
Product Class Device Firmware Note

Single Channel DIY Plug
Basic R3
RF R3
MINI

3.5.0 Please refer to protocol V2.0

Single Channel DIY Plug
Basic R3
RF R3
MINI

3.3.0 - 3.4.0 Please refer to protocol V1.4

SONOFF DIY MODE API PROTOCOL
Version: 2.0
Date: 2020-03-23

SONOFF DIY Mode Overview

Do you want to control the device by your own app or web? DIY mode helps!

The DIY Mode is designed for IoT home automation users and developers who would like
to control the SONOFF device via existing home automation open-source platform or local
HTTP client instead of eWeLink App. In DIY Mode, when the device is connected with the
network, it will publish its services and capabilities according to the mDNS/DNS-SD
standard. Before publishing the service, the device has enabled the HTTP server on the
port declared by the DNS SRV record. Device exposes the capabilities through an HTTP-
based RESTful API. Users can obtain device information, control the device by sending an
HTTP API request.

Supported Device

eWeLink Mode and DIY Mode

The SONOFF devices*can work in either eWeLink mode or DIY mode, In eWeLink mode, the
device is connected with eWeLink cloud and controlled by eWeLink APP, while in DIY mode, device
publishes its capability service and is controlled by HTTP Post request.

The steps of entering the DIY mode and connecting to an existing WiFi network:

1. Entering the Compatible Pairing Mode (AP) by long press the paring button for 5 seconds
after power on

2. Connecting the Access Point named ITEAD-XXXXXXXX with default password 12345678 via
mobile phone or PC

3. Browser visits http://10.10.7.1/
4. Filling in the existing WiFi network SSID and password
5. Entering DIY mode successfully with specific WiFi network connected.

af://n0
af://n7
af://n10
af://n28
http://10.10.7.1/

Example for Single Channel DIY Plug (BASIC R3, RF R3, MINI) enters DIY mode:

1. Power on;

2. Long press the button for 5 seconds for entering Compatible Pairing Mode (AP)

User tips: If the device has been paired with eWeLink APP, reset the device is necessary by
long press the pairing button for 5 seconds, then press another 5 seconds for entering
Compatible Pairing Mode (AP)

3. The LED indicator will blink continuously;

4. From mobile phone or PC WiFi setting, an Access Point of the device named ITEAD-XXXXXXXX
will be found, connect it with default password 12345678

5. Open the browser and access http://10.10.7.1/

6. Next, Fill in WiFi SSID and password that the device would have connected with

7. Succeed, Now the device is in DIY mode.

Note:

1. The user settings will be cleaned once the operation mode is changed from one to another.
2. The WiFi router or AP should work in 2.4GHz and support mDNS service.
3. LED blinking meanings

Fast single blinking -- The device does not connect to the WiFi network;
Fast double blinking -- The device connects to the WiFi successfully and is able to be
discovered through mDNS and respond the request from LAN network.

4. Once the device is already in DIY mode, the WiFi configuration page of http://10.10.7.1/ is
not accessible.

5. If a wrong WiFi SSID or password was entered, the device will fail to connect with specific
WiFi network, with 20 seconds timeout mechanism, the device stop connecting WiFi
network, please try again with the example steps of 1-7.

6. Official firmware upgrade is only available in eWeLink APP.
7. SONOFF devices refer to BASICR3, RFR3, MINI.

mDNS Discovery Process

1. DIY MODE LAN discovery mechanism

DIY MODE LAN discovery implements IETF Multicast DNS protocol and DNS‐Based Service
Discovery protocol. [1]

2. Device mDNS service info publish process

The device publishes its own service (i.e. device capability) according to the mDNS/DNS-SD
standard discovery protocol when the device is connected to LAN (Local Area Network).

The fields defined by eWeLink are as follows:

http://10.10.7.1/
http://10.10.7.1/
af://n81
af://n82
af://n85

Attribute Description Example

IP Address
The LAN IP Address is obtained through DHCP
instead of the Link‐Local address of IPv4/IPv6

Hostname
The Hostname must be unique in LAN;
Format: eWeLink_[Device ID]

eWeLink_10000000d0

Service
Type

ewelink.tcp

Service
Instance

Name

The Service Instance Name must be unique in LAN;
Max: 63 bytes (21 UTF8 Characters)

same as Hostname

TXT
Record

One or more strings; No exceeded 255 bytes for
each string; No exceeded 1300 bytes for the entire
TXT record;

TXT Record note：

1. TXT Record must contain below strings:

"txtvers=1", "id=[device ID]", "type=[device type]", "apivers=[device API interface version]",
"seq=[TXT Record serial number]", "data1=[device information]";

2. Optional strings:

"data2=[device information]", "data3=[device information]", "data4=[device information]"

3. “seq=[TXT record sequence number]” indicates the order in which the TXT records are
updated (the order in which the device status is updated). It is recommended to be a
positive integer that increments from 1 (reset to 1 when the device restarts);

4. When the device information is longer than 249 bytes, the first 249 bytes must be
stored in data1, and the remaining bytes are divided by length 249, which are stored in
data2, data3, and data4. The complete device information format is a JSON object, for
instance:

data1=

{"switch":"on","startup":"stay","pulse":"on","pulseWidth":2000,"ssid":"eWeLink","otaUnlock":tr
ue}

Whenever content other than seq changes, such as Service Instance Name is modified, device
information is updated, etc., the device must multicast the corresponding DNS record (including
the incremented seq) according to the mDNS/DNS-SD standard.

3. Discovery Process for Device Service

The discovery process must follow the mDNS/DNS-SD Discovery protocol to discover the Sonoff
DIY MODE device with “ewelink.tcp” service type when your application or client connect with
Internet (WiFi or Ethernet);

af://n133

Attribute Type Example Optional Description

deviceid String 100000140e Yes The device ID for this request.

data Object
{"switch":
"on"}

No

Object type, Specific device
information setting when
controlling the device. Empty object
when check the device information

Here is the discovery process:

1. Search in the LAN for all devices with the service type ewelink.tcp through the DNS PTR
record.

2. Get the Hostname and Port of device service via parsing out the device DNS SRV record. (The
default port is 8081)

3. Get device IP address via DNS A record or by other means.
4. Get the info of “device ID”, “Service Type”, “device API interface version” and “device

information” via parsing out the device DNS TXT Record.

Note:

1. When the “device type” of the device service does not match with the “device type” of your
application or client, or the device API interface version of the device service is higher than
your application or client’s, the application or client should not parse out the “device
information” and call the device API interface, but prompt the specific reason for users why
the device cannot be controlled via LAN and suggest to upgrade the application or client.

2. The application or client get the IP address of the device via DNS A record when the device
API interface is about to be called.

RESTful API Control Protocol（HTTP POST）

The device must open the HTTP server in the port declared by the DNS SRV record before the
device publishes its services; the device publishes the capabilities through a HTTP-based RESTful
API. Because of the LAN's security and device's limited computing power, this document
recommends that the device provides HTTP instead of HTTPS interface.

The device type is diy_plug(type=diy_plug) and the device API interface version is 1 (apivers=1).

RESTful API Request and Response Format

URL: http://[ip]:[port]/[path]

Return value format: json

Method: HTTP post

RESTful API Request works in POST method and JSON formatted request body.

 {

 "deviceid": "100000140e",

 "data": {

 "switch": "on"

 }

 }

af://n153
af://n156

Attribute Type Optional Description

seq Number No
The order of device status update (also the order of
TXT Record update)

error Number No

Whether the device successfully sets the specified
device information.
- 0: successfully
- 400: The operation failed and the request was
formatted incorrectly. The request body is not a
valid JSON format.
- 401: The operation failed and the request was
unauthorized. Device information encryption is
enabled on the device, but the request is not
encrypted.
- 404: The operation failed and the device does not
exist. The device does not support the requested
deviceid.
- 422: The operation failed and the request
parameters are invalid. For example, the device
does not support setting specific device
information.

data Object No
Object type, it returns specific device info when
check the device information

RESTful API Response works in 200 OK HTTP response code and JSON formatted response body.

Note: Due to the device computing capability, the time interval of each HTTP request should be
no less than 200ms.

1. ON/OFF status

URL: http://[ip]:[port]/zeroconf/switch

Return value format: json

Method: HTTP post

e.g.

 {

 "seq": 2,

 "error": 0,

 "data": {

 "signalStrength": -67

 }

 }

af://n206

Attribute Type Optional Description

switch String No on: turn the switch on, off: turn the switch off

Attribute Type Optional Description

startup String No

on: the device is on when power supply is recovered.
off: the device is off when power supply is recovered.
stay: the device status keeps as the same as the state
before power supply is gone

2. Power-on State

URL: http://[ip]:[port]/zeroconf/startup

Return value format: json

Method: HTTP post

e.g.

3. WiFi Signal Strength

URL: http://[ip]:[port]/zeroconf/signal_strength

Return value format: json

Method: HTTP post

Request body

e.g.

{

 "deviceid": "",

 "data": {

 "switch": "on"

 }

 }

{

 "deviceid": "",

 "data": {

 "startup": "stay"

 }

 }

{

 "deviceid": "",

 "data": { }

 }

af://n224
af://n242

Attribute Type Optional Description

signalStrength Number No
The WiFi signal strength currently received by
the device, negative integer, dBm

Attribute Type Optional Description

pulse String No
on: activate the inching function;
off: disable the inching function

pulseWidth Number Yes
Required when "pulse" is on, pulse time length,
positive integer, ms, only supports multiples of
500 in range of 500~36000000

Empty object, no attribute is required.

Response body

e.g.

4. Inching

URL: http://[ip]:[port]/zeroconf/pulse

Return value format: json

Method: HTTP post

e.g.

5. WiFi SSID and Password Setting

URL: http://[ip]:[port]/zeroconf/wifi

{

 "seq": 2,

 "error": 0,

 "data": {

 "signalStrength": -67

 }

}

{

 "deviceid": "",

 "data": {

 "pulse": "on",

 "pulseWidth": 2000

 }

 }

af://n266
af://n290

Attribute Type Optional Description

ssid String No
SSID of the WiFi network to which the device will
connect

password String No
password of the WiFi network to which the device will
connect

Return value format: json

Method: HTTP post

e.g.

6. OTA Function Unlocking

URL: http://[ip]:[port]/zeroconf/ota_unlock

Return value format: json

Method: HTTP post

e.g.

Empty object, no attribute is required.

The following failure codes are added to the error field of the response body:

- 500: The operation failed and the device has errors. For example, the device ID or API Key error
which is not authenticated by the vendor's OTA unlock service;

- 503: The operation failed and the device is not able to request the vendor's OTA unlock service.
For example, the device is not connected to WiFi, the device is not connected to the Internet, the
manufacturer's OTA unlock service is down, etc.

7. OTA New Firmware

URL: http://[ip]:[port]/zeroconf/ota_flash

Return value format: json

{

 "deviceid": "",

 "data": {

 "ssid": "eWeLink",

 "password": "WeLoveIoT"

 }

 }

{

 "deviceid": "",

 "data": { }

 }

af://n313
af://n325

Attribute Type Optional Description

downloadUrl String No
The download address of the new firmware, only
supports the HTTP protocol, the HTTP server must
support the Range request header.

sha256sum String No
SHA256 checksum (hash) of the new firmware, it is
used to verify the integrity of the new firmware
downloaded

Method: HTTP post

e.g.

The following failure codes are added to the error field of the response body:

- 403: The operation failed and the OTA function was not unlocked. The interface "3.2.6OTA
function unlocking" must be successfully called first.

- 408: The operation failed and the pre-download firmware timed out. You can try to call this
interface again after optimizing the network environment or increasing the network speed.

- 413: The operation failed and the request body size is too large. The size of the new OTA
firmware exceeds the firmware size limit allowed by the device.

- 424: The operation failed and the firmware could not be downloaded. The URL address is
unreachable (IP address is unreachable, HTTP protocol is unreachable, firmware does not exist,
server does not support Range request header, etc.)

- 471: The operation failed and the firmware integrity check failed. The SHA256 checksum of the
downloaded new firmware does not match the value of the request body's sha256sum field.
Restarting the device will cause bricking issue.

Note:

The maximum firmware size is 508KB.

The SPI flash read mode must be DOUT

8. Get Device Info

URL: http://[ip]:[port]/zeroconf/info

Return value format: json

Method: HTTP post

{

 "deviceid": "",

 "data": {

 "downloadUrl": "http://192.168.1.184/ota/new_rom.bin",

 "sha256sum":

"3213b2c34cecbb3bb817030c7f025396b658634c0cf9c4435fc0b52ec9644667"

 }

 }

af://n358

e.g.

Empty object, no attribute is required.

Response body example

Note: Monitor and parse the device's DNS TXT record to get the device information in real time.

Reference:

1. Multicast DNS protocol: IETF RFC 6762, https://tools.ietf.org/html/rfc6762
2. DNS‐Based Service Discovery protocol: IETF RFC 6763, https://tools.ietf.org/html/rfc6763
3. Zero Configuration Networking: Zeroconf, http://www.zeroconf.org/
4. Apple Bonjour Network Discovery and Connectivity: https://developer.apple.com/bonjour/
5. Android Network Service Discovery:

https://developer.android.com/training/connect‐devices‐wirelessly/nsd
6. Sonoff DIY Mode Demo Application on Github:

https://github.com/itead/Sonoff_Devices_DIY_Tools
7. Wikipedia Zero Configuration Networking: https://en.wikipedia.org/wiki/Zero-

configuration_networking
8. How does Zeroconf compare with Viiv/DLNA/DHWG/UPnP:

http://www.zeroconf.org/ZeroconfAndUPnP.html

{

 "deviceid": "",

 "data": { }

 }

{

 "seq": 2,

 "error": 0,

 "data": {

 "switch": "off",

 "startup": "off",

 "pulse": "off",

 "pulseWidth": 500,

 "ssid": "eWeLink",

 "otaUnlock": false,

 "fwVersion": "3.5.0",

 "deviceid": "100000140e",

 "bssid": "ec:17:2f:3d:15:e"

 }

 }

af://n369
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6763
http://www.zeroconf.org/
https://developer.apple.com/bonjour/
https://developer.android.com/training/connect%E2%80%91devices%E2%80%91wirelessly/nsd
https://github.com/itead/Sonoff_Devices_DIY_Tools
https://en.wikipedia.org/wiki/Zero-configuration_networking
http://www.zeroconf.org/ZeroconfAndUPnP.html

	SONOFF DIY MODE API PROTOCOL
	SONOFF DIY Mode Overview
	Supported Device

	eWeLink Mode and DIY Mode
	mDNS Discovery Process
	1. DIY MODE LAN discovery mechanism
	2. Device mDNS service info publish process
	3. Discovery Process for Device Service

	RESTful API Control Protocol（HTTP POST）
	RESTful API Request and Response Format
	1. ON/OFF status
	2. Power-on State
	3. WiFi Signal Strength
	4. Inching
	5. WiFi SSID and Password Setting
	6. OTA Function Unlocking
	7. OTA New Firmware
	8. Get Device Info

	Reference:

