
An Introductory User’s Guide to IRAF SPP Programming

Rob Seaman

National Optical Astronomy Observatories†
Tucson, Arizona 85726

This document presents a tutorial and overview of programming in the
IRAF Subset Pre-Processor (SPP) language using the various procedure calls
that constitute the IRAF Virtual Operating System (VOS). Some of the advan-
tages of programming in SPP are portability from machine to machine, durabil-
ity as computers and operating systems evolve, access to IRAF data structures
such as Command Language parameters and the various image formats, and
access to large libraries of useful routines of every description in both source
code and compiled versions.

While a full exposition of the IRAF SPP/VOS programming environment
is beyond the scope of this guide, the author hopes to communicate enough of
the substance of SPP programming to get an interested scientist or programmer
over the first few hurdles. An associated IRAF package is available from
NOAO that contains the examples from this document. This package can be
modified and extended by the user to avoid the monotony and mistakes of
duplicating the author’s efforts.

Prepared for V2.10 of the Image Reduction and Analysis Facility (IRAF).

Please send comments to seaman@noao.edu.

October 30, 1992

†Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the
National Science Foundation.

Table of Contents

1. Introduction ... 1
Typographical Notes
IRAF File Name Conventions

2. Compiling and Executing an SPP Task ... 3
IRAF Online Help

3. Tasks with Parameters.. 7
The Fibonnaci Task
Imreplace (First Version)
Imreplace (Second Version)

4. An Advanced Example.. 17

5. Modifying an Existing Task .. 25
Summary

6. The IRAF VOS Interfaces ... 41
The Command Language I/O Interface (clio)
The File I/O Interface (fio)
The Image I/O Interface (imio)
The Memory I/O Interface (memio)
The Graphics I/O Interface (gio)
Vector Operators (vops)
Miscellaneous (etc)
The Formatted I/O Interface (fmtio)
Intrinsic Functions
Other Interfaces and Library Routines
Arguments and Return Values

7. Making an IRAF Package.. 55
Installing the examples Package
Adding a Task to the Package

Appendix I: Topics Not Discussed

Appendix II: References

Appendix III: Help Pages for the Examples

Appendix IV: An SPP/VOS Quick Reference Card

An Introductory User’s Guide to IRAF SPP Programming

Rob Seaman

National Optical Astronomy Observatories†
Tucson, Arizona 85726

1. Introduction
There are several good reasons to write IRAF programs in SPP. The single reason most

often offered is portability from machine to machine. This is a good reason, but of course the
push in the computer industry for standards and “open systems” has made portability across
computers less critical than it once was. It remains an important consideration, however, since
even small differences between operating systems or compilers can result in subtle problems
that must be resolved in order to maintain a port of IRAF to a given computer, for instance. In
other words, not all astronomers own Sun workstations, and equally to the point, a Sun 3 is a
very different computer than a SparcStation.

Another good reason is the chronological portability that has given IRAF time to mature
and to adapt to the changing machines and operating systems of the last decade. Carefully writ-
ten SPP programs are extremely durable and rarely become obsolete.

Since IRAF is a mature system, the immediate benefit for the programmer is access to
well developed data structures such as IRAF Command Language parameters and image file for-
mats and to large libraries of useful and well tested system and mathematical routines of every
description. You don’t have to re-invent the wheel when programming in SPP.

At this point, we have referred to IRAF SPP programs without defining the terms. IRAF
is the Image Reduction and Analysis Facility that has been developed by and is maintained by
NOAO. SPP is the Subset Pre-Processor language, which serves as a buffer against the
vagaries of any particular computer programming language implementation. Rather than
attempt to summarize the reasoning behind the selection of SPP for IRAF, the reader is directed
to the document, The Role of the Preprocessor, by Doug Tody.

The SPP language is only a third of the recipe that was used to achieve IRAF’s high
degree of portability and thus, to a large measure, its success.

The second ingredient is the IRAF VOS (or Virtual Operating System). An SPP task
never accesses the computer’s operating system directly, but rather uses the facilities of the
VOS, which in turn talks to the particular computer’s operating system using a small interface
known as the IRAF kernel. It is the VOS which includes the very large number of useful rou-
tines that were mentioned above. It is more correct to call an IRAF program an “SPP/VOS”
program than an “SPP” program. The complexity that can vex new IRAF programmers is the
size of the VOS, not the rather simple and basically familiar nature of the SPP language itself.

The third ingredient is the set of IRAF bootstrap utilities that is supplied for each sup-
ported computer. These utilities include the SPP compiler, xc, and the mkpkg program which
provides abilities that are similar to, but enhanced relative to the usual Unix make command
(and, of course, mkpkg works on non-Unix machines, e.g., VMS Vaxes, as well). The
bootstrap utilities are not part of IRAF, per se, but are coded in C with the normal level of por-
tability that can be achieved with a careful design, i.e., moderate code changes are usually
required for the IRAF Group to support a new machine or operating system version.

†Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the
National Science Foundation.

- 2 -

One last bit of business: the word “task” was used above. An IRAF task is a program
that is meant to run in the environment provided by the IRAF Command Language, or CL.
Tasks fall into three general categories: compiled SPP programs, interpreted CL scripts, and
imported foreign tasks. You can read about scripts in An Introductory User’s Guide to IRAF
Scripts, by Ed Anderson and Rob Seaman, and you can read about foreign tasks, and also about
the IMFORT library of routines for accessing IRAF images from host Fortran (or C) programs,
in A User’s Guide to Fortran Programming in IRAF — The IMFORT Interface, by Doug Tody.

1.1. Typographical Notes
� Text in the Courier (i.e., teletype) font indicates programs that are contained in a

file, information typed by the computer, or the names of variables, of procedures, or
of parts of the SPP language.

� Text in the Courier Bold font indicates what the user types on the keyboard.
� Text in the Courier Italic font indicates an identifier that should be substituted

with the appropriate text string value.
� Text in the Roman Italic font is used for emphasis or for the names of files.
� Text in the Roman Bold font is used for the names of IRAF tasks and packages,

host programs, section and example headings, and for highlighting important points.
� Examples are labeled with parenthesized numbers, e.g., (1), at the end of some lines.

These are used solely to reference the notes that follow and are not part of the exam-
ples. Corresponding labels are included in the comments of the examples package.

1.2. IRAF File Name Conventions
� Files containing SPP source code always have an extension of .x. SPP files that con-

tain entry point procedures for IRAF tasks often (but not always) have t_ prepended.
� IRAF makes it possible to use both SPP and non-SPP code (for instance, Fortran or

C) in a single executable. Fortran programs have an extension of .f when accessed
from within IRAF. C programs have an extension of .c.

� IRAF makes use of a number of header or include files which define constants and
data structures. These files have an extension of .h.

� Compiled object files have an extension (inside of IRAF) of .o, object library files
have an extension of .a, and linked executable files typically have an extension of .e,

� IRAF CL scripts have an extension of .cl, and parameter files an extension of .par.
� Files associated with IRAF help have extensions such as .hlp, .hd, .men, and .mip.
� Cursor loop tasks often provide access to online “keystroke” help files. These files

have an extension of .key.
� Subdirectories in the IRAF tree that contain source code are often called src. Those

containing documentation are often called doc. Library subdirectories are called lib.
Directories containing executable binary files are called bin or bin.arch, where arch

specifies a particular machine architecture.
� IRAF source code directories each contain a mkpkg file which describes how to com-

pile, link, and install the code in that directory.
� Due to IRAF filename mapping, the actual host level names may differ. For exam-

ple under VMS, Fortran programs have an extension of .for, object files have an
extension of .obj, executables have an extension of .exe, and object libraries an
extension of .olb. The names within IRAF are as described above, however.

- 3 -

2. Compiling and Executing an SPP Task
We will jump right in with an example. In SPP, the customary “Hello, world!” program

looks something like this:

HELLO -- Sample program introducing SPP.

task hello = t_hello_world

procedure t_hello_world ()

begin
call printf ("Hello, world!\n")

end

The first step is to edit the program above into the file hello.x using your favorite editor. You
could also simply retrieve the file from the examples.tar.Z archive file as described in §7.

The second step is to compile the program into the executable file hello.e:

cl> xc hello.x

The third step is to declare the new task (the name for an IRAF program) so that it is accessible
from within IRAF:

cl> task $hello = hello.e

The task can now be run from the CL prompt:

cl> hello
Hello, world!

Even as simple as it is, hello is a fully featured IRAF task that can be used with such IRAF
facilities as output redirection:

cl> hello > filename

and IRAF job control, for example, to run the task in the background:

cl> hello &

or to measure its execution time:

cl> $hello
Hello, world!
Time (hello) 0.017 0:00 99%

As you read this guide, keep in mind that much of the power of SPP/VOS programming is
implicit, requiring little or no action on the part of the programmer beyond following the rules.

- 4 -

We will now go back over the steps involved in creating an IRAF SPP task in more detail.
A few general comments are in order:

� Semicolons are NOT used to terminate each statement, although a statement con-
sisting only of a “;” can be used to indicate a null statement as in the C language.
This may be useful, for instance, in the body of a simple loop.

� Blank lines are permitted (and encouraged!) to make programs more readable.
� A statement will be continued onto the next line if it ends with a comma, an

operator, or a backslash (\).
� Indentation is free form and is left to the design or whim of the programmer. One

could do worse than to emulate the style of the examples in this guide, which adhere
to the IRAF project standards as described in IRAF Standards and Conventions, by
Elwood Downey, et. al.

There are also comments specific to every line of the program:

HELLO -- Sample program introducing SPP. (1)

task hello = t_hello_world (2)

procedure t_hello_world () (3)

begin (4)
call printf ("Hello, world!\n") (5)

end (4)

(1) Comments begin with the # character and extend to the end of the line.
(2) SPP programs are not intended to be run outside of IRAF†, but rather as tasks under

the Command Language. The SPP task statement links an automatically generated
command interpreter (called sys_runtask) into your program. The interpreter
allows communication between the IRAF CL and the program. There may be more
than one task within a single IRAF executable. This is one reason that the jargon
term task is used, rather than just calling them programs.

(3) The procedure statement is used to declare all subroutines and functions in SPP.
Usually the main procedure for a task is given a name that begins with t_. It was
this name, t_hello_world, that was referred to in the preceding task statement,
while the outside world, e.g., the CL, knows the task by the name hello.

(4) The beginning and ending of the executable portion of an SPP procedure are indi-
cated by the begin and end statements.

(5) Untyped procedure calls (but not function calls) require that the call keyword be
used when they are referenced (contrast this to C language usage). In this case the
procedure printf is being called to print a string literal, "Hello, world!\n", to the
standard output (the newline character is specified within the string by “\n”). All
IRAF tasks have the usual Unix-like standard input, standard output, and standard
error (or STDIN, STDOUT, and STDERR) files predefined and opened for access with
no hoopla.

†However, standalone execution from the host operating system prompt is supported for special purpose
applications. See Appendix I for more details.

- 5 -

Compiling the program also requires some explanation. On a Sun, the xc command will
generate something like the following running output:

cl> xc hello.x (1)
hello.x: (2)

sys_runtask:
t_hello_world:

hello.f: (3)
sysruk: (4)
thelld: (4)

link:

(1) The IRAF xc compiler is used to compile SPP programs. It may also be used to
compile C or Fortran programs. It is an IRAF bootstrap program and may be used
either inside or outside IRAF. When no command line switches are specified, the
SPP file(s) will be both compiled and linked. The resulting executable file is named
by replacing the file extension with a .e, in this case, hello.e.

(2) SPP source files must have an extension of .x, C source files must have an extension
of .c, and Fortran source files must have an extension of .f. These are the extensions
used within the IRAF environment — the host file extensions may be subject to
IRAF filename mapping, for instance Fortran files have a .for extension under VMS,
but are known inside of IRAF by a .f extension. Read the IRAF help page for xc for
more information.

(3) The SPP language is currently implemented as a preprocessor for Fortran (on most
machines), hence the name Subset Pre-Processor language.†

(4) To allow the use of long names for variables and procedures, names that are longer
than six characters (all that are permitted in Fortran 66) are translated into six or
fewer characters. The rule is that the first five characters and the last character of the
name are contracted. Underscores are ignored in the count. Given these two rules,
sys_runtask contracts to sysruk and t_hello_world contracts to thelld. This
scheme is normally transparent to the programmer, but you must choose variable
and procedure names that map to unique identifiers.

A better way to declare the hello task to the CL is to specify the full pathname to the exe-
cutable. If this is not done, the task will only work when you are in the directory containing the
compiled program. For example, the command:

cl> task $hello = home$spp/hello.e

will let hello work no matter what directory is current. This assumes that the executable file is
located in the subdirectory, spp, of your IRAF login directory, home$. Adjust the pathname if
your directory is different. The dollar sign ($) that is prepended to the task name, $hello, tells
the CL that this task does not have an associated parameter file. To allow hello to be automati-
cally defined the next time you log into IRAF, place the task statement into either your login.cl
or loginuser.cl file.

†Actually it is a two step preprocessor, producing a dialect of that venerable (and highly stable) language,
RATFOR, as the first intermediate step. The Fortran that is produced as the second step is a vanilla subset
of the Fortran 66 standard that has been shown to be digestible to even the strangest of host Fortran
compilers. Note that the compilation process is quite speedy, even with all the conversions going on, and
that no runtime speed penalty is imposed, especially with the use of modern optimizers.

- 6 -

2.1. IRAF Online Help
At this point, it is appropriate to introduce some of the pertinent online help information

that is available to you. Both the xc and task commands that were mentioned above have IRAF
help pages that you may find useful. Use the IRAF help or phelp commands to access these:

cl> help xc or cl> phelp task

(The phelp command allows scrolling the help page backward.) Two other help pages to
become familiar with are those for help itself (cl> help help) and for the references task.
The help task can be used to do other useful things, as well as simply listing out a “help” page,
such as viewing the IRAF source code for a task. You will see examples of this later on. The
references task is useful for locating IRAF tasks that are related to a particular keyword:

cl> references cache
cache - Cache parameter files, or print the current cache list

flprcache - Flush the process cache
mkttydata - Build cache for termcap/graphcap device entries
prcache - Show process cache, or lock a process into the cache

The first time you use references, you should specify the parameter updquick=yes (abbreviated
upd+ on the command line below) to speed up later searches dramatically:

cl> refer upd+
generating new quick-reference file uparm$quick.ref...

There are also several general topic help pages that can be of use as background for SPP
programmers. A few of these are parameters, cursors, and commands. The softools package
and the xtools library contain help pages on several different topics:

cl> help softools
generic - Preprocess a generic source file

hdbexamine - Examine a help database
lroff - Lroff (line-roff) text formatter

mkhelpdb - Make (compile) a help database
mkmanpage - Make a manual page

mkpkg - Make or update an object library or package
mktags - Tag all procedure declarations in a set of files

mkttydata - Build cache for termcap/graphcap device entries
rmbin - Find/delete binary files in subdirectories

rmfiles - Find/delete files in subdirectories
rtar - Read a TAR format archive file
wtar - Write a TAR format archive file
xc - Compile and/or link a program

xyacc - Build an SPP language parser

Other documentation is scattered throughout the system. One good place to look is in the
iraf$doc directory, although you may be overwhelmed by the details. For instance, to examine
the crib.hlp file in that directory:

cl> help doc$crib.hlp file+

The IRAF help database will be discussed in §7. Not all help files are installed in this database,
for instance, any help files that you may be writing for tasks that you are working on. The
file+ specification will let you examine the formatted output from these files.

- 7 -

3. Tasks with Parameters
The examples in this section will use progressively more of the facilities of the IRAF

VOS. The VOS, or Virtual Operating System, consists of a very large number of machine
independent procedures (organized into several coherent interfaces) that supply much more than
the normal facilities of a host computer operating system. By programming on top of the VOS,
the program is insulated from the peculiarities of the particular machine upon which IRAF is
running, for instance, the identical IRAF source code can run under VMS and Unix.

An example of a VOS interface that is particularly useful is the Command Language
Input/Output interface, or CLIO. Any task that is meant for production use will likely require
CL parameters for specifying the critical information that the task needs at runtime. The CL
parameter mechanism supplies a much more flexible replacement for the simple command line
switches of many Unix or VMS programs, for the question and answer interrogation of the user
by other programs, and for the cryptic configuration files that still other programs rely on.

3.1. The Fibonnaci Task
The first example will have just a single parameter. The fibonnaci task prints out the first

N terms of the Fibonnaci sequence calculated using two different algorithms. The SPP source
code may be typed into the file fibonnaci.x as listed below, or like the “Hello, world!” example
and all examples in this guide, can be found in the examples package tar file as described in §7.

examples$src/fibonnaci.x:

FIBONNACI -- print the first N Fibonnaci numbers.

task fibonnaci = t_fibonnaci

include <mach.h> (1)

define MAX_TERMS 50 (2)

procedure t_fibonnaci ()

int nterms, fib, farray[MAX_TERMS], n (3)
double dfib, phi

int clgeti() (4)

begin
nterms = min (clgeti ("nterms"), MAX_TERMS) (5)
phi = (1 + sqrt (5.d0)) / 2 (6)

call printf (" N\t Algebraic\tSequence\n")

do n = 1, nterms { (7)
dfib = phi ** n / sqrt (5.d0) (8)
if (dfib > MAX_INT)

break
fib = nint (dfib)

if (n <= 2) (9)
farray[n] = 1

else
farray[n] = farray[n-1] + farray[n-2]

call printf ("%2d\t%10d\t%d\n") (10)
call pargi (n)
call pargi (fib)
call pargi (farray[n])

}
end

- 8 -

There are a number of points to go over for even such a brief task as this:

(1) We are going to need to know the maximum size of an integer on whatever com-
puter the task is compiled on. The <mach.h> system include file contains this and
other information about the particular IRAF machine. The angle brackets (<>) indi-
cate that the xc compiler should look in the standard IRAF location (typically the
lib$ or hlib$ directories) to find the include (or “header”) file.

(2) On a typical modern machine with 32 bit integers, integer precision is exhausted
before the 50th Fibonnaci number is reached (N=46 to be precise). Rather than
explicitly declare the size of any needed arrays or loop control variables to be 50, it
is better to define a symbolic constant to do the job. Better yet would be to dynami-
cally allocate an array of the correct size, as needed. Dynamic memory management
is discussed later.

(3) SPP requires that all variables be declared.
The iterative algorithm uses the integer array farray[] to contain the successive
terms of the Fibonnaci sequence. Array definitions and references are indicated
with square brackets.

(4) External functions (but not “subroutines”) must be declared to be the proper datatype
by the calling procedure. The intrinsic math functions should not be declared.

(5) The task begins by requesting the number of Fibonnaci terms desired. The nterms

parameter is declared as a query parameter in the file fibonnaci.par, described below.
That nterms is a query mode parameter means that unless the value for nterms is
given by the user on the command line, an interactive prompt will be generated ask-
ing for the information. Information that the task must have that is likely to change
from one execution of the task to the next should be specified by a query parameter.

Getting the query parameters should typically be the first thing that a task does. This
avoids making the user wait while the task executes up to the point that a parameter
value is actually needed.

Note that we explicitly limit the value of nterms to the maximum allowed. We
don’t have to limit the minimum since the do loop later in the program will be
skipped for values of nterms less than one. This constraint on the input is just a pre-
caution since the allowable range of values for the nterms parameter is specified in
the associated parameter file.

(6) SPP intrinsic functions are generic, meaning the same name is used for the
function no matter the datatype that is returned, which is (typically) the same
as the datatype of the arguments. To preserve full precision for large integer
values of the Fibonnaci numbers, the algorithm requires double precision accuracy.

Note that for intrinsic functions that take more than one argument, all argu-
ments should be the same datatype to ensure portability. A complete list of the
supported SPP intrinsic functions and their arguments can be found in §6 and on the
SPP/VOS Quick Reference Card.

(7) SPP supports several control loop structures, including the C-like while, for, and
repeat...until constructs, and also the Fortran-like do loop. The do loop is the
most straightforward and should typically compile and optimize to the fastest object
code. Note that SPP control structures only apply to the block of code that follows
immediately. This is either a single (but perhaps compound, e.g., another do loop)
statement or a block surrounded by braces ({}).

(8) In case you are interested, the actual closed form Fibonnaci expression is:

√5 . F (N) = φN − (−φ)−N where φ =
2

1 + √5

- 9 -

The second term quickly approaches zero and may be neglected for all positive
values of N, if the result is passed through the nint (nearest integer) function. The
golden mean, φ, is the root of the equation: x 2 − x − 1 = 0.

Note how the double precision result is explicitly checked to verify that it will fit
into an integer variable on the particular machine before the result is rounded to the
nearest integer.

(9) SPP uses C like boolean operators: <, <=, >, >=, ==, !=, !, &&, and ||,. Again,
note that SPP control structures apply either to the single following statement or to a
compound statement block surrounded by braces ({}).

(10) The SPP printf formatting directives are similar in form to C language usage, but
the particular directives are different. You should be careful to only consult the
IRAF documentation when fiddling with your output formatting. A list of the for-
matting directives can be found in §6 and on the SPP/VOS Quick Reference Card.

The current SPP printf implementation is incomplete. Instead of supplying a vari-
able number of arguments directly to printf to specify the different values to be
formatted and printed, the arguments are supplied in subsequent parg_ calls, one per
formatting directive. The parg_ calls should follow immediately after the
corresponding printf and should be indented one level. These rules are not abso-
lutely required by the preprocessor, but are good standards to follow.

The parameter declaration file that is associated with fibonnaci.x should be named
fibonnaci.par. You can either edit the following single line into that file in your work directory
(for instance, home$spp), or you can copy it from the examples package.

examples$src/fibonnaci.par:

nterms,i,a,,1,50,Number of terms in the Fibonnaci sequence

Each line of a parameter file consists of seven comma separated fields. These are:
� name of the parameter
� parameter datatype:

integer (i), real (r), boolean (b), or a character string (s)†
� access mode:

hidden (h), query (q), or automatic (a)
� default value
� minimum allowed value (also enumerated values)
� maximum allowed value
� interactive prompt

The parameter file can be considered a disk representation of a runtime data structure.
Before your task is executed the CL has the responsibility for maintaining this data structure.
While your task executes these parameter values can be examined and even modified by your
program. The ensuing behavior depends on access type (hidden, query, or automatic) and on
whether the parameter was specified on the command line or not. For more details, read the
IRAF parameter help page.

†More exotic types are gcur for the graphics cursor, imcur for the image cursor, struct for a character
string that scans to include the rest of a line of input, ukey for unbuffered or raw input, and file for a
string that is constrained to be a legal file name (this is currently just the same as a normal string). Any of
the basic datatypes can be declared as list directed by prepending an asterisk (*) to the type. A list directed
parameter may be assigned the name of a file from which to read the desired value for the parameter.

- 10 -

The command to compile the task is very similar to the “Hello, world!” example:

cl> xc fibonnaci.x

However, the command to declare the task to the CL is slightly different for a task that has a
parameter file. There should be no initial dollar sign ($) prepended to the task name in the
task statement:

cl> task fibonnaci = home$spp/fibonnaci.e

In addition, the parameter file, fibonnaci.par, must be placed in the same directory as specified
for the executable so that the CL can locate it.

The task can be run in two ways. By specifying the nterms parameter on the command line:

cl> fibonnaci 8
N Algebraic Sequence
1 1 1
2 1 1
3 2 2
4 3 3
5 5 5
6 8 8
7 13 13
8 21 21

Or by allowing the task to prompt you for the value of nterms:

cl> fibonnaci
Number of terms in the Fibonnaci sequence (1:50) (12): 2
N Algebraic Sequence
1 1 1
2 1 1

Note that the prompt includes the range of acceptable input values as well as the default value
that was learned from the previous execution of the task.

3.2. Imreplace (First Version)
The next two examples are variants of the imreplace task from the proto package. This

task allows the user to specify a new value for all pixels in an image whose current value lies
between a lower and an upper threshold. Our first version of the task requires the user to enter
specific pixel thresholds, rather than allowing a threshold to default to the image minimum or
maximum. Features will be added between the two examples. The proto package version of
this task lacks some capabilities that we will implement in our examples. On the other hand,
for the purposes of the examples we have simplified the handling of multiple image datatypes.

The first version of the task is in the file examples$src/imreplace1.x in the example.tar.Z file.
The associated parameter declaration file is contained in examples$src/imreplace1.par and will
be listed first.

examples$src/imreplace1.par:

Parameters for the imreplace task. [FIRST VERSION]
image,s,a,,,,The image to be modified
value,r,a,,,,Constant for the replacement operation
lower,r,h,,,,Lower limit of the replacement window
upper,r,h,,,,Upper limit of the replacement window

- 11 -

examples$src/imreplace1.x:

IMREPLACE [FIRST VERSION] -- replace pixel values within thresholds.

task imreplace1 = t_imreplace1

include <imhdr.h> (1)

procedure t_imreplace1 ()

char image[SZ_FNAME] (2)
real value, lower, upper

pointer im, buf1, buf2
int npix, nlines, linenum

pointer immap(), imgl2r(), impl2r()
real clgetr()

begin
call clgstr ("image", image, SZ_FNAME)

value = clgetr ("value") (3)
lower = clgetr ("lower")
upper = clgetr ("upper")

im = immap (image, READ_WRITE, 0) (4)

npix = IM_LEN(im,1) (5)
nlines = IM_LEN(im,2)

do linenum = 1, nlines {
buf1 = imgl2r (im, linenum) (6)
buf2 = impl2r (im, linenum)

call arepr (Memr[buf1], Memr[buf2], npix, (7)
lower, upper, value)

}

call imunmap (im) (8)
end

AREPR -- Copy a to b, replacing values between floor & ceiling.

procedure arepr (a, b, n, floor, ceiling, newval) (9)

real a[n] #I input array (10)
real b[n] #O output array
int n #I size of the arrays
real floor, ceiling #I replacement limits
real newval #I replacement constant

int i

begin
do i = 1, n

if (a[i] >= floor && a[i] <= ceiling)
b[i] = newval

else
b[i] = a[i]

end

- 12 -

Notes on this example:

(1) We will need to know the size of the input image. The way to obtain this informa-
tion is to directly access the proper fields in the data structure that represents the
image header. The <imhdr.h> system include file contains the necessary macro
definitions to find out all sorts of useful information about an image.

(2) The task will need the name of the desired image, so we declare a character array (or
string) to contain the name. You may never need to know it, but IRAF character
strings are represented by null delimited character arrays. An individual IRAF char-
acter is typically two machine bytes in length for portability reasons.

The length of the character string is specified using the predefined SPP macro
SZ_FNAME. The value for SZ_FNAME (nominally 63 characters) is set in the include
file <iraf.h> and is chosen to represent the maximum length of a filename. The
file <iraf.h> (really hlib$iraf.h) is automatically included in all SPP programs.

(3) After the query parameters are obtained, the task should get the rest of the parame-
ters. This should occur at the very beginning of the task to establish the context for
the particular execution of the task as early as possible. In most cases, only the top-
most procedure of a task should access the task parameters.

(4) In IRAF terms an image file is not opened for I/O access, it is mapped. The value
returned by the immap function is a pointer to a data structure (the image descriptor)
that contains the information that is needed to read or write both the image header
and the image pixels.

(5) The IM_LEN macro is used to access the image descriptor and obtain the length of
the two axes of the image. As with other macro languages, it is a good idea to omit
any whitespace from the macro expression.

Note that the task assumes that the input image is two dimensional.

(6) These two statements are responsible for obtaining pointers to the image input and
output buffers. The input buffer will be initialized to the specific line of the image
referenced in the call to the function imgl2r. The output buffer, once obtained, may
be written to at will. The pixels will be actually written to the file either the next
time impl2r is referenced or when the image descriptor is unmapped.

(7) We have now reached the nitty-gritty of the task. The procedure arepr will actually
copy the pixels from the input buffer to the output buffer with the specified replace-
ments. The mechanism that SPP uses to dereference pointers utilizes a special
predefined set of arrays Memr[], Memi[], Memc[], and so on for pointers to real,
integer, or character buffers, respectively. A good way to handle such buffers so as
to avoid pointer arithmetic is to immediately dereference them and pass them to a
called procedure for further processing. This allows the buffers to be accessed as
normal arrays within the called procedure.

Recall that SPP allows automatic continuation to the succeeding line when a state-
ment ends in a comma or an operator.

SPP procedures must be referenced with a call statement. SPP functions must
be referenced within an expression, for instance, in an assignment statement.

(8) When you are finished with the image descriptor, the memory should be returned to
the system for others to use. The Command Language keeps a cache of sleeping
processes around for future use. Unlike a host level program which will terminate
after execution, an IRAF process may be invoked and reinvoked many times over
many hours. You must clean up memory at the end of each task, and often at
the end of each procedure.

- 13 -

(9) The arepr procedure† is declared. The arguments of SPP procedures are passed by
reference as in Fortran. The procedure receives the addresses of the actual argu-
ments, not the values as in C. This has the usual repercussions that are encountered
in Fortran programs. It is important to keep in mind which of the arguments are
purely for input, which are purely for output, and which are used for both (referred
to as update arguments).

When the procedure or function is referenced within a calling procedure, the pro-
grammer must guarantee that no output argument (i.e., an argument whose value will
be modified when the procedure is done) is specified as a constant. This also applies
to update arguments, whose initial values are also critical to the routine.

Within the procedure, the programmer should be careful to never assign a new value
to a purely input argument. Ideally, an output argument should be referenced only
once in some expression or assignment near the bottom of the procedure.

(10) The arguments to the procedure are declared. The size of an array may be passed as
an argument as in Fortran. A handy convention is to supply a descriptive comment
with each argument declaration of the procedure. An initial I, O, or U in the indivi-
dual comments indicates whether each is an input, output, or update argument.

3.3. Imreplace (Second Version)
We will now revise the task to include significantly more functionality for the user. The

most apparent change will be to include support for input and output image templates. The user
will be able to specify a list of images to be operated on and, at the same time, the input images
will not be overwritten on output. A second change will allow the user to specify a single
lower or upper bound, above or below which all pixels will be replaced. A third change allows
the user to replace the pixels outside the specified range. This will occur when the lower bound
that is specified is larger than the upper bound.

Note that there are three changes to the parameter file. First, an output image parameter
was added, and the input image parameter was renamed from image to input to reflect the new
ability to specify image templates and lists. Second, the lower and upper parameters have
been provided with default INDEF values which indicate that the corresponding bound is, in
effect, the minimum or maximum value in the image. Lastly, the mode of the value parameter
has been changed from “a” (for automatic) to “h” (for hidden), and the parameter now has a
default value of 0 (zero). This is purely a judgement call on the part of the programmer. The
other changes emphasized the capabilities of specifying the replacement limits, and so the
specification of the replacement value has been correspondingly de-emphasized.

examples$src/imreplace2.par:

Parameters for the imreplace task. [SECOND VERSION]
input,s,a,,,,List of input images
output,s,a,,,,List of output images
value,r,h,0.,,,Constant for the replacement operation
lower,r,h,INDEF,,,Lower limit of the replacement window
upper,r,h,INDEF,,,Upper limit of the replacement window

†The arepr procedure has been named by the conventions of the IRAF Vector Operators (or VOPS)
library. The arepr procedure is similar to a VOPS routine since it involves a well defined operation on a
vector and uses only pure arithmetic. The initial “a” indicates that this procedure operates on an array (or
vector). The terminal “r” indicates that this is a version that requires type real input and delivers real

output. The total length of such names is limited to six characters, but five is preferable.

- 14 -

examples$src/imreplace2.x:

IMREPLACE [SECOND VERSION] -- replace pixel values within thresholds.

task imreplace2 = t_imreplace2

include <imhdr.h>
include <error.h> (1)

procedure t_imreplace2 ()

pointer sp, inlist, outlist, input, output, im1, im2
real value, lower, upper, rtemp
bool outside

pointer imtopenp(), immap()
int imtgetim(), imtlen()
real clgetr()

errchk immap (1)

begin
call smark (sp) (2)
call salloc (input, SZ_FNAME, TY_CHAR) (2)
call salloc (output, SZ_FNAME, TY_CHAR)

inlist = imtopenp ("input") (3)
outlist = imtopenp ("output")

if (imtlen (inlist) != imtlen (outlist)) { (3)
call imtclose (outlist)
call imtclose (inlist)
call sfree (sp)
call error (1, "input and output lists don’t match") (1)

}

value = clgetr ("value")
lower = clgetr ("lower")
upper = clgetr ("upper")

if (IS_INDEFR(lower) || IS_INDEFR(upper)) (4)
outside = false

else
outside = (lower > upper)

if (lower > upper) {
rtemp = upper
upper = lower
lower = rtemp

}

while (imtgetim (inlist, Memc[input], SZ_FNAME) != EOF && (3)
imtgetim (outlist, Memc[output], SZ_FNAME) != EOF) {

iferr (im1 = immap (Memc[input], READ_ONLY, 0)) { (1)
call eprintf ("Problem opening input image:\n") (1)
call erract (EA_WARN) (1)
next

}

iferr (im2 = immap (Memc[output], NEW_COPY, im1)) { (5)
call imunmap (im1)
call eprintf ("Problem opening output image:\n")
call erract (EA_WARN)
next

}

call imrepr (im1, im2, value, lower, upper, outside)

call imunmap (im2) (5)
call imunmap (im1)

}

call imtclose (outlist) (3)
call imtclose (inlist)
call sfree (sp) (2)

end

- 2 -

IMREPR -- Replace (real) pixels between lower & upper by value.

procedure imrepr (im1, im2, value, lower, upper, outside)

pointer im1, im2 #I input & output image descriptors
real value #I replacement value
real lower, upper #I range to be replaced
bool outside #I Replace values *outside* the range?

long v1[IM_MAXDIM], v2[IM_MAXDIM] (6)
pointer buf1, buf2
int n

int imgnlr(), impnlr()

begin
call amovkl (long(1), v1, IM_MAXDIM) (6)
call amovkl (long(1), v2, IM_MAXDIM)

n = IM_LEN(im2,1)

if (IS_INDEFR(lower) && IS_INDEFR(upper)) # replace all pixels
while (impnlr(im2,buf2,v2) != EOF) (6)

call amovkr (value, Memr[buf2], n)

else if (IS_INDEFR(lower)) # replace all pixels below upper
while (imgnlr(im1,buf1,v1) != EOF && impnlr(im2,buf2,v2) != EOF)

call arler (Memr[buf1], Memr[buf2], n, upper, value)

else if (IS_INDEFR(upper)) # replace all pixels above lower
while (imgnlr(im1,buf1,v1) != EOF && impnlr(im2,buf2,v2) != EOF)

call arger (Memr[buf1], Memr[buf2], n, lower, value)

else # replace pixels between lower & upper
while (imgnlr(im1,buf1,v1) != EOF && impnlr(im2,buf2,v2) != EOF)

if (outside) {
call arler (Memr[buf1], Memr[buf2], n, lower, value)
call arger (Memr[buf2], Memr[buf2], n, upper, value)

} else
call arepr (Memr[buf1], Memr[buf2], n,

lower, upper, value)
end

ARLER -- Copy a to b, replacing values <= floor.

procedure arler (a, b, n, floor, newval)

real a[n] #I input array
real b[n] #O output array
int n #I size of the arrays
real floor, newval #I replacement limit & constant
int i

begin
do i = 1, n

if (a[i] <= floor)
b[i] = newval

else
b[i] = a[i]

end

ARGER -- Copy a to b, replacing values >= ceiling.

procedure arger (a, b, n, ceiling, newval)

real a[n] #I input array
real b[n] #O output array
int n #I size of the arrays
real ceiling, newval #I replacement limit & constant
int i

begin
do i = 1, n

if (a[i] >= ceiling)
b[i] = newval

else
b[i] = a[i]

end

- 15 -

Various comments on the new SPP/VOS features in this example follow. First, however,
note that the arepr procedure is not shown in the example. It is identical to the version in
imreplace1.x. As you may already have noticed, the files as listed in this guide are not abso-
lutely identical to the files in the examples.tar.Z file. That compressed tar file, as described in
§7, implements an example IRAF package of all the tasks in this guide. The specific change
that is required to do that is to remove all of the SPP task statements from the individual files
into a common file that is used to link the package executable. The individual task statements
are present in the source files, but have been commented out. The only other difference between
the examples in the guide and the files in the example package is that the arepr procedure is
commented out in the file imreplace2.x to avoid a duplicate declaration.

(1) New to this example is the use of IRAF’s error handling facilities. The basic SPP
statements and procedure calls that support these facilities are: error, a procedure
which generates an error condition and aborts the task, the iferr statement, which
allows such an error condition to be intercepted and handled by the task itself,
erract, which supplies an action for an outstanding error condition within an error
handler, and errchk, which allows error conditions in called procedures to be passed
back up to the parent. In addition, eprintf can be used to send messages to the
STDERR output stream. The error.h system header definition file is included in this
case to permit the use of the EA_WARN macro within the call to erract.

(2) IRAF programming in SPP/VOS relies heavily on dynamic memory allocation for
the support of various large and small data structures. This example introduces the
SPP/VOS memory stack facilities. Allocating character arrays and large data buffers
on the stack can substantially reduce the size of IRAF executables, especially when
linking to the IRAF shared library (which is the default on the Suns). A procedure
that allocates dynamic memory on the stack will typically begin by marking the
position of the stack pointer when the procedure is first entered using the smark pro-
cedure. This entry position is saved in a pointer variable almost universally called
sp, which is used to restore the stack to its original size and positioning when the
procedure is exited. This is done using the sfree procedure. Calls to salloc are
interspersed within the body of the procedure to allocate different blocks of memory
for different purposes. The first argument of the salloc procedure is set to a pointer
to a newly allocated memory buffer of the indicated size and datatype. This pointer
may be dereferenced (as above) by using the SPP Mem_[] array constructs.

(3) A very handy item in the IRAF bag of tricks is the ability to specify an entire list (or
template) of images or files to be worked on by a task. Image templates are accessed
using about a half a dozen procedures that are a part of the Image I/O (or IMIO)
interface.

The user typically specifies an image template using a string parameter of the task.
The name of the parameter is passed to the imtopenp function which returns an SPP
pointer to a data structure (an image template descriptor) that contains the expanded
list of images. This data structure is opaque to the programmer, which is to say that
it is only accessed using the small set of routines in the image template “package”.
The programmer just needs to pass the structure pointer to the imtlen function, for
instance, to determine the number of images that were specified in the template. In
usual use, the image list is cycled through one image at a time using the imtgetim

function, which fills an output string buffer with the next image in the list each time
the function is referenced. When the end of the list is reached, imtgetim returns the
value EOF, which is a symbolic constant available to all SPP programs whose
specific (integer) value you should not need to know (it is defined in <iraf.h>).

- 16 -

After finishing with the image template descriptors, the task should close them to
return the memory to the system. This is done with the imtclose procedure.

This version of imreplace uses both an input and an output image template. The
implications of this for the user are discussed in the help page in Appendix III. The
implications for the programmer are that both templates must typically represent the
same number of images, and that the two lists are stepped through in unison.

(4) Note how the task’s behavior is specified implicitly. If lower is greater than upper

the task will replace the pixels outside the range. This is an added feature that
requires no extra parameters to specify, and that should be clear to the user.

By considering the range of allowed values for a parameter, it is often possible to
leverage increased functionality without adding parameters to specify them. Note
that adding another parameter can confuse the issue more than making the ones the
task already has do more. One example of making the parameters do more is using
upper and lower limits, such as these, that are handled differently if the values are
flopped. Another is the ability to specify an INDEF value (in this case the default)
that indicates some special value as the minimum or maximum of the image.

Other possibilities for making the user interaction more robust are the enumeration of
the allowed values of a parameter, the specification of an allowed range for a numeri-
cal parameter, the idea of a multivalued prompt (yes|no|YES|NO) that is used in
several of the IRAF spectral reduction tasks, and using negative values for a nomi-
nally positive quantity to indicate, for example, medianing instead of averaging.

(5) This call to immap is creating a new copy of an existing image. The data structures
of the new image depend on the corresponding data structures of the original image.
There is no way to tell exactly when the original image will be accessed by the IRAF
VOS. You could dig through the IRAF source code, but there is no guarantee that
the IRAF code will not change. Since the new image depends on the data structures
of the original, the original image should remain open the entire time that the new
image is open. In particular, note that the new image is closed (using imunmap)
before the original image.

(6) In the previous imreplace example, we used the imgl2r and impl2r procedures to
retrieve input and output data buffers from a two dimensional image. The first ver-
sion of the task should also handle one dimensional images correctly. However, due
to the design of imgl2r and impl2r, it will only process the first band of a three (or
higher) dimensional image.

To fully access all seven potential dimensions of an IRAF image a different set of
IMIO routines must be used. In the second version of imreplace, we have chosen to
use the imgnlr and impnlr routines. These two routines scan sequentially through
the image, rather than relying on the indexed scheme used by routines such as
imgl2r and impl2r. A seven dimensional start vector (of datatype long integer),
typically named v[], is used to index into the image. After each call to imgnlr or
impnlr, the start vector is incremented to the next line of the image. The lines of
the image are referenced in storage order with the leftmost subscript varying most
quickly. The start vector can also be adjusted manually to access a specific line from
the image (although it will still be incremented).

In all of these examples a different datatype, as expressed by the final letter of the
procedure name (in this case, “r” for datatype real), could have been chosen,
although the IMIO interface allows any datatype image to be accessed by any data-
type procedure. The normal datatype conversions are performed on input and output
from the image to the buffer (with the usual concern for truncating precision).

- 17 -

4. An Advanced Example
It is now time to mention several of the most useful facilities that the SPP/VOS program-

ming environment has to offer. The following example, the impix task, packages a number of
these up into one task, a simplified variation of the imedit task from the tv package. Impix
implements a form of user interface known as a cursor loop. After some initial configuration
(in this case, the image that is specified by the image parameter is displayed on the workstation
or other image display), the task enters an endless loop where it waits to receive cursor input
from the display. The task takes different actions depending on the specific keystrokes typed.

To understand an IRAF task, the best place to start is usually the data structures. As in
the previous examples, a fundamental data structure for the impix task is its parameter file,
which is the data structure that the user sees. Impix also has been designed to make use of the
SPP macro based data structure mechanism. While the implementation of data structures in
SPP is somewhat crude, the mechanism supports a large degree of functionality. Fortran pro-
grammers will perhaps be surprised to find that an old dialect, Fortran 66 (which is what current
implementations of SPP are preprocessed into), of their language of choice can support compli-
cated, “modern”, language constructs. On the other hand, C programmers (after having a few
good chuckles) should take another look at the underlying functionality that is provided. Much
of what C provides is also possible in SPP.

We will begin this example, therefore, with a discussion of features of the parameter file
and the task data structures which are located in the two files examples$src/impix.par and
examples$src/impix.h, respectively. Note that the contents of the header definition file (impix.h)
would normally be prepended to the source file (impix.x) for such a small task, but since the
header file mechanism is used throughout IRAF, one is included for its pedagogical value.

examples$src/impix.par:

image,s,a,,,,Image to be edited
peakup,b,h,yes,,,Peak up within the box?
localmin,b,h,no,,,"Peak on the local minimum, rather than maximum?" (1)
replace,s,h,"median","constant|mean|median",,Replacement algorithm (2)
constant,r,h,0.,,,Value for constant replacement
boxsize,i,h,5,1,,Size of the peaking & statistics box
imcur,*imcur,h,"",,,Image display cursor input
frame,i,h,1,1,4,Frame number for the image display
update,b,h,yes,,,Actually edit the image?

Comments on the parameter file:

(1) Quote a parameter prompt if it contains commas or other special characters.
(2) The minimum field of a parameter specification is also used to enumerate allowed

values for string parameters. This is a way of constraining the input to a task before
the task is ever executed, i.e., the CL catches values that aren’t allowed for a particu-
lar parameter.

The CL parameter enumeration operates before the task is executed. It is even more
important to limit the inputs to the task once it is started. The clgwrd or strdic

functions (indicated below, in the source code) will obtain an index string from the
CL or from a character string variable, respectively, and will look it up in a diction-
ary string. Only values from the dictionary, or their unique abbreviations, are
allowed. The routine returns the numeric index of the item in the dictionary as well
as the non-abbreviated string entry. It is usually the numeric index that is actually
used by the program to control a switch or an if statement.

- 18 -

examples$src/impix.h:

define KEYHELP "examples$lib/scr/impix.key" (3)
define DISPCMD "display %s %d >& dev$null" (4)

define SZ_NAME 16 # allow some elbow room

enumerate the colon commands
define COMMANDS "|eparam|peakup|localmin|replace|constant|boxsize"
define EPARAM 1
define PEAKUP 2
define LOCALMIN 3
define REPLACE 4
define CONSTANT 5
define BOXSIZE 6

enumerate the minimum match choices for the replacement algorithm
define RALGORITHMS "|constant|mean|median" (2)
define RCONSTANT 1
define RMEAN 2
define RMEDIAN 3

data structure representing the current parameters

define LEN_IP (8 + SZ_NAME*SZ_CHAR/SZ_STRUCT + 1) (5)

define IP_IM Memi[$1]
define IP_PEAKUP Memi[$1+1] (6)
define IP_LOCALMIN Memi[$1+2] (6)
define IP_RALG Memi[$1+3]
define IP_CONSTANT Memr[$1+4]
define IP_BOXSIZE Memi[$1+5]
define IP_HALFBOX Memi[$1+6]
define IP_FRAME Memi[$1+7]
define IP_REPLACE Memc[P2C($1+8)] (7)

Various comments on the data structures:

(3) Ideally, every cursor loop should have an associated keystroke help file that can be
displayed while the task is executing. A user does not have access to the help page
for the task while the task executes, so without the keystroke help the user would be
left to either guess the commands or to exit the task just to remember a particular
key. The pagefiles routine (below) is very helpful for permitting the user to
access this help information while the task executes. It can also be used to page
through a list of the output generated by the task itself. A variant on the routine is
gpagefile, which does about the same thing, but from within a graphics oriented
task.

(4) A feature of impix is that it allows the specified image to be displayed from within
the task. To implement this, it uses the clcmdw routine to actually call the display
task. In general, clcmdw allows one IRAF task to be called from inside another.
This is very useful but requires great care in its use. In particular, a task that uses
this capability may well have to be updated with each IRAF release since the
behavior of the external task, especially its parameters, may have been modified.
Note that the form of the display command line that is compiled into impix is as
brief as possible and assumes as little as possible about the external task (display).
An alternative would be to supply this command line (along with formatting codes)
as the default for an impix parameter. This allows the user to supply any possible
command to display the image. Unfortunately, it also allows the user to supply
many impossible commands, with unpredictable results.

- 19 -

Since only a bare bones display command is specified within the task, we will allow
the eparam parameter editor to be called from within impix to allow the other
display parameters to be selected.

The “w” in clcmdw indicates that the calling task will wait until the external task is
finished before continuing.

Note that we are going to be reading the image cursor to obtain the pixel coordinates
to operate on in a particular image. The task should first make sure that this image
is actually the one being displayed, since the image cursor will happily allow you to
point at one image while you modify another.

(5) The task will allocate a block of memory of length LEN_IP to contain the data struc-
ture. Simple arithmetic is permitted within SPP macros, in this case to calculate the
required size of the block using the sizes of the individual data elements. Note that
data structures are allocated in terms of SZ_STRUCT, which is identical (on current
machines) to the size of an integer, SZ_INT, i.e., four 8-bit bytes. As mentioned pre-
viously, the size of an SPP character, SZ_CHAR, is two bytes on current machines.

(6) It is potentially non-portable to store a boolean variable in a data structure. Different
machines and different languages support different concepts of what a boolean is.
Since the SPP implementation of data structures doesn’t hide the specification of the
individual data elements from the programmer — in particular, the sizes of these ele-
ments — the portable way to store a logical variable in a data structure is to encode
it as an integer.

(7) The P2C macro converts a pointer to structure element into a pointer to a character.
This is necessary to allow a character string to be placed directly into a allocated
data structure. An alternative strategy is to merely keep track of the pointers to
strings that are maintained outside of the data structure. This, however, would
require that the memory for the strings be allocated and deallocated explicitly outside
the data structure. Note that there are corresponding macros for other datatype
pointer conversions. These macros are defined in hlib$iraf.h and are thus available
in all SPP programs.

- 20 -
examples$src/impix.x:

IMPIX -- point at and edit pixels in an image.

task impix = t_impix

include <error.h>
include <fset.h>
include <imhdr.h>
include <chars.h>
include "impix.h" (8)

procedure t_impix ()

pointer sp, image, cmd, im, ip
int wcs, key, cx, cy
real new, wx, wy, value
bool redisplay

pointer immap(), ip_init()
int clgcur(), ip_colon(), ip_peak()
real ip_stats()
bool clgetb()
pointer imps2r()

errchk immap

begin
call fseti (STDERR, F_FLUSHNL, YES) (9)

call smark (sp)
call salloc (image, SZ_FNAME, TY_CHAR)
call salloc (cmd, SZ_LINE, TY_CHAR)

call clgstr ("image", Memc[image], SZ_FNAME)

iferr {
if (clgetb ("update"))

im = immap (Memc[image], READ_WRITE, 0)
else

im = immap (Memc[image], READ_ONLY, 0) (10)
} then {

call sfree (sp)
call erract (EA_ERROR)

}

if (IM_NDIM(im) != 2) { (11)
call imunmap (im)
call sfree (sp)
call error ("image (or image section) is not two dimensional")

}

ip = ip_init () (12)

call ip_display (Memc[image], IP_FRAME(ip)) (4)
redisplay = false

the heart of the task, the actual cursor loop (13)

while (clgcur ("imcur", wx, wy, wcs, key, Memc[cmd], SZ_LINE) != EOF) {
switch (key) {

quit the loop (same as EOF)
case ’q’:

break

redisplay the image
case ’r’:

redisplay = true (14)

report the statistics
case ’s’:

if (ip_peak (im, ip, wx, wy, cx, cy, value) == ERR)
next

new = ip_stats (im, ip, cx, cy, value, YES)

zap (replace) the pixel
case ’z’:

if (ip_peak (im, ip, wx, wy, cx, cy, value) == ERR)

- 2 -

next

new = ip_stats (im, ip, cx, cy, value, NO)

if (! IS_INDEFR(new)) {
Memr[imps2r(im, cx, cx, cy, cy)] = new
call imflush (im) (15)

}

page keystroke help file
case ’?’:

call pagefiles (KEYHELP) (3)

colon commands are used to examine or change parameters
case ’:’:

redisplay = ip_colon (Memc[cmd], ip)

direct the user to the ’?’ help (16)
default:

call eprintf ("unknown command, type ‘?’ for help\n")

}

if (redisplay) {
call ip_display (Memc[image], IP_FRAME(ip))
redisplay = false

}
}

call mfree (ip, TY_STRUCT) (17)
call imunmap (im)
call sfree (sp)

end

IP_INIT -- read the parameters and initialize the task structure.

pointer procedure ip_init ()

int boxsize
pointer ip

int clgeti(), clgwrd(), btoi()
real clgetr()
bool clgetb()

begin
call malloc (ip, LEN_IP, TY_STRUCT) (5,17)

IP_PEAKUP(ip) = btoi (clgetb ("peakup"))
IP_LOCALMIN(ip) = btoi (clgetb ("localmin"))

IP_RALG(ip) = clgwrd ("replace",
IP_REPLACE(ip), SZ_NAME, RALGORITHMS) (2)

IP_CONSTANT(ip) = clgetr ("constant")

boxsize = clgeti ("boxsize")
if (mod (boxsize, 2) == 0) {

boxsize = boxsize + 1
call eprintf ("boxsize must be odd, using %d\n")

call pargi (boxsize)
}
IP_BOXSIZE(ip) = boxsize
IP_HALFBOX(ip) = (boxsize - 1) / 2

IP_FRAME(ip) = clgeti ("frame")

return (ip)
end

IP_COLON -- handle the colon commands.

bool procedure ip_colon (cmd, ip)

char cmd[ARB] #I command line (excluding ’:’) (18)
pointer ip #U task structure pointer

int itemp
real rtemp

- 21 -
- 3 -

char stemp[SZ_NAME], command[SZ_NAME], arg[SZ_NAME]
bool btemp, redisplay, changeit

int strdic(), nscan()

begin
initialize the returned value and to handle a failed sscan
redisplay = false
command[1] = NULL

call sscan (cmd)
call gargwrd (command, SZ_NAME)
call gargwrd (arg, SZ_NAME) # limited to SZ_NAME even for numbers

changeit = (nscan() == 2)

switch (strdic (command, command, SZ_NAME, COMMANDS)) {
case EPARAM:

call clcmdw ("eparam display") (4)
redisplay = true

case PEAKUP:
if (changeit) {

call sscan (arg)
call gargb (btemp)

if (nscan() != 1) {
call eprintf ("error in peakup: ‘%s’\n")

call pargstr (arg)
} else

IP_PEAKUP(ip) = btemp
}

call printf ("peakup = %b\n")
call pargb (IP_PEAKUP(ip))

case LOCALMIN:
if (changeit) {

call sscan (arg)
call gargb (btemp)

if (nscan() != 1) {
call eprintf ("error in localmin ‘%s’\n")

call pargstr (arg)
} else

IP_LOCALMIN(ip) = btemp
}

call printf ("localmin = %b\n")
call pargb (IP_LOCALMIN(ip))

case REPLACE:
if (changeit) {

itemp = strdic (arg, stemp, SZ_NAME, RALGORITHMS) (2)

if (itemp <= 0) {
call eprintf ("error in replace string ‘%s’\n")

call pargstr (arg)
} else {

IP_RALG(ip) = itemp
call strcpy (stemp, IP_REPLACE(ip), SZ_NAME)

}
}

call printf ("replace = %s\n")
call pargstr (IP_REPLACE(ip))

case CONSTANT:
if (changeit) {

call sscan (arg)
call gargr (rtemp)

if (nscan() != 1) {
call eprintf ("error in constant ‘%s’\n")

call pargstr (arg)
} else

IP_CONSTANT(ip) = rtemp
}

call printf ("constant = %g\n")

- 4 -

call pargr (IP_CONSTANT(ip))

case BOXSIZE:
if (changeit) {

call sscan (arg)
call gargi (itemp)

if (nscan() != 1) {
call eprintf ("error in boxsize ‘%s’\n")

call pargstr (arg)
} else {

round up to odd
itemp = abs (itemp)
IP_BOXSIZE(ip) = itemp + 1 - mod (itemp, 2)
IP_HALFBOX(ip) = (IP_BOXSIZE(ip) - 1) / 2

}
}

call printf ("boxsize = %d\n")
call pargi (IP_BOXSIZE(ip))

default: (16)
call printf ("unknown colon command ‘%s’, type ‘?’ for help\n")

call pargstr (cmd)

}

return (redisplay)
end

IP_DISPLAY -- construct a command line and display an image.

procedure ip_display (image, frame)

char image[ARB] #I image name to display
int frame #I frame number to display it in

pointer sp, cmdline

begin
call smark (sp)
call salloc (cmdline, SZ_LINE, TY_CHAR)

call sprintf (Memc[cmdline], SZ_LINE, DISPCMD)
call pargstr (image)
call pargi (frame)

call clcmdw (Memc[cmdline]) (4)

call sfree (sp)
end

IP_PEAK -- peak up using the specified parameters.

int procedure ip_peak (im, ip, wx, wy, cx, cy, value)

pointer im #I image desciptor
pointer ip #I task structure pointer
real wx, wy #I cursor (window) coordinates
int cx, cy #O peaked coordinates
real value

int xp, yp, x1, x2, y1, y2, nx, ny

pointer imgs2r()

begin
cx = nint (wx)
cy = nint (wy)

if (cx < 1 || cx > IM_LEN(im,1) || cy < 1 || cy > IM_LEN(im,2)) {
call eprintf ("cursor is outside the image (%d,%d)\n")

call pargi (cx)
call pargi (cy)

return (ERR)
}

if (IP_PEAKUP(ip) == NO)

- 22 -
- 5 -

return (OK)

x1 = max (cx - IP_HALFBOX(ip), 1)
x2 = min (cx + IP_HALFBOX(ip), IM_LEN(im,1))
y1 = max (cy - IP_HALFBOX(ip), 1)
y2 = min (cy + IP_HALFBOX(ip), IM_LEN(im,2))

nx = x2 - x1 + 1
ny = y2 - y1 + 1

call ip_ext (Memr[imgs2r(im,x1,x2,y1,y2)], nx, ny,
xp, yp, value, IP_LOCALMIN(ip))

cx = x1 + xp - 1
cy = y1 + yp - 1

return (OK)
end

IP_EXT -- find the coordinates of the extreme (maximum or minimum) pixel.
If there are multiple pixels having the extreme value, the first in
storage order is reported with no warning.

procedure ip_ext (a, nx, ny, xp, yp, extreme, minimum)

real a[nx,ny] #I array of pixel values
int nx, ny #I dimensions of the array
int xp, yp #O coordinates of the extreme pixel
real extreme #O the value of the extreme pixel
int minimum #I search for minimum, rather than maximum

int x, y

begin
xp = 1
yp = 1
extreme = a[1,1]

if (minimum == YES) {
do y = 1, ny

do x = 1, nx
if (a[x,y] < extreme) {

xp = x
yp = y
extreme = a[x,y]

}

} else {
do y = 1, ny

do x = 1, nx
if (a[x,y] > extreme) {

xp = x
yp = y
extreme = a[x,y]

}

}
end

IP_STATS -- calculate (and optionally print) the statistics
for the indicated subraster (box) of an image.

real procedure ip_stats (im, ip, x, y, current, verbose)

pointer im #I image descriptor
pointer ip #I task structure pointer
int x, y #I coords of the box’s central pixel
real current #I current value of this pixel
int verbose #I Print the statistics on the STDOUT?

int x1, x2, y1, y2, nx, ny
real mean, median, sigma
pointer buf

pointer imgs2r()
real amedr()

begin

- 6 -

if (IP_RALG(ip) == RCONSTANT && verbose == NO)
return (IP_CONSTANT(ip))

x1 = max (x - IP_HALFBOX(ip), 1)
x2 = min (x + IP_HALFBOX(ip), IM_LEN(im,1))
y1 = max (y - IP_HALFBOX(ip), 1)
y2 = min (y + IP_HALFBOX(ip), IM_LEN(im,2))

nx = x2 - x1 + 1
ny = y2 - y1 + 1

buf = imgs2r (im, x1, x2, y1, y2)

call aavgr (Memr[buf], nx*ny, mean, sigma)
median = amedr (Memr[buf], nx*ny)

if (verbose == YES) {
call printf ("\n%s[%d:%d,%d:%d]:\n")

call pargstr (IM_HDRFILE(im))
call pargi (x1)
call pargi (x2)
call pargi (y1)
call pargi (y2)

call printf (" mean = %8.6g, sigma = %8.6g")
call pargr (mean)
call pargr (sigma)

call printf (" median = %8.6g\n")
call pargr (median)

call printf (" current = %8.6g at (%d,%d)\n")
call pargr (current)
call pargi (x)
call pargi (y)

if (IP_RALG(ip) == RCONSTANT) {
call printf ("constant = %8.6g (for pixel editing)\n")

call pargr (IP_CONSTANT(ip))
}

call flush (STDOUT)
}

switch (IP_RALG(ip)) {
case RCONSTANT:

return (IP_CONSTANT(ip))
case RMEAN:

return (mean)
case RMEDIAN:

return (median)
}

end

- 23 -

More comments:

(8) Since the header file impix.h resides in the same directory as the source files, specify
the quoted filename directly. This is in contrast to surrounding the filename with
angle brackets (<>), which indicates to the compiler that the file should be searched
for in the system include directories, lib$ and hlib$.

(9) In previous examples we would explicitly flush the STDOUT or STDERR buffers when
desired, sometimes after each printing statement, sometimes only implicitly when the
task exits. The fseti call can be used to fiddle with the internal FIO parameters.
In most cases this is unnecessary and downright undesirable, but the F_FLUSHNL

option to automatically flush the output buffers when a newline is encountered is
often useful. Note that it is not always a good idea to do this since the main idea of
the buffering mechanism is to promote efficiency which is subverted when the buffer
is never allowed to fill. In particular, a task that generates a long listing of output
rather than frequent interactive updates should not use this option.

(10) Setting the access mode to READ_ONLY allows you to examine an image for which
you don’t have write permission.

(11) The task should explicitly check its input. If the logic of the task is limited to partic-
ular image size or dimensionality for some reason, this should be checked after the
image is opened. It is the two dimensional nature of the display device that man-
dates the restriction in this case. The task could, for instance, have also been coded
to step serially through multi-dimensional bands of a higher order image. Note that
image sections are handled by the underlying IMIO interface. A user can specify a
two dimensional section of a three (or higher) dimensional image and the task will
be perfectly happy.

(12) Usually a task will only access its parameters within the main procedure. In a task
that has a significant data structure, it is often proper to initialize this data structure
from the task parameters within a subroutine that encapsulates the messy details.

(13) The main part of the task is a loop that keys off of the values returned from the
image cursor. The clgcur routine retrieves the value of the specified parameter and
assigns the result to the five subsequent fields, which are the X and Y coordinates of
the cursor in the world coordinate system specified by wcs, the single key that was
typed as well as any subsequent command string that the user may have happened to
type following a colon (:). These are colon commands. The routine returns the
number of fields that were actually read or EOF if there is no more cursor input.

(14) In many cases, several of the cursor commands will include overlapping sets of
actions. It is often handy to merely set flags in the switch statement that distin-
guishes among the various cursor options, and then use the flags to finish the actions
up at the end.

(15) This particular task randomly alternates pixel reading with pixel writing at the whim
of the user. To keep the context of the image I/O valid, the task must explicitly
flush the output buffer each time the image is written to.

This is unnecessary in most tasks since an image will typically be either read from or
written to, but not both. Each time a new output buffer is requested using a routine
such as imps2r, the previous contents of the output buffer are implicitly flushed. If
the task doesn’t alternate pixel reads with writes, the implicit flushing will never lose
synchronization.

- 24 -

(16) Always catch the case of an unknown command and tell the user how to get
help. This permits a user to jump into the task with almost no preparation. A “?” is
the standard IRAF command for listing the available commands. Catching erroneous
colon commands is especially important since many of them provide no other user
feedback. If the default branch of the switch is not provided, a user might happily
proceed under mistaken assumptions after typing an incorrect command. This might
ruin his or her whole day.

(17) The malloc procedure is used to allocate a block of memory (from the heap) that
will endure once the calling procedure exits. Contrast this to the salloc procedure
whose allocated memory (from the stack) should be freed before the procedure exits.
At some point elsewhere in the program, the allocated block of memory must be
freed by using the mfree procedure.

(18) The length of an array that is an argument of a procedure may be specified with the
ARB keyword. This is a mere placeholder for the actual length of the array which is
not known until the procedure is called. However, if the array is to be written into,
or if the length of the array for reading is not indicated by a mechanism similar to
the NULL termination of a character string, then the length of the array must still be
passed into the procedure to constrain the I/O operations.

- 25 -

5. Modifying an Existing Task
There are an awful lot of tasks in IRAF and in associated externally developed packages

such as STSDAS and PROS. It is quite likely that someone has already written a task similar
to one that you may be considering writing. With all of this example code, users should be able
to tweak tasks that are beyond their current programming plateau in order to achieve rather
elegant results.

The example in this section borrows from the airmass task in the astutil package of IRAF
and from the prows task in the plot package. The concept is to combine the two to produce a
task that allows plotting the airmass of some astronomical object as a function of Universal
Time for a given date at a given observatory.

To whet your appetite, here is a plot that was produced by the final version of the task.
This is a plot of the airmass for M82 from Kitt Peak for Groundhog’s Day in 1992. Note that
the time zone of Arizona is Mountain Standard Time all year round, and that local midnight is
therefore at 7 hours UT (MST = UT − 7). The airmass is constrained to small values for this
plot since M82 is a circumpolar object. A non-circumpolar object will have a plot which goes
off scale when the object sets.

While modifying airmass, we will discover that virtually everything has to be discarded
from the task. However, a little extra rummaging about in astutil will reveal a procedure (also
called airmass) in the setairmass task and a library of handy astronomical utilities in the ast-
tools subdirectory that will serve our needs quite nicely.

General advice before we get started: Don’t modify tasks in the IRAF directory tree!
You should always copy files into your own area to work on them. There is also no reason to
be logged into the IRAF account since all IRAF source files should be readable to the world.
Look before you leap! You should exercise caution before diving into some code modification.
Unless you carefully plan a line of attack at the beginning, an extensive modification can con-
sume more time than starting from scratch.

- 26 -

(As you read through the remainder of §5, you may find it useful to refer from time to time to
the summary on page 40.)

How to begin? Well, first just by having some idea of what it is one wants to do, and
some idea of the tasks currently offered by IRAF. The astutil package seems like a likely place
to look for algorithms to calculate the airmass as a function of the position of an object in the
sky (secant(Z) or a variant), and the position of an object as a function of time (LST or UT).
To start poking around:

cl> noao
artdata digiphot mtlocal proto twodspec
astrometry focas observatory rv
astutil imred onedspec surfphot

no> astutil
airmass ccdtime gratings precess setairmass
asttimes galactic pdm rvcorrect

as> help
airmass - Compute the airmass at a given elevation above the horizon
asttimes - Compute UT, Julian day, epoch, and siderial time
ccdtime - Compute time required to observe star of given magnitude
galactic - Convert ra, dec to galactic coordinates
gratings - Compute and print grating parameters

pdm - Find periods in light curves by Phase Dispersion Minimization
precess - Precess a list of astronomical coordinates

rvcorrect - Compute radial velocity corrections
setairmass - Compute effective airmass and middle UT for an exposure

Two tasks, airmass and setairmass, seem promising. To look at the SPP source code†, you
can either use the IRAF help task:

as> help airmass option=source

or you can examine the file directly:

as> cd astutil
as> dir
README astutil.men mkpkg setairmass.par
Revisions astutil.par observatory.par t_asttimes.x
airmass.par ccdtime.par pdm t_gratings.x
airmass.x ccdtime.x pdm.par t_obs.x
asttimes.par doc precess.par t_rvcorrect.x
asttools galactic.par precess.x t_setairmass.x
astutil.cl galactic.x rvcorrect.com x_astutil.x
astutil.hd gratings.par rvcorrect.par

Which file contains the SPP program for the airmass task? At this point all we can do is make
the logical guess that it is airmass.x. After examining the file, we will return to this question.

as> page airmass.x

Whether the help task is used to view the program, or whether the file is viewed directly does
not matter in this case. In other cases of more complicated programs, the help task will only
show the topmost procedure of the task. The other parts of such tasks, in other files, will have
to be viewed individually.

†The example in this section relies on an unstripped IRAF system. Stripping (deleting) the source code
and other non-runtime files is an option when an IRAF installation is configured. This should normally
only be done if disk space on the computer is very limited. Users with stripped systems can still retrieve
the final version of the pairmass task from the examples package (see §7).

- 27 -

astutil$airmass.x:

AIRMASS -- Compute the airmass at a given elevation above the horizon.
Airmass formulation from Allen "Astrophysical Quantities" 1973 p.125,133.

procedure t_airmass()

real elevation, airmass, scale
real x, radians_per_degree
bool clgetb()
real clgetr()
data radians_per_degree /57.29577951D0/

begin
Get elevation in either degrees or radians and the scale factor
for the Earth’s atmosphere.
elevation = clgetr ("elevation")
if (!clgetb ("radians"))

elevation = elevation / radians_per_degree
scale = clgetr ("scale")

x = scale * sin (elevation)
airmass = sqrt (x**2 + 2*scale + 1) - x

call printf ("airmass %.5g at an elevation of ")
call pargr (airmass)

call printf ("%.5g degrees (%.5g radians) above horizon\n")
call pargr (elevation * radians_per_degree)
call pargr (elevation)

Store airmass back in a parameter so that it can be accessed from
the CL.
call clputr ("airmass", airmass)

end

To return to the question: how did we know that the source code for the task, airmass,
was contained in the file airmass.x? Answer: we didn’t, we merely guessed. Guessing the
filename works quite well in practice, since files tend to be reasonably named. One added hint
that doesn’t apply in this case, but that often helps to decide where to begin to look, is that files
containing task entry points often have a prepended t_, for instance, t_setairmass.x.

There is a better way, however. Every package has a package definition script in which
the package’s tasks and the context in which those tasks execute are defined. The standard
name of this script is the name of the package with a .cl appended, and it should be located in
the root directory of the package. In this case, the file is:

astutil$astutil.cl:

#{ Package script task for the ASTUTIL package.

package astutil

task airmass,
precess,
galactic,
gratings,
pdm,
asttimes,
rvcorrect,
setairmass,
ccdtime = "astutil$x_astutil.e"

clbye()

- 28 -

Tasks of all descriptions can be defined in such a script. These include script tasks and
foreign tasks as well as SPP tasks. In this case, all of the tasks in the astutil package are con-
tained in the executable file, x_astutil.e, nominally in the astutil directory. (IRAF actually
places these files in separate bin directories, as will be discussed in §7.)

At this point, the mkpkg mechanism that IRAF uses to control the compilation and link-
ing of such executables becomes pertinent. Mkpkg is an analog of the Unix make facility that
includes support for the descent of directory trees and the maintenance of libraries. Like make,
mkpkg operates from a simple text file that describes the necessary operations that are required
to build some piece of software. This file is also called mkpkg, and for the astutil package is
the following:

astutil$mkpkg:

Make the ASTUTIL package.

$call relink
$exit

update:
$call relink
$call install
;

relink:
$set LIBS = "-lxtools -lcurfit -lbev"

$update libpkg.a
$omake x_astutil.x
$link x_astutil.o libpkg.a $(LIBS) -o xx_astutil.e
;

install:
$move xx_astutil.e noaobin$x_astutil.e
;

libpkg.a:
@asttools
@pdm

airmass.x
ccdtime.x
galactic.x <fset.h>
precess.x <fset.h>
t_gratings.x <error.h> <math.h>
t_setairmass.x <imhdr.h> <error.h>
t_asttimes.x <error.h>
t_rvcorrect.x rvcorrect.com <error.h>
t_obs.x
;

The reader is directed to the help page for the mkpkg task and also to §7 for further informa-
tion. As might be expected from our previous experience (that the output of xc derives its name
from the input), the mkpkg file shows that x_astutil.x is the source file that is compiled and
linked to create the x_astutil.e executable. The standard behavior for a mkpkg file, however, is
to perform the compilation and linking as separate steps and to choose the final name explicitly.
The initial linking is done in the source directory with the executable receiving a temporary
name that includes an extra prepended x, as in xx_astutil.e. This two step process avoids
clobbering the current version of the executable until the new version compiles and links
cleanly. The extra x guarantees that a user will not inadvertently access the wrong version of
the executable.

- 29 -

Next in this chain of logic is the process definition file (called by some the task definition file):

astutil$x_astutil.x:

Process definition of the ASTUTIL package.

task precess = t_precess,
airmass = t_airmass,
ccdtime = t_ccdtime,
galactic = t_galactic,
gratings = t_gratings,
pdm = t_pdm,
rvcorrect = t_rvcorrect,
setairmass= t_setairmass,
asttimes = t_asttimes,
observatory = t_observatory

There are three fundamental reasons that this multi-line task statement (note the commas
that implicitly continue the statement onto succeeding lines) is placed in a separate file. First,
an IRAF executable can only have one task statement. Second, an IRAF package is normally
arranged so that all of the compiled object code is kept in a single library file, almost univer-
sally named libpkg.a. The single exception is the compiled process definition file, in this case
named x_astutil.o, which supplies the “main program” to which the package library is linked.
Third, tasks are often added to a package for a new version of the system, and sometimes they
are deleted. On occasion, tasks even move from package to package. Having a single file in a
package in which all of the package’s tasks are brought together to be linked makes it easier to
perform this maintenance.

We are nearing the end. The airmass task is seen to correspond to the procedure
t_airmass, which we have already seen above. The final step in the logic, in case the initial
guesses had failed to identify the correct file is to search for that procedure in the source files of
the package. For instance:

as> match t_airmass *.x
airmass.x:procedure t_airmass()
x_astutil.x: airmass = t_airmass,

This confirms that the correct file is airmass.x.

After this detour, let’s return to the business at hand and examine the file. The airmass
task actually does not seem very useful for our purposes, since all it does is convert an elevation
above the horizon into an airmass. We need a routine that will return an airmass given the
instantaneous location of the object in the sky, i.e., given a set of quantities such as the right
ascension, declination, sidereal time, and latitude. While it doesn’t do just what we want, the
airmass task offers a place to start at least, so we will use it as such.

The first thing to do is to create an empty subdirectory in which to put our selection of
files. These files will include the airmass task’s parameter file, airmass.par as well as
airmass.x. In addition, we will need the mkpkg file:

as> mkdir home$pairmass
as> cd home$pairmass
as> copy astutil$airmass.x t_pairmass.x
as> copy astutil$airmass.par pairmass.par
as> copy astutil$x_astutil.x x_pairmass.x
as> copy astutil$mkpkg ./

Note that we have taken the opportunity to rename the source and parameter files to reflect the
final taskname, pairmass.

- 30 -

The next step would normally be to add the task statement directly to the file t_pairmass.x,
however in this case we will be patching together several source files so we will keep it
separately in the file x_pairmass.x. After fiddling with the name of the procedure and the com-
ment, the first few lines of t_pairmass.x become:

PAIRMASS -- plot the airmass for a given RA, Dec on a given date.

procedure t_pairmass ()

While the file x_pairmass.x becomes simply:

Process definition of the PAIRMASS task.

task pairmass = t_pairmass

We will eventually have to modify the parameter and mkpkg files, but first we should dig
up the rest of the pieces of SPP code that we will be including in our task. We still need the
central routine of our task, which will calculate the airmass given the location of an object in
the sky. Recall that there were two tasks in the astutil package that dealt with airmasses. The
second task was setairmass, in which we find just what we need, the function airmass:

as> help setairmass option=source
...

include <math.h>
...

AIRMASS -- Compute airmass from DEC, LATITUDE and HA

Airmass formulation from Allen "Astrophysical Quantities" 1973 p.125,133.
and John Ball’s book on Algorithms for the HP-45

double procedure airmass (ha, dec, lat)

double ha, dec, lat, cos_zd, x

define SCALE 750.0d0 # Atmospheric scale height

begin
if (IS_INDEFD (ha) || IS_INDEFD (dec) || IS_INDEFD (lat))

call error (1, "Can’t determine airmass")

cos_zd = sin(DEGTORAD(lat)) * sin(DEGTORAD(dec)) +
cos(DEGTORAD(lat)) * cos(DEGTORAD(dec)) * cos(DEGTORAD(ha*15.))

x = SCALE * cos_zd

return (sqrt (x**2 + 2*SCALE + 1) - x)
end

...

The next step is to retrieve this procedure into a file in our work directory. There are
many ways to do this using various text editors or window systems, but let’s just copy the entire
file and edit out everything but the airmass procedure. The file should also retain the state-
ment include <math.h>, since the DEGTORAD macro is defined in that file.

as> copy astutil$t_setairmass.x airmass.x
as> edit airmass.x

We have chosen to reassign the name airmass.x to the file containing the new algorithm.

- 31 -

At this point, we have a main task procedure which will eventually need to be entirely
rewritten and the airmass function which will actually calculate the airmass as the object
moves across the sky. We still need a routine to make the plot and a number of utility pro-
cedures to manipulate the astronomical positions and times. Before we leave the astutil pack-
age, it turns out that the astronomical utility procedures are all packaged up and ready to go,
once we find them. In the case of a package, such as astutil, in which several tasks require a
number of related utilities, the procedures are often placed in a subdirectory. In this case that
subdirectory is asttools:

as> cd astutil
as> dir asttools
PRECESS astgalactic.x asttimes.x astvrotate.x precessmgb.x
README astgaltoeq.x astvbary.x astvsun.x
astcoord.x asthjd.x astvorbit.x mkpkg
astdsun.x astprecess.x astvr.x precessgj.x

This subdirectory contains a number of useful routines. Examples of how to use them are
to be found in the final version of pairmass, which is listed below, and of course in various
tasks in the astutil package, itself. In §7 you will see how to use them in your own programs.
In any case, let’s copy them for later use:

as> cd asttools
as> mkdir home$pairmass/asttools
as> copy * home$pairmass/asttools/

We have extracted everything that we need from the astutil package. The last piece that
we need is a plot routine, so let’s go rummage about in the plot package:

as> plot
calcomp gkiextract implot pradprof sgikern velvect
contour gkimosaic nsppkern prow showcap
crtpict graph pcol prows stdgraph
gkidecode hafton pcols pvector stdplot
gkidir imdkern phistogram sgidecode surface

pl> help
...

prow - Plot a line (row) of an image
prows - Plot the average of a range of image lines

...

The description of the prow task suggests that it is about the simplest of the general purpose
plotting tasks. A look at the source code shows that it is less than a page in length.

pl> help prow option=source

Better yet, the actual plot is constructed entirely with a call to a single routine:

Now draw the vector to the screen.
call pr_draw_vector (Memc[image], Memr[x_vec], Memr[y_vec], ncols,

zmin, zmax, row, row, Memc[wcslab], false)

- 32 -

But where is pr_draw_vector? Time for more rummaging:

pl> cd plot
pl> match pr_draw_vector *.x
t_prow.x: call pr_draw_vector (Memc[image], ...
t_prows.x: call pr_draw_vector (Memc[image], ...
t_prows.x:procedure pr_draw_vector (image,

So pr_draw_vector is in the file t_prows.x. Let’s grab it and remove everything but the
pr_draw_vector procedure itself:

pl> copy t_prows.x home$pairmass/drawvector.x
pl> cd home$pairmass
pl> edit drawvector.x

In this case, we also need to retain the include <gset.h> and include <mach.h> state-
ments. How do we know this? Well, at some point the source code’s use of VOS routines just
simply has to be digested, but there is a general scheme that will help to deduce the include file
dependencies.

First, IRAF programs typically include .h files in order to access SPP macros (declared
using a define statement). Second, the standard practice is to capitalize macros, and to only
capitalize macros. Finally, the standard IRAF .h include files are kept in either the lib$ or the
hlib$ directories. So when borrowing a routine that is only part of some large file, as in the
airmass or pr_draw_vector procedures, scan through the code to see if there are any capital-
ized macros that you don’t recognize as being automatically defined (such as SZ_FNAME in
hlib$iraf.h). To see if the macro name is found in any of the standard include files:

pl> match "EPSILONR" lib$*.h
pl> match "EPSILONR" hlib$*.h
hlib$mach.h:define EPSILONR (1.192e-7) ...
hlib$mach.h:define EPSILON EPSILONR
pl> match "G_XNMAJOR" lib$*.h
lib$gset.h:define G_XNMAJOR 111

So the procedure requires both <mach.h> and <gset.h>. (The other “G_” macros in
pr_draw_vector are also found in <gset.h>.) This is not a foolproof method of deduction.
Packages sometimes have their own include files, so the match command may also need to be
executed in the package directory. When including such a file, use quotes ("") instead of angle
braces (<>) as in: include "package.h". In this case, you would have to also copy the
include file to your work directory.

Let’s take a look at our copy of pr_draw_vector. We will first make a few changes.
You may want to compare the new version, listed below, with the original:

pl> phelp prows option=source

The phelp task was used here to allow paging backwards as well as forwards through the source
file (or any other help file, for that matter). Since our new task has no connection to the prow
or prows tasks, the first change was to rename the procedure to simply draw_vector. Second,
some variables have been given more logical names: image has become def_title and ncols

has become simple n, for instance. Third, a block of code which was used to label the plot
with information specific to the original tasks has been removed except for support for a more
generic default title. Finally, the arguments to the procedure have been simplified and general-
ized. Simplified by removing the arguments that were used to pass the labeling information,
and generalized by allowing the default X axis limits of the plot to be adjusted as well as the
corresponding Y axis defaults.

- 33 -
examples$src/pairmass/drawvector.x:

DRAW_VECTOR -- Draw the projected vector to the screen.

include <gset.h>
include <mach.h>

procedure draw_vector (def_title, xvec, yvec, n, xmin, xmax, ymin, ymax)

char def_title[ARB] #I default plot title
real xvec[n], yvec[n] #I vectors to plot
int n #I npts in vectors
real xmin, xmax #I x vector min & max
real ymin, ymax #I y vector min & max

pointer sp, gp
pointer device, marker, xlabel, ylabel, title, suffix
real wx1, wx2, wy1, wy2, vx1, vx2, vy1, vy2, szm, tol
int mode, imark
bool pointmode

pointer gopen()
real clgetr() (1)
bool clgetb(), streq()
int btoi(), clgeti()

begin
call smark (sp)
call salloc (device, SZ_FNAME, TY_CHAR)
call salloc (marker, SZ_FNAME, TY_CHAR)
call salloc (xlabel, SZ_LINE, TY_CHAR)
call salloc (ylabel, SZ_LINE, TY_CHAR)
call salloc (title, SZ_LINE, TY_CHAR)
call salloc (suffix, SZ_FNAME, TY_CHAR)

call clgstr ("device", Memc[device], SZ_FNAME) (2)
mode = NEW_FILE
if (clgetb ("append"))

mode = APPEND

gp = gopen (Memc[device], mode, STDGRAPH) (3)
tol = 10. * EPSILONR

if (mode != APPEND) {
Establish window.
wx1 = clgetr ("wx1")
wx2 = clgetr ("wx2")
wy1 = clgetr ("wy1")
wy2 = clgetr ("wy2")

Set window limits to defaults if not specified by user.
if ((wx2 - wx1) < tol) { (4)

wx1 = xmin
wx2 = xmax

}

if ((wy2 - wy1) < tol) {
wy1 = ymin
wy2 = ymax

}

call gswind (gp, wx1, wx2, wy1, wy2) (5)

Establish viewport.
vx1 = clgetr ("vx1")
vx2 = clgetr ("vx2")
vy1 = clgetr ("vy1")
vy2 = clgetr ("vy2")

Set viewport only if specified by user.
if ((vx2 - vx1) > tol && (vy2 - vy1) > tol)

call gsview (gp, vx1, vx2, vy1, vy2) (6)
else {

if (!clgetb ("fill"))
call gseti (gp, G_ASPECT, 1) (7)

}

- 2 -

call clgstr ("xlabel", Memc[xlabel], SZ_LINE)
call clgstr ("ylabel", Memc[ylabel], SZ_LINE)
call clgstr ("title", Memc[title], SZ_LINE)

if (streq (Memc[title], "default")) (8)
call strcpy (def_title, Memc[title], SZ_LINE)

call gseti (gp, G_XNMAJOR, clgeti ("majrx")) (9)
call gseti (gp, G_XNMINOR, clgeti ("minrx"))
call gseti (gp, G_YNMAJOR, clgeti ("majry"))
call gseti (gp, G_YNMINOR, clgeti ("minry"))

call gseti (gp, G_ROUND, btoi (clgetb ("round")))

if (clgetb ("logx"))
call gseti (gp, G_XTRAN, GW_LOG)

if (clgetb ("logy"))
call gseti (gp, G_YTRAN, GW_LOG)

Draw axes using all this information.
call glabax (gp, Memc[title], Memc[xlabel], Memc[ylabel]) (10)

}

pointmode = clgetb ("pointmode")
if (pointmode) {

call clgstr ("marker", Memc[marker], SZ_FNAME)
szm = clgetr ("szmarker")
call init_marker (Memc[marker], imark) (11)

}

Now to actually draw the plot.
if (pointmode)

call gpmark (gp, xvec, yvec, n, imark, szm, szm) (12)
else

call gpline (gp, xvec, yvec, n) (13)

call gflush (gp)
call gclose (gp) (14)
call sfree (sp)

end

- 34 -

Comments on the indicated statements:

(1) It was previously mentioned that parameters should only be retrieved from the CL in
the main procedure of a task. Well, here is special case where that isn’t true. The
immediate result of this is that we will have to retrieve the parameter file for the
prows task into our work directory:

pl> concat plot$prows.par pairmass.par append+

(2) IRAF Graphics I/O (GIO) supports inumerable devices with no more fuss than you
see here. The complications of how to get the same task to draw a plot to the termi-
nal as well as a PostScript laser printer or a Calcomp or Versatec plotter is hidden
not just from the user, but also from the programmer.

(3) Actually open the graphics device. This is similar to opening a file or an image in
that a large data structure is allocated which is manipulated by the programmer
through calls to procedures or references to macros that are defined in a .h include
file. If mode = append, any previously existing plot will not be erased (or flushed
to the plotter) before drawing the new plot. The final argument to gopen specifies
the destination for the output metacode and should likely always be STDGRAPH for
any programs that you write.

(4) This chunk of code chooses the axis limits for the plot. Note that the tolerance
scheme that is used doesn’t allow the user to default only the lower or upper limit
separately. We could change this to do so, say by having an INDEF value for the
wx1, wx2, wy1, or wy2 parameters indicate a default value (the defaults are passed as
arguments to draw_vector), but this sort of user interface change should be con-
sidered carefully before being implemented. The user of our new task will presum-
ably be experienced with IRAF and may not take kindly to having parameters that
are familiar from other tasks behave differently in this task.

(5) Actually specify the axis limits for the plot.

(6) Specify the viewport limits for the device. The viewport is the area of the plotting
device (for instance, the graphics terminal) in which the plot will be drawn. The
coordinate system is Normalized Device Coordinates, or NDC, which run from zero
at one edge of the device to one at the opposite edge.

(7) The gseti routine is used to set various parameters of the plot, in this case, whether
the aspect ratio of the plot will be forced to unity for the specified device, rather than
filling the available viewport.

(8) The draw_vector procedure allows users the freedom to specify a title for the plot
as a parameter of the calling task. This is useful, but for a special purpose task the
user should not be forced to choose a title, since sufficient information is available
within the task to label the average plot sensibly. Therefore draw_vector also pro-
vides for a default title to be passed as an argument of the procedure.

(9) Set more parameters of the plot. In this case, the values are the number of major and
minor tick marks that will be generated for for each axis of the plot. The axis label-
ing heuristic takes these values as advice that may be ignored if it sees fit.

(10) Actually draw the axes.

(11) The init_marker procedure is discussed below.

(12) The plot can either consist of individual points or of connect-the-dot type line seg-
ments, depending on whether pointmode is true or false. The gpmark procedure
will draw individual marks of the specified type and size at the set of coordinates
specified by xvec and yvec.

- 35 -

(13) The gpline procedure draws a line connecting successive points specified in xvec

and yvec. Note that the order of the points is important since no sorting is per-
formed. In both the case of gpmark and of gpline, marks and line segments that
extend beyond the bounds of the plot (as defined by either the axis limits or the
viewport limits) are suppressed.

(14) These two statements flush the plot to the device and close the graphics descriptor.
The former is actually unnecessary since closing the graphics subsystem also flushes
the buffer.

What is the init_marker procedure? Well, it turns out that it is a rather peculiar routine
that more-or-less duplicates the functionality of the strdic function that was introduced in §4,
but for the specific needs of the plot package:

pl> cd plot
pl> match init_marker *.x
initmarker.x:procedure init_marker (marker, imark)
t_graph.x: call init_marker (marker, marker_type)
t_pcols.x: call init_marker (Memc[marker], imark)
t_prows.x: call init_marker (Memc[marker], imark)
t_pvector.x: call init_marker (Memc[marker], imark)
cl> type initmarker.x
Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include <gset.h>

INIT_MARKER -- Returns integers code for marker type string.

procedure init_marker (marker, imark)

char marker[SZ_FNAME] # Marker type as a string
int imark # Integer code for marker - returned

bool streq()

begin
if (streq (marker, "point"))

imark = GM_POINT
else if (streq (marker, "box"))

imark = GM_BOX
else if (streq (marker, "plus"))

imark = GM_PLUS
else if (streq (marker, "cross"))

imark = GM_CROSS
else if (streq (marker, "circle"))

imark = GM_CIRCLE
else if (streq (marker, "hebar"))

imark = GM_HEBAR
else if (streq (marker, "vebar"))

imark = GM_VEBAR
else if (streq (marker, "hline"))

imark = GM_HLINE
else if (streq (marker, "vline"))

imark = GM_VLINE
else if (streq (marker, "diamond"))

imark = GM_DIAMOND
else {

call eprintf ("Unrecognized marker type, using ’box’\n")
imark = GM_BOX

}
end

- 36 -

What should we do with initmarker.x? On the surface, it would seem simple to dispense with
the file by replacing the call to init_marker with a corresponding call to strdic. This turns
out not to be the case, however, since the integer codes in this instance are powers of two (see
lib$gset.h), rather than the sequential integers returned by strdic. One could imagine a rococo
scheme to generate one from the other, but why bother? We are trying to achieve our goal with
as little fuss as possible. It is easier to simply grab the existing code and use it, than it is to
digest the code and write a simplified version for our own task. The point at which one starts
fiddling too much with what already exists is more than likely the point at which one should
start over from scratch. So our next step is to grab initmarker.x:

pl> copy initmarker.x home$pairmass/
pl> cd home$pairmass

We are almost to the end of this example. What remains is merely to write the main rou-
tine for pairmass and to put the whole thing together! This sounds worse than it is. The task
really just consists of reading some parameters that express some position in the sky (and of the
observatory) and a date of interest. These positions and times are then precessed and converted
into the proper format for the airmass routine which then will be looped over for a range of
times throughout the desired day. The results are collected into arrays which are passed to
draw_vector. On the next page is the main procedure of the pairmass task, followed by the
somewhat more dense parameter file.

- 37 -
examples$src/pairmass/t_pairmass.x:

PAIRMASS -- plot the airmass for a given RA & Dec on a given date.

procedure t_pairmass()

pointer sp, ut, air, buf
double ra, dec, epoch, ra0, dec0, epoch0
double longitude, latitude, st, ha, utd, resolution
int day, month, year, nsteps, i
real amin, amax

double clgetd(), ast_mst(), airmass() (1)
bool clgetb()
int clgeti()

begin
ra0 = clgetd ("ra")
dec0 = clgetd ("dec")
epoch0 = clgetd ("epoch")

year = clgeti ("year")
month = clgeti ("month")
day = clgeti ("day")

longitude = clgetd ("longitude") (2)
latitude = clgetd ("latitude")

resolution = clgetd ("resolution")
nsteps = nint (24 * resolution) + 1 (3)

call smark (sp)
call salloc (ut, nsteps, TY_REAL)
call salloc (air, nsteps, TY_REAL)
call salloc (buf, SZ_LINE, TY_CHAR)

call ast_date_to_epoch (year, month, day, 12.d0, epoch) (4)
call ast_precess (ra0, dec0, epoch0, ra, dec, epoch) (4)

do i = 1, nsteps {
utd = (i-1) / resolution
call ast_date_to_epoch (year, month, day, utd, epoch) (4)
st = ast_mst (epoch, longitude) (4)
ha = st - ra

Memr[ut+i-1] = real (utd) (5)
Memr[air+i-1] = real (airmass (ha, dec, latitude))

}

if (clgetb ("listout")) { (6)
do i = 1, nsteps {

call printf ("%6.0m%8.4f\n")
call pargr (Memr[ut+i-1])
call pargr (Memr[air+i-1])

}
} else {

call sprintf (Memc[buf], SZ_LINE, (7)
"Airmass vs. UT, %d/%d/%d\nRA=%h, Dec=%h (%g)\nlong=%m, lat=%m")

call pargi (month)
call pargi (day)
call pargi (year)
call pargd (ra0)
call pargd (dec0)
call pargd (epoch0)
call pargd (longitude)
call pargd (latitude)

call alimr (Memr[air], nsteps, amin, amax)
call draw_vector (Memc[buf], Memr[ut], Memr[air], (8)

nsteps, 0., 24., amin, amax)
}

call sfree (sp)
end

- 2 -

examples$src/pairmass.par:

ra,r,h,,0.,24.,Right Ascension of the object
dec,r,h,,-90.,90.,Declination of the object
epoch,r,h,INDEF,,,Epoch of the coordinates

year,i,h,,,,Year of the observation
month,i,h,,1,12,Numerical month specification
day,i,h,,1,31,Day of the month

longitude,r,h,111.6,0.,360.,Longitude of the observatory
latitude,r,h,31.98,-90.,90.,Latitude of the observatory

resolution,r,h,4,0.25,,Number of UT points per hour
listout,b,h,no,,,"List, rather than plot, the airmass vs. UT"

wx1,r,h,0.,,,left user x-coord if not autoscaling (9)
wx2,r,h,0.,,,right user x-coord if not autoscaling
wy1,r,h,0.,,,lower user y-coord if not autoscaling
wy2,r,h,5.,,,upper user y-coord if not autoscaling
pointmode,b,h,no,,,plot points instead of lines
marker,s,h,"box",\

"point|box|plus|cross|circle|hebar|vebar|hline|vline|diamond",\
,point marker character

szmarker,r,h,5E-3,,,marker size (0 for list input)
logx,b,h,no,,,log scale x-axis
logy,b,h,no,,,log scale y-axis
xlabel,s,h,"Universal Time",,,x-axis label
ylabel,s,h,"Airmass",,,y-axis label
title,s,h,"default",,,title for plot
vx1,r,h,0.,,,left limit of device window (ndc coords)
vx2,r,h,0.,,,right limit of device window (ndc coords)
vy1,r,h,0.,,,bottom limit of device window (ndc coords)
vy2,r,h,0.,,,upper limit of device window (ndc coords)
majrx,i,h,5,,,number of major divisions along x grid
minrx,i,h,5,,,number of minor divisions along x grid
majry,i,h,5,,,number of major divisions along y grid
minry,i,h,5,,,number of minor divisions along y grid
round,b,h,no,,,round axes to nice values
fill,b,h,yes,,,fill device viewport regardless of aspect ratio?
append,b,h,no,,,append to existing plot
device,s,h,"stdgraph",,,output device

- 38 -

A few final comments on the source code for the task itself:

(1) A frequent error when using library procedures is to fail to declare the correct data-
type for the procedure arguments or for external functions. Many of the asttools
routines are double precision and have double precision arguments.

(2) A recent introduction into the NOAO umbrella of packages is the notion of an obser-
vatory database. Specific observatory dependent information, such as the longitude
and latitude, can be kept in the database. The source code for the facility is in the
file xtools$obsdb.x. You may use these routines and others in the xtools library by
simply linking to it. If you are running xc directly, just append “-lxtools” to the
compiler command line. If you are using the IRAF mkpkg facility (see below) to
manage the compilation and linking, add -lxtools to the LIBS definition, as in
“$set LIBS = "-lxtools"”.

Examples of the use of the observatory database are scattered throughout the NOAO
packages, for example in the setairmass and observatory tasks.

(3) The task could have asked for nsteps directly, but the step resolution was chosen
as the more natural quantity for users to specify. You should carefully consider what
the most graceful set of parameters is for the user.

(4) Here are the specific asttools routines that the pairmass task needs. A description
of the routines can be found in §6 and the calling sequences on the SPP/VOS Quick
Reference Card. Note that by simply adding your own tasks to the example pack-
age, as described in §7, the asttools are immediately accessable within your tasks.

(5) The draw_vector procedure requires real arrays as arguments, but the asttools rou-
tines produce double precision values. The real intrinsic function explicitly per-
forms the conversion. SPP would also perform the datatype conversion automati-
cally within the assignment statement, but it is clearer to do it explicitly.

Also note the pointer dereferencing that corresponds to a simple array element
specification. A one indexed array reference is constructed from a zero indexed
pointer reference by subtracting one. IRAF arrays are one indexed.

(6) A useful option for plotting tasks is to allow the usual plot output to be redirected to
a text listing of the points. This allows the user to interact with the plot data in
almost any desired way, for instance as input to mongo.

(7) As can be seen in the plot on page 25, the title string can be made to extend over
multiple lines. This is done by simply breaking the title string with newlines.

(8) Actually call draw_vector. As with the asttools routines, note that by adding your
tasks to the example package, they may call draw_vector themselves since the
compiled routine is kept in the package library.

(9) While it was deemed to be outside the scope of this document to describe the param-
eter set (or pset) mechanism of the IRAF CL, this would clearly be a good place to
use an external pset to maintain the graphics parameters of the task. Psets are
described in the document Named External Parameter Sets in the CL, by Doug
Tody. Examples of their use are scattered throughout the newer packages, for
instance within the apphot package.

- 39 -

We are now left to staple it all together. The key to making this work is to come up with
the proper mkpkg file to automate the chore:

home$pairmass/mkpkg:

Make the PAIRMASS task.

relink: (1)
$set LIBS = "" (2)

$update libpkg.a (3)
$omake x_pairmass.x (4)
$link x_pairmass.o libpkg.a $(LIBS) -o xx_pairmass.e (5)
; (1)

libpkg.a: (6)
@asttools
airmass.x <math.h> (7)
drawvector.x <gset.h> <mach.h>
initmarker.x <gset.h>
t_pairmass.x <gset.h> <mach.h> <math.h>
;

A few final comments on the mkpkg file (also see the help page):

(1) A mkpkg file often has several internal modules that may be referenced on the com-
mand line. A module begins with a name terminated by a colon (:), and ends with a
line consisting of a single semicolon (;). The command mkpkg relink will rebuild
the x_pairmass.e executable, for instance, while the command mkpkg libpkg.a will
rebuild only the library. If no module is specified, the first one encountered in the
file will be executed, in most cases this is equivalent to a mkpkg relink.

(2) Declare any external libraries that are needed to link the task executable. In this case
there are none. In other cases in which you borrow software and it may not be obvi-
ous whether the libraries specified in the package’s mkpkg file are needed for your
particular task, first try linking without any of the libraries. If there are unresolved
references add libraries one by one from the list until the error messages disappear.

(3) There are a number of mkpkg directives to perform useful chores. Directives begin
with a dollar sign ($) and are described in the mkpkg help page. The $update

directive specifies that the a library module, described elsewhere in the file, should
be processed by compiling and archiving the listed source files and subdirectories.

(4) Compile a single file. The process definition file x_pairmass.x is kept outside the
package library to allow the executable to be easily linked.

(5) Link the list of files and libraries into the task (or package) executable.

(6) Entire subdirectory trees may be compiled and archived into the package library.
This is a very useful feature (as anyone who has used the X windows imake facility
will attest). The entire IRAF directory tree contains a web of mkpkg files that refer-
ence other files further down in the tree. This is true both for library subdirectories,
as here, and for triggering updates of whole subpackages.

(7) Simply specify that a single source file be compiled and archived into the package
library. A list of dependency files (typically header files) follows the source filename
on the same line. The file will be recompiled only if the archived object file is older
than the source file or a dependency file, or if the object doesn’t yet exist.

- 40 -

The command to compile and link the task is now simply:

cl> cd home$pairmass
cl> mkpkg

And to declare the task to the CL:

cl> task pairmass = home$pairmass/xx_pairmass.e

Finally your new task is ready for use. The command line to make the plot on the first page of
this section was:

cl> pairmass ra=9:51:42 dec=69:56 epoch=1950 \
>>> year=1992 month=2 day=2

Note that this is a fully functional task. You may call up the IRAF cursor mode using the com-
mand = gcur, for instance. A useful addition to the task might be to graft on a graphics cursor
loop similar to the image cursor loop in the impix example.

5.1. Summary
(0) Don’t modify tasks in the IRAF directory tree!
(1) Decide what you want to do. Investigate what IRAF has to offer.

(2) Make a working directory and copy the source and parameter files to that directory.
� Examine the package script (e.g., astutil.cl) to determine whether a task is a

compiled SPP task, a script, or a foreign task.
� Examine the mkpkg file to understand the architecture of the package and tasks.
� Examine the process definition file (x_astutil.x) to find the names of the task

entry point routines.
� Search the source code for various procedure and macro names using the

match task (or various host commands).

(3) If there is more than one source file, copy the mkpkg file and the process definition
file (x_astutil.x in this examples) to your working directory. If there is only one file,
you may find it easier to edit the task statement directly into that file.

(4) Copy any other “utility” source and parameter files, perhaps from different packages.
(Don’t forget any required .h header files!) In this example, the files are
t_setairmass.x, it_prows.x, initmarker.x, and the entire asttools subdirectory. Files
are borrowed from both the astutil and plot packages (and directories).

(5) Stitch the source code together into a coherent task. This may be a one line change
to some algorithm, or may be a complete rewrite as in this example.

(6) Modify the package “glue” to support your new task. This may involve changes to
the mkpkg and process definition files. We have not mentioned help pages yet, but
you may also want to modify a preexisting help page to document your local
modifications. This will be described in §7.

(7) Declare the task to the CL and test it. A typical sequence of actions while develop-
ing a task is to edit the source files, execute mkpkg which will only update the out-
of-date files, test the results, and repeat.

(8) Install the task. This may be as simple as editing the task statement into your
loginuser.cl file, or may involve steps to make the task known to other users. These
will be described in §7.

- 41 -

6. The IRAF VOS Interfaces
The biggest difficulty that you will likely have getting into SPP programming is the very

large number of IRAF Virtual Operating System routines to choose from. It can be difficult to
figure out where to look for a particular routine to perform even an everyday chore such as writ-
ing to a file, let alone to do something complicated like manipulating a World Coordinate Sys-
tem (WCS). This section will cover the most frequently used routines from the more frequently
used VOS interfaces. Some routines (e.g., for asynchronous binary input/output) as well as
some entire interfaces (e.g., the WCS interface) will of necessity be omitted.

The most important thing to keep in mind is that the IRAF directory structure mirrors its
functionality. The source code for the IRAF VOS is contained under the sys$ directory and, for
example, the FMTIO (formatted input/output) interface is defined in fmtio$ = sys$fmtio/. If you
find yourself completely baffled about some point of VOS usage, a tour through the source code
for that part of the VOS may be in order. There are often useful comments located in the indi-
vidual source files or even entire system design documents (usually in a subdirectory called
doc). The individual component routines of an interface are typically located in files that have
the same name (or a simple variant) as the routine. Note that not all, or even most, of the rou-
tines in an interface directory are meant to used outside of the interface, itself. Many of the rou-
tines comprising a typical interface are internal to that interface, and should not be called by
user programs. To do so would be to “violate the interface”, leaving such compromised pro-
grams open to future problems ranging from the cryptic to the catastrophic, should the interface
ever be reorganized internally.

As you read through the descriptions of the individual routines, you may wish to consult §6.11,
Arguments & Return Values, for general comments regarding their datatypes.

6.1. The Command Language I/O Interface (clio)
The CLIO (Command Language I/O) interface is used to exchange information between a

task and the IRAF Command Language, typically by getting or setting the value of a CL param-
eter. The routines in this interface are usually invoked by the top level procedure of a task as
the first step in executing the task. A sequence of clgstr and clget_ calls (to get string
valued and typed parameters, respectively) is used to supply the task with the values of query
and hidden parameters that the user has selected within the Command Language.

The central set of routines in CLIO allows a task to query the CL for the values of param-
eters, or conversely to instruct the CL to set those values. The single most often used routine is
clgstr, which requests the value of a string parameter. Note that routines that write to a char-
acter string must also be supplied with the maximum number of characters that the string
allows. There are several different typed clget_ routines, where the underscore (_) indicates
that a specific letter should be substituted, such as i for an integer parameter, or r for a
real. More arcane parameter queries are possible, such as using clgwrd to expand an abbrevi-
ated keyword from a dictionary string. Task usually use the index into that dictionary, rather
than the keyword, itself. The clgcur routine can be used to query a cursor typed parameter
(actually a list directed cursor parameter) in order to cause the hardware graphics or image cur-
sor to be read. Finally, note the usual restriction that a background task cannot write into its
parameter file. This means that the clpstr and clput_ routines should be used with care.

clgstr (param, string, maxch) Get a string parameter.

value = clget_ (param) Get a typed parameter.

stat = clgwrd (param, keyword, maxch, dict) Look up a parameter in a dictionary.

stat = clgcur (param, x,y,wcs, key,cmd,maxch) Read a cursor parameter.

clpstr (param, string) Output a string parameter.

clput_ (param, value) Output a typed parameter.

- 42 -

Many IRAF tasks use the following set of routines to manage parameters that represent file
templates (also called file lists). The actual file template mechanism is a part of the FIO inter-
face, but these routines provide a simplified means of accessing it. The basic idea is to expand
a template specification (provided as the value of a parameter) into a internal data structure
(referenced by the pointer list, below), and then to retrieve individual file names from that list.
Note that these routines specifically support file templates, while image templates (including the
image section notation) are managed by another set of routines described under IMIO, below.
One comment: when using clpopni, the task will automatically sense when the STDIN has been
redirected and will open the STDIN as the sole member of list.

list = clpopni (param) Open a file template or the STDIN.

list = clpopns (param) Open a sorted template.

list = clpopnu (param) Open an unsorted template.

clpcls (list) Close a file template.

nfiles = clplen (list) Return the number of files in a list.

stat = clgfil (list, string, maxch) Get the next file name.

Every interface has a number of useful utility routines. One such routine in CLIO that can
be particularly useful (but also potentially quite dangerous to use) is clcmdw, which will exe-
cute another IRAF task from within your compiled task. The danger is that your program will
break if the external task is changed - say in a future release of IRAF. The clcmd variant will
execute a CL command line and immediately return without waiting for the completion of that
command. Due to the restraints of nonsynchronous programming, this is not typically a good
idea. A more fundamental problem with using these routines is with the internal “plumbing”
that may be needed to connect (in whatever way) to the external task. This plumbing is
unlikely to mesh very well with the internal structure of your task.

clcmdw (command) Send a command to the CL and wait.

clcmd (command) Send a command to the CL, return.

6.2. The File I/O Interface (fio)
The FIO (File I/O) interface is used to access the host file system. The chores include

opening and closing files, reading and writing binary and raw character (unformatted) data, test-
ing the accessibility of files, and expanding filename templates. It also includes more technical
facilities such as seeking to particular offsets within files, parsing the different fields of host
pathnames, and managing the IRAF virtual filename mapping scheme. Reading and writing for-
matted data is handled by the FMTIO interface.

As with other systems and languages, a file must be opened before it can be read from or
written to. When you are finished with the file it should be explicitly closed - you can’t rely on
IRAF doing this for you implicitly when the task exits. FIO buffers data as it is being written.
Use the flush routine to force the data to be actually written to disk, rather than just to the
buffer. If this is not done, FIO will empty the buffer only when it fills (unless fseti has been
used to reconfigure the buffering, see below).

fd = open (fname, mode, type) Open a file for I/O.

close (fd) Close a file when finished.

flush (fd) Flush the buffers immediately.

Binary data is read or written using read or write. The maxch parameter specifies the
maximum number of SPP char’s to be transferred, either into the internal buffer or onto disk.
A read often terminates before maxch characters are read, for instance when EOF is reached or
when reading from a terminal. A write will always transfer exactly maxch SPP char’s unless
an error occurs. Note that the units of data transferred are SPP char’s and that a char is two

- 43 -

bytes in SPP. Only even numbers of bytes can be read or written using read or write. Lower
level IRAF facilities must be used to get around this restriction, although this is usually not
necessary. Datatypes other than char can be transferred by providing a buffer array of a
different type, although maxch must still give the size of the array in units of char’s.

stat = read (fd, buffer, maxch) Binary byte stream input.

write (fd, buffer, maxch) Binary byte stream output.

IRAF interfaces are typically internally configurable. It is usually a bad idea for the user
to fiddle with various options, many of which are chosen to tune the interface’s performance.
Should it be disirable, the fseti and fstat_ routines provide the functionality to fiddle FIO.
One case in which it may, indeed, be useful is setting the F_FLUSHNL option to cause an output
buffer to be flushed after every line of output: call fseti (STDOUT, F_FLUSHNL, YES). This
should only be done for a task which involves a lot of user interaction. More “batch” oriented
tasks should rely on the normal FIO buffering to optimize efficiency.

fseti (fd, param, value) Set a FIO option.

stat = fstat_ (fd, param) Get the status of an open file.

These are some of the more useful FIO utility routines. Each is fairly self-explanatory.
The access routine tests whether a file is accessable under various modes (e.g., READ_ONLY) or
whether the file is a certain type (e.g., TEXT_FILE). The modes and types are listed in the file
hlib$iraf.h. Delete and rename do what they say. The mktemp procedure generates the name
of a file that is guaranteed (at the time the procedure is called) to be nonexistent on the com-
puter. The protect procedure causes a file to be protected from deletion. The actual protec-
tion mechanism varies from system to system. Under VMS the deletion permission is removed
from the file. Under Unix (where deletion is controlled by the file permission of the directory in
which the file resides) a similar protection is provided by establishing a hidden link to the file.
This link provides safety against deletion within IRAF, but does nothing to protect a file under
Unix (other than to provide another directory entry that must be removed to actually delete the
file).

stat = access (fname, mode, type) Can the file be accessed?

delete (fname) Delete the named file.

rename (old_fname, new_fname) Rename a file.

mktemp (root, fname, maxch) Make a temporary file name .

stat = protect (fname, action) Protect or unprotect a file.

These two routines provide unformatted line oriented text I/O to a file. On input, line-

buf must be at least SZ_LINE characters long.

stat = getline (fd, linebuf) Get a line of text from a file.

putline (fd, linebuf) Output a line of text to a file.

6.3. The Image I/O Interface (imio)
The IMIO (Image I/O) interface allows IRAF images of various underlying formats to be

accessed at both the pixel and header levels. There are also routines supporting image sections
and templates. IMIO protects the user from needing any knowledge of the particular format that
IRAF uses to store its image data. In fact, IRAF images can be stored in any of a number of
formats depending on the particular type of data being manipulated. All of the different formats
(including the native IRAF Original Image Format (OIF), the Space Telescope Format (STF),
the Quick Position Ordered Event format (QPOE), and the Pixel List Format (PLF) are tran-
sparently accessible to the user via the exact same IMIO routines. When a task is executed that

- 44 -

uses the IMIO routines, the IRAF environment variable, imtype can be set to determine the data-
type of any newly created output images. This can also be specified on the command line by
providing the correct image extension, e.g., imh for the typical (ground based) OIF image, or
qp. for a ROSAT xray image.

The major conceptual hurdle to using these routines is due to the optimization of the inter-
face for accessing large number of pixels within each individual I/O operation. One does not
open an image for reading or writing, one maps it using immap to make copies in memory of
the complicated data structures within the disk image file, and to establish an efficient pixel
buffering mechanism. The image header data structures are defined in the system include file
imhdr.h. The most straightforward way to access such information as the dimensionality or size
of an image is to reference the individual data structure fields using the macros defined in this
header file. Instances of this are to be found in various examples from this document. When
you are finished, each image should be unmapped using imunmap, ideally in the reverse of the
order that they were opened.

im = immap (image, mode, hdr_arg) Map (“open”) an image.

imunmap (im) Unmap (“close”) an image.

One of the most used IMIO utility routines is imflush, which causes the image buffers to
be flushed to disk. This is important to maintain synchronization between the reading and writ-
ing of an image that is open with a mode of READ_WRITE. One other utility worth mentioning
is imdelete which should be used if you need to delete an image from within a task. A simple
delete is not good enough since an image typically consists of more than one file. Note that an
image must be closed (unmapped) before deleting it.

imflush (im) Flush the image buffers.

imdelete (image) Delete an (unmapped) image.

There are numerous routines that actually read or write the image pixels. They differ by
the datatype of the supplied buffers, by the assumed dimensionality of the image, by whether
the pixels are returned line-by-line versus by entire image sections, and by whether the pixel
access is sequential or random. Rather than describe each of the many routines in gory detail,
we will present an overview of these general characteristics, and rely on the example code to
clarify issues of usage.

Each of the three pairs of routines described below actually represents six times as many data-
type specific routines. The underscore (_) in the name of each routine is to be replaced by one
of the set of letters [silrdx] indicating the six datatypes (in order): short, integer, long,
real, double, or complex. Other datatype images may be available for special purposes, but
are not generally supported within IRAF. Also a complex image may be awkward to handle
due to a dirth of complex typed utility procedures in other interfaces.

In general, most IRAF image operations involve (signed) short or real images for raw or pro-
cessed data, respectively, from CCDs and similar detectors. Double precision images are usu-
ally too costly in terms of disk space and often are not justified by the precision of the input
images or of the applied operations. Astronomical detectors typically don’t have the dynamic
range to justify the integer or long datatypes.

Finally, note that the datatype of the image being accessed does not have to match the datatype
of the IMIO routines being used. The “normal” automatic datatype conversions will be made,
both on input and output. For this reason and given the discussion above, the examples in this
document have used the real datatype versions of the various pixel input and output routines.
This will result in truncated precision (at the very least) if the tasks are used with double or
complex images and potentially with long integer images. As an alternative, more robust
IRAF tasks (such as imarith) allow the user to choose the datatypes of both the output image
and of the internal calculation that is performed.

- 45 -

The following suite of routines (36 in all) provides random access, line oriented input /
output for one, two, or three dimensional images (N = 1, 2, or 3) of the various datatypes.
While it is possible to access images of different dimensionality than the routine being used, this
access is limited by the mismatch, for instance, reading a three dimensional image using
imgl2r is limited to the first band of the image. On the other hand, when reading (or writing) a
two dimensional image using imgl3r (or impl3r) the programmer is responsible for ensuring
that the task does not reference outside the first band of the image (to avoid a Pixel sub-

script out of bounds error).

buf = imglN_ (im [,line [,band]]) Get a line from an image, N=[123].

implN_ (im [,line [,band]]) Output a line to an image, N=[123].

These routines (36 again) provide random access to image sections of apparently one, two,
or three dimensional images. The same dimensionality mismatch cautions apply as above.
While outside the scope of this document, the boundary extension mechanism is worth a brief
mention at this point. If boundary extension is disabled, a pixel reference outside the bounds of
the image will generate an error. With boundary extension, on the other hand, values for out of
bound pixels can be generated using any of several heuristics, nearest neighbor and constant
boundary extension being the two simplest.

buf = imgsN_ (im, x1,x2 [,y1,y2 [,z1,z2]]) Get a section from an image, N=[123].

impsN_ (im, x1,x2 [,y1,y2 [,z1,z2]]) Output a section to an image, N=[123].

These dozen typed routines provide sequential line-by-line access to images of arbitrary
dimensionality. These are very useful with tasks that implement pixel-by-pixel independent
algorithms, since no prior knowledge of the dimensionality (or size) of the input images is
necessary. A typical application will loop over the routines until an EOF is returned, processing
an image line at a time using the vector operators.

stat = imgnl_ (im, bufptr, v) Generalized get next line.

impnl_ (im, bufptr, v) Generalized output next line.

Other IMIO routines are available that access generalized image sections or generalized
datatypes. These will not be discussed further.

In addition to the system level header keywords that keep track of such necessary items as
the pixel datatype, dimensionality, and the size of an image, there may be any number of user
area keywords to keep track of data specific information such as filters and exposure time. The
routines below allow access to this information. The usage should be fairly self-explanatory.
The IRAF environment variable min_lenuserarea should be increased from its default value of
8000 if your image headers are being truncated.

stat = imaccf (im, key) Does the named keyword exist?

imaddf (im, key, type) Add, but don’t initialize, a keyword.

imadd_ (im, key, value) Add or modify a header keyword.

imastr (im, key, value) Add or modify a string keyword.

imdelf (im, key) Delete a header keyword.

value = imget_ (im, key) Get a keyword of the specified type.

imgstr (im, key, string, maxch) Get a string valued keyword.

imput_ (im, key, value) Modify an existing header keyword.

impstr (im, key, value) Modify an existing string keyword.

code = imgftype (im, key) What is the keyword’s datatype?

- 46 -

The following routines implement the image section template mechanism. Usage is very
similar to the template routines that are described under the CLIO interface. Note, however, the
availability of routines to randomly access the template and to rewind the image list. An image
template differs from a file template mostly in the syntax used to specify image sections.

imt = imtopenp (param) Open an image template.

imtclose (imt) Close an image template.

stat = imtgetim (imt, string, maxch) Get the next image name.

stat = imtrgetim (imt, index, string, maxch) Get a randomly indexed image name.

nimages = imtlen (imt) Return the number of images in a list.

imtrew (imt) Rewind an image list.

6.4. The Memory I/O Interface (memio)
The MEMIO (Memory I/O) interface supports the dynamic memory allocation mechanism

of IRAF. Allocating memory dynamically frees IRAF programs (tasks) from containing huge
amounts of static storage for images and other data files. Besides issues of programming
efficiency, avoiding the allocation of static arrays free tasks from compiled in limits on the sizes
or numbers of images that can be handled. MEMIO supports both stack and heap oriented
memory allocation.

These three routines are all that are needed to allocate memory on the stack. The normal
way to use the stack facilities is to first mark the current position of the stack pointer using
smark. A number of subsequent calls to salloc are used to obtain pointers to dynamically
allocated new arrays. These pointers are then dereferenced using the Mem_[] constructs to actu-
ally access these arrays. At the end of the calling routine, the dynamically allocated memory is
returned with a single call to sfree.

smark (sp) Save the current stack pointer.

salloc (ptr, nelem, type) Allocate space on the stack.

sfree (sp) Pop the stack.

These routines, by comparison, are used to allocate memory on the so-called heap. As the
name suggests, the heap is just a pile of memory that can be partitioned up into separate lumps
to support various chores. If a task has a associated internal data structure, this structure is usu-
ally allocated on the heap. Unlike the stack which should be marked and freed within a single
routine, space on the heap is typically allocated in one routine, but freed some time later from
within an entirely different routine. Also, space on the heap need not be freed in any particular
order. Only the pointer returned by malloc need be passed around from routine to routine to
allow the data structure to be referenced. Note the options to allocate a zeroed buffer and also
to change the size of a previously allocated buffer.

malloc (ptr, nelem, type) Allocate space on the heap.

calloc (ptr, nelem, type) Allocate and zero space.

realloc (ptr, nelem, type) Adjust the size of a buffer.

mfree (ptr, type) Free space on the heap.

- 47 -

6.5. The Graphics I/O Interface (gio)
The GIO (Graphics I/O) interface allows the creation and manipulation of device indepen-

dent plots. All IRAF graphics tasks create a metacode representation of the desired plot,
although a user may never have to interact with the metacode directly. In the normal situation
of generating a plot to be viewed on the terminal or sent to a plotter, the metacode is routed and
translated by the CL into whatever is appropriate for the given graphics device (e.g., Tektronix
codes).

Within the source code for your task, on the other hand, the programmer is also insulated
from the details of this routing and translation. The necessary device dependent information is
maintained within the dev$graphcap file and the IRAF system manager (perhaps yourself wear-
ing a different hat) is responsible for configuring your IRAF installation to support the particular
devices that are available at your site. These topics are outside the scope of this document.
You are directed to the documents, the Sun/IRAF Installation Guide and the Sun/IRAF Site
Manager’s Guide as a good place to start. Other computers may also have versions of these
documents available that are tailored to the particular machine.

As usual with these interfaces, GIO includes a routine to initialize the wide variety of
internal parameters and data structures that are used by the individual procedures. This is the
gopen routine, which returns a pointer to a graphics descriptor which will be used in subsequent
calls to the device. When the task is finished with the graphics device it should be closed and
the memory required by the graphics descriptor returned to the system using gclose.

Entire IRAF plots may be buffered by the system depending on the device. Plots that are
sent to the terminal are obviously not buffered at this level although polyline output is also
internally buffered. Hardcopy plotters may typically have an associated buffer that holds
perhaps eight plots. The gflush procedure will cause the buffered plots to be actually delivered
to the device. Note that this is automatically done when the device is closed with gclose in
any case. Gflush also reinitializes certain internal data structures and is thus useful for syn-
chronizing graphics and other I/O.

gp = gopen (device, mode, fd) Open a graphics stream.

gclose (gp) Close a graphics stream.

gflush (gp) Flush the graphics output.

The underlying graphics routines are the usual variety of move and draw commands for
lines, markers, polylines and polymarkers:

gline (gp, x1, y1, x2, y2) Draw a line from (x1,y1) to (x2,y2).

gpline (gp, xa, ya, npts) Draw a polyline.

gmark (gp, x, y, type, xs, ys) Draw a marker of a given size.

gpmark (gp, xa, ya, npts, type, xs, ys) Draw a polymarker.

gamove (gp, x, y) Move the pen to the absolute position.

gadraw (gp, x, y) Draw (absolute) from the current position.

More exotic routines are perhaps best introduced by example, see §5 for such examples of
setting various GIO options and of scaling and drawing axes for a plot.

gseti (gp, param, value) Set a GIO option.

gswind (gp, x1, x2, y1, y2) Set the window in the world coords.

gsview (gp, x1, x2, y1, y2) Set the viewport in NDC.

gascale (gp, array, npts, axis) Scale the axis to fit the data.

glabax (gp, title, xlabel, ylabel) Draw and label the axes.

The gpagefile routine is useful for accessing a file of help information from within a graphics
cursor loop:

gpagefile (gp, file, prompt) Page a file from graphics cursor mode.

- 48 -

6.6. Vector Operators (vops)
The IRAF Vector Operators form a coherent and extensible interface to any vector

hardware that a host computer may support. Virtually all IRAF tasks that manipulate images
make use of the VOPS procedures. Even on an average workstation that may not include any
special vector support, the fact that the image arithmetic tends to be concentrated into a well
defined set of vector operators lends itself to easily optimized code design. There are too many
individual VOPS routines to describe here, but a few are mentioned below. A typical vector
operator has typed input and output vectors that are the same length. The more fundamental
operators, such as amov, are designed to allow the input and output arrays to overlap. The
range of available datatypes (indicated below by an underscore) varies from routine to routine.

In general, the only way to be sure of the currently available set of vector operators and of the
supported datatypes for each is to examine the source code in the vops$ directory. The vector
operators are written using the IRAF generic preprocessor. This allows a single source code
file to generate the individual datatype dependent routines. Read the generic help page for
more information. The VOPS routines are also callable from IMFORT programs.

amov_ (a, b, npix) Copy a vector.

amovk_ (k, b, npix) Copy a constant into a vector.

aabs_ (a, b, npix) Absolute value of a vector.

aadd_ (a, b, c, npix) Vector c is the sum of vectors a and b.

aaddk (a, b, c, npix) Vector c is the sum of vector a and scalar b.

aavg_ (a, npix, mean, sigma) Mean and sigma of a vector.

value = amed_ (a, npix) Return the median of a vector.

abav_ (a, b, nblocks, blocksize) Block average of a vector.

abeq_ (a, b, c, npix) c[i]=1 if a[i] == b[i], else c[i]=0.

alim_ (a, npix, minval, maxval) Compute the min and max of a vector.

6.7. Miscellaneous (etc)
The IRAF etc$ directory contains a grabbag of handy routines that don’t fit into the nor-

mal suite of VOS interfaces. In addition to a variety of individual routines there are a few
“mini-interfaces” of a dozen or a half-a-dozen routines each. Some of these are highly techni-
cal, such as those that implement subprocess control or the internals of the environment
mechanism. These two in particular are really only meant to be used in the guts of the IRAF
Command Language. Others are more general purpose such as the SPP error calls or the rou-
tines that get or set the values of environment variables.

These two routines make a sandwich with the SPP error handling mechanism in the mid-
dle. The error procedure is used to explicitly trigger an error handler (posted within an iferr

block) or to simply abort a task. The erract procedure, on the other hand, is invoked at the
end of the error handler block to provoke a particular final outcome. There are four basic such
outcomes: do nothing, print a warning message (call erract (EA_WARNING)), immediately
terminate the task (call erract (EA_FATAL)), or trigger another error action to be handled by
the routine that called the current routine (call erract (EA_ERROR)). The system header file
imhdr.h must be included to define the three error codes, EA_WARNING, EA_ERROR, and
EA_FATAL. Erract should only be called from within an error handler. In order to correctly
trap an error generated by a subprocedure, that subprocedure must be referenced in an errchk

statement before the begin statement of the calling procedure. In general, it is a good idea to
errchk all subprocedures in an iferr block that could possibly generate and error condition.

error (code, message) Generate an error condition.

erract (severity) Take an error action.

- 49 -

These routines allow your tasks to query the values of environment variables. This is not
something user programs typically have to do, but may be useful for some special purposes.

len = envgets (key, value, maxch) Fetch the string value of an env. variable.

value = envget_ (key) Return the typed value of an env. variable.

These two routines implement the quick sort algorithm which will efficiently sort a large
list of items. For shorter lists a simple bubble or insertion sort may be more appropriate since
the quick sort has a bit of start up overhead. The compare function is an integer function sup-
plied by the task that has two integer arguments. These two arguments will be substituted with
the values of various elements from the integer array. The function should return a value of 0

(zero) if the two arguments are identical, should return -1 if the first argument is less than the
second, and should return 1 if the first argument is greater than the second. The second form of
the routine, gqsort, allows passing an additional integer argument that can be used for context
data or bookkeeping. The calling sequence of the function can be summarized as -1,0,1 =

compare ([arg,] x1, x2).

qsort (array, nelems, compare) Sort an integer array using compare.

gqsort (array, nelems, compare, arg) Sort by a function with an argument.

There are various routines that are handy for a wide variety of purposes. The
pagefile[s] routines allow access to help information from inside a running task, for instance
a cursor loop task. The urand function returns a pseudo-random real number in the range
from 0 to 1 (zero to one). A handy identification string can be generated using the sysid pro-
cedure. These strings are most familiar from the tops of IRAF plots. The btoi function is use-
ful for converting a boolean value (true or false) into an integer code (YES or NO) in order to
store the value portably in a data structure.

pagefiles (files) Page text file(s) on the STDOUT.

pagefile (file, prompt) Page a text file on the STDOUT.

real = urand (seed) Uniform “random” number in (0,1).

sysid (string, maxch) Return a system and user ID string.

int = btoi (bool) Convert a bool to an int (YES or NO).

6.8. The Formatted I/O Interface (fmtio)
The FMTIO (Formatted I/O) interface is used to generate formatted human-readable out-

put and to read similarly formatted (usually whitespace delimited) input. The capabilities are
similar to those of the C STDIO library routines. Note that IRAF tasks do not use Fortran I/O
routines. FMTIO also includes string comparison and searching abilities.

The fundamental routines for generating output are the different varieties of the printf

procedure. Currently in SPP a call to one of these printf routines is only used to initialize the
process of writing the formatted output. The individual variables to be printed are supplied
through individual calls to the parg procedures.

printf (format) Begin a print to the STDOUT.

eprintf (format) Begin a print to the STDERR.

fprintf (fd, format) Begin a print to a file.

sprintf (string, maxch, format) Begin a print to a string.

clprintf (param, format) Begin a print to a CL parameter.

parg_ (value) Complete a typed format.

pargstr (string) Complete a string format.

The fundamental routines for reading "list directed" input are the different varieties of the
scan procedure. Currently a call to one of these scan routines is only used to initialize the

- 50 -

process of reading the input. The individual variables to be scanned are supplied through indi-
vidual calls to the garg procedures.

stat = scan () Begin a scan from the STDIN.

stat = fscan (fd) Begin a scan from file.

stat = sscan (str) Begin a scan from a string.

stat = clscan (param) Begin a scan from a CL parameter.

garg_ (value) Get a typed value.

gargstr (string, maxch) Get the rest of the line.

gargwrd (string, maxch) Get the next “word”.

FMTIO also includes a wide variety of routines for processing character strings, only a
few of which are:

stat = strdic (input, keyword, maxch, dict) Look up a string in a dictionary.

bool = streq (string1, string2) Compare two strings for equality.

strcpy (string1, string2, maxch) Copy string1 to string2.

- 51 -

Format Specifications

An SPP format specification has the form “%w.dC”, where w is the field width, d is the
number of decimal places or the number of digits of precision, and C is the format code. The
w and d fields are optional. The format codes C are as follows:

b boolean (YES or NO)

c single character (c, \c, or \nnn)

d decimal integer

e exponential format, d is the precision

f fixed format, d is the number of decimal places

g general format, d is the precision

h hms format (hh:mm:ss.ss, d is the number of decimal places)

H HMS format, convert from degrees to hours first (divide by 15)

m ms or hs format (mm:ss.ss), d is the number of decimal places

M MS or HS format, convert from degrees to hours first

o octal integer

rN convert integer to or from radix N

s string, d is the maximum number of chars to print

t advance to column given by w

u unsigned decimal integer

w output the number of spaces given by w

x hexadecimal integer

z complex format ((r,r)), d is the precision

* deferred, get the field from the next parg_ call

Conventions for specifying the field width:

w = n right justify and blank fill in a field of n characters

w = -n left justify and blank fill in a field of n characters

w = 0n right justify and zero fill in a field of n characters

w = 0 use as much space as needed

absent same as w = 0

Escape sequences for string literals and character constants:

\b backspace

\f form feed

\n newline (<CR><LF>)

\r carriage return

\t tab

\" string delimiter character

\’ character constant delimiter character

\\ backslash character

\nnn octal value of character

Any combination of the fields w, d, C, or N may be specified as asterisks (*) in the format
string, allowing the field to be passed at run time in a parg_ call.

- 52 -

6.9. SPP Intrinsic Functions
A table of the supported SPP intrinsic functions is given below. Since the SPP intrinsic

functions are derived from the underlying host system compilers and libraries, there may well
be other intrinsic functions that aare available on a given host computer. You should resist any
temptation that you may have to use them. To do so would compromise the portability of your
programs. In general, the functions below form a rather complete set and using other functions
would be more of a convenience than a necessity.

Type Conversions

char = char (integer) Convert to character.

short = short (z) Convert to short.

int = int (z) Truncate to integer.

int = nint (x) Round to integer.

long = long (z) Convert to long integer.

real = real (z) Convert to real.

real = aimag (complex) Imaginary part.

double = double (z) Convert to double precision.

complex = complex (z) Convert to complex.

Trigonometry (angles are in radians)

y = sin (y) Sine.

y = cos (y) Cosine.

x = tan (x) Tangent.

x = asin (x) Inverse sine.

x = acos (x) Inverse cosine.

x = atan (x) Inverse tangent.

x = atan2 (x1, x2) Inverse tangent of x1/x2.

x = sinh (x) Hyperbolic sine.

x = cosh (x) Hyperbolic cosine.

x = tanh (x) Hyperbolic tangent.

Miscellaneous

w = abs (z) Absolute value.

complex = conjug (complex) Complex conjugate.

w = min (w1, w2, ...) Minimum value.

w = max (w1, w2, ...) Maximum value.

w = mod (w1, w2) Remainder after w1/w2.

y = sqrt (y) Square root.

y = log (y) Natural logarithm.

x = log10 (x) Common logarithm.

y = exp (y) Exponentiation.

The allowed datatypes of the arguments and return values are:

w = integer, real, or double

x = real or double

y = real, double, or complex

z = integer, real, double, or complex

Do not use short or long integer arguments with any functions other than the type
conversion intrinsics. The datatypes must match for functions with more than one argu-
ment. The datatype returned by the functions is the same as the arguments, except for
type conversions or the absolute value of a complex number. SPP performs the “normal”
automatic type conversions in expressions.

- 53 -

6.10. Other Interfaces and Library Routines
The short answer is that these are outside the scope of this document.

The slightly longer answer is that the IRAF VOS includes numerous other interfaces for
performing a very wide variety of chores. Many of these interfaces are available within the nor-
mal IRAF system libraries and may be called from within your programs with no further ado.
Many others are contained within specific libraries that may be simply referenced on the com-
mand line when your executables are linked. The math libraries fall under this latter category,
for instance. The final category is the large body of example code that is available as source
code, although not archived in any particular object library.

All of these are likely to change (grow, that is, IRAF interfaces are not obsoleted without
some fundamental reason) from one release of IRAF to the next. A list of these other VOS
interfaces currently includes:

fmio Binary file manager (typically internal to other interfaces)

gty Generalized termcap style database reader

imfort Fortran and C callable subset of IRAF data access routines

ki IRAF networking kernel interface (internal to the VOS)

libc Special purpose binding of certain VOS routines for the CL

mtio Magnetic tape I/O

mwcs World coordinate system support

plio Pixel list I/O

pmio Pixel lists tied to image I/O (masks)

qpoe Position ordered event support (photon event counting)

symtab Symbol table management

tty Terminal control

A list of the math libraries follows. You will have to decide whether any of the particular
numerical techniques involved are appropriate to your data. The command line argument that
you will need to specify to xc when you link your program is shown in the final column.

bevington Routines from Data Reduction and Error Analysis... -lbev

curfit Linear least squares curve fitting -lcurfit

deboor Routines from A Practical Guide to Splines -ldeboor

gsurfit Linear least squares surface fitting -lgsurfit

iminterp Image interpolation (typically internal to IMIO) -liminterp

interp Ditto -linterp

llsq Singular Value Decomposition -lllsq

nlfit Nonlinear least squares fitting (Levenberg-Marquardt) -lnlfit

surfit Fit gridded surface data -lsurfit

The pkg$xtools directory contains many useful routines that are scattered about its main
directory and several subdirectories. These include icfit, for graphical linear least squares
fitting, gtools, to provide useful graphing options to your cursor loop tasks, and ranges, that
provides the bookkeeping for sorting through hyphenated lists of numerically indexed files or, in
an alternate version, of pixels.

Rather than simply peruse this list that will be outdated very quickly, you are encouraged
to examine example code from the IRAF directory tree that performs a similar chore to what is
desired. Example scientific and system application tasks will be found scattered about in the
subdirectories of noao$ and pkg$ (iraf$noao/ and iraf$pkg/). Source code for the VOS system
libraries is found in the subdirectories of sys$ (iraf$sys/). The IRAF math libraries are defined
in the subdirectories of math$ (iraf$math/).

A map of the IRAF directory tree is available from the iraf/docs directory of the IRAF
anonymous ftp archive on iraf.noao.edu. There are several versions available depending on the
host computer and the version of IRAF. You most likely want the file d210sun.ps.Z.

- 54 -

6.11. Arguments & Return Values
VOS procedures are particular about the datatype of the arguments with which they are

called. There are a few general rules of thumb for specifying these arguments, but with the
huge number of VOS routines that are available it is likely that you will find some exceptions to
any enumerated set of rules. The only way to be sure of the usage is to either examine some
piece of code that uses a particular routine that is known to work correctly, or alternately to
examine the source code for the VOS routine itself.

� In general, file descriptors (as returned by open) are integers while image descriptors
(as returned by immap) are pointers. Most other descriptors (e.g., graphics) are also
pointers.

� Routines that write to output string arguments should always have another integer
argument that specifies the maximum length of the string.

� Few VOS routines have boolean arguments. Instead they rely on integer arguments
that encode the boolean value as the predefined macro values YES or NO. Always
use these macro names in expressions, never use the explicit values (of 1 and 0).

� Short integer arguments must be honored if your code is to be portable. Byte
swapped machines are likely to choke on long integers specified for such arguments.
Luckily there aren’t very many instances where integer arguments to a VOS pro-
cedure are specified as short, rather than int or long.

� In general, you must distinquish between short, int, and long, and between real

and double. Often the safest way to do so, assuming that your program uses a local
variable of a different integer or floating point type, is to declare an extra variable of
the correct type and to assign the value of inappropriately typed variable to this vari-
able using the type conversion intrinsic functions. This should be done as a separate
step for the highest reliability across the vaguaries of host dependent compilers.

� It can be tricky to specify data constants of the correct integer or floating point data
type in an argument list. This is a characteristic that SPP inherits from Fortran and
is dependent on the particular host compiler. For maximum portability it is safest to
only pass variables in argument lists rather than explicit constant values, especially
of the more infrequently used types such as short. This is obviously critical for
output arguments that will be modified by the procedure.

- 55 -

7. Making an IRAF Package
An IRAF package is a collection of tasks that are in some way related. For instance, an

IRAF core system package, such as the images, dataio, or plot packages, typically contains
tasks that serve as generic tools for handling such things as IRAF images, tapes and outside data
formats, or hardcopy and terminal graphics. On the other hand, a typical package from the
noao umbrella of packages collects together tasks that address a more specific data reduction
need, e.g., the ccdred or apphot packages that provide support for pipeline CCD reductions or
for numerical aperture photometry, respectively.

You may need such a cohesive package, or you may just have a number of homegrown
tasks that you would like to add to IRAF. In either case, assembling an IRAF package is a
good way to proceed, both for easy access by your users (perhaps only yourself), and also for
easy maintenence by your programmers (perhaps only yourself).

To make creating a package easier, a tar file of the examples package that contains all of
the examples from this document is available by anonymous ftp from the IRAF network
archive. You may find the canned examples package useful both to provide example programs
to refer to while reading this document, and also as a straightforward platform to which to add
your own tasks. The particular examples were written to provide hooks to support the more fre-
quent sorts of things that users are likely to want to do within IRAF. Moreover, a small library
of useful plotting and astronomical algorithms has been included that may be referenced from
within your own tasks.

7.1. Installing the “examples” Package
The instructions for retrieving the examples package archive over the network and for

unpacking this archive into your own work directory are of necessity host machine dependent.
Rather than attempting to describe all possible host specific scenarios in adequate detail, the par-
ticular instructions given below are for SunOS v4.N. These should apply to most varieties of
Unix, particularly Berkeley dialects. You should be able to extrapolate to your situation.

The following is a typical anonymous ftp session to retrieve the examples package
archive file. The short retrieval instructions for the experienced Internet user are that the archive
is contained in the compressed tar file examples.tar.Z in the directory iraf.old accessable by
binary anonymous ftp on the host iraf.noao.edu (which has the Internet address 140.252.1.1).
Note that a compressed PostScript version of the document you are reading is located in the
iraf/docs directory in the file sppguide.ps.Z. The first step should be to create an empty direc-
tory on your own machine in which to place the package files:

% cd someplace_convenient
% mkdir examples
% ftp iraf.noao.edu
Connected to tucana.noao.edu.
220 tucana FTP server (SunOS, SAG’s 28Mar89 version) ready.
Name (iraf.noao.edu:seaman): anonymous
331 Guest login ok, send ident as password.
Password: <seaman@noao.edu>
230 Guest login ok, access restrictions apply.
ftp> verbose
Verbose mode off.
ftp> cd iraf.old
ftp> get readme.examples
ftp> binary
ftp> get examples.tar.Z
ftp> quit

The angle brackets (<>) in the reply to the password prompt are meant to imply that the identi-
fying password will not be echoed on your screen. The file readme.examples contains a varia-
tion of the instructions that you are currently reading.

- 56 -

If your local machine does not support anonymous ftp, alternate arrangements can be
made. Please contact IRAF site support for help. The email addresses are iraf@noao.edu on
the Internet and also (via a gateway) on Bitnet, 5355::IRAF on SPAN , and uunet!noao.edu!iraf
via UUCP. The phone number for the IRAF hotline is 602-323-4160.

Assuming that you now have the distribution archive of the examples package,
examples.tar.Z, on your local machine, the files can be unpacked with commands such as:

% cd examples
% zcat ../examples.tar.Z | tar -xpf -

You might also have decided to download the archive file directly into the examples direc-
tory (or conversely, into /tmp), but placing it in the parent directory avoids having the file
clutter up the directory listings illustrated below and also makes recreating the package simpler
if you want to start over. In any case, unpacking the archive should only take a few moments.
Since the examples package is small, you can specify -v to the tar command if you want to
see how the unpacking progresses.

The examples package was archived without any binary executable or object files. IRAF
external packages from programming groups both inside and outside of NOAO are typically not
distributed with binary files for any computer architecture. This is in contrast to the IRAF core
system and noao packages which are supported directly by the IRAF group and which are dis-
tributed with pretested binaries for various host systems. In any case, if your computer is not
configured for IRAF (or host) software development, it is best that you find out now while try-
ing to build examples.

A single copy of IRAF can support multiple host system architectures, for instance, a Sun
4 fileserver may support a number of Sun 3 diskless nodes with an NFS mounted copy of IRAF.
This applies to IRAF external packages as well as to the core system of IRAF. The examples
package is distributed with hooks for supporting the various types of Sun computer architectures
and floating point options, specifically Sparc, i386, f68881, and ffpa (the last two are floating
point options for the Sun 3 mc68020 architecture). The following instructions will assume a
Sparc host system, but the steps would be similar for any of the other architectures.

At this point, a directory listing should show these files and subdirectories:

% ls
bin bin.sparc examples.hd lib
bin.f68881 doc examples.men mkpkg
bin.generic examples.cl examples.par src

If your directory does not look like this, you will have to determine whether the ftp download
or the zcat unpacking are at fault before continuing.

To standardize the remainder of the commands for this section and to avoid any distracting
host dependent commands, we will get into the IRAF CL before continuing. First you will need
to utter a few magic incantations to get the subsequent commands to work properly:

% setenv iraf iraf_path/
% source $iraf/unix/hlib/irafuser.csh

Where iraf_path should be substituted with the full Unix pathname of the root directory of the
IRAF directory tree. Do not forget the trailing slash, “/”, on the definition of “iraf”. IRAF,
itself, is smart enough to figure out such site specific information as where it lives on your
computer’s filesystem. Recall, however, that the IRAF compiler and other programming tools
are host level programs. On a typical Unix system, the two commands above serve to supply
sufficient information to the programming tools to let them do their job. The C-shell script
irafuser.csh contains a number of site specific environment variable declarations. Conversely,
on a VMS system this information was made globally available as part of the IRAF system

- 57 -

installation by your system manager. In either case, this detailed information is only needed for
IRAF software development, not for simply running IRAF. It is most convenient to put the two
commands above into your .login file so that they will be automatically executed the next time
you log onto the computer. Folks who aren’t running the C-shell will need to make alternate
arrangements.

One final bit of magic specific to the examples package is:

% setenv examples examples_path/

Where examples_path should be substituted with the Unix pathname of the directory into
which the package was unpacked. Again, do not forget the trailing “/”. The reasoning behind
this magic will be revealed a little later. At this point you should get into IRAF in whatever
way you usually do so. The rest of us will wait for you...

...ok, are you now waiting with bated breath at a cl> prompt? Let’s continue. One side affect
of the magic setenv command is to provide an IRAF logical directory to which you can now
cd:

cl> cd examples

The IRAF mkpkg facility is used to maintain all but the simplest of SPP programs as
described in §4. We will make use of some of the standard capabilities of mkpkg. First, we
should verify for which of the available software development architectures the package happens
to be configured:

cl> mkpkg arch
system is configured for generic

The generic architecture is correct for any external package that is not currently being
worked on, and certainly for any external package fresh from an archive. We are building the
package under the Sparc architecture. The command to configure the package for this is:

cl> mkpkg sparc
delete any dreg .e files left lying about in the source directories
archive and delete generic objects
restore archived sparc objects
no object archive found; full sysgen will be needed

The meaning of these messages will be discussed below, but if you see a message such as:

Warning: IRAFARCH is still set in your environment to f68881

you are running IRAF on a non-Sparc computer (in this case, a Sun 3) and will either have to
log off and find a different computer, or will have to substitute f68881 (or whatever) for sparc

wherever necessary. A few additional hints for building the package on a non-Sun computer are
included at the end of this section (§7.1).

You should now be ready to rebuild the entire package by simply typing:

cl> mkpkg -p examples >& SPOOL &
[1]

The output and error messages are redirected into the file SPOOL for later review. Even a small
IRAF package such as examples may generate hundreds of lines of messages as it is being
compiled, linked, and installed. We put the command into the background so that you can go
about your business for the few moments that the package will take to compile and link.

- 58 -

A handy Unix trick that you may want to use to monitor the progress of the mkpkg is to
tail the spool file as it grows:

cl> !tail -f SPOOL

This trick will grow in utility as your package grows. You can escape from the tail command
at any point by typing ^C (control-C).

When mkpkg is finished you should see a message similar to: [1] done 60.2 2:20

42%. At this point you should review the summary of the spooled mkpkg and compiler mes-
sages:

cl> mkpkg summary spool=SPOOL
warning: library ‘libpkg.a’ not found
ranlib libpkg.a
Updated 20 files in libpkg.a
move ‘xx_examples.e’ to ‘examplesbin$x_examples.e’

This is a rather Spartan summary in which messages matching a variety of character templates
are simply discarded as uninteresting. In this case, the warning message merely indicates that
you are rebuilding the package from a version that has been stripped of binaries and so there is
no previous copy of the package library file, libpkg.a, to search for outdated compiled object
files. The ranlib message is a bit of host dependent magic that you should never have to think
about. We are next told that 20 files have been updated (or simply added) in the package
library file. These files were scrounged from the src directory and from its asttools and airmass
subdirectories. The final message tells us that the package executable has been installed in a
package bin directory, specifically bin.sparc since we earlier executed a mkpkg sparc.

If any of these steps malfunctioned for whatever reason, you would see an error message
(not just a warning). If any error messages appear that you don’t understand, you should first
review the full spool file to see if that sheds any light on the problem:

cl> page SPOOL

The next step in tracking down problems in building the package would be to run through the
directions in this section from the top, carefully verifying each. If that does not help then you
(or your system manager) need to consider whether there is some problem with the host system
compilers or libraries on the computer. For instance, does the computer even have Fortran
and/or C compilers?

Assuming you made it past the mkpkg, you are almost done. All that remains is to grant
yourself access to the newly retrieved, unpacked, and compiled package. This only requires that
you define the package script as an IRAF task:

cl> task examples = examples$examples.cl

At this point, you can now load the examples package:

cl> examples
fibonnaci hello impix imreplace1 imreplace2 pairmass

and execute a task:

ex> hello
Hello, world!

and do anything with the package (almost) that you can do with other packages and tasks:

- 59 -

ex> lpar imreplace2
input = List of input images
output = List of output images
(value = 0.) Constant for the replacement operation
(lower = INDEF) Lower limit of the replacement window
(upper = INDEF) Upper limit of the replacement window
(mode = "ql")

At this point you are all set to run the examples package, at least until you log out and
back in again. You still need to define the package in such a way that it is automatically avail-
able when you log into IRAF. There are two ways to do this. The first way is to edit the task
statement for the package into your login.cl, or better yet, your loginuser.cl file. The other
requirement for this to work is to define examples in the IRAF environment, not in the Unix
environment as you did in the bit of magic above:

set examples = examples_path/
task examples = examples$examples.cl

Note that examples_path can now be specified as an IRAF virtual pathname. The two com-
mands should be placed before the keep statement in either IRAF login file. When you next
log into IRAF, the examples package should be available to you.

It was indicated above that examples was almost ready to be used in all normal IRAF
ways. The one missing piece is access to the package’s help pages. This brings us to the
second, politically correct, way to install an external package into IRAF. The connection
between the main IRAF system and each of a particular site’s external packages is contained in
the file hlib$extern.pkg. All knowledge necessary to access the external packages is limited to
that file. This consists of the two items that you were told to add to your loginuser.cl file (the
examples environment variable and the task statement), but also the hook that allows the
IRAF help command to find your new package’s help pages. A more fundamental reason to
install your package this way is that it allows other folks to use the package, too.

The template extern.pkg from the hlib$ directory of a fresh IRAF installation looks like:

External (non core-system) packages. To install a new package, add the
two statements to define the package root directory and package task,
then add the package helpdb to the ‘helpdb’ list.

reset noao = iraf$noao/
task noao.pkg = noao$noao.cl

#reset local = iraf$local/
#task local.pkg = local$local.cl

reset helpdb = "lib$helpdb.mip\
,noao$lib/helpdb.mip\

,local$lib/helpdb.mip\
"

keep

The commented out statements for the local package are meant to serve as an example when
adding hooks for a new external package.

- 60 -

Your site’s IRAF system manager can simply copy and edit the lines to fully install the
examples package for all users:

External (non core-system) packages. To install a new package, add the
two statements to define the package root directory and package task,
then add the package helpdb to the ‘helpdb’ list.

reset noao = iraf$noao/
task noao.pkg = noao$noao.cl

reset examples = examples_path
task examples.pkg = examples$examples.cl

#reset local = iraf$local/
#task local.pkg = local$local.cl

reset helpdb = "lib$helpdb.mip\
,noao$lib/helpdb.mip\
,examples$lib/helpdb.mip\

,local$lib/helpdb.mip\
"

keep

This then is the explanation for the setenv examples magic with which we conjured
above. We needed to enter the examples variable into the Unix environment, not just into the
IRAF environment, to define it for mkpkg, not for running the package. However, by defining
the variable in extern.pkg, we have solved both problems at the same time.

One last bit of business will conclude building the Sparc version of the package’s binaries:

cl> mkpkg generic
delete any dreg .e files left lying about in the source directories
archive and delete sparc objects
compress bin.sparc/OBJS.arc [1] 12697
restore archived generic objects
no object archive found; full sysgen will be needed
Warning: IRAFARCH is still set in your environment to sparc

The basic result of all this is to confine all the architecture dependent files from the Sparc
software development to the bin.sparc directory. The initial delete any dreg .e message
tells you that if a previous attempt to link the package failed for some reason, any resulting gar-
bage executable files will be cleaned up. Another way to leave an executable laying about is to
execute mkpkg from other than the root directory of an external package, for instance typing
mkpkg -p examples in the examples$src subdirectory will compile any out-of-date source files
and relink the package, but will not install the executable in the appropriate bin directory, but
rather leave it in the src directory under the name xx_examples.e.

The archive and delete and compress messages indicate that all of the Sparc architec-
ture libraries and individual object files will be archived into a compressed tar format file
names OBJS.arc.Z in the bin.sparc directory. This will be unpacked by mkpkg the next time
you need to update the package for your Sparc machines.

The restore archived generic objects and no object archive found messages
just represent the whole point of the generic pseudo-architecture to provide a neutral
configuration for external packages. The final Warning message is meant to alert you that the
IRAF and the host system are not currently configured to build the newly selected architecture.
This does not mean anything for the generic case, but is a very important issue if you are
building multiple versions of the package on the same computer.

Finally, you were promised some hints for installing the package on computers other than
Suns. Most of the host system dependencies on software development are hidden within IRAF,

- 61 -

which is after all one of the reasons you are likely to be interested in programming in SPP.
Details such as the libraries that are required by the host compilers and the host’s particular
floating point format are largely hidden from you, and those that aren’t are parametrized in a
machine dependent header file such as hlib$mach.h just in case you need to know. You will,
however, need to keep track of the specific architectures of the machines on your local network.
If you have a fileserver that supports IRAF on client machines with varying architectures, you
will need to have an appropriately named bin subdirectory for each architecture. You will also
need to modify the file examples$mkpkg to include a “module” for each architecture. Entries
supporting software development on an Ultrix DECstation and a Mips might be:

dsux: # DECstation/Ultrix binaries
$verbose off
$set DIRS = "lib src"
!$(hlib)/mkfloat.csh dsux -d $(DIRS)
;

mips: # install mips binaries
$verbose off
$set DIRS = "lib src"
!$(hlib)/mkfloat.csh mips -d $(DIRS)
;

The corresponding bin directories would be bin.dsux and bin.mips. It is your responsibility to
guarantee that the host compiler knows for which architecture you are compiling the package.
On a Sun 3, for instance, you may need to set FLOAT_OPTION in your environment to distin-
guish between the 68881 and FPA floating point options.

7.2. Adding a Task to the Package
Now that you have acquired your own copy of the examples package, we will discuss

how to add your own tasks to the package. Let’s say that you want to add the task howdy to
the package. The SPP source code for the task is contained in the file, t_howdy.x, and consists
of the following variation on the "Hello, world!" theme:

HOWDY -- Variation on HELLO.

procedure t_howdy ()

pointer howdy, sp

begin
call smark (sp)
call salloc (howdy, SZ_LINE, TY_CHAR)

call clgstr ("howdy", Memc[howdy], SZ_LINE)
call printf ("%s\n")

call pargstr (Memc[howdy])

call sfree (sp)
end

Howdy will prompt the user for the string value of the howdy parameter (unless it is
specified on the command line) and will then print that string out. The task has a corresponding
one line parameter file, howdy.par:

howdy,s,a,,,,Text string to be echoed

The first step is to copy these two files into the examples$src/ directory.

Next a few files must be edited to fully install the task. Let’s finish with the src/ directory
before moving on. First the SPP task statement must be edited into the file x_examples.x and

- 62 -

the mkpkg file must be modified to compile and link the object code for t_howdy.x. Determin-
ing the precise changes that are needed is left as an exercise for the reader. These two changes
take care of actually linking the new SPP task into the package executable.

There are potentially four files that you may need to change in the examples$ directory
itself. These are examples.cl to add the CL task statement declaring the task for the user,
examples.par to update the version timestamp for the package, examples.hd and examples.men
to add a help file for the task. Writing a help page is always a good idea. The mkmanpage
task in the softools package will provide a blank help page for you to edit. The mkhelpdb task
compiles the information in the helpdb.hd file into the machine independent binary file,
helpdb.mip:

cl> cd examples
cl> edit helpdb.hd
cl> edit helpdb.men
cl> softools
so> cd doc
so> mkmanpage softools
so> cd ../lib
so> mkhelpdb root.hd helpdb.mip

To actually update the package’s binary executable, a sequence of commands such as the
following will be needed. This assumes that the package has been installed in the file
hlib$extern.pkg.

cl> cd examples
cl> mkpkg sparc
cl> mkpkg -p examples
cl> mkpkg generic

More complicated tasks may, of course, have many more files associated with them such
.h header files, cursor keystroke help files, and multiple source code files. As general advice, if
a task requires more than a couple of such files then you should create a subdirectory to contain
the selection of files for the task. Consult the instructions in §5 and in §7.1 for more hints.

- 63 -

Appendix I

Topics Not Discussed

There are some topics that just would not fit in easily anywhere else:
� IRAF tasks are not restricted to the Command language, but can be called from the

host operating system (shell) prompt. The SPP task statement in the source code
(recall that this is replaced by the automatically generated code for the sys_runtask

procedure that you see when your program is linked) supplies a simple command
interpreter for situations in which an IRAF executable is run at the host level.

Further discussion is outside the scope of this document, but some special usage
situations may benefit from this option. Contact IRAF site support (iraf@noao.edu)
for information.

� SPP debugging aids are a field of current activity. Mike Fitzpatrick’s package of
programming tools is available in the IRAF ftp archive. Installation instructions are
in the file readme.spptools.

% ftp iraf.noao.edu
Connected to tucana.noao.edu.
220 tucana FTP server (SunOS, SAG’s 28Mar89 version) ready.
Name (iraf.noao.edu:seaman): anonymous
331 Guest login ok, send ident as password.
Password: <seaman@noao.edu>
230 Guest login ok, access restrictions apply.
ftp> verbose
Verbose mode off.
ftp> cd iraf.old
ftp> get readme.spptools
ftp> binary
ftp> get spptools.tar.Z
ftp> quit

� IRAF variables are static variables. Their value is remembered from one execution
of a procedure to the next. It is not the safest programming practice to rely on this
behavior, but you may find the characteristic useful on occasion.

- 64 -

- 65 -

Appendix II

References

There are a number of references available that you may want (or need) to consult while
reading this document. The first of these is available from STScI via anonymous ftp to
stsci.edu in the spp subdirectory of /software/stsdas/v1.2/doc/programmer:

� SPP Programmer’s Reference, edited by Zoltan G. Levay, 1991.

The remainder of the documents are available in the IRAF "Big Blue Books", mostly in
volumes 3A and 3B. These are also available from the IRAF anonymous ftp archive on
iraf.noao.edu in the iraf/docs directory, along with a large number of documents of every
description that may also be interesting and useful to you. Note that the normal format for the
archived files is as compressed PostScript. IRAF site support (iraf@noao.edu) can help you if
you have trouble downloading the documents (remember to set binary ftp mode) or printing
them out. The particular archive filename is listed at the end of each entry.

These documents provide access to other documents or to the IRAF directory tree:

� Table of Contents of the IRAF Newsletters. (TOC_news.txt)
� Table of Contents of the IRAF User and System Handbooks. (TOC*.txt)
� IRAF/UNIX and IRAF/VMS Directory Structure. (d*sun.ps.Z, d*vms.ps.Z)

The next documents provide general or specific information about SPP and the VOS:

� IRAF Standards and Conventions, Elwood Downey, et. al., 1983. (std.ps.Z)
� A Reference Manual for the IRAF Subset Preprocessor Language,

Doug Tody, 1983. (spp.txt.Z)
� Programmer’s Crib Sheet for the IRAF Program Interface,

Doug Tody, 1983. (prog_crib.txt.Z)
� Named External Parameter Sets in the CL and related revisions,

Doug Tody, 1986. (pset.ps.Z)

Next are some alternatives to writing SPP programs:

� A User’s Guide to Fortran Programming in IRAF, The IMFORT Interface,

Doug Tody, 1987. (imfort.ps.Z)
� Specifying Pixel Directories with IMFORT, Doug Tody, 1989. (imfortmem.ps.Z)
� An Introductory User’s Guide to IRAF Scripts, rev. by Rob Seaman, 1989. (script.ps.Z)

- 66 -

Various documents provide background information you may find illuminating:

� The IRAF Data Reduction and Analysis System, Doug Tody, 1986. (iraf.ps.Z)
� The Role of the Preprocessor, Doug Tody, 1982.
� A Reference Manual for the IRAF System Interface, Doug Tody, 1984. (os.ps.Z)
� Graphics I/O Design, Doug Tody, 1987. (gio.txt.Z)
� IRAF IMIO Overview, Doug Tody, 1986. (imio_1.txt.Z)
� New Release of Image I/O, etc., Doug Tody, 1985. (imio_2.ps.Z)
� The IRAF Image I/O Interface, Design Strategies, Status and Plans,

Doug Tody, 1983. (imio_3.ps.Z)
� The Image Header, Doug Tody. (imio_4.txt.Z)

For completeness, the document that you are reading is also available from the IRAF
anonymous ftp archive on iraf.noao.edu in the file sppguide.ps.Z in the iraf/docs directory. The
quick reference card is in the same directory in the file quickref.ps.Z. The examples package is
archived in the iraf.old directory as the file examples.tar.Z with retrieval and installation direc-
tions in the file readme.examples.

- 67 -
hello (Dec91) examples hello (Dec91)

NAME
hello -- Hello, world!

USAGE
hello

DESCRIPTION
HELLO is the familiar "Hello, world!" programming example coded in SPP. The source code for this
task (i.e., an IRAF program) is:

HELLO -- Simple program to introduce SPP programming basics.

task hello = t_hello_world

procedure t_hello_world ()

begin
call printf ("Hello, world!\n")

end

EXAMPLES
To compile the source code, first save it into the file "hello.x" and then type:

cl> xc hello.x

This will produce the executable file "hello.e".

To declare the task to the CL, if "hello.e" is in the current directory:

cl> task $hello = hello.e

In this case the HELLO task will only function in this particular directory. The initial dollar sign ($)
indicates that this particular task does not have an associated parameter file.

To declare the task to the CL, if "hello.e" is in the directory "home$spp/":

cl> task $hello = home$spp/hello.e

HELLO should now work from all directories.

To run the task:

cl> hello
Hello, world!

Or load the examples package first to run the precompiled version:

cl> examples
ex> hello
Hello, world!

To run the task outside of the CL (Unix version):

% alias hello /u2/seaman/spp/hello.e hello
% hello
Hello, world!

To run the task outside of the CL (VMS version):

$ hello :== usr0:[seaman.spp]hello.exe;1 hello
$ hello
Hello, world!

Note that the latest version of "hello.exe", in this case "hello.exe;1" is known within IRAF as "hello.e"
thanks to IRAF virtual filename mapping.

NOAO/IRAF Version 2.10 1

fibonnaci (Dec91) examples fibonnaci (Dec91)

NAME
fibonnaci -- print the first N terms from the Fibonnaci sequence

USAGE
fibonnaci nterms

PARAMETERS
nterms

The number of terms to print from the Fibonnaci sequence.

DESCRIPTION
FIBONNACI will print the first N terms from the Fibonnaci sequence. It uses two different algorithms,
one algebraic and one iterative, which may be compared for accuracy. The task outputs the actual Fibon-
naci numbers, that is integers, with the result that it reaches the limit of integer precision on typical 32 bit
workstations at about nterms=46. There is a hard maximum of 50 for this parameter.

EXAMPLES
To print the first dozen Fibonnaci numbers:

fibonnaci 12

2 Version 2.10 NOAO/IRAF

- 68 -
imreplace1 (Dec91) examples imreplace1 (Dec91)

NAME
imreplace1 -- replace pixels within lower and upper thresholds

USAGE
imreplace1 image value

PARAMETERS
image

The image to be modified.

value
The constant for the replacement operation.

lower
The lower limit of the replacement window.

upper
The upper limit of the replacement window.

DESCRIPTION
IMREPLACE1 is a simple version of the IRAF IMREPLACE task in the PROTO package. It will
replace pixel values in a single image, which is modified in place. The lower and upper thresholds must
be provided or the user will be prompted.

EXAMPLES
To replace all pixels in the image ‘test’, between 100 and 200 with the value 0:

imreplace1 test 0 lower=100 upper=200

SEE ALSO
imreplace2, impix

NOAO/IRAF Version 2.10 3

imreplace2 (Dec91) examples imreplace2 (Dec91)

NAME
imreplace2 -- replace pixels within thresholds for a list of images

USAGE
imreplace input output

PARAMETERS
input

The list of input images.

output
The list of output images.

value=0.
The constant for the replacement operation.

lower=INDEF
The lower limit of the replacement window. The default value of INDEF indicates that the data
minimum should be used as the limit. If lower is greater than upper, then values outside the win-
dow will be replaced.

upper=INDEF
The upper limit of the replacement window. The default value of INDEF indicates that the data
maximum should be used as the limit. If upper is less than lower, then values outside the window
will be replaced.

DESCRIPTION
IMREPLACE2 is an enhanced version (relative to IMREPLACE1) of the IRAF IMREPLACE task in the
PROTO package. It will copy the list of input images to the list of output images, replacing pixel
values that lie between lower and upper.

If lower or upper are specified as INDEF, the minimum or maximum (respectively) of the image will be
used as the corresponding limit. If lower is greater than upper then the pixels outside of the specified
window will be replaced

EXAMPLES
To replace all pixels between 100 and 200 in the input image ‘test’ with the value 0, outputing the
changes to the image ‘testout’:

imreplace2 test testout lower=100 upper=200

To replace all pixels less than 0:

imreplace2 test testout upper=0

To replace all pixels greater than 1000 with the value 1000:

imreplace2 test testout value=1000 lower=1000

To replace all pixels either less than 0, or greater than 1000:

imreplace2 test testout lower=1000 upper=0

To replace pixels in a list of images. This requires that an output image template be specified:

imreplace2 ∗.imh out//∗.imh
or

imreplace2 b∗.imh %b%newb%∗.imh
or

imreplace2 @inlist @outlist

SEE ALSO
imreplace1, impix

4 Version 2.10 NOAO/IRAF

- 69 -
impix (Dec91) examples impix (Dec91)

NAME
impix -- point at and edit pixels in an image

USAGE
impix image

PARAMETERS
image

The image to be edited.

peakup=yes
Peak up within the box?

localmin=no
Peak up on the local minimum, rather than maximum?

replace="median"
The replacement algorithm. The choices are "constant", "mean", and "median".

constant=0.
The value for the constant replacement algorithm.

boxsize=5
The size of the peaking and statistics box.

imcur=""
The image cursor.

frame=1
The frame number for the image display.

update=yes
Actually edit the image?

DESCRIPTION
IMPIX is a simplified version of IMEDIT that serves as an example of an IRAF cursor loop task. The
task first displays the image and then enters the cursor loop that allows making modifications. The cursor
keystrokes are summarized below. The various parameters can be adjusted and queried interactively.

KEYSTROKES
IMPIX Commands

Cursor Keystroke Commands

q Exit the task.
r Redisplay the image.
s Report the statistics within the box
z Replace the pixel using the current algorithm
? Get this help.

Colon Commands

Issue a command with an argument to set the corresponding value,
or with no argument to print the current setting. Commands and
arguments may be abbreviated.

:eparam Edit the parameters for DISPLAY
:peakup Peak up the raw cursor coordinates?
:localmin Peak up on the local minimum, rather than maximum
:replace Set the algorithm: "constant", "mean", or "median"
:constant The value used for the constant replacement algorithm
:boxsize The size of the peaking and statistics box

NOAO/IRAF Version 2.10 5

impix (Dec91) examples impix (Dec91)

EXAMPLES
To interactively edit an image, ‘test’:

impix test

To edit ‘test’ without centering the cursor:

impix test peak-

This is useful for zapping obviously bad pixels. The image display may be zoomed to make this easier.

SEE ALSO
imedit, imreplace1, imreplace2

6 Version 2.10 NOAO/IRAF

- 70 -
pairmass (Dec91) examples pairmass (Dec91)

NAME
pairmass -- plot the airmass throughout the day for a given object

USAGE
pairmass

PARAMETERS
ra

The right ascension of the object.

dec
The declination of the object.

epoch=INDEF
The epoch of the coordinates.

year
The year of the observation.

month
The month of the observation (a number from 1 to 12).

day
The day of the month of the observation.

longitude=111.6
The longitude of the observatory. The default is for Kitt Peak.

latitude=31.98
The latitude of the observatory. The default is for Kitt Peak.

resolution=4
The number of UT points per hour for which to calculate the airmass.

listout=no
List, rather than plot, the airmass versus the universal time?

PLOT PARAMETERS
wx1=0., wx2=0., wy1=0., wy2=5.

The range of window (user) coordinates to be included in the plot. If the range of values in x or y =
0, the plot is automatically scaled from the minimum to maximum data values along that axis. The
maximum plotted Y value (airmass) is set to 5 by default.

pointmode = no
Plot individual points instead of a continuous line?

marker="box"
If pointmode = yes, the marker drawn at each point is set with this parameter. The acceptable
choices are "point", "box", "plus", "cross", "circle", "hebar", "vebar", "hline", "vline", and "diamond".

szmarker = 0.005
The size of the marker drawn when pointmode = yes. A value of 0 (zero) indicates that the task
should read the size from the input list.

logx = no, logy = no
Draw the x or y axis in log units, versus linear?

xlabel="Universal Time", ylabel="Airmass"
Labels for the X-axis and Y-axis.

title="default"
Title for plot. If not changed from "default", a title string consisting of the object’s position, the
date, and the observatory location is used.

vx1=0., vx2=0., vy1=0., vy2=0.
NDC coordinates (0-1) of the plotting device viewport. If not set by the user, a suitable viewport
which allows sufficient room for all labels is used.

majrx=5, minrx=5, majry=5, minry=5
The number of major and minor divisions along the x or y axis.

round = no
Round axes up to nice values?

fill = yes
Fill the plotting viewport regardless of the device aspect ratio?

NOAO/IRAF Version 2.10 7

pairmass (Dec91) examples pairmass (Dec91)

append = no
Append to an existing plot?

device="stdgraph"
Output device.

DESCRIPTION
The airmass is plotted through the course of a day for a given object from a given observatory. Various
plotting options are supported. The plotting routine, as well as the astronomical utility routines are avail-
able for inclusion into a user’s own SPP programs.

EXAMPLES
To plot the airmass for M82 from Kitt Peak for Groundhog’s Day in 1992:

pairmass ra=9:51:42 dec=69:56 epoch=1950 year=1992 month=2 day=2

This is obviously a good opportunity to use the parameter editor.

SEE ALSO
airmass, setairmass, prows

8 Version 2.10 NOAO/IRAF

An SPP/VOS Quick Reference Card
The short name for each interface is in parentheses following the title. The IRAF directory for
the source code is the same as the short name. Pertinent system header files (located in lib$ or
hlib$) are listed at the end of the title line. The names given to the arguments are meant to
reflect their usage (and thus their datatype), but you may still find that you need to consult the
source code. Some routines can be located through the help database: help error opt=so.
Others can be listed directly: page etc$pagefiles.x. Examples are scattered throughout
IRAF and usage is described more fully in §6 of An Introductory User’s Guide to IRAF SPP
Programming.

Command Language Input/Output (clio)

clgstr (param, outstr, maxch) Get a string parameter.
clpstr (param, string) Output a string parameter.

value = clget_ (param) Get a typed parameter.
clput_ (param, value) Output a typed parameter.

stat = clgcur (param, x,y,wcs, key,cmd,maxch) Read a cursor parameter.
stat = clgwrd (param, keyword, maxch, dict) Look up a parameter in a dictionary.
list = clpopni (param) Open a file template or the STDIN.
list = clpopns (param) Open a sorted template.
list = clpopnu (param) Open an unsorted template.

clpcls (list) Close a file template.
nfiles = clplen (list) Return the number of files in a list.

stat = clgfil (list, outstr, maxch) Get the next file name.
clcmdw (command) Send a command to the CL and wait.

File Input/Output (fio) <fset.h>

fd = open (fname, mode, type) Open a file for I/O.
close (fd) Close a file when finished.

stat = read (fd, buffer, maxch) Binary byte stream input.
write (fd, buffer, maxch) Binary byte stream output.
flush (fd) Flush the buffers immediately.

stat = access (fname, mode, type) Can the file be accessed?
stat = fstati (fd, param) Get the status of an open file.

fseti (fd, param, value) Set a FIO option.
delete (fname) Delete the named file.
rename (old_fname, new_fname) Rename a file.
mktemp (root, fname, maxch) Make a temporary file name .

stat = protect (fname, action) Protect or unprotect a file.
stat = getline (fd, linebuf) Get a line of text from a file.

putline (fd, linebuf) Output a line of text to a file.

Image Input/Output (imio) <imhdr.h>, <imset.h>

im = immap (image, mode, hdr_arg) Map (“open”) an image.
imunmap (im) Unmap (“close”) an image.
imflush (im) Flush the image buffers.

buf = imglN_ (im [, line [, band]]) Get a line from an image, N=[123].
implN_ (im [,line [,band]]) Output a line to an image, N=[123].

buf = imgsN_ (im, x1,x2 [,y1,y2 [,z1,z2]]) Get a section from an image, N=[123].
impsN_ (im, x1,x2 [,y1,y2 [,z1,z2]]) Output a section to an image, N=[123].

stat = imgnl_ (im, bufptr, v) Generalized get next line.
impnl_ (im, bufptr, v) Generalized output next line.

stat = imaccf (im, key) Does the named keyword exist?
imaddf (im, key, type) Add, but don’t initialize, a keyword.
imadd_ (im, key, value) Add or modify a header keyword.
imastr (im, key, value) Add or modify a string keyword.
imdelf (im, key) Delete a header keyword.

value = imget_ (im, key) Get a keyword of the specified type.
imgstr (im, key, outstr, maxch) Get a string valued keyword.
imput_ (im, key, value) Modify an existing header keyword.
impstr (im, key, value) Modify an existing string keyword.

code = imgftype (im, key) What is the keyword’s datatype?
imdelete (image) Delete an (unmapped) image.

imt = imtopenp (param) Open an image template.
imtclose (imt) Close an image template.

stat = imtgetim (imt, outstr, maxch) Get the next image name.
stat = imtrgetim (imt, index, outstr, maxch) Get a randomly indexed image name.

nimages = imtlen (imt) Return the number of images in a list.
imtrew (imt) Rewind an image list.

- 2 -

Memory Management (memio)

smark (sp) Save the current stack pointer.
salloc (ptr, nelem, type) Allocate space on the stack.
sfree (sp) Pop the stack.
malloc (ptr, nelem, type) Allocate space on the heap.
calloc (ptr, nelem, type) Allocate and zero space.
realloc (ptr, nelem, type) Adjust the size of a buffer.

mfree (ptr, type) Free space on the heap.

Graphics Input/Output (gio) <gset.h>

gp = gopen (device, mode, fd) Open a graphics stream.
gclose (gp) Close a graphics stream.
gflush (gp) Flush the graphics output.
gline (gp, x1, y1, x2, y2) Draw a line from (x1,y1) to (x2,y2).

gpline (gp, xa, ya, npts) Draw a polyline.
gmark (gp, x, y, type, xs, ys) Draw a marker of a given size.
gpmark (gp, xa, ya, npts, type, xs, ys) Draw a polymarker.
gamove (gp, x, y) Move the pen to the absolute position.
gadraw (gp, x, y) Draw (absolute) from the current position.
gseti (gp, param, value) Set a GIO option.

gswind (gp, x1, x2, y1, y2) Set the window in the world coordinates.
gsview (gp, x1, x2, y1, y2) Set the viewport in normalized device coordinates.
gascale (gp, array, npts, axis) Scale the axis to fit the data.
glabax (gp, title, xlabel, ylabel) Draw and label the axes.

gpagefile (gp, file, prompt) Page a file from graphics cursor mode.

Vector Operators (vops)

amov_ (a, b, npix) Copy a vector.
amovk_ (k, b, npix) Copy a constant into a vector.
aabs_ (a, b, npix) Absolute value of a vector.
aadd_ (a, b, c, npix) Vector c is the sum of vectors a and b.
aaddk (a, b, c, npix) Vector c is the sum of vector a and scalar b.
aavg_ (a, npix, mean, sigma) Mean and sigma of a vector.

value = amed_ (a, npix) Return the median of a vector.
abav_ (a, b, nblocks, blocksize) Block average of a vector.
abeq_ (a, b, c, npix) c[i]=1 if a[i] == b[i], else c[i]=0.
alim_ (a, npix, minval, maxval) Compute the min and max of a vector.

Miscellaneous (etc)

error (code, message) Generate an error action (may be trapped).
erract (severity) Take an error action.

len = envgets (key, value, maxch) Fetch the string value of an environment variable.
value = envget_ (key) Return the typed value of an environment variable.

qsort (array, nelems, compare) Sort an integer array by the function compare ().
gqsort (array, nelems, compare, arg) Sort by a function with an argument.

pagefiles (files) Page text file(s) on the STDOUT.
pagefile (file, prompt) Page a text file on the STDOUT.

real = urand (seed) Uniform “random” number in the interval (0,1).
sysid (outstr, maxch) Return a system and user identification string.

int = btoi (bool) Convert a boolean to an integer (YES or NO).

- 3 -

Formatted Input/Output (fmtio) <chars.h>, <ctype.h>

printf (format) Begin a print to the STDOUT.
eprintf (format) Begin a print to the STDERR.
fprintf (fd, format) Begin a print to a file.
sprintf (outstr, maxch, format) Begin a print to a string.
clprintf (param, format) Begin a print to a CL parameter.

parg_ (value) Complete a typed format.
pargstr (string) Complete a string format.

stat = scan () Begin a scan from the STDIN.
stat = fscan (fd) Begin a scan from file.
stat = sscan (str) Begin a scan from a string.
stat = clscan (param) Begin a scan from a CL parameter.

garg_ (value) Get a typed value.
gargstr (outstr, maxch) Get the rest of the line.
gargwrd (outstr, maxch) Get the next “word”.

stat = strdic (input, keyword, maxch, dict) Look up a string in a dictionary.
bool = streq (string1, string2) Compare two strings for equality.

strcpy (string1, string2, maxch) Copy string1 to string2.

Format Specifications

An SPP format specification has the form “%w.dC”, where w is the field width, d is the
number of decimal places or the number of digits of precision, and C is the format code. The
w and d fields are optional. The format codes C are as follows:

b boolean (YES or NO)
c single character (c, \c, or \nnn)
d decimal integer
e exponential format, d is the precision
f fixed format, d is the number of decimal places
g general format, d is the precision
h hms format (hh:mm:ss.ss, d is the number of decimal places)
H HMS format, convert from degrees to hours first (divide by 15)
m ms or hs format (mm:ss.ss), d is the number of decimal places
M MS or HS format, convert from degrees to hours first
o octal integer
rN convert integer to or from radix N
s string, d is the maximum number of chars to print
t advance to column given by w
u unsigned decimal integer
w output the number of spaces given by w
x hexadecimal integer
z complex format ((r,r)), d is the precision
* deferred, get the field from the next parg_ call

Conventions for specifying the field width:

w = n right justify and blank fill in a field of n characters
w = -n left justify and blank fill in a field of n characters
w = 0n right justify and zero fill in a field of n characters
w = 0 use as much space as needed
absent same as w = 0

Escape sequences for string literals and character constants:

\b backspace
\f form feed
\n newline (<CR><LF>)
\r carriage return
\t tab
\" string delimiter character
\’ character constant delimiter character
\\ backslash character

\nnn octal value of character

Any combination of the fields w, d, C, or N may be specified as asterisks (*) in the format
string, allowing the field to be passed at run time in a parg_ call.

- 4 -

SPP Intrinsic Functions

Type Conversions

char = char (integer) Convert to character.
short = short (z) Convert to short.

int = int (z) Truncate to integer.
int = nint (x) Round to integer.

long = long (z) Convert to long integer.
real = real (z) Convert to real.
real = aimag (complex) Imaginary part.

double = double (z) Convert to double precision.
complex = complex (z) Convert to complex.

Trigonometry (angles are in radians)

y = sin (y) Sine.
y = cos (y) Cosine.
x = tan (x) Tangent.
x = asin (x) Inverse sine.
x = acos (x) Inverse cosine.
x = atan (x) Inverse tangent.
x = atan2 (x1, x2) Inverse tangent of x1/x2.
x = sinh (x) Hyperbolic sine.
x = cosh (x) Hyperbolic cosine.
x = tanh (x) Hyperbolic tangent.

Miscellaneous

w = abs (z) Absolute value.
complex = conjug (complex) Complex conjugate.

w = min (w1, w2, ...) Minimum value.
w = max (w1, w2, ...) Maximum value.
w = mod (w1, w2) Remainder after w1/w2.
y = sqrt (y) Square root.
y = log (y) Natural logarithm.
x = log10 (x) Common logarithm.
y = exp (y) Exponentiation.

The allowed datatypes of the arguments and returned values are:

w = integer, real, or double

x = real or double

y = real, double, or complex

z = integer, real, double, or complex

Do not use short or long integer arguments with any functions other than the type
conversion intrinsics. The datatypes must match for functions with more than one argu-
ment. The datatype returned by the functions is the same as the arguments, except for
type conversions or the absolute value of a complex number. SPP performs the “normal”
automatic type conversions in expressions.

National Optical Astronomy Observatories
P.O. Box 26732, Tucson, AZ 85726-6732

