMhASUlJh89DQkLw0EMPQS7veMDS2tra6bamTp0KhUIBACgoKMCCBQuQlZWFwEDb\n54aPCoqCwkeB5rZmm9chIvJmyWHd+wu6LbosjmeeeeaK36usrOxwWspsNkOn63wa9AulAQDJycnQ\naDSorKxE//79bQ4bFRSF6yOvx67SXTavQ0TkreQyOWKCHHt9A7DjGkd4eDiUSiXy8vIAADk5OVCr\n1QgNDQUAmEymy4olNzcX7e3tAIDCwkJYLJYr3oF1JQG+ARifOL6nkYmIvMq1Ydc6/PoGYOddVQaD\nAYsXL8ayZcugVqthMBgufm/FihUAgGnTpgEAtm/fjqVLl0KhUEClUsFgMFx2FGKrRF2iPZGJiLzG\nxKSJUCqUV1+wm+wqjujoaPz5z3/u9HsXCuOCZ5991p6hLuqn7odg/2DUnKtxyPaIiDyVo14V+0tu\n8+T4BdFB0ZiYOFF0DCIiSdMF6NBP3c8p23a74pDJZBgV27OHCImIvMX9SfcjWuWcWcXdrjgAIDY4\nFn5yP9ExiIgka2T/kU7btlsWRx91H9ze93bRMYiIJEnho0D/4P5O275bFoe/jz/uT7pfdAwiIkka\n2W8k+gQ5b0ZxtywOgLflEhFdyf1J90Ph2/3HHWzltsXRV90XKWEpomMQEUmKDDIkaBOcOobbFkew\nfzCevPZJ0TGIiCTltr63OfX6BuDGxQGcf7hFBpnoGEREkjEleQoC/WyfPLYn3Lo4+gf3xx197xAd\ng4hIEvx9/JEUkuT0cdy6OAL9AvF48uOiYxARScL4hPGIVcc6fRy3Lg4AGBgyEP4+/qJjEBEJNylp\nEnx97JqC0CZuXxz9g/tjUuIk0TGIiIQK9g/GAO0Al4zl9sXhK/fFhKQJomMQEQk1JXkK+qr7umQs\nty8OAEjQJCCkV4joGEREwtwVe5fLxvKI4ohRx2DW0FmiYxARCTEkdAgSta6bTcMjigMARvQZAbnM\nY/44RESFVaFVAAAXf0lEQVQ2mzVsFnS9dC4bz2N+0w7QDsDYAWNFxyAicimVQoWUcNdOv+QxxRHg\nG8BnOojI60xLnYbYYOc/u3EpjykOABikG4T+6v6iYxARucxdsXdBJnPt1EseVRzhynA8d/1zomMQ\nEbnEHX3vEPKKCY8qDgAYFjmMT5ITkVf4fervofRTunxcjyuOeE08fn/t70XHICJyquigaCSHJgsZ\n2+OKw0fugwlJE3hrLhF5tJdvfhm9g3oLGdsjf7smaZPw8DUPi45BROQUIb1CcEPvG4SN75HF4e/r\nj8cGPyY6BhGRU7x444sum5eqMx5ZHAAwUDcQo+NGi45BRORQKoUKv475tdAMHlscSoUS6fp00TGI\niBzqueHPIV4TLzSDxxYHAFwTcg1ujrpZdAwiIofw9/HHnbF3io7h2cUR7B+M527gA4FE5BmmXzcd\nCZoE0TE8uzgAICUsBTdH86iDiNxbgE8AJiVNgo/cR3QUzy8ObYAWL9z4gugYRER2mf2r2UjSJYmO\nAcALigM4/5KTMQPGiI5BRNQjaoUa98bf6/LJDK/EK4ojSBGEmUNnQgZp7HQiou547ZbXEKeJEx3j\nIruLo7a2FjNmzMDp06e7XK60tBQvvfQSZs6ciTlz5qCsrMzeobvlmpBr8Lshv3PpmERE9opURuL2\nvreLjnEZu4pj7dq1MBgMqK6uvuqy8+fPxwMPPICFCxdi/PjxyMzMtGfobgvwDcDjQx6Hn9zPpeMS\nEdnjjV+/gT7qPqJjXMau4hg7diyWLFkCna7rd91WVVXBYrEgJeX86w31ej2qq6thNpvtGb7bBuoG\nYtawWS4dk4iopwZoBuBX0b8SHaMDl1zjMBqNUKlUl30WHBwMo9HoiuEv8pX7YlLSJAT7B7t0XCKi\nnnjr1rcQqYwUHaMD366+mZGRgZKSkg6fh4SEYO7cud0aSC7v2FGtra3d2oYjDNAOwFu3voWnNj3l\n8rGJiGw1dsBYDI0cKjpGp7osjmeeecYhg2i12g6npcxm81VPcTnLbX1vw3Xh12Fv5V4h4xMRdUXh\no8Bzw5+D2l8tOkqnHHaqymq1Xva1yWS6WBbh4eFQKpXIy8sDAOTk5ECtViM0NNRRw3dLeGA43rz1\nTSFjExFdzcs3vYxrQq8RHeOK7CqODRs2YPbs2TCbzcjIyEBWVtbF761YsQKfffbZxa8NBgPWrFmD\nmTNn4uuvv4bBYLBnaLulhKXwFbNEJDl9VH0wJn6MpN9iKrP+8lBBIrZu3Qq9Xu/UMYpMRRi5aiTq\nmuucOg4Rka2+uO8LpPVLc/o4ubm5SEvr2TjSrTQXSNAm4K1b3xIdg4gIADA6fjSGRw4XHeOqvLo4\nAOCOvndgWMQw0TGIyMsF+ATgj9f/UbIXxC/l9cURrgzH327/G58oJyKh/nbb3zA4dLDoGDbx+uIA\ngOTQZPzl138RHYOIvNSImBEYFTtKMrPfXg2LA4CP3Of8wzYR0nzYhog8V4BPAP7y678gNFDM4wk9\nweL4jwhlBObfPp+nrIjIpdzpFNUFLI5LJIcm4/Vfvy46BhF5iVv73OpWp6guYHFcwkfugzEDxvAu\nKyJyugCfAPz5lj+71SmqC1gcvxChjMDfbv8bAnwCREchIg/29h1vu90pqgtYHJ1ICUvBOyPfER2D\niDzUA0kPuOUpqgtYHJ2QyWS4q/9deGzwY6KjEJGHiQ6KxvM3PA9tgFZ0lB5jcVyB2l+NWcNmITY4\nVnQUIvIQPjIf/OPufyBW496/V1gcXegX3A/vj3qft+gSkUO8detb0Ec4d/JWV2BxXEVqeCrevv1t\n0TGIyM2NjhuN+xLug6+8y/fnuQUWx1X4yH1wT9w9mJgwUXQUInJT4YHhePnmlxHSK0R0FIdgcdhA\n20uLF258AXHBcaKjEJGb8ZX74sO7P8QA7QDRURyGxWGjWE0sPrjnAwT5BYmOQkRuJGtkFob3lv47\nNrqDxdENKWEpWHbPMsjgnvdeE5FrzRo2C3fH3Q0fuY/oKA7F4uimX0f/mm8NJKKrSuuXhievfRJB\nCs87S8Hi6CaFrwITkybi8cGPi45CRBLVT90P826dhwhlhOgoTsHi6AFtgBbPXf8cJ0Mkog6Ufkp8\ndM9Hbv+QX1dYHD0UrYpG5p2ZCOsVJjoKEUmEDDIsu3sZUsJTREdxKhaHHRJ1iVg5diVUCpXoKEQk\nAZl3ZmJEzAjRMZyOxWGn6yKuw2ejP4PCRyE6ChEJ9MrNr2Bs/FgofD3/dwGLwwFujL4RH979IW/T\nJfJS01Kn4bHBj0GpUIqO4hIsDgeQy+RI65eGrDuzREchIhe7P+l+zBw2E5oAjegoLsPicBA/Hz+M\niR+D1255TXQUInKRETEj8PJNLyMs0LtukmFxOJBSocQjgx/B09c9LToKETnZ4JDByEjLQLQqWnQU\nl2NxOJjGX4MZ+hl8QJDIgw3QDMCye5ahf3B/0VGEYHE4QZgyDH/61Z/w8DUPi45CRA4WGxyLT0d/\n6lGz3XYXi8NJIpQReOnGlzB54GTRUYjIQfqq+2LFmBVI0CWIjiIUi8OJIpQRmHvTXJYHkQfop+6H\nVWNXIVGXKDqKcCwOJ4sMisQrN7/C01ZEbiwuOA6rxq5Cki5JdBRJYHG4wIXTVrxgTuR+EjQJWDF2\nBY80LmH3W9Nra2vx4osv4vnnn0dMTMwVl8vKykJ+fj6Uyv8+WWkwGLpcx5NEKCPwwq9egEqhQube\nTNFxiMgGqeGpeH/U+159IbwzdhXH2rVrsW7dOtTX1191WZlMhokTJ2LUqFH2DOnWwpRhePb6Z8+/\nuH73y6LjEFEX7ux3J/52+9/QV91XdBTJsetU1dixY7FkyRLodDqblrdarfYM5xE0/hpMGTIF7935\nHue2IpKoh695GBlpGSyNK7D7VFV3ZGdnY/369dBqtZg0aRKSk5NdObxkKBVKTEycCI2/Br9d/1s0\ntzWLjkRE/zFr2Cykp6YjNDBUdBTJ6rI4MjIyUFJS0uHzkJAQzJ07t1sDTZ06FQrF+emGCwoKsGDB\nAmRlZSEwMLBb2/EUfj5+uCv2LmSPy8aDax9EfcvVT/cRkXO9OeJNPDjwQQQHBIuOImldFsczzzzj\nsIEulAYAJCcnQ6PRoLKyEv3793fYGO5GLpPjpuibsHbCWkxeOxlVlirRkYi8klwmx6K7FuHeuHsR\n6Oedf5ntDofdjvvL6xcmkwlms/ni17m5uWhvbwcAFBYWwmKxICoqylHDu7XUiFSsm7gOQyOGio5C\n5HXUCjW+HPclxg0Yx9KwkV3XODZs2IAdO3bAbDYjIyMDcXFxmD59OgBgxYoVAIBp06YBALZv346l\nS5dCoVBApVLBYDBcdhTi7RJ1iVh2zzIs+GkBPjrwkeg4RF4hSZeEpb9ZisGhg0VHcSsyq0Rvddq6\ndSv0er3oGC5najJhzeE1eH7H87BCkv9piDzCuAHjMPfmuegX3E90FCFyc3ORlpbWo3X55LjEaAO0\neGzwY/j8vs8R5BckOg6RR5pz4xzMu22e15aGvVgcEqTwVSCtXxr+OemfiA2OFR2HyGP4+/jjk3s/\nwe9Tf8/bbe3A4pCwlLAUrL5vNSYkTBAdhcjtxQbH4ptJ3+CeuHt4EdxOLA6Ji9XEYt7t8/Bu2rvw\nk/uJjkPklh4f/Diyx2VDH6GHTMYZG+zl0ifHqWd0ATo8OOhBDAwZiCc2PoHjNcdFRyJyCwE+AXh3\n5Lu4s/+dUPurRcfxGDzicBM+ch8MjRyK7HHZeHTwo6LjEEneQN1ArL9/PSYkTmBpOBiLw830D+6P\n1255De+Peh/+Pv6i4xBJ0lPXPoVVY1fh2vBreWrKCXiqyg0F+wdjYuJEJGgT8Ny257CnYo/oSESS\noPHX4L0738MtMbcgSMHb2Z2FRxxuSiaT4drwa/HJvZ/grVvf4oVz8noPDnwQGx/YiN/E/Yal4WQs\nDjcXGRSJ3w35HTbevxH6CO970p5I46/B8tHL8ddb/4oEbYLoOF6BxeEBfOQ+SI1IxfJ7l/Pog7zK\n5IGTsfH+jbgn7h5eAHchFocH4dEHeQuNvwafjv4Ub936FhJ0PMpwNRaHh7lw9PHp6E+RdWcWVAqV\n6EhEDiODDDP0M7DpgU24O+5uHmUIwruqPFSEMgIPDXoIQyOGYtn+Zfh7/t9FRyKyy/DI4Xh9xOtI\nDk1GgG+A6DhejUccHi5Rl4iXb34Z6yetR2pYqug4RN2mDdDiH7/5Bz4d/SmGRQ5jaUgAi8ML9PLt\nhRuibsDKsSux+K7FUCt4eE/SJ5fJMXPoTGx6YBPGJ47nbLYSwlNVXiRcGY4HBj6A68KvwxeHv0DG\nngy0treKjkXUwV3978L/u/7/ITk0Gf6+nCFBanjE4YUSdAn44w1/xLeTv8XvhvwOMnBKBpKG4ZHD\nsXbCWrw/6n0MjRzK0pAoFoeX8pX7IjksGX/59V+w+YHNGBM/RnQk8mIDNAPw+djP8dmYz3BLzC28\nW0riWBxeLsA3APpIPTLvzMQ3E7/BjVE3io5EXiQiMAL/+M0/sHbiWozsPxIhvUJERyIb8BoHAQBU\nChVujL4Ry0cvR35lPub/NB/fl30vOhZ5qN7K3phz0xzcFH0T+qr7io5D3cTioMtoA7S4re9tSA1P\nxcGzB5G1Nwv/KvmX6FjkIQZoBmDOTXOgj9AjWhUtOg71EIuDOqUJ0ODG6BuREpaCg8aD+LjgY3x2\n8DO0W9tFRyM3dF34dZj9q9lICUtBuDJcdByyE4uDuqRUKDEschiGhA7B1JSpWH14NZbsW4JzbedE\nRyM3kNY3DX8Y9gcMDhkMXS+d6DjkICwOsom/rz9SwlNwTeg1eGTwI8g5k4N5P83DydqToqORxAT5\nBeGp1Kfwm7jfIFGbyHdjeCAWB3WLr9wXibpEJOoSkdYvDYeMh7Bs3zKsO7oOVlhFxyOBrgm5Bobh\nBlwbfi1ig2P5ylYPxuKgHotQRiBCGYHre18Pg8mAHSd3IGNPBoxNRtHRyEX85H54aNBDmDxwMpJ0\nSTwd5SVYHGS3Xr69MCRsCIaEDcF9CfehyFSE1YdXI7soG81tzaLjkRPc0PsGPHHtExgcOhjxwfHw\n9eGvEm/C/9rkUH3UfdBH3QcjYkZg1vBZOHz2MD7Y/wF2nNrBU1luLj44HtP00zA0YijiNHG8duHF\nWBzkFL4+vkjQJiBBm4A7+t2BYzXHkF+Zj8V5i1FQXSA6HtkorFcYpl47Fbf2uRXxwfEICeST3cTi\nIBcI9AvE4NDBGBw6GPfE3YOTdSdxxHgEqw6uwo7TOzhDr8QM1A3Eb5N/i2vDr0VfdV/0DuotOhJJ\nDIuDXEoToIEmQIOUsBSMjh+NU7WncKzmGNaXrMeXRV+itrlWdESv4yv3xa0xt2LyoMlI1CWir6ov\nNAEa0bFIwlgcJEyAbwASdAlI0CVgZP+ReHb4szhZexKHjIfw5ZEv8fOZn9HS3iI6pkdK0CZgXMI4\nDIschv7q/uij7sM365HNWBwOcPjwYSQlJYmOYROpZpXL5BcvrN8cczP+Z9D/oLyhHMVVxTjeeBxf\nFX2FnDM5PK3VQ/GaeIxPGI9hkcMQo4qBT6MPkvpK7+egM1L9me2MO2W1h13FsXDhQhQXF8PX1xdq\ntRpPPPEEYmJiOl22tLQUixYtQl1dHdRqNdLT0xEVFWXP8JJx5MgRt/lhcZesvfx6IU4ThwPfHcCT\nY57EI9c8gvKGcpTWleJk7UlsO7kN/y77N8obykVHlRyVQgV9hB4j+41EgjYBMaoYRCojL3vGYt26\ndW5THO7yMwu4V1Z72FUcN998M2bMmAG5XI5t27bh/fffx2uvvdbpsvPnz8eUKVOQkpKC3NxcZGZm\n4o033rBnePIigX6BiNfEI14TDwB4+JqHUdVYhbOWszjTeAaldaXYfmo7/l32b5TVlwlO6zqXlkS8\nNh6RykiE9gpFeGA4FD4K0fHIQ9lVHMOGDbv477GxscjOzu50uaqqKlgsFqSkpAAA9Ho9Fi9eDLPZ\nDI2GF+Go+2QyGcKV4QhXhmMQBgE4XybVlmoYm4wwWUwwnjOioqECuWdykVeVhxJzCSytFsHJu89H\n5oO+6r4YHDIYw3sPR191X+h66aD110IboEVYYBhLglzKYdc4tmzZAr1e3+n3jEYjVCrVZZ8FBwfD\naDSyOMhhZDIZwgLDEBYYdtnnU4ZMQUNzA0znTDA3mWE+Z0Zdcx0aWhpwpv4MSmpKUGQqQnl9Oc40\nnEFja6PLMvvKfRERGIFIZSRiNbFI0Jw/taRSqBCkCEKwfzC0AVqoFWpoA7Sc/4kkocviyMjIQElJ\nSYfPQ0JCMHfu3Itfb9q0CUVFRXj11VevuC25vONbaltbeaGTXEOpUEKpUCJG1fk1uLb2NtQ216Kx\npRGWVgssrRa0tLWgub0ZzW3/+eeSfz/Xdg6t7a1oa29DO9rR3t6OpqYmKAOV8JX7Qi6Tw9/HHwof\nxfl/5Ir//vslXwf6BSLQNxAqfxX8ffxdvFeIekZmtVrtmgdi7dq1+PHHHzF79mwEBXU+BUFlZSXm\nzJmDv//97xc/e+KJJ/Dmm28iNDS003V27tyJlhbeiklE5Ax+fn4YMWJEj9bt8amq9vZ2fPDBBxdL\nISDg8nvATSYTZDIZNBoNwsPDoVQqkZeXh9TUVOTk5ECtVl+xNAD0+A9ERETO1eMjjsrKSsyYMQOR\nkZGXnYZ6+umnER8fj/feew8AMG3aNADnb8ddvHgxamtrPe52XCIib2L3qSoiIvIuHa9YExERdYHF\nQURE3SKpuapqa2vx4osv4vnnn7/i1CWA+OlLujN+VlYW8vPzoVQqL35mMBi6/PO5Kp/o/didDCL2\nY2ds+RmVwn4FbMsqlf1q6/RFUti3tmaVwr5dtGgRDh06BJlMBj8/Pzz++ONITk7usFy396tVIr7+\n+mvr1KlTrQ8++KD11KlTXS77zDPPWPPz861Wq9W6Z88e6+zZs10RsUfjZ2VlWTds2OCqaFar1fZ8\novdjdzKI2I+/ZOvPqBT2q61ZpbBfrVar9eeff7a2tbVZrVar9dtvv7XOmTOn0+WksG9tzSqFfbtv\n376LWffs2WOdNWtWp8t1d79K5lTV2LFjsWTJEuh0Xb/svrPpS6qrq2E2m10Rs0fjW114/4Gt+UTv\nx55kcOV+7IwtP6NS2K+A7f8/AeL3K3B++qILd2fGxsbCZDJ1WEYq+9aWrBeI3rdDhgyBXC6H1WpF\nWVkZYmNjOyzTk/0qqVNVthA9fUlPxs/Ozsb69euh1WoxadKkTg8VXZ1P9H7sSQZX7seeksJ+7S6p\n7dcrTV8kxX3b1VRLgDT27aFDh7BgwQJoNBrMnj27w/d7sl9dVhy2Tl9iC2dPX9JV1oceeqhb40+d\nOhUKxfkJ6AoKCrBgwQJkZWUhMDDQYXl/ydZ8UpgGxtYMIvZjT0lhv9pKavv1atMXSWnfXi2rVPbt\nwIEDsWTJEuTl5eHVV1/FwoULOyzT3f3qsuJ45plnHLIdrVbb4RDKbDbbdEhuq66yVlZWdmv8Cz84\nAJCcnAyNRoPKykr079/fIVl/ydb944r9eDXdyeDq/dhTUtiv3SGl/Xph+qLOZqIApLVvr5YVkNa+\nBYDU1FScPXsW9fX1l00P1ZP9KplrHJf65XlBk8l08Q926fQlAGyavsSRrjb+pVkBIDc3F+3t7QCA\nwsJCWCwWp94F0lU+Ke3H7mQFXL8fr+bSn1Gp7ddfulJWQBr7tb29HUuXLkVBQQHmzJlz2S81qe1b\nW7MC4vdtfX09cnJyLv73//777xEaGoqgoCC796tknhzfsGEDduzYgZMnTyIyMhJxcXGYPn06AEhu\n+pKuxv9l1rfffhvFxcVQKBRQqVR47LHHkJCQICSf1PZjd7KK2I+/dKWfUSnuV1uzSmG/Xmn6ounT\np2PTpk2X5RW9b7uTVfS+ra+vR0ZGBsrKyuDv7w+dTocpU6YgJibG7p9ZyRQHERG5B0meqiIiIuli\ncRARUbewOIiIqFtYHERE1C0sDiIi6hYWBxERdQuLg4iIuoXFQURE3fL/AR8SQcFGS9m7AAAAAElF\nTkSuQmCC\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_png(c2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## return the object"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# for demonstration purpose, I do the same with a circle that has no _repr_javascript method\n",
"class MyNoJSCircle(MyCircle):\n",
" \n",
" def _repr_javascript_(self):\n",
" return\n",
"\n",
"cNoJS = MyNoJSCircle()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Of course you can now still return the object, and this will use compute all the representations, store them in the notebook and show you the appropriate one."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"cNoJS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or just use `display(object)` if you are in a middle of a loop"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"for i in range(3):\n",
" display(cNoJS)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Advantage of using `display()` versus `display_*()` is that all representation will be stored in the notebook document and notebook file, they are then availlable for other frontends or post-processing tool like `nbconvert`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's compare `display()` vs `display_html()` for our circle in the Notebook Web-app and we'll see later the difference in nbconvert."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print \"I should see a nice html circle in web-app, but\"\n",
"print \"nothing if the format I'm viewing the notebook in\"\n",
"print \"does not support html\"\n",
"display_html(cNoJS)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print \"Whatever the format I will see a representation\"\n",
"print \"of my circle\"\n",
"display(cNoJS)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print \"Same if I return the object\"\n",
"cNoJS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print \"But not if I print it\"\n",
"print cNoJS"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 0
}