
Reverse engineering a 
SmartNIC

NVIDIA/Mellanox ConnectX-5



The plan

1. What is Pwnies?
2. What is it a ConnectX-5? What can it do?
3. Firmware layout & Tooling
4. Embedded CPU(s) (iRISC?)
5. Reversing an instruction set
6. Writing a ghidra processor plugin
7. Firmware patching and code execution
8. Fuzzing an instruction set
9. Writing a PCIe driver in rust

10. Future work?



What is Pwnies?

- We are a “student” organization at DIKU
- We made Pwntools

Come join us



What is a ConnectX-5?

- 100Gb/s or 2x100Gb/s QSFP
- Overlay offloading(VXLAN/GENEVE/…)
- SR-IOV/eSwitch (Switching between VMs on the same HV)
- Newer generations: CX6, CX7: TLS offloading, remote management, …
- Price on Ebay: ~1000dkk
- Good open source support(Drivers, tooling, …)
- Some public documentation



Firmware: Tooling & Layout

Mellanox has published tools! (https://github.com/Mellanox/mstflint)

… and firmware images

https://github.com/Mellanox/mstflint


Firmware: Tooling & Layout

- MAIN_CODE?
- BOOT2?
- IRON_PREP_CODE?
- Public keys? Signatures?



Firmware: Tooling & Layout

- Patterns?
- Endianness?
- Instruction width?
- Function prolog/epilog?



Embedded CPU: iRISC

- Docs/tooling: 11 cores?, RISC!, 32bit?, tracing over PCIe?
- Patent search: Not really anything useful…
- Almost no information available. :(

What can we do with this little information?

Is reverse engineering possible?



Reverse engineering an ISA

- Guess instruction layout!
- Width of instructions: 32 bits
- Width of opcode: 6 bits
- Number of register: 32 registers(5 bits)

- Guess opcodes based on common patterns
- Prolog/epilog of functions: Matched blocks of loads/stores, matched stack adjustments
- Calls: Should target start of functions.
- Related instructions are ‘near’ opcode-wise



Reverse engineering an ISA: Disassembler/Guessing



Reverse engineering an ISA: Rosetta stone

- High entropy?
- Magic bytes?
- What is this?

Let’s ask google?



Reverse engineering an ISA: Rosetta stone

- These are the ‘K’ 
constants from SHA256

- Firmware implements 
SHA256 somewhere!!

- Operations in SHA256:
- add/sub/xor/and/or/shifts
- loads/stores of different 

sizes
- Lots of register use => 

caller/callee saved registers
- loops/branches/compares

Can we find the SHA256 
implementation in firmware?



Reverse engineering an ISA: Finding SHA256

- SHA256 is usually implemented in 4 functions:
- sha256_init: has initialization constants
- sha256_transform: uses ‘K’ constants
- sha256_update: calls sha256_transform
- sha256_finalize: calls sha256_transform

- Searching for specific constants
- Constants should be in code
- Plan:

- Find sha256_init by searching for constants
- Find calls to sha256_init
- Assume that sha256_update and sha256_finalize is 

called nearby



Reverse engineering an ISA: Reversing SHA256

- Found sha256 constants!
- Looks like it calls sha256_update 

and sha256_finalize right after.
- Looks like we have 64 bits registers?

Result: Found sha256_transform, a lot 
more known instructions.



What we know so far: iRISC instruction layout

- Many alu ops
- loads/stores
- Calls/jumps
- Branches
- Register size
- Calling convention



Custom Ghidra Processor module

- Reverse engineering using python disassembler is annoying
- Ghidra has support for custom architectures
- Sleigh: DSL for describing ISAs
- Already >30 ISAs implemented in Sleigh, lots of examples.
- Table based, highly flexible.
- + Few XML files to describe:

- Basic facts: name, link to docs, level of support, compiler differences, …
- Calling convention
- Special registers: stack pointer, program counter, …



Ghidra processor module: Sleigh (Address spaces)

- Two address spaces
- RAM (code/data)
- Registers

- Bind names to specific 
addresses

- Multiple bindings to same 
address (eg. r5 = r5h || r5l)



Ghidra processor module: Sleigh (Instruction fields)

- Define slices of bits
- Attach registers to 

bits of instructions.



Ghidra processor module: Sleigh (Instructions/tables)



Ghidra processor module: Sleigh (PCode)

- PCode defines the semantic of instruction
- Tables can emit pcode
- Ordering of emitted PCode described by `build` keyword. (we did not need it)
- No conditional emitting of PCode.
- All flow control is described by `call`/`goto’
- PCode gives us decompiler for almost free.

The Ghidra developers who made the Sleigh DSL were very clever.



iRISC: Ghidra Decompiler



Firmware patching and code execution

- Linux kernel driver / sysfs debug command interface
- Patch target, what should we patch?
- FNP pin hack/Flash recovery mode => No signature checks



Firmware patching: Command interface

- NIC accepts commands 
over PCIe using DMA

- QUERY_FLOW_TABLE 
will be our patch target, 
linux kernel driver does 
not use it

- Some structure: 
opcode/op_mod

- What should we make the 
code do?



Firmware patching: patching QUERY_FLOW_TABLE

- Read command data to stack
- Call data on stack
- Write response data from stack
- Fix some fields: seems important/wont work 

without
- Fixup all kinds of checksum errors everywhere 

in the firmware image :’(
- Lots of trial and error, much reflashing of the 

NIC

We have code execution on the NIC on demand



Instruction set fuzzing 

Plan:

- Generate experiment shellcode
- Send to NIC for execution
- Get response
- Analyse response
- Profit?!?

Result: We know a lot of opcodes, 
lots of details: Flags, data widths, 
edge cases, side effects, …



Userspace PCIe Driver

- Linux kernel driver is annoying
- Often we break something
- NIC stops responding to commands when we break something
- Kernel hangs when NIC does not respond
- Can’t Ctrl+C linux kernel, ain’t how a kernel works.
- Kernel won’t even shutdown, as it can’t shutdown NIC nicely
- We must yank power manually/echo b > /proc/sysrq-trigger
- Really annoying. :(
- Only 300exec/s

- This is a software problem, PCIe/thunderbolt is very SOLID
- Conclusion: We need a ‘Ctrl+C’-able driver in userspace
- PCIe/Driver interface/IOMMU/VFIO-PCI
- Rust Userspace driver: 30000exec/s very fast 



Opensourcing it all!

- https://github.com/irisc-research-syndicate
- mlx5cmd: userspace vfio/pcie driver for primarily for executing shellcode
- irisc-asm: Basic assembler for the iRISC architecture, templating support
- ghidra-processor: A ghidra module for decompilation support

Come by our tent to get a hand on introduction for working with iRISC and ghidra!

We would like to talk with some NVIDIA/Mellanox people!

https://github.com/irisc-research-syndicate


Future work?

- Possible exploits (Packet parsing, VM escape, kernel driver bug?)
- Newer generations of ConnectX NICs (TLS offloading?)
- Other vendors (Broadcom, Intel, …)
- NICs/WIFI/Switches are interesting targets as they are directly accessible 

over the network, and often are OS independent.


