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Summary

Motivation

Full UAS

e Automate asset inspection with

sensor data

Problem

Aircraft defect detection
Solution

Object detection and/or semantic
segmentation

Sensor package Valuable maps,
3d models, & statistics
for breeders and researchers
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Past: Powerline Inspection

3D Semantic Segmentation Results

Green = Power lines
Red = Trees

Black = Houses

Blue & Black = Ground
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New task: Aircraft Defect Detection

Sample defect images with bounding boxes Carnegie
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Aircraft Defect Detection

Problem Overview
Dataset Study
Proposed Approaches

Preliminary Results
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Problem Overview

For airplane companies and airport managers

e Planes need to be inspected before taking off

e It takes alongtime and many workers

Proposed solution

e Justlet drones fly around and take pictures

e Perform defect detection on these pictures

We now have the dataset collected from pictures taken around planes
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Dataset
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Dataset

Key findings
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Proposed Approaches

e Object detection (Chang)

e Semantic Segmentation (Anshuman)
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Approach 1: Object Detection

Why object detection?

e Bounding boxes already provided as ground-truth

e Direct approach to solve the problem

What type of object detection?

e Speed & Feasibility to train and evaluate -> one stage over two stage

e Variant ratio of bounding box sizes -> anchor-free models
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Literature Review

Object detection roadgraph
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Literature Review: CornerNet

CornerNet Architecture

Bottom-right corners
Hourglass Network

4
7

Prediction Module

Heatmaps Embeddings

/7

Top-Left Corners \

Corner Pooling

~

Heatmaps

Embeddings

Offsets

Bottom-Right Corners

L
A

N

ﬁ\l\
N

Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." ECCV 2018.
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Literature Review: CornerNet

Corner Pooling Module
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Literature Review: CornerNet

Bounding Box Prediction Module (Top-left branch)

Top-left Corner Pooling Module

Top-left Corner Pooling
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Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." ECCV 2018.
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Literature Review: CornerNet

Qualitative Examples on MSCOCO
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Literature Review: CenterNet

Improvements from CornerNet:

e Center pooling module: inherits the functionality of Rol pooling

e (Cascade corner pooling: perceives internal information

Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." ICCV 2019.
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Literature Review: CenterNet

CenterNet Architecture

e Similar to CornerNet, a pair of detected corners and the similar embeddings are used to detect a potential

bounding box. Then the detected center keypoints are used to determine the final bounding boxes.

Backbone
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Literature Review: CenterNet

Center pooling & cascade corner pooling module

Center Pooling Corner Pooling Cascade Corner Pooling
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Literature Review: CenterNet

Quantitative Results on MSCOCO (Apr 2019)

Mask R-CNN
Two-stage Models
PANet (SOTA)
RetinaNet800
CornerNet
One-stage Models
CornerNet-Saccade

CenterNet-104

Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." ICCV 2019.
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Network Training & Evaluation

e We use CenterNet-52 as our network structure (52-layer Hourglass Network)
e Single-scale training
e batch size of 4 on each of 2 Nvidia 1080 Ti GPUs

e 4K as training set and 1K as evaluation set
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Preliminary Results: Quantitative

Training set (NMS threshold = 50%, proposal confidence = 30%):

e mMAP=92.2301%
e Foreground overall recall [1] = 97.7200%
e Foreground overall precision [2] = 71.7203%

e CenterNet-52 successfully converged on the training set

[1]1 A ground-truth bounding box is considered recalled if it is predicted as any foreground class. Cal'negie
[2] A predicted bounding box is considered correct if any foreground ground-truth bounding box overlaps it larger Mellon
than a threshold (default is 50%).
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Preliminary Results: Quantitative

Validation set (NMS threshold = 50%, proposal confidence = 30%):

e mMAP=18.1666%
e Foreground overall recall = 49.3571%
e Foreground overall precision = 49.3860%

e Severe overfitting effect observed!
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Preliminary Results: Quantitative

Validation set (NMS threshold = 50%, proposal confidence = 30%):

e (lass-wise confusion matrix

e Findings: P/R among each class is good, P/R against background is terrible
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Preliminary Results: Qualitative

Why overfitting is so severe?

1. Ground-truth labels are actually ill-posed

Ground-truth

Predicted
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Preliminary Results: Qualitative

More ill-posed or bad bounding boxes and labels
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Preliminary Results: Qualitative

Why overfitting is so severe?

1. Ground-truth labels are actually ill-posed
o Possible solution: Lower overlapping threshold

o  With overlapping threshold changed from 50% to 30%
o  mAP =18.1666% -> 25.6855%

o Foreground overall recall = 49.3571% -> 55.8153%

o Foreground overall precision = 49.3860% -> 55.7909%
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Preliminary Results: Qualitative

Why overfitting is so severe?

2. Current data augmentation techniques:
o random rescaling, random cropping, color jittering
o gaussian bump of corner/center ground-truth

o class-balanced weights for losses [1]
Seems not enough for this small dataset. More to explore:

o random flipping and rotation

o mixup [2]
rnegi
[1] Cui, Yin, et al. "Class-balanced loss based on effective number of samples." CVPR 2019. g/[all eg €
[2] Zhang, Hongyi, et al. "mixup: Beyond empirical risk minimization." ICLR 2018. elion
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Preliminary Results: Qualitative

Why overfitting is so severe?

3.  Model complexity is too high
o Reduce channel sizes and layers
o  Results: With 1/13 parameters, network still converges on training set, yet
still low mAP on evaluation set
o Possible solutions:
I.  Dropout/Dropblock

ii. Even simpler models
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Preliminary Results: Qualitative

Examples: Low recall case

Ground-truth Predicted Carnegie
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Preliminary Results: Qualitative

Examples: complex scene

Ground-truth Predicted Carnegie
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Preliminary Results: Qualitative

Examples: various sizes

Ground-truth Predicted Carnegie
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Future Work

1. Reduce the overfitting problem

2. Collect more data from the company (probably the easiest solution :p)
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Approach 2: Semantic Segmentation

Why semantic segmentation?

e Higher recall for defects

e More fine-grained classification

e Solveill-posed bounding box cases like
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Literature Review

Classical Approaches

e UNet: Convolutional Networks for Biomedical Image Segmentation

e SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Why?
Ronneberger et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation” Carnegle
Kendall et al. "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation” MEIIOn
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Literature Review: UNet
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Literature Review: SegNet

Convolutional Encoder-Decoder

Input Output
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Timeline

Date
Oct 31
Nov 15

Nov 31

Task

Examination of the overfitting problems in CenterNet
Preliminary results on semantic segmentation

Combining object detection and segmentation
(E.g. weakly-supervised segmentation)

Fix final model and finishing training
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