
Kernel Methods - Data Challenge

Iskander Gaba, Hadi Dayekh

February 19, 2021

Note: Code for this project is on https://mega.nz/folder/KYgCxBxA#xd9gKD_3AUKmcE2qNZqUEA

1 Introduction

The challenge of this project was to apply kernel
methods to classify DNA sequences into bound
or unbound sequences. In our work, we imple-
ment kernel ridge regression and investigate the
performance of basic kernels such as linear, poly-
nomial, and Gaussian kernels on simple numeri-
cally transferred dataset. We also apply string-
specific kernels like k-spectrum and mismatch
kernels on the raw version of dataset. Our re-
sults show that string kernels vastly outperform
other approaches. On Kaggle’s data challenge,
our team ranked 13th out of 32 on the pub-
lic leaderboard with an accuracy of 69.266%,
and 8th out of 32 on the private leader-
board with an accuracy of 70.133%. The per-
formance gap with the top performers was about
2% only, proving a comparable performance for
kernel ridge regression and that our classification
is consistent and well generalizable.

2 Main Steps

2.1 Kernel Ridge Regression (KRR)

The first step was to make a generic implemen-
tation of KRR. Our KRR model is wrapped in a
KernelRidgeRegression class that is initialized
with a kernel function reference and a list of ker-
nel arguments to be passed to that kernel. Once
a model is initialized, it can call three functions:

• fit: This function is used to fit training
data. It computes the kernel gram ma-
trix K train, and the α values matrix from
training data and caches them for later use.
It then calls predict vals function (which

we will discuss shortly) to return predicted
values of and predicted classes of the train-
ing data points.

• predict vals: This function computes
the predicted values Y vals and the pre-
dicted classes Y pred that are defined to be
the sign of Y vals. We return both Y pred

and Y vals to the user at the end.

• predict: This function is a wrapper
around predict vals that only returns
Y pred.

We also improved the performance of our im-
plementation by caching K train as well as
Φ(Xtrain) in the cases of mismatch and k-
spectrum kernels to avoid redundant computa-
tions.

2.2 Basic Kernels

Next, we used our KRR model with basic ker-
nels like the linear, polynomial and Gaussian ker-
nels. We first worked with mat100 files. The
best performance we could obtain using these
files was ≈ 63% from using Gaussian KRR. label-
encoding raw data did not exhibit much of learn-
ing capacity so we soon discarded this approach.

2.3 String Kernels

2.3.1 k-Spectrum

We initially implemented a parallelized version
of HASKER algorithm described in [1]. We then
changed our implementation to use mismatch
kernel, which we will discuss in the next section,
with m = 0 since that implementation proved to
be much faster in practice.

1

https://mega.nz/folder/KYgCxBxA#xd9gKD_3AUKmcE2qNZqUEA


A coarse grid search on different values of λ and
k narrowed our choice of λ to be between 0 and
1, and suggested that k = 5 and k = 7 were the
best candidates. We then performed a finer grid
search on 50 values of λ to improve our score,
with the best validation scores summarized in
the table below. Note that to be able to cross-
compare, the training and validation sets were
fixed to be respectively the first 80% and last
20% of the data for each dataset.

Dataset k λ Validation Accuracy

0 7 0.05 66.25%
1 5 0.75 70.25%
2 7 0.47 78.00%

Table 1: k-Spectrum KRR.

2.3.2 Linear Combination of Kernels

Our next step was to use a combination of the
k = 5 and k = 7 spectrum kernels, still working
with KRR. Doing so, we were able to slightly
improve the validation score for datasets 0 and
2. The table below shows the results, with w1

being the weight associated to the k = 5 ker-
nel and consequently (1 − w1) the weight of the
k = 7 kernel. Our submission with the combina-
tion kernel improved our testing score.

Dataset w1 λ Validation Accuracy

0 0.33 1.0 66.75%
1 0.78 0.78 70.25%
2 0.11 0.23 78.25%

Table 2: Linear combination of k = 5 and
k = 7 spectrum KRR with w1 being the weight
of k = 5.

2.4 Mismatch Kernel

2.4.1 Implementation of the Mismatch
Kernel

The idea to use the mismatch kernel was inspired
by the nature of mutations in DNA sequences by
modeling the number of occurrences of a subse-
quence u of length k up to m mismatches. We
achieve that by computing all data mappings

Φ(X) using scipy sparse matrices, and apply-
ing sparse matrix dot product between Φ(X) and
Φ(X ′) to obtain the kernel gram matrix.
With a single mismatch (m = 1), we were able
to improve our validation score and consequently
test score for both datasets 0 and 1, whereas the
combination of the spectrum kernels performed
better for dataset 2. Hence, we submitted pre-
dictions of the first two datasets using the m = 1
mismatch kernel and kept the linear combination
discussed above for the last datasets.

Dataset k λ Validation Accuracy

0 8 0.3 67.75%
1 8 0.6 71.00%
2 7 0.9 76.75%

Table 3: Mismatch KRR (m = 1).

3 Conclusion

In this project, we implemented a kernel ridge
regression model to classify DNA sequences into
bound or unbound sequences. We investigated
multiple kernel options and found out that Mis-
match and linear combinations of k-Spectrum
kernels produce the best performance. The best
performance was obtained using the parameters
shown in Table 4 below.

Dataset Parameters Val. Accuracy

0 k = 8,m = 1, λ = 0.3 67.75%
1 k = 8,m = 1, λ = 0.6 71.00%
2 k1=5, k2=7, w1=0.11, λ=0.23 78.25%

Table 4: Optimal kernels.

On Kaggle’s data challenge, we ranked 13th
out of 32 on the public leaderboard with
an accuracy of 69.266%, and 8th out of 32
on the private leaderboard with an accuracy
of 70.133% and a performance gap of about
2% from top performers. The reader can train
and produce a classification using the optimal
parameters and kernels in Table 4 above by
running python start.py from our code. A
file named Yte.csv should be created under
data processed directory which contains the
predictions for the test dataset.

2



References

[1] M. Popescu, C. Grozea, and R. Tudor Ionescu. Hasker: An efficient algorithm for string kernels.
application to polarity classification in various languages. Procedia Computer Science, 112:1755–
1763, 2017. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings
of the 21st International Conference, KES-20176-8 September 2017, Marseille, France.

3


	Introduction
	Main Steps
	Kernel Ridge Regression (KRR)
	Basic Kernels
	String Kernels
	–Spectrum
	Linear Combination of Kernels

	Mismatch Kernel
	Implementation of the Mismatch Kernel


	Conclusion

