Stavropol SU 1
Team Reference Material

February 10, 2009

Contents

VIIIC . . . o e
Java template Lo
Combinatorics
Number Theory
String Algorithms
Min-cost max-flow
Graph Theory
GaINES . . .
Geometry
Math . . . o e 10
Data Structures e 11
Miscellanious e 13
FET 14

O 00 O Tt W N+~

vimrc

set nocp ts=4 sw=4 noet ai cin bs=2 cb=unnamed

set ruler nowrap autoread showcmd showmode fdm=marker nobackup noerrorbells
syn on

set guifont=Monospace\ 12

Java template

class Main implements Runnable {
Scanner in;
PrintWriter out;
void solve() throws Exception {}

public void run() {

try {
in = new Scanner(new BufferedReader(new FileReader ("input.txt")));
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
solve(); out.close();

} catch (Exception e) {
out.close(); e.printStackTrace(); System.exit(1);

}

public static void main(Stringl[] args) throws Exception {
new Thread(new Main()).start();

¥

Combinatorics

Sums
Y=ok =n(n+1)/2 Ypeak = (a+b)(b—a+1)/2
S ok*=nn+1)(2n+1)/6 SorokP=n*(n+1)2/4
Sor okt = (6n° + 15m* +10n* — n)/30 >0 _ k° = (2n° + 6n° + 5n* —n?)/12
Dot =" = 1)/(z 1) Do kat = (z — (n+ 12! +na™*?)/(z — 1)°
l+z+a2+--=1/(1—2x)

Binomial coefficients

0 1 2 3 4 5 6 7 8 910 11 12 (y_
O 1 k) (nfk)!k'

]. 1]. n n—1 n—1
211 2 1 (k) - (k) + (k—l)
3/1 3 3 1 it el
411 4 6 4 1 (k):n—ﬁl(kz)
511 5 10 10 5 1 . e
6|1 6 15 20 15 6 1 (k+1):m(k)
711 7 21 35 35 21 7 1 . o
81 8 28 5 70 56 28 8 1 () =25
9(1 9 36 84 126 126 8 36 9 1 S,
101 10 45 120 210 252 210 120 45 10 1 (7)== (")
111 11 55 165 330 462 462 330 165 55 11 1 ss
1211 12 66 220 495 792 924 792 495 220 66 12 1 12’%261'1

0 I 2 3 4 5 6 7 8 9 10 11 12 20=2"

Number of ways to pick a multiset of size k from n elements: (”J’Z_l

Number of n-tuples of non-negative integers with sum s: (8’;’:1), at most s: (Szn)

Number of n-tuples of positive integers with sum s: (Z:ll)

Number of lattice paths from (0,0) to (a,b), restricted to east and north steps: (a;rb)

Multinomial theorem. (a; +---+ap)"=> (. ") aj*...a;*, where n; > 0 and Y n; =n.

N1y N
(m"nk) = M(nq,...,n,) = m,”—'nk, M(a,...,bye,...)=M(a+---+b,c,...)M(a,...,b)
Catalan numbers. C,, = %H(Q:) Co=1,0C, = Z;:Ol CiCri_i. Chypr = C’n‘t:f;.
Co,C1,...=1,1,2,5,14,42,132, 429, 1430, 4862, 16796, 58786, 208012, 742900, . . .

C), is the number of: properly nested sequences of n pairs of parentheses; rooted ordered binary trees

with n 4 1 leaves; triangulations of a convex (n + 2)-gon.

Derangements. Number of permutations of n = 0,1,2,... elements without fixed points is
1,0,1,2,9,44,265,1854,14833, ... Recurrence: D, = (n — 1)(D,—1 + D, _2) = nD,_1 + (—=1)™.

Corollary: number of permutations with exactly k fixed points is (Z) D, 4.

Stirling numbers of 1° kind. s, is (—1)"% times the number of permutations of n elements

with exactly & permutation cycles. [s, x| = |sn—15-1] + (n — D)|sn_1k]. Dop_g Sk ™ =22

Stirling numbers of 2" kind. S, is the number of ways to partition a set of n elements into

exactly k non-empty subsets. S, = Sp_1k-1+ kSn—1 4. Sn1 = Snn=1. 2" = Snk zk

Bell numbers. B, is the number of partitions of n elements. By,...=1,1,2,5,15,52,203, ...
Bry1 =) 1o (Z) By =>1_, Snk. Bell triangle: B, = a,1 = @p—1,-1, Qe = Qr_1c-1 + Q1.

Bernoulli numbers. /" k" = =537 (") Bym .

Sito (M)B;=0. By=1, Bi=—3. B, =0, for all odd n # 1.

Eulerian numbers. F(n, k) is the number of permutations with exactly & descents (i : m; < m;41)
/ ascents (m; > m;41) / excedances (m; > i) / k+ 1 weak excedances (m; > 7).
Formula: E(n, k) = (k+1)E(n—1L,k)+(n—k)En—1,k—1). a"=37"} E(n, k) ("FF).

Burnside’s lemma. The number of orbits under group G’s action on set X:
| X/G| = ﬁ > gec | Xql, where Xy = {z € X : g(z) = z}. (“Average number of fixed points.”)
Let w(z) be weight of «’s orbit. Sum of all orbits” weights: > v/ w(o) = ‘—é' D gec Dpex, W(T).

Number Theory

Linear diophantine equation. az + by = ¢. Let d = ged(a,b). A solution exists iff d|c. If (g, yo)
is any solution, then all solutions are given by (z,y) = (zo+ 2t,y0 — %t), t € Z. To find some solution
(70, 10), use extended GCD to solve axy + byy = d = ged(a, b), and multiply its solutions by 4.

Linear diophantine equation in n variables: a;x; + - - - + a,2, = ¢ has solutions iff ged(ay, ..., a,)|c.
To find some solution, let b = ged(as, .. ., a,), solve a;xy + by = ¢, and iterate with asze + -+ = v.

Extended GCD

// Finds g = gcd(a,b) and x, y such that ax+by=g. Bounds: [x|<=b+1, |yl|<=a+l.
void gcdext(int &g, int &x, int &y, int a, int b)
{if b==0){g=2a; x=1; y=0; }

else { gcdext(g, y, x, b, a% b); y=y-(a/b) *x; }}

Multiplicative inverse of @ modulo m: z in ax +my = 1, or a®™~! (mod m).

Chinese Remainder Theorem. System x = a; (mod m;) fori = 1,..., n, with pairwise relatively-
prime m; has a unique solution modulo M = mymsy...m,: x = a1b1mM1 4+ -+ anbnmﬁ (mod M),
where b; is modular inverse of % modulo m;.

System z = a (mod m), x = b (mod n) has solutions iff « = b (mod g), where g = ged(m,n). The
solution is unique modulo L = %%, and equals: © = a+T(b—a)m/g = b+ S(a —b)n/g (mod L),
where S and T are integer solutions of mT" + nS = ged(m,n).

Prime-counting function. 7(n) = |[{p < n : pisprime}|. n/In(n) < 7(n) < 1.3n/In(n).
7(1000) = 168, 7(106) = 78498, 7(10°) = 50 847 534. n-th prime ~ nlnn.

Miller-Rabin’s primality test. Given n = 2"s + 1 with odd s, and a random integer 1 < a < n.
If a* =1 (mod n) or a¥* = —1 (mod n) for some 0 < j < r — 1, then n is a probable prime. With
bases 2, 7 and 61, the test indentifies all composites below 232. Probability of failure for a random a

is at most 1/4.

Pollard-p. Choose random z;, and let z;,; = 2? — 1 (mod n). Test ged(n, Tor,; — Tox) as possible
n’s factors for k = 0,1,... Expected time to find a factor: O(y/m), where m is smallest prime power
in n’s factorization. That’s O(n'/*) if you check n = p* as a special case before factorization.

Fermat primes. A Fermat prime is a prime of form 22" 4 1. The only known Fermat primes are 3,
5, 17, 257, 65537. A number of form 2" + 1 is prime only if it is a Fermat prime.

Perfect numbers. n > 1 is called perfect if it equals sum of its proper divisors and 1. Even n is
perfect iff n = 2P~1(2P — 1) and 2P — 1 is prime (Mersenne’s). No odd perfect numbers are yet found.

4
Carmichael numbers. A positive composite n is a Carmichael number (a"' =1 (mod n) for all

a: ged(a,n) = 1), iff n is square-free, and for all prime divisors p of n, p — 1 divides n — 1.

Number/sum of divisors. 7(p{*...p*) = H?:l(@j +1). opi*...p) = H?:l pjpj—_;l.

Euler’s phi function. ¢(n) = |{m € N,;m < n,ged(m,n) = 1}|.
Glmn) = Lot " gy ey 1) S b(d) = 3y 0(2) =

Euler’s theorem. a*™ =1 (mod n), if ged(a,n) = 1.
Wilson’s theorem. p is prime iff (p — 1)! = —1 (mod p).

Mobius function. u(1) =1. u(n) =0, if n is not squarefree. u(n) = (—1)°, if n is the product of s
distinct primes. Let f, I be functions on positive integers. If for alln € N, Fi(n) = -, f(d), then

f(n) = de (d)F(%), and vice versa. ¢(n) —Zdln (d)2. Zd\nﬂ(d) -1
If f is multiplicative, then >, u(d) f(d) = [L,,(1 = f(p)), >ogn ()2 f(d) = [T, (1 + (7).

);
Legendre symbol. If p is an odd prime, a € Z, then (%) equals 0, if pla; 1 if a is a quadratic

residue modulo p; and —1 otherwise. Euler’s criterion: (%) = o("7) (mod p).
ki
Jacobi symbol. If n = p¢' - p* is odd, then (£) = []*, (5 .

Primitive roots. If the order of g modulo m (min n > 0: ¢" = 1 (mod m)) is ¢(m), then g is
called a primitive root. If Z,, has a primitive root, then it has ¢(¢(m)) distinct primitive roots. Z,,
has a primitive root iff m is one of 2, 4, p*, 2p*, where p is an odd prime. If Z,, has a primitive root
g, then for all a coprime to m, there exists unique integer i = ind,(a) modulo ¢(m), such that ' = a
(mod m). ind,(a) has logarithm-like properties: ind(1) = 0, ind(ab) = ind(a) + ind(d).

If p is prime and a is not divisible by p, then congruence " = a (mod p) has ged(n,p — 1) solutions
if a(P~1/ged(P=1) =1 (mod p), and no solutions otherwise. (Proof sketch: let ¢ be a primitive root,
and ¢' = a (mod p), ¢g* =z (mod p). 2" = a (mod p) iff ¢g"* = ¢* (mod p) iff nu=1i (mod p).)

Discrete logarithm problem. Find z from a® = b (mod m). Can be solved in O(y/m) time and
space with a meet-in-the-middle trick. Let n = [\/m], and x = ny — 2. Equation becomes a™¥ = ba*
(mod m). Precompute all values that the RHS can take for z = 0,1,...,n — 1, and brute force y on
the LHS, each time checking whether there’s a corresponding value for RHS.

Pythagorean triples. Integer solutions of x? + y* = 2?2 All relatively prime triples are given by:
r = 2mn,y = m? —n* 2z = m* 4+ n® where m > n,ged(m,n) = 1 and m # n (mod 2). All other

triples are multiples of these. Equation 2% + y? = 222 is equivalent to (%)2 + (54)? = 22

Postage stamps/McNuggets problem. Let a, b be relatively-prime integers. There are exactly
+(a—1)(b—1) numbers not of form ax+by (z,y > 0), and the largest is (a—1)(b—1)—1 = ab—a—0.

Fermat’s two-squares theorem. Odd prime p can be represented as a sum of two squares iff
p=1 (mod 4). A product of two sums of two squares is a sum of two squares. Thus, n is a sum of
two squares iff every prime of form p = 4k 4 3 occurs an even number of times in n’s factorization.

RSA. Let p and ¢ be random distinct large primes, n = pq. Choose a small odd integer e, relatively
prime to ¢(n) = (p—1)(¢ — 1), and let d = e~! (mod ¢(n)). Pairs (e,n) and (d,n) are the public
and secret keys, respectively. Encryption is done by raising a message M € Z, to the power e or d,
modulo n.

String Algorithms

char #kmp(char *text, char *pat) {

}

int i,k,n=strlen(pat), *phi=...
phi[0] = phi[1] = k = 0;
for (i = 1; i < nj; i++) {
while (k > 0 && pat[k] !'= pat[il)
k = phi[k];
phil[i+1] = pat[k]==pat[i] 7 ++k : O;
}
for (i=k=0; text[i] && k < n; i++) {
while (k > 0 && pat[k] !'= text[i])
k = phil[k];
if (patl[k] == text[i]) ++k;
}

return k == n ? text+i-n : NULL;

vector<int> zfunction(char *s) {

int N = strlen(s), a=0, b=0;
vector<int> z(N, N);
for (int i = 1; i < N; i++) {
int k = i<b ? min(b-i, z[i-a]) : O;
while (i+k < N && s[i+k]==s[k]) ++k;
z[i] = k;
if (i+k > b) { a=i; b=i+k; }
}

return z;

Definition:
z[i] = max {k: s[i..i+k-1]=s[0..k-1]}

Suffix array. O(nlog®n) time, 16 bytes/char overhead.

// Input: text, N
// Output: sall] is a sorted list of offsets to all non-empty suffixes,

// lcpli]l = length of longest common prefix of text+sali] and text+sal[i+1]
char text[MAX]; long long key[MAX]; int N, sa[MAX], rank[MAX], *lcp=(int*)key;
struct Cmp { bool operator() (int i, int j) const { return key[il<key[jl; } };

void build() {

}

Burrows-Wheeler inverse transform. Let B[l..n] be the input (last column of sorted matrix
of string’s rotations.) Get the first column, A[l..n|, by sorting B. For each k-th occurence of a
character ¢ at index i in A, let next[i] be the index of corresponding k-th occurence of ¢ in B. The

for (int i = 0; i < N; i++) { salil
sort(sa, sa+N, Cmp());
for (int K = 1; ; K *x= 2) {

for (int 1 = 0; i < N; i++)

= i; key[i] = text[i]; }

rank[sal[il] = i>0 && key[sali-1]]==key[salil] 7 rank[sali-1]] : i;

if (K >= N) break;
for (int i = 0; i < N; i++)

key[i] = rank[i] * (N+1LL) +

sort(sa, sa+N, Cmp());

}

for (int i = 0, k = 0; i < N; i++) {
if (k > 0) k——;
if (rank[i] == N-1) { lcp[N-1] =
int j = salrank[i]+1];
while (text[i+k] == text[j+k]) k
lcplrank[il] = k;

}

(i+K < N ? rank[i+K]+1 : 0);

= 0; continue; }

r-th fow of the matrix is A[r], A[next[r]], A[next[next|r]]], ...

Huffman’s algorithm. Start with a forest, consisting of isolated vertices. Repeatedly merge two

trees with the lowest weights.

Min-cost max-flow

struct MCMF {

typedef int ctype;

enum { MAXN = 1000, INF = INT_MAX };

struct Edge { int x, y; ctype cap, cost; };
vector<Edge> E; vector<int> adj[MAXN];

int N, prev[MAXN]; ctype dist[MAXN], phi[MAXN];

MCMF (int NN) : N(NN) {3}

void add(int x, int y, ctype cap, ctype cost) { // cost >= 0
Edge el={x,y,cap,cost}, e2={y,x,0,-cost};
adjlel.x] .push_back(E.size()); E.push_back(el);
adjle2.x] .push_back(E.size()); E.push_back(e2);

void mcmf (int s, int t, ctype &flowVal, ctype &flowCost) {
int x;
flowVal = flowCost = 0; memset(phi, 0, sizeof(phi));
while (true) {
for (x = 0; x < N; x++) prev[x] = -1;
for (x = 0; x < N; x++) dist[x] INF;
dist[s] = prev[s] = 0;

set< pair<ctype, int> > Q;
Q.insert (make_pair(dist[s], s));
while (!Q.empty()) {
x = Q.begin()->second; Q.erase(Q.begin());
FOREACH(it, adj[x]) {
const Edge &e = E[*it];
if (e.cap <= 0) continue;
ctype cc = e.cost + phi[x] - phile.y]; /] *¥x
if (dist[x] + cc < distle.y]) {
Q.erase(make_pair(dist[e.y], e.y));
dist[e.y] = dist[x] + cc;
prevle.y] = *it;
Q.insert (make_pair(dist[e.y]l, e.y));

}
if (prev[t] == -1) break;

ctype z = INF;
for (x = t; x !'= s; x = E[lprev[x]].x) z = min(z, Elprev[x]].cap);
for (x = t; x !'= s; x = E[prev[x]].x)
{ Elprev[x]].cap -= z; Elprev[x]~1].cap += z; }
flowVal += z;
flowCost += z * (dist[t] - phils] + phil[t]);
for (x = 0; x < N; x++) if (prev[x] != -1) phil[x] += dist[x]; [/ **x

Graph Theory

Euler’s theorem. For any planar graph, V — F + F = 1+ C, where V is the number of graph’s
vertices, F is the number of edges, F' is the number of faces in graph’s planar drawing, and C' is the
number of connected components. Corollary: V — E + F = 2 for a 3D polyhedron.

Vertex covers and independent sets. Let M, C', I be a max matching, a min vertex cover, and
a max independent set. Then |M| < |C] = N — |I|, with equality for bipartite graphs. Complement
of an MVC is always a MIS, and vice versa. Given a bipartite graph with partitions (A, B), build
a network: connect source to A, and B to sink with edges of capacities, equal to the corresponding
nodes’ weights, or 1 in the unweighted case. Set capacities of the original graph’s edges to the
infinity. Let (S,7) be a minimum s-t cut. Then a maximum(-weighted) independent set is I =
(AN S)U(BNT), and a minimum(-weighted) vertex cover is C' = (ANT)U (BNS).

Matrix-tree theorem. Let matrix T' = [t;;], where ¢;; is the number of multiedges between i and
j, for i # j, and t; = —deg;. Number of spanning trees of a graph is equal to the determinant of a
matrix obtained by deleting any k-th row and k-th column from 7.

Euler tours. Euler tour in an undirected graph exists iff the graph is connected and each vertex has
an even degree. Euler tour in a directed graph exists iff in-degree of each vertex equals its out-degree,
and underlying undirected graph is connected. Construction:

doit(u):
for each edge e = (u, v) in E, do: erase e, doit(v)
prepend u to the list of vertices in the tour

Stable marriages problem. While there is a free man m: let w be the most-preferred woman to
whom he has not yet proposed, and propose m to w. If w is free, or is engaged to someone whom
she prefers less than m, match m with w, else deny proposal.

Stoer-Wagner’s min-cut algorithm. Start from a set A containing an arbitrary vertex. While
A #V, add to A the most tightly connected vertex (z ¢ A such that > _, w(x,z) is maximized.)
Store cut-of-the-phase (the cut between the last added vertex and rest of the graph), and merge the
two vertices added last. Repeat until the graph is contracted to a single vertex. Minimum cut is one
of the cuts-of-the-phase.

Tarjan’s offline LCA algorithm. (Based on DFS and union-find structure.)

DFS(x):
ancestor[Find(x)] = x
for all children y of x:
DFS(y); Union(x, y); ancestor[Find(x)] = x
seen[x] = true
for all queries {x, y}:
if seen[y] then output "LCA(x, y) is ancestor[Find(y)]"

Strongly-connected components. Kosaraju’s algorithm.

1. Let GT be a transpose G (graph with reversed edges.)

1. Call DFS(G") to compute finishing times f[u] for each vertex w.

3. For each vertex u, in the order of decreasing f|[u], perform DFS(G, u).
4. Each tree in the 3rd step’s DFS forest is a separate SCC.

2-SAT. Build an implication graph with 2 vertices for each variable — for the variable and its inverse;
for each clause x V y add edges (Z,y) and (7, x). The formula is satisfiable iff z and Z are in distinct

8

SCCs, for all z. To find a satisfiable assignment, consider the graph’s SCCs in topological order from
sinks to sources (i.e. Kosaraju’s last step), assigning ‘true’ to all variables of the current SCC (if it
hasn’t been previously assigned ‘false’), and ‘false’ to all inverses.

Randomized algorithm for non-bipartite matching. Let G be a simple undirected graph with
even |V(G)|. Build a matrix A, which for each edge (u,v) € E(G) has A, ; = z; j, Aj; = —x,, and
is zero elsewhere. Tutte’s theorem: G has a perfect matching iff det G (a multivariate polynomial)
is identically zero. Testing the latter can be done by computing the determinant for a few random
values of z; ;’s over some field. (e.g. Z, for a sufficiently large prime p)

Prufer code of a tree. Label vertices with integers 1 to n. Repeatedly remove the leaf with the
smallest label, and output its only neighbor’s label, until only one edge remains. The sequence has
length n — 2. Two isomorphic trees have the same sequence, and every sequence of integers from 1
and n corresponds to a tree. Corollary: the number of labelled trees with n vertices is n" 2.

e}

Erdos-Gallai theorem. A sequence of integers {dy,ds, ..., d,}, withn—1>dy > dy > --- > d, >
is a degree sequence of some undirected simple graph iff > d; is even and dy + - -+ +di, < k(k—1) +
Yo min(k, d;) for all k =1,2,...,n— 1.

Games

Grundy numbers. For a two-player, normal-play (last to move wins) game on a graph (V| E):
G(z) = mex({G(y) : (z,y) € E}), where mex(S) = min{n > 0:n ¢ S}. x is losing iff G(z) = 0.

Sums of games.

e Player chooses a game and makes a move in it. Grundy number of a position is xor of grundy
numbers of positions in summed games.

e Player chooses a non-empty subset of games (possibly, all) and makes moves in all of them. A
position is losing iff each game is in a losing position.

e Player chooses a proper subset of games (not empty and not all), and makes moves in all chosen
ones. A position is losing iff grundy numbers of all games are equal.

e Player must move in all games, and loses if can’t move in some game. A position is losing if
any of the games is in a losing position.

Misere Nim. A position with pile sizes ay, as, ..., a, = 1, not all equal to 1, is losing iff a; & as &
.-+ @ a, = 0 (like in normal nim.) A position with n piles of size 1 is losing iff n is odd.

Geometry

Pick’s theorem. I = A — B/2 + 1, where A is the area of a lattice polygon, I is number of lattice
points inside it, and B is number of lattice points on the boundary. Number of lattice points minus
one on a line segment from (0,0) and (z,y) is ged(z, y).

a-b=azb, +ayb, = |a|-|b| - cos()

ax b= azb, —a,b, = |a| - |b| - sin()
3D: a x b= (ayb, — asb,, a,b, — a,b,, azb, — a,b,)

Line az + by = ¢ through A(x1,y1) and B(z2,92): @ = y1 — Yo, b = 29 — 21, ¢ = axy + byy.
Half-plane to the left of the directed segment AB: ax + by > c.
Normal vector: (a,b). Direction vector: (b, —a). Perpendicular line: —bz + ay = d.

. . . . 1
Point of intersection of a1z + b1y = ¢; and asx + by = ¢4 is m(cle — b1, aico — asey).

Distance from line az + by + ¢ = 0 to point (o, yo) is |azo + byo + ¢|/vVa? + b2.
Distance from line AB to P (for any dimension): %.
Point-line segment distance:

if (dot(B-A, P-A) < 0) return dist(A,P);

if (dot(A-B, P-B) < 0) return dist(B,P);

return fabs(cross(P,A,B) / dist(A,B));

Projection of point C' onto line AB is Af‘gjﬁgAB.
Projection of (zg,yo) onto line ax + by = ¢ is (xg, yo) + ﬁ(ad, bd), where d = ¢ — axy — byp.

Projection of the origin is ﬁ(ac, be).

Segment-segment intersection. Two line segments intersect if one of them contains an endpoint
of the other segment, or each segment straddles the line, containing the other segment (AB straddles
line [if A and B are on the opposite sides of [.)

Circle-circle and circle-line intersection.
a=%x2-x1; b=y2-y1; c=[(r172 - x172 - y172) - (r272 - x272 - y2°2)] / 2;
d = sqrt(a”2 + b"2);
if not |rl - r2| <= d <= |rl + r2|, return "no solution"
if d == 0, circles are concentric, a special case
// Now intersecting circle (x1,yl,rl) with line ax+by=c
Normalize line: a /=d; b /=4d; c /= d; // d=sqrt(a”2+b~2)
e = c - a*xl - bxyl;
h = sqrt(rl1”2 - e72); // check if ril<e for circle-line test
return (x1, y1) + (axe, b*e) +/- hx(-b, a);

Circle from 3 points (circumcircle). Intersect two perpendicular bisectors. Line perpendicular
to ax + by = ¢ has the form —bx + ay = d. Find d by substituting midpoint’s coordinates.

Angular bisector of angle ABC is line BD, where D = % + %.

Center of incircle of triangle ABC'is at the intersection of angular bisectors, and is 53— A+~ +Z —B+
25

a+b+c”

c
a+b+c

C, where a, b, ¢ are lengths of sides, opposite to vertices A, B, C'. Radius =

Counter-clockwise rotation around the origin. (x,y) — (x cos¢ — ysin ¢, xsin ¢ + y cos ¢).
90-degrees counter-clockwise rotation: (z,y) +— (—y,x). Clockwise: (z,y) — (y, —x).

3D rotation by ccw angle ¢ around axis n: v’ =rcos¢+n(n-r)(1 —cos¢)+ (n x r)sin¢g
Plane equation from 3 points. N - (z,y,2) = N-A, where N is normal: N = (B—A) x (C' — A).

3D figures

Sphere Volume V = %7?7“3, surface area S = 4mr?

x = psinfcos ¢, y = psinfsin g, z = pcosh, ¢ € [—m, 7|, 0 € [0, 7]
Spherical section Volume V = wh?(r — h/3), surface area S = 27rh
Pyramid Volume V = 145, ..

3
Cone Volume V = %m’zh, lateral surface area S = mry/r2 4+ h?

Area of a simple polygon. %Z?;Ol(a:iyiﬂ — Ti11Yi), where x,, = xg, Y = Yo.
Area is negative if the boundary is oriented clockwise.

10

Winding number. Shoot a ray from given point in an arbitrary direction. For each intersection of
ray with polygon’s side, add +1 if the side crosses it counterclockwise, and —1 if clockwise.

Convex Hull

bool operator <(Point a, Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }

// Returns convex hull in counter-clockwise order.
// Note: the last point in the returned list is the same as the first one.
vector<Point> ConvexHull(vector<Point> P) {

int n = P.size(), k = 0; vector<Point> H(2x*n);

sort(P.begin(), P.end());

for (int i = 0; i < n; i++)

{ while (k >= 2 && cross(H[k-2], H[k-1], P[i]) <= 0) k--; HI[k++] = P[i]; }
for (int i = n-2, t = k+1; i >= 0; i--)
{ while (k >= t && cross(H[k-2], H[k-1], P[i]) <= 0) k--; H[k++] = P[i]; }
H.resize(k);
return H;
}
Trigonometric identities
sin(a + 3) = sinaccos [+ cos asin 3 cos(av + 3) = cosacos f — sinasin 3
sin(aw — 3) = sinacos f — cos asin 3 cos(aw — 3) = cos awcos B + sinasin 3
tan(a +) = % sin 20 = 2sin a cos «, cos 2o = cos® o — sin? «
cos® o = 3(1 + cos 2cv) sin® a = 1(1 — cos 2av)
sina + sin 3 = 2sin a;ﬁ cos O‘;ﬁ cos a + cos 3 = 2 cos a+’6 cos 228
sma—smﬁ—?smo‘f os 248 cosa — cosf = 2smo‘+’gsm°‘%3
sin(a+/3) sin(a+-03)
tana + tan 3 = cosarcos B cot a + cot B = Smasi g
sinasin 3 = [cos(a —) — cos(a + B3)] cos avcos § = 3[cos(a — 3) + cos(a + 3)]
sin v cos § = 3[sin(av + ﬁ) + Sln(a — beta)] sin’x = cosx, cos’ r=—sinz
Law of sines: 81r(1l 4= o0 B = 55 = 2Rou. Inscribed/outscribed circles: Ry = fg, R, = %&C

Law of cosines: ¢ = a® 4+ b*> — 2abcos C. Heron: \/S(S —a)(s—=b)(s—c), s= a+§+c-
atb tan[%(A-i—B)]

Law of tangents: &5 = —F———= A’s area, given side and adjacent angles:

&2
b tan[%(A—B)} 2(cot a+cot)

Math
Stirling’s approximation 2! =T(z + 1) = V21 2*™/2 e (1 4+ -+ 5505 — sz +...)

)+ 4f(a+h) + f(b)) + O(h* f(g)).

— 52 (/o
b (7 f(a)+32f (a+h)+12f(a+2h)+32f (a+3h)+7f(b))+O(h" fO(£)).

Simpson’s rule. |

b2 g0
Boole’s. ff:a+4h f(z)de = 52

Newton’s method. z,11 =z, — J '(z,) - F(x,), where J(x) is Jacobian matrix J;; = gg;

Runge-Kutta, 4-th order. Solves initial-value problem '(z) = f(x,y), y(xo) = yo.
kl = f(zna yn) k4 = f(zn + h, Yn + kSh)
ky = f(xn 4+ /2,y + k1h/2) Yns1 = yn + (k1 + 2ka + 2k3 + k4)h/6 + O(RP)
ks = f(xn +h/2,yn + koh/2) zp1 =, +h
Taylor series f() = fla) + 52 f (a) + %f@)(a) +- %f(")(a) +....
sinz =x — % +—— 7?4—
ln:v:2(a+3+5+..), where a = 24 Inz® = 2Inz.

o 23 x5 z7 o Tr—c —
arctany = v — & + & — % 1—i- ..., arctanz = arctan ¢ + arctan 7= (e.g c=.2)

7w =4arctan 1, 7 = Garcsin 3

S

zzo

Circle cut area. f 2v/1 — 22 do = v 1 — 22 + arcsinz

Cauchy’s formula. f(z) = 5 557

1—¢2

11

Trigonometric substitution. ¢ = tan 3, r = 2arctant, dr = Htg dt, sinx = 1+t2, COST = {733
Parametric curve length. fa VIE @O+ [y O + [2/(1)]2dt
Directional derivative. % = % -V f

or or

Surface normal. 7i(u,v) = §- X

v
Surface area. [[, |7i(u,v)| du dv. For surfaces 2= z(u,v), [A(u,v)* =1+ (2,)? + (2})?

Green’s theorem. §, P dz +Q dy = ffD e — —) dx dy
Stokes’ theorem. [,V x @ - dS = $op -
Normal distribution. f(z) = f exp — ¢ 2_0_‘;)2.

Linear DE. ¢ + P(z)y = Q(z). Solution: y = e~ ([Pedzx + C), where A = [Q(z)dx
any™ + -+ ayy’ +ag = 0. Guess: y = e™. (for multiplicity m roots: y = z¥e™, k=0,...,m

__1)

Largange multipliers. Extrema points of f(x) = f(z1,...,z,) on domain specified by system
¢1(x) = 0,...,¢6m(x) = 0 are found by solving system: & = f(z) + Mp1(x) + -+ + Apdm(x),
0P

axb_a/\ —0(2—1 n, j=1..m)

Bayes’ theorem. P(A|B) = %

Data Structures

Fenwick Tree

int a[MAXN];

// value[n] += x
void add(int n, int x) { for (; n < MAXN; n |=n + 1) a[n] += x; }

// Returns valuel[0] + valuel[l] + ... + valuel[n]
int sum(int n) { int s=0; while (n>=0) { s+=aln]; n=(n&(n+1))-1; } return s; }

AVL Tree

struct Node {

Node *1, *r; int h, size, key;

Node(int k) : 1(0), r(0), h(1), size(1), key(k) {}

void u() { h=1+max(171->h:0, r?r->h:0); size=(171->size:0)+1+(r?r->size:0); }
+;

Node *rotl(Node *x) { Node *y=x->r; x->r=y->1; y->l=x; x->u(); y->u(); return y; }
Node *rotr(Node *x) { Node *y=x->1; x->l=y->r; y->r=x; x->u(); y->u(); return y; }

Node *rebalance(Node *x) {
x->u();
if (x->1->h > 1 + x->r->h) {

12

if (x->1->1->h < x->1->r->h) x->1
x = rotr(x);

} else if (x->r->h > 1 + x—>1->h) {
if (x->r->r->h < x->r->1->h) x->r
x = rotl(x);

rotl(x—>1);

rotr(x->r);

3

return x;

Node *insert(Node *x, int key) {
if (x == NULL) return new Node(key);
if (key < x->key) x->1 = insert(x->1, key); else x->r = insert(x->r, key);
return rebalance(x);

Treap

struct Node {
int key, aux, size; Node *1, *r; // BST w.r.t. key; min-heap w.r.t. aux
Node(int k) : key(k), aux(rand()), size(1), 1(0), r(0) {3}

};

Node *upd(Node *p) { if(p) p->size=1+(p->17p->1->size:0)+(p->r?p->r->size:0); return p; }

void split(Node *p, Node *by, Node **L, Node **R) {
if (p == NULL) { #L = *R = NULL; }
else if (p->key < by->key) { split(p->r, by, &p->r, R); *L = upd(p); }
else { split(p->1, by, L, &p—>1); *R = upd(p); }

Node *merge(Node *L, Node *R) {
Node *p;
if (L == NULL || R == NULL) p = (L != NULL ? L : R);
else if (L->aux < R->aux) { L->r = merge(L->r, R); p =1L; }
else { R->1 = merge(L, R->1); p = R; }
return upd(p);

Node *insert(Node *p, Node *n) {
if (p == NULL) return upd(n);
if (n->aux <= p->aux) { split(p, n, &n->1, &n->r); return upd(n); }
if (n->key < p->key) p->1 = insert(p->1, n); else p->r = insert(p->r, n);
return upd(p);

Node *erase(Node *p, int key) {
if (p == NULL) return NULL;
if (key == p->key) { Node *q = merge(p->1, p->r); delete p; return upd(q); }
if (key < p->key) p->1 = erase(p->1, key); else p->r = erase(p->r, key);
return upd(p);

13
Miscellanious

Bit tricks

Clearing the lowest 1 bit: x & (x - 1), all trailing 1’s: x & (x + 1)

Setting the lowest 0 bit: x | (x + 1)

Enumerating subsets of a bitmask m: x=0; do { ...; x=(x+1+"m)&m; } while (x!=0);
__builtin_ctz/__builtin_clz returns the number of trailing/leading zero bits.
__builtin_popcount (unsigned x) counts 1-bits (slower than table lookups).

For 64-bit unsigned integer type, use the suffix ‘11’ i.e. __builtin_popcountll.

Warnsdorff’s heuristic for knight’s tour. At each step choose a square which has the least
number of valid moves that the knight can make from there.

Optimal BST. root[i,j — 1] < root[i, j| < rootli + 1, j].

Flow-shop scheduling (Johnson’s problem). Schedule N jobs on 2 machines to minimize com-
pletition time. i-th job takes a; and b; time to execute on 1st and 2nd machine, respectively. Each
job must be first executed on the first machine, then on second. Both machines execute all jobs in
the same order. Solution: sort jobs by key a; < b; 7 a; : (0o — b;), i.e. first execute all jobs with
a; < b; in order of increasing a;, then all other jobs in order of decreasing b;.

Days of week
January 1, 1600: Saturday January 1, 1900: Monday June 13, 2042: Friday
January 1, 2008: Tuesday April 1, 2008: Tuesday April 9, 2008: Wednesday
December 31, 1999: Friday January 1, 3000: Wednesday

FFT

typedef complex<long double> Complex;
long double PI = 2 * acos(0.0L);

// Decimation-in-time radix-2 FFT.

//

// Computes in-place the following transform:
// yl[i]l = A(w~(dirx*i)),

// where
// w = exp(2pi/N) is N-th complex principal root of unity,
// A(x) = al0] + a[1] x + ... + a[n-1] x"{n-1},

// dir \in {-1, 1} is FFT’s direction (+1=forward, -1=inverse).
//

// Notes:

// * N must be a power of 2,

// * scaling by 1/N after inverse FFT is caller’s resposibility.

void FFT(Complex *a, int N, int dir)

{
int 1gN;
for (1gN = 1; (1 << 1gN) < N; 1gN++);
assert ((1 << 1gN) == N);

for (int i = 0; i < N; i++) {
int j = 0;
for (int k = 0; k < 1gN; k++)
j 1= ((E>>k)&1) << (1gN-1-k);
if (i < j) swap(alil, aljl);

for (int s = 1; s <= 1gN; s++) {
int h =1 << (s - 1);
Complex t, w, w_m = exp(Complex(0, dir*PI/h));
for (int k = 0; k < N; k += h+h) {
w=1;
for (int j = 0; j < h; j++) {
t = w * alk+j+h];
alk+j+h] = alk+j] - t;
alk+j] += t;
W k= W_m;

14

