A User’s Guide to Stellar CCD Photometry with IRAF

Philip Massey Lindsey E. Davis

April 15, 1992

Abstract

This document is intended to guide you through the steps for obtaining stellar photom-
etry from CCD data using IRAF. It deals both with the case that the frames are relatively
uncrowded (in which case simple aperture photometry may suffice) and with the case
that the frames are crowded and require more sophisticated point-spread-function fitting
methods (i.e., daophot). In addition we show how one goes about obtaining photomet-
ric solutions for the standard stars, and applying these transformations to instrumental
magnitudes.

Contents
1 Introduction

2 Getting Started
2.1 Fixing your headers L
2.1.1 Correcting the exposure time,
2.1.2 Computing the effective airmass
2.2 Dealing with Parameter Files (Wheels within Wheels)

3 Stanard Star Photometry and Reductions

3.1 Obtaining Aperture Photometry of Your Standards
3.2 Picking an Aperture Size
3.3 Setting Things Up
3.4 Doing It: Aperture Photometry at Last

3.4.1 Automatic star finding L oL

3.4.2 Photometry by Eye oo
3.5 Examining the Results: the power of txdump
3.6 The Standard Star Solutions L L o oL
3.7 Making the Standard Star Catalog,
3.8 Making the Standard Star Observations File
3.9 Defining the Transformations,
3.10 Solving Those Transformation Equations

4 Crowded Field Photometry: IRAF /daophot
4.1 Historical Summary Lo
4.2 daophot Overview
4.3 How Big Is A Star: A Few Useful Definitions
4.4 Setting up the parameter files “daopars” and “datapars”
4.5 Finding stars: daofind and tvmmark oL
4.6 Aperture Photometry with phot 0 000
4.7 Making the PSF withpsf o oo
4.8 Doing the psf-fitting: allstar. L L oL
4.9 Matching the frames
4.10 Determining the Aperture Correction
4.11 daophot summary e e

5 Transforming to the Standard System

A 1mexamine: A Useful Tool

RN NN

QO ~1 =1 Ot o

12
14
16
20
20
21
24
29

34
34
34
36
36
38
45
47
55
56
57
59

61

66

1 Introduction

This user’s guide deals with both the “relatively simple” case of isolated stars on a CCD frame
(standard stars, say, or uncrowded program stars) and the horrendously more complicated case
of crowded field photometry. We describe here all the steps needed to obtain instrumental
magnitudes and to do the transformation to the standard system. There are, of course,
many possible paths to this goal, and IRAF provides no lack of options. We have chosen
to illuminate a straight road, but many side trails are yours for the taking, and we will
occasionally point these out (“let many flowers bloom”). This Guide is not intended as a
reference manual; for that, you have available (a) the various “help pages” for the routines
described herein, (b) “A User’s Guide to the IRAF APPHOT Package” by Lindsey Davis,
and (c) “A Reference Guide to the IRAF/DAOPHOT Package” by Lindsey Davis. (For the
“philosophy” and algorithms of DAOPHOT, see Stetson 1987 PASP 99, 111.) What this
manual is intended to be is a real “user’s guide”, in which we go through all of the steps
necessary to go from CCD frames to publishable photometry. The first version of this manual
became available two years ago in Jan 1990; the current version includes revisions to V2.10 of
IRAF, new examples, and descriptions of the the PHOTCAL package for doing the standard
star solutions and transformations.

The general steps involved are as follows: (1) fixing the header information to reflect
accurate exposure times and airmasses, (2) determining and cataloging the characteristics of
your data (e.g., noise, seeing, etc.), (3) obtaining instrumental magnitudes for all the standard
stars using aperture photometry, (4) computing the transformations from instrumental to
standard magnitudes and indices, (5) obtaining instrumental magnitudes for your program
stars using IRAF /daophot, (6) determining the aperture correction for your program stars,and
(7) applying the transformations to your program photometry. We choose to illustrate these
reductions using UBV CCD data obtained with a TI chip at the prime-focus of the 4m
telescope at Cerro Tololo, but the techniques are applicable to data taken with any detector
whose noise characteristics mimic those of a CCD.

If you are a brand-new IRAF user, we recommend you first study the A Beginner’s Guide
to Using IRAF by Jeannette Barnes. (Actually, if you are a brand-new IRAF user, we
recommend that you find some simpler task to work on before proceeding to digital stelalr
photometry!) The procedures described here will work on any system supported by IRAF;
for the purposes of discussion, however, we will assume that you are using the image display
capabilities of a SUN. If this is true you then may also want to familiarize yourself with the
ins and outs of using the SUN windows and IRAF; the best description is to be found in A
Quick Look at SunIRAF on the Tucson Sun Network by Jeannette Barnes.

We assume that your data has been read onto disk, and that the basic instrumental
signature has been removed; i.e., that you are ready to do some photometry. If you haven’t
processed your data this far yet, we refer you to “A User’s Guide to Reducing CCD Data
with IRAF” by Phil Massey.

2 Getting Started

2.1 Fixing your headers

You’re going to have to this some time or another; why not now? There are two specific
things we may need to fix at this point: (a) Add any missing header words if you are reducing
non-NOAO data, (b) correct the exposure time for any shutter opening/closing time, and (c)
correct the airmass to the effective middle of the exposure.

Three things that will be useful to have in your headers are the exposure time, the airmass
(or information sufficient for computing the airmass), and the filter identification. If you are
reducing NOAOQO data then all these data are probably there, and you can proceed to Sec. 2.1.1.
Otherwise, you should examine your header with a

imhead imagename 14 | page
and see exactly what information is there. If you are lacking the exposure time you can add
this by doing an
hedit imagename“EXPTIME” value add+ up+ ver- show+

If you know the effective airmasses you can add an “AIRMASS” keyword in the same manner,
or if you want to compute the effective airmass (corrected to mid-exposure) using setairmass
as described below, you will need to have the celestial coordinates key words “RA” and
“DEC”, and “EPOCH”, as well as the siderial-time (“ST”), and the date-of-observation
(“DATE-OBS”), all of which should have the form shown in Figure 1.

You may want to take this opportunity to review the filter numbers in the headers, and
fix any that are wrong. If you are lacking filter numbers you may want to add them at this
point.

2.1.1 Correcting the exposure time

The CTIO 4m P/F shutter has an effective exposure time that is insignificantly different than
the requested exposure time (Walker 1988 NOAO Newsletter No. 13, 20); the correction is
+0.004 seconds. However, some shutters both at Tololo and Kitt Peak have very significant
shutter corrections, some as much as a tenth of a second! Therefore we will go through the
exercise of correcting the exposure time although in truth it does not matter for the current
example.
First see what “keyword” in your header gives the exposure time:
imhead imagename 14 | page
will produce a listing such as given in Figure 1. The exposure time keyword in this header
is “EXPTIME”. In this case we wish to add a new exposure time to each of the headers; we
will call this corrected exposure time CEXPTIME, and make it 4 ms larger than whatever
value is listed as EXPTIME. To do this we use the hedit command as follows:
hedit *.imh CEXPTIME “(EXPTIME+0.004)” ver- show+ add+.
An inspection of the headers will now show a new keyword CEXPTIME.

objo03[797,797] [reall: V G93-48
No bad pixels, no histogram, min=-1570.715, max=32540.18
Line storage mode, physdim [896,797], length of user area 1580 s.u.
Created Fri 09:51:10 06-Dec-91, Last modified Fri 09:51:10 06-Dec-91
Pixel file ’tofu!/datal/massey/pixels/obj003.pix’ [ok]
'KPNO-IRAF’> /

’06-04-897 /

"KPNO-IRAF’> /

’12-10-887 /

New copy of obj003.imh

IRAF-MAX= 3.254018E4 / DATA MAX
IRAF-MIN= -1.570715E3 / DATA MIN
IRAF-B/P= 32 / DATA BITS/PIXEL
IRAFTYPE= ’FLOATING’> /

IRAF-MAX= 3.254018E4 / DATA MAX
IRAF-MIN= -1.570716E3 / DATA MIN
IRAF-B/P= 32 / DATA BITS/PIXEL

IRAFTYPE= ’FLOATING> /
OBSERVAT= ’CTIO

/ ORIGIN OF DATA

CCDPICHNO= 3 / ORIGINAL CCD PICTURE NUMBER
EXPTIME = 1 / ACTUAL INTEGRATION TIME (SECONDS)
DARKTIME= 1 / TOTAL ELAPSED TIME (SECONDS)
O0TIME = 1 / SHUTTER OPEN TIME (SECONDS)
IMAGETYP= ’0BJECT > / OBJECT,DARK,BIAS,ETC.
DATE-0BS= ’12/10/88 > / DATE (DD/MM/YY) OF OBSERVATION
RA = 721:51:59.00° / right ascension

DEC = 7 2:33:31.00° / declination

EPOCH = 1985. / EPOCH OF RA AND DEC

ZD = 7 0:00:00.00° / zenith distance

HA = 200:00:00 > / HOUR ANGLE (H-M-S)

UT =7 0:07:59.00° / wuniversal time

ST = 720:47:55.00° / sidereal time

AIRMASS = 1.23 / AIRMASS

DETECTOR= ’TI1 > / DETECTOR (CCD TYPE, PHOTON COUNTER, ETC)
CAMTEMP = 0. / CAMERA TEMPERATURE, DEG C
DEWTEMP = 0. / DEWAR TEMPERATURE, DEG C
FILTERS = ’2 O > / FILTER BOLT POSITIONS
PREFLASH= 1.00000000000000E-4 / PREFLASH TIME (SECONDS)
VEBGAIN = 38 / VEB GAIN SETTING

SECPPIX = 0.292 / SEC OF ARC PER PIXEL

TRIM = ’0ct 12 4:09 Trim data section is [4:800,4:800]’

OVERSCAN= ’0Oct 12 4:09 Overscan section is [815:833,4:800] with mean=413.7
ZEROCOR = ’0ct 12 4:09 Zero level correction image is Zero2.imh’

FLATCOR = ’0Oct 12 4:09 Flat field image is flat902 with scale=11735.’
CCDSEC = ’[4:800,4:800]"

CCDPROC = ’0Oct 12 4:10 CCD processing done’

Figure 1: Header information for image obj003.

as> lpar setairmass

images = "*.imh" Input images
(observatory =)_.observatory) Observatory for images
(intype = "beginning'") Input keyword time stamp
(outtype = "effective") Output airmass time stamp\n
(date = "date-obs") Observation date keyword
(exposure = "exptime') Exposure time keyword (seconds)
(airmass = '"airmass") Airmass keyword (output)
(utmiddle = "utmiddle") Mid-observation UT keyword (output)\n
(show = yes) Print the airmasses and mid-UT?
(update = yes) Update the image header?
(override = yes) Override previous assignments?
(mode = "ql'")

Figure 2: Running setairmass.

2.1.2 Computing the effective airmass

Chances are any airmass in your header is the airmass at the beginning of your exposure.
What you really want is the “effective airmass”—the airmass at mid-exposure. The task
setairmass in the astutil package will compute the effective airmass of your exposure, using
the header values of RA, DEC, ST, EPOCH, and DATE-OBS. You may have noticed in Fig. 1
that the hour-angle (HA) and zenith-distance (ZD) keywords in fact are wrong; the Tololo
computers were returning 0.0 in order to keep the astronomer on his/her toes. Fortunately,
setairmass ignores these two keywords; you could, if you wish, have deleted them with hedit
*imh ZD,HA delete+.

The task setairmass relies upon the header word OBSERSVAT (see Fig. 1) to identify
the obseratory where the observations were made, and hence what latitude to use in computing
the airmass. This keyword will be found in all NOAO headers, but if your data comes from
somewhere else, be sure to first run the observatory task to specify this.

A sample run of setairmass is show in Figure 2.

2.2 Dealing with Parameter Files (Wheels within Wheels)

The photometry packages daophot and apphot both contain pertinent information out of
separate “parameter files” that can be shared between tasks. As anyone that has used IRAF
knows, each IRAF command has its own parameter file that can be viewed by doing an lpar
command or edited by doing an epar command. However, in daophot and apphot there are
“wheels within wheels”—some of the parameters are in fact parameter files themselves. For
instance, the aperture photometry routine phot does not explicitly show you the methods
and details of the sky fitting in its parameter file. However, if you do an lpar phot you will
see a parameter called “fitskypars” which contains, among many other things, the radii of the
annulus to be used in determining the sky value. You will also find listed “datapars” (which
specifies the properties of your data, such as photons per ADU and read-noise), “centerpars”
(which specifies the centering algorithm to be used), and “photpars” (which gives the size of

the digital apertures and the zero-point magnitude). The contents of any of these parameter
files can be altered either by eparing them on their own or by typing a °
line of the main parameter file. If you do the latter, a control-z (control-d on some machines)
or a “:q” will bring you back. For example, to examine or edit fitskypars, you can do an
explicit lpar fitskypars or epar fitskypars, or you can do an epar phot, move the cursor
down to the “fitskypars” line, and then type a :e to edit (see Figure 3). Once you are used
to it, it is a convenient and powerful way to specify a whole bunch of things that are used by
several different commands—i.e., you are guaranteed of using the same parameters in several
different tasks. If there is only one thing that you want to change in a parameter file you
can enter it on the command line when you run the command, just as if it were a “normal”
(hidden) parameter, i.e., phot imagename dannulus=8. does the same as running epar
fitskypars and changing the “width of sky annulus” dannulus to 8.0.

Mostly these things are kept out of the way (“very hidden” parameters) because you don’t
want to be changing them, once you have set them up for your data. There are exceptions, such
as changing the PSF radius in making a point-spread function in a crowded field (Sec. 4.7).
However, you are well protected here if you leave the verify switch on. A task will then give
you an opportunity to take one last look at anything that you really care about when you
run the task. For instance, if we had simply run phot on an image (we’ll see how to do this
shortly) it would have said “Width of sky annulus (10.)”, at which point we could either have
hit [CR] to have accepted the 10., or we could have entered a new value.

“:¢” while on that

3 Stanard Star Photometry and Reductions

3.1 Obtaining Aperture Photometry of Your Standards

Standard stars provide a good example of relatively uncrowded photometry, and in this section
we will describe how to obtain instrumental magnitudes for your standards using phot. The
basic steps are

e Decide what aperture size you wish to use for measuring your standards (this should
be the same for all the frames). At the same time pick a sky annulus.

e Set up the various parameter files (datapars, centerpars, fitskypars, photpars) to
have the correct values.

e For each frame:

1. Identify the standard star(s) either interactively using a cursor or by using the
automatic star finding algorithm daofind.

2. Run the aperture photometry program phot on each of your standard star frames.

Although the routines you will need to use are available both in the daophot and apphot
packages, we strongly advise you to run them from the daophot package; the routines are
actually identicial, and the only difference in this instance is that the two packages have their
own data parameter files.

PACKAGE
TASK

image =
coords =
output =
skyfile =
(datapar=
(centerp=

daophot
phot

(fitskyp= .

(photpar=
(plotfil=
(graphic=
(display=
(command=
(cursor =
(radplot=
(interac=
(verify =
(update =
(verbose=
(mode =

PACKAGE
TASK

(salgori=
(annulus=
(dannulu=
(skyvalu=
(smaxite=
(snrejec=
(skrejec=
(khist =
(binsize=
(smooth =
(rgrow
(mksky
(mode

daophot
fitskypars

IRAF
Image Reduction and Analysis Facility

Input image
default Coordinate list (default: image.coo.?)
default Results file (default: image.mag.?)"
Sky file
Data dependent parameters
Centering parameters

NN

) Sky fitting parameters
) Photometry parameters
) File of plot metacode
stdgraph) Graphics device
stdimage) Display device
) Image cursor: [x y wecs] key [cmd]
) Graphics cursor: [x y wcs] key [cmd]
no) Plot the radial profiles
no) Mode of use
yes) Verify critical parameters in non interactive mo
yes) Update critical parameters in non interactive mo
yes) Print messages in non interactive mode
ql)

IRAF
Image Reduction and Analysis Facility

mode) Sky fitting algorithm
10.) Inner radius of sky annulus in scale units
10.) Width of sky annulus in scale units
0.) User sky value
10) Maximum number of sky fitting iterations
50) Maximum number of sky fitting rejection iteratio
3.) K-sigma rejection limit in sky sigma
3.) Half width of histogram in sky sigma
0.1) Binsize of histogram in sky sigma
no) Lucy smooth the histogram
0.) Region growing radius in scale units
no) Mark sky annuli on the display
ql)

Figure 3: Changing the Sky Annulus in fitskypars.

3.2 Picking an Aperture Size

Unfortunately, there are no good tools available with IRAF to do this yet, and we will restrict
our discussion here to some of the considerations before telling you to just go ahead and use a
radius that is something like 4 or 5 times the FWHM of a stellar image; e.g., 12 or 15 pixels as
a radius, assuming you have the usual sort of “nearly undersampled” FWHM= 3 data. You
might naively expect (as I did) that you wish to pick an aperture size that will “contain all
the light” from your standard stars, but in fact this is impossible: the wings of a star’s profile
extend much further than you imagine at a “significant” level. King (1971 Publ. A.S.P. 83,
199) and Kormendy (1973 A.J. 78, 255) discuss the fact that on photographic plates the
profile of a star extends out to arcminutes at an intensity level far exceeding the diffraction
profile; Kormendy attributes this to scattering off of dust and surface irregularities on the
optical surfaces. Massey et al. (1989 97, 107) discusses this in regards to CCD data. Although
the intensity profile falls off rapidly, the increase in area with radius increases rapidly, and
in practical terms Massey el al. found that in cases where the FWHM was typically small
(2.5-3 pixels), increasing the digital aperture size from a diameter of 18 pixels to one of 20
pixels resulted in an additional 1-2% increase in light for a well-exposed star, and that this
increase continues for larger apertures until masked by the photometric errors.

Given that you presumably want 1% photometry or better, what should you do? Well, the
fact that photoelectric photometry through fixed apertures in fact does work suggests that
there is some radius beyond which the same fraction of light is excluded, despite variations
in the seeing and guiding. You do not want to choose a gigantic aperture (> 20 pixels, say)
because the probability of your having a bad pixel or two goes up with the area. But you do
not want to choose too small an aperture (<10 pixels, say) or you will find yourself at the
mercy of the seeing and guiding. Most photoelectric photometrists will use an aperture of at
least 10 arcseconds in diameter, but remember you have one advantage over them: you are not
sensitive to centering errors, since any digital aperture can be exactly centered. If you have
enough standard star observations (I used about 300 obtained over a 10 night run) you can
compute magnitude differences between a large aperture (20 pixels), and a series of smaller
apertures (8, 10, 12, 15, 18) for each filter, and then see for which radius the difference (in
magnitudes) becomes constant. Unfortunately, there are no tools currently available within
IRAF for taking the differences between two apertures, or for conveniently plotting these
differences, so you are on your own. My recommendation would be that if you have typical
data with a FWHM of < 4 pixels, that you use something like an aperture of 12 to 15 pixels
in radius for your standard stars. You can save yourself a lot of trouble if you simply
adopt a single radius for all the standards from all the nights for all filters.

3.3 Setting Things Up

As discussed in Sec. 2.2 we must set up the parameter files from which phot will get the
details of what it is going to do. The easiest way to do this is to simply epar phot, and on
each of the four parameter lists to do a :e. Mostly we will leave the defaults alone, but in
fact you will have to change at least one thing in each of the four files.

IRAF
Image Reduction and Analysis Facility

PACKAGE = daophot
TASK = datapars
(scale = 1.) Image scale in units per pixel
(fwhmpsf= 4.0) FWHM of the PSF in scale units
(emissio= yes) Features are positive ?
(sigma = INDEF) Standard deviation of background in counts
(datamin= -30.) Minimum good data value
(datamax= 32000.) Maximum good data value
(thresho= 50.) Detection threshold in counts above background
(cthresh= 0.) Centering threshold in counts above background
(noise = poisson) Noise model
(ccdread=) CCD readout noise image header keyword
(gain =) CCD gain image header keyword
(readnoi= 10.) CCD readout noise in electrons
(epadu = 1.1) Gain in electrons per count
(exposur= CEXPTIME) Exposure time image header keyword
(airmass= airmass) Airmass image header keyword
(filter = FILTERS) Filter image header keyword
(obstime= UTMIDDLE) Time of observation image header keyword
(itime = INDEF) Exposure time
(xairmas= INDEF) Airmass
(ifilter= INDEF) Filter
(otime = INDEF) Time of observation
(mode = ql)

Figure 4: Parameters for datapars.

In datapars (Figure 4) we need to specify both the FWHM of a star image (fwhmpsf)
and the threshold value above sky (threshold) if we are going to use the automatic star-finding
routine daofind; the choices for these are discussed further below. In order to have realistic
error estimates for our aperture photometry we need to specify the CCD readnoise readnoise
in electrons and the gain (photons per ADU) for the CCD epadu. In order to correct the
results for the exposure time we need the exposure time keyword ezposure. Do an

imhead imagename 14 | page
to see a listing of all the header information (Figure 5).

By specifying the (effective) airmass and filter keywords, these can be carried along in
the photometry file for use when we do the standards solution (airmass and filter). Finally
we use dalamin and datamaz so we will know if we exceeded the linearity of the CCD in
the exposure, or whether there is some anomalously low valued pixel on which our star is
sitting. Since the value of the sky on our standard exposures is probably nearly zero, datamin
should be set to a negative value about three times the size of the readnoise in ADU’s; e.g.,
—3 x 10. + 1.1 = —30 in this example. We will consider when we do the PSF-fitting is if
the chip is really and truly linear up to the value quoted; for the purposes of simple aperture
photometry we are happy using 32000 ADU’s as the maximum good data value. (We do not
really want to use 32767 as after all the overscan bias was at a level of about 400; furthermore,
the flat-field was not identically 1.000)

In centerpars (Figure 6) we need to change the centering algorithm calgorithm from the
default value of “none” to “centroid”. If the FWHM of your frames are unusually large (> 4,
say) you would also do well to up the size of cbox to assure that the centering works well;
make it something like twice the FWHM. In this case the FWHM is 4.0 pixels and so we have
changed the default cbox from 5 to 8.

In fitskypars (Figure 7) the only things we must specify are the size and location of the
annulus in which the modal value of the sky will be determined. If you are going to use a
value of 15 for your photometry aperture, you probably want to start the sky around pixel
20. Keeping the width of the annulus large (5 pixels is plenty) assures you of good sampling,
but making it too large increases the chances of getting some bad pixels in the sky.

In photpars (Figure 8) we need to specify the size (radius) of the aperture we wish to
use in measuring our standards.

3.4 Doing It: Aperture Photometry at Last

There are basically two ways of proceeding in running photometry on the standard stars,
depending upon how you are going to identify the relevant star(s) on each frame. If you have
only one (or two) standard stars on each frame, and it is always one of the brightest stars
present, then you can avoid a lot of the work and use the automatic star-finding program
daofind to find all your standards and the whole thing can be done fairly non-interactively.
However, if you are one of the believers in cluster field standards, then you may actually
want to identify the standards in each field using the cursor on the image display so that the
numbering scheme makes sense. We describe below each of the two methods.

obj287[797,797] [real]l: U F16
No bad pixels, no histogram, min=-199.1429, max=6163.634
Line storage mode, physdim [896,797], length of user area 1661 s.u.
Created Fri 10:04:58 06-Dec-91, Last modified Fri 10:04:58 06-Dec-91
Pixel file ’tofu!/datal/massey/pixels/obj287.pix’ [ok]
'KPNO-IRAF’> /

’06-04-897 /

"KPNO-IRAF’> /

’13-10-887 /

New copy of obj287.imh

IRAF-MAX= 6.163634E3 / DATA MAX
IRAF-MIN= -1.991429E2 / DATA MIN
IRAF-B/P= 32 / DATA BITS/PIXEL
IRAFTYPE= ’FLOATING’> /

IRAF-MAX= 6.163634E3 / DATA MAX
IRAF-MIN= -1.991430E2 / DATA MIN
IRAF-B/P= 32 / DATA BITS/PIXEL

IRAFTYPE= ’FLOATING> /

OBSERVAT= ’CTIO > / ORIGIN OF DATA

CCDPICHO= 287 / ORIGINAL CCD PICTURE NUMBER
EXPTIME = 2 / ACTUAL INTEGRATION TIME (SECONDS)
DARKTIME= 2 / TOTAL ELAPSED TIME (SECONDS)
OTIME = 2 / SHUTTER OPEN TIME (SECONDS)
IMAGETYP= ’0BJECT > / DOBJECT,DARK,BIAS,ETC.
DATE-0BS= ’12/10/88 > / DATE (DD/MM/YY) OF OBSERVATION
RA = 1:52:29.00° / right ascension

DEC = 7-7:00:31.00° / declination

EPOCH = 1950. / EPOCH OF RA AND DEC

UT = 7 9:24:47.00° / wuniversal time

ST =7 6:06:16.00° / sidereal time

ATRMASS = 2.217149 / AIRMASS

DETECTOR= ’TI1 > / DETECTOR (CCD TYPE, PHOTON COUNTER, ETC)
CAMTEMP = 0. / CAMERA TEMPERATURE, DEG C

DEWTEMP = 0. / DEWAR TEMPERATURE, DEG C

FILTERS = 0 O > / FILTER BOLT POSITIONS

PREFLASH= 1.00000000000000E-4 / PREFLASH TIME (SECONDS)

VEBGAIN = 38 / VEB GAIN SETTING

SECPPIX = 0.292 / SEC OF ARC PER PIXEL

TRIM = ’0ct 12 6:36 Trim data section is [4:800,4:800]’

OVERSCAN= ’0Oct 12 6:36 Overscan section is [815:833,4:800] with mean=407.4’
ZEROCOR = ’0ct 12 6:36 Zero level correction image is Zero2.imh’
FLATCOR = ’0Oct 12 6:36 Flat field image is Uskytotal with scale=24015.’

CCDSEC = ’[4:800,4:800]"
CCDPROC = ’0Oct 12 6:36 CCD processing done’
CEXPTIME= 2.004

UTMIDDLE= ’9:24:48.0°

Figure 5: Header information for obj287.imh

10

PACKAGE
TASK =

(calgori=
(cbox =
(maxshif=
(minsnra=
(cmaxite=
(clean =
(rclean
(rclip
(kclean
(mkcente=
(mode =

PACKAGE =
TASK

(salgori=
(annulus=
(dannulu=
(skyvalu=
(smaxite=
(snrejec=
(skrejec=
(khist =
(binsize=
(smooth =
(rgrow
(mksky
(mode

PACKAGE =
TASK

(weighti=
(apertur=
(zmag =
(mkapert=
(mode =

daophot
centerpars

daophot
fitskypars

daophot
photpars

centroid) Centering algorithm

8.)
1.)

Centering box width in scale units
Maximum center shift in scale units

1.) Minimum SNR ratio for centering

10) Maximum iterations for centering algorithm
no) Symmetry clean before centering

1.) Cleaning radius in scale units

2.) Clipping radius in scale units

3.) K-sigma rejection criterion in skysigma
no) Mark the computed center

ql)

Figure 6: Parameters for centerpars.

IRAF

Image Reduction and Analysis Facility

mode) Sky fitting algorithm
20.) Inner radius of sky annulus in scale units
5.) Width of sky annulus in scale units
0.) User sky value
10) Maximum number of sky fitting iterations

50)

3.) K-sigma rejection limit in sky sigma
3.) Half width of histogram in sky sigma
0.1) Binsize of histogram in sky sigma
no) Lucy smooth the histogram

0.) Region growing radius in scale units
no) Mark sky annuli on the display

ql)

Figure 7: Parameters for fitskypars.

IRAF

Image Reduction and Analysis Facility

constant) Photometric weighting scheme for wphot
156.) List of aperture radii in scale units
25.) Zero point of magnitude scale
no) Draw apertures on the display
ql)

Figure 8: Parameters for photpars.

11

Maximum number of sky fitting rejection iteratio

3.4.1 Automatic star finding

First let’s put the name of each frame containing standard stars into a file; if you’ve put the
standard star exposures into a separate directory this can be done simply by a files *.imh
> stands. This will leave us with funny default output file names for a while (we advise
against including the “.imh” extension when we discuss crowded field photometry in the next
section), but this will only be true for a short intermediate stage.

We want to run daofind in such a way that it finds only the brightest star or two (pre-
sumably your standard was one of the brightest stars in the field; if not, you are going to
have to do this stuff as outlined below in the “Photometry by eye” section). We will delve
more fully into the nitty-gritty of daofind in the crowded-field photometry section, but here
we are content if we can simply find the brightest few stars. Thus the choice of the detection
threshold is a critical one. If you make it too low you will find all sorts of junk; if you make it
too high then you may not find any stars. You may need to run imexamine on a few of your
images: first display the image, and then imexamine, using the
a radial profile plot. (More on imexamine can be found in App. A.) Things to note are
the typical full-width-half-maximum and the peak value. If your sky is really around zero for

“r” cursor key to produce

your standard exposures, then using a value that is, say, fifty times the readnoise (in ADU’s)
is nearly guaranteed to find only the brightest few stars; do your radial plots in imexamine
show this to be a reasonable value? In the example here we have decided to use 500 ADUs
as the threshold (50 x 10. + 1.1 ~ 500).

Now epar daofind so it resembles that of Figure 9. Go ahead and execute it (Figure
10). Note that since verify is on that you will be given a chance to revise the FWHM and
detection threshold. By turning verbose on you will see how many stars are detected on each
frame. Make a note of any cases where no stars were found; these you will have to go back
and do with a lower threshold.

The run of daofind produced one output file named imagename.imh.coo.1 for each input
file. If you page one of these you will find that it resembles that of Figure 11. The file
contains many lines of header, followed by the z and y center values, the magnitudes above
the threshold value, the “sharpness” and “roundness” values, and finally an ID number. In
the example shown here in Figure 11 two stars were found: one about 3.1 mag brighter than
the threshold, and the other 1.0 mag brighter than the threshold.

In a few cases we doubtlessly found more than one star; this is a good time to get rid of
the uninteresting non-standards in each field. If things went by too fast on the screen for you
to take careful notes while running daofind we can find these cases now: do a

txdump *coo* image,id,x,y,mag yes

to get a listing of the location and number of stars found on each image. If you have cases
where there were lots of detections (a dozen, say) you may find it easier to first sort *.coo*
mag in order to resort the stars in each file by how bright they are. Of course, your standard
may not be the brightest star in each field; you may want to keep an eye on the z and y
values to see if it is the star you thought you were putting in the middle! To get rid of the
spurious stars you will need to edit each of the output files (e.g., edit 0bj002.imh.coo.1)
and simply delete the extras.

12

PACKAGE =
TASK =

image =
output =
(convolu=
(datapar=
(ratio
(theta
(nsigma =
(sharplo=
(sharphi=
(roundlo=
(roundhi=
(boundar=
(constan=
(graphic=
(display=
(command=
(cursor =
(mkdetec=
(interac=
(verify =
(update =
(verbose=
(mode =

daophot
daofind

IRAF
Image Reduction and Analysis Facility

@stands Input image

default Results file (default: image.coo.?)

) Output convolved image

) Data dependent parameters (fwhmpsf, threshold, e
) Ratio of sigmay to sigmax of Gaussian kernel

) Position angle of major axis of Gaussian kernel
) Width of convolution kernel in sigma

) Lower bound on sharpness for feature detection
) Upper bound on sharpness for feature detection
) Lower bound on roundness for feature detection
) Upper bound on roundness for feature detection
nearest) Boundary extension (constant, nearest, reflect,

0.) Constant for boundary extension
stdgraph) Graphics device
stdimage) Display device
) Image cursor: [x y wcs] key [cmd]
) Graphics cursor: [x y wcs] key [cmd]
no) Mark detected stars on the display
no) Interactive mode
yes) Verify critical parameters in non interactive mo
no) Update critical parameters in non interactive mo
yes) Print messages in non interactive mode
ql)

Figure 9: Parameter file for daofind.

13

da> daofind @stands
Results file (default: image.coo.?) (default):

FWHM of features in scale units (4.) (CR or value): 4.2
New FWHM of features: 4.2 scale units 4.2 pixels

Detection threshold in counts above background (50.) (CR or value): 500.
New detection threshold: 500. counts

Image: objOO1.imh fwhmpsf: 4.2 ratio: 1. theta: O. nsigma: 1.5

57.97 202.42 -0.395 0.293 0.226 1
303.97 334.75 -3.872 0.441 -0.003 2
386.92 547.80 -2.440 0.409 0.101 3
3 stars detected threshold: 500. 0.2 <= sharp <= 1. =-1. <= round <= 1.

Image: objO02.imh fwhmpsf: 4.2 ratio: 1. theta: 0. nsigma: 1.5

306.94 334.02 -3.147 0.367 -0.058 1
390.02 546.96 -1.000 0.351 -0.031 2
2 stars detected threshold: 500. 0.2 <= sharp <= 1. =-1. <= round <= 1.

Figure 10: Screen output from a daofind run.

Finally we can run aperture photometry on these frames, using the “.coo” files to locate

the standard star in each frame. epar phot until it resembles that of Figure 12. Note that
we are specifying a single output file name (“standstuff” in this example); all the photometry
output will be dumped into this single file, including things like the airmass and filter number.
Go ahead and execute phot. You should see something much like that of Figure 13 on the
screen. We will discuss the output below under “Examining the results”.

3.4.2 Photometry by Eye

In this section we will discuss the case of selecting stars without running the automatic star-
finding program, using the image display window and the cursor. The first step is to epar
phot so it resembles that of Figure 14. Note that we have replaced the coords coordinate
list with the null string (two adjacent double-quotes) and turned “interactive” on.

We need to display the frame we are going to work on in the imtool window:

display obj279 1

will display image obj279.imh in the first frame buffer.

Now let’s run phot. We are not likely to be too accurate with where we place the cursor,
50 to be generous we will increase the allowable center shift to 3 pixels; otherwise we will get
error messages saying that the “shift was too large”:

phot 0bj279 maxshift=3.

(Note that even though maxshift is a parameter of centerpars we can change it on the

14

#K IRAF = NOAO/IRAFV2.10BETA version %-23s
#K USER = massey name %-23s

#K HOST = tofu computer %-23s

#K DATE = 12-27-91 mm-dd-yr %-23s
#K TIME = 09:40:48 hh:mm:ss %-23s
#K PACKAGE = apphot name %-23s
#K TASK = daofind name %-23s

#

#K SCALE = 1. units %-23.7g

#K FWHMPSF = 4.2 scaleunit %-23.7g
#K EMISSION = yes switch %-23b

#K DATAMIN = -30. counts %-23.7g
#K DATAMAX = 30000. counts %-23.7g
#K EXPOSURE = CEXPTIME keyword %-23s
#K AIRMASS = airmass keyword %-23s
#K FILTER = FILTERS keyword %-23s
#K OBSTIME = UTMIDDLE keyword %-23s
#

#K NOISE = poisson model %-23s

#K THRESHOLD = 500. counts %-23.7g
#K CTHRESHOLD = 0. counts %-23.7g
#K SIGMA = INDEF counts %-23.7g
#K GAIN =" keyword %-23s

#K EPADU =1.1 e-fadu %-23.7g
#K CCDREAD =" keyword %-23s
#K READNOISE = 10. e- %-23.7g
#

#K IMAGE = 0bj002.imh imagename %-23s
#K FWHMPSF = 4.2 scaleunit %-23.7g
#K NSIGMA =1.5 sigma %-23.7g
#K RATIO = 1. number %-23.7g
#K THETA = 0. degrees %-23.7g

#

#K SHARPLO 0.2 number %-23.7g

#K SHARPHI
#K ROUNDLO
#K ROUNDHI
#

#N XCENTER YCENTER MAG SHARPNESS ROUNDNESS ID

number %-23.7g
number %-23.7g
number %-23.7g

#U pixels pixels # # # #
#F %-12.2f %-9.2f %-9.3f %-12.3f %-12.3f %-6d

306.94 334.02 -3.147 0.367 -0.058 1
390.02 546.96 -1.000 0.351 -0.031 2

Figure 11: Qutput file from daofind.

15

IRAF
Image Reduction and Analysis Facility

PACKAGE = daophot

TASK = phot
image = @stands Input image
coords = default Coordinate list (default: image.coo.?)
output = standstuff Results file (default: image.mag.?)"
(datapar=) Data dependent parameters
(centerp=) Centering parameters
(fitskyp=) Sky fitting parameters
(photpar=) Photometry parameters
skyfile = Sky file
(plotfil=) File of plot metacode
(graphic= stdgraph) Graphics device
(display= stdimage) Display device
(command=) Image cursor: [x y wecs] key [cmd]
(cursor =) Graphics cursor: [x y wcs] key [cmd]
(radplot= no) Plot the radial profiles
(interac= no) Mode of use
(verify = yes) Verify critical parameters in non interactive mo
(update = yes) Update critical parameters in non interactive mo
(verbose= yes) Print messages in non interactive mode
(mode = ql)

Figure 12: The parameter file for a run of phot.

command line for phot.) Also note that we left off the “.imh” extension for a reason: we
are going to take the default names for the output files, and they will be given names such
as 0bj279.mag.1 and so on. If we had included the .imh extension would would now be
getting 0obj279.imh.mag.1 names.

At this point you should get a flashing circle on your imtool window. Put it on the first
star you wish to measure and hit the space bar. The coordinates and magnitude should appear
in the gterm window, and you are ready to measure the next star on this frame. Proceed
until all the stars on this frame are measured, and then type a “q” followed by another “q”.
Display the next frame, and run phot on it.

When you get done you will have kerjillions of files, each with names like image.mag.1. It
will help if you keep track of the order in which you have measured your standard stars so
that you can easily asign them the appropriate names later on.

3.5 Examining the Results: the power of txdump

Depending upon which of the two methods you selected you will either have a single file
standstuff containing the results of all your aperture photometry, or you will have a file
for each frame (obj279.mag.1, obj280.mag.1 ...). In either event the file will pretty
much resemble that shown in Figure 15. The file begins with a large header describing the
parameters in force at the time that phot was run. There is, however, a real subtlety to this
statement. If you had changed a parameter in datapars, say, (or any of the other parameters)

16

da> phot @stands
Coordinate list (default: image.coo.?) (default):
Results file (default: image.mag.?)" (standstuff):

Centering algorithm (centroid):

New centering algorithm: centroid

Centering box width in scale units (5.):

New centering box width: 5. scale units 5. pixels
Centering threshold in counts above background (0.):

New centering threshold: O. counts

Sky fitting algorithm (mode):

Sky fitting algorithm: mode

Inner radius of sky annulus in scale units (20.):

New inner radius of sky annulus: 20. scale units 20. pixels
Width of the sky annulus in scale units (5.):

New width of the sky annulus: 5. scale units 5. pixels
Standard deviation of background in counts (INDEF):

New standard deviation of background: INDEF counts
File/list of aperture radii in scale units (15.):

Aperture radius 1: 15. scale units 15. pixels

Minimum good data value (-30.) (CR or value):

New minimum good data value: -30. counts

Maximum good data value (32000.) (CR or value):

0bj001 . i
0bj002.
0bj003.
0bj004.
0bj005.
0bj006.
0bj007.
0bj008.
0bj009.
0bj225.
0bj226.
obj227.
obj228.

-
El
=

imh
imh
imh
imh
imh
imh
imh
imh
imh
imh
imh
imh

"

: 304.01

oK oM oK K MM K K KK X

306.98
300.97
340.70
342.30
340.81
413.60
413.35
409.42
303.40
309.15
307.64
389.62

Figure

S S EESYSEY S

334.64 s: 28.46 m: 13.206 e: ok
334.11 s: 7.66 m: 10.771 e: ok
334.47 s: 16.96 m: INDEF e: err
486.29 s: 13.05 m: 11.786 e: ok
482.71 s: 5.14 m: 11.623 e: ok
480.49 s: 9.55 m: 12.152 e: ok
390.61 s: 8.69 m: 12.096 e: ok
387.60 s: 5.81 m: 11.495 e: ok
390.32 s: 10.48 m: 11.590 e: ok
472.97 s: 9.52 m: 12.090 e: ok
474.69 s: 5.65 m: 11.590 e: ok
477 .24 s: 13.73 m: 11.754 e: ok
381.63 s: 14.18 m: 11.587 e: ok

13: Running phot non-interactively on the standard stars.

17

IRAF
Image Reduction and Analysis Facility

PACKAGE = daophot

TASK = phot
image = Input image
coords = Coordinate list (default: image.coo.?)
output = default Results file (default: image.mag.?)"
(datapar=) Data dependent parameters
(centerp=) Centering parameters
(fitskyp=) Sky fitting parameters
(photpar=) Photometry parameters
skyfile = Sky file
(plotfil=) File of plot metacode
(graphic= stdgraph) Graphics device
(display= stdimage) Display device
(command=) Image cursor: [x y wecs] key [cmd]
(cursor =) Graphics cursor: [x y wcs] key [cmd]
(radplot= no) Plot the radial profiles
(interac= yes) Mode of use
(verify = yes) Verify critical parameters in non interactive mo
(update = yes) Update critical parameters in non interactive mo
(verbose= yes) Print messages in non interactive mode
(mode = ql)

Figure 14: Parameter file for phot when stars will be selected interactively.

between running daofind and phot, the header in phot will reflect only the setting that was
in force at the time that phot was run—in other words, it does not take the values of what
was used for the threshold from the coordinate file and retain these, but instead simply
copies what value of thresh happens to be in datapars at the time that phot is run. To
those used to the “self-documenting” feature of VMS DAOPHOT this is a major change!

Once we get past the header information we find that there are 5 lines per star measured.
The “key” to these five lines of information are found directly above the measurement of
the first star. On the first line we have “general information” such as the image name, the
beginning x and y values, the id, and the coordinate file. On the next line we have all the
centering information: the computed x and y centers, the x and y shift, and any centering
errors. On the third line of the file we have information about the sky. On the fourth line
we have some information out of the image header: what was the integration time, what
was the airmass, and what was the filter. Note that phot has used that integration time
in producing the magnitude—the exposures are now normalized to a 1.0 sec exposure. The
fifth line gives the actual photometry, including the size of the measuring aperture, the total
number of counts within the aperture, the area of the aperture, and the output magnitude,
photometric error, and any problems encountered (such as a bad pixel within the aperture).

We can extract particular fields from this file (or files) by using the txdump command.
For instance, are there any cases where there there were problems in the photometry? We
can see those by saying

txdump standstuff image,id,perror

18

#K IRAF = NOAO/IRAFV2.10BETA version %-23s

#K USER = massey name %-23s

(more)

#K PACKAGE = apphot name %-23s

#K TASK = phot name %-23s

#

#K SCALE = 1. units %-23.7g

#K FWHMPSF = 4. scaleunit %-23.7g

#K EMISSION = yes switch %-23b

#K DATAMIN = -30. counts %-23.7g

#K DATAMAX = 32000. counts %-23.7g

#K EXPOSURE = CEXPTIME keyword %-23s

#K AIRMASS = airmass keyword %-23s

#K FILTER = FILTERS keyword %-23s

#K OBSTIME = UTMIDDLE keyword %-23s

#

#K NOISE = poisson model %-23s

#K THRESHOLD = 50. counts %-23.7g

#K CTHRESHOLD = 0. counts %-23.7g

#K SIGMA = INDEF counts %-23.7g

#K GAIN =" keyword %-23s

#K EPADU =1.1 e-{adu %-23.7g

#K CCDREAD =" keyword %-23s

#K READNOISE = 10. e- %-23.7g

#

#K CALGORITHM = centroid algorithm %-23s

#K CBOXWIDTH = 8. scaleunit %-23.7g

#K MAXSHIFT = 1. scaleunit %-23.7g

{more)

#K KCLEAN = 3. sigma %-23.7g

#

#K SALGORITHM = mode algorithm %-23s

#K ANNULUS = 20. scaleunit %-23.7g

#K DANNULUS = 5. scaleunit %-23.7g

#K SMAXITER =10 number %-23d

#K SKREJECT = 3. sigma %-23.7g

#K SNREJECT = 50 number %-23d

#K KHIST = 3. sigma %-23.7g

(more

#K SKYVALUE = 0. counts %-23.7g

#

#K WEIGHTING = constant model %-23s

#K APERTURES = 15. scaleunit %-23s

#K ZMAG = 25. zeropoint %-23.7g

#

#N IMAGE XINIT YINIT ID COORDS LID «“

#U imagename pixels pixels filename ## «

#F %-23s %-10.2f %-10.2f %-5d %-23s %-5d

#

#N XCENTER YCENTER XSHIFT YSHIFT XERR YERR CIER CERROR

#U pixels pixels pixels pixels pixels pixels ## cerrors «

#F %-12.2f %-11.2f %-8.2f %-8.2f %-8.2f %-8.2f %-5d %-13s

#

#N MSKY STDEV SSKEW NSKY NSREJ SIER SERROR «“

#U counts counts counts npix npix ## serrors «

#F %-18.7g %-15.7g %-15.7g %-7d %-6d %-5d %-13s

#

#N ITIME XAIRMASS IFILTER OTIME «

#7U timeunit number name timeunit “

#F %-18.7g %-15.7g %-23s %-23s

#

#N RAPERT SUM AREA MAG MERR PIER PERROR «“

#7U scale counts pixels mag ma perrors «

#F %-12.2f %-15.7f %-15.7f %-7.3f %-6.3f %-5d %-13s

#

obj001.imh 303.97 334.75 1 0bj001.imh.coo.1 1 «
304.01 334.64 0.04 -0.11 0.00 0.00 0 No'error «“
28.46224 8.600574 4.441579 706 2 0 No'error «
10.004 1.246568 00 0:02:55.0 «
15.00 542160.3 707.2919 13.206 0.002 0 No'error

0bj002.imh 306.94 334.02 2 0bj002.imh.coo.1 1 «“

(more)

Figure 15: Qutput file from phot.

19

(If you did “Photometry by eye” you can substitute *mag™ for standstuff.) When it queries
you for the “boolean expression” type

perror!=“No_error”
The “!=" construction is TRAF-ese for “not equal to”; therefore, this will select out anything
for which there was some problem in the photometry.

3.6 The Standard Star Solutions

Now that we have instrumental magnitudes for the standard stars, we need to use these to
find the transformation equations that will allow us to put our observations on the standard
system. The routines for doing this are found in the photcal package. There are many
routes to the same end-point, and the most straight-forward way depends upon what sort of
standard observations you made—you would want to do one thing if you have one standard
star per field as we do in this example (i.e., isolated Landolt stars), while you would want to
do something else if you instead had lots of standard stars in each field (i.e, the “VideoCam
M92 field”). We will follow the one path through this section, but try to point out other
choices you may wish to make; there is also excellent on-line help available by typing help
pcintro.

The steps we need to go through for finding the transformation equations go something

like this:

1. Create a catalog that contains the magnitudes and color indices of the standard stars on
the standard system. A suitable catalog of the Landolt UBVRI standards (i.e., Landolt
1983 Astronom Journ 88, 439) is already available, and other “standard” standards
catalogs may come on-line in the future; otherwise, the user will have to create his/her
own.

2. Create a “standard star observations” file that consists of the airmass, instrumental
magnitudes and errors for each set of observations (u,b, and v, say).

3. Create a file containing the algebraic form of the transformation equations, and refer-
ences to which columns in the tables contain which information. A sample template is
available for making transformations using the Landolt catalog.

4. Fit the transformation equations, throwing out points to suit your fancy. This step is
done interactively, with lots of cool graphics, and should find it deeply satisfying.

After you have reduced your program stars, you will need to then create a “program star
observations file” that consists of the relevant instrumental magnitudes, airmasses, etc for
each set of observations, and finally you will then apply the transformations to these data.
Details of this will will given in the final section (Sec. 5).

3.7 Making the Standard Star Catalog

The standard star catalog consists of the the magnitudes and indices for the standard stars
on the standard system; i.e., what you might type in directly from one of Landolt’s papers. If

20

you are using Landolt (1983) UBVRI standards you do not have to do anything; this catalog
already is available on-line in the correct format. Other catalogs may also be available; do a
page photcal$catalogs/README to see what else may be there. Any other catalog can
be created by the user by simply running mkcatalog; first read the “help” page for this task.
Note that there are actually two files associated with each “catalog”—the data itself, and a
file describing the format of this catalog.

3.8 Making the Standard Star Observations File

We need to create a file containing the instrumental magnitudes for our standard stars—as
in the case of the standard star catalog, there will actually be two files, a file containing the
data, and a file containing the format of the file.

In the example we are working through here, there is exactly one standard star observation
per file, and so it is pretty easy to determine what “u” value goes with what “b” value.
(Following normal nomenclature, we are designating magnitudes on the standard system
with capital letters (i.e., UBV) and magnitudes on the instrumental system as lower case
letters (i.e., ubv.)

We start out by using the editor to create a file showing what image names define a set.
If we were to list all our standard star files, we might do this a imhead @stands and find a
list like that shown in Fig. 16

We need to use the editor to create a file resembling that of Fig. 17, that contain matched
observations.

In this example there are several points of interest. (1) The image names have to be given
with the “.imh” extension, because this is how the files happen to be listed in our photometry
file standstuff. (See Fig. 15.) This silliness traces back to the original way we ran daofind
on the list created by files. (2) In listing the files, we ignored the order within any set; a
comparison between Figs. 17 and 16 shows that the order is sometimes u,b,v and sometimes
v,b,u. Note also that there was no v exposure of for standard star 95132 (we realized at the
telescope that a 1 sec exposure in V saturated this star, and so we kept only the U and B
images). (3) We have labeled each set with the standard star name from the on-line Landolt
catalog; note the prevalence of the underscore (_) character.

We are now ready to create the file of standard star observations using mknobsfile (note
the “n”; mkobsfile [without the “n”] does things a little differently). Edit the parameters
for mknobsfile so they resemble that of Fig. 18.

Running mknobsfile will then produce output that resembles that of Fig. 19.

All mknobsfile did was create a file (standobs in this example) that contains the standard
star observations in some “matched” way. We see immediately that there is some problem—it
found two stanards in the last set of observations of F_16 rather than the single one we had.
Let’s look at the contents of the file created by mknobsfile, standobs (Fig. 20).

We see that the problem was that the U, B and V exposures of the last F_16 observation
were not well lined up: we had a matching tolerance of 10 pixels in Fig. 18 and although the
B and V exposures were that close together, the U exposure was not well aligned. If we had

21

ph> imhead @stands
0bj001.imh[797,797] [real] : G93-48 U

0bj002.imh[797,797] [reall: B G93-48

0bj003.imh[797,797] [reall: V G93-48

0bj004.imh[797,797] [reall : GD246 V

0bj005.imh[797,797] [reall: B GD246

0bj006.imh[797,797] [real]l : U GD246

0bj007.imh[797,797] [reall: F108 U

0bj008.imh[797,797] [reall: F108 B

0bj009.imh[797,797] [reall: V F108

0bj225.imh[797,797] [reall: G246 U

0bj226.imh[797,797] [reall: B G246

0bj227.imh[797,797] [reall: G246 V

0bj228.imh[797,797] [reall : F108

0bj229.imh[797,797] [reall: B F108

0bj230.imh[797,797] [reall: F108

0bj231.imh[797,797] [reall: F16 U

0bj232.imh[797,797] [reall: F16 B

0bj233.imh[797,797] [reall: F16 V

0bj234.imh[797,797] [reall: F22 V

0bj235.imh[797,797] [reall: B F22

0bj236.imh[797,797] [reall: U F22

0bj237.imh[797,797] [reall: U F24

0bj238.imh[797,797] [reall: F24 B

0bj239.imh[797,797] [reall: F24 V

0bj240.imh[797,797] [reall: 95-132 U (only7)
obj241.imh[797,797] [real]: B 95-132

0bj279.imh[797,797] [real]: GD71 V (one of these is bound to be it...)
0bj280.imh[797,797] [reall: GD71

0bj281.imh[797,797] [reall: U
0bj282.imh[797,797] [reall: U
0bj283.imh[797,797] [reall : B
0bj284.imh[797,797] [reall: V F22
0bj285.imh[797,797] [reall : V
0bj286.imh[797,797] [reall : B
0bj287.imh[797,797] [reall: U

Figure 16: The images containing standard star observations.

22

edit standstars

G93_48 : objO01.imh objO02.imh objO03.imh
GD_246 : objOO04.imh objOO5.imh objO06.imh
F_108 : 0objO07.imh obj008.imh objO09.imh
GD_246 : obj225.imh obj226.imh obj227.imh
F_108 : 0bj228.imh 0bj229.imh 0bj230.imh
F_16 : 0obj231.imh obj232.imh obj233.imh
F_22 : 0obj234.imh obj235.imh obj236.imh
F_24 : 0obj237.imh obj238.imh 0bj239.imh
95_132 : 0bj240.imh obj241.imh

GD_71 : obj279.imh 0obj280.imh obj281.imh
F_22 : 0bj282.imh 0bj283.imh obj284.imh
F_16 : 0bj285.imh obj286.imh obj287.imh

Figure 17: An example of matching observations of standard stars. Note in this example
the form of the standard star names; this is how the stars are labeled in the on-line Landolt
catalog. The file shown above standstar was simply created with the editor.

IRAF
Image Reduction and Analysis Facility
PACKAGE = photcal
TASK = mknobsfile

photfile= standstuff The input list of APPHOT/DAOPHOT databases
idfilter= 00,10,20 The list of filter ids

imsets = standstars The input image set file

observat= standobs The output observations file

(obspara=) The input observing parameters file

(obscolu= 2,3,4) The format of obsparams

(shifts =) The input x and y coordinate shifts file
(apercor=) The input aperture corrections file

(apertur= 1) The aperture number of the extracted magnitude
(toleran= 10.) The tolerance in pixels for position matching
(allfilt= no) Output only objects matched in all filters
(verify = no) Verify interactive user input ?

(verbose= yes) Print status, warning and error messages 7
(mode = ql)

Figure 18: The parameter file for mknobsfile. The file standstuffis the file containing all the
instrumental magnitudes; if instead you followed the instructions in Sec. 3.4.2 above and have
multiple files named obj223.mag.1, etc., then substitute *mag* here. The filter list should
be in some logical order (such as “u”, “b”, “v”); we realized what the filters were called by
inspecting our photometry file(s). The “imsets” file is the file created that have the matched
set of observations.

23

ph> mknobsfile

The input list of APPHOT/DAOPHOT databases (standstuff):
The list of filter ids (00,10,20):

The input image set file (standstars):

The output observations file (standobs):

Warning: Image set 9 name 95_132 is incomplete

Observations file: standobs
Image set: G93_48 1 stars written to the observations file
Image set: GD_246 1 stars written to the observations file
Image set: F_108 1 stars written to the observations file
Image set: GD_246 1 stars written to the observations file
Image set: F_108 1 stars written to the observations file
Image set: F_16 1 stars written to the observations file
Image set: F_22 1 stars written to the observations file
Image set: F_24 1 stars written to the observations file
Image set: 95_132 1 stars written to the observations file
Image set: GD_71 1 stars written to the observations file
Image set: F_22 1 stars written to the observations file
Image set: F_16 2 stars written to the observations file

Figure 19: Running the mknobsfile routine.

set a matching tolerance of 15 this would have worked. Instead, we now simply have to use
the editor to delete the three “INDEF” values shown for F_16.

This problem does suggest how we would treat data for which our fields contained sev-
eral standard stars, rather than just one each. In that case we would have been better off
labeling our image sets (Fig. 17 not with the name of some individual standard star, but
with something like the field name: “SA95”, say, or “M92”. Running mknobsfile would
then have created names like “SA95-17, “SA95-2”, “SA95-3” for each star it found within the
photometry file corresponding to the images listed. At this point you would have to use the
editor to edit in the “real” name of each standard star so that the correct standard indices
could be found in the catalog during the next step, solving the transformation equations. We
might also have wanted to decrease the matching tolerance to something like 5 pixels.

As well as this output file standobs, we also generated a second file called fstandobs.dat
when we ran mknobsfile. This second file is a “format” file and describes the format of the
observations file. The contents of this format file are needed in setting up the transformation
equations; the contents are shown in Fig. 21

3.9 Defining the Transformations

The first step in solving the transformation equations is to generate a text file (called a “con-
figuration file” in PHOTCAL-ese) containing (a) descriptions of the “catalog” (basically what
columns in what file contain the standard star indices), (b) descriptions of the “observations”
(what columns in what file contain the standard star airmasses, instrumental magnitudes and
errors, and (c) the algebraic form of the transformation equations. If you are dealing with

24

FIELD FILTER AIRMASS XCENTER YCENTER MAG MERR

G93_48 00 1.247 304.01 334.64 13.206 0.002
* 10 1.242 306.98 334.11 10.771 0.002
* 20 1.238 300.97 334.47 INDEF INDEF
GD_246 00 1.606 340.81 480.49 12.152 0.002
* 10 1.625 342.30 482.71 11.623 0.002
* 20 1.638 340.70 486.29 11.786 0.003
F_108 00 1.339 413.60 390.61 12.096 0.002
* 10 1.329 413.35 387.60 11.495 0.002
* 20 1.322 409.42 390.32 11.590 0.003
GD_246 00 1.542 303.40 472.97 12.090 0.002
* 10 1.551 309.15 474 .69 11.590 0.002
* 20 1.558 307.64 477.24 11.754 0.003
F_108 00 1.311 386.50 381.62 12.050 0.002
* 10 1.306 389.59 380.58 11.471 0.002
* 20 1.302 389.62 381.63 11.587 0.003
F_16 00 1.100 414.61 393.30 12.624 0.003
* 10 1.097 412.59 391.48 11.093 0.002
* 20 1.096 411.01 392.24 11.015 0.002
F_22 00 1.268 447.01 413.95 12.298 0.002
* 10 1.271 448 .92 414 .32 11.489 0.002
* 20 1.273 450.04 417.19 11.428 0.002
F_24 00 1.246 398.57 408.95 11.367 0.001
* 10 1.243 400.12 407 .36 10.930 0.002
* 20 1.241 394.83 408.86 INDEF INDEF
95_132 00 1.376 445.91 422.60 13.173 0.007
* 10 1.366 444.60 420.62 11.255 0.002
* 20 INDEF INDEF INDEF INDEF INDEF
GD_71 00 1.440 335.29 527.67 12.116 0.002
* 10 1.440 341.35 528.02 11.562 0.003
* 20 1.440 340.05 530.37 11.669 0.003
F_22 00 2.063 377.16 372.50 12.721 0.003
* 20 2.106 379.72 372.40 11.538 0.004
* 10 2.083 383.03 371.85 11.701 0.004
F_16 00 2.217 331.97 355.77 13.193 0.007
* 10 INDEF INDEF INDEF INDEF INDEF
* 20 INDEF INDEF INDEF INDEF INDEF
F_16-2 00 INDEF INDEF INDEF INDEF INDEF
* 10 2.192 341.91 358.41 11.375 0.003
* 20 2.167 341.67 362.88 11.172 0.003

Figure 20: The output file from mknobsfile before correction.

25

Declare the observations file variables

observations

X00 3 # airmass in filter 00

x00 4 # x coordinate in filter 00

y00 5 # y coordinate in filter 00

mO0 6 # instrumental magnitude in filter 00
error (m00) 7 # magnitude error in filter 00

X10 9 # airmass in filter 10

x10 10 # x coordinate in filter 10

y10 11 # y coordinate in filter 10

m10 12 # instrumental magnitude in filter 10
error(m10) 13 # magnitude error in filter 10

X20 15 # airmass in filter 20

x20 16 # x coordinate in filter 20

y20 17 # y coordinate in filter 20

m20 18 # instrumental magnitude in filter 20
error(m20) 19 # magnitude error in filter 20

Figure 21: The contents of the “format” file fstandobs.dal corresponding to that file standobs.

simple UBVRI stuff then most of this is handled for you, and you merely need to do a little
editing; in the worse case, you can do a help config and attempt to figure out the syntax of
this very versatile task.

In our case we wish to solve transformation equations that are of this form:

u=U+4 Const + Color Term x (U — B) + Exztinction X Airmass

b= B + Const + Color Term x (B — V') + Extinction X Airmass
v =V 4 Const 4+ Color Term x (B — V) + Eztinclion X Airmass

Note that the instrumental magnitudes are on the left, and the standard magnitudes and
indices are on the right; we are after the “best” values (in a least-squares sense) of each
zero-point constant “Const”, the color term coeflicient, and the extinction coefficient. A few
wrinkles to keep in mind: the airmasses are a little bit different for the “u”, “b”, and “v”
exposures, and as you will infer from Fig. 21 are called “X007, “X10”7, and “X20” in this
example. The instrumental magnitudes are similarly going to be “m00”, “m10”, and “m20”.
Also, the Landolt catalog does not explicitly contain the the standard U magnitude; instead,
it contains V, B-V, and U-B, and it is the sum of these three that will give the standard U.
Finally, formating considerations result in in the indices U-B being listed not as U-B but as
UB. Yes, this is confusing, but apparently it cannot be helped.

Why do we choose to solve the equations in this form? Most photoelectric photometrists
are used to equations written in terms of the color indices themselves (rather than U or B),
and with the order inverted than that shown above, i.e., with the standard indices on the left
and the instrumental magnitudes on the right. Why do it differently with CCD data?

26

IRAF
Image Reduction and Analysis Facility

PACKAGE = photcal

TASK = mkconfig
config = ctio.cfg The new configuration file
catalog = landolt The source of the catalog format specification
observat= standobs The source of the observations file format
transfor= landolt The source of the transformation equations
(templat=) An existing template configuration file
(catdir =)_.catdir) The standard star catalog directory
(verify = no) Verify each new entry
(edit = yes) Edit the new configuration file
(check = yes) Check the configuration file
(verbose= yes) Verbose output
(mode = ql)

Figure 22: The mkconfig task.

The answer is that while photoelectric observers were usually able to cycle through dif-
ferent filters quite rapidly, CCD observers can’t—sometimes we even have to put up with 4-
minute read-down times. Similarly, UBVRI photoelectric observations are often rapid enough
that variations in transparency were circumvented. In addition, centering errors (from which
analysis of CCD data is essentially immune!) might be similar in all filters if one observed
rapidly enough. These, and other factors, resulted in the colors usually being better deter-
mined than the individual magnitudes. With CCD data the measurements through each filter
are much more “independent” than with photoelectric photometry. A single airmass usually
suflices for all the filters in photoelectric UBVRI work, while in extreme cases CCD exposures
through each filters might be made on separate nights!

Edit the task mkconfig until it resembles that of Fig. 22, substituting in whatever name
you would like for the configuration file name (ctio.cfg in this example) and making sure that
the “observation” file corresponds to whatever you generated with mknobsfile. Running the
task will generate the file ctio.cfg and immediately dump you into the editor to give you a
chance to modify the file. The unmodified file appears in Fig. 23.

So far so good! The first part of the file (labeled “catalog”) is simply the description of the
standard star catalog; i.e., what the variables are called and what columns they are in. The
second part of the file (labeled “observations”) is simply the content of the “format file” shown
in Fig. 21. The third part of the file (“transformation”) is a set of sample transformation
equations. The coefficients that we will solve for are called “ul”, “u2”, and so forth, and
reasonable initial values” are supplied. The coefficient under “fit” in each equation will
be solved for, while those listed under “const” will be left alone, but you can change this
interactively when you do the fit. Note that second-order color terms are explicitly included
in these equations (u4 * UB * XU) but are implicitly set to zero by setting “ud4 = const =
0.0”.

We must (a) get rid of the two equations we don’t want (we are not fitting R or I), and

27

Declare the Landolt UBVRI standards catalog variables

catalog

v 4 # the V magnitude
BV 5 # the (B-V) color
UB 6 # the (U-B) color
VR 7 # the (V-R) color
RI 8 # the (R-I) color
VI 9 # the (V-I) color

error(V) 12
error(BV) 13
error(UB) 14

the V magnitude error
the (B-V) color error
the (U-B) color error
error(VR) 15 the (V-R) color error
error(RI) 16 the (R-I) color error
error(VI) 17 # the (V-I) color error
Declare the observations file variables

ECIE I L

observations

Xo00 3 # airmass in filter 00

x00 4 # x coordinate in filter 00

y00 5 # y coordinate in filter 00

mO0 6 # instrumental magnitude in filter 00
error (m00) 7 # magnitude error in filter 00

X10 9 # airmass in filter 10

x10 10 # x coordinate in filter 10

y10 11 # y coordinate in filter 10

m10 12 # instrumental magnitude in filter 10
error(mi0) 13 # magnitude error in filter 10

X20 15 # airmass in filter 20

x20 16 # x coordinate in filter 20

y20 17 # y coordinate in filter 20

m20 18 # instrumental magnitude in filter 20

error(m20) 19 # magnitude error in filter 20
Sample transformation section for the Landolt UBVRI system

transformation

fit ul=0.0, u2=0.65, u3=0.000
const u4=0.0
UFIT : mU = (UB + BY + V) + ul + u2 * XU + u3 * UB + u4 * UB * XU

fit b1=0.0, b2=0.35, b3=0.000
const b4=0.0
BFIT : mB = (BV + V) + bl + b2 * XB + b3 * BV + b4 * BV * XB

fit v1=0.0, v2=0.17, v3=0.000
const v4=0.0
VFIT : mV =V + vl + v2 * XV + v3 * BV + v4 * BV * XV

fit r1=0.0, r2=0.08, r3=0.000

const r4=0.0

RFIT : mR = (V - VR) + r1 + r2 * XR + r3 * VR + r4 * VR * XR
(more)

Figure 23: Running mkconfig dumps you in the editor confronting this file.
28

transformation

fit ul=0.0, u2=0.65, u3=0.000

const u4=0.0

UFIT : mOO = (UB + BV + V) + ul + u2 * X00 + u3 * UB + u4 * UB * X00
fit b1=0.0, b2=0.35, b3=0.000

const b4=0.0

BFIT : m10 = (BV + V) + bl + b2 * X10 + b3 * BV + b4 * BV * X10

fit v1=0.0, v2=0.17, v3=0.000
const v4=0.0
VFIT : m20 = V + vl + v2 * X20 + v3 * BV + v4 * BV * X20

Figure 24: The edited form of the transformation equations.

(b) we must change the name of the observational variables “mU” “XU”, “mB”,“XB” ,‘mV”,
and “XV” to be “m00”,“X00”, and so on, as listed in the “observations” section. When we
are done, the “transformations” section should resemble that of Fig. 24.

When you are done, exit the editor in the normal way (:wq for me). You will hopefully see
a listing showing you the number of catalog variables, observational variables, and “parame-
ters” (read “coefficients”), along with with a written guarantee that there is no funny stuff:
“Warnings = 0”7 and “Errors = 07. After this, you are ready for a real treat—the interactive
transformation equation solver!

3.10 Solving Those Transformation Equations

The task that actually solves the transformation equations is called fitparams. Edit the
parameter file of this task until it resembles that of Fig. 25. Upon running this task, you will
be confronted with a plot like that of Fig. 26.

Clearly one point is just plain crazy: however, because we set nreject to some positive
value, fitparams was smart enough to figure this out. We could simple delete this point by
hitting “d” and following with an “f” for a new fit, but there is no need to, either. We can
easily rescale the plot: type a w (for “window”) followed by a “y” to expand the y-axis. Do it
a few more times to really be able to see those points. What are the values of the coefficients,
and what are the individual residuals like? You can type an “:vshow” in the graphics window,
and get something that resembles that of of Fig. 27.

Of the remaining error, how much of it is due to non-linear color terms? We can plot
the residuals against any variable by hitting a “g”. It will ask us what “graph key [is] to be
defined, to which we can answer “k” We will then be asked to “Set graph axis types”. We
could answer at this point “UB, residuals” (or “X00, residuals”, or anything else you might
want to see). Then type a “k” to see the plot. Does there appear to be something systematic
with U-B color not allowed for in the linear term? If the points simply scatter, as they do in
Fig. 28 then leave well-enough alone!

29

PACKAGE =
TASK

observat=
catalogs=
config =
paramete=
(weighti=
(addscat=
(toleran=
(maxiter=
(nreject=
(low_rej=
(high_re=
(grow =
(interac=
(logfile=
(log_unm=
(log_fit=
(log_res=
(catdir =
(graphic=
(cursor
(mode

IRAF

Image Reduction and Analysis Facility

photcal
fitparams

standobs
landolt
ctio.cfg
ctio.ans
photometric)
yes)
3.0000000000000E-5)
15)
2)
3.)
3.)
0.)
yes)
testlog)
yes)
yes)
yes)
)_.catdir)
stdgraph)
)
ql)

Figure 25: The

List of observations files

List of standard catalog files
Configuration file

Output parameters file

Weighting type (uniform,photometric,equations)
Add a scatter term to the weights 7

Fit convergence tolerance

Maximum number of fit iterationms
Number of rejection iterations

Low sigma rejection factor

High sigma rejection factor

Rejection growing radius

Solve fit interactively 7

Output log file

Log any unmatched stars 7

Log the fit parameters and statistics 7
Log the results 7

The standard star catalog directory
Output graphics device

Graphics cursor input

parameter set for the first pass through fitparams.

30

NOAO/IRAF V2.10BETA massey@tofu Mon 11 05:24 06-Jan-92
low rej=3., hngh rej=3 t=2, grow=0.
tal=12, rejected="T, eleteJ 0, R 15=0.01833
tolerance—3 00E-5, maxiter=15, iterations=11
m00 = (UB+BV+V)+1 +u2*X00+u3*UB+u4*UB*X00

Solution converged

T T T T T T T =
8L -
6 _|
=
R .
2 _
L b+ + +
o= ! IR L ! +
1.5 11.75 12 12.25 12.5 12.75 13 13.25
function

Figure 26: The residuals as a function of the fit (U mag). Note that the one wildly discrepant
point at (13.2,.7) was automatically rejected.

Are you curious about whether we needed that color times airmass term was significant
or not? Remember, we set “ud4=0.0" and left it a constant. We could at this point see
the effect of including it by typing :fit u4 0.0. Doing this lowers the RMS from 0.018 to
0.014. Well...we're not convinced this is significant (a :vshow reveals that the value of ud
is —0.07 £ 0.13), and so we decide to change it back to a constant by doing a :const u4 0.0.
When we are happy we type a “q” to go on to the next equation.

Occasionally you will find that the solution fails to converge—you’ll notice this because (a)
the “residuals” plots will be blank, (b) the RMS will be “INDEF” at the top of the plot, and
(c) the number of iterations will equal the maximum number of iterations (maxiter). Simply
change the tolerance from its default value of 3.000e-5 to something just a mite large...7e-5,
say. You can do this by a :tolerance Te-5. Do a new fit (f) and all is likely to be well.

When we are all done we can page through the log file we specified (see Fig. 25. In this
case we find that all three observations of the star G93.48 are bad—tenths and tenths of
magnitudes off. This must have been the wrong star! Looking back at the image and the
finding chart reveals the telescope was pointed about half a degree too far north! Oh, well, it
was the start of a run!

A summary of useful fitparams commands follows:

- Print options (these and many more!)

d - Delete point nearest cursor

31

low_reject 3.
high_reject 3.
nreject 2
grow 0.
tol 3.000000E-5
maxiter 15
niterations 11
total_points 12
rejected 1
deleted 0
standard deviation 0.02149688
reduced chi 1.001827
average error 0.02145767
average scatter 0.01743245
RMS 0.0183326
parameter value error
ul -0.3669052 0.0340730 (fit)
u2 0.5310039 0.0204199 (fit)
u3 -0.0544222 0.0128918 (fit)
u4 0.0000000 0.0000000 (constant)
objectid function fit residuals sigma
G93_48 INDEF INDEF INDEF INDEF
GD_246 12.152 12.13554 0.01646042 0.01897077
F_108 12.096 12.07869 0.01731205 0.01897077
GD_246 12.09 12.10156 -0.01155567 0.01897077
F_108 12.05 12.06382 -0.01381969 0.01897077
F_16 12.624 12.62638 -0.002383232 0.02264708
F_22 12.298 12.27782 0.02018356 0.02099739
F_24 11.367 11.39651 -0.02950859 0.02273522
95_132 13.173 13.16032 0.0126791 0.02477681
GD_71 12.116 12.13055 -0.01455021 0.02310606
F_22 12.721 12.69996 0.02103519 0.02111612
F_16 13.193 13.21951 -0.02651405 0.02351362

Figure 27: The results of doing a :vshow while in fitparams. Note that the rejected point
must be G93_48. The RMS is about 0.02 mag, the value of chi is nearly 1., and all is therefore
right witht eh world. The values of the fitting coeflicients, and their errors, are also shown.

32

NOAO/IRAF V2.10BETA massey@tofu Mon 09 48: 59 30-Dec-91
low rej=3., hngh rej=3 t=2, w=0,
total=12. ejected=0, deletedt, i B 01847
tolerance=3.000E-5, maxiter=15, rations=4

m00 = (UB+BV+V)+u1+u2*X00+u3*UB+u4*UB*X00

Solution converged

| | | | | |
02| . -
4 +
01 =
2z op -
_-§ -+
- —
T
L+
-.02]
-.03+ +]
| | | | | |
-1 -.75 -.5 -.25 0 25

Figure 28: No second-order color term appears to be present in these data.

u - Undelete point nearest cursor

f - Do the fit again and resraw or overplot the graph

g - Redefine some key as a graph key, with user-specified axis
- Plot residuals versus fit

w - Window the plot (follow the “w” with a “?” to see options

q - Quit, and go onto the next equation

:vshow - Show the error and results of the fit

:fit param [value | Change a constant coefficient to a fitted coefficient with a specified initial
value.

:const param [value | Change a fitted coefficient to a constant with a specified value.

:tolerance [value | Change the value of tolerance (useful if the solution fails to converge).

33

4 Crowded Field Photometry: IRAF /daophot

4.1 Historical Summary

In the beginning (roughly 1979) astronomers interested in obtaining photometry from stars
in “relatively” crowded fields would make the journey to Tucson in order to use Doug Tody’s
RICHFLD program which ran on the IPPS display system. RICHFLD allowed the user to
define a point-spread-function (PSF), and then fit this PSF to the brightest star in a group,
subtract off this star, and then proceed to the next brightest star, etc. This represented a
giant qualitative improvement over the possibilities of aperture photometry, and allowed stars
separated by a few FWHM’s to be accurately measured.

Beginning in 1983, a group of RICHFLD users at the DAO (including Ed Olszewski and
Linda Stryker) began modifications to the “poorman” program of Jeremy Mould. This was
largely motivated by the implementation of the “Kitt Peak CCD” at the prime-focus of the
Tololo 4-m, and the idea was to design a crowded-field photometry program that (a) allowed
simultaneous PSF-fitting, (b) made use of the known noise characteristics of a CCD to do
the fitting in a statistically correct manner (i.e., to make “optimal” use of the data), and
(c) to be largely batch oriented. In mid-1983 Peter Stetson arrived at the DAO, and took
over the effort. The result was DAOPHOT, which did all these things and more. By 1986
DAOPHOT was well distributed within the astronomical community. The basic algorithms
and philosophy can be found in Stetson (1987 PASP 99, 111).

DAOPHOT (and its companion program ALLSTAR) were not part of a photometry pack-
age; they were instead stand-alone Fortran programs which did not deal in any way with the
issue of image display or what to do with the instrumental magnitudes once you had them.
They were also only supported on VMS, although several “frozen” versions were translated
into UNIX by interested parties around the country. There was therefore much to be gained
from integrating the algorithms of daophot with IRAF in order to make use of the image
display capabilities and general tools for manipulating images. Also, since many astronomers
were now reducing their CCD data with IRAF, it avoided the necessity of translating the
IRAF files into the special format needed by VMS DAOPHOT. Dennis Crabtree began this
translation program while at the DAO; it was taken over by Lindsey Davis of the IRAF group
in early 1989, and taken to completion in early 1990. Pedro Gigoux of CTIO wrote the first
version of the PHOTCAL routines used in determining the transformations from the instru-
mental to standard system, and has reamined working on this package collaboratively with
Lindsey Davis.

4.2 daophot Overview

The steps involved in running daophot are certainly more involved than in simple aperture
photometry, but they are relatively straightforward. The following sections will lead you
through the necessary procedures. Alternative routes will be noted at some points, and more
may be gleaned from reading the various “help” pages. A general outline is given here so that
you have some overview in mind; a detailed step-by-step summary is provided at the end of

34

this section.

e Before you reduce the first frame, imexamine your data to determine FWHM’s and the
radius at which the brightest star you wish to reduce blends into the sky. Run imhead
to find the “key-words” in your data headers for exposure times, filter number, and
airmass. Enter these, along with the characteristics of your chip (read-noise, photons
per ADU, maximum good data value) into the parameter sets datapars and daopars.

e Use daofind and tvmark to produce a list of x and y positions of most stars on the
frame.

e Use phot to perform aperture photometry on the identified stars. This photometry will
be the basis of the zero-point of your frame via the PSF stars. This is also the only
point where sky values are determined for your stars.

o Use psfto define the PSF for your frame. If your PSF stars are crowded this will require
some iteration using the routines nstar and substar.

e Use allstar to do simultaneous PSF-fitting for all the stars found on your frame, and
to produce a subtracted frame.

e Use daofind on the subtracted frame to identify stars that had been previously hidden.

e Run phot on the original frame to obtain aperture photometry and sky values for the
stars on the new list.

e Use pappend to merge the two aperture photometry lists.

e Run allstar again on the merged list.

When you have done this for your U, B, and V frames it is then time to

e Use txdump, tvmark, and the image display capabilities to come up with a consistent
matching between the frames. If there are additions or deletions then you will need to
re-run phot and allstar one more time.

Finally you will need to

e Determine the aperture correction for each frame by subtracting all but the brightest
few isolated stars on your frames and then running phot to determine the light lost
between your zero-point aperture and the large aperture you used on your standard
stars.

35

4.3 How Big Is A Star: A Few Useful Definitions

The parameter files datapars and daopars contain three “size-like” variables, and although
this document is not intended as a reference guide, there is bound to be confusion over these
three parameters, particularly among those new to DAOPHOT. In the hopes of un-muddying
the waters, we present the following.

fwhmpsf This is the full-width at half-maximum of a stellar object (point-spread function,
or psf). The value for fwhmpsf gets used only by the automatic star-finding algorithm
daophot, unless you do something very bad like setting scale to non-unity.

psfrad This is the “radius” of the PSF. When you construct a PSF, the PSF will consist of
an array that is

(2 X psfrad+ 1) x (2 x psfrad+ 1)

on a side. The idea here is that “nearly all” of the light of the brightest star you care
about will be contained within this box. If you were to construct a PSF with some large
value of psfrad and then run nstar or allstar specifying a smaller value of psfrad, the
smaller value would be used. Making the psfrad big enough is necessary to insure that
the wings of some nearby bright star are properly accounted for when fitting a faint
star.

fitrad This is how much of the psfis used in making the fit to a star. The “best” photometry
will be obtained (under most circumstances) if this radius is set to something like the
value of the fwhm.

4.4 Setting up the parameter files “daopars” and “datapars”

The first step in using IRAF/daophot is to determine and store the characteristics of your
data in two parameter files called “datapars” and “daopars”; these will be used by the various
daophot commands. In Sec. 2.2 we discussed how to deal with parameter files, and in Sec. 3.3
we went through setting up “datapars” for the standard star solutions; at the risk of repeating
ourselves, we will go through this again as the emphasis is now a little different.

First inspect your headers by doing an imhead imagename long+ | page. This will
produce a listing similar to that shown in Figure 29. If you have not yet corrected your
headers (see Sec. 2.1), now’s the time. The things to note here are (a) what the filter keyword
is (we can see from Figure 29 that the answer is FILTERS, (b) what the effective exposure
time keyword is (CEXPTIME in this example), and (c) what the effective airmass keyword
is (AIRMASS in this example). These latter were added or fixed by the procedure described
in Sec. 2.1.

Next you need to examine some “typical” frames in order to determine the FWHM
(fwhmpsf) and the radius of the brightest star for which you plan to do photometry (ps-
frad). First display an image, and use the middle button of the mouse (or whatever you
need to do on your image display) to zoom on a few bright stars. On the SUN the “F6”
key will let you see x and y values. The “default” PSF radius is 11 pixels: are your stars

36

obj211[797,797] [real] : Short B field 1
No bad pixels, no histogram, min=-93.55627, max=25415.95
Line storage mode, physdim [896,797], length of user area 1580 s.u.
Created Fri 14:10:04 06-Dec-91, Last modified Fri 14:10:04 06-Dec-91

Pixel file

>tofu!/datal/massey/pixels/obj211.pix’ [ok]

'KPNO-IRAF’> /

’06-04-89°

/

"KPNO-IRAF’> /

’12-10-88"

/

New copy of obj211.imh

(more)
OBSERVAT=
CCDPICHO=
EXPTIME =
DARKTIME=
OTIME =
IMAGETYP=
DATE-0BS=
RA =
DEC =
EPOCH =
uT =
ST =
ATRMASS =
DETECTOR=
CAMTEMP =
DEWTEMP =
FILTERS =
TILTPOS =
TELFOCUS=

(more)
CEXPTIME=
UTMIDDLE=

’CTIO > / DRIGIN OF DATA
211 / ORIGINAL CCD PICTURE NUMBER
30 / ACTUAL INTEGRATION TIME (SECONDS)
30 / TOTAL ELAPSED TIME (SECONDS)
30 / SHUTTER OPEN TIME (SECONDS)
) OBJECT » / OBJECT,DARK,BIAS,ETC.
’12/10/88 > / DATE (DD/MM/YY) OF OBSERVATION
> 0:52:30.00° / right ascension
’-37:50:42.00° / declination
1950. / EPOCH OF RA AND DEC
’ 3:11:18.00° / wuniversal time
’23:51:45.00° / sidereal time
1.034776 / AIRMASS

’TI1 > / DETECTOR (CCD TYPE, PHOTON COUNTER, ETC)

/ CAMERA TEMPERATURE, DEG C
/ DEWAR TEMPERATURE, DEG C
10 > / FILTER BOLT POSITIONS
/
/

TILT POSITION
TELESCOPE FOCUS

’3:11:33.0°

Figure 29: Header for image obj211

37

bigger than 23 pixels(23 = 2 X 11 + 1) pixels from one side to the other? In our data we
find that the “diameter of the biggest star” is something like 27 pixels, and therefore we need
to set the PSF radisu to be 13. The FWHM is undoubtably variable from frame to frame,
but unless these change by substantial amounts (50%?) using a “typical” value will probably
suffice. You can use the imexamine routine to get some idea of the FWHM; do imexamine
filename and then strike the “r” key (for radial profile) after centering the cursor on a bright
(but unsaturated) star. The last number on the plot is the FWHM of the best-fit cubic-spline.

We are now ready to do an epar datapars. This parameter file contains information
which is data-specific. We set fwhmpsf to the FWHM determined above, and we enter
the names of the keywords determined from the header inspection above. The “gain” and
“read-noise” appropriate for your chip are also entered. Choosing the value for datamax,
the “Maximum good data value”, (in ADU’s, NOT electrons) is a little bit trickier. In the
case of aperture photometry we were satisfied to take the nominal value for the chip, but
point-spread-function fitting is a bit more demanding in what’s “linear”. The data obtained
here was taken with a TI chip, and we all know to get nervous when the number of electrons
get near 30,000 with this chip. We will leave this at 32000 for now, but keep our eyes open
for indications of non-linear behavior—easy enough to see when doing PSF-fitting! datamin,
the “Minimum good data value”, will be different for each frame (depending what the sky
level is) and there is not much point in entering a value for that yet. Similarly the value we
will use for threshold will change from frame to frame depending upon what the sky level is.
When you are done your datapars should resemble that of Figure 30.

Next we will epar daopars. This parameter file contains information specific to what
you want daophot to do. The only things here we might want to change at this point
are the “Radius of the psf” psfrad (if your experiment above showed it should be increased
somewhat), and you might want to change the fitting radius fitrad. Leaving the fitting radius
to “something like” the FWHM results in the best SNR (you can work this out for yourself
for a few different regimes if you like to do integrals). We will modify “fitrad” to be 4., but
otherwise leave the other parmaeters alone for now (Fig. 31). .

4.5 Finding stars: daofind and tvmark

The automatic star finder daofind convolves a Gaussian of width FWHM with the image, and
looks for peaks greater than some threshold in the smoothed image. It then keeps only the ones
that are within certain roundness and sharpness criteria in order to reject non-stellar objects
(cosmic rays, background galaxies, bad columns, fingerprints). We have already entered a
reasonable value for the FWHM into datapars, but what should we use as a threshold? We
expect some random fluctuations due to the photon statistics of the sky and to the read-noise
of the chip. You can calculate this easily by first measuring the sky value on your frame by
using imexamine and the “h” key to produce a histogram of the data (implot and the “s”
key is another way). In the example shown in Figure 32 we see that the sky value is roughly
115. In general, if s is the sky value in ADU, p is the number of photons per ADU, and r is

38

PACKAGE
TASK

(scale =
(fwhmpsf=
(emissio=
(sigma =
(datamin=
(datamax=
(thresho=
(cthresh=
(noise =
(ccdread=
(gain =
(readnoi=
(epadu =
(exposur=
(airmass=
(filter =
(obstime=
(itime =
(xairmas=
(ifilter=
(otime

(mode =

PACKAGE =
TASK

(varpsf
(psfrad
(fitrad
(matchra=
(critove=
(maxiter=
(maxgrou=
(maxnsta=
(recente=
(clipran=
(clipexp=
(mode =

daophot
datapars

daophot
daopars

IRAF

Image Reduction and Analysis Facility

1.)

3.8)
yes)
INDEF)
INDEF)
32000.)
0.)

0.)
poisson)
)

)

10.)
1.1)
CEXPTIME)
AIRMASS)
FILTERS)
UTMIDDLE)
INDEF)
INDEF)
INDEF)
INDEF)
ql)

Image scale in units per pixel

FWHM of the PSF in scale units

Features are positive 7

Standard deviation of background in counts
Minimum good data value

Maximum good data value

Detection threshold in counts above background
Centering threshold in counts above background
Noise model

CCD readout noise image header keyword
CCD gain image header keyword

CCD readout noise in electrons

Gain in electrons per count

Exposure time image header keyword

Airmass image header keyword

Filter image header keyword

Time of observation image header keyword
Exposure time

Airmass

Filter

Time of observation

Figure 30: A sample datapars is shown.

IRAF

Image Reduction and Analysis Facility

no)
13.)
4.)
1.5)
0.2)
50)
60)
3000)
yes)
2.5)
6)
ql)

Variable psf across image?

Radius of the psf

Fitting radius in pixels

Search radius for match with the PHOT results
Critical overlap group membership

Maximum number of iterations

Maximum number of stars per group

Maximum number of stars to fit

Recenter stars during fit (allstar only)
Clipping range in standard deviations (allstar
Clipping exponent (allstar only)

Figure 31: A sample daopars is shown.

39

NOAC/IRAF V2.10BETA massey@tofu Tue 12:12:30 31-Dec-91
obj2110282:382,604:704]1: Histogram from z1=58.7121 to z2=170.7415, nbins=512
Short B field 1

102 T
FT | | | | Y
= 10" — —

0_|.LMM W...m...m...|/LWMMHM|._

50 75 100 125 150 175
Pixel Bin

Figure 32: The imexamine histogram (“h” key) indicates that the sky value is roughly 115.

40

IRAF
Image Reduction and Analysis Facility

PACKAGE = daophot
TASK = datapars
(scale = 1.) Image scale in units per pixel
(fwhmpsf= 3.8) FWHM of the PSF in scale units
(emissio= yes) Features are positive ?
(sigma = INDEF) Standard deviation of background in counts
(datamin= 80.) Minimum good data value
(datamax= 32000.) Maximum good data value
(thresho= 50.) Detection threshold in counts above background
(cthresh= 0.) Centering threshold in counts above background
(noise = poisson) Noise model
(ccdread=) CCD readout noise image header keyword
(gain =) CCD gain image header keyword
(readnoi= 10.) CCD readout noise in electrons
(epadu = 1.1) Gain in electrons per count
(exposur= CEXPTIME) Exposure time image header keyword
(airmass= AIRMASS) Airmass image header keyword
(filter = FILTERS) Filter image header keyword
(obstime= UTHMIDDLE) Time of observation image header keyword
(itime = INDEF) Exposure time
(xairmas= INDEF) Airmass
(ifilter= INDEF) Filter
(otime = INDEF) Time of observation
(mode = ql)

Figure 33: Datapars with threshold and datamin entered.

the read-noise in units of electrons, then the expected 1o variance in the sky will be

(\/m) /p

in units of ADU’s. For the example here we expect 1o = (\/115. x 1.10 + 102) /1.10 = 13.7
ADU’s. Of course, if you have averaged N frames in producing your image, then you should
be using N X p as the gain both here and in the value entered in datapars; similarly the
readnoise is really just 7 x v/N. If instead you summed N frames then the gain is just p and
the readnoise is still » x v/N.

In the example shown here the expected 1o variation of the sky is 13.7 ADU’s; we might
therefore want to set our star detection threshold to 3.5 times that amount (roughly 50 in
this case). That won’t guarantee that every last star we find is real, nor will it find every last
real star, but it should do pretty close to that!

We should use this opportunity to set datamin in datapars to some value like s — 30.
In this case we will set it to 80. This is not used by daofind but will be used by all the
photometry routines. Figure 33 shows the data parameters with the appropriate values of

threshold and datamin now entered.
We now can epar daofind so it resembles that of Figure 34. Note that although nothing
appears to be listed under datapars the default name is “datapars”; you could instead have

41

image =
output =

(convolution
(datapars

(ratio =

(theta
(nsigma

(sharplo =

(sharphi

(roundlo =
(roundhi =

(boundary

(constant =

(graphics

(display =
(commands =
(cursor =

(mkdetections
(interactive
(verify

(update =
(verbose =

(mode
da> daofind

"obj211"
"default"
")

"

1.)

0.)

1.5)

0.2)

1.)

-1.)

1.)
"nearest')
0.)
"stdgraph")
"stdimage")
")

")

no)

no)

yes)

no)

yes)

"ql")

Input image (obj211):
Results file (default: image.coo.?) (default):

Input image

Results file (default: image.coo0.?)

Output convolved image

Data dependent parameters (fwhmpsf, threshold,
Ratio of sigmay to sigmax of Gaussian kernel
Position angle of major axis of Gaussian kernel
Width of convolution kernel in sigma

Lower bound on sharpness for feature detection
Upper bound on sharpness for feature detection
Lower bound on roundness for feature detection
Upper bound on roundness for feature detection
Boundary extension (constant, nearest, reflect,
Constant for boundary extension

Graphics device

Display device

Image cursor: [x y wcs] key [cmd]

Graphics cursor: [x y wcs] key [cmd]

Mark detected stars on the display

Interactive mode

Verify critical parameters in non interactive m
Update critical parameters in non interactive m
Print messages in non interactive mode

FWHM of features in scale units (3.8) (CR or value):

New FWHM of features:

3.8 scale units

3.8 pixels

Detection threshold in counts above background (50.) (CR or value):
New detection threshold: 50. counts

Figure 34: Setting up and running daofind.

42

da> lpar daofind

pr> lpar tvmark

frame = 1 Default frame number for display
coords = "obj211.coo.1" Input coordinate list
(logfile = "") Output log file
(autolog = no) Automatically log each marking command
(outimage = "") Output snapped image
(deletions = "") Output coordinate deletions list
(commands = ") Image cursor: [x y wcs] key [cmd]
(mark = "point") The mark type
(radii = "0") Radii in image pixels of concentric circles
(lengths = "0") Lengths and width in image pixels of concentric
(font = "raster") Default font
(color = 204) Gray level of marks to be drawn
(label = no) Label the marked coordinates
(number = no) Number the marked coordinates
(nxoffset = 0) X offset in display pixels of number
(nyoffset = 0) Y offset in display pixels of number
(pointsize = 1) Size of dot in display pixels
(txsize = 1) Size of text and numbers in font units
(tolerance = 1.5) Tolerance for deleting coordinates in image pix
(interactive = no) Mode of use
(mode = "ql1')

Figure 35: Parameter file for tvimark.

created a separate data parameter file for each “type” of data you have and have called them
separate names (you could do this by doing an epar datapars and then exiting with a “:w
newnamepar”). This might be handy if all your U frames were averages, say, but your B and
V frames were single exposures; that way you could keep track of the separate effective gain
and readnoise values. In that case you would enter the appropriate data parameter name
under datapars. As explained earlier, you could also do a “:¢” on the datapars line and
essentially do the epar datapars from within the epar daofind. For normal star images, the
various numerical values listed are best kept exactly the way they are; if you have only foothall
shaped images, then read the help page for daofind for hints how best to find footballs.

We can now run daofind by simply typing daofind. As shown in Figure 34 that we
were asked for the FWHM and threshold values; this is a due to having turned “verify” on in
the parameter set. This safeguards to a large extent over having forgotten to set something
correctly. A [CR] simply takes the default value listed.

Running daofind produced an output file with the (default) filename of obj211.coo.1.
(Do not give the .imh extension when specifying the image name, or the default naming
process will get very confused!) We can page through that and see the x and y centers, the
number of magnitudes brighter than the cutoff, the sharpness and roundness values, and the
star number. However, of more immediate use is to use this file to mark the found stars on
the image display and see how we did. If we have already displayed the frame in frame 1,
then we can epar tvmark to make it resemble Figure 35. This will put red dots on top of
each star found.

We can see from Figure 36 that daofind did a pretty nice job. If we didn’t like what we

43

Figure 36: Stars found with daofind and marked with tvimark.

44

saw at this point we could rerun daofind with a slightly higher or slightly lower threshold—
try varying the threshold by half a sigma or so if you are almost right. As you may have
guessed, subsequent runs will produce output files with the names obj211.c00.2, 0bj211.c00.3,
obj211.coo0.4, ...If you are using a very slow computer, or a very large chip, you could have
saved some time by putting a “c” (say) under “convolv” in your first run of daofind—this
would have saved the smoothed image as cobj211.imh, and would drastically reduce the
number of cpu cycles needed to rerun daofind with a different threshold value. If you really
very happy with what daofind did but you just want to add one or two stars at this point,
you can in fact do that quite readily using tvmark. Set the parameters as in Figure 35, but
turn interactive on. Position the cursor on top of the star you wish to add and strike the “a”
key. Note that this will “disturb” the format of the file, but we really don’t care; it will still
work just fine as the input to phot.

Note that it is fairly important that you do a good job at this stage. If you have used too
low a threshold, and have a lot of junk marked as stars, these fictitious objects are likely to
wander around during the PSF-fittings until they find something to latch onto—not a good
idea. However, you also do not want the threshold to be so high that you are missing faint
stars. Even if you are not planning to publish photometry of these faint guys, you need to
have included them in the list of objects if they are near enough to affect the photometry of
stars for which you do have some interest. If you find that varying the threshold level does
not result in a good list, then something is wrong—probably you have badly over- or under-
estimated the FWHM. When you are close to the “perfect” value of the threshold, changing
its value by as little as half a sigma will make a substantial difference between getting junk
and real stars.

4.6 Aperture Photometry with phot

The next step is to do simple aperture photometry for each of the stars that have been found.
These values will be used as starting points in doing the PSF fitting, and this is the only time
that sky values will be determined.

The aperture photometry routine phot has more parameters than all the others put
together: there are the parameter files centerpars, fitskypars, and photpars. Fortunately
the “verify” option frees you from having to look at these, and helps prevent you from making
a mistake. If this is your first pass through DAOPHOT it is worth your while to do the
following:

unlearn centerpars

unlearn fitskypars

unlearn photpars
If you have used phot for measuring standard stars, then this will reset the defaults to
reasonable values for crowded-field photometry; in particular, we want to make sure that the
centering algorithm in centerpars is set to “none”. Do an epar phot and make it look
like that of Figure 37. Since we have the “verify” switch turned on, we can be happy, not
worry, and simply type phot. phot will then prompt you as shown in Figure 37. Note that
the answers were particularly simple: we told it the name of the frame we wished to work

45

IRAF
Image Reduction and Analysis Facility

PACKAGE = daophot

TASK = phot
image = obj211 Input image
coords = default Coordinate list (default: image.coo.?)
output = default Results file (default: image.mag.?)"
(datapar=) Data dependent parameters
(centerp=) Centering parameters
(fitskyp=) Sky fitting parameters
(photpar=) Photometry parameters
skyfile = Sky file
(plotfil=) File of plot metacode
(graphic= stdgraph) Graphics device
(display= stdimage) Display device
(command=) Image cursor: [x y wecs] key [cmd]
(cursor =) Graphics cursor: [x y wcs] key [cmd]
(radplot= no) Plot the radial profiles
(interac= no) Mode of use
(verify = yes) Verify critical parameters in non interactive mo
(update = yes) Update critical parameters in non interactive mo
(verbose= yes) Print messages in non interactive mode
(mode = ql)

da> phot obj211
Coordinate list (default: image.coo.?) (default):
Results file (default: image.mag.?)' (default):

Centering algorithm (none) (CR or value):
New centering algorithm: none
Sky fitting algorithm (mode) (CR or value):
Sky fitting algorithm: mode
Inner radius of sky annulus in scale units (10.) (CR or value):
New inner radius of sky annulus: 10. scale units 10. pixels
Width of the sky annulus in scale units (10.) (CR or value):

New width of the sky annulus: 10. scale units 10. pixels
Standard deviation of background in counts (INDEF) (CR or value):
New standard deviation of background: INDEF counts
File/list of aperture radii in scale units (3.) (CR or value): 4.

Aperture radius 1: 4. scale units 4. pixels
Minimum good data value (80.) (CR or value):

New minimum good data value: 80. counts
Maximum good data value (32000.) (CR or value):

Figure 37: Questions and answers with phot.

46

with, we accepted the default for the coordinate list (it will take the highest “version” of
image.coo. NUMBER) and the default for the output photometry list (obj211.mag.1 will be
produced in this case.) We accepted the centers from daofind as being “good enough” to
not have to recenter (they are good to about one-third of a pixel, plenty good enough for
aperture sizes of 2.5 pixels and bigger; when we run this routine later on the second pass we
would make a Big Mistake by turning centering on here, so leave it off). The sky values will
be taken from an annulus extending from a radius of 10 pixels to a radius of 20 pixels, and
it will determine the standard deviation of the sky from the actual data. Note that this is
probably a lot closer in than you used on your standard stars; in crowded regions of variable
background keeping this annulus relatively close in will help. Finally, we used a measuring
aperture of 4.0 pixels. The number of counts within this aperture will be what defines the
zero-point of your frame, as we will see in Sec. 4.10 and keeping this value fized to some value
like your typical FWHM will keep you safe.

4.7 Making the PSF with psf

If you are used to the VMS version of DAOPHOT, you are in for a pleasant surprise when it
comes to making a PSF within the IRAF version. Nevertheless, just because it’s easy doesn’t
mean that you shouldn’t be careful.

What constitutes a good PSF star? Stetson recommends that a good PSF star meets the
following criteria:

1. No other star at all contributes any light within one fitting radius of the center of the
candidate star. (The fitting radius will be something like the FWHM.)

2. Such stars as lie near the candidate star are significantly fainter. (“Near” being defined
as, say, 1.5 times the radius of the brightest star you are going to measure.)

3. There are no bad columns or rows near the candidate star; there should also be no bad
pixels near the candidate star.

In making a PSF, you wish to construct a PSF which is free from bumps and wiggles
(unless those bumps and wiggles are really what a single isolated star would look like.) First
off, does it matter if we get the PSF “right”? If we had only isolated stars, then the answer
would be no—any old approximation to the PSF would give you good relative magnitudes,
and there are programs in the literature which do exactly this. However, if your stars are
relatively isolated you are not going to gain anything by PSF-fitting over aperture photometry
anyway, so why bother? If you are dealing with crowded images, then the PSF has to be right
even in the wings, and for that reason we construct a PSF empirically using the brightest and
least crowded stars in our frame. If you are very, very lucky you will find that your brightest,
unsaturated star is well isolated, and has no neighbors about it—if that’s the case, use that
one and forget about the rest. Usually, however, you will find that it isn’t quite that easy,
and it will be necessary to construct the PSF interatively. The steps involved will be

1. Select the brightest, least-crowded stars for the zeroth-order PSF.

47

PACKAGE = daophot

TASK = psf
image = obj211 Image for which to build PSF
photfile= default Aperture photometry file (default: image.mag.?)
psfimage= default Output PSF image (default: image.psf.?)
groupfil= default Output PSF group file (default: image.psg.?)
(datapar=) Data dependent parameters
(daopars=) Daophot fitting parameters
(showplo= yes) Show plots of PSF stars and fit residuals?
(plottyp= mesh) Default plot type (mesh|contour)
(plotfil=) NHame of output plot metacode file
(graphic= stdgraph) Graphics device
(display= stdimage) Display device
(command=) Image cursor: [x y wcs] key [cmd]
(cursor =) Graphics cursor: [x y wcs] key [cmd]
(verify = yes) Verify critical PSF parameters
(mode = ql)

Figure 38: Parameter file for psf
2. Decrease the size of the PSF radius and fit these stars with their neighbors using nstar.

. Subtract off the PSF stars and their neighbors using substar to see if any of the PSF

stars are “funny”; if so, go back to the step 1 and start over.

. Edit the nstar results file (imagename.nst.IN) and delete the entries for the PSF stars.

You are left with a file containing the magnitudes and positions of just the neighbors.

. Subtract off just the neighbors using this file as input to substar. Display the results,

and examine the region around each PSF star. Are the neighbors cleanly removed?

. Increase the PSF radius back to the original value. Construct an improved PSF using

the new frame (the one with the neighbors gone.)

Run nstar on the PSF stars and their neighbors again, and again subtract these using
substar. Examine the results. If you are happy, proceed; otherwise, if the neighbors
need to be removed a bit more cleanly go back to step 4.

First display the frame, and put dots on all the stars you’ve found using tvmark as
discussed above. Next epar psf and make sure it looks like that of Figure 38. We have set
this up so we can choose the stars interactively from the display window.

Next run psf. The defaults that you will be asked to verify are probably fine, but pay
particular attention to psf radius and fitting radius. The psf radius should be as large

as you determined above (11 usually works well on “typical” CCD frames whose star images

have FWHM’s &~ 3); here we are using 13 (the images here are somewhat oversampled, with
typical FWHM = 4). The “fitting radius” should be relatively generous here—maybe even
larger than what you want to use on your program stars. A reasonable choice is approximately

that of the FWHM.

48

You will find that the cursor has turned into a circle and is sitting on your image in the
display window. Position it on a likely looking PSF star, and strike the “a” key. You will be
confronted with a mesh plot that shows the star and it surroundings. To find out more about
the star (such as what the peak data value is you can type an “s” while looking at the mesh
plot. To reject the star type an “x”, to accept the star type an “o”. In the latter case, you will
next see a mesh plot that shows you the star with a two-dimensional Gaussian fit removed
from the star. Again, exit this with a “o”. If you don’t find these mesh plots particularly
useful, you can avoid them by setting showplot=no in the psf parameters (see Figure 38).
At this point you will be told what the star number was, what the magnitude was, and what
the minimum and maximum data values within the PSF were. (If you picked a star whose
peak intensity was greater than “datamax” it will tell you this and not let you use this star.)
When you are done selecting stars, type a “w” (to write the PSF to disk) followed by a “q”.

If in making the PSF you noticed that there were stars you could have used but didn’t
because they had faint neighbors not found in the earlier step of star finding, you can add
these by hand by simply running tvmark interactively and marking the extra stars. First
epar tvmark so it resembles that of Figure 35. Then:

display obj211 1
tvmark 1 obj211.coo0.1 interactive+

Striking the “I” key will mark the stars it already knows about onto the display (as red
dots this time around); positioning the cursor on the first star you wish to add and type an
“a”. When you are done adding stars exit with a “q” and re-run phot.

Now that you have made your preliminary PSF, do a directory. You’ll notice that in
addition to the image obj211.psf.1.imh that the psf routine has also added a text file
obj211.psg.1. If you page this file you will see something like that of Figure 39. This con-
tains the aperture photometry of each PSF star plus its neighbors, with each set constituting
a “group”. Running the psf-fitting photometry routine nstar will fit PSF’s to each of the
stars within a group simultaneously.

Before we run nstar, however, we must decide what psf radius to use. Why not simply
keep it set to the value found above (e.g., something like 11 pixels)? The answer to this is
a bit subtle, but understanding it will help you diagnose what is going wrong when you find
a PSF going awry (and don’t worry, you will). Let’s consider the case that you construct a
PSF from a single star with one neighbor whose center is 12 pixels away from the center of
the PSF star, and let’s have the PSF radius be 11 and the PSF fitting radius be 3. The PSF
looks something like that of Figure 40. The light from the neighbor star “spills over” into the
PSF.

What happens when you try to fit two PSF’s simultaneously? The bump from the PSF
of the brighter star sits within the fitting radius of the fainter star, and it is the sum of the
PSF’s which are being fit to each star (that’s what “simultaneous” means). Thus there is an
“implicit subtraction” of the fainter star simply from fitting the bumpy PSF to the brighter
star, and the brightness of the fainter star will be underestimated. The way to avoid this
is to see that the PSF of the brighter star does not come within the fitting radius of the
fainter star, and that we can accomplish easily by truncating the PSF size to something like

49

#K IRAF = NOAO/IRAFV2.10BETA version %-23s

#K USER = massey name %-23s
#K HOST = tofu computer %-23s
#K DATE = 01-02-92 mm-dd-yr %-23s
#K TIME = 13:36:10 hh:mm:ss %-23s
#K PACKAGE = daophot name %-23s
#K TASK = psf name %-23s
#K IMAGE = obj211 imagename %-23s
#K APFILE = obj211.mag.1 filename %-23s
#K PSFIMAGE = obj211.psf.1 imagename %-23s
#K GRPSFILE = obj211.psg.1 filename %-23s
#K SCALE =1. units/pix %-23.7g
#K OTIME = 3:11:33.0 timeunit %-23s
#K IFILTER =10 filter %-23s
#K XAIRMASS = 1.034776 number %-23.7g
#K PSFRAD = 13. scaleunit %-23.7g
#K FITRAD = 4. scaleunit %-23.7g
#

#§ ID GROUP XCENTER YCENTER MAG MSKY

#U ## ## pixels pixels magnitudes counts

#F %-9d Y%-6d %-10.2f %-10.2f %-12.3f %-14.3f

145 1 239.06 207.60 14.677 137.598

122 1 227.71 189.31 20.140 131.225

110 1 227.94 182.25 23.740 130.841

645 2 718.10 477.73 17.228 115.288

757 2 713.06 489.04 20.391 115.959

758 2 722.53 472.35 19.810 113.978

746 3 416.02 745.53 18.464 114.790

Figure 39: The “point spread function group” file 0bj211.psg.1

50

""""""""""""""""" Fitrad =

Figure 40: The zeroth order PSF of a star with a neighbor 12 pixels away.

51

da> nstar

Image corresponding to photometry: obj211

Input group file (image.grp.?) (default): obj211.psg.1
PSF image (default: image.psf.?) (default):

Output photometry file (default: image.nst.?) (default):

Psf radius in scale units (13.): 7.

New psf radius: 7. scale units 7. pixels
Fitting radius in scale units (4.):

New fitting radius: 4. scale units 4. pixels
Maximum group size in number of stars (60):

New maximum group size: 60 stars
Minimum good data value (80.) (CR or value):

New minimum good data value: 80. counts
Maximum good data value (32000.) (CR or value):

New maximum good data value: 32000. counts

da> substar

Image corresponding to photometry file: obj211
Photometry file (default: image.nst.?) (default):
PSF image (default: image.psf.?) (default):
Subtracted image (default: image.sub.?) (default):

Psf radius in scale units (13.): 7.

New psf radius: 7. scale units 7. pixels
Minimum good data value (80.) (CR or value):

New minimum good data value: 80. counts
Maximum good data value (32000.) (CR or value):

New maximum good data value: 32000. counts

Figure 41: Running nstar and substar with a small psf radius.

the separation of the two stars minus the fitting radius. Thus in the example here we would
want to fit the two stars using PSF’s that were only (12 — 3 = 9) pixels in radius. It’s true
that there may still be light of the PSF star beyond this radius, but that will matter only if
the PSF star is still going strong when you get within the fitting radius of the fainter star.

Now that we understand all that, run nstar. Specify the appropriate image name for
“image corresponding to photometry” and give it the “.psg” file 0bj211.psg.1 for the “input
group file”. Remember to decrease the psf radius when it tries to verify that number. nstar
will produce a photometry output file obj211.nst.1. You can subtract the fitted PSF’s from
these stars now by running substar. Again, verify the PSF radius to the smaller value. An
example of the nstar and substar steps is show in Fig. 41.

When the routine finishes, display the resultant frame obj211.sub.1.imh and take a
look at the PSF stars...or rather, where the PSF stars (and their neighbors) were. Are
they subtracted cleanly? Does one of the PSF stars have residuals that look the reverse of
the residuals of the others? If so, it would be best to reconstruct the PSF at this point
throwing out that star—possibly it has a neighbor hidden underneath it, or has something
else wrong with it. Are the variations in the cores of the subtracted image consistent with
photon statistics? To answer this you may want to play around with imexamine on both

52

the original and subtracted images, but if the stars have cleanly disappeared and you can’t
even tell where they were, you are doing fine.

The worst thing to find at this point is that there is a systematic pattern with position
on the chip. This would indicate that the PSF is variable. There is the option for making a
variable PSF, but the assumption is that the PSF varies smoothly in x and y; usually this is
not the case. (In the case of the non-flat TI chips the variations are due to the potato-chip
like shape.) If you do decide the PSF is variable, be sure to use plenty of stars in making the
PSF. As it says in the “help page”, twenty-five to thirty is then not an unreasonable number.
If that doesn’t scare you off, nothing will.

We will assume that you have gotten the PSF to the point where the cores of the stars
disappear cleanly, although there may be residuals present due to the neighbors. Our next
step is to get rid of these neighbors so that you can make a cleaner PSF. Edit the nstar
output file obj211.nst.1 and delete the lines associated with the PSF stars, leaving only
the neighbors behind. You can recognize the PSF stars, as they are the first entry in each
group. When you are done with this editing job, re-run substar, using the edited “.nst” file
as the photometry file. Again in running substar make sure you verify the PSF radius to
the smaller value you decided above. Examine the results on the image display. Now the PSF
stars should be there but the neighbors should be cleanly subtracted. Are they? (Compare
Fig. 36 with Fig. 42.) If so, you are ready to proceed. If not, re-read the above and keep at
it until you get those neighbors reasonably well out of the frame.

We can now run psf on the subtracted frame—the one with only the neighbors gone. We
have added some noise by doing the subtraction, and so we should reset datamin to several
sigma below the previously used value. We are going to have to do more typing this time when
we run it, as the defaults for things will get very confused when we tell it that the “Image
for which to build PSF” is actually obj211.sub.1. For the “Aperture photometry file” we
can tell it the original photometry file 0bj211.mag.1 if we want, or even the old “.psg” file
obj211.psg.1 since every star that we are concerned about (PSF star plus neighbor) is there.
Go ahead and give it the next ‘version” number for the “Output psfimage” obj211.psf.2 and
for the “Output psf group file” 0obj211.psg.2. We can of course do this all on the command
line:

psf obj211.sub.1 obj211.mag.1 obj211.psf.2 0obj211.psg.2 datamin=50.
Make a new PSF using the cursor as before. This lime make sure you take the large psf
radius.

How good is this revised PSF? One way to find out, if you have multiple PSF stars, is
to run nstar on the original frame, this time keeping the psf radius large. Then do substar
and examine the frame with both the PSF stars and neighbors subtracted. Does this show
a substantial improvement over the first version? Now that you have a cleaner PSF it may
be necessary to repeat this procedure (edit the obj211.nst.2 file, remove the PSF stars, run
substar using this edited file to produce a frame with the just the neighbors subtracted this
time using a better PSF, run psf on this improved subtracted frame) but probably not. If
you have only a single good PSF star (as we concluded with this frame), you will have to
wait until you have done photometry over the entire frame to evaluate how good a PSF you

53

Figure 42: Making the first revision PSF using the frames with the neighbors subtracted.
Compare this to Fig. 36, and note that the neighbors around the bright star (center bottom)
have been removed.

54

IRAF
Image Reduction and Analysis Facility
PACKAGE = daophot
TASK = allstar

image = obj211 Image corresponding to photometry

photfile= default Input photometry file (default: image.mag.?)
psffile = default PSF image (default: image.psf.?)

allstarf= default Output photometry file (default: image.als.?)
subimage= default Subtracted image (default: image.sub.?)
(cache = yes) Cache the data in memory 7

(datapar=) Data dependent parameters

(daopars=) DAOPHOT parameters

(verbose= no) Print messages

(verify = yes) Verify critical ALLSTAR parameters

(mode = ql)

:go

Psf radius in pixels (13.):
New psf radius: 13. pixels
Fitting radius in pixels (2.5):
New fitting radius: 2.5 pixels
Maximum group size in number of stars (60):
New maximum group size: 60 stars
Minimum good data value (80.) (CR or value):
New minimum good data value: 80. counts
Maximum good data value (32000.) (CR or value):

Figure 43: Running allstar.

created.

4.8 Doing the psf-fitting: allstar.

The next step is to go ahead and run simultaneous PSF-fitting on all your stars, and produce a
subtracted frame with these stars removed. To do both these things you need only run allstar.
The defaults are likely to be right: see Figure 43. As you may imagine, allstar produces a
photometry file obj211.als.1, and another subtracted image: imagename.sub.N.

How long will this take? On a SPARCstation 2 with lots of memory, and this T 800 x 800
image with &~ 750 stars—some of which are very crowded!—the allstar run took less than 8
minutes. On slower machines, or if you cannot fit the entire frame into memory, it may take
considerably longer, so be patient.

Display the subtracted frame, and blink it against the original. Has IRAF/daophot done a
nice job? If the stars are clearly gone with a few hidden ones now revealed, you can be proud
of yourself—if the results are disappointing, there is only one place to look, and that is in the
making of the PSF. Assuming that all is well, it is now time to add those previously hidden
stars into the photometry. The easiest way to do this is to run daofind on the subtracted
image. Set the value of datamin to a value several sigma lower than what you had used

55

earlier in case the subtraction process generated some spuriously small values, and you will
want to increase the value of threshold by 1 or 2 sigma above what you used previously. Why?
Because the subtraction process has certainly added noise to the frame, and if you don’t do
this you will be mainly adding spurious detections. Use tvmark as before to examine the
results of daofind; remember that the coordinate file name will be imagename.sub.N.coo.1
this time around. If you are really close, but want to add a couple of stars, re-run tvmark
on this file using interactive+; this will allow you to add (and delete) coordinates from the
file.

Now run phot using this new coordinate file as the input list. However, you do want to
use the original frame for this photometry; otherwise the sky values for the newly found stars
will be very messed up owing to the many subtracted images. A new aperture photometry
file obj211.mag.2 will have been produced. Use pappend to concatenate these two files:
pappend obj211.mag.1,0bj211.mag.2 obj211.mag.3. You can now re-run allstar using
this combined photometry file as the input.

4.9 Matching the frames

In the example here we have been reducing the B frame of a set of UBV. Once all three
frames have been reduced it is often necessary to do a little fiddling. Have the same stars
been identified in each group? In many cases you don’t want the same stars to have been
identified in each clump—after all, some stars are red, some are blue (that’s presumably why
you are doing this after all, right?), but in some cases you may find that a clump was identified
as three objects on the Uand the Vframes and clearly should have been three on the B frame
but instead is four or two. What to do?

Using tvmark it is relatively easy to set this right. First we need to use txdump to
produce a file for each frame that can be displayed. In this example the image 0bj210 is the
U exposure, 0bj211 is the B exposure, and 0bj212 is the V exposure. To match these three
frames we will need to do something like this:

txdump obj210.als.2 > tvu

txdump obj211.als.2 > tvb

txdump obj212.als.2 > tvv
In each case select xc,yc and use MAG!=INDEF as a selection criteria. Thus you will then
have three text files that contain only the x’s and y’s of the stars with photometry.

Next display the three frames (display obj210 1, display obj211 2, display obj212
3) and put colored dots up to denote the different allstar stars:

tvmark 1 tvu color=204 inter-,

tvmark 2 tvb color=205 inter-,
and

tvmark 3 tvv color=209 inter-
will give pleasing results. Zoom, pan, register, and blink around the frames until you are
convinced that you really do want to add or delete a star here or there. If you want to add
or delete a star to the U frame list, do a

tvmark 1 tvu color=203 inter+

56

You are now in interactive mode, and centering the cursor on the star you want to add and
striking the “a” key will append the x and y value of the cursor the tvu list. The star you
add or delete will have a white dot appear on top of it. If you need to switch to a different
coordinate file, simply exit the interactive tvmark with a “q” and re-execute it specifying,
for example, tvimark 3 tvv color=203 inter+.

When you are done with adding and deleting stars, then it is time to redo the photometry.
Do a phot 0bj213 tvv default datamin=100 in order to generate new aperture photom-
etry and sky values. These can then be run through allstar, and the procedure repeated for

each of the frames.

4.10 Determining the Aperture Correction

The zero-point of your magnitudes have been set as follows. When you ran phot using a
small aperture (3 pixels in the example above) magnitudes were defined as -2.5 * log(Counts
above sky)/(Exposure time) 4+ Const. (The constant Const was hidden away in photpars
and is the magnitude assigned to a star that had a total of one ADU per second within the
measuring aperture you used.) When you defined your PSF the magnitudes of the PSF stars
determined from the aperture photometry were then used to set the zero-point of the PSF.
However, your standard stars were presumably measured (if you did things right) through
a much larger aperture, and what we must do now is measure how much brighter the PSF
would have been had its zero-point been tied to the same size aperture used for the standard
stars.

We need to determine the aperture correction from the brightest, unsaturated stars (so
there will still be reasonable signal above sky at the size of the large aperture); if you can pick
out stars that are reasonably well isolated, so much the better. If this sounds vaguely familiar
to you, you're right—this is basically what you did for selecting PSF stars, and these would be
a good starting point for selecting stars for determining the aperture correction. Ideally you
would like to use at least five such stars, but since when is data reduction ideal? Nevertheless,
it is in the determination of the aperture correction the largest uncertainty enters in doing
CCD photometry on crowded fields.

We will first need to pick out the brightest, isolated stars and then to subtract off any
stars that might affect their being measured through the large “standard star” aperture (e.g.,
something like 15 pixels). To do this we need good photometry of any of these neighbor stars,
and we describe two ways to do this (1) the very long complicated way, and (2) the very short
easy way:

1. Method 1: Using the image display We can also use tvmark to mark the stars
that we wish to use for aperture photometry. First we should remind ourselves what
are multiple stars and what aren’t: display the image, and then use tvimark to mark
the stars with allstar photometry:

display obj211 1
txdump obj211.als.2 xc,yc yes > tvb
tvmark 1 tvb color=204 interact-

57

ap> txdump *nst* image,id,group.mag,yes
obj210 43 1 16.589
obj210 36 1 21.385

obj211 62 1 14.677
obj211 51 1 20.249

obj212 245 1 16.616
obj212 270 2 17.898
obj212 54 3 17.207

Figure 44: The PSF stars and their neighbors from the three images.

Now go through and mark the stars you want to use as the aperture correction stars
plus any neighbors that might contribute light to a large aperture centered on the bright
stars:

tvmark 1 bapstars color=203 interact+

Use the “a” key to generate a list (bapstars) of the approximate z and y positions of
these stars. Next run this list through phot to generate improved centers and good sky
values:

phot 0bj211 bapstars bapphot calgor=*“centroid”

Next run the photometry output file bapphot through group:
group obj211 bapphot default default crit=0.2

This will have generated a “group” file obj211.grp.1.

Finally (!) run this group file through nstar:
nstar obj211 default default default

2. Method 2: Using the “.psg” files If you used a goodly number (> 3 — 5, say)
stars in making the PSF, then we will simply use these stars as the aperture correction
stars. Your last nstar run should have produced an “.nst” file that contains good

photometry for the PSF stars and their neighbors. (If you don’t remember if you did

this, run nstar using the “.psg” as the input group file.) Note that this method relies

upon the assumption that the sum of the psf radius and psf fitting radius is about as
large as the size of the large aperture you will use, so that all the important neighbors
have been included in the point-spread-function group, but this is probably a reasonable

assumption.

Now we want to produce two files: one of them containing only the neighbors that we wish
to subtract off, and another containing only the bright isolated stars which we want to use

58

‘C.nst”

in computing the aperture correction. To do this we will use group to divide up the
file. (Uing the editor would be faster in this case, but imagine that we have many more PSF
stars and neighbors than we do in this example.) First we will use txdump on the nstar
file to see the magnitude range covered by the PSF stars and their neighbors: hopefully there
won’t be any overlap. To do this try
txdump *nst* image,id,group,mag yes
In the example shown in Figure 44 we see that the PSF stars have magnitudes of 14.7-17.2,
and that the neighbors all have magnitudes greater than 20.2. Thus we can use pselect to
create a file containing the photometry of the faint stars:
pselect 0bj210.nst.1,0bj211.nst.1,0bj212.nst.1 obj210sub,0bj211sub,0bj212sub
and answer MAG>20.0 when you are queried for the “Boolean expression”. This will put
the photometry of the stars you wish to get rid of into the three files 0bj210sub,0bj211sub,
and 0bj212sub. Note from the example shown in Fig. 44 that the thrid of these files will in
fact be blank—mnone of the three stars had any neighbors.
Next do an
txdump obj210.nst.1 xc,yc > obj210ap
and answer MAG<20.0 in response to “Boolean expression”. This will put the z and y
values of the stars we wish to use for the aperture correction into the file obj210ap. Do this
for the other two files as well.
Next subtract the stars in the first file:
substar obj210 obj210sub
and accept the defaults. This will result in the subtracted image 0bj210.sub.N. It is this file
on which we wish to run the aperture photometry to determine the aperture correction:
phot 0bj210.sub.N obj210ap obj210res aper—=4.,15. annulus=20 dannu=5 verb+
You will see something like Figure 45 on your terminal. In this example we’ve made the
assumption that the aperture size that set your zero-point in making the PSF was 4 pixels
(i.e., what you used with phot Way Back When), and that the aperture size used on your
standard stars was 15 pixels. It is time to drag out your hand calculator. Using all one of the
PSF stars we find an average aperture correction of —0.222. It would have been far better
to have more stars to base the aperture correction on, but this frame has few bright isolated
stars.

4.11 daophot summary

e Set up datapars and daopars.

1. Do an imhead on some image and note the keywords for the filter position, the
effective exposure time, and the effective airmass.

2. Use display and imexamine on a few frames to determine the typical full-width-
half-max of stars and what would be a good value to use for the radius of the
psf (i.e., what radius will contain the brightest star for which you wish to do
photometry.)

59

ph> phot obj210.sub.5 obj210ap obj210res aper=4.,15. ann=20 dann=5 verb+

Centering algorithm (none) (CR or value):
New centering algorithm: none
Sky fitting algorithm (mode) (CR or value):
Sky fitting algorithm: mode
Inner radius of sky annulus in scale units (20.) (CR or value):
New inner radius of sky annulus: 20. scale units 20. pixels
Width of the sky annulus in scale units (5.) (CR or value):

New width of the sky annulus: 5. scale units 5. pixels
Standard deviation of background in counts (INDEF) (CR or value):
New standard deviation of background: INDEF counts
File/list of aperture radii in scale units (4.,15.) (CR or value):

Aperture radius 1: 4. scale units 4. pixels

Aperture radius 2: 15. scale units 15. pixels
Minimum good data value (0.) (CR or value):

New minimum good data value: O. counts
Maximum good data value (32000.) (CR or value):

New maximum good data value: 32000. counts

0bj210.sub.5 x: 235.09 y: 210.14 s: 65.55 m: 16.588 16.366 e: ok

Figure 45: The aperture correction run of phot.

3. Enter these into daopars (psfrad) and datapars (header key words, fwhm). Also
check that the correct values are entered in datapars for the gain (photons per
ADU) and read-noise (in electrons), as well as the “maximum good data value”.

¢ PFind stars.
1. Do an implot or imexamine to determine the sky level on your frame. Calculate
the expected lo error.
2. Enter the sky value minus 3¢ as your value for datamin in datapars.
3. Run daofind using as a threshold value 3 to 5 o.
4. Use tvmark to mark the stars found (imagename.coo.1). If you need to, rerun
daofind with a larger or small threshold.

e Run aperture photometry using phot.

o Generate a PSF. Run psf and add stars using the “a” key. Try to select bright, un-
crowded stars. Then:

1. Run nstar using the file imagename.psg.1 as the “input photometry group”
file. If there are neighbors, be sure to decrease the psf radius as explained above.
Run substar (also using the smaller sized psf radius) and display the resultant
subtracted frame imagename.sub.1. Do the residuals of the PSF stars look
consistent, or is one of them funny? If need be, start over.

60

2. Remove any neighbor stars by editing the PSF stars out of the “.nst” file, and
rerunning substar. Run psf on the subtracted file, using the normal psf radius
again. You will have to over-ride the defaults for the input and output file names
now that you are using the subtracted image. Rerun nstar on the original frame
using the normal psf radius and the revised PSF. Run substar and display the
results. Are the PSF stars nicely removed, and do the areas around the PSF stars
look clean? It may be necessary to remove neighbors again using this revised PSF.

Run allstar. Display the subtracted frame and see if your stars have been nicely
subtracted off.

Run daofind on the subtracted frame, using a value for threshold which is another
o or two larger than before, and a value for datamin which is several o lower than
before. Use tvmark to examine the results, and if need be run tvmark interactively
so that you may add any extra stars.

Run aperture photometry using phot on the original frame, using the new coordinate
list produced above.

pappend the two aperture photometry files.
Run allstar using the combine photometry file.

Repeat all of the above for each frame in your “set” (e.g., all short and long exposures
in each filter of a single field, say.

Use txdump to select the stars from the allstar files which have magnitudes not equal
to “INDEF”. Mark these stars using tvimark, and then use the capabilities of the image
display and tvimark to match stars consistently from frame to frame. Rerun phot and
allstar on the final coordinate lists.

Determine the aperture corrections.

Transform to the standard system (see the next section) and then publish the results.

5 Transforming to the Standard System

Now that we have a good set of instrumental magnitudes in all three filters (0bj210..als.3,
0bj211.als.3, and o0bj212.als.6 in this example) it is time to transform these to the standard

system using the transformation equations and coeflicients determined in Sec. 3.6. The first

step is to use mkobsfile (no “n”!) to prepare a a file containing a matched set of instrumental
magnitudes for each object that was found on all three frames. (If an object wasn’t found
on all three frames, we have no idea how to get its color, and hence how to apply any color

term.) It is mkobsfile which will apply the aperture correction, and we will also have to be
prepared to tell mkobsfile what shift to apply to the z and y values on each frame to register

them to the other frames.

61

IRAF
Image Reduction and Analysis Facility

PACKAGE = photcal

TASK = mkobsfile
photfile= The input list of APPHOT/DAOPHOT databases
idfilter= 00,10,20 The list of filter ids
observat= The output observations file
(imsets = STDIN) The input image set file
(obspara=) The observing parameters file
(obscolu= 2 3 4) The format of obsparams
(shifts = STDIN) The x and y coordinate shifts file
(apercor= STDIN) The aperture corrections file
(apertur= 1) The aperture number of the extracted magnitude
(toleran= 3.) The tolerance in pixels for position matching
(allfilt= yes) Output only objects matched in all filters
(verify = no) Verify interactive user input ?
(verbose= yes) Print status, warning and error messages 7
(mode = ql)

Figure 46: The parameter file for mkobstile.

You may first want to think a little about how you want the stars numbered. Do you want
them in magnitude order? In x order? In y order? In random order? If the latter is your
preference proceed; otherwise, take the allstar output file corresponding to the “first” frame
(i.e., Uinthis example) and use psort to sort on some meaningful quantity. For instance

psort 0bj210.als.3 ycenter
will sort on the file on “y” value.

To deal with a single set of UBV exposures, it is easiest to answer issues such as the shift,
aperture corrections, and image set definition directly from the terminal. Edit the parameter
file for mkobsfile so it resembles that of Fig. 46.

Run mkobsfile and answer the questions as shown in Fig. 47. If you don’t know the shifts
between frames, use imexamine and the “r” key to figure this out. The shifts are in the
sense that they are what you need to add to the z and y values from the B exposure to make
them like the z and y of the U exposure, i.e., 2y — g and uy — yp. When it asks you for
the "name of image set” be sure to keep this specific but short—all your stars will have this
name as the root! Also be sure to give these shifts separated by a space, and not a commal!

The output file from this will strongly remind you of the output file from your standard
stars (Fig. 20); the results from the program stars here are shown in Fig. 48.

Finally, you are ready to calibrate these program stars. If you set up your equations the
way we discussed in Sec. 3.6, with the instrumental magnitudes on the left and the standard
indices on the right then you need to use invertfit. (If you decided that equations such
as a photoelectric photometrist might use, with instrumental magnitudes on the right and
standard indices on the left, were more appropriate to your data, then you will want to use
evalfit instead.)

Edit the parameter file of invertfit so it resembles that of Fig. 49

62

ph> mkobsfile o0bj210.als.3,0bj211.als.3,0bj212.als.6
The list of filter ids (00,10,20):
The output observations file: n300fieldlsobs

Enter name of image set 1 (name, <EOF>=quit entry): fils
Enter image name 1 (name, <CR>=INDEF): 0bj210
Enter image name 2 (name, <CR>=INDEF): obj211
Enter image name 3 (name, <CR>=INDEF): obj212

Enter name of image set 2 (name, <EOF>=quit entry): "Z

Image set 1 (fls): Enter the shift in x and y
Image 0bj210 (xshift yshift, <CR>=0.0 0.0, <EOF>=quit entry):
Image obj211 (xshift yshift, <CR>=0.0 0.0, <EOF>=quit entry): -3.6 2.8
Image obj212 (xshift yshift, <CR>=0.0 0.0, <EOF>=quit entry): 1.1 1.4

Image set 1 (fls): Enter the aperture correction
Image 0bj210 (magnitude, <CR>=0.0, <EOF>=quit entry): -.222
Image obj211 (magnitude, <CR>=0.0, <EOF>=quit entry): -.165
Image o0bj212 (magnitude, <CR>=0.0, <EOF>=quit entry): -.280

Observations file: n300fieldlsobs
Image set: fls 134 stars written to the observations file

Figure 47: Running mkobsfile and inserting the shifts and aperture corrections interactively.

Finally, you are ready to run invertfit and obtain photometry for all your program stars!
The output file will resemble that of Fig. 50.
This output file is “self-documenting”. Notice that by including “x00” and “y00” in the
parameter print of invertfit, we have the positions for these stars as well.

It is a long, hard road you have traveled, but you do have calibrated photometry at this
point! It’s time to really get to work!

63

FIELD FILTER AIRMASS XCENTER YCENTER MAG MERR

fis-1 00 1.037 686.59 11.37 21.532 0.119
* 10 1.035 686 .96 11.54 20.129 0.065
* 20 1.033 687 .24 11.18 20.004 0.065
f1s-2 00 1.037 530.70 64 .68 22.119 0.199
* 10 1.035 530.34 65.37 20.672 0.078
* 20 1.033 530.66 64.84 20.488 0.091
f1s-3 00 1.037 168.41 87.29 20.607 0.065
* 10 1.035 168.92 87.80 19.461 0.027
* 20 1.033 169.81 87.34 19.199 0.063
fis-4 00 1.037 57.95 103.22 20.997 0.095
* 10 1.035 58.48 103.41 20.077 0.059
* 20 1.033 58.58 102.94 19.944 0.062
f1s-5 00 1.037 522.39 106.22 20.304 0.055
* 10 1.035 522.72 106.27 18.844 0.029
* 20 1.033 523.20 106.03 18.759 0.065
f1s-6 00 1.037 333.61 113.31 20.279 0.054
* 10 1.035 334.25 113.47 19.734 0.034
* 20 1.033 334.51 113.00 19.824 0.041
f1s-7 00 1.037 160.48 134.03 20.707 0.066
* 10 1.035 160.92 134.16 20.103 0.053
* 20 1.033 161.19 133.86 20.115 0.072
f1s-8 00 1.037 89.12 140.98 21.183 0.099
* 10 1.035 89.35 141.07 20.232 0.062
* 20 1.033 89.85 140.87 20.209 0.073
f1s-9 00 1.037 391.61 151.42 19.147 0.026
* 10 1.035 391.62 151.54 18.763 0.152
* 20 1.033 392.28 151.05 18.200 0.056
f1s-10 00 1.037 401.43 155.58 20.753 0.061
* 10 1.035 402.03 155.62 20.265 0.058
* 20 1.033 402.69 154.90 20.264 0.078
(more)

Figure 48: The output from running mkobfile. A careful comparison with your allstar output
files will reveal that the xcenter and ycenters have been modified to include the shift you gave,
and that the magnitudes now include the aperture corrections.

64

IRAF
Image Reduction and Analysis Facility

PACKAGE = photcal

TASK = invertfit
observat= n300fieldlsobs List of observations files
config = ctio.cfg Configuration file
paramete= ctio.ans Fitted parameters file
calib = n300fieldls Output calibrated standard indices file
(catalog=) List of standard catalog files
(errors = obserrors) Error computation type (undefined,obserrors
(objects= all) Objects to be fit (all,program,standards)
(print = x00,y00) Optional list of variables to print
(format =) Optional output format string
(append = no) Append output to an existing file ?
(catdir =)_.catdir) The standard star catalog directory
(mode = ql)

Figure 49: The parameter file for invertfit.

Wed 13:57:21 08-Jan-92

List of observations files:

n300fieldlsobs

Config: ctio.cfg

Parameters: ctio.ans

#

Computed indices for program and standard objects

#

Columns:

1 object id

2 x00

3 y00

4 N

5 error (V)

6 BY

7 error (BV)

8 UB

9 error (UB)

fis-1 686.590 11.370 21.408 0.067 0.051 0.098 -0.117 0.144
fls-2 530.700 64.680 21.890 0.094 0.113 0.127 -0.072 0.227
f1s-3 168.410 87.290 20.598 0.065 0.196 0.073 -0.393 0.075
fls-4 57.950 103.220 21.348 0.064 0.059 0.091 -0.628 0.119
f1s-5 522.390 106.220 20.164 0.067 0.008 0.076 -0.055 0.066
fls-6 333.610 113.310 21.235 0.042 -0.178 0.057 -1.017 0.068
fls-7 160.480 134.030 21.524 0.074 -0.095 0.095 -0.957 0.091
f1s-8 89.120 140.980 21.616 0.076 -0.058 0.102 -0.591 0.125
f1s-9 391.610 151.420 19.589 0.058 0.516 0.172 -1.208 0.168
f1s-10 401.430 155.580 21.672 0.081 -0.081 0.103 -1.080 0.090

Figure 50: The final output file, ready for you to really start to work doing the analysis!

65

A 1mexamine: A Useful Tool

In the images tv package there is a powerful and versatile task called imaxamine which can
be used to interactively examine image data at all stages of the photometric reduction process.
In this section we discuss and illustrate those aspects of imexamine which are most useful
to photometrists with emphasis on three different applications of the task: 1) examining the
image, for example plotting lines and columns 2) deriving image characteristics, for example
computing the FWHM of the point-spread function 3) comparing the same region in different
images.

You can run imexamine either by simpling typing imexamine (if you have already dis-
played the image, or by tying imexamine imagename. When the task is ready to accept
input the image cursor will begin blinking in the display window, and the user can begin
executing various keystroke and colon commands. The most useful data examining com-
mands are summarized below. The column, contour, histogram, line and surface plotting
commands each have their own parameter sets which set the region to be plotted and control
the various plotting parameters. All can be examined and edited interactively from within
the imexamine task using the appropriate :epar command.

c - Plot the column nearest the image cursor

e - Make a contour plot of a region around the image cursor
h - Plot the histogram of a region around the image cursor
1 - Plot the line nearest the image cursor

s - Make a surface plot of a region around the image cursor
:¢c N - Plot column N

:1 N - Plot line N

x - Print the x, y, z values of the pixel nearest the image cursor
z - Print a 10 by 10 grid of pixels around the image cursor
o - Overplot

g - Activate the graphics cursor

i - Activate the image cursor

? - Print help

q - Quit imexamine

:epar c¢ - Edit the column plot parameters

66

:epar e - Edit the contour plot parameters
:epar h - Edit the histogram plot parameters
:epar | - Edit the line plot parameters

:epar s - Edit the surface plot parameters

Example 1 below shows how a user can interactively make and make hardcopies of image
line plots using imexamine and at the same time illustrates many of the general features of
the task.

The imexamine task also has some elementary image analysis capability, including the
capacity to do simple aperture photometry, compute image statistics and fit radial profiles.
The most useful image analysis commands are listed below.

h - Plot the histogram of a region around the cursor

r - Plot the radial profile of a region around the cursor
m - Plot the statistics of a region around the cursor
:epar h - Edit the histogram parameters

:epar r - Edit the radial profile fitting parameters

Example 2 shows how a photometrist might use imexamine and the above commands
to estimate the following image characteristics: 1) the full width at half maximum (FWHM)
of the point-spread function, 2) the background sky level 3) the standard deviation of the
background level 4) and the radius at which the light from the brightest star of interest
disappears into the noise (this will be used to specify the size of the point-spread-function,
e.g.,PSFRAD).

Finally imexamine can be used to compare images. Example 3 shows how to compare
regions in the original image and in the same image with all the fitted stars subtracted out.
The example assumes that the target image display device supports multiple frame buffers,
i.e. the user can load at least two images into the display device at once.

The imexamine task offers even more features than are discussed here and the user
should refer to the manual page for more details.

Example 1: Plot and make hardcopies of image lines within imexamine.

¢ display the image and then type imexamine.
e move the image cursor to a star and tap 1 to plot the image line nearest the cursor
e tap the g key to activate the graphics cursor

e type :.snap to make a hardcopy of the plot on your default device

67

expand a region of interest by first moving the graphics cursor to the lower left corner
of the region and typing E, and then moving the graphics cursor to the upper right
corner of the region and typing anything

type :.snap to make a hardcopy of the new plot
tap the 1 key to return to the image cursor menu

type :epar | to enter the line plot parameter set, change the value of the logy parameter
to yes and type CNTL-Z to exit and save the change

repeat the previous line plotting commands

type q to quit imexamine

Example 2: Compute some elementary image characteristics using imexamine.

display the image and then type imexamine.
move to a bright star and tap the r key

examine the resulting radial profile plot and note the final number on the status line
which is the FWHM of the best fitting Gaussian

repeat this procedure for several stars to estimate a good average value for the FWHM

set the parameters of the statistics box nestat and nlstat from 5 and 5 to 21 and 21 with
:ncstat 21 and :nlstat 21 commands so that the sizes of the statistics and histogram
regions will be identical

move to a region of blank sky and tap the m key to get an estimate of the mean, median
and standard deviation of the sky pixels in a region 21 by 21 pixels in size around the
image cursor

leave the cursor at the same position and tap the h key to get a plot of the histogram
of the pixels in the same region

tap the g key to activate the graphics cursor, move the cursor to the peak of the
histogram and type C to print out the cursor’s value. The “x” value then gives you a
good estimate of the sky. Similarly, you can move the cursor to the half-power point
of the histogram and type C to estimate the standard deviation of the sky pixels. Tap
the 1 key to return to the image cursor menu

compare the results of the h and m keys
repeat the measurements for several blank sky regions and note the results

move to a bright unsaturated star and turn up the zoom and contrast of the display
device as much as possible

68

using the x key mark the point on either side of the center where the light from the star
disappears into the noise and estimate PSFRAD

type :epar r to edit the radial profile fitting parameters and set rplot to something a
few pixels larger than PSFRAD and tap the r key

note the radius where the light levels off and compare with the eyeball estimate
repeat for a few stars to check for consistency

type q to quit imexamine

Example 3: Overplot lines from two different images.

imexamine imagel,image2
move the image cursor to a star and type z to print the pixel values near the cursor

tap the n key to display the second image followed by z to look at the values of the
same pixels in the second image

tap the p key to return to the first image
tap 1 to plot a line near the center of the star and tap the o key to overlay the next plot

tap the p key to return to the second image and without moving the image cursor tap
the 1 key again to overplot the line

type q to quit imexamine

69

