{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from bs4 import BeautifulSoup\n", "import requests\n", "import pandas as pd\n", "%matplotlib inline\n", "from IPython.display import Image\n", "from collections import Counter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### checar parser, regular expressions" ] }, { "cell_type": "code", "execution_count": 389, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAFDCAYAAABoRTllAAAL+WlDQ1BJQ0MgUHJvZmlsZQAASImV\nVwdUk8kWnv//UyEJJXQpoTfB0JuU0DtIBxshCSQQQkxBwK6IK7h2EcGyoqtgQdcCyFqxYGER7P2B\nLiq2xVWwoPImCerueWffO+/mTOb779w2d+7MmQGAlsEWi4WoJgCFIpkkKSKYkZGZxSD2AQSggAxM\ngTmbIxWzEhNjAaSv/d9p+AaUhnTVSWHrP8f/K2lxeVIOAEgixDlcKacQ4kMAYAEcsUQGAO4t5FvO\nlIkhxhtArCOBAUI8XoHzVDhIgXNUOEUpk5IUAjEfABKFzZbkAUCF+oBRzMmDPXUtxEwRVyCC+AzE\nARw+mwsADQfx+MLCIgVmQmyX8xc7eX+zmfPNJpud9w2r5qIkUqhAKhayS//PdPxvKhTKv/qwgI3C\nl0QmKXqYt4aCohgFJihyKMqJTxjjtwm4Snk1iM/x5ZGpEMNcIt0caQjMGaBB/JTLDo0ZkxmWF6Sy\nVHwUsCVKXR2IaQJZVMpXeUlR0ph91EIkjFfUhR3EznxeVKwqBjSNJw1LhhhWFzolVxAeNSYvLOOn\npI/JlBQL0uLHZOZKC5JjxvwuL+OHxI/JbJTIk1LH+PW5knDFHOH6oPsLpcrYFPxeDvu7Lxk/JXIM\nv+JJM2K/8rm80LCv8fNEqcljul/EsuCkr3yxUFnjKhlhRJIqJxhFWpys0NWGWE8GC2yMb5fPjk5U\nzQtzFcsSv+UHZAE2kAIhKAKitoYD53uYIBkUgHzAAxJQCGLhaClsEhAHOXlKvhA2EXgJZGAAasYp\nNIEAfhVBKYXuY4UmTgfnjWPhAnF+OA+cD8GdYAubPWDAPpTgQ3AheAIWyAUC1BBazwcJ0EYOtFug\ntM0FDOWXwhcX+uAAvioe/AN8H/4OSIQ6IuiRDceF8D8e/A6jlMHfcE1RqW8aH0QCgelpKMOAPL7p\nJRAKI5QCsTL2/NwAhQzOGBeA84dRBsM+6C/z4AE59MWAnnlK/VKop0ACOM5RSomghCIGsTIzMBYa\nieZEY9EcaDo0Is2YZv0XfzB/2BasFevEjmEtIBjyVXMqgDErMhwGkdIGs4O5jXmEeZP5grkdABmv\nRLFXQUiRuFQiyOPLGCx4avEYUSKO83iGK9PFCwDFGajaYm8mKc82RK/zO08Ga9T/JVzv7u+8LFiJ\ne6BdfbfvPDu4x3Q3A9DqwJFLilU8xRED8LByNOCOMoTnqyXcNU7AFXgCPxAEY46GK5YCMsE05doU\nwhnMBLPBAlABqsBKsA7Ugi1gG2gAe8EB0AKOglPgHLgEusF1cBf0gn7wHAyCYTCCIAgRoSJ0xBAx\nQ6wRR8QV8UYCkDAkFklCMpFsJA8RIXJkNrIIqUJWI7XIVqQR+QU5gpxCLiA9yG2kDxlA/kQ+ohhK\nQXVQE9QGnYB6oyw0Bk1Bp6J56Ay0DC1Hl6M1aD26B21GT6GX0OtoL/ocHcIApo7pYeaYE+aNhWAJ\nWBaWi0mwuVglVo3VY01YG9aBXcV6sRfYBxwBR8cxcE6wmiNxqTgObgZuLm4ZrhbXgGvGncFdxfXh\nBnFf8FS8Md4R74uPwmfg8/Az8RX4avwO/GH8Wfx1fD9+mEAg6MH69yJEEjIJ+YRZhGWETYR9hJOE\nHsIjwhCRSDQkOhL9iQlENlFGrCBuIO4hniBeIfYT35PUSWYkV1I4KYskIi0kVZN2kY6TrpCekEbI\nmmRrsi85gcwll5JXkLeT28iXyf3kETUtNVs1f7UUtXy1BWo1ak1qZ9Xuqb1RV1e3UPdRn6QuUJ+v\nXqO+X/28ep/6B4o2xYESQplCkVOWU3ZSTlJuU95QqVQbahA1iyqjLqc2Uk9TH1Df0+g0Z1oUjUub\nR6ujNdOu0F5pkDWsNVga0zTKNKo1Dmpc1nihSda00QzRZGvO1azTPKJ5U3NIi67lopWgVai1TGuX\n1gWtp9pEbRvtMG2udrn2Nu3T2o/oGN2SHkLn0BfRt9PP0vt1CDq2OlE6+TpVOnt1unQGdbV13XXT\ndEt063SP6fbqYXo2elF6Qr0Vegf0buh91DfRZ+nz9JfqN+lf0X9nMM4gyIBnUGmwz+C6wUdDhmGY\nYYHhKsMWw/tGOCMHo0lGM402G501ejFOZ5zfOM64ynEHxt0xRo0djJOMZxlvM+40HjIxNYkwEZts\nMDlt8sJUzzTINN90relx0wEzulmAmcBsrdkJs2cMXQaLIWTUMM4wBs2NzSPN5eZbzbvMRyxsLVIt\nFlrss7hvqWbpbZlruday3XLQyswqzmq21W6rO9Zka29rvvV66w7rdza2Nuk2S2xabJ7aGthG2ZbZ\n7ra9Z0e1C7SbYVdvd82eYO9tX2C/yb7bAXXwcOA71DlcdkQdPR0Fjpsce8bjx/uMF42vH3/TieLE\ncip22u3U56znHOu80LnF+dUEqwlZE1ZN6JjwhenBFDK3M++6aLtEuyx0aXP509XBleNa53rNjeoW\n7jbPrdXttbujO899s/stD7pHnMcSj3aPz55enhLPJs8BLyuvbK+NXje9dbwTvZd5n/fB+wT7zPM5\n6vPB19NX5nvA9w8/J78Cv11+TyfaTuRN3D7xkb+FP9t/q39vACMgO+CngN5A80B2YH3gwyDLIG7Q\njqAnLHtWPmsP61UwM1gSfDj4XYhvyJyQk6FYaERoZWhXmHZYalht2INwi/C88N3hgxEeEbMiTkbi\nI2MiV0XejDKJ4kQ1Rg1Ge0XPiT4TQ4lJjqmNeRjrECuJbYtD46Lj1sTdi7eOF8W3JICEqIQ1CfcT\nbRNnJP46iTApcVLdpMdJLkmzkzqS6cnTk3clD6cEp6xIuZtqlypPbU/TSJuS1pj2Lj00fXV6b8aE\njDkZlzKNMgWZrVnErLSsHVlDk8Mmr5vcP8VjSsWUG1Ntp5ZMvTDNaJpw2rHpGtPZ0w9m47PTs3dl\nf2InsOvZQzlRORtzBjkhnPWc59wg7lruAM+ft5r3JNc/d3Xu0zz/vDV5A/xAfjX/hSBEUCt4nR+Z\nvyX/XUFCwc6CUWG6cF8hqTC78IhIW1QgOlNkWlRS1CN2FFeIe2f4zlg3Y1ASI9khRaRTpa0yHXjZ\n7JTbyRfL+4oDiuuK389Mm3mwRKtEVNJZ6lC6tPRJWXjZz7Nwsziz2mebz14wu28Oa87WucjcnLnt\n8yznlc/rnx8xv2GB2oKCBb8tZC5cvfDtovRFbeUm5fPLHy2OWLy7glYhqbi5xG/Jlh9wPwh+6Frq\ntnTD0i+V3MqLVcyq6qpPyzjLLv7o8mPNj6PLc5d3rfBcsXklYaVo5Y1VgasaVmutLlv9aE3cmua1\njLWVa9+um77uQrV79Zb1auvl63trYmtaN1htWLnhUy2/9npdcN2+jcYbl258t4m76crmoM1NW0y2\nVG35+JPgp1tbI7Y219vUV28jbCve9nh72vaOn71/btxhtKNqx+edop29DUkNZxq9Ght3Ge9asRvd\nLd89sGfKnu69oXtbm5yatu7T21e1H+yX73/2S/YvNw7EHGg/6H2w6ZD1oY2H6Ycrm5Hm0ubBFn5L\nb2tma8+R6CPtbX5th391/nXnUfOjdcd0j604rna8/PjoibITQyfFJ1+cyjv1qH16+93TGaevnZl0\nputszNnz58LPne5gdZw473/+6AXfC0cuel9sueR5qbnTo/Pwbx6/He7y7Gq+7HW5tdunu61nYs/x\nK4FXTl0NvXruWtS1S9fjr/fcSL1x6+aUm723uLee3hbefn2n+M7I3fn38Pcq72ver35g/KD+X/b/\n2tfr2XusL7Sv82Hyw7uPOI+e/y79/VN/+WPq4+onZk8an7o+PToQPtD9bPKz/ufi5yMvKl5qvdz4\nyu7VoT+C/ugczBjsfy15PfrnsjeGb3a+dX/bPpQ49GC4cHjkXeV7w/cNH7w/dHxM//hkZOYn4qea\nz/af277EfLk3Wjg6KmZL2MqrAAYbmpsLwJ874fshEwB6N7xS0lRvFCUhqneVEoF/wqp3jJI8AdgK\n773p8F4asxiA2j4AbJug3WYAEqkApPgA1M3tWxsjaa6bq8oWJRheTR6Mjr6xAYC4BoDPK0dHR+pH\nRz9vg8HeA+CkSPU2AkAONxGU0Qf/QP8Gh9FPvo16HeUAAAGdaVRYdFhNTDpjb20uYWRvYmUueG1w\nAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29y\nZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8w\nMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIi\nCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4K\nICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjYyMTwvZXhpZjpQaXhlbFhEaW1lbnNpb24+\nCiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4zMjM8L2V4aWY6UGl4ZWxZRGltZW5zaW9u\nPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KTdEU\nvgAAQABJREFUeAHsvQfUbddV37tubyr3qlq9y5KsZkuyLVvCFVPsmF4CCYQSnN4YgUdeRl7yXgYv\neQkQeGRkMPJSHhDyTA3EYEMwxrjgKvciy5ZVrWJ13V7f/7f2+d0779I53/ddIZyMcNe955tzzfmf\nZa+9ztnzrF3Oqmtv+epDaW3VqlX9Jd/S4Gno4H2JhdoOHjzYcfZHql99oZdXN9rYVy9+pMZGToNW\nzOgHvD5HXbUTA5UXD1U2z0a9FAwNWvFdmD/6MhZy+dWrVx9lM2L1ra9KxRoTnby6iq88emLb6PvC\nh3H1o1/w8ur0AVUmpvpBr3yMJQ6M+xx+XhtjgKl+q6/RfrTVTmpsfUDVKcOnfo7PtyOfH3V85o37\n8fk2fRY7d6DH59uR48y8OVPff+h9LzqGo4199Mfn2/H55jyByjtHRqreOYZeXt1oYx/9czHf1upw\npdTEoM910/ex+tWuUnyMOY79lcRZic1KMDWWeGnNVRnUV7VdKY8tk+lP2swHP/LS58L/cvm5HcZc\nDn8sen0fiw1Y7SpVXn09m5xXYrMSzLw8qp18pfD2q/1KeOyei/lQ48tLnwv/y22L22HM5fDHotf3\nsdiA1a5S5dXXs8l5JTYrwczLo9rJVwpvv9qvhMfuuZgPNb689Lnwv9y2uB3GXA5/LHp9H4sNWO0q\nVV59PZucV2KzEsy8PKqdfKXw9qv9Snjsnov5UOPLS1fq/8gyykoyD4ZKsQYhEH1lK3QzF2bS+tKv\nFCN11YE5VOq3U20rrbZL8dgsygk7czHucr60ceWl5oSPmjN9X4v8VntzkWL7J236r3kgYw4gM9af\nNM5S9sfn25H3luO9krEXCz0+35aaYUfrjs+34/Pt+Ofb9Nnu5wy0Hpv4TKmvo99Bi3vY4IsGL608\nMuN2wII/1ebP2ufbMa20MVBMaJsD545Q/mwp/vClv5HiV5lYKTp56NjXDopebAcu+CMWtdutnyo7\nFl+jH22htNqvsbpy+KNeilpeP4PJMXXxxcvc9G+MY3L2LMDEdbwwN4/nKr5jpL+RElOZWKn5oDcv\ndVLt6VcZ8nmt+nK7jQ9e2bH40kY/2kJptS+mK+b8US8FIq+fOWYrFuGLl7np3xgrdvQsgcR1vHBh\nHs9VfMdIfyMlpjKxUvNBb17qpNrTrzLk81r15XYbH7yyY/GljX60hdJqX0xXzPmjXgpEXj9zzFYs\nwhcvc9O/MVbs6FkCiet44cI8nqv4jpH+RkpMZWKl5oPevNRJtadfZcjnterL7TY+eGXH4ksb/WgL\npdW+mK6Y80e9FIi8fuaYrViEL17mpn9jrNTRwqKtOtaZzg1cMcrErGQjq70x3JBF9vqvVCy0+pSX\n4lte+xp35MH4DQMeW+3kobycPKMP+yO+yuHRV9o7y/wxF2mNMZrqf5TXvvbI5Ee7GgucfW2gz6aN\ncfChbyj6ilEmBp38ovjVvmJGX6OOvr4rdsxJ/1Ls5LVHtqiBOT7fpveBY+S4zRtHZWKPhc6zNRYU\nfcUoE4NOflHcal8xo69RR1/fFTvmpH8pdvLaI1vUwByfb8fnG/PD+XJ8vh0ZC95Ljsf4HvJ9Nspr\nX3tk8qOd467cvjbVn/xawNUAHkNevKFp8KOcfi1U1OvY4MhpUn0hw54Y6qQVD2/TFqr/keJvXl74\nnmdvTGnFKBsp+Ywy+tV2HmbcXjCjDTK3AR1t9F375iFOqlxqbPTGVKfMePbRV5nzAV/otJcuFwO/\nNPHmAeWl/3lybPBvow/OJq9vqb7AmZ86KbrK06dpC9X/SN1Xk8XifaWdcaTI4aX4USedJ6s2i3yP\n24sf42iDzG1QNvqu/UU5KZcau8ZUp8x49tFXmfMBX+i0ly4XA7808fiGh/LS/zw5OPzbtLOPDU3f\nUn2hMz910moHb9MWqv+Ruq+0wWe1s6+dMaUjFj/qpPNk6KrtPMy4vWBGG2RuQ82x4mqsRTkplxq7\nxlSnzHj20VeZ8wFf6LSXLhcDvzTxdZvg9T9Pjg3+bfRrbvL6luoLO/NTJ0VXefo0baH6H6n7arKY\n/FQ7/FZ740hHLH7USefJ0FXbeZhxe8GMNsjcBnS00XftL8pJudTY+DOmOmXGs4++ypwP+EKnvXRR\njFXX3fq6o79qECFNQ3iTgrdVPTIxJoVeftSBH+2R2ebh1Un1D628eunoS6z6kc7Dg5knV6YeWv3D\n20Y5tjTlFauN/qGV16baV36er+pTXj/i7S/ly7z1MY+uBDPamQNyt7Viqr5ijFVz114d+NG++p6H\nr3rtxRlrnk8xxhY7+rM/D49unlyZemj1X/MZ5WM+FYsfmv6hlX82viaPk095/RjbPnp5ddqYt/15\ndCWY0a7GcVsrpuqRizGW+c7TIRvtkdlGX8or1T+08hUDP/oSO+Lsz8Mv5Qd/6qHVv7p58nGcKhY8\nreZS+THGSnxNHo/PN8eh0jq2VV55xxxa+YqBH32JHXH25+GX8oM/9dDqX908+UrmSM2l8mOMlfgi\nB5pYeP2Yp/15OmS0aj9Jnvl3xCw8PVodGtxknun2mRJtnqmZJCSyCKN8jDfPZpSNNmN8fY92FYeO\nJrby+h/txc6z7c6O8Q9+xhj6lhpzUU41pNgqG/mVYKqNeSg7VnvtpPrTD3SlTZtFeHwvwigf482z\nGWWjzRhf36NdxaGjia28/kd7sfNsu7Nj/IOfMYa+pcZclFMNKbbKRn4lmGpjHsqO1V47qf70A11p\n02YRHt+LMMrHePNsRtloM8bX92hXcehoYiuv/9Fe7Dzb7uwY/+BnjKFvqTEX5VRDiq2ykV8JptqY\nh7JjtddOqj/9QFfatFmEx/cijPIx3jybUTbajPH1PdpVHDqa2Mrrf7QXO8+2OzvGP/gZY+hbasxF\nOdWQYqts5FeCqTbmoWyRfT89KqhSNxBZ5enjjBfLd/Y7M9Mtx6uvfuWhvGhS8VWmzg0zJzFVjsw+\n/EobMbQznhQf8mKqX3XKwNRlUPTIaNpXqk7c6A87ZdIqq76U65M+zb60yjpg9kf/LufaX0mM6mcp\nHp/mUXlskPM6Pt+e+eHnmLpP7Dtejl0dU2T2pcho9qFjUyYVD60+leuTPs2+tMo6YPZH/8fn29Hj\n6rgxPvBSx9Fxq2O5FK89VFspdvLGqr7UKQNz/PPN0XgmZbzG/ScKueOHTNxKef3Mi4HMfSUVD1Um\nJTa8OYmpcmT24Vfa9As1nhQf8vN8qzMWmD+r823tOBh1UNQxQLY6oMrBVTlYbStfZcirjTxUHgzN\nfo2jDDq2qhtjeuDngKC/lcTQZ42lTD8jVY8NOmOaAzKbWKit8qNv+9pVG3TqobQRJ149/crT18Y8\n0PNSXjEjT/9Y2uhT23nyMQewNXd56SJf+qkxwNpXP1L9ScVLlUPd1+57MDSxo2/76jt49keZmJGq\nB47OmOaAzCYWaqv86Nu+dtUGnXoobcSJV0+/8vS1MQ/0vJRXzMjTP5Y2+tR2nnzMAWzNXV66yJd+\nagyw9tWPVH9S8VLlUPe1+x4MTezo2776Dp79USZmpOqBozOmOSCziYXaKj/6tq9dtUGnHkobceLV\n0688fW3MAz0v5RUz8vSPpY0+tZ0nH3MAW3OXly7ypZ8aA6x99SPVn1S8VDnUfe2+B0MTO/q2r76D\nZ3+UiRmpeuDojGkOyGxiobbKj77ta1dt0KmH0kacePX0K09fG/NAz0t5xYw8fdvClTYAOocyMAyS\nMh2YmAloZzL2K9W2yvQLlRdnX5+VwrvzxCOjQeXp44e+MeTVQefJxKOv7XBeEXbf0hJDvH6hlVcv\nVWcfv4x9zaHHmhMDG3S2yo+6eRhjQ2tTrg/9OicqVl2VrZTXFqpvZfowN6g8mDFH8KNtlamDyhvD\nvj4rhf/vPd/G7TA/80avDFp5t1Gqzj4+js83R+PIB6/jiIYxquPmuEuPWB+Zg+qg8uLs67NS+OPz\nzZE6Mp5IHDe1Y3/E1HHVBqpcvH78DKpYdVW2Ul5bqL6V6YNcaFB5MGOOYEbbKlMHlUdPs6/PSuGP\nz7dpnOpYjfy8/iir44rOppx+3T/OCXHqax9+tTtQY3YYvI6hvOY1P9zRidePFB0+acoWxaix5CvF\nB/1K5/EVQ0zaSCtmjKHPUd5tiF/GRJm0x8qfatt1M1nXz8mpYuTBykN9IafZr3SenG0HA3XsHY9x\n3yD3hQ2NPvt6XjM2mEUx0NnkobzMR1v9ia/0z+J8czygtNpXtkiuvo45WPrq9IecNsrtqxMvnSfX\nf92/5nB8vs3fj47zSB1fKG0cd8d1pNWPNsqqH3XHIlsKi27Mhb6xazz9SOfplElHLHL9Q/08MYfj\n8+34fGOO2OSdT/bnzSt1FQv/33u+9dOjTvCaZE2MDfLNUA/eYuqGjIMjZqUxHDzt9DdS9VBeHtDh\nadKaGzL7o7/aFwO+e8M/O35mr39k3eck6NiOS/9ImVI9T7z+R2rOPS4xZ6ubelCP3bzWc5nlVPka\nBzv7I0a/UvXYVB4984GXvipdFKPK5aX6h9L+rM43tr2OxbgvHB+peuwWtbpvqm99QHkdn2/TGDiO\njlUdP3WOuxgoTXm1UcecFqNdF8z5ox7K60/r843QNZb5V5kYqHr4RW3cdvv4pEF5HZ9vx+eb8+n4\nfFv58bQvnzhgDOC8QfRNpn4eXrtFb+R5Nsr0r+0iX+Bo1W5eTvqreH0vR6tv/WBjTpRLh1+MV/ri\nViW/ns8sT+yWazXHw35m+4G+cdUpg85r4tFpg0x8z6/4n+dDmb5GG/v6hyJbaQzx+jFXfehX/Tw8\nuqXaPBtl+td+kS9wtGo3Lyf9Vby+l6PVt36wmZeTMnHVdrk46rGhjT7wrb95eu26cfljTtVGX8jg\nfS3yoTt9iYeakzx9Zfob8fqTiheHXBnUl3p19sHDL9Xm2SjTv/aLfIGjVTtzUEZffxWv7+WofkYf\n83JSVrHGXy6O+pqjfvChn2ONIR7/1Z9x9K1/85hH9TXa2Nc/tPpTX2XVv3hx6JSNPvUhFkqT9s6c\nP/rTDogyY2i2yBe40U5/+qKvv4rX93JUP6OPeTkpq1jjLxdHfc1RP/jQz7HGEI//6s84+ta/ecyj\n+hpt7OsfWv2pV9aLNjsmQkBkfjM0AWQ2sVLl0HmylcQAI6760Z/xxVXKt7aqH/ujP3z6qjp8HBWv\nbvNs29A7ElDz4C3QbWc2+oHW1xiPPj5qzshoyGjYu30jr15qPvRprohNvaMnnzIpvsemTIreXMQe\nSwxs8TX6Oz7fpvnvmELHcUJW9y9694XjqY1UP9pKj8+3aeWL8aA5jvB1LOnXpq7KVjKn3W/aj9T4\n4iqt+wr52CeX6g/eV9VhK07/dTuqjfKKQ0+/+tRGWnVioTVnfSMTL3ZRjIoTi+xYPnvwPTZlUvTV\nP/1jiYEtvkZ/xz/fjn++MZecF1JkxzLfjroRAScaz3OoDIw4KYFtyvSnHXpl8otslEOrP/rVn3pl\nYpHTajx1IwWnDLy+unw2JvqxWOtv/aIDS+v2E3vYp74Ry1eq75nZUWSeDpmt+lGmDTqxysAoEy8O\nqj91UGVS7PWHTH/KsFEmX22R0RbhRyx9ZdLJw/RXmf5WEnu0WeQPefVHH1tl+kFOMwd4dSOtOvD6\nQq69FJlN2YhXv1ScqtOPdpXO09V41Y922qATqwyMMvHioPpTB1UmxV5/yPSnDBtl8tUWGW0RfsTS\nVyadPEx/lelvJbFHm0X+kFd/9LFVph/kNHOAVzfSqgOvL+TaS5HZlI149UvFqTr9aFfpPF2NV/1o\npw06scrAKBMvDqo/dVBlUuz1h0x/yrBRJl9tkdEW4UcsfWXSycP0V5n+VhJ7tFnkD3n1Rx9bZfpB\nTjMHeHUjrTrw+kKuvRSZTdmIV79UnKrTj3aVztPVeNWPdtqgE6sMjDLx4qD6UwdVJsVef8j0pwwb\nZfDPuKZNpQ79dsA3Inl1OJjX1Fda/VYee/0SA5126OgrByevTqw+kdeGXp9iofJgl4pxGDfYULxR\nOvXyqQx0HLdDszzNVR9SYsqb25h/1YsXg86xGGOA1ScYeDDKodhXX8oqhZ/Xqi1+jyUG/qr9yKPH\nH03f8OCWauorrdtXefzUGOi0Q0ffMQUnr06sPpEnw7ymQhq9PsVC5UEvFUPcaIOdDZ3x4c3TXKuP\nagNvbtrP0yNbaQyw+iQPePJQDh19KasUfl6rtvg9lhj4q/Yjjx5/NH3Dg1uqqa/U8VwuhmOlf8cL\n6n7UV8Uq005qPGjNRx4cts6NMYa4aq9vKTrjw+tDn9VHtYF3G7Sfp0e20hhg9Uke8OShHDr6UlYp\n/LxWbZ0TK42Bv2o/8ujJmaZveHBLNfWVOp7LxXCs9O+2QN2P+qpYZdpJjQet+ciDw9a5McYQV+31\nLUVnfHh96LP6qDbwboP28/TIVhoDrD7JA548lENHX8oqhZ/Xqq1zYtkY197y1YcwJKHaqjN5aOUr\nvvJuJDL8YkNDXpu+kImp+pGv9uD1vWbNmsP5j35qLvLVz1IxnCRgzPWot1dy0Jf56G/MQ/lRvsq4\njHj9uiO1q/tptKkx5PUDVl6d24ccnga/lF/10Mpju1QM9DZwdTuQV1t5aOW1H6l5IHdOYLdcjNHP\n1GeOMhbTGxQ/NuOsWjV9uUA+6bE5Mse1EQ9d1KrO/QEWH1U3ytDX7TPmvDj6EmNeFWus4/NtGnfH\nqo6RfB2/P/l80+sz33vGcf+BHPMSg04euqhV3fH59sxRqmNYeZB1P2hZx1AZuPreHG31A6289iM1\nD+TH59s4Okf2C2NJq+MlGhntf4bPt/4zVm5Q3UAHQJn9eQMiRjpisWGwaPDGE6edtMqNN9ooBzvq\n9DNSsfrXh/biqx7d4Tdm5kRKGmFszGH+sA8wM/Hhu0tnk+kwOIwxqqzy6g/7jbLyYsEhF498Hk75\nPFz1UfXGqFQssnnYleQy5jfaVN/zdDWfRdiVxNBP3Q723apVzFH3s/QwOkyVyUPZ8bwmmX6lUfTm\nNs3LccTYh1Z85cUQR9/KpGMOyqXqq9/KV9wYYx4O/CJczdO4+h+pWOTzsItiVD9jfqNN9T1PV30t\nwq4khn7qdhhvtBd7LFS/Um0XxagxxWgDHfVVB0+ceXbqRnztm+OziVFtqs8xF3E1T+NWu8qLRTYP\nuyhG9WFcZaNN9T1Pp53UPCp2JTFGe/r6GO3FHgs1L6m2i2LUmGK0gY76qoMnzjw7dSO+9s3x2cSo\nNtXnmIu4mqdxq13lxSKbh50XI3XFNBAq6VtgjToxNehSPPa+tLW/VIylfKqr/vj2Qd8XGHga8Wqr\nfXl9idOP32q6nMKIfxzUfXFwRk4M4sHnYK9+stPrYlrzAGXu8uZnXuIXeVyEZ8yx5TX6Ws5njaW9\n1HhgFsWo8SqPj6XmwrHmRQ5jXsvFwOZIY74wd6BrZpQvHEdeFHT1BdYi71jyjdPexnzreIqBipMu\nwlWbebw5Yk+TyusXKt+BC/6IGfGL5gJuzGGBy6PEbq/UeIAWxai5VB4f/2PNt6M2dW7H/KWA4GnH\nMo7dYGajL8d0np+qq3j9rJTq25yl2Fe/lV/KNzhzkwe/aC6gMwf45Zq+pSuJUXOvPD6Oz7ejjzd1\nPOu+cLyli3DVZh6PPQ37SuX1C5XvwAV/xIz4/17zrd+I4Ea6UVAHDlr5Bdu1UMyG0vQhsA7EcjH0\nge08HnubvNQ4o23Fg13KL7qDqzMOHMxLrO4zUuQ5xzwd6pMKizQc4ntWR1Iz5DOoOZqzFKC8mGcY\nzxG4PaOt24jcl7I5bpYUHWuMMRedG7/6q7y4Y6HjWB1bDOYrO22at0coGTiXn8k7LZju8qBW2tjm\nlWz3SjDLxXR88EWTVl5MByzzZ8xJ2zruYMQt426uWlsobbkYI06nNSd9jL7FrpTqR/xzHcNtwb+8\ndIxtDstR7HktZ78SzHKxjGHOUuzkxSznS5uKl4eqxy8vZSvxWzHajvnpT/+LcPqqeHjt5MUdCx1t\nn+sYbjM5yUvH2CvNe6XbDe7ZxjAX7c1ZWrdHjDZL0TEnbaH6BCNuKV+LdNpCaUvF6Ctt1ZHBkelg\n5Ct+OX6RD+XSRTFq8uMgjTbVl3lVmTxUXp/gR55+f6HLWLKLOoU/6pWJdlR/0uNzqtw6t/CPuSwE\n4Ga2M5fCVF3Fy0PlxY595Suh1VYeKq+P2q88+oqvusrrZ6V0tD22GNmRvUGP9cX2zMyfJRlzn+dm\nJZh5dspWYr8SjP6gFS8PlRc79pWvhFZbeai8Pmq/8ugrvuoqr5+V0tH2TyPGolzG2Itwi+QrsV8J\nZpF/5CuxXwmmxqh4eai82LGvfCW02spD5fVR+5VHX/FVV3n9rJSOtn8aMRblMsZehFskX4n9SjCL\n/CNfif1KMDVGxctD5cWOfeUrodVWHiqvj77SVosVFSO1gFHej035k+8OXVSPVfojGMVor0dnVan2\nR2gvhVzDCDiFUpT467T7mL6hYNN9R8bS5JjTpAM1s9YRIlr6U04ojuxcToO6hF1PiR4ZsAxcLkxf\ndWi6Lm+WWffRffJntqFJbYoTGVGmvxPUv+NOUC51/OwvRcVKxY595ZVWTOUrpuZaMZWv+JEfcfRH\n2WhDfx5uUS7VXt9S9gv7odoexrPPaNLOd8lRso6aQdmjvc1s6PV9HjrFnN4Rk3x6VyA/PJ8xjnLm\nhd7cdjj/udr5Qm2koOZu92Be8YPqGV2xUgFjX3mlFVP5iqn5VkzlK37kRxz9UTba0J+HW5RLtdf3\nSKut+BEzyu2P1NzwCT/Pd7UxznKyY9FXrLxxpMiXyw1MxdNfqomVih37yiutmMpXTM23Yipf8SM/\n4uiPstGG/jzcolyqvb5HWm3Fj5hRbn+k5oZP+Hm+q41xlpMdi75i5Y0jRb5cbmAqnv5STaxU7NhX\nXmnFVL5iar4VU/mKH3lw/ZEfKChWaO6okbeoMWg/6ORPdmu3qwehwxh2+EzLHXc04xxOsk8MTidS\nUeY0ZPr9Av5gJ9vJxvjY8csDAXd//iFmL77GO/vExuTgoWxjjze9sfS5OjbY8+r+Zzy+j2wLHeIa\ncdriCT9t2yH8dzG4vkUdTMlXmzGgtnmx1VVctR1zrnj9jTL6+ODF9ouDLtdGjLbamRv9eTGQ68N5\nUH1U3n0jHtvaFsnBqCPGKrYxsmm3sF+csROu5nzY/yreC/lScBDL+ECRP4cOZtxm+5LT4bTpZpMj\n750uDAYtvmnmM1mQS74kxP7gbD+gH/PQpjsof/SJSBtljJmyYnJYJg5djTnGqjj9SaudMdTNswOD\nnNefhfnmvHW769guN3Z1HCt29FF91zGvNmBs1W/l5/nVRlr9V1v0x+fb0XOaMXFMv1Kfb8fn2zM/\nB90Pzlf3CXLaojkNjpd2E3q+/4qB5/WV+nw7vNJmwiRaN1K5ibkh/QCUPxzE4PuLPzlPeODg/giy\nEavWZGOmQQBJA8LB6shkQ56NzmChpSDjoAafY2RymQ6TPT7SHJiw59BLIXhg//62es0sRlxQmK3O\nv4Oxo4hKCdj99e2Y+cdvXPSB7oVefK7JP56vBo6M+hiQS++kDw1uNQIO3onVD9jTBk0xct0bsgPU\nbtjGZPobprQeI/oeY5DTxXZR00YqVqrd2BePXr5iKq8P6Urx4hbFQE4cXmDFS7WjLw6ZTdxSuaoz\nRhwd2Z/xa+sceSAItU1spOhQ5g+zaJqX7F/2e3xmrmCdmRxIKdp7tMlbzRdXROkueU90Pj0E8CU3\n+m4H/KKmDZSXNlLs1MlXX9pXfNVXmxE72ox98dVHxVR+UcyKqbz45WKAw44XWPFS9MrFIbOJmxdb\njDpj2NevOKg6qTr7xhspel7IpSNG/2L0LV0UY9Tbn0drzBpH39ggr7jqR3nFV732lYqVih/7+p5n\ni2zE6+dY8MvFMA6xwIqXGos+mDEncaO85qoOqp/qdxF2ntx4I8V39Y9+xOCvYqp/ddB5dlUPv6hV\nW3ji0aTwyCsOmU15xauTipGKlYob++LRy1dM5fUhXSle3BhjzRnnXfyPCWCVKEADKK+eBEXQbEXO\nBFIx9RJr9ZrVbd3aNSlYDrTVa4M/cKCtXbe+7aUQWrM28gx47NcEs4bipx+vkGWC5JiXv/nHESz4\nQ/HRA8wmT+QHgjuQg+X6DRs7Dn+r165v+/bvC/5g239gf1u7fl1GEA/xsTqlHzu5+2Zg++G1b8ea\ntcknqgNkTkiSib8DyXVanVnT9mc7Vq1e2yny9Ym1dvW6xMp4xHZttjtlXueztdm0A93X6rUUiQHM\nXB8epzDuSAtWx7aONXhxUItKMdpKe77un1kw95c2UHkg8sahLz9z0Qky48D7IqZNX1B5dPL6rX39\nKoOO/LxY+gVbczCGVF3PnbxjSDHNy4YP8D1uaG2gkABfs3Zd5gC4NX0sKNjWZb4c3Le3rcmXBebY\nOuZk9AczB5kHq6OfHrBMzHyByHth8jmbL4f4MpOc8j5YxdxLc5x7J3/cBvvQw/nOhNp0P2V7qi3b\n17cxNvK1r18ptvpDVmPQR4+9Y43MfvUrrx6qjXhktaE3HryvcXuwwcdyMcDpo25TtZUXV2PVOFUO\nVt9QdcRQp98OzB/66KRVjj1ytx2eZv9A5k9t6MXI1z7+zAM7dGMMfevXbbAPNV9l2kDxqb7amg82\n8lD7UHODYqs/dDUGffPWBlmNbd8Y9qHaiEdWG3rjwfsatwcbfCwXA5w+6jZVW3lxNVaNU+Vg9Q1V\nRwx1+u3A/KGPTlrl2CN32+Fp9o/Pt/+xP98Onx5157Pz5vF9x+ZYnVooRVY+BJjETPTg2cmsNuzN\nQWvnzp1t28kntdXrDrbdu3fkoLdpwqWwWpcDYKq+tm/v3kyQadLghxWxTK84JzoxMhnTTYTeJ8qa\n+F+X4m/3jh1tbejGjRvazh2724b1KabyZAYOknv37W8bN21su/fsaQf2HWhr1q2dtiX+8OQk3hfc\n+tj1z0LDhq5LYUbxR4G378C+tnH9hhx0c7BO7P17U+Id2JvXvnYg+W/YEGwKRhxTiK5K0cqb4UAK\nTt4Da1LgpSrs2+R2sDG+ieoYI6evzDeRffQ2ZRWvTN9g9THa0dcWjDipeGn1ra260UasOPo1BnJt\nRqw+lY84/VR9xcCr88On58HOmM1T6fQRONsXs8Dad8qHWj8wTXObomt19vGePbvja1/blYIt30va\n2oPr2u7MpT1796VGX902bVg7s5vGdcpn9oE7i3O4lznW+eTW85zt//GD2G0yP7DwfnBrq1wKxuaH\ntL6Qw9sXa187cVL10jGneXbVFryxpNVGLFS9saoMnlZ18LxqDDDz/Ix283D6EWsfrHHU1fkGTrkU\nG5q5yKMXM1IwyuBp2le7STP9HfHqlEuR6+P4fJvef3VsHTdl9ueNH5iKkx+xo48Rpx/t7GOHjL66\n4/Pt6DH/s/b51h+uy8RwkjhB6mQ5PGEycSZ58JRZ6bPSwC8SoFqTYurEE09sjz/+eFu3LisPeT8c\n3L+r7du3r63N6hYrYrFIgRUFK3SxnVqqtT4pszPwHF+HJyhy/s1s18UPB889u3d2zP6D6ecU6Ykn\nnNhrvr279yR2VtIOMMlxNO1g1oam7MkzRWEOzPuT17rkvn7j+rb9qafbnn172uZNm2O7v68a7tj+\nBFvZNmYlZW0O2idv29Yuv/QSkiPLEKqyvuHtoYceanfefVeKUVYbZ9tFQFgDh6WxbW7fJGHzpwMx\nb0gPyMjG5r6ounl83Y/40E4eOuaArDb1frDr03j2tTmWGGDFj/6U49cPKHNBx/jU2NpXOo4hI9n1\nsznXdw37kTGejTN8n2uh/fsD2Pynx5xgZe26F1zfNq5b3TZkfjMXd6VoO7gqK7LB3fG529uO7du7\nT3MxT/vMbzzSOh9WDLK6nR0zy63y4nu+bkOxBSsGqk/kNmwZo+Pz7cg8ZGyeq/mGL/cPPM19cngu\nDPu2ysVKqy/3GbTuW/nqZ4o8/UWuHzFL2VTMUrZ12/CnzzH28fk2fd64Dxif4/Nt+ixkLI7Pt9nx\niMFIq/Okjs3hom2CLfc3A8y5QV455ExvzgTKh8euXTuzurSqnXbqqe3lN7+0PfnEE23L5o0p2FLY\nBM4K2COPPtIe/fKX25fzinHKt+lD5GBWsjh52a9/C39gVWw4PckBDQzYHGB27ni6bdt2arvqysvb\nCSmu1q1f255+ent78EsPtUcfeSQrHRvajt27s1q2J6dRN+S0Vkq1xJ5O5sUPmxdf63OwZfVkQzD7\ndu1qB3NK84XXX9tOPvnEtjerdIHkVGsKv1js2bOvfeITn0jxubddc/WV7Yf/7t9up596Svqc6o3v\nFJMbUtD9l7f8Xvvxf/Ev2s7E37RpS3LP6lwO6L4pp9BH3rT03SnSipn3wYf+K9nIq+ZmbGRficYY\nzDswjfHNUTl28PalK8m5Xw/JulnsD+YcOv/WhGcF9uyzzmx/7a+9qV171eV9frLCejBfCijY9mc1\n94d+6K+02/OFhZyJaR59XzJkwR1pS4/hvJznyY74O5ozvvNP26NyisnYP9rLV7ZHjuZdI5t7lf1p\n8IzFV3q+sR3ztm/RfqnjUzHIRz8Vu9x4jbaL8lrkx1jH59uiEXqm/Ph8O3pM5s3BoxFHen+W59sx\nFW2HOKXDh0P+9cWkfMjxL8tW/XQjB7cTTzih/eiP/kjbnNWrjTldRIC9uS+B06JPPPZE+/wX727/\n98/8TPv07Z9rGzZumRVu05PnKdAoCLkuiNNNWdhA0q/72b17bzvvnLPbD/7gD7SvetlLs+q1dVot\ny6mp22//fPvZn/259rFPfCwF0+acssppzBSLFII5+vZjJX56mdgLzF3thBSU+/cfaM8784z2fd/3\nve1rXvuqFJab+moKxefe3E2Qc8ft7e95b7v7rs+3xx55NCt4q9q2rSdkpSUH6uj6adMUb+vicy3X\nssVmSwo2toOVPMbJD9aEP+qAhJy2iK5kAouRGgsq34OUOPYXUfPBJy/74mssZPbVP5dU3+ZRc1E2\n0hpfHSNN4Z9kq/rwGInrNBPbfqZ1X2U9EGbf3j1tV07Nn7h5cztpQ65zy3VpzPtD2fdx3Hbt53T/\nNF7mOe3iWQHJqm//Tw5THkFnnk/zgMSIy5cTqDlAafhUBu/BsSvn/BnxQo7kdvT8M464eVSMdIyh\nHFvjjLx+1WtTfYmBVn3tV8xzxRsLSj7maNyao5gau8rEVr0ycdCxKVtEa07y0uprXgx9iqP/P8t8\nc5sWUcfIMaDvGFWbqkduv2KeK17f5mGOxq05iqmxq0xs1SsTBx2bskW05iQvrb7mxdCnOPrH59uR\nz3vGxTFyTO07ZvNoboacPpw0mgdShkNWkLwjlKKk7wgOIrMfbf/iF+9q7/jDd7StKdj2pqDierd1\nuRBuTXI987Rt7ZUvfmEvkDjU9VfmEXMJv4f9owmei/67MnFSE7Wvfs2r2je94WvbySeeMN0EEN/r\ns9rxkhe+oH3Ht3xjO/mEk7LkkYNe7DhV2/PjejZ84y/u2M5NWfVblYPz9iefaF91663tm7/h9e2k\nLbn2LqspSTiraFxQnhsbchC+/dOfSrH5WE555vq1HGIPpNBjBW9dLmpaFUzOtHafByOnMOBU2r5s\ndz8WJx7NsZ22bzogwCOvtOrVqa9+9KfMvhQ5jb4v/dhfRM1Be6gybeirVwatsspXTOXFdMP8Uad8\nXtwqMw+o8eEpaJT1PvnOcg7wGXGM232waXmxOX3VJfuc1deNucmFU+n79u7u9qtTsHF9YyZLvsCw\n71kZPuJbn+ZBv18DiuNZDmwnczRWsN2vVPt5VEyl8hVfYytXBvVVder1N1KxIxWnvPb1WXXGBkcT\no9w+Nsq0h9pGvmJGXptFdIxj31ygNPvy43zTroPzxzxqH165VBm0xtKfOPtQZFJ4Dori5tEaA739\neVhlYiqVFwOteShXBvVVder1N1Kx0KqTV1771Ua9sbuT/DGucvvglVU/2ulvqXjaabOIjnHsmwuU\nZl/++HybPmcdF8cbqgzqS33tM5bIRyp21IlTXvvVRr2xeoD8oY9Ouf0qq36001+Nl7NARw5yAhfS\nbGM/wGQuYXdgqq0QtkMpdPpdoTH+4Ps+2K/r4hQTq2/JlgWvfrqQ04lXXnlVO/OM0/vBkFg5xPbi\nDp4VPCYlqxZgp2vY9mSFa2u7+aUvzcodOyw3GcTnhqx4cRp1z76D7eqrr27nnH12vxGCgyunP5Nk\nPJJcbPoKHv3Wr7HjdNe2rSe25192cduQopLr7jZvzM0DrPLltSlF38OPP9Fu/+zt3QfX5HFdW+q/\nvgKHT04Lkztj0VtCTY8gyfoiwDR06t0p9N1ZyuqH7Ty8virVh3j9gvGNLRVrH2zl6WsPdoyjvRjx\nlVaM9vNiKBPTg+WPvqq8+oT3ZR7aiqMPb+t4Otm+3hZst7EzCjNYxidYinSu2WT/MCe5IQZffQ6G\nZS9PNtM8o2eziNN3X6XGNq+ef4C8n2pMsSuhxAFn08bxdUyUi4X2cZmNk/jqB77i7VdfldeHtOLr\nt+sae9xPo07/4uxDbSNv/IpVps0i6phoax+KzDywVyavT23GvPQJTp0yadUZS3/2wVaZfX0sR2uM\n5bCjvtrKg3F8yWu0UTbmjL0ybPQ30upvka4b50/NRZ7caMbqnVkfjHKoseBp9qG2kXfbK1aZNouo\nsbW1by7mgb0yeX1qM+alT3DqlEmrzlj6sw+2yuzrYzlaYyyHHfXVVh6M40teo42yMWfslWGjv5FW\nf4t03Th/ai7yX4n51os2E3WjTGqkLHzxonUemn8czEJyJ+eGXnx98Yt3tjvvf6htyQ0B/WCXgon3\nDhtEUXbd1Ve1s593Voq4vW39mnXBoA8glNUI/HHAZGz7TQzpn3POWe2Kyy4JJI9YyEE0JV3u6Mxd\nnOvX5O7RVe15Z5zazjn3rH5dXV9Z41AYLPHx27eNJFMI9lBZIdm8eVM77/xzgsyF5fFzkNU1VtAS\nb21A9997f/vCF+5MLsSbtpGbKBivyQ+nsqY3eD94R4yOh7IS1/FcivbBnP3pfgtvf6T4o1W/xOux\no0MuD51nr2wWrtvM45VVqn/fPE7UGkuMcdRVKgYqj16+xqx89alcO/vVB3ycTqrZeIA3fxT6ZD7T\nOmUcw4PDB8U8XyS6PnRaHU6PLwSZj5PpLE7EU1jjztTIMZlRLPvc6vhpv7ktUrdFqjwmR/KebR86\nX+gXNX3o031oHzswlaKjQcVJjSnVzv48qj+xlcLXNsZRh190o35RvBpTH8tRfNGk8tWX8dHBV13N\nperkpdpCbcbUxyinL0Yd1PjzfItHp1958ciVyeO32trXB/2xiUc+8vYXUeLTzKny2PjqoPyhL1af\n9sEoq3yVIbdhh86Xcvr6VLeIitN2pRR/NKk8/mzmR3+MU/OpOnmptvqEGlMf6pRXjDooPqWVR6Yt\ncv3KQytf9aOtfTH0x2Ys5CNvfxElD5o5VR4bXx2UP/TF6tM+GGWVrzLkNuzQ+VJOX5/qpq8hM4RC\nDUbKVIpbtorjVAKERoZTViP25LofTks++NCD7bO33z498QIgB7gUFWuyosXjEU7Ysjk3E1zRH9dB\n8XWAZ17l4BV198mpSR5iS+HEisb63Kl33TVXt63bTo793hRhKbyyMdSKxOcu0I0b17RbbslKXFbD\niNdXvLIqMj0TblYEUjjGgLtH9+ZO0VNPO7VddtllyTP/cqNB35Zcl3aIU6Dx+9lcd3f//Q+kiOPR\nIXEbBAWeA9wHk+1L648tgZ1tA2PZc8w2dD7UIsFxxp5W+/C07jt6+uK6In/EaAf1oKsMG3ht4Wn2\nobwsLsVWfTeY/al6fc2TaSOGfuWrf+2hFaNcX+Yqxr4UHLx66DP42faLBV/5w74i7iporsPkxXzq\nMw2/E5fuNA8Ocfq9v4g55fCM2D0Qf6bW51nYyVf2EZOGfvyb1zwfyuq2dsOZrXpkFaNPaH2B5zXK\n9DlS8VL08IuaccVUqq7GltevfePZh9rg1StbRJfDqTcOfZp9qTL12iGXVydWW/UjVvxIsUOmvXb0\nR9/2xUiNqW/kNP3KS8VJzQG9DZ16ZBWzVG7agNFGvL6lxpAil9e+2o68mGqDD+VS/dqveGVgaPTV\nT5LFf5fDqTcGfZp9qTL12iGXVydWW/UjVvxIsUOmvXb0R9/2xUiNqW/kNP3KS8VJzQG9DZ16ZBWz\nVG7agNFGvL6lxpAil9e+2o68mGqDD+VS/dqveGVgaPTVT5LUMIIqVSn1I3LC8Oja1E19x84GMgAc\n792Tla/cgHAwhc+dd3w+hdF0MwCFTn80SFas+uM4ksj1116dla48Uy13W/Kw0pxPjY84PpRyKYVa\nyq6pMAyW4ufFN97QCzluEqDo4izVunXrsrKXYotiMKdDb7315e2MM0/NnX57D6/GcTNDL9RyYJTP\nlMw1eKvb1ddc1U476YT4oERjcLikbXqe3K49+9uHP/yRFDXJfu2G5J+DdA6z/fl0AXJdXx9Mlx77\nATsTI5RfY8AZ+sM0EergyzOmNPu9M/tT9wmojp3hE2nqF4OKJzQtWRzGqSdW5SfklAPF9/QIl8kB\nWBp4c9R2kk06iz9k4sVVnbFHWjHa6afGla8UnEUrPL5o+uGmkHS6DMqY1PiTryP7YFrlnfZ1X1HO\nEBym+M2LUdHP9MDlmSTjVXPrcbCJGsTU+t4MO8spmi6ZjTF5zxsPZeaOL7BS9cjAOA6OzZgXfVr1\npy9yq76V1xjoF73EVx/Yaj8vlyrDzr4x7ENt8OpXSrUdqfbGoS9fKXaOKbzjrD20tmorBr28Y6Js\npOKQ26pPeXTmNea0KAa2+FdvrCoTg3/k0moDxpjmYF6VduPZnxpLnyOtMdRhN88nMnX6VqYcH9VW\nXv2IV48dreqNsRydLJ/5Vztj1ByUQWmOKbzjrD20tmorBr28Y6pspOKQ26pPeXTmNea0KAa2+Fdv\nrCoTg3/k0moDxpjmYF6VduPZnxpLnyOtMdRhN88nMnX6VqYcH9VWXv2IV48dreqNMbdoQ2nrztNH\nxLU44Xphkl4vhqiecMwNBzzwNuKsnO1vn/rUp3K33S5GfVYEZHWLh9GmcVfmRRdd1E7duq3tyzPX\nNqT4WkuhkxW27IkUa/CcXjzQL/w+63lntsuveD6u+4N1+/Pd6MRPLzKyusaNAtvyyI4X3fjC/isJ\n/DIBOXHAxk9/zlv6q1IU7tm7q206YVN7yUtf0vOLo+6HU59cQ8frnrvuaR/60Efyqw6bUuCtT+ys\nBbK6MjteeFqUIo3GgXu6u7b3kn5W7zhIkQPj17Pv0MN/GDcmXB/b/KE/ryH3IvZePICdJcIkmyYa\n2zm9GSYf04TqOUUwZTlpwBNpjNfjEGvOi7GmOTf6NiVe/s/8HHkjIqz6I/yURe1P/MwvzoB02BSP\nXMDQFuVbdc/0fSQXcN1XXOvT/ZIRRZ3QUyxoX2XrFH6SM3IT10+ITzbRTfbkWnwzDt3pYS0B8mJ/\ngsUX+5L5E254dWfAJ6cwXTT1Z66QgZnh9JHuZBfqGI77tfsBWJofWrE6Ejd6/S5Jux/nAUbTAQYb\nc+j8NPsO70/zIqYNGQ38YRrW+F040ys7FjraH44x80nfHOBpR/I8ojMmenkpMlrtz+NHmTZQYqJf\n1MzJXKXa6FuKn0U6MYuotvP06qDmMOaGbmxjLuhHmfHUjXp9VrmxldkHW3ltkdHEVyqvnv6xvrrz\nmX/9jdQcxNY81Rl3Xi7azcMsws/LQZn+KjUn85FqY2ypcaXKV0KXslEHNYcxN3RjIy7N+PJS5Ytw\nysVLja3ePvrK06cho4mvVF49/frKosLRB2mAOpSfLpyeAvDzT/0IQdAeeHJI8UQx1Vc1ouIu0gcf\nfqgXQLty2nTCxjQFA8XMWWed1c4799wUYWtylynPRuN0aHLBfQoeDmLrKbxSAF5//XXtzDz/jYMd\nAC4GZ0Wsb0gEXPfG6giPZnj1q17Vr63jlCmrcVyfVk9buYpy4uYt7cYbbmi5F7Bv0PQ7qTntynZk\nYeZDH/5weyx3jW7Ig3X7s+YoTonfD7Qh8Ilt8dQP6skhI9BX2qa4U1HWC8s8dJcCjZdDR/6MNauH\nUPt1/BnTbGnCHomHb+KB49chOCW8OqdwibM21xH2QpDtip78GMteFJAbvvg3i9fHMHr+Zat6DmF6\nO3IAzzcqtrXnMBuvbAc3Z3D6Gbl3/2I45RoGfC92JttuP9tmx4LrF4GxX2D6b8b2bZtyIT/yoh2J\nL89+mHTSCTPpJ55xm/pgkB3GMpkyoftNK5lzzM2OTvHebbLPEPTRia32Xdn7xMdfXgFC61zr8UvM\njsm29dOuWR3uWOwImvl1ZEzCk6e59nFJrI6bbQMRZ76hCd5zD/TwNrqtNe9py/oWHB0v+5F2eMzi\nz32iPb7FgDuMncQ9B8ag79NZTcs28Ty7aT9Hh91sn+uX3Hv+fb/DTttY8+87YrZtU9wjuYw5mds8\nKtaUxdgn9hi/YtDRpOhsFbdIDladeOmoq34rD94coeNLrP70Dx2bukXYqte2+hn1jsuYEzhkI77G\n1b9UrFTsqK994yqrn2E1N32NeY32NbY2UnVLUbFQmtipN82jOi6VBzMvZ22rL3hblSNTp1w66qp9\n5cGbF3R8idWf/qFjU7cIW/XaVj+jvo5PzQsc/RFf4+pfKlYqdtTXvjGVfSXm2/RJnYhufD/gZ2Nt\nh5OKKB+3+Tc7SHNBfoobfuVgdQ5AFFr83igFCEePRx9/rH3yM5+d/AbHylO/AzPnKMGesGVju+ba\nK/Pw2p39Q5xiYl9WwQ6l8DiUJ8zz66NcS8ZpzJtSXG0IPXhwT6QUHlNxtSo4Hm5KQK5/W5MP/csu\nOj+v87KatjMFV25yyM5blZUyfqmA56qtySnaPTt2tpfcdFM7Kc+U49EfaxInqSfe+u5rV35V4eMf\n/0Tf4RxsDuX06WoquZwq7QfKoLL1HTvFh03BwY/XB5es+lhQBBxM8bgzDwDevXNH25dfcdifVb7p\nlyFSpOZgxoXt/PwX7hLp8BsiG95/83J1fvqL327dQw65tm9fViP359VX+rL3eCbdrpxi3rNnV9u9\na0f/pYh9iZHR6g//7b+hSpxs+6H45Oe2DoTnFyPWr9+Ugjk3X1Ds8XuxB/PzTKt55Mnu/jiTfk0h\nm5kx2M9qZfbKuuy/NayA7tretj/xaH5W7On+qBSuWWQsU25knFit3JztTLzsH05nUwl7neLhMcnP\nkO3ekZ8cy2M0Du7LuORKQn5pgMe7sDLKXOQmlZjGB/so4xp/FIjOS95gNClyeOcz48R+7z8vlu2Y\nfnJttrQexzxjjznFjcirM8Z7sj17duYVuvvpp9vBXIPJ9ZasBq9nbuYxH0T0jU34KQbDlC8b2YZD\nzOPZhxt3GO9ltTU0UyzYrBbnFxVyJWa2LyTbdyA++/7LT8Dtyi8q7Andn7iMAUV5Xy1N7P6eCN2b\nebY2N/0wt/lNXvYtc4QYjA/PH1yX3/3lus6eZ+SMI41LBPZlzuzNQ6X353KGfZk7O/JrIPTZP1ym\nsIF9zPV8GQ+u75x+8o25SWHJl5ppnu5nLPLe5z3CvmI+86sR+3J9KL9YwqULvL95KDY3DfFYHB44\nzZwgb+b23siYl2xD9nhGms+Y6fNo2pfp9GIuufF/Nq5sC40+seU7M+cPONrCz7fonEPOnyn+NJeM\nWzH4EyMPXUkMcMfSak7GlKKrL/wuNSZ1G8btqjnVmKON8bTHrsrkpeYq3j56ZfD66cyCP+K0E1Z9\nKmMcxFeqrTb2KwYfyvVHf6mxrTj4lcwFYhqn8sjm5aMM/UpjdOAx/JmXh/mgqy9zgJpTDWW+1aey\nEYe9cdBpA5U3RpXJS/WhP/vVB7wxOrPgjzh9Cas+lX0l5tvhh+vWBKgWa6I9oXzQcvDmEzWfodk7\ns1WJsHxoTxVmVtGiY3Xq6Rx8/uidf5Tnqn196o+ESaHGKUw+XzlIrc+B/NpcU7Z5S+44ze85rkkB\nwQGHA9Ka3FG6fu2h7uOyyy5p11zzgv6wW1bY+IH4tfmwJ052b455+U1SipkcFNblYXBnnn5qu/KK\ny9ptH/9Yz/UA18i1db2IoqgjjxOyyvayl97c1lMQZMfx7Z+ihG3IUah96YEH+l2jRDgQPP4P7Mmb\nNfjVyZHN74MAM+335HEg1+jxKwyH2mP5NYitW0/pkJNOOqldcP75bUcOXI/kVxv4XVR+EWJdfo1h\nTX7/NPCMwQlte8ZrQw7IXPO3Y+eutn5TCp8cmCnImFsc6Nne1SmueEbYrp3b26Zsx0knbmmnnXJK\nfonilF60Pf7oo7Hf0R5L0Rxw8lsT3Ib2xBNPtw15Ph0FL+PHs+b251H+W+JjXwrcdcljdQ7Uq1J4\nrE+slLe5RjG/qZnY/Nbsltxpu/2Jx5PHmnbili3t2ptf3LbkhpK7vnhPe+CBh9oTTz6d0+Obcz0h\nQ5LCeDfFTQqAPEZlbwpKnmnGGDM3tmVMTj31tHbSyScn9r787NnD7antj7cnn3oqBcv2jE2emUeB\nlDKFVVh+BYNrH/G8Nr8Pi4yHGdd5yi6hMY9546jrb9LYrcuc2svdyv0O5/z2bFYJKZ4PZD7tzyn6\nVSk4tuRZfc+/7MJ24YUX9dWhu+66u93/wMPtiaenYnjPhoxlfnOWwr2fomc+9WsdKRpSUmWsevnA\nh2m/HyYjEBm/gctVmnyh4UflufGGAmlXCt/1Of1+YuKenN/rPeO0M2K/KvsqY5GC8dFHH09Rnmcd\nYpt9ti7zhX3C6ua+vE/69ZcpJmn9UgD2YV4bN27qj77ZvDEPkM649xWzJEbxRP6n5+fY1mV7Tzvt\ntH7t51Mp2h597MnM0RRau3e1XXvzsOzgNq7PfMn2HaTQyj/2Hb8tzBzNGynv6+m3hPl1EN4UO3I5\nBAUsP2V32ilbc7nCydn/G9tTTz6V1/bY7k4OO1MkPtlWJ0e+mJArNzCx33phnv3RH9mT/rQvM4D9\nA4eJOO1fP6vYbvc3tMrR1aaO+eDcQI+chpyXrX8WDPJqJw77ehDXT8UuiqGPldCaPzHsV9uav5il\ncGDIE4zbMPpzHNRrY189cl/I1OsP3ZiLfX1oA3apph57fYCXNxayytO3gTWefqqs4vSLTIw25iJe\nqg16tk8cchp9ZfQdgyqvdmBoxpcXX7GLYnQHK/xT8yeG/Wpe8xezFA4MeYJx7Ed/joN6beyrR+4L\nmXr9oRtzsa8PbcAu1dRjrw/w8sZCVnn6NrDG00+VVZx+kYnRBv98+vZWE5NH0ZNggDLX+unP6bMT\nRX/xIe2gsSLA88/4EXcOUB+57bbcffmldsG5Zyd4EkgB5PhAL7zwwnbxxRe1z33hnqzS5ACab/l8\ncFOecADclzs8b7755nbOWc/rB3dOq3BY5FQmv6xAEXDFxRfzWd79ctp1Yw74V1xxRX5DdEtfceCA\nxQbTKC73ZXXhnPwc0QXnX0B9lgNoDjg5CHJTA6te5P3ZO+5o9z/4QH6TNActCjWOhIATPrutx+vn\nquzHPwXA9qyorct1fTenoHnZS1/eXvFVtya/C/qdqBzMObZ9Ig/r/Z3feVt7z3vf2x7JL0RQfO7K\nChkFw+7t+SmwFBOb89T9J3OApaDatCkrKlmpYdP3BMePkvNokxtfdEN71Ve9qr3g6he0rSnK9sR3\nX8BJnC898GB7Zwrm93/gA+2OL3yh3XPvfe3kk7b2Qii1VDY6B+UUXzuS78kn5ae7srL4nd/zXe1V\nr7ylH0D3703lFX8f/8Sn2m//7u+2Bx5+sO3fdbBdcN657Wu/5nXtu7/zO/tvtPKolfXZsPfd9qn2\nT/73/6Pdfc99OUjnFyFWpWBL8bcxMXbtplBY1y644JJ23S0YWocAAEAASURBVHXX5GHGr0juN7bU\npClGpsZe/cLd97b3vf8D7QMf+FD7xKc+2YtAVuhOToH39PYnk++G7AdWeVixTUGX8a7zdOaqy46e\n9Giyiptt5tQ3dw2z2kpB81D28WnbTskjaK5sr3nVq9prX/ua9rzTt2VeZUokqQxBe+KpHe33/tvb\n22/+1lvyU2kPpTDZPk22xJ9mFX+ZY5DQ+GYlENlEIsv+I1d8UiyzpnTRBRfmp9Ouay998c3txhtf\nlAdDUyBxvSeWrKAeard97GPtjzMmH7rtQ+3u++5rTz2VIm/txl6gUfytz1zfw2UA8c11ouTA+4df\nb2DllNVBVjH5onL6qdvaC195a3+Y9DXXXtfOet4p/c1P2rSns+L5/vd/sL397X/QPvO5T/cvFnvy\nBWPVaord/fm1kC0punb09wk37vT3TihF4Pbs41Oyn266/up20003tpff8rJ2Sd6XXO6A/9SvfV/f\ne88D/Yvcu97zvnbnvfdmNf7xqagMaFrNy4izHcEf3rd8WeRFy+dLRnXiZ3/B+f4+bHMUYuqoq3MD\nDfKq07TKq0xeCk6f1Y88uOpLrPYrpcZZCl99w9NqHtqKkyKv/Igz9khHG/q0itPXPFpxlR/9jrbq\nsalNH1VmTlUGP88WecWDmYcTM+qwt6kz1yqvunnyKpOXYqvP6kceHLx9sdqvlGLvdi6yqb7FGrfa\niJOiq7xYZcYeqfqKh684dfNoxVV+9DvaqsemNn1UGdh5bZ4tuIoHMw8nRt3hos1AKAQdlsEk36kA\n6mwEfIDCT3hKGVZwKHJ27trd77jclVWUd7zjne37v/e7Ugzw6wU8OoOVtBy2snGn55v+tddem6Lt\n7iSbD/Ys0/CD7RRre1JInHLy1nb9ddf1VYm1sfFATR5//L739gyuvOSSfPDnNFcOUBSFrABeeeXz\n+89T3f/QI20tqz+RsTrAStvOHOTOOfe8dlZ+vmp/DgZUv8TmgNlPLWVp5LbbPpJVq9yscNLJOciy\napPTRBSnjE1ebDcHEEaAXBgzTv9cdeVl7Y3f+M3tNa/JwT8PA86VfG1XVkbQi3tRiqwb87rt01/f\nfuEXf6n9QYorioh9+ZmukxPv8SefzIrGhrY5B2TuxiXKphSCO7c/nRXES9sbvu7r2itecWu76Jxz\noklhmzFj1SX1UyqCoDMW5+bBxd/7nd+eX3r4c+1Tn/50e+vbfre95bd/p+1Mjus3n9hX2FgB25yC\n8EAO8JuyinZNnp33shde36jpKDk40L7yFS9LAXh/e/Bt97RzLjy3/eiP/P12w/UvymClYFpNkZ1C\nMuiLL7ygnZTcW7s3Kzj5zdVe0OzPquLOdsklF7Zv/9Zvbi9/+cva+Wee1XPeG/udeziVToHDKcv9\n7eILzmuX5/XnXv+GFIufbL/z1t9t/+33fz87JSudKdLYPFYzeU8wP5lD4zwNpLc6hxkjxn5/xmg9\nv2qQaoNVLgq2Ky6/vP3F7/7z7bWvflXbetKmrFDu6ePJHNqTCZGh7CuM3/Utb+z5/+E73pE5e2ri\nTl8+2P/MyUMp6jMiKUw4Dcs6Y+ZETzTTJKuX5MoXkUNZRbri0ovb6776tSnoX94uyQosY03bT0Wf\n+cu6MKZ8T3jZjdf310OPfEt77/ve1/7rW9/WPvLxT/fT6axS7s/d2dOp9jV9ZYz3DL/YsD5zfeOG\nLVnZ/XK78Lyz2yte9pL2+qx4X5PH5rBfY9avFd3L/M/YcB3hpqwivubVt7TX5fXZL9zV3pJYv/2W\n326PZ4WW5xluT8G2kZ+IS4wN+eLAdaSsQD+W1eNX3npLe+PXf33my61t6wmbM3aMRtZ0MzeZv4wj\nhewl55/VLv2L39G+9Vu/qX3gox9vv/Vff7u96z3v7vN8X1b31uYu7UyK2X7NHmdf8z7rbzjGhPcf\no3V0q/v7aM0ze0th0dkWzS31lVY75CuNUX08F3zNYyU5VEy1NZd5emXi6zghG/X6WkTFo9endCmb\npXSjz5rjIjvly8UGV/1rt4guha2x/iQ5rjTGohyfrbzmv5IcKqbaGn+eXpn4Ok7IRr2+FlHx6PUp\nXcpmKd3os+a4yE75crHBVf/0n1G0IRxb/yjLH2g+QzsDoXGAWdVXF7LKlg/pfkE6hVC+ZXMq8z1/\n/L727d/2zVl94zQOBzmsppsHNuaU6DVXX9P+v1/+jawo5VCXZ63tzemXNXnQ7b4Azzn33Hb55ZdN\nxVL6HGAwfyq/Afmud72rnZRTkLtZuSBWKggOSKx/XHrxJe2iC89v92SVb23LaZgcNThwUmxwaumK\ny5/ffwqLlb31WZGg1uOgviE/Ev/wY4+n0PlMUswpKA6Ks6Nqv5YtB+vZBvRt6NnkoL0/1/DcdNMN\n7aoUY5dnlY8fmX+KU5xZcaTYxEW/QSN0Tx4lwoHsmiuubP9LiiAKtLe+9ff66dJHc+MDp8AoJPdn\nlYNijUJ0d1Z3Xv+1r2t/+fv/Urswhc2BFMPo92ebKZQ51nA9GTuHlU9W5PZGuCW/pfriF72wXX3l\nFe2KSy5t/+pnf7btSdG8MatM3LW7Ltf68YDjnTlNxwrSvozPPlZRstEHUkRszgrZWXlo8fNO29p+\n4p/9n+3iiy7qpya5BpB9SOHNL15w2pFCmz7XOK3NKtv2J55q3/kd396++7v+fFbozonfXHuXgoJr\ntDj4Mq4UMswZimmKzR25vm5z9v0rX3pDu+aqK9vll17W/tXP/HTbmNOxFKfcaJGR7Nfh9f1JLzGX\nepM44TdmnNlWivsdOQ37gvhn/K/PqXeu3dqR6+s25nE1XJPFaWOKjnXMmYztEzv35mHQp7Vv+sZv\nyGl9To1mHjDmic2G9BsGMge5vhE+NUovuro684Nr4R7OTTnf8PrXt7/1N/5absJ5Xl+F2kUhlAKL\nlWqu96T0Yx72fUoeyXdP9tOpuSv6m97w+nZrVp3/45t/pf3Kr/9m255TjBRR/Iwb13ZSsPXLFLJ0\nuzFz6KEU23wh+uG/+aasgF3bV1mZN7mUsb+PKNb7l6zkN02gzDniZZwvueiC9nf+6puyCviS9uM/\n/s+zynd/23rKtpy+3t6vfyRf7hR//PFH8tNyr2l/52/9jXZlriXlET9P5/Qn15LyPjuQLztgWf3b\nvy/XL+byiLWZcxT2t9x8Y7vmBVfmC8W17d/9+/+QFdld2a+7gj3yOdELNMazj3Xf2X180/2Ktjq/\n5KVf0UQSrMat/Fc6j0XxyGmpvJbTL/L7XMjNa6TPhe/n0of54VNe+lzGWYmvGrfyK7H9SmDIaam8\nltP/aeZoXiP9k8bMosO00VIc1iDKO0XX/x0Jy0GR04rUDBzADoRZw/VGHAyCvff++9pdOT3HwYVT\nWxQkHHw9mF6SYuKcs87OQXNHTl/xcRxHOYBz6u2KKy6frWzk23r8cd0OB4A7Pn9nf4baPTnF8sCD\nD/dTQ6zwcT0ZxRHFynU5YG0KZcWCU55cm7Y/ReTWrAhdfOGF/dlw6A7mIJeU+gEvm9I+9vFP5jqm\nB5ILv12aH7vPqaFsWP9PUXTkm35fZ+nbw7VXF5x/XoqjF+Qgy+oY16CtbRuyzVy7x2Gc1aJ+p2WK\nJg7i3Jhw1taT2g98319KPuf3mxg25EBIUbGbx6DktBPFBBf6v/LWm9uP/fDfaZfnYHogq2VcKM6K\nJQVhyp/kkDg5UHMKcX2uQ+JgTvHXxyRFAKjv+PZvTQH1Xf16qn27dvZ4B1Ns8qy8jYmFL8aJou9Q\nDq7cEJAg7ZorL29/92/99X6Dx+5coM9vbHLai4GgSGB/PfJYrqNL0YcPnpG3Y8dT7Zu/6RvbX8+B\n//zzz83BeHdb01csuW6QFddcy5Tt5BQtPx1GfEpb/h1MwbRz9/7cJLI5+X5b+4t/4buna84yhhTJ\nB7K/uC7Neck88qUMauuFNVkmLoXRjlw7eOmll7Yf+fs/nGImBVuKFApGTuGyvTymphclyYkvGuw/\n8uSGDYp6ik4mA8Uq299jJy+GgpsOmBW8D3gxOvzdmbn9fd/zPe0f/cMfa+efe3a2kYvyp+vqyLV/\n0Qmea8Q2ZN+tydhw2p4vQ5tSYO9PQXxg/56sZm5pP/QD39e+73v/QuZ2rktMkcV8Z+WPQnJ19t3m\nFKdPPvFYTkFf3/7hj/1Iu+VlL+1zmVPs/S7Zvt+4fm9Ln2Mbc53axozn6uyTBMwNDvkSkK3YkdXy\nm264vv3oj/79virNSjA3kPAbrJzuZW6+4Mrnt3/wYz/aLskXCa5n47rSbHmsccWvjGxsWzaekH0d\nmhVeHp3DneR8+dqzKyt2eY+88hW3dMplC2zr4cbgpfU9yZsuDJ897CP3c9fP9rWy5ehSNlUHb3N+\n0Yev1HjIRr7K1C1FxY+02oy52K8Ue1u1hR/bqF/Ur3b6qVj09GseIw9Gmbba6ZO+TcxKKDbiKl9l\nxKZVKt8Vsz/Y0LSVKpMqX4qKlVasMmhtjhEy85Nqj27kq0zdUlT8SKvNmIv9SrG3VVv4sY36Rf1q\np5+KRU+/5jHyYJRpq50+6dvErIRiI67yVUZsWqXyXTH7gw1NW6kyqfJcCjM5RiG/iIIJqBPC9FAl\nYF8JiZo7wtCuzQGEGxI+/ZlPtyuff2k/bbY2eA5kYLmz8byzz26X5hTnw19+JHfsZXUqNnvyrXxL\nChhWxDhI8MPzFAoUPftj/6HbPpxv5nvaQw9/uX3+zi+2C3KNWj9a8JU8jdWKl9380var/+W32qM5\nvcOddVy4viNFx5k5JXvxBRdmMzjQZgtyoTWNbeHU1gc/dFtOCT3VNm4+gUouimh6cZIidNrgju+d\n6Pj1BtwQc1VicOBh+7iG6olcgM2pRwoUrvUjuw25q4+C8OD6FAixuTRFzRuzivJvfu7ftv050FGY\ncnqLR5bs3vV0uzWnFX/kh/9enml3coqZ3VmJyqpKDnycFlu7fnN7OiuT/NTW5z93Rzshd8OenUep\nXHbZpf0aOX49gtT5eTFWwf7yD3x/u++hB9rvvu3tfVVpVw6c6w6szfjygGIKjuze/N2YHCn4snty\n3dW1ubCc6wPzqxVxtp67EhO73yiQbTyYO0Q5Pct+pujcm4LzRde9sP31N70pq5n5BYvE2JhikusN\nN23Y3AvsB3Pa+o7PfaE9kd92pZ3FT5TlOXwn5KaUvTmNvi+rfJz6W5sL5r7/+763PZabK377bb+b\nYia7IvOGAoWioK+rsg/YR2nMW+cuhRcNFfzaFECpv/qNG9/+Ld/cbnrRNX0ObcrY7M2pWnZOfzg0\nhX54bq548MGH2uaM6TnnnZ95STGTOZLCP6Vlnz/MAZ7d11OZxaLwYlv5csFqM4XV13z1q9tf/cs/\n2O9W3pMVpc0ZJwqcfLvJFKNYXt1XsXZmdZb3BWO8desJ/QsF82FdCitOS67Nvt+cYvy7/vy353rE\np9v/+wu/lAxSHGV+sdpGAceNLuedc077e3/7b7Ubc3c2xeahFMwbuFM478v18bF917726c/enm38\nUlZZd7Uzn3d69vML29YtOUWcOGuymrgu7ztuHLghK7Xf/d3f1X7qX/10v/6RLyUU53Ga+fQDfSWW\n9yfznOcccqkCX1Yey6rcHXfckRscHunvaVbNL7jwonZSrtPcni9CrJTuzRz/qZ/8qfZgviQxzpxy\nZX/15yF2mkHNoGev9rHvf2efP+7nRTSWz2iLsMoxqLwOnF/05aXgtRl58FVHf1EbcYv6xsVP5Zfy\nO/qq2KV04sSM/XlycloqL/XYal95Y0CrvspHfh5unsy8Rvps/M3zv5yfeTbKqq35IZOXgtdm5MFX\nHf1FbcQt6hsXP5Vfyu/oq2KX0okTM/bnyclpqbzUY6t95Y0BrfoqH/l5uHky8xrps/FX/R8u2hTi\nUB4qj5zg9E2CYoUVNQ48tP68tPAcLln94ZOWOxlvv/2OXMOUH2TnW3ruFI2TFB3TGgh3P15x+WW5\nAP3DOYhlBS6HIRbctqVIueqq5+eQFHGOin0VKAfBp3On24c/fFu/m+7J8B/84Afbq265OQeA6VEF\nxN2bAuOaF1yV06QXtYff/6HuY1UOpuTNNUkXX3RheLYt2xT/FCg8WuTLjz/ZPpODGatrm5MLDwNe\nkwModpy64vqaKesYzbjVWb3p9vhJnl/Kwf6df/iu9o4/+IMcdPMIiRxEuUv2B3/gB9upOcWUkP3g\n2lds0uEU24tvuKH955Pf3B54NMViDuh9RSQRn3fmme0Hv//720Vnn9V25YDGygSnRBkPMvmDd76z\n/fwvvrl94fN39NOaHOC3cR3gC1/Y3vSmH2rPz3VoT2eFZFXuUKBo3JzVI05XfizXEz36yBN95Ylt\no6jhgMvo78+AH+zXHa6LzzywOBfqTwfYFIAUm0Hx2I+dOc27Ltc2ZS/nNFluqEiFR/G3Ldfy/ZUf\nelM7L9cM7so4UrDl3G1QQaao5saGX/nlX2/33vulFLVPZN/kd2PPOqNdceXz2/dkNerqqy6fxic5\nM66nnbQ5q4Tf1j78kdtyQ8TDGYPc6JB/rPSxD3ru2QYb2+O87fMSFZMo83RH7gK99ZZb2uu/7nVZ\n6TrQL6JnBY7t251ihLG/5577UkD/XPvM7Z/tmN0pSLbmGYFveMMb2hv/3Ov7l4n+k2d9tRPficdc\njp9pLKfnC/abR7ICe9q2re2bvuEb2inbTkrhy2pYck5hE3C/S/LLKex/Lac73/++D6RI2pWbDZ5q\nZ55xZlaxrmhvfOPX91PSO1Ksn5AVOApvTl9vzinxb03h+bGPfaJ9IL/asSk3rrCKzEollxZ8/dd9\nbYrS63Kqc1rh5ZEjnPpeG91tn/hs5swvtY9/8hNZAdyVLwC7+nZzh/N3fMe3ta973Wt5Q6TIzbbl\n/bo+hfMb3/C17Y9yOcL7c1MEXwx4ZMill17Ursp7jPnLI2NY5ea9sS777WOf+kz7mX/9b9oX77yr\nXyLBl7NtmfsXXnxxe81rX9Ne/apXti3x/eZf+bX27ve8O+/l2JNj5sva2ReGrGPy5ojPND4vIPyF\n5407a/Luc+UjFYdcfrRx7kBrsw9eDPOO+aUP5H4OLhWj+pU3n9FuXp+4ys2rC2Z/xjzMqcaoePOv\nssrPs1NWbeu4zMsLn+DRmaN9c6xxxRtr1Nmv+nl8lbnPzNU8K8a4YuyP8bAZ7cSs1MYY5qG9ffyL\nMXfjIq/jZi7q9TWPiq15Khvp8fl29Ag6PnXsKl/17jP3Yd2v1Ss2YqqvyoPRdxa+jv6Aqg6O6Piw\nDG76fzgex00OuuD6s6JmxUQ/bcQHWg6UrDrc8YXPZ/Xq8bY5B3IOcLReBIXnZNMLrrqir26wysYB\ngYc9nHH66e3yrMBRiHD3Zl9ZSfwv3nVXu/vue7KKweMxNuQC7Q+2pznVkuKJn8Di9FsySpxD7SUv\nvql9MAc18ul3vgXz/OdflhWPTf1C7H5IyLGBa9s25kJsisu77rknp6j4FYSsXLCSlEWYvrKSPDst\nw8WmUOzwe6ps/zv+6J3t//n3/7Hd+YUv9gKGVRNOo30yNwPcc8+X2k/8xD/vdy1SjGTQOAT1HXHe\nOWfnFOlF7YEvfzQS8plOQb7i1ltyc8OVOaWUlcb44blpHHzX5LEX3B36T3/8n7WHH3+qF3Enpcg9\nwOpjCqjffMvvtC/nlOU//cf/JAVAHj1CIZazvFz/d/GF3LV4fXvLW97WTjh5W1/BWZ+VHJ7fRjHE\ns7g4XnKBff72AoPVGk4135trBH//D9/Z7rzz7uR4KMXMKVlF2dhXUlnFYexf++rXpAh9YVYFcxo3\nB+Z9Od1JUbQuVcDvv+Pd7V/+xE/n+i5WXzbmYJ/rm7JKdF8K3Xvuv7898NBD7X/9Bz+WVdlLMn48\nHoaVx4NZib2w3Zxfr3jzr/5qiois6PTM2NfMC05TJvfZPIZ3ciPjQM/dptmZ/Vqrr37Nq9op+aJA\ngbQuj5voeyFzm1/B+NSnP9v++b/8yfb+D30o27sx8zDxY39fTsHfedc97TO51vHv/u2/2c445aT4\ny6pQz4O9ONuX4Xicx/qcEsySXE6B726vzCrqDdddm2vOcs0cp6wzJ/rzDBPv7vyu7f+VFax3/OG7\n+vzemyKLgumu+x5oH/zIR1Ngfar9b//oH7RLLzgnN5GkSE5BlFoxmAPtnNNPSXH2dVkx+2x/HMq6\nzNf9WYE977xz29e87jVkknqS+ZuxyfhnN7Q77ryn/eRP/+t+UwP7kwJpXe5G3Z7i7SMf/WhfFePm\nn5e95IbpS1IugOO5aqdmvLhr+MMf/HA/rZvp0e/63po7j/t1pnw2ZAz2Z04w5r/4n9/c3p4vLdtO\nOa0XYzwy5okU6XdkDD9w20fbf33LW9tJeVzMZzOeXAfH6XwKNu6cZrJy8wZzEbd9c3vRj2+iEGtq\n8z+r1M6ny9k4j6q18wmZvLTi5ZeLUX1XfrSzr18oMl40afUx8toqH21GvbiRVjvzGG2VY1vx1Zfy\naiuvTrxy+0tRbMXL24ci0/9IR7/Vrur0K626RbxY6YgzVpWDtclLK15e31Jtl6PiR6pfKDpeNOlS\nfrUVM9qMenEjrXbmMdoqx7biqy/l1VZenXjl9pei2IqXtw9Fpv+Rjn6rXdXpV6oun7mTcykKeOkk\nTxJUKPzvH9BdzSdoX/CYntyeY0nsqEdy3OkH23yGZxVgS07ffb7de999eSgr1yTlQAIgDd/Ynnb6\nGf2asO055cMz3Hgsw8tzLc6W3N3Iqlc+xiPnAvlV7dOf+myeYbW9f9DvyQf+Izl19sfve38eIZF1\nopwC40Gq2aKOfVFWnHikBUUbxROnnW688cauY4UQn9xJyNVSvDho88wqDiL9sBEbGsXIhDqy/Rw6\nKA45UHGn53uyUvIvfuKn+unaVbkL7oRtp7d1m09qa/OohJO2nZGC7t3tN37zLWSGYacJHfuDuc7u\nhBSpp+XAxcX8ySQFxgnZ9puSKzcDUBhStO5JIcQK3RNZEfy5f/vvcu3dg/mt1TOygrIup/ryrLHo\nNuW07slZ3fnj5PNLv/zLuf6NVbYUpcGw8rc5xdILXvCCFE05zRl5377kwencXu6yf/OfLecUH6ff\nuP7pE5++vf3Df/xP+2ncX8tp59/7g3e0X/hPv9T+48//Qv/1CFaqtp1yanv1q1+dYifPCsuqIKfX\nepERf4/lOWA/+7P/uu87ToVtPmFLVoWSd4qcVA7thFzfx+rPH77rj7LCOZ0+Y/WO1aUTMxZXPv/y\nrIzlmr1cX8YBvhe+icOEd9LXeYuM4hcfbA2Pwbjk4ovaLS+/uW8rj6XpNxRkC/FHkfnmX/n19v4U\n+aeecXaek3diboA4KYXd5hS3p+SU/YGsat2WgvWL/QsDPrNZ/dV/xYEiN7E4Nbgvq6sZ9j7mXNu3\nKdvXV9h6LjHKfCT/3/it32pv/f23t015rtmJWdFkXE4583mJe2Jbk239TE55/2SKOlZZY9LnLX44\n5co8f3Fufrkwj65hFXF6f7T+m75XpMjleWjYTNfyTe+fX/v1/9Le9e53t9OyksfNHf0C/3z52ZKV\nuq25G/X+e+5tv/jzP99P3fYH82brMoz5onAop7yvbhfm2stsZJ+nrOhyLSI3DPWWbeMGAx5B8kSe\nEcjNKjyDbWMeAXPiCVvzHlyXVbqTU2Dm5qTMzbf/4R+1hx55NAUl13Bme/olBKzW59tFtpH914u2\nuOcLWH9Fnv99HOq+Jj79lbzESquNMuhKm/bgR77K1C1FxY+02qA7llZt4cc26hf1q51+Kha98opd\nxGur3TxbMSuho5/RZlEe8+TmMs/HIt2ItW9eUuXVz7wcFsm0r/7kpWKWo+JHWu3QHUurtvBjG/WL\n+tVOPxWLXnnFLuK11W6erZiV0NHPaLMoj3lyc5nnY57uqBsRcOgBsFL4/sqn6PR7jFNoPlQ57FPP\nTRdlpxOewo2VmF4U5ODy5Ufz6wif/FQv6vDD6SGS4ZQn/YsuuKCfVuO0H0+CP/nEk/pdaTw1nVMv\n00pK7rzMwfyTObA/9fRTveigsKLIeuc739WLP7LiIM2jJDi1d/5557SLL7koBU1+dSE67tq76aab\nel4UcawtJZF+vdsjT+zIitin+nU/nErclWuzyI2bKjh1yspF3/b+rb9vZrYzB9/kTOG5PSs3Tzy9\ns+09mOIxK4A8TmRfXjnh057KRd0n5E7X933wI7luLdsfvxyR+g4JS5xt27JS1nNnpaG1U3Pt3VVX\nXYUyB0OuG0sBk61gLN6TIvWjH/94OyWnnB595GE2u2/f9u15OG0u+t+V65R4sOl73/vu9tjs4N2f\nTxZbitTLLr+8nXLq6f3AzsNqs4GJyck1/Ezbkz1N6H6d3/1ffqz93L/7D+1df/z+tiPXf52Ybdmb\nnUxBw77mOi5Wzi66+OI84oM7TPMLBxl/CqzsvuS/qr31d9/Wvnj3nSkscxF6TuU9nTtW9+Ti+kPc\njZlYOzPeO1O08ow25gsblJSSV2ZYEjnv3PNSxG/uq59c88eYOcn79mfQkPGFgFefX6x0zl5cS3Z9\nVhjPyJiJp6jjURubcjPGXXff3cd1y0nb+qpWzv62HSnUuJCOJ/b3C+pSxJ6YcaWAYJ/36ROeG1rI\nsT+SIgUUK6Lbc5rzJS++oV1+2cV927jujMEir7WsLt73pTzW5G1tQ64F49ltj2Ulen1Wv3iobiZw\nip3N/T31vjzq4yMf/Vg/tc3KL6vXvG94b5z9vDP6420o2rhmkwcfc4drX7VKrszv/pNZyY+7V9/z\n7ne2E3Mzw67cNLI9L66B2xnKa0dO025N8fiud76jfem+fMFKDjzqhn3IXDgzj2u56KIL+9j2G4YS\nc/p6FOe5W5hfg1id1cdN2bZXv/Krsr/OznMLn47vHXkQdB7Im1W09RlL3uPcLLMh1zfy4N5N+VKz\njuvtspLYf4It+yub1seJ9wiXJKzJ+yik8/1UNIA09vdIkS16jVj7I747XeGfebbI9C0dcfP6Ykda\nseqMQX9eU19tlYEf5SvtG2vE61P9PKqNWPsj1XaUL+rrb6QVr8+V0GonP/q2r34eFTPSEYt+pW2e\nLTJapSNuXn+0sV+xVQa/qC2KLb76PBZ+kT1yY4oZqXHE2h+pdqN8UV9/I614fa6EVjv50bd99Iev\nadN5LyTSGWkkHcL6AkUHxl02mzD9wbf5cI1h5NMkgvKhy0/q8IiOb/3mb2jbsprA3YnetUlht/XE\nTXm0x+Xtox/9ZA5we9prv/rV7dycMuQaIO405NEh63Idz5333Ns+97nPHQ7LYxx4ivsdn/9CLrD/\ncp5PdlpOT2XFKQc1nrS/Oat8N9xwQ66beW8/UHDQPiV3Je7jVBOpcmBK/jzm4e4ctD8fP1xMP207\nJQw/RJ+ihC3tB47ZASH93qgqesmRgjLX1FGobUnByUGeR3usSfHGisqanHp98snH+vVI+/bnAERp\nlBwZqR4rY3b6Kaf1U5Dc0MCp3PNy8fu5Zz8vd/Hl0R9ZkWKFk9x2xe8dOf16zjnn9dUptoGVClYZ\neZQH1xBuygrH07le7OwUqU/mESanpnjdxU9TZX+wbsmvNPAA3+lO3xTFuZBtyioJsQ/Zb/zN2PDL\nDb/+n97cfv8P3tlXaPalGKd45No2btxYnX1Lkcspv0svuzQX0J/Y1h3kt2ZzPRUPZs0KF1Pkrnu+\n2M7I8+NOSGHAz3ZRLLIqw/hT8FHcPfH4o1mVOTGFei83+hilrujt9Jwu53q5u1PsbOQartlNJ4wf\nL3KFUqRNc3P6IsH488y9E7PN11x99bTN2d98OWDV0rn8yazgPvzIY3k239Y+xvHW5xyPwOjPB8zK\nEQXtzpyCZkV5VeLzj+Lt8L9sA4XVuk0p2rJtL7v5Zf3aMFaqKJBojC7F3ee+8IXE+3KKF27SyCnC\n7LPtO57OuOSmlcx3gP1Uf/b72972tvbyl9zU7Vkt5S5YCj0oN3D86q/9Rs+V6zWvzYOC9yXH9bl+\njVO1a7OieCjP1Hv4kYdifzCrjRfmiwlFbU79hqYmy6997Mnz1XLKOA8xPjl381L881u2a9dMPztF\ngb5pU35JIdf2MeOZHw/nVDaP6diaFTuKxn0HchPFqjwHL3eKvvH1X5fLEK7I4zz+Wx4Q/Ml2X06r\n8yshu9bu7PNufcadOcAXnqdzarYX1pkPrIny5YgxovXrTtMjfwZkWu1nz0yI/t5Bk31Ak/bOgj9i\nRiocOUW/88m5hHzkkfnCHn4p2pXL/FnOB7nxxc1W88TWfuXFVmqcKjsWfrQ3LrTyNQ9t3Ab70jH+\nIvmIoy92EQVT89IG2cg7vvrqgPyxP1L18+iItS+W/vH55mgspuO41X1ZeXD2tfmfbb4ddU2bGzx3\n6Hgz9kP59EEFho+oPjAMVD7YQ3ofmb/JCYYD0sc+9vF+x+BL8ygCHqIx3YGWN0wADPJX3Xpr+085\n3bYhKwavuPXlOQDktFW+6R86xJ2UedxCigNW6+6+977++IDdnCLLIWRLisCHHnow18fcnoe3np5r\nhtb1gz2PDOE5Wzdce10KxZP6wfqF1yV28uRN2a+bybGAU2TrcufdnXfe2Vcj+Okn8uGBt30NiO2i\nwMo2cdCeaDYgDUm2PK9cs52Dbb/mLMUApdH/z96bgO16lfW9K9nzkAkyZ2dOmCcpyBCIYRARRGZB\ntNae02Nb9BRLra3n0qtqnQWFo4VaBIeqp6dWZQgiQ8IYIEhACGYOOzOZs/fOHr89nf/vv57/9917\n5f2+vRNie+lh7f2991r3tO41vM+63zU9nObDcWS5jAEbh4pDCejGYZNayXkRVnNxbCDXMpGWOB+h\n2aQ5DcbH6360leLbq1kqZjY4NcmpSmRf9YrvbS//3pdp6ViDuwY03kPJPV0M0HoC2Nlldo6Bm3vW\neBekT7AqbwZrTvrlygeWwfbIMQTy+Er5GCCpp+06ach7WLlmgxlSnApes8W+P8rFXVwa9z2An6CD\nEyupW2FwMv0KMVUOejgF+rrXvc4OAzOXbKjHYaFM7DnDuVunGS8plGO33jMyvGOVemI/1lHas3eE\n/vZoXxR29jZUhBZQuRKYPSNNOeAhsOSMk4jT5z1Y4mE2Vj2Pzmdn4dqvXydHQj8OVA/YxwzvnH4A\nsG9SmuxI8yOCHyC0t3NUhD5P3KdvsUPlxoldpx8Hxx+vPZyicWKTgw9cq8GWAXrWRr0ii5OYazSj\nxg8b9xHVMXkwm8YewSNUx7xlY7PeHMDJYZa6OWiDo0ndrNbJ3TPPPMtOz5z6Fj986I+8Nos+yGvS\n6KHMvJ0rvre/9a3SL0dNM12cwqa/qnupzll+Vb9Uf+TU8jFy/vo2BvHIq/MPLGmkTFTp9q27tEdT\nbzTQa7Z4pdk+ObDLl61x/8BJXqnZtqc88Qnt8Y9+bLv9rrv1Y2ij3uzw+fbJz16iE6vfcJuvlOPN\n2xT279NMpmzkm0AdsazqE9lKU7nc+0eZ7PJS0Q7zkSDc3rUfzBNKhD6xFE9o8CUcLB6ZwIPlEb2z\nYGRHGN3A0JAnzl/iFVYZM0wfVb7iH0x8MR3J82A2VfnIjPlXnpF2sHRkoxsIjj9C4Kz4KGuBGR/h\nm0GaRx2MJ/YtZU+UhScygQfLI/KzYGRHGN3A0JAnzl/iFVYZM0wfVb7iH0x8MR3J82A2VfnIjPlX\nnpF2sHRkoxsIjj9C4Kz4KGuBGR/hg2SnLZmAIM5gF++UNH+m2dNg4OjGgGO5g4GPpRScG89KCMdc\nCSPuLs1qcQ3G7t3bdALtkvYMbVLXsOKZApYoWeohnK3XPR1/vE5XSt25Z59uR4ABBeeJ5TecrS9c\n+iX/Ml+v9zUyNcPep9X61c61Etdr9mn3+eepgvrsWHe+DmuPOuuc9tizz2nXf/369rhzz3VeDOyH\na6qt78HToK0R4eJPfEKQO8B0ZYMsZOBkOOYl3Ni5lysVpNsOibWoMXAGaBzSnN6TXq7CoJp4jycO\njXE4MHoh+rJlDE2aT5AMNWonWDTCXi0vcfUDzhMD81lnnul67ScvmcmSPWIl/zNP34Bv5nY5TMuL\nDPg4Y+ijPbrG7qxwOatLosGQQyE4Urzqi3vdeKfkftWfTLYjgR2U1TMaEnJHUWHYY4fFvGqMS3m5\nw22fljKZIVHm7g/kyuvGsGGvZ8FkC46s6pmZrhPlwNjhIBMF6gw7gf0KD0WEwc2iHXjBOzN6lEuT\nk95Mv1X3y/mGFjpJLxVdz/VAn00/xW7+mKkiB+K8D/Poo49x21BGKpDDLCp+2652u3bjdXKsuRRW\necuB3KdrMrTvX2XnJwYHKeSMykHmfjzbjKMlD4zlXgqyX2VmphVniD7ALCMzo8ocA73vkHbgPZ17\nhduowzTs81InVIHJAaj5S/FSL9zl571rapn75bht3Xx/W68fJdzJRnuz3Ei52LPJ35133aXtABu6\nbZLHKeW7yH5GivAIOaz8+S49GcLXDnsENPNH/5lS0rlHbyfYr0MIHAzge+cC6nONrgRRtegqn5We\nKfz4Jy9p/+SHXi8+7W2TDN9llvG56Jm64ofXKXot2OkbTmgvuOCZ7Y2b/5nfdPGRj17s16ttU3sy\ny7pdb6Lg/buesVX+zFRjE8bxOjQ3msxgZs4znMqnt2+fdeJZRcizCloN4IMjvujzTTRCnH3iVa7G\na39LvvATlsqjcxz4OdoXHYEpH/nHdmik+Yt88gXW53f0xH4g9MhBP1gIb8pNOjhkoxN6eEbb4Cek\nDNgw8pCO/JiHhYcP+PlLeYGEyFb26IU/PGM8umIrfOCCj+2Rhy86wBEqjnhkkn90B4JPiK5ZOsIP\nTDz5LZZH9FY46o6OwNQhtkQvNNL8RR6YMqX+Y1d4Ige94sAvFcIb/aSDQw47kmd4RtvgJ6QM8I88\npCM/5mHh4QN+/pI3kBDZyh698IdnjEdXbIUPXPCxPfLwzS+PhjFE0tUQpzWcMINCXUCTamF6p+UB\n33HQegP5Ggn96mYZihmaK6+8ut2naxeO0sPfhwA0MHHJ6F4NlI/Qstqzn/lM7fW5UUt/uoBUI5mv\nAsAxkyP19Ztv9TUM67RJm8CsD84jd4Tt0RLLtVo23bxlu2ZTpishZBsVyoWkT3nKE8W329d9cN/b\nbpXNp/nYN6TZi2tvuLlt3LhRtcXAL9tdCZSOjFRCRViqYSmM8vIVwx3AoWKsg596oY7EaKeH2ROS\n/NmNIi0dzByYJ8Sp0ZdroEKevT0sBT9CL4EnzXUJuvrWDhcnBOURqO70UFb5V2gmTVp7p5MN2MZM\njttBsryjdRVlFI/MEOyDHAMr13NQd6tFwIFjBgqe3uaKKDD7IvQkLchgqfIy0+NlRb4E5rPLoVko\ntbUwvI0B59mzRkqznEmt0m/QR33xl4BjTsB+Qhx5MMzErZQQuvqVI9KNg6a0LROt24z+Lh/oPisU\naZwcZvRwxHCwMjOGg05gFpQ6WbP2KM1KsuSsS2CZscIBUT0Q6AP4gaSMopzyIvepXqgI+iMnMpE5\nXI4tPi31owJZwMt9di6bliDlgKIP/ejmn+IE7O49TY6P2nzTps2+O5A9bGp2y3EQgccFBz649Je2\nYkaPlqC8zH7pw30AxxLdvHZqpy4uZgaWhshQIS73Tb5z2MJ3Gb+4V7EO8Mhhpba3an8abwk54oij\nbdN/+29/2o595AntggvO83U0LLd6Bl22MJNqB1G47du3+gACezB/8PWvbs9/wfPbRy66yMu6t912\nu/qolsr1Y4DXZXESu5eBbw0lVF3wPRPWzSsDD2xf2gceLO+hxisueOSJA2fpCj480RHeQPDhAeYP\nPDyhhZ/0SAtPlQ1fheFDPvHoPRgMP7DGowuYEF3wjWGUhTe4yB0MVr0MSIToIR594QtthJFLflUu\nsvAQkoY3/J2y0JdIh1Z1VZmKj07kapw0AVzw6CC+mK7gw9M1LNgDPSE8wPxBWyyPkTbKQwc3wvAF\nHxtJx57FYGSBNR5dwITogG8Moyy8wUXuYLDq/YfS3+aXR1P4WnHBpeBqApEXOiO8oUVuoXsppkGM\ngZz3FnJZ54033tCu0Gb/5z7j29XyfaYAL4AZIGa4nv60p+uE2Zq23vutcDA066VpAvaf/Y02Y2+U\nvG/61+wD9zrppzzW6Nf68nbVVVdqtuFOXUJ7hgYMDfAadZjp4tqJJ+nKBQaRdbpmgNOeDMK8LgfH\ng/H0c5/7XPvGbd9oq/Rrvx+e4AtGicQ7FcxOGZ1G/yBNNeGJEuJQwHfHrtcRg3l32Do3QtbLIO8E\ngLiCBlWcTL9NYu8uz64wUK7SlQw4kgzejOnMsjDzgh04Bn2Y7RYhD50UDoT/Af3lodwcAtjTLr9c\nhzl0gANHGud5mzaKYweW0Oa2UWmuaiBvEF2HhlN7qcphvgg93u/Z6q9JQhf5+0CI8sMZ2q5ZFWba\nmDlDn/wV1xm15hkUp3o5ZAZE1Hg2lbvwrrzqGh2wYHaPduu/mLoR8PUyWm76AOccoCkzZgWNkd7M\nkJE3LcRUFPzc2L9Ls4+4PlxHgsvQ64JyUz99kCELJLHD4476Uxw7KCxHr9EyN/0XeTtmqg8KLb/R\nZu/XkiQ/SmwBnVCM/X4+8YnXL5annNSjvkMrNWvH4QP04fj3f+jDmZGzrmVN8rFlSlPNOF9e0lY/\nuX/rDvUbLaeLf+duzV5qyqz/gHDWiKkM6nHUg75fINCGLTj5m/Rj60b9cNqhJd1lK/QDSAcTvnH7\n7e3X3vIW7Ze7s738FS9txx2l74/6Hy4WM5Lsczxc0+Ur1GYr5Zht14Egvn/H6bVob3jdq9uGU09t\nv/brb/VFxjJW9vO9pZ6kY6rTnkQfpqkN5IzmcEVvY4ykDNSNLTYMreI658JnaOEdIZzBwZt48Hzf\nKi76FnLodoUfWPVENjDyFYa/8uTXN7jgR1jzrHH0RX+1Z8xnpCUNTFgszxGfNHKj7ck3NgUulge6\nIpN40pEhPeohnUE79lS5xKMzPEmHPiuPSiNOCAx/xVXd4JOu8aoz+G/1N57gD6yv1N8I4f2H2N88\n01Y7WI1TCXSUFN6RGR/IpEO54iSn6tKjWwMWy0HSofHaJ+Ou0LUaz9L9aQxKmovosyfatMSAc9ZZ\nZ2g/k5Zg4NdyHjNBLDVxSeiVV13lvTmHy9FgI073HTQVr0FohQax27Sv7dqN17fHP+pMzzYxDjLg\n6bOdetoG7cHS/h4NBPo2OS+cSL5fO3QD/2Vf+pIHaBw9Tnf2xmeQRpwHoyOoWvgy+ssp3v4dNa/Z\nYFXoeBEneXT6z0rg0IMF+yZ56gg6e3q279yqF5rfoSWiXq8oY9M5zgfXaPznd76zfUlO7D48Bs++\nORvbRj1y8s9lwbElH9sqVtUlG8A3M3Nz71Y7A2TPLB922hTs7ObxCdqOqAtEgv9iRD/8OGHYzZdj\n8+bNdiwOk7PMLA3Lj8xobdKerHe+83f0irCvaiYKp4uB19r5sE7rUn1QZvQRmB1j5gUn/B5dGbJF\njgP78QiUCceQAD/pyAWaiMGqJuzFYFTTv/wmAzEsU1/yUqAcC+rYX3ItJ2K3er/7oYTl1+HIgO95\nolatgyH6ozwoV11LN/lRi56RBA+JtNuYGbL9vqTW97WprVh2t7MtOQJ6yZ2lQ14dRp2t0UEBn1gl\nD5waOTgrZAvLnxxewUG7R9ff4MTTLSgnlnp2VHwXXXSx3qDwX3Xid7VkVQeiQsN8gn+UKO09f6Lj\nBK7QHjvaiYMum3QSdIv+VnDqU9bdo9Ou63W4gyt5fvsd/6l98cuXtpe+5Lt12ONx7WSuFNEWBmmX\ng6htAeSjFG90WKb+uWu3ZhmVfvaznq69mS9pv/eHf6w0M8jaw+hZUNlDxr2T9LgKRF/bpy8+NtP2\n6dfdfkrbQ23/9I3QRhnahJABPXxLweivsOqtcXhqHtAiRx6kyRsIX+LwVN7QIgN95Ine0FKGxfKA\nvphMZMODjsSxBblqa2jAajd8NV3j0RMbxjzQP+ZR9SOPTHigEaKvxoMLNOMSH/Dx92DySH4pB+ka\njz7w2HyoITZXWPXW+JgHtMiRH+nUF2VLHJ7KG1pkoI880RtayrNYHtAXk4lseNCROLYgV20NDVjt\nhq+mazx6YsOYB/rHPKp+5JEJDzRC9NV4cIFmXOIDPv4OJQ+tt/VMMaYWEHzSKAu98iceOpAQXpLM\nRrDpnVvk9+gqCF47tUkzRcdoEPKMiQYArhXYq1Ge93eedPJx85XA3jMuzb3p1tt1getVmrXj17js\n1SPettHxQQiyL+pz2uj8khc+3/pkhfYHSa8GtxNPPEF3wT3SA7TQHpCZUWOQ5lTjDRtv9Awes3EM\nJhqVNF7w4eIYuA9pEKGMlLLPqCnSi9wZ+UQ/UB9wevDh9BsK9Je6wmHzOA/vFDwLpTjLd3frDit4\n93B1hhxVDjUwc8Wt/VxhcuWVV7TVuitrpxxaOyToYEBXnp6tUBIHLoMbS3GcktXuPMGV/WZ71fle\nDbr9PjaXXHSpmQpg+0joDyrOBOWx/wNOdY9+OjGbz+/QiUKfKBWeAZ8lxuXayM/9bby9ghvyl8lp\ncFVIiduQwVp60e9clCnzT+TJLBH74piRYm+kD0PQ3vCSf6nPpEWcp7kxJl6uQeH+NIoWBw6nitVq\nnNljjmHzvV7hJad5D/vpRKON+94wtpv1Aw75wvLlcv1qn+I+nC7ysWVyglUXnGrerGs0vJyp+kGX\n/lsvFXi6ZpnYw6WpbvGwT66XCfvtuKitmGFkjxz3t61UvTGbqZ8sCiiSeyaH/R5dorxdM6UcdLlh\no/Z1yi7v2ZNF/kfX09cEZ/fGm27S7OwKz7Z6FlB6fBJWeaCSD/qOslZ/0/IwPwiEw6nkEAWvGDtC\np6P95hPR1PVoKR14WNUu/tSn9NaKL7dH6+0mj9P7ap/wuMe3R597jsp5ig5QyHaVkS0KfGU5Ec5e\nOfa8vVKHaj7ysYt0EEiz6Kv0THBN9qVfZWyzcLAJae8xnjSQfjCG9I0qD0/SlQ4+6cSB4a1x+OpA\nAE/lG3lDA9aQNPoIFYaWfhcYGxeDVT/x6Ak/uOSTeHhIE0Ze6OGJbE2P8cjPgtQbZSEgV+OkR/3R\nDX/VF/nwJx2+pKv+8M7KJ7qRI8ziBR97QgeXEB1VP7SkKx180okDw1vj8H2rv/Xvzlhnqa/F4D+k\n/ubl0dqhKTR/4AKpoDGMuJpOvFdgf6cjy5+7dRXEVVdf403Tx2nztB0OP/Y18Mk5Yfly9T7tCdI/\nZg9i1w033diuvvZqO1s4O+xv0jO/77XRHhvno0Hk47qt/7Z/+S90ivR4zc7gnWuWT3rYK4NO9vXg\nBHESlbcMyAf0WxC4I4vBGZ0E9Dkq6LSGDlfBVDeh4WRMLObzh6oqOAZqlnl8f5fi3dFTWoy+LBS9\nkyR1hmPAkiezh7dp6WmHyrlKhwY4hMB+LMqySpftPkGzGe/7wIU6zXdE26fXg6Flstja0nYk0O8l\nKxdOy9Do0WDLHi78Hy5I3ab70ujUlAtNCCFHOexsuNy9XtgqBS55mA9e/d0um3G0ufmfPLnM2Hvy\n5HycqwH8k5/+rBykflqQAx7y56WLjZXglKfiOMwc8PBMqfaW4VizfOtTm0Lu9BKp6mh64Ets/qF3\nYL/DMkIfAO7V1ScsKxNcX5RDNuKordJsG++/5c0EvH8UPYfL4cd2DKNuXT+qhy6LsP5TL/rnOnAd\nUQo5heqLvKLrrnvutnOCI+TrVQSR0U65dsaZp/n0Jo4YNPZ94jz2h4s0qpNw9QvKT9LVL+u1D5T3\nleJ49zvU+qna23XBMjOcHLS49dZbu3Ov7QI42CjhxwflOe3009pxOgxy35bNdqKW6wQpDnb6uqHM\np1oPl9PKtgZ6xE71Lw5U0GeW6+qaXbLXXqDKwcwYB19wqo886pH6Du/VXYdX+165Rxz9UV3fsq49\n+UlPaN+j12o9TVfvLOPghbTyTlwf+NF38Xjt3Tz77DPbNddep0M7/DDp2xboCq5YV7XqWOn8qBHF\n9US5qC8gARhc+kevzwXnoJfz4Xy+9TpMftEPzHcEONplg/UBHzRgwoiDTgjfUunwWWD6GPWFBz2p\nn/DMkgsPtPABCegY7QpP6Iulq1zlie5Z8uAI1SbiKQuQAKy46A89PGae+Md45T1YHmn/ahd55m/s\nC8krsOYFrqYTTxmAyS/6gwtEptqSfKBDAyaMuOQXvqXS6Ah9MX3hgS82Jc/IAIMLT8XFXnTwF97K\nQ3yk1XSNj/LIEipPx/TPahNx+AIjV3HRDy7hYPFKj+7AmofGk4UGTDzCSafCkvnBYPoD8nQuBnDP\nEmhfy0bdh3b1NddqONDgQN56GjN4spS2R84DMzn7tFwKjVkcdHxJy5fIazS0w6CqNT+zczzNWT5j\nGZW3Anzm05+xDDzoYPBhYHVQ/bEZe04jELN2W7bt0h1v12mvlE5YygZvdBcrP+ypavL28lLqfYIL\n3b2rnfUJD/VmR63Ie/CJgPAqrkP/UsvBUlm4X+6Wm29rX9cMoJR0Z1Nl5doPHIknPeXJ7ZGaOcQJ\n4bABs0JsAudqBhwh78tTCXBScQhwcrsTrGtD5ORyStVto/JlWVYltR1szGf5kpfC27ucyiDW+bJg\nM3LM4LDPCl7KecWVV8pZ2Sw9vUPjhPoAgTDPu+D5mnE72k5RH7DliKoNcJpoR6lx22MEgzNlYEYH\nuznUwKzWXvULrglZLKSfBlImmany4qju8xI6tD2yV7WjulM9aKoNB/pJT3yi9z8y67tC/JL0/Xh7\nuQBY9woul2PHpb5cs2KHW+XFuaaaVPMYLRn9m/o7bwL5gt6Lu5JpKwU+cXI4/Um9MAt1gu4VXCG5\nI7l3ThvxWe7crbvPVkhHXzrFluXt/PPPZ0eAfmTwHdHBHdWZcndbXnrpX/uKFO7r2yrn9mMfu0jX\nrqidNTNJnWIf34/TzzzD7wqd091t1EE/eKGlZ81+UTe9sXvf4fvI5dSpR9qQ18v5a8TBC8n7B4Sc\nc5xqH3oQ3gctNE+6dt3RWuLfIyfyjvaBD/xV++mf+fn2Vx/6mNuVrJZr5g37WQLGSO5/W62lYPJT\nM/egepkyVH3jdJGGXX1cf/RfArCmE698xGfxRjZ0Mz2Ij9GGg+WR/A41C/jzF93Ah2pv8o0dGRCW\n0gcNfngTj56HApNXbEBH4oeaR+wAJh49gYvRoD+YMEtPzTPxykeckHIBazp0Ix/Ex6in6hxp1a5D\nzQId+Ytu4EO1N/miEx3f6m+pkcUh9ZS2gyt1ByRA80/QNFSYwxAB8AmVlji0A+NdOTh8LTa8M4vi\n03JSdZneq+jb5hmc5AHAx43uzEjxbO53UfU9TVs0EH1RTlsGlmojZvGuTGYBVmnmgA3TX9Srhrbq\nlzwDKgNR51n4EpEX5ccx2LJ1q2bartaMhu4d011yLI/2clgxTBMvnjWl7BVqbVLM4O0MICX0IniI\n8T4hs0iP6JajHuBBXjicOALlwplCJfuE7tukt0hccU13ypQ5gyPv40TTWWee3d7whteLV46cBnpK\nyr4hnApmOzzgSwanlZv5j9IszKPPPbcviaqyWH6lzlhywwlhEBaz7bGVsRHjiEu/bbWh4qMACjiF\n6RucQL1Xry+6TPVP3frdoYLgt+vi4cc85pz2fa95jZ1mvrz4Mt43JeNXqmwsn5MR+F07uSB4tWQe\n6xkZnBX6EHu5cFqoizGkXwTSji6XlPqHg9r2i1/ENtw1BUEXSgla4pyz9QL0xzxK9XWfZ5qYfZvb\ntV31yiyY9jpqxukMzVY9Uu8dnbOjo75CvVkNS4pdH3vNuOON05Ab5XTz8nRfhSFnGbv9Y0RCx+q9\nrc//jvPbfdqHRvsxOzmnJVxe1cU7RHEbceC+TSefn/ssvXoLxxY+7SnDoeVHDA7y3159lVxGLiju\nb1P4tA7V7MSx1Mwd/OwtM4jFAABAAElEQVR127ULvSvby17+Mr9VghL3fiM51SsX9uKcUk72FHKQ\ngtdfnXjiieprZ7lPMWu6QuXi2pf9agNeh8bJ77vvvLPt0veHa3fWyVFdrpnUvboAmtnTlSv0CrB1\nR+quuR3tXe9+jxxa9gVSMjmccirpB7TkDu3T5LVbfIfdPlSr+l3/Lqq/UbdUtALtmzYmDa3LdP7O\nu4A/GE/0wUeYJV/xZiofI39sq/jkAY74wUJ4wh+dgcGjJ/kcTGelR8+YT+UhHr4aDw6YeOhAAvga\nYmP4Y39g8BVW+TFe+RKHB31VZ6WNOsIffGRHPDqqnvAFRzoyY3wWT/TVfEf5pMNT4YPJA17yO1gI\nT/hjd2Dw6En+B9NZ6dEz5lN5iIevxoMDJh46kAC+htgY/tgfGHyFVX6MV77E4UFf1Vlpo47wBx/Z\nEY+Oqid8wZFmvHAIkgTxwAgZMdDCF94FHgqEHv763gU9n/HG/OD+vN49+A097OnuMtGfeUh7KVCD\nA7Mg/Oq+WqcGeVuBHTke5EhRsCmOg8CyEsuhLCVeJSfs+utvkM4soeAI9YpIXhjHnppNm7a0r2lQ\nXavLXL3kJ3znwTLy8X/JTwM9uYsHKjqQcUFJJ0wyJLHWDlocH4qKDnicl1LG4aygi5mOvdp/tFbv\n6tzUvixnddMW7nfjMto+OzinARUH9w2ve3173WtfrYF+qwZ3bezWzMguXa3AdRW75WzsEp671F70\ngue1X/qFn9XFqr/SfvHnflon9k5p92rpboWWWXEOmbnC0UhbYg4lxDHr5ZZR2MsfNAzWH/WAvYT8\ngrpH+/A+8xktMcpp8AyMWPu+RV0Wq2XHV7/6le0VuhR4p66O4C40LlLeLYdit5y0ZbJhF5vupfPF\n3/md7T/+3M+2t/zyz7df+sVf0DUuR2lWcbOdWvTG1p57/8Qe8OmvxLHLvKLhpF5z3fVy1HeYh3pW\n17HzwuzliZr1+p6XfJdeZL5ar3nSXjS9QWK/TvHiSN1z5+3aNP/t7c0//mPttFNOsePCxbT0O5YH\nmTHy/j76ohwTZrEeoX18N918s+8l02kf1x11sVfOGzNuqzXr/P2v/772jKc+td2tC2c5Ic1l0ORH\nX9ipV0udvmFD+1dv/DE5M3J2cHCknxkwDuOwh/Cyr3xFJzfvUcPw5ok9dpAu/9u/bV/TUiOvzeJN\nDN4OoK0J7Hs7/1nPbG/+N2/2siX37a1UX9mm5VIcJy5F3rZlk9+K8OhHnd1+8t/+RPutt72l/fov\n/1z7Ds30bdYbDXzljOpqnZZL5+RQcn/fq175vXrl3He0Ddo3epeWx3drthvbuKSXwPcTR3utLgqe\n0+wbZWMfIbpWar8jr3q78/Y7/RYP3lKhikTI7cYPMv/wcu3R+yCpb0500ukLFQd+DOkb4CMTHLIJ\nlZZ4lQlf4MgTXcEDwcW+0CM/C4Znlmz0Vp5ZOpbCRTYQ3hqPbMUlDhztGuXDGz2zbA4PsMZHXdFR\nIfyzbABX8eGrsjUeu8BFNvHwxb7wBh6KbniqPmSjL/qjD5h4lQlf4MizVB7whh75WTA84SedePKr\nPLN0LIWLbCC8NR7ZikscGFsSH+XDGz2zbA4PsMZHXdFRIfyzbABX8eGrsjUeu8BFNvHwxb7wBlbd\n81MWFUmcUHFVaWjBjWmVxYMhS1o8tNGD07FmOqF3mwapazWwnHnKSV5OYmaoezdM/Wlg0kwGDp5W\ngdonPvlJv0uTDemea5A+Fre6U9E7ZXfwuIdqlR2xa6+5tj1Rm6F5/c7hjBB4F2zG0hhADoQVmtL5\n4mWXaUZrk16wfow3zWOnS25PS3I4J4pTHXauUKUwAfMm3imdqiZWhE/9s3D00lgmmZ28yIpAXbGf\nB+eUG+x53dPFF13cXvLiF7fnPOupeml4v18Le3bvnfNp2B/70Te2s899VLv44ot8b9YmlYWb8c/S\nfqlzzjm7PfvZ5+ldq0/zQRCs2aC3I/zov3xj+8Vf+hUP8gz0yzQA+/2jsgHTVGLZyMwig6dmRYSk\nCNgJnXI5oWp03WiGzrNfYuJE7ucvvVQXFX9SjtcLfc0ES6AsRTMztFZ5/fi/+j+1h+nsdumln9fB\nhbvbfTpZysne9bpu5ewzz2zPfe5z29Nk8yOPWNt2yYQNulB265ve1H71139dy9r7db+ZHDw5blO1\n2SJbpfzjPNKOxBOI4+jcKqfiox//dHv1y16kOmbWjms35CjJgWF/Fw7lsTrc8ZGPfLTdetttLuZx\nOgn5rPPOby94wQXtkcfoFVy6CHalPEt1TwW+tFhCrWmPmZwTTnOu1nUfWzVzxAGPS7/whfaVK6/x\nTCf5UBd7lS8zV6edcnL7j//hp9uf/8X7PJuMDIp4xdi5557dvvd7XtKerNdS8aYMZsq8tKn+y6Gb\nOZ3KRI4lcu7iYyaONr5TdfpRXV577hln+bJgr9yyBCybWZZ95cte2k6RM/jBD/6l9pFdr9edbfGP\nAmYyNwj/7POe1Z7z3Ge2E487Xj9stPCr782PvfFH2u26EocT3MywMRPI+2R/8Aff0H7oh/6x+u3e\ndqPuOnzv+y/06+p4dyyzd3OacZOCdvrpp+oS3h9SDcnx1HKvmkf1pHKoPW+45Ra96/Q22DQHpz/2\nPMpOTZXbOaYD8u3pfU8MU6CNCcD6YJvIDwCz+CouAlVvcMDgKy74mn+NL0Uf9cxKV/uSf2D4x3Tw\nf5dwll1L5TfaOKaXkl2MNsuGWXor36ir8o/xtGNkQq/6ggtPhbP4Ki680RE44pMOrDrGODwjbixH\n9MyCo2z0VV54/meHWXYtZcNo45heSnYx2iwbZumtfKOuyj/Gx3YKveoLzk7bKDBmRjo8geGJ0ig0\nvrQre3z68ptmkXAA9DBmz9Rfa6nqPP3yX68ZH82J6E8PZz2sD9OAvGfnnGaCtEdNgxjXcfBKnzUM\nFiwRoVt6eIh7M6acHYZnlgaZ4dglh+a667+uawW4EkHDgJ/2dp/0xic94DUIsHzFOyQ/pHc6rtXh\nh+26nJfX6jD7QqCM89toyMsDhyJ4MNhpz4vBhPiUhSXhZRCRkeLprhp5Ezr0TJVSXY5Zh44nTzs2\n2KZ3UB6pE7fMTr397W9rp234Nb2L9EQN3rt80TADPi9bZznpe17y4vbyl75E+4du05Uqm/2qJgbg\nY+SIrtYVCzjL++QkUIe7ZNvznvusdvc//xftd9/1bs18aE+cBlEcxgQOAfgqCFWqbdSH/7neqWuc\nWGaxVD7poy4oMzJH6JQjjuPvvef32+P0CqPTTjtFTsVO5aE6wSlV2RjIf+C1r2wve+lLfa8eM0v0\nkaOOOrI9UkuGvPYLm7epD3g/nmafXvi85/o07Vt+8+3eB4eetBV2p0+mL6Ys7h9K4EzxDlUOB7z3\n/e9vFzznmb7MeY9OQzIryOXNOCi8EuwFmjV6pl70vl124TisP/Ion4DFSWPv45F61RYzm3qtgepF\n/daOLUt+OHLMvulHhxzs1ZpZ2iUdN+oQzR//yZ+0n/+Zn/aBGBw3DpWoSnydyTlnnN5+6iff1L5+\nw22aBdwiaw/TMvZav13Cp6VlO+3oN1BIv47n+ELdd/3+H2jP3GU+WYpjtVyzZuwz4xVVH/rQh/Wy\n+qe352l2cLucJ00Z+gAKfWBO9+V9+7c9uT1FdxfepVdM3a9rPDhBTP0/4pijvbds32F7VNatWpru\nhx826ET3T/37f9N+7md/Ue8RvcXL2s98xtPaD37/a/UdY4/asvaYR53VfuLHf7S99tXfq4MIX203\naHac7z2O4GMf++j2bdozyPd7u/Syf22PnObVa1a3T130ifb1jTdotvso9SktSas9cMrZK6kO5v7F\nd4eQdnZixkelLxafIWZU+APDlz5Vn2/wBB++US74CsMTGNqYDj5wpCfvahO88IUW2cBRR/DA0AJn\n0SquxqsM8dGmkXe0r8pX3sRDDxzxSc+CVYZ48q42Vvyoo8qPNNKVvlh8llyVrXLgD9XGUW5WPuEJ\nDM+YDj5wpM+yCV74Qots4KgjeGBogbNoFVfjVYZ4bcvKRzz0UWbkq+nwBoY2poOvsPIQT91UGyu+\nyhKv8iOt0u20RWmWk2ZlNgsXxZFfSGsgx2gNMiwJ8czlFza/9PkVDf7yy7/qKxHWH9dv/jebvDo2\nhrO8oohOjF7rfVI8xEWZHCLFeJ4rs9zphavFBa68QH5ux952ud5Resedd7UzTjnRl6ViX3cukOuO\n0pVXb/Q7NY/W6TWdZ/MsBjMj/OQXh2wG9i8RG6G9VChnzFD6mLmDozt0veQuM+XWH/bjqCCLHuRw\ndixvOdlvhwjb8A90yEJ5MuCzzOuZB9lztWZD3vqbb2v/7t/9hGadjm337+CiYi0tsXdIdbmSetWS\n2WkbTlIdnyJnjqVOWSYbcazYd+SBUPq57JdN/fdv1UCtDPobJ3Raspvf7VTCs5GaaaNs1LuEKIB1\n8ooiX8GgPHBS6DPsxQNynxfXclwvp/m3/tM72pvf/OZ2rN5juUszM0xM4SAeoeXHnczwqfbO2HCK\nBvw+U0ef4EDCVi1f8u5Mv6bJjl6fpWO2aRX7qOSAsPTGwRMfYKFtsU8hXwjitks82Ejf4NTxkUcd\n1b6qfvcXf/GB9o9/4HXeq9V0oSyzVOy9w7nj7QE4TTgxcyoj11zs00EEX+orp/7a665t55xxmquE\ndzrlElixOv9sB6C+mAHmYtyLLrqoPfrss9urtZS4Vo4K9w8uk+ONc+19int0BciGk9UeJ6v9JScb\n9F/tpFOzOHhyBAn0K+J/ceGH2v/40z9XuzNbqD6DPmYfqUP1ibt1avW33/EOO4fPefo/UvvvlNPO\n7Gyfkdsux5Fl3BP03Tv5+OPsQNLv9mg5nZOjOKMs+3JalXo8XAcHtrnPcLhhn/ZIrm+vftWr9Pqs\n9dp/qFlx2bFXP5boT2drlvcxZ59le1Ulmh2HjHPMcrj6rRxkv/1Ae93+Vns2L9SMn5q59zH1EtrL\nXx+6nSzpFS361P/qgy3tHRyyhODHOGUJLdAC+qAPjbhKSxyY/hZY5R5sHpEF1nh01/xm2TALV2Wh\nV72Jj3Kz8MEBayAdWvJKuvKN8fAGhk469QaOdPTVePhDAyYER5o4f/SHUZ50DUkHhhZ9wIQR963+\n1utyqbpLnaUOgfDPwgcHrIF0aMkr6co3xsMbGDrpv8/9zU+5FIDCpICBKWgqMhUYGeihhVdahONT\nA7Ue2yy1MRjwS9v7WTQg3HX7Xe36a65D2DMrDHr7OO6vJzi/srk5/cqrr9U9VLrQU8ueGlcVuI63\nb/r2rfXiO0wD6eEaNNjgLWHldXi7+eZbtZ+IJRdOwWmmSX0AR4N3Q87xXkVpuljLrivkHHH/F0uv\nvDoKPLNGe+ywqAyS8RAm1Qxy/VVT0jPpZOYQO3GAsNsbzVWQwzRTQXlXM9hqpoP3KPqUJ5MeuC/S\nR3l26zSkaqU7tsLbWVSe2KDjAW2H7rZafdQR7ROfu6T92m+8tV0pB27tGm321ntQ9805c+mXA6N6\n3SdHhplGlt4Y3H36UpngdK3TLOI6OQt33XVv+613/m77kz/8I++ZWqZystFews6dcuzXspWKZ/uY\nmel1oFpX+ZnpZLM6y1iIkY/bw20tu5XaL9sO16GOj3/ms+1Xf+Nt7TpmUdas8o3+9IM5riiRLPfN\n7dZsGoO+T1WqDMx0SZVnvbijbK0G+Bu1dPZb7/gv7b/+0R9rplFvVcCxpq1peyBtpngCcdodGpA/\nThArEzjtKP3Jn/739qnPXerXa+m2Wb9XVhM/3rzPS+NxcHgzApNUlHud7NiuWbY/+uP/p/3m23+7\n7Tlc79qUM75bDvBeOW7M0nEPGa2pylT5cFJ2srpsedr83X/wB+0d73pPu/u++zXDtE4zZuzNU4sv\nU/+V44hDz3UmzMRxmITTwOtUb5SDgyPLl6/R6ei97b//2Xvbb//n32l33beprZdjyVI573fFX2Gv\nI5W7Zv0R7SuXX9F+9a2/0T6mdtAauOp/vZeEOYHry5RVZTi99Be/oF02U6c4xXwXV+py3DWaLcT2\nP3vvhe0Xfu039Cq5m1Vu9Rm9o/VOOYY7tEdt3RrVrTJXqcUpqD6yQ7N5OMos1e8TlJHas6cfF6rk\n/ft01+CaI9vlV3+9/c57/rBdd9PNbb3eCes6ZB6RjiUbtJgrc7BJxkzt2w+WpKVV1Kn9ga6nqe3h\nyHOKOH2AdPjARZY4IX0ocpGpNDPO4AUf/geTR/JElhAnINBIfUR3IPjIhqfioIU3fGMei8nBn7+q\ns/JTxtiI3uhOXpW3xkMHVvtIp97SLlV/7ICv6qi6IwcuumbxRz6ySQOrTdBDC2/yqPpr2cMfPeFD\nPrLRFV4gf5GBHtpivODD/2DyiN7YnDoOTH7RHQg+suGpuGp/+MY8FpODP39VZ+WnjLERvdGdvCpv\njYcOTFmSV+ot7VL1x47wJl11Rw5cdM3iB1dD0sBqEzyhhT95VP3IHLA8GsMRgrEqIV5xoQUHTOi8\nGMHDSI9yHkoaTJg9kBI1gK7b0FIVS58XPOcZmjnqjgDyjK26dUEzSnvaX1/2ZV3Lsc33S+2Vc8UD\nnHz6PjMg2mWXZlG8ydsDs968oH06l1/+t+0Zz3yqTtXxXk1li3KCxpg77tPltFdd2505DZzYS9nh\nwWIgjhOC1DmDBQMIzhozVT5lN/FpbPVMEzNDXIvAuye5S3evBis7cSo7s2gs6TFTxOyL/ADpIB+c\n0B58bYkw0JWTBm4pkU07NQgyhH3805/RHrA723drk/5rdCHpei3rMriLXTYx0yWXgfqRrSw/+32U\nUi1y2yJH6UN/9eH2wb/8q3bFVdf4vasMyFypwX5CZuo49ceM2Sr90c1krsPuqeKYhUSGDe3UF44Q\nS5Q4y25vas3toOskpI+rKj7+yU/5na4/8Ibvby/+rhe1IxngFXAoKR+b8WlPXjB/uBwO7YprRyzv\nV3rcvWWr9sZ9ql34lx/S7NjXaGXt3dIsleoYW3rZKV3v7Ol/2JL2pIPz19tWPwRUDzg22zRr98t6\n/dK9Wsrl9Uur5LBzGEFDO0WQx4ITsFzvZaUtWvvqlde1P//zP2sfuPBC77279vqN7XHnniXHWmVR\nt8RXWr+2H57p5dEPAVWgnS+VDXuZXXzvez/Qrrvuhvaa17y6na+9e0foPjVJq1/x1gftE9NWgZXK\nk9kzt4E6CcvFfH2+8tUr2rvf83vtUs0U7tTM2mrubZPDxWwd37N9chpVE3YuubPtGC01X7/xpvbL\nv/KW9rUXf1d77WteqdOgxzeaAN1+ETxNphTyyzXTyCxpAvsJv/Sly9v/+2d/0T7/xct8OTKONAdX\nNmtf4bt+93fb1776lfba176qPfHxj/cSM7L8iNqvtqdf8CPC3z/VhYrYlrHlYcfuduGHPtr++H/8\nuezbqLfZqS1lB866HUb6sL93skv/+I47pJ8JJlDX7nuCxPMQDB6+Gn94n289728mjyqLnbE1EDqB\nMlYYOrCG1AUwMtArf+KLyVV8eMd8kq75LMZb9c2yL3ambaqe6A8uupIGJgRHOnj6Q9I179ChVXxs\nGWVIE5IHkL9v9bcFn2Cxukud9Rrsn7XOKz68wBqSRi75LMZb5Wo+kQv8+9zf7LRRAamEWtBaAam4\nQGiJB4YfHVQK3xmcHZpAw7I9CIZZJqC26XTcZV/6crvq+ps1E8MSH7ML8qkYAfWw3niLDitcd60H\nCWbecJxk5Xyj9b1gXbOomh1ho76WnOQ0bZ/bqkMGX2zPOf+52kek+58YuMWKg7JSA+NXvnZNu00b\nzRlYlslDZPnQX3DZ7P1XPCNLv6E8zDLdpysWbrzl5na0ls9YSqOM2EQfY78Uhwi4K47XD7E3j8Ho\nMA2qzFixhMU+qeu/fpOcD12BwoCkP15gjxfHtQjL5RCSLTMWezX7kg7mE56S52Liq6+4sl3y6Uu8\nJ4xrNNZpqYqrFnBoZKbLwnIfr6u6/Y672jVXX9cuuviidskll8h50MXFsnmtNv1zwSlXUTALuVIz\nY2wev+Ebd0gHDpXsUiNxunSblge3yXHequtRcELZJM/1DB6QVd+uN/qP7MYAbF61ep1OIYpfXjp1\n9pP//qfapz79qXbBd1zQHvPoR7UTjj3ODuIaHUDow5FOS+oi2U1ytu/dfF+7QbfjX/jBD8pp/xu1\np5ZKuc5FTh59hBlPHFQqnbzoe7X/JV5pjstCXuF0/9bN7Wjtn7pDp5d/5mf/Q7vi6ivbi170gnbW\n6WconxWaOVoj547XNm3Rq742acbqa+2PNMt33bXXean3fpX9Xe/+/fbD//SHdaEtr9TC6dRsseqT\nZT93HKbY5IXglOOM8APAy6uq28989rPaz3lZe4le+fSdLzy/nXzSCe0RjzzWjv3aNeyJ04vZ5RjT\nBrwf9s47blPdfV4O4/u9dKwpMJcDBxsH2ld3KK5cVA/L/M5TX7ciHO8/vfvue9s7/8vv6q0DF7dX\nveqV7dv/0VPU/kfodOvR+m7pGg85hVy/sUsnjnfP7fBL4a9T/V9yyefa+97/Qf140j4+vS2CmWjK\nhm5mZ7foAMT7L/xAu/jjF7WXan/ieeed1848/XQtf69TPa7UadBVuihaFzdrNhU7t2mp94Ybb2kf\n/vBH219+5MOazdbePPUlnH9m5fguccEwbUWfcjsy5vL9mELaNml4CYGVPsZJw8df4tEDDH/gYrjF\n8MhF74PJo+pLOQKhEaI78QqJJ8T2EUIPbtRdaeGJvkqruKqjytR45U889FkQnVVv4iPvqCvp8JOO\nLmRH+aQjl/QIoQcX3uQRWOljnHS1IzLRFf7Aml/FLYaHh78Hm0fVF5sCq22xYYThqXpm8QQ36p4l\nN0tnxVUd0Vv1VN4aD+8siM6qN/GRN/qCTzr8pKMLnvCNMHIjPmnoNU46eQSGftiTnvOdwi0MfpWB\neGgoqSF4FCUeuvca6SEM5LHK7I9/PRP3H6fINDOh+Mknn+TZE2YNuKuK1+swQO/UIHLvli2e+fIy\nnXSsWK6ZGXRpJESafMmAfUX+pa7ZEq4S2KnrCHjp/HHHHiuyHLaJRy6KlhKVq0ZGHBpmVyQpPULh\nZGlQxULPrPETX2VjAOGqhfWehdir+7WO9RIWOpHBkeEl2lvldPBCc408XtqSiAZeORqSZ4Blg/p+\nOVJnn3WmBjFtcheei36hc2AC52bTZm3Kl204e8yvYRuDllYVfZiAtxfMKR9mHdfKATn22GPa8ccd\n20486WTt1zpSMzbsCdtuW3CA7pEjdtedWsbSnjI2f+PQ0gDSqqU4DcaakdmpKzdwZo/UGyooG1dB\nUGdsLsdubbHStRK6u0xxHDecOt5OcGCbo7EPrvQHz8CpTF52E5pDJGxgZ0A/VVeOnHTCie2Rahv2\njrF5Hqdwp/LFSblVpxR5s4Jn9uSM7lYb0dq8GgpH2Y6b6pw2I9T+5/4gXGwLhI/6n1M98EYJDnhQ\nNhyLTbpbjlecnX3WWbrs9gQ7iTvlZGzZsk2vOLtVDuRGOTlrPAslETve7Kk744wzxSvnWjb50mM5\nM/eqfphRo8+gnxpxfWkWEyeX/WhH6KTnDvVPyrxMy5onnny8Tleerj10R3u/Fy47+/e26XDMpvs2\nt6s0M4rdzNytkSx9fatkmfWk71EfBMrKX/bmud+Kzswtl/Vu1YEDyn3ySSf5gMhRukblSC29r9bW\nA5Yzt2rP2hZd/3G37o37ht6ywH66Y47Rfk/NmrGvzydJ1TNw8ui7q9R396jv4DRyAni9DqGce/Y5\n7dQNG9qRehMCDjBfId5XukWzpuwx3XjDTdK7TbOAx/Dl6T/E1F9if4WJ076O6yO9LO2atoeeeGjg\nEoILD/jEQwtvYPDhAyaEBkwILvzgEw8tvCMMPfwjDD2w0quu0IGJh550ZMEHF56lYOVFBwEcf4Tg\noj9pE6eP6Ihc5a3xWXxVT42HN/LQEg8t/MEDE8IDTDy0wOAjDz7x0MILDC484BIPDVwNwYcPmBAa\nMCG48INPPLTwjjD08I8w9MBKr7pCByYeetKRBR9ceJaClRcdBHD8EYKL/qRNnD6iI3KVt8Zn8VU9\nNR7eyENLPLTwBw9MCA8w8dACg488+MRN+2actqqsGoaJVG1MdUZK4Qz0GTNRRcQZ2qqTkmys58Xy\nBNqEzdv8+l6mAVbWanBk2UbOi2g4enbaON6ptDR6CYvN6wxuDCpsot4m5yYHFXDGyJ3AIOblQy3z\noB/nhQGRPL3BXZx2l2QfdW17sUmzKd4v5kIxE6XlUNm4W3azuZqlI2YEsR/Hc683r+tGe81QsKTH\njALvv+Qurj1KY/wqOYJzeh8rMiu5WFQDJCWkaHYc8QxlhG3W4IzDukqO7R6dIvXy6f6+H8zLwzrN\nKN9G7NozJCdpm/KStPRyD9u+dvTRR/t1UAzy3rum8rCvjIF8nWYjqTuc3Tgb2Mwytk/zqoxrtCeO\nMqArfzhyYwDH8h51Bz+zT8zooJtysCTLciyHHGgnDo8gs0szMlxuzHIfs2nYDQ/9gDrBiUMngb7G\n7JaXZjvqgM90+kB3ePoJDo7qFEcFvTtVR0frpefYRNtgD/2S8uW9mzhTpO/XDwhm/XBSeN0aS9XY\n45Ogsh97OIGsnxSuX+4j83dCbUbf5t2g8O+Uw+5+jHOudfSdc325+XAtx5I3jUYbkif9khlq1wlO\np9ok+VHgzPbaXtd7X5alPikf+UNbrb5F/dFfcSJ3qS2wk0NBK/XdI2AbZUOOGTpmjdnHt1ztwI+o\n/g5Y9XEcZ/Ewi7pCTitXhpxwwgluP14VxiludO7RLC0du9ugfXaa3bVzq1lgfpiwb5CyMotMwFGl\nv8RmI/XhOhSkL/PnKpr0QqONCYmnzY2cPoILz8H4oY96Y8ek8gHgoeQRJZFNutoJLvTAiovMCCtv\n5a+6R55RR01X3tQFOP4IwRGvvKQTKj7xwPBU+8CN9PAFhl7lEg8tvLNgeICEWo7whyd6wwc+tPAC\ngztU/sgAIzPLDugJDyWPUTbp5Jl0dAeCr/HwVTjSk666g6tyi8Urb+oCHH+E4IhXXtIJFZ94YHiq\nfeBGevgCQ69yiYcW3lkwPEBCLUf4wxO94QNv2hPPe6Fgf7jysOchT0g8tKoAOnh4gh8zx6T6gLUe\nIfuJRA3YDFrah8NAzguzV3AakkFVgxODtG/S50Euh4hZitz3tkw6cNq8MIk+ccsFsKOlYdKvBeIU\nG5vbGdRtn+i5WgMcM3cMEP01WN1OZhJS1n4isJcN50mG9n1PGrAY3HBsfNJQCfapYfdODWQ4XgxM\nPi2nmUOMY1DixnicRl7ajY27dZIusyReotSgSDYM5pxy9GEIBkeVjbrA6bRjSYWqeaghZp44fcqc\nnARkQ78lH3tpl5XK18u+yo/TuDtkA2XkPazMyKGKvXdM48FPfeIUrNNsGE5lv3BX9azyEBjMsZly\nA6lXyj3f/miUPXY4KAdtq7bELvjWHbHOAzMzXtQfdc0eJjbcq3iaRdLyrvLp+lmyo053eDmWW/tx\nqmwnda9y0B+otPn8ZQ86CXFiDOHTf2ZVbbfkeRMDs4tcyzEnBxgnkX6G004efqOB4uSBQ8fetFVy\nWrlqxVdk0F9VB54NRIccXnrRbpeJHwjdFtqMsnMR727NxGEr/c7L9cJRP/zo2KX65o4+91vVL3mu\n1pI1/Qhnzn1QleSTx3J2KBKBuurO4HRX3tQ+qQccL/Yq7tFBAHTRD3xPnOLUuZfCFe+BzkB99rbB\nSUPPNvWbdbr2hKtamA1fo8MRu/k+0idVBhxyZv6oG/KjrvgKU3bqWBpVNbLPP3rom6odyfEO1Z5/\n/xGADdR9DbQfdUagZfle8MMFu8DDv9jzykLTx6Hwpx9FDhn0Bx87oEcfMOnglrIpuixUPkbZ6AgM\nHbiYTbEjeeQ7kGyiI3TS0QdcKiBT2wIbCOAiC67qQ2YM0JN/9AWXso4w9FFX9IQeOfgSDy22RCZp\neMMDjE3gCeEPT/RCSzw0cAnBhQd84qFFd5WBJ/jFbIQfHdETveATDy26oNUQevhHGDoQWvRUm9BX\n+ag7eBNCiyzp6AMuFZCpbRG94CILruobbUM/9OQffcEhH5srDH20L3pCjzx8iYcWWyKTNLzhAcYm\n8ITwhyd6oSVuGjNtIAkRGuOkoyg8pGsIHkiY51ccTOfGIZliengz6DBzxKAV580zXnKqSONcQPfg\nRSXzix99LHFqJOZUpkqjGQsunJ1eQYVd+kv3wRxQhh5CpoeJEMwa4PyAIS8qhqDuJQF1ChvuVFsu\nlCtZPAw83Gx/uGQZpAgMwJw0xFESqwdIykfAKcAID1Lko7zREQeFga0PdkyV+b+dUFwr/mE89cpB\nCL9KSBnYGYAdvaKRJ+WUcjt23HnF4J5rIBib2fi/W6caycE2SQp5HIoM5tQB9cKgi5NDeTyjJb7U\njxTMh7Q7Or2OyxUnzBTxzwO7yia7aB90KkOVVQhBHDg1Xu8TakpmuigCl94ye8jrrZixkYSdJBTR\nFyhYnIuxv80bNkVoPVxSHHFkcTRwT1iSxhGln2EX+7r6TJroPIBUpz7YQQvQ3swQqYgsifODAAeI\nfYHkTxpHb5/tF78KQT/npwW9CX2UTeJo6zg3Vq+zw+VY4STTB3CSaRs1tZ277ihz4ID9g/QnriBR\nOcRHe/A9oy8AwREnj+4A4qxhs5bFXXd8R7oMsr6Chvqx3bbU5aZPYOke2kyzkszM2nKV1WWRLAc6\nfP+ffljxCq2ej76zXBuif/wYsXNKvVAWmlyzfRypZaZ1mStJ9olAXcd2ypFyKVPXb/oYzmvaOzT4\nx7gRMz6iZxY/eqCHJ3qjJnggIfyhJx0+8DVOeuQZ6fAQFsNHHph4eIE1hB5c0uFfDB894QcmHpnK\nE1yFlT/xqic2RE+VDa3iiAcfGL3hC77yjjw1nTiwBvREV3hCD77mEdosuBR/dIdnlh3hQXeN13Tk\nwdX4LJ6RDg9hMXzyBCYeXmANoQeXdPgXw0dP+IGJR6byBFdh5U+86okN0VNlQ6s44sEHRm/4gq+8\nI09NJw6sAT3RFZ7Qg695OP7k577oQC2RGGAURhFpHuAJwQMJ8/yK4zhwvxe+FjbzjtG9bNQiLTAv\nw4NcoT+0O2QgQ54BgNEW7f5D2ZSw06I4eaLBgw6jiAYOrpnw9SNUDsqnEPuANZA3RoJlxZE4Ay7L\nXWA924HtHvzC61xhXiiL5FwukWTBvB70efARlqqi/BhGVtQnMpaDSB6yp1/DIBdgcoZ8elYSXNlB\nnvuQ0T+smDwG6RWGvFAsM/FAmY/UBIegPtQeOBa0Be5E38+Hhm43d8zB5pCyKNEHe+lCt3gYcK0O\nWvJT25Avy7xcR2IGtQUG7tPyJHnqv3Wg39bDLAbaUqXWP9WF+Nm7uI82pG5sE7ZiY697KpH6ou7c\nduhTer59pYlq2osyskAHbSwcSfS4vqfCUg84McDeNNQb7YKzA4Z8mFFSXGUgLXOmtpO7wswYPLZB\nZArqfGGXLeKVMgqv5sV2RWWTywM7yhRYmlbKuid28ZCWg+Z2N5s/uv1d1nHswQb9k+VyqOgL+qPY\nomEbdN+Z6PJ3XfyQwCBOgBL4irkh6YPULzTF/V2WDfQvzzpLqVpVzP2TH1O9HbGJOuNABu1GDdDb\nqAeufhENfWQztR8wIX0t7Tk6beF7OGD6S/Lq/XvBluCB/MVe8q60pWwZ86hyyS99GD3JI3zw1D/w\noY3x0Y5ZecNzMHzyQ/9SIXqwOfGqv+qJrYHQUtbkkTQ80Vdh4uGfBcMDJEQn6ZEGfexv4YH2cIfo\nTvlIY19C8Kmj2A690sI/C455VLnk963+1msu9TvWUdKpy1n1HFx4gIToJD3SoD/U/rY8GaAkBo5x\n0gn8kq8NjQxhhBVHnEG8D1iK66HNbh36qMdq+qrpeggpul8zMUBmFAi8j5Q0f3wwAGnkJ+XgAR07\nVDkGjEzKzPwMVnBNFYkU6ZQ1dtdKZQhiENVQo8FGgwqDkAS7wyaogcdp9KLM3glR8TOAafDzOVCZ\nD4m4sxev69tGSDvIqVLI08ajcCoLNYXniI3+kx39tVzkyZxL8lcSPfrvEL2oAmG8rKYuFEd9z6ND\nOhf6aQ/attcFOmX8/r4kDM6DupQx89IHcFT3TFFJs9A2+9U2YHte0ic8GFoib6WAgTQU/k8fAswa\nyQ5QsonZMTs31LkZaRsklY8yIN5ZOyTuei0QPfgjVCdx1BgoI/Ii9FPOylWE7rCiHwIoxc3X8/N+\nOinEae20Xn8UB8cYMbyjyR1RXNb2bA3hcnvBIc8I29BvOcol8e7sokjBNkhGfYEZQ9cN3F2g22Ye\nbO8ivQaF1H+3O44ecZFpI/r2Xozi/2Qc/RseG0nj6X8n0d7olQ1qD9hI4oj5MI/6CfnSTnwXXVeo\ncqGIWDTmOuEWlDyOGGFsx7QhNM9mq18SKr7X/YJ8pZl5+DgU/kN9vsXe2JS8D5ZH+CpMPLIjDB1Y\nacQJgU4c4kd0wp544CxcpSW/iqvxakJ4A6ERD39gcCMM/VBsCm90JB17wBNGCK7y1j5Q8dEbHZUG\nbgyHwl/zQn60bUzDQ77J+2B5hK/CxCM7wtCBlUacEOjEIX5EJ+yJB87CVVryq7garyaENxAa8fAH\nBjfC0A/FpvBGR9KxBzxhhOAqb+0DFR+90RGa3mXdFUMg1HSNQ0MoihIPT9Lm40OhP05LXHkxFvQn\nfgf2vTBBeA8Gk1C1irjHEEU6VKdFrT4wX01iCEImKt4JDAxjANNlOw9x2zQx9vKhk2BOD04oJh8I\njIsMnWBif5+pyqDIANkHarRYvz6s0x+x11Q4iEhEOsnS9SyownnWoqNcRpevfwgLYfropvb0FO9a\nzeUcSOM8x+beZuTbdbjeKBWVKiS1zGyNyaCs18Ot48ajU38MqUDs6c6UzJ8Ibg6TpHvSYUbyIh9m\nbcjFdQaDUlP+3RaRXGaqZMpV6fk4+ZYAfr4/xh7pc3D+PepiSk8vFxZNcWTEgkS3l7wiqHgXF4R/\nwQ7yxW5moHBooFvLlIfzm2TJ1I6b9PJvXmmXCJfRPWfyEZs+XBTn09liz7waEBKCD7N5ywjQesCZ\nyI8JcBCwpTu2fTZrwuO0i+6iTzqdoxVBQVfPAybKjW7sRGfPE64pLnWuLxkW22CGnVDrMmkgZcYu\n2wiiBGgJNR7cCCtPjcOX/IGJhyfpUR/p8Iyw0iIf3dCI14B8cNEVvtCiB3zlMd+Es1Z0l7qFXkP0\nBSbfQHgTD8+Y31LpkVbzPpheeJNn5CITGHrNZ1Y8fNETGHyVWUp3lZsVD26EVX+Nw0d+sSPx8CQ9\n6iMdnhFWWuSB/BECndBH8iYdXcRH2dAC4UkILjLBjxC+8AD5IwTWeOU10/SRvIKr6RoPPTB5LKYX\nvtBGmaVka56Jj3qiL/jwgV9Kd5Ub4wfMtEGsyqM0QmO68h4Ql0AGclnWH8o8Q3ik8yCh0aYHih/s\neu56YOjtOP8Q9+N4/pksB0Iex37uL9M/v5IJfcoJ98kOg5VQCFWIMSyu6YGvFNDLUEwZMBtmu1CO\nYRZIMREHqw/0o07ycix6STIYQ4msnA46IYOS/i2TMSwDEvrANWVBnlLOX68hNHseTrbJTtmmHT9e\nfuozfNIx2WmnoWfRzVXcalBVArl2/bYOkxzAE1LfmI6tlJE8FpTBSUFUY2Lez1QhbAJuN/hBIOCM\neq30JWj0aOFN+rpLq/Jhv/MQxs4Zjukkr5axNtFd0+Snv56DPsUHZ4I7fBCdyWaEDqx91HHx9f5G\nTVQhKdL0UK+ryR5PF8HfNeLgpqjYIu/H6b7kJ4thtCj2qx+6zsgQecqumlQG9E0v76tWTFJaXdB1\ntF+nQdIvUfWAYP0xQwnbpPysqEvYNKWBDoYgxC5Glq27HL3OSH0KMlMIQVE8ebeG6sDfFuwWnsMu\n9ANofHW6BCe2e30K1QsjHp/WVhJ1OTBE3Mvb0kc/QAfVFmMtP8nkGaKk7ab9anvCi2hC+AODXwqG\nN7Dy1rzAhwdY44vJRL7yzsJV+RqHF1lC5Gq86mV2nMDM+PwyDO2pCqZ/Ik9dzzc8UQJ9YapF66NF\npzxNn/ERuxbqnhjtufD9rLZVfbENaJvmZ/Kx88D2JWtkq64Z5hg1b5PLs9BW0VF1h7fqqrjEq0zl\nTbzaBe+hhKVkRh2Vt8ZrPlUm8co7C1flaxxeZAmRq/Gqd2Z/m+SRja5AKx0+qr6BdEBy1JE0MKHq\nShmg/f+hvz1gpo2CpxICUxG1UqjAWpnEs7QmBf0LTYfQk4M9V2Luj3nVO2N4f3CjkaDO44cAA6GH\nOOGQQQwaMugRAt2W5wNZyeiB4CVMxdmPND2TBPTPvMAet07h/MizCgY19CwEl2WyWYWSVj1w9EBk\n6JI53TTp86BGqcQLmkErAyRLUtjHgEfZ+GQAZF8PeAsY38vbnVjKr4UrDMKBMJPkyJIMpB8+bOhO\nHHFpNhGlsPT87KQir/y8r8+ZThlbHptwzHouXT26on96yMqNZGWKshLQYKdMfMgydoSOnc4de2Ck\nfIKU3xQD5+q0KWKwo2ZnQVx4hwp2xMVPneMMoUcWTYOSoCvfDJPN3Xbs72XoaYlM+uezdF3aLvGi\nZr4OsVsEHG5sXuZ8FTfPVKNUvv5Te4TeviVuMvIKbsMuhxC85Gt54uLCGWImjH8mdsHJJqFsKPqx\nQ3UjOo5gt9nM0ktm2NIhn95vCLsKmO8Gwu7rtlEa+6hOzgrwISib8LiU77KpTSw39X1Y3FdFo56p\nP/J1qwmig++AHVqM1ff58P0c0uh5yHDLkR/Cthkd6IVGZzKrkApuS77f4GFOhzO108M3oQ4K0Fll\nHuzzrfYv4jWdzMc80l7AxMObdNUDzs9Tyqs4gT6SvY8L+U51QB2qWNblPkO8lxMCeDTwZSVK/57f\nBoBmIXu1IAMv8l2n93O6rSZ9blcxUHZz9o/RfrAVF9bgSHe7MKs7n6EFdrsWckk6dGDCrHjFRTaQ\ndofOHzgC8fSHGh/zgHaoIbyB0Y984uQfuxLPeIpcaMRrOjZEd2D4oyt4+EOresClDYgnRA448le+\nkT9pYPKrMPFZfDUf6NWGyl/5YkvFhTc40uFLWUMLHO1KOnRgwqx4xUU28OHqb4c00xaDMTZGYQgF\nr7jEaXLLCMKX4LiJdFDxQOBDCf5JyANzf5hIvxww8vDpNQYJTqIxkOgBgkuDf8bgJM9TOtDDUA9e\naTH4VydpV3TXX5fd4LUhBzx6wm/ByTbUyR7YFeNR5X1C5OY3PuhLBd1ZEBcPpJ4BucDpT2yJ02OU\nKB4s9YFeV4cI/Ip1OfTgtbOCAslCT6A+a/2Ct7x4fW2JIGIWBZJm7ANaFoket24rVx6G2IM+5THV\nn/MSEnwflGHABjMaRz3YyikP4tCtB0i+0Qt20ufDFEkgC5dp5BYbF/obJjmnTp7aeOKzxBR3ZtjQ\ny+MyTDbM67X+LuS6URS1U86CZNblJy5hMNIU1xe9o5cM9IRHDiUUpVfqZAf65jOYIpI2uyD2QU+Y\n4vR5+pjzQe8UXDbpd9kmnB3EqT4Bzk4fOE+IUhr05LsB3Q4ddJdLZeiM5vdiquvAUl2DDHKp9UXk\n5CwOFTZwcIeWch8ET6BA1tePSKCbvLHD+XQupYOXCA5LZzS+65DgVDmWxyb0TLhJzaIgvIEwjnFw\n6Fvs+RaZ8AEJsSH6AistPIGVFn4gf9LovkSduB4UiV29nszh9qJV+o/a3g79R43EqHTqRgBn33Gl\n6RN8d0HxPOoVTHs4M3/CS/sQ/H23TU7pY9JFsoRahoKej0Jn8Eo5QiDdyxwMpip/bBtCcIGQk2+N\nhw6EHv0V1ngdVNETueiBd8TBt1SYJRMccskfvf/r+9uCPdhFfRBm2WWCPlKWWo7EK0/ilDP1GRga\ncDFc8qm8xIMf8wwf+H9o/W3eaaOyKGCtBHD80WiVnsoChl7lhJTDoYeH4PyvaX3JOQWpJ4ce6Ioz\nozZ9Cax7crR05wG37kqWjfa8iJvlTx4mk3NGXHLguCZgj06hkY11dcNI+KHEA8uDsNT1gcgkfvz3\nMsnhI29sIr8EyuKAfTxglPCvTRxH4nri9dkEnDPpgE+DU2ZS4MI+ma8yKIgHlfp0VshYkT745/+Y\ngQOIrkknBB6WOKk+tYcS1PlzohGf8I4iowhZoLfXP7yTLE9r8nDZsVRxMfNA7+0snMqioiqNHPnT\nVuQrpeJDFXHbobg35FOH6EWX/iHCMk2vWvRYSBArJan8IRqNIvLEXJfVTG67+frpJqBUMupbVkx8\nynPqo25P1Anvh7D4bE/pb3aCLdf5xN6D60Y45YVhOLgsW5OXfyZM9dKXR/t3QowwY9ZUX7Z4qpte\nDsrluqVsStg2+CWnLCxvPWKn3hH2oQ+U9oqf5/GD1CZ1SRFc56mHlD/fWSnSjx7qq+eLRlmBWM9r\nst3fE+qUHxzitz7VARBc79PqzVM70Mr0d32RRWdRn4M1nAhVVqonTuu6D1GP/APOf5fASLds6svq\nUqHQ60UKVG7b6bxNMB28mKwHXtsoXCBlJz4rhBbeQPCpK3CRDww9/IGRgU4A7/62iF3hj97RxuAD\nOx3dPCvdeKpxal1lVJ7L/EXqjQEXDlv/jvc64PmK48ZVRK5M0f1MMq8+pMNNJ0ib0Ri938OuOlY1\nklc/rMIzgXbsgdbhRyvPQDar8D92mw+d4iek3oG1rrqmhXojTR0RIjtCE6eP6B3rPPI1v/DWNgCX\n/KqOyAMjV+nBAROHdwyh1fqITLVjLCM80Ee5yEAnQF/KrvBH/2hf8IEjPXlAj93BkQZfZZNfaFVf\n+IDYDA/8swJ0QqVHJ5A/QtUZOvjEZ/FGbsyj6goPsIboHescHuRrfuFNnYSeMlUdkQdGrtKDi350\nHbA8upTxoUUJmRBiUE/1jF2tVHBnmB4m4p3+8VDgK43z4wBQnEFgL44djxc3sDTw4PH7SNXg0gkr\nDyxu79qv+8Q806Z4H/4YWsiH0HnJwml9YA95glMNGdoWG4pMD/NlJD/ZQfDYrYGJB1wvGXjZ5E9s\nhwu1UPVPfDhCHQ19YoDJ8Z7uNolfOFtsaEV89DoSK9wLs1Qk9DcFJOeDol09DNOvb3kfPLA99EKH\nefqodmE7BEPRXQ8wwgvJshaMeMfDokpNaSm/B3TLBovqrh+FvT47Sk082Ycc1IlP/I5NSbebdQrR\n/wtCBHRIeVImx62NmtW/rsD8tqoXpZeT+JS2nbbDH9YA0XZNZejlw97eV9VDpEBx7Ohi83VDpFft\nZKt0oMvmuLE6HsPATVzSo4RTQMJUDuFdx2SkUMtrxPTh8itjBnQvMU/yyYFyOgtrQ7eCDOgzNpSG\nYXvK0xYrbZmeL0v91ANl8w8yQd6IcJgevL46RU6gv7MuvHQrM76nsRevzu0w0Sk3mk2fcN0mUTC0\nG2sYHYtBqXlAWIo3NPf55CMN4NO3UJh4IPTIjnH4Q6vxMQ9os0Ov596n3PsmtoW4W8cdSXlR36p7\nLn3GmfJ9iNQwamgjgSw/8yzow6NwvRX6LPwUF0Bk+iqIQ23Vn1GFn7LHImfSE7PKHBwwdQd36iL4\nCifVB4DKDwF+/hJ3ZMKPuOQ7wshH9lDyiExgZCsMbYTVruQVOXhjH7jEA6FXfTVe9db4mAe0BxMW\ny6PqrfaNusMXCL3Gwx8c+SUObcy/4haLVxl0JURvzSO48FQYWtVX4+GdhUu+IwxvZA8lj8gAZ7u7\n0TYDRriSwAXvuIiB8PGVypc7aWBF+rnjZzMPHjlvXFgqb5xXLXHtg18FpTcd+N42ia7QYMnFo1xq\nqsz0gPEjZlKaHHmoDHEljcHmmECkhJQFvQ5STbv7oUVe83/KVSyxnSEImssOT9G5WNQ5ICOG+tf5\nhTHDJD3p7nYdQFiQFs+CEHqxR5Yw2KIMunkmnQWk3AfAZBO1FSI70o0KU1HuaJgXxGJSty/84ev2\nx95o7WVyaUTqvIHRUGHnFCZqKxH0fJ0t5HAgcwRDR0HitDJ/pKnn4AVLfCEPODuPy2HJHltIdx56\nUHeGabseF7tD15HUElA2mDfOlvvCgbaR2/wfpOkf5SGez8kKp/PzyG6X8uCUs68pkdPADy+u6WG2\n0N8Cz+DFRjkT/jWdupogdrq+wlfgYvjC8nBFZ9kALvgRPpR8o+OQZSm/HkDeLyuh/szpfY6W6460\n0npuUuM8PzngxKoFe0T10hGn90+XNtNmXFMujZLVny5vjAPXZ+ykhwcefUbQf9bce0n2RWI/bN9M\nqHWReOAsvUvRZvFXXGQrTHwWX8X9XcUXyz/4ET4UO6LjocguJVP11vgoE1og9BoPf8XVeOgPB6x6\nEw+cpX8p2iz+iotshYnP4qu4peIP2mmL11iVggt+hJVvqXh/SOi5o6cHzyheci0Pre3RrfNcbMvL\nvbXoZgZfMKqBAQeOO7P8+ELoICG2wVbjo1hoeR45B+nnwabseEryFPRjDLvh7zYQ77T+eENztBB/\n8CG2IJl44Cxts2nUzaHXT3QAE695zcJV+kOLz7ZvVl7VrtADH0re34xsr9fYHtitqHprfLQxtEDo\nPS59VskH7s9CX6q8o77Z6dgWOJtLTT4fEnfO6td230Tn5Cj9nAG/z7bpdW76QcXbOrwmqi8xfpq4\n9MNLUDI8rLAZh4JA3DqU7PHZfS28Fvqf8DGrXmNftWUW36Gad+iyOGEKqjs7xcx2ud7kbtmhokVU\nfzqBPO/cC9/3AGtFQm/a8L5e3XsJH29s4XnJ84t/hmpDLu3G8dvLSWY95frpU3RKjtP6ovnHqKi0\nqXNFHJ3i+WZCrYvEA2fpXYo2i7/iIlth4rP4Ku7vKr5Y/sGP8KHYER0PRXYpmaq3xkeZ0AKh13j4\nK67GQ384YNWbeOAs/UvRZvFXXGQrTHwWX8UtFdePt/6wDIQ5imfhRk8RHnDBj3DUUXUnL/OQr/6Y\nFcJfk0q/63D7tq16d+f2tl0v7L5/y2b9gudVPjyYcNj0mh3tf5PIvM3oXCzENuiJx54qExp6CZ5Z\n0+NKEaX0yJKBbJy33RhKoB55FPIw4yFIvbhuO31WPl1w6U9scT5TPcMd+2ZJhpb8IgvvrHjFRbZC\n4tGV/EIPvuoYcaEtBmNXYJUHl7yIE6CDC36EySe8o76RDl90EH84Q9WbeOyp+YQGjH3BjXyz6NEZ\nWoXIh151LRaXCQ+wQVWuOtJwrv7vHaZug87nfRr6LjLLtlLfRV5RpXd+ibhH7yvdqVeSabsDCqZ2\n49VlWVJGJ+Wsf7PsSl2kHCkfvCMutMXgLJmKS17gCOiJfaRDD0w+4SWdeOCIi6wZl/xQfxDdjhR9\nw8+XaXmZKqX+lF8/qa6WkVPH3wp5zLzb9TA5XGwPXq7TwPv1ztq9c3qXM1uGleY1Ytp5KCXaaMKW\nFGZKbTBl7OW0o6Z8pMn5cHp54U/4iZY6GMu5ZNEmInUR+dRL4Cz50GpeS8WjG12RrZB45JNf6MFX\nHSMutMUgOkeZikteyRtecMGPMPlER9W9GC46ksfDBavexGNPzSM0YOwPbuSbRY/O0CpEPvSqa7H4\nLBtm2RL50JJH8oY+K15xka2QeHQdah41L2T/Tva0JRMgRo5GB18hTww/BARZPlmrF3E/7jGPaSef\neLzSe9ouvTB85UrNtmnPzPbtO9sVV1/b7rn3XjlxbN5H00IYK450Kiu2pOKSXpDujWF+6dWzTLI4\nbJMnqWHLLx8nT2YbeFDKibMenrB+zPYykzQbMw/iSZ7mGmyqNkNPiO22Z5AJT4WVHzxytm2Kh3cW\nLvaNMLyRPZQ8IhMY2QpDGyE8wSWvyIGPfeASD4Qe2TEOf2g1PuYB7cEE5Gv+0ReIrkof3E3U/QAA\nQABJREFUdYcvMPzV1ooDX3nDFwjvYvHIAfmrIUlk+TNdUAnF+SLoO+AvqmZjNGPDQSDCjq1b9Tor\nfWdXr24r5Sws03cUOu+tXaUXye/cNaevj66OET8TPf3NGnIAJ0ch+VqZPh5o1wMHspRvMRhdFS7F\nGxp5J44s8WpP4oHQwz/GIx8bwjfmEfoDoXTjqrmeyIe64YmiwLNHCN7xyntxOUWwjGlNePS8nNu1\nx+825v29bCHZI+cMH00Sej+sjw9QOM/ELWcPnPTwbmN4ffBoenjZZuqER6BPLkiMvFl3sCnYiKrJ\nriGesgJTZ5ifEDryiQeGp8LQkh+wxsM7C4csYYThjeyh5BGZwMhWGNoI4QkueUUOfOwDl3gg9MiO\ncfhDq/ExD2gPJiBf84++QHRV+qg7fIHhr7ZWHPjKG75AeBeLRw7I3xhCr3kEN/KSDi35AWs8MrNw\nyX+E4Y3soeQRGeC80xYkihIH8helyRyexHFGcLJIxzFBBlycmeggnQCOADRd/GyS9TKAHwP72xu+\n//vai573HDlJLLPwkFe+Ervznk3t3/7k/9Vuv/0OvVB+lXFs+u97ZRgUej7JNzA2k2+1j3QN8CGD\n/9X3g/Egkw16APLOSfbr6GmpxxYv7pYzRln14POsArYjzz4RBjqlkz+Qv+SdfAKxIfQRFx3whAbk\nr4akqYPkEzo6EhIPBB/+6CcNPbqCrzrApb7BRx8w8fBXWGmJRyb5ABMSr7YQD29srzqWsiv8wOge\n80JX9IdWYeSST+WHFjoyyQ+eMSQPYMpUZcMfPnSgL7oqTHyUiT7o0QMPaXQJ6QGcqL5qwgulPq9W\n1NeAdtDDQoS5uV1t1apVmgWfE26/+vzuduYZp7WnPfXJ7bQNG9pTn/qUdtxxx7X1a9e2TZvvbzfd\nelt73/ve1z73hS+2XXO79Z1Rf+Jl87uZjZNe6YxtQMofm6qdsTU8pAkpLzDxTjnws9ISj0zyASYk\njj3pI2kb5Gp7kj6YXeGPruQDTF7RA+xV3u3hUvHuLysfGkh1CIJXitnRWqllUOKaScMhXiGn+bTT\nT2mnnXpqO/6449tJJ5yoNjnWNt/+jdvbN26/vd182y3tlltuaXfdfZec611txap1csb2txVa5t69\nm++Enml62PoHq20kVw6Y0CN64FnspW/VUQJlSTnAJe4yTenUQcWFD5mqI3UDnpB02gWYEH2kEw8E\nlzaIftLQoyt4eAnQwM3KA1rV3SUWPist8cgkH2BC4tUW4uGN7VXHUnaFHxjdY17oiv7QKoxc8qn8\n0EJHJvnBM4bkAUyZqmz4w4cO9EVXhYmPMtEHPXrgIZ06iCwwfPCEHxg94AlJY3fK2CkLfYx01R16\n+KM/ZYqu4MMfm1Lfo97kMX/lxygYBeBjODBx6JUncSAhMPzgEq+8wUlgoqMXn0gHDfS3THnyDlIv\nqeiXItP+3P2ZKyqW6SGzR6dI6f7oje7oTRpISNoJfcAXWnBJi+SH4F49wJbpBd44bOyxO+KIdW3r\n/Zs1G7hav3Ln2txOPfSYBVy2ss8m2LvsdUW2yXOWTckfWOnYUnFJoyv21fgDbZ/98IRvtCc2VL3B\n1XwTj51JAwnRG9ixS3+GNxDu6AcmDr3yJA4kBIYfXOKVdxYussgQajpx5KKn6piFC290hZ90pZEm\nJI/oAgbXOfpncKOOpGs+VVfNo/KGH15cAb5E/EhhBoeZZZ86pXpx3jQ27tOy50q+b7t2sM29rV61\nsr3y9a9tL3vpi9s5Z53aVsKaPz10165d08457aS2efOW9qUv/03bvOX+tvbII+UU6H22qk++w9We\n2CwV8+WHHjvB13j4A6EfLIQ3EP7orHlBrzyJAwmBkQWXeOWdhYssMoSaThyHSBaIqvLjGfGAU4Ae\nHt/jKIdulZy2Tfohe/TRR7TznnNee/bTn96e8PjHtlM3nNrWrFjRBYfPO+++u90sp+3Tn/1M++Bf\nfrjdese9bfXadW3b/VvaUUcdrdWMHWrzBYcIe2wRbWZd6hMd5XJjE2Wdt22qp+CAtS4QrbikDyhf\nKSt0QvRXvcFX/VV3eCMLDA7ZMU46ocarXMWHdxacJRNZYOLwhRc9iQOTBoa/xitv6BUXHcgQajpx\n5CJTdczChTe6wk+60kgTkkd0AYPrHP0zuFFH0jWfqqvmUXnDX/UGh0x4Qwcm3i1asD28kYdvjCcd\n3ugKb9Khx4bIJV3zDm/lWR6GpWAyAyaOkigKbikdB6Oha94D5fc4v/T0q5HBgf1jPD54WToPepYE\nWALQh+0Z7UpesS8QfOKHYrMHMH1/zUsjaSBaoYfg/Zs3t3XrVmvw2dUOY0lBD7c9ct72ayZBzLJR\nm7K1VERIPkA8bULKSTz2jDBy8CReIfxJwzOG0KN3pB8sXXVXHeArrcYPpvNQ6dFZ88KG2BH6oeqb\nxYcO9C2lq9JH/sjFJvJIPLDiwj/LluDGPIIfYbVrpCUdGwIXw4dO3n144O0F1I3Kw2wO30No2fck\nwkrNlB0j5+tf/+sfb89//vneQ7VdP1zU+9tyfT/09fQSHAq37tzXtm7dohm6ubZSM3TcHcYBIn+H\nxc/wSL61fmKT0MZXWo1DfzhCdAITx4bYEdw3kxc60LeUrkoX+3wg7taxJ9f1xLbVes7cdccd7clP\nelz73/7pD7cLnvPstnqlfjxKmmtYmEWLqt0c6tJqweFaqj72EUe34489tj3m0ee0Zzz9Ge3t73hX\n+8rlX9NM2/K2WzN2PNNss6T7c0v5RpF0O+o+ojiQDqMQ6ERJBx9Y6yHxCuFLOroqDD36Ku1Q4lV3\n1QG+0mr8UPQeCk901rywIXaEfii6FuNBB/qW0lXpI3/kYhP5JB5YceFfzB7wYx6L8Va7luKBVm2p\n6eADq32JV3iwPEOPvsXsWgyfvKqNxMFXWo0vpmt+ebQyRDAwNAyO8cEBa0FGGdL8jXLhC4weHBpO\nPzFY+MFuWTk77JXlSaRX4jAoiEFOFLNw/WGBnjhF6Dq0IFnJ5VcsmngALQRn5AeUsvPy59rV2iNy\n+Oq2T/tIOOH64pd8dztKAxj7Qrgf6brrb2if+Pgn9cRcmN6NvpS11ldoI4SHuhjrzeaJhq55Pd3M\nA1SEnjwhzopXXBQkj6RHqJpXnSx0tl5lYBVSn4KYdfCw8GAZbXH5qHh0ljBfbuGQ6fn3ZiSd6qj6\nEg9Mvc7rIo/kNUF4HZ3yiQnzspMTHvyhwOS/wBvryf7g7Ypct6vXC2WNzkB4qq7EwS8WfIedb1fV\nl0yjc9+Erj5sAdml7JZzUatmvXdt39p+5M1vai96wXfoe7Bbe9b2tDWa7VkmZ2BO6d2ql+Wamd6h\nHzFHrFuju9tWaGlUTt2cvjPa48b3FN6uW9nRgq4GMI4cYGbsT/ngsKMAV9qf9ivBdKF67xhoE2/0\nRYx8kldwQHAJ9K44L7YDXfxNHcX1qDL0LATNv6B3XhcmdQWTrDgl5Pwl4zABlimT54JDrZlOfkBq\n9vIVr3h5++f/7J+0DVqePkw/ZndoJpTn0XI53Yf5UJQcb+lctXqNn5f9Obm/7d67S07cyvbtmpl7\n05tWt7f9xv+t59d12v7Rt4LsZSuIbGCVgzbqPzkxW88m/dm82Fb67qw6TP0FwjPr+QY98sDFwnxd\n9Yo2W23PxANHPUvpTv6zZIMLHPXOSoc3MDzkk7yCA1bbRhnS/I1y4QsMveqqeRCveiIHPrIPfjzt\nOtExK0TvUjYhV+1KukLiVVfi4BcL8Px9629+PPD8oFClnx+wPJrK6jy9Y9RK4AHU/3dYG5WpdGai\num5/nSXas6XCDvz6dbxq3sbATd7o4wbvZdzgrsCnacyoMbuGmJA8GJmF4y8n0CA616lDo8sdUUjy\nJzg92dTjXb+PtMv5Iz8cQ5xBMVuOPLyPTRutV69eIRt3e/DavPme9iP/x//e3vyjb3S+mvfz8tDH\nPvOF9vGLP97zlGxCyjfl2Onztk1lm585VF1q1ElnjP3YxLISGRonSJvM8ykzcoSly3S9+ky2ilFn\nnT6vN0YCqUcx+FVbU5sarQ9uune9Wd2U76RvMkpcwmMXNvQU4kMIA5YlvsDiMtlm0RTSVrRLehJf\nQPc/6kQ8DChuPwofuymoQzcGPZCdpeNKTPKpQzMgJ8aJdSoPtvY+xswTpXM5Ka/ajR8P3U7SXW/P\n26ymoQ+9Fp/iHv7c7kKIMG+H6eCIWGxeLvptxXyBJiZzw+/cDBPveg7EU4+9XrBE7d6Lrhi2SA+z\n23yXVF6WR+d2bG8vfN4F7UXPf55PJPKdx2Hbo9kzZtDYY5rAgYSNN93cvvylL8th263tBOvcZhwo\nwvmj3lh37eUgvmA3OmJb9PVyTP1XvP27YOnOUjreQtt0esrY26jkU8RDC6RsvbaU19Q2/GK0iAi0\nI3XE19z9T5mSrwsSo/VFsMT0fUa41+3UX1AwKSIv50M/c1+flMBiQUt6JlSvKui8svGJT3hiO1MO\n27Y5LWlKjj2H/kErvSunwyIx53DtLdmtH5zswRWTHO6dct72tWc+5YntFS9/WXvb23/Ly9d8t/jj\n/bQ826VWZdOHCkqJ9gkvrPpGL7srQpnQRofa3+Cbr9fJwPm6n2ixG1j5k0dg1ZN4aFVH4tDmnyET\nsva36Ag/sOJqvPLUeOWp8fCAIwT6eTYRY1toE9oA21O2qrfGYRx5Rl3QgwsvclVP4tg28oYGDA35\nxUL4oSceudgCTBy+MQ6OAD4w8aQDwadNifOXfC2sjzH/4KMj/MkjMHj4Eg+t6kgcWto0uNjmtOrw\nAPk8J/z8iISgiv2AmbYUArYad6NpVGTg9vs/ZYR5/CleKkVxTjfRFbsBHkYlI4yIvYsS6THDSY91\nTXiu8ti7Z8pn0s/gwS9A654ehOTBXxw6q5pw0ZdfvqQXKoXGA+H/0ik7pZMBi5eEE8+AgAyn5JS1\nNk9z8ECn4nbs9Ozak570JOH1ENQenT2Ch2mQ2qf9dTs1sB29bn3bqVmH+WUG6M4TqAj1lIe8Zzj6\nww8SdzC5MpXAaZwvJ2grgVcPTHQwYihYJ18sPWBN1VPWUdeYdJhHfDArpG2B8/UiGxGiJeHLkIUs\nbajszFttghEx+LttkuXBDmLCmdaT/sQan4ITIfFuj610/6L+kfOPAcVdB/8fd28CrudRHOi2pLPr\naF9sSbYsyZJl2bK877vxEi9gdnAyCZBAIAlkgyRDEjIJM5kEBhhCcrnJJDMQJiwBwhJsg41tsLEB\nb3iRV8mrZHnRvh+dIx1p3rf6r6PPP0cCbnKf+zz3k/7T/XVXV1dXV3dXVy9flGI/ItNEev4KHwOn\nSkAQVMMqxgq1v5zQBxrfQ0LlaZQv3sIfEOZrHrr8Uz7MMWiV19af/6wHccRTcyQQyJqPwbzGe+Qj\nPuPhdRx0iZiaj8qyGGzQ+lRpYrAU3mGSgdbwEBFpy3wj26TBHPc/wacWXOSLP3mRbkS3lHKwVvoI\nDIyttObfg0Lw6quvYt/ThDKIRcdLsDu5R8IreDo7Osvyhx4sd3z/B+VBltp2cMp77YZNZcPmLWGF\nlsTdtA/vC4tySwdhUdLIy/LspztpC14kzyh4FJU/1k2Up1IZfAraec86q/hGK28rI/GQpQqkfIqO\ntcXjZg0mnyte84YOEtou8qsPsRKgEDbKYGmkWFyW1r8juIjTciaNxsREKeoZyAaO/amls+JRCnZz\nOtdJ7j9+5jPlqKMWlGVLj2EZeoAysO+Q9Juxwq1fu7ZsZTuH/Xbf+L4ye/Zslrb7y4D1wL+e3j7q\ncZD621fOPfus8u0bbyx3o2R3Y8WLvgTioh7A53UfI21cOpX/Fv2W03Jlnfk+2pPxwubPMMcXee9j\neCowUR9tccI04X33MV0+6dfNPHXb3xO+6TblLWnK+MTre9Of8e1uE6bpj/EU2jKv9nSj0ZzpD+SK\nI+P0J48yTDfDdDMPw5tx+jNON/3ibD4Znu5oceLKJ3FZ5gxPV5j0S1u+Z1i+R0Trj3Gj5d2EyXhh\n82dY8iHxZp7S1h4nTDMs8Y9GW5Mm82l/z7RNN2UgDSUZF+ntFwiQi9En4AlLWyJvZpD+jDNVHPmW\nEF/EEj8YFx0YobS56NRgUNwdRMcC1WWIjr2DDj2O/GtyNxwK7MA96eSy4hAdh3nagbNRLH7eH2QW\nADsxp+OpVww4kIXCIqgQ4NSJjpcOy30b7t+IQkKTaUGNhQxaAaUIPER4iRGd1e4hOmz26UjHHjdJ\nU3GeCo2bxbl3ir3XUhX4O0DayYGDiRP6yvQpU2PPnXt5uoBXQYvjVEw/Y3B1aQJ6rIzdKnC8i9eD\nE/IKZtUlYOL3WFYzsmyePOUac++8Gkde1kEdHDm1R5h8HMNPywaaLGmkDc6hwO1fLmaZWf7wi4s4\nKWqwXY4Fr368MUaHTF5wIxhmTcMg8sIhUVzaqQhBvOWzJl2GcSCJpRRocFmsXvZJGuKVB59qnQoS\neKOMLZkRuarJcMvEA3t4k0asAeDd53XuhLmcZt25Od5DKsTAxxYt4oK+enkosNRlvQbBfCVd+dmL\nFYh9iENMCKA89vaARb5aTmXLhhn8I1EnF5Oad5Upb5XfQ3qvrxiAfk/ZEa/cUWblRr91Kve0MMkr\neWRZh6mn+HIH8cMMtHGHFuHKrXwQKtTHoNVGOqYMIofSKG2yUDlXjozzxGAnjNJa4l6xOLSD4qRc\nBU7lUJzAZ/vV9cl2HW2tBWd4xFun0FDrXZmz7uWr9SPuPXENzylnnFF2wceQQ8TPb5v2dPeWlWwN\n+LM//xDuU2XLth1xOKejs7t0dHMVCMrBHgSSM47cESYhtgtLA3+UURUN2wVM7KD+bLQqgvJtL9dV\n2I/LIxUV69HDQbH0J7XU/R7CO7D4jUX+dnE9kHUFyjhRqYzaMZrWE+CVl0pvIKV8hoCfvkBcY9iC\nYS0ox9GJEAZwwMXyJMHikV7frZ3IyzvqeO+gX6myZP2Sn/zTEgl+LV/KlG13LDJWlztVWLB8Ee/V\nHJ7S1XKJaMTSMt6oe3OSEOuqowt+ISMT2Jqx6rnny5f+5etl3vyFZTKHpNau31Ruu+OOcvddd5eV\nTzxR1q1bL+r4uszxxy0tr3nNq8uZp59K32XfN1R6or3sLrMPmV6OP+7Ycuc9d1sMd6TIBfxC2gzx\nB9+DjOBJtb5VvqWsERt8bHeb8SFvAMin4DkZZny6hme8YZmm6TZhM9x0+vNdOnyUAZ/ML15a7034\nTNfEk2kOFJe4dIX5SfBN3KOlyfSJN2lP2HY6DG/i1J+wTTdhMj7dpFm3yXPjD5QmMjjIn8SdIIkn\naU+3SV+GZVrfm/6ETVwZN5o7WtosWzN9whmW8Yb5y/zSbcJmfOLK90jEn6wz4/3l0w5vv+5jL6QR\nyH/6SaQw0QUZ35JpgkaUtkgEUGbcjtiEpq3WBaHx0wYcLEM5AmkMkHaExhkeAxcdFR23J0AH2ays\n0iIBul10snZefvTdgValZu9wvUrAfTB2qkEuSex4h/fsL5z4HdTHkd1ueiRPkcbMECLGgYdejYFl\noPRy9YCED7IMsJcO1MHfHsxOzI5U4k1rTpbdztMByuP0Ms1BRDhdN+l6QaWHIOYceiRH6WdS5lrO\ncQziPuajNSIUTvJTGbW83fBA/CoTHXTWdoc5GHWQ/1hxtwYxFQxpdjB2MHKW7CBhZSoIDjIxoMJf\nOSLeUJyDXgccaSIMOHygIl2t/4Bvr1vffXSFjfgIQQGiHqTTvUrWQSjEu4egQ8WGgZDwsWM6Q4nZ\njZITAyPolAK/ZCGt1rHCGPgJw4sfuvnnYDwO3igV3rnnsJ4Dg4O2BFvmKGPLL2nyZQz0+Bg3hnoL\n5Z99OnuGUKrQDOrHsrVIsAmevVQ7d6JIkFcPsmFOymMXJyCHGHytY+VAOBXD3cYBp3JR5ai37No1\ngCLSGXUa9JC3nxYKJdPBWJXEOoH3wcccJGJ4RN6sSyuCJzqHFiMse3w+CEzyLeo5BncGcXggLmXB\n8khnTy+yhIzsiXKhPBA2uMvrHlAg+cnnKrPwgHdp9THcJ/jV8kddEx8whpGfCmc3G9x372PiQ5xW\nGGncTT5Ljjm6jEch2sbda12Uq6PLZTYpHlOuvf768uhjT5Te/vFlRi+nRG1kQQvWaeReXJ3UWShJ\nyDTiHu0HoKDN+tPvNSId1IHtzT5Apdt2Jh297stCLFSyVZo8+GCaHvLcsW0b9cepVfbRWbcwgS81\nUF/wXRrdtC/f/dk3STscCvkQh+0sLMBglG7DgiWWj5/fb7V2DM862o31XTq9SNhupwtlymtRVDY9\ntGR79xugHWGFj14meCk9/ot9gFyxEWW2DyND6bO8UqDsCqOCbNsahhfKqPTIx23ItKc9v33TLeTR\nVc445bTytX/9GsraCiydO8mb8koz/dxu6Ljhpps4NbqG61n+a5l32Kw60bQiCm16TFdZuGhh0LpL\nnkV9yBPZITXQZb744msY1g3vtZpt1/AIefNJWYuXxp+XyRvhpvExXbQJ8kk8uhkvTPqbbvoTr3Dp\nb8Y1w9tpy3fzbz6j4Wni1J/vzXQZlumbeY8WZ7zh8iBpSTfjmriEHQ1PwmRcpm26+vNJ+HSzDjK9\nrnH+fNLN9Bmf8Bl+ILcdvpku/U2YpCvzHQ3m/x/yBn9p1zbTymr5zqvBwUzaIPHVj2qTDGl3hW0P\nE5EJo+uJTGqDswur/3Xp/PhFJiRwQPOaDJnbZScAglBAaCB2WqZ1r0y1fNQOJmai9MxZIWFhEL6W\nKPI3zDzouaJDo9nT6FG27KS00jDA9Xb1sdzpVR0oheTk0mdYREim1U06fexQ/V6iHeeYsSwLgFML\nTKg/0O0ASEpmpdxRRQft7HTOnEPLZGa50qFhIEgBl+WNcZmOsJuIPeQfl1nSYbrMGjwljR2x3fIe\n9sh5EabhkuNsXKo6iY+LLnkRTmVhJ8uuKpVaAuzAQzEhY7/Q4IAWygJ+kFX+yx5/wbfwBC7LnHUb\nsL63wnRNFO/8DeUQvnWimNk7awFUmVEhs5Pz+hUHQKWiBz7uQ4sO6485SYf11MIt6vDzly4qZMW8\n9qBomSMYqZOWDJgGkLDQCUp9MFaz9Cp/UU6oh7D2gbATepSmXbuqUiYt0QFxck449/jswTJkmaz3\nwV3ycRyKNLVFfm7elnfWnZfE7tPig0VIS1YvCso++D2EwtZDHXhRLENoLAHLW/OCS7WuoCEGXCYh\nclQrS0xWkBcf8yQ0wuRNTBbMF3/wCjbKGeW/LkGbhoTAIMQWPqxUu5EDy6I8Od1Q1vc52UD2VbhC\nwSNhDkJZ1+1uxktbxEkHfq3ftQ1yxQeKgHnHHW24Rxw+NxRwN8HbJmq70WLeWx584AH4WK19w17m\nikDL/3Hw2bzi6hw0m1DG4fN4rszZDT/dXuDJ0kGtdzSevh7yRG5USp38yMOOzp4ol4r3hP6JcbBB\n67bWaKke2knbhG4/WK8CZT3LHZWMbupRWdlDXuZttfVi+dMzgLJr2UMhhs9O/JTDiCT9GNf6oV3L\nKp7gv/UYBy5Q2Lo7+2gTKG7koYVt546dcXrTvOmIohwquyqeXdTRHialkBSTVicebqcIayL1vBd5\ntfxaLeVjWA9V1vDvHqz1LKx9k0pc9KMgG4JPPVxG/oUv/HP5ypf+JZRmK1LFVsXOAyS1Hvdyf974\n8tyqVeVHLIEeefgcKh55o9x+8krezDzkkFA2OTMStIsnfsG12kcZpJyGtPDiu498jPZuAUd5ctA1\nStiQuZbfuPb3dlyJP+Eyi3xPN/E3Xf2Zf7rtYaZv4mimz/B0R4szLJ+ES9fw9Le7mSbpSjfDdZth\n7enzXbj0p5tpfU8cuhmf/ozP8HQzfab1PZ8M00087XHteEbGdNqU/sQhXPSdtr+WX7eZvuk3H98z\n78y36SbuhM30ma79vR1XO1zibqY7WFjmn66w6dcVT+RBW4rJkG1R3Qm42qZsZTx0QY6FJMGDvmHY\nT/uYpqZrtVScUKQiBwkwMzOCIAB17Sy9r0klw1lfF4PgAB2vx8ol3M7QjmoQq5idX19/f4TFgAIO\nUQsX+ZpB0EAuVhivdbmCzhtlwpK5PBeC4cBHZ7XbGTCpOwkfZOANXCEwQWzM1juhqadbBY9BaA+z\nZGfvKniRGQxFkEBVB3UGA7W02bNmgYsBhbHJjjQsUWO7sAQws2eWP6GnP77iYAmc7TsIOuvWImfF\nqNhUi4N0sGEYhYCI1oCDFYH47eydM29ns90McDt2+FWILng0HvwMeCiZwyh9LrPAQuBQeOQVv8DN\noGFa+SQdlkdOEmpAvKsT6An+8te0DltCKS0dKms8hllPnjjzbroBymgd9UKX9WqZLYcDyXjq27Kq\nRAijEiGPPFWo/qGSKXbzDB8DY9AI/YwgpGNwdaYPgHAuHXsP3vjeCaGQq+SGxRZkYZUERoug1kyV\nFgfIuuxJ3RCnsq2y7u38e/BrIdSa2omCvp3PpFmGjl4UMpbVtm3dDO/Y/8MguG3zurKVPKZzQem2\nHQ6wwyhxvbBFRZOJCLg7UUiGGWy3bt/Z4rtsUB4ZpPlerpa8Cf2kYQDdieXDq2G0+NS9kEwmkEvH\ndttLWJTAnbwYZkCXZu9DG0Lh2EW7cbDWkmOFKwt7d6twUHbyGke+cSAAHoTipwVXWih7s4OE7HhG\nOg3q3GekTuQfdDKjiwF/0LaKLDi5mjl9htUcnYzv+uWLWx22bd5M3fcEH1S4VG4GobuT5Ux5qrIb\nuKBP6/L2OOWo8jemDFAP48ePp71SVyhxMncI5dp6Ura3bd1epk2fCS/Hl23bt4Q1O5RY6Ja2LvBb\nZpun30AdJn832Wvl1bqqvNgHSXBcPWK7QNw6VKSVRzKB9dF+avvgr/tooU2em8suFDwt8CEv5BPt\nDB5ouR1gwjBMnzFlwqQygFK9gxO28tz2YFseou4nTJwUE9eh3fZJWHXBG3UNLnsbZVi+rX/xuWgz\n/VoMB7m2A6BelC1laTf5ad1z8iJvPCEqfduxMs6dO7ds3bTZqgQb4ZTNb4daHpdSh6jHcS0eVQtZ\nbT8q1j4uU4esiBN+2E/thQfKsxIyFgZFv25YUGyoPwrQekYb0DJONwaplrwdLPxAcM00P6s/cSaN\nmT7frc//Lx/pSFrSlZ6QM+L+vekzjybO9vfkRdKSbob/v0VX4v9p3KQp3fY0hjfLmPHt4e3vCfdv\ncROnbvPJ96QLCqMZhRvtyRblP/ruSKhhwTZIp0j7fZnSJpKfVBHRTO2wWlTYrcUTAl/9/pXOsEiQ\nj/ea9TAwOoPdsnEd1wD0lwVHLiyz58zixu7p0bFt3LihPPvMs2XV6ufKDjq97imTagOXVJA58LuX\nJ3DXDGsHQogzRAtoxyx7tMrQzzAQsDzAYDK+v69MmTK5TJ0ypRw2e06ZOm0yneFAfAZrzZo15Rny\n3cZp0D7o0gK2l87djtBlDQfXUFY4/QbKsn7TujJ10sSyYP4RpZe9OkMOPAz+zvCtDDs9Z+Zj6VD9\niLb8tLMkKKxl3ndVT29hvWJ5xs5Ua9swCthuBimteH0sd8zllvlDZ87kJvOZHHqYzKbizeW51avL\n83wF4kXuZYolrN66TOKMXKuNNNc6lEF2ALrWFVxjQEmhsKrqcKTLQ08saO2c7aR5i/qE77hh6cSi\nId0qFv3wc9rsQ+HnVAba/qB9O5uet3AD/vpNG8tW6rKTAcZTgipGKhIqRFR0zSMyrRSYlVe7aP2y\n7BPAPfPQWWXK5MmxL6kTCwwVQZnXsjdnHQNiVe7LcEco2r1cwbKLuhliQFUh1qqgZUb++AkfleN+\nlEgHb5ValSBPOK5d9xIDfWGQ7YvBeMfObaFMHb7giDITvo+FnyoYL5Hnc6ueRyliTxZ1ZXlURL3u\nRQvuTgbLbpYrDz98VpkKzRMnTIx69msd69evR8HYEXXXxbJeF8rL2JaV1MaowqagqizUuonXkDP3\nNXZiqduDQrh566bghcvx02dMhb4ZUT0b1m+IvWMb4fm6tS8x6KMgojS4Jyy2A0BnnRgoua16xeej\nnDTdpl/FIbYjIMt+Pi5uyYePLl+rUGuhHmRyo3KkoqRSqULqUt4u3N7xE8LaNIhcqizvQ76pkpBR\nrwCxzpXZ/v5JMfHYsXUn/ETO4HcPZRhgcqXVfMnio8oxxyyJ+nxx3YZyz733h2LRh4IanRp4VM5V\njLx6xDLt2sHyOHI6ZdKkMp52fiiWI5XkmOQxsVu7YT1fatjOVwFeoMhjytSpU5EflGA6Ra8j2UUd\nx6QCXMGiaBturxgskyb0wzgnXywN03b3YV3bvGk7a6I9HDzqK5v4NvIW5Nj8Fi6YVyZiidc66wRn\n7dp15fk1L8CbXvoLldSd0d/Y8JR7rfn2YtOnTipLFx+J/MMb8txM3/kCF+duA34j8tSDUtzbx4QQ\nZTjqEFx1yby37OBzYlrc6AiJd9UA5YtTphTObGLyqHUeZoXSq7V8CBkeO5btK5TLZd71mzbAYydO\ncAc8rRlEpI+VDQXFt5b8hD/C/m1/ar9VZVJMvufglq7h6W/GJ7yuTzuuGvpv/yten3R/EsakQ5p/\n2jQ/CWd7/MHyMM68k2fpiiNpSrcd70/znvja3UzbxJ20JB9GS5Nh7bCZJvH+e7jibOLNPMWddDT9\nzXjD29M2343/WR4nR/aJuvGEY4BaDc3Vdw0wuE59Q2nLDJ0Z5tNkuGEBoxAgt+L2PaDBxByckqIJ\nBnL9eHAclllrik37KjM2+gvPO7/83M9dWs447dQyi07VZuAAJiGDKEk33nJL+fq115anVj4RA657\n6PxX9+i0lDISBX3kY7zLL65ijOWPlhQViwkMkgvmLignHn9COfOs08rS444r0yeNJ5cgrdKOf9uO\nXeXW224tN9/8nfL4ihVx2m0olgBRMOiz9ni3FIPSobMPKdNQ/OYfcXh8D3UpgwlMCGVtDwOHS2ke\nBph/xNzygT/5Izpml0vqkhW9IlamUr576+3lBz/8YQwOjtda6ob31j18/XT6i487upx22unl1JNP\nLkcffXTp04oDjfShspfqKuXFDVvLt264odxyy83lsZUrQlFzQ75LlH6X1b3TodpCG7VFCiu6Vrh1\nJy/DOirj7Zx9p+PvDFAC8atFqChbv34aRyVoMoPgkQsXQNtJ5dxzzynHMLBYZ2Q3wsstWJuWL19e\nvnfHD8q9P7q/rHhiJXSjXDGIMbIhd5Ue+RYb3EmpcsF4XY5CWfK+qFNPPYULP/nm7IxpUV7JNNUu\nfqtRWn/ww7vKPXffw96pFTEIap3oQaFSkXJJycEmN54ro/1YZt759reXE489uux0fyFwKhj3cUP/\np/7X/yS+HwteL+U6sVx5xRXlXORzMhcn+5j38scfK1//2nXl5ltuLZs3b4PWKmPyaSK4jz395HLR\nReeXCy84v0xHYWs+q194qdzE9S+33nZbeXzlSmRtB4NuP+ylFlwu9woZ6i7aD3/D2kJpnSQMYKnp\npNL9NNSypUvLWWecxm3355YpKLXNZwcKyv33P1DuvPve4Pljjz2OEoriwF5OOwEVmDEossFz+C+f\nsp2nP3gHr3xsV27iV8ndx4B+zDHHlNe99tUoWdQAaY9ZckwM8HW/IpOaXUwYmLy4f+u3fvM3y0so\nFmNJ7zL+IMqNS7jfp85uvfVWrJfd5Zo3XVPOOPUkDlrYTseibA9w0vSRcu1115WNKGbuCVxAG3v9\n619brrrqijKBNLYBZf/ehx7l83X/sWzCmqTlFgShANU2777RjjLvCNr8SSeVk088gd/xbGHoH5FP\ny+fC9cOPrCw/gmc/vPPusoI277K6Cg7zO+h2wRmegTvOISirCGA/VsC3/NIvlhOPOwZFk3IZTwfx\n3e/cXr761a8xedtRJmNRPZ48L7v0Evqcs8qMVn/DFsuycsWT5Stf+Wq56eabQwHrpVyo68jiLhTH\nKdFPXXD+2eX8888tUzlM0Hyeff6l8q1v31S+d/sd5cmnnyrbkQ0PeDhJ0aLthHiALxiEwEKrS87M\nOkK5NlCLfC8KqftmBwd2lCVHLSyLFy0iXEupkwYnZvYRY2hXj7HcyuQEi3LsQ1Us4E2sEiOXTi7G\nAWujNJ152s6iP265Tdqb/iacfp90Uybb8WQaYVNeDWuGG5fp0q8rfL4nfLoRwZ981/WXT+LTzacZ\npj/bTYYL1/RnmdrDfW/mm+9NOPHk0w77s+YhfPIu80jc6TbLnv50M78mTU08hrfHJc3CNf1ZJ/Km\nSVP6m/HtacWTvwPRZJp8Mt9MY7h+n6ybdjyZRpikKdM3y5jphMvwpD3jmq5wTTxNPzExNmp9t33F\nJL7FU0dhVzz2MtkKaYb+McvOuWS/pLYQJxGZUX0HDKUkWqtwaAA581K8Yk8QnjCro6B10aE4U+zs\nduP2QJl16KHl7W//lXL+ueeW6RP72OTsbJvTV/zz0zh18OKEEzPT5zduLrd997Zy1KJ55SSUrYEB\nrCAMDBbG05TrGTx/872/X+57YDmz1QksTWJBYea7i5mmHfeJJy4rl1x0YTn3nDPLnENmWAyu32jt\nW0JY4F5YXXL/mEtLgyy53XXvveWvP/nJ8sijK9ik3BsD306sOJMnTih//VcfxcI2CWVicgwg4rRc\nWstcurLzG0uZVRhGe2Tyn/7lh8uXvvwvZfKUaVhxWDJBwdQqcumllwW9J3Kyaxp5Cav1SCuJ5NpV\nuulapdAZcT/0buTTQF+79rryvz7zv8Oa4/LhXpdM4L3nNbS6eWdTPPS44shuQLmN+jMSgVCAyCoG\nwtg/RJj7jFxGdLw/joHqja99XSjaE1EuK32e6HMPDh26AgYOLZ0d4+o9XY+seLp8j6sf/vXa68uz\nq1aZEUolBxb4+bhU7dLmwiMXlKuvvLScc+YZZTFKoY/fmo2ThBCllY7SBG2d8Apyyk72Pj30KMrU\n179RvvPdW+vnkVC+vG/KQde9iS75uN+pD+XlEx//aDntmMVlEMK7W0wQx7vf/e6w7v7me97DYHle\nDPCedB6m7B2cxtzN3rTOcViIqdtrr72x/O3f/n3ZsIHP/WBZmXXYrPIbv/Fr5bgTl5apDMCM91hM\n6v4qmh38hFbo1xq1lisvrv/Wt8o/fOrTZevWHfUkJTIblmOsacLs3s2noYAfD64dLP9NwwJ0xeWX\nl0tecVE5YcnRYC/cw6XlCposm3Uoz1VaqQPzf2HtejaafweeX1tWPfssIfCNdhN1CZzWoqwvO5jR\n27mdFYoAExWVoVdffXX5o9/7rZB5WRdngaAh5JKAPeDUwqeCmIdxAHvZ8+kvfrX81V99HOW6u3zg\njz9Qrrjw3JChQZb5euDzRnjyZx/8YLkeeX7FxZeU973vd8vCeYdzOS+lcqaB7CgTffQlF19+NRbd\nzcgRCgj0afWznk86+ZRyFUr3WWefUWZMmxoTiuhdaDfuYnP8Vu5V9nrgn8+6bdvL3ffcW267/fZy\nw/XfpONk64JLzfAsJhPItfBaxVyq/PCH/6Kcf+oJkTb/7Nw5VH7jPe8Oq/1b3vKWchH1NQWla5DM\nXDbeiaWyl3L3ocj6fOObN5SPfPTj7H1jiwhyumzZCeWtb3tbOfGEZSjk1BUy7LK4sqDibDtGGGNS\ntXrdplD6PvPZf6Ku10EnVruQcwtHbTvLhFceCOpiouQScew3dXsBbVO5mkB7+JM/+sNy1eUXYwH0\ngA79F/k54Xtp3cbyJ3/2QSyaP6rWPNqBMuL03IMy0XRkYqu97+9RomjxJ+CBacpWxiqvGd8e5nvG\nt/sTdjS3maYZb7hPk47MuxmW6RO+iSP9CXOg9wwfzf1Z0/4/ofFnzSPpzHTpZt4Zn26GN/lmXKbT\nPdCTME34A8E2w5vpDpb2QLQ10zTpa+I9kL9JR7u/maYZl3k0eTQabZk+4eWc7cr+08M90cb8y391\nKjsuV13855gS20wOmXvkn4o8M2giTQIy3kFAq0ygBqkN2Z4wNtiLnw7HfTaevHNwHU8HsXnj+nLC\nsqXlz//LB8vZp58CLCeesG653CnBdiYSaloHlK3MGHsZgJdxSs0lDrsMl2eCPuAoQXQ2133rhlgq\ntIPtYeNy7Ilh6eCtb/n58stv+8Vy7hkcaVc7dWkm5urQTdrY90I+YUnCtdNzOcZ8Dp8zp5x33nnl\noYceYnBeH4qDfHOwedtbfollSi4HpSP1VJbWPDs8ia9aOzwEn4rgAEs/7l1yKclNyEMMgloQbr39\ne+XZ1aviHjf32s094rDyJx/44/IabjRfhMIyjs41PoeFYhbWQ5joUoX/ouIwSY1zGQmc8vzoY44t\n8+cvKHfccQczdmba0NIRg4OlsbbkrE+dcVbxqI2tKt1AACK0lkKXaF0O1YrggIOGUN74+leX9/zG\nu8rxWHu8aV28zrD9pJj7geRnXE1iHZHPIAPFbpTLiZOnlOOPX1YWH724PI+lYOPGjbFXUGXBpUzz\nvPD888sf/+F/LGefdjIncWeEUuGyjnx1sIlTd5QTkYuy1DB4xGBy6KzZWPzOKIezj+fOu+7CWoLc\nIAvGWQ8q73GwhJxecdG55TA+mu0gb/8yBP/Mw71N55x9NoP9ZVCjYqCFxfokf8rnMnvQi0K/CMuE\nFqj7fnQvS9bTyn/78F+WpUuPYlAfG8qFJmwHWnnuQG+4daly7kGIxVgPFy5cWO666+6yHsWvD8uN\nVymomHvy04lLD0rJupeeL0eT1x+///3lda+8svRPqEthnvyzzm0vKoUWJOSZ/LazCd/BftLkiWXR\nkUeVY7GOLV/+IBapjZFmJ3sjsy0rq6mwZVht3yEoAecdXe4H27Z1a1l81FHljLPOiDbnKeLIF1D3\n9PES7XgMig7VFZYbD8TIX3/b4ZsK0/1Mrrxg1yXFM844HYXsiKDXrQvy3CXre5kwSccHaA+H0Q6d\ntMQ+T8mirdlOV61ZV67nhKqHEZRV94raz1xy6SXlj97/++WEE46P/ZTuPROvNNoH2NfApvDbbqVt\nF3Vj/3TU/HnldPqKyew3e/Txx8Py5bc8VXA9wa4MuTfWur34ogvLXCzuWqjCEkkefiZqPArdZZdd\ngsJ2QeRjW3dlwElMF2vw7l3z/rTdLCkvPmpxlMU2exIWwfdTz36Cyv5oF7JvmpB2nJgI8+7etUEU\nMek9Ggv/FCxzP7rvR3HooaullMe2Dtqsipvy4X5DaVf5VmJ27thWDpt1aHnfe3+3XHzxRcFf41y6\ntU7HsC/vtju+X76FUumWAvs9KoT/pCbef7zF3zC0KX8RLwzMDfDqtvsjshFf5e3l6SIPcGbaHNSU\nV/26mS5hApg/hguTdCSuTNOET5hm2oxP/AmTbsZnHro+7fgTPvEkHb5n2sTVDptpMl43n3ZYwxP+\nZ81D+OSpfp+krT2fzEOYjNOfT4YlXLrteRhuWDOfhMk0CSNtPsb7ZHgzrWEZF54WXPrTbcLpb76L\nrz0P0yVvsm6baZp4kx7DElemMWy0dM00I/EC265s90zgGRDA54itPEOPClvoGnV8HRrcXsaptEU6\nkzaYkX7jqt9CgsD34Cd/eDEkwvwbjG515DDfb3POPnRG+YPfex+3di9h1lk31tvYnSnbMTgge39T\nNwNW7EcKoun0wOU3Du187HTcT6X1xIFuOx3qDTfcFPucPETgoQY3jn/gA+8v17zu1TFIDrFh3oHZ\nInlMPiwfMMbBdYgZvKcxHWji7iRpoQO2o3UZcMH8BTH73okFzc3L09h350ex+9lDpqXLQSYuwIUX\npqt7yXhx1m+ZGExcTrCMRIaSI+23Y3m6l0Hf5YwFC48sf/anf1pOP/HEoNFlNzc5q3AYwGuE24nb\nCctzlSMtee6B80JTkJejF8wv3WxSdrkHEHipZcoYyKFO7GyDVrV0yq4AWGv5JIwDshYBl1mkw4H7\n9VjX3vmOt3ClwPiwqPQye487tEKqrCOVdD9TxBIWCp7KpfXjYpZ1u5OlM/d6TZg0tdzBsvAOrAue\nslMZ8iLPP/i93y2Hz2b/GOlUYlUUVcK1DDlIO8hrI9yHeccGEYcOyNvrYVLujoaPR6EYPvTQI1g7\nNsQAG3UObcMoaW4av4Ll+LmzZ8kQBl8GNSpeLhwxbx57K48MBUKGuaFfi47KkNdEeNpZ256Dt3uB\n3IP53HOryjtYbj3umEVRPhXYWEaSPpBafTLa9FrEYlJCuOWZyZ609Zs2lZUrn4imYjnjehpwaMnZ\nzr7FpUuPRo7/sJx6wgllA0qXOLodeEGsPEu/PFSetNAZHqdHUdpcCu3q7sCqPZOrGxaVRx95mL1U\n68MareXSCZUy7k96shPRDWlBRlTo3Js2HpmST1NRvi/G+jWxD9mn8aikK5zSFYUgbf1GKXUCXcEA\nxYsOSFlWTu+7fznK6l0o1d3lrDPPxIK+kPpjIkItZBlc8jz5pJO5P+xkLNcs51Fma0n+2v+o+Dzx\n5NPlWzdeH4dHtKC6L+6KKy5H8X9/tDUVtGEUDmlT7v2n9a+LfYh1wqa0o1iDz3y1aO2hTdmGTzvx\nJCYak1B2H2IZfFNs+jff2DMHrH3TpZdcUuYfPjvaohMW69r9tPPnz2MCdgR+2h/v7i81X/Ov/Yrt\n1smHMrKXrQ9Lylr2PF7NfWlLlx6LssYBI/o/69Q+yYmeBzW8d9D09gHRl5DW/nIhMv/MqtXliSee\nijpQ7jo7sPZCgDyzbEhlXREAlxZ9l0R/93d+q1xy8fm8qxx6CpV6JF+XRtdt3FT+5pN/W57BQuu+\nOOU3r2BRPJjDRD1DVOUhVTzak+NGuk2Yl8tbjamyZ5OpfVK6xqZf11+mb+JMuITN93aYDG/Hke9J\nx2jpMu1Pk0czfcLrpj9xNeGafuGSpgzP99FoTLwHy6MdZ6Zp0tKePvNOmKShGf6T/JlPE3czLHHr\njob/QLDNfNthmnGJs8m39I+WrhmmP9M3ceo3LmHzvR0mwxNH5ptwvtuuEhcjf/QfTuLtNzy17rVH\nmBIY/1iRG0s7HthKm65760cSJsLR3EAOCrIJxUflJzN1EJAIOystHQ4OEYkG84u/8PPltFNOZKbn\nhuba0dthOIvso0Pfi1VmDRt0b7/zrnL/8kfL1m0DZQIKlddHOEg7uFgQrRyRnxSoPBJmJxedDz0d\nfAwaXM50qa6HKwK01Iylw+4exz4gllV3MBis37Q1lkq1XFTFR4XQPWmUC2XIZREVzNdc/aqykw9d\nu9/ppedfKLfd9r3Yc7eNPShuXHaTtbNt+eEvFFo7Wfw7tjvTL5wo3MUAgzLC8OTyq67f+oMqyo+F\nBXqGoD02fYdionLARnlodwA0r7VuQt6OFY337i5O17E5Lq79QDlyQNvJQP1KLDLLWMK0HJ6glKJ4\niIdT0FZVODImXztdXPkVwgf1uA7+29hU34eS4+bxc9iT8+u/9qts4u+PqxJUpsLqxB6/DsoQF5yC\n66lnVpfljz1e1m/cAs3kHQqtvORkKYcENm3eXr7/AxQ2rCOedHNZ9Nhjl5Tffs9vlENnTEEg5SNc\ng3dxXxsy1Inl1CsHtKw8B++3cTDFmUgXe8DGUOfD1J2DqMuYOwYGGehPK29805vigEsszzO4qRjq\nV6GhKlqPSgCDGXInr2BH8NB3+a187GTJyKX0PhRUr0HwpJ57Fv35ke13/uqvlFOR560smTmwapUZ\nD727UFCHqMPdbPyWl04mbBOegtUaY3pl/oqf+zk2mU8MZUALcizhwvPt27YQPqG86x2/Wo5j35iW\nrhnTptOQlaiq9LmceP+DD5fPf+lL5assDV93IxMXlskcpOuJZyvVU45D5czjjyvu5dOaYv3aTqyT\nuNvMdsiTHYnxVYbtLGxbTLjggQcnHnjwwfI3f/PJcuNN3w0rsZMC7wODYZQJSYZHYTGEz17ZsQOr\n3wAnHncOcHCFsg9yVYVKgnhzSV6+x6lmFBL32wl38SteUc4+8+yqSND2d8NLhVQex2lJ0mxEmZLP\nXvmxCeVXK+m73vUuYjihrpJHW4i9s9R/L9sF+jkRvgtBWrkKBefpVUGbV/qMU4ljAVUFOCYI8GZg\nkM9zXXRhee1rXhWTRQ9GuEcyLFnwAmJG+BVtBz5bn5Z9LKfGyRpZ5KoR2skW2qsHUIaor26uQhlH\ne5ZX8lirn7/f+u33hBwpo8E/wvYgO1pNEe6wrMUECauv/UOcgCZPFTQVwJ9/85viBHso/rxbr6GY\nAhBtAHlzwoAaWa68/JLy5//5z8opp5wUS/geuHCrgbgADln+0Ec+Vu65D2soirXXoPj1BKPt4xQP\nyywPlK9w8YfUKC8C8KQbL6P8yXjd9t8o4BGUaXw5kP9gaTNNu5tpmuH689eeX8I33XbYdlxN2HZ/\nO2w7riZ8O6xxTfgmbNOf6RK+GXcwf+JO92dN/5Pgk650m/DNsNFo/FloSlyZpumOhrtJR8Qr1yHv\nvOFX8n1UqvY/2R5eXicmFVIn4E0vLiNqZKAwzn8eTvLKIDoxJkhM+FHOVNC6xrKiMI5+dNvaMmZo\nS1l0eN36URMncWaC3wJmpx4A/JHsINE483ZwDDoQdgKE72YAi/0adNSvYtnp9bGJmb1FWHG0BITl\niI7Czuaxx1eUz37hCyyN/CisX3a4M7BqXXjRBey5uIxZLcskbqp2Nkjn4eDrIOFA5gCU9LkstoFN\nzP/46X+KGfOhU7nYM5THukfk4UceLzfefHP5PorhVjpTGXk4y2Vv+aVfYFP0KeDWstNVrxyAbjvF\niy66sHzjuuvjYIIz5I//1SfK5z7/T3F0/3j22f3++36n9GKVi+UT+kaXEUT8faxpH/nof6fjd2Cz\n03Q5joGXwd0lwp7eCRH2xMqn2MPzTTY2L8Uqh4UEvknXeg4aPLD8gXLTd24pDz/6SJRVBeUkDgC8\n+fVvKkeySdvyO0hoDVNJHQ9vr7rylQywD9eBmbKrNEhQ1A91s9d9bbx4QWjsT7EiW48KsIDuN9M6\neggWoV9+29sQmjqrdi+jgziaU1h71q3fXK5jGeXbN327rFvPSVEG2W07t3Lab0l5wxteV044/kQ6\n/f4ozy23fKd84xv/Cn8dJLkfC0XunW//ZZalDovlHQW1G8XYE8PuZ3yJpUOXaa67/lvl6aeeAndX\npHVD/Ft/6ZfKsUuw0nD3nQO110v45QCvAHnD1VdwQOHuoMkLlbUa7hxAYcBa6uDqI38tq8qq9Kj0\nIlDl8SeeKl/7+rUs4z3IpGE7pwQnhWX19a+6Ekud1y6w3N/Bshqb8eex12o7e4NUnLUEP0I9fvoz\nnwtLn1YUTxVf/aorygXnnVO5B37LlRQciWX0OJaab/nOraE0aM0ag5XT/ZFv/cV3lguxQGoBcsCN\nDe+4WvIef/Tx8n998v8ujz32GMr11qhny3AEFp43vvGN5fLLL4dWlF3kgfkHe8/2ocyezl6988t1\nN9wc5ZAHKm/+4i493GhD8MP2bptS4VRB3047mcT+Si2gX/jnL5Trr7uWgxd95fd/773lYjbLp/Jm\nm7T9sKAPfZ/k0MX3QgF3yTQskNC/i+s8tFhFG5H/0gGNY7Gkqoz4tRSXQv1MkopPP3u7lG+v0YGy\n6DOsu7Xr1sfkTwvstGnTypuveTN7TKdiea/LeSpDXciEF1qvoz/42vU3Rhu2P3ILhX2IhxOuefM1\n8G1uLLFOYFKS/Ulnzzja2OvKEyseL7fc+r3gw16sjvYHWuTllbQrNmEBxO91Ik7QtP4+t8YDAzdG\n3WKD4wDWBKxzF5fXXv1qLJX0RdDZwT2GWitnQL8HY7T0uaXhwYcfL1/85y/RJ3IQgDo8dNbM8qY3\nvL6cjzx4z6NNVIu5ipkTxmWLFpYlSxaXNUxqoj5pA+7DHMtEyolRH1fYbGUv5TVvekP5LSZIXsMT\nlmrq2brbjWLtwZCHkN//9pGPlLs5mRuTbeIto5Y2eTFLacgAAEAASURBVM8rf1EWCRt5BOAJhz/C\nHOyRb8pXPu3vGf6zuCG3rQSJL8Pa8zoQ3kxnfDNt+pvpErYZl2FNuPSPBtcMa8I1x9qk/UC4mzja\n/U084m/GZ34Hc5vw+hNf0pQ4m+8Hw/fvFTcaXQfDnbQnzP73luDWVtyKNmy/bI6kMdT2bntwImQa\n3mm9MYa2pJ+32kZ8TzrtJdSHWo0nQKNVgStyiixb6cDpE/dbEuuYEmYVVwAYb4bY69w5dk858Zgj\ny3nnnFHO5kBanXJLIAjttH2yUl4WBhHDrQHPDe5RCDJxPBROQu0UvWbBTnASCs0VV14ZVoDo1MPM\nrwmQtMCvWPlk+eAH/zMKykNcUzCRjs/73PrK008/U576h39gkHqkvP/331vmzDokNkQ7mGiNsdAO\njtKqG4MUcZNZgrvvnvvKJz7xN+U/0JkfMn0ypyufLLewUf27DCTrOdygdcD9LKpSLz23przE/qFf\nf+evlisuuzSUlWSsuOcePgeL0LHlKTYoT+KqEK+aWLliZZTbpViXItwH5uWyWn4ss1d8qCw+ipI4\nbdpMrCUoDOSphcElU4nXGmnVexnpDQymSxYdGycD5edjj69EWbmejcD3MPtloLOcdP4qLitWPl1W\nPPZk+eiH/pKyTY38FJJYRsGdP39eXJ+yajXXCnBxaHS6Ko3QF/KjB77rKHxIFR4e6453BwUtl8N0\n5mefcxbKx+EB4mefentYHmXQVUBffHFj+QSWl29+60asSgzWpHXTswPRbbf/kL02D2IxObOcf8GF\nsXfrnz7/hZi5T2AAG0ABv/QVF3ICcXHsHfJmf692iCsXGBi3sFfwk3//d+Ub114fVsY+BtTdu7eG\nhfa5795SHnxkeXn7r7ytvPaqKxns2VMVCh1WBgY5Lw9985vfUO68887Yu7aLAVG5tMg2vlrW6moN\njguVsaxdS/1+DqXkscdWhmx2M7g9u2pNeQY53Ev8m974mrhgd5ivA4AKeWN/GAPveHj8A05sfvgj\nfxVWHK0l7llatfrZ8tijDzEoDpafu/RieOblsLQO5MOKmIwyedhhXGqqDFBm7w9UqVh81KJy4QUX\nRL1GnStL8p7N5us2bGAi8LGy/MHloe14MnS71ztgFXmIdvLkhz8UFhIPLcQAjqKxc9feOHl5Ntao\n79/1IyY/nP4MfliK5mOtQhrkOTmRTi1bKvDbzAOZcDnfC1xXrnw+2pvyohImvEuSY1gK7cJds+b5\n+GxSD0urtnMVfbchiMsDEwNYRVXcXECPjg1XhUhF2nsWxTuek7sPPvhI7FP09LFtYBJXZ7gE+8jj\nT8Tkxj1tr37N1Zy4PA6LFJY/+gWr2AmhZVmPcvex//6J8p3vMxlU+9OiR4Qy+tyqF8ojDz1e3vve\n3ylnnX4S+0vpHEmsRdIrXmZw1dBrX/0qtjH8KBRIlbH4OgpKqPQpQUE7HpcV3RagEe2b/3pL+Sxy\ntOKJJ7g2BOXMSdOeF8rqZ5/HwtxVrnnjawnzxKjLlkNl05aNtFMOHUHzU888Uz5Eu77v/gfhNW0X\n2faU6OrVa2IiefoJS1uWscr3VCCPZX/bzSj/PlqU46GgysVWrjA6+aQTy6++41d491ACS/HIlJNM\nJ8cq1V9nYvSpT38GC+pqTrBOi/pRQfQ0tlf0uO0jJtkOC5Zd+ZCR8Uq9ExYTvnjHPxK33y9se3iM\nF6YFXp7mo789LOOarnCOB/bT6Te+mU/iFS79TRxN+NH8mUbXn3gSrj0sItr+SMtBx9MWr5LmdBNN\n+3szPGn7SXkkjw6EK3GKT5h2fBkuXPp/Eq7E2XQzbbpNfKPBNeMzTfIy6yHDm7CJK2lMGN/TX6cf\nrXGR/qDu2cyU+12lXFmPsYOxMmSflu/9iO53Jib6gugNEGFYiIxUHhpR24me6HbpK3DBGeXAo5Xf\nRx3Gb6qrI3jnJ+fpuX6M0/FYyBfOm10WHzm3nHXaieWEY44qh8yczPjMCo8JLZDPgSotmZCDn/ui\n3INFTlBqxrVQWi3sJN20u/ioI+tpQEBo60Gkio1ZuQz52c9+tjyGEjRj5qEBoDXDzt+OTYvO/SzL\nrMACMnfOHC6XdJ+K1gqL7bjF7BukWvpcQnC5Y8f2bWUmm9OvveGm8ggD8ESsBN7FtB5L0AC4e7gC\npIPObKzTYjjY1zORpbd1WN/uLhecf0FYAh2w3KPiMo+f8Tnp5BPC4mVYB4PnOK0BKBmT2Qhshxb3\nw0X5XIZjGZfCxT4eLIPd7FEaw0CloumN5iweRxyFxBLgnWIu+44rH/34x8u1ixbFYL3quVXsKWOz\nPPw1Pyuns4tZPormeDrSe1ESbr31dg4HvCr4aL11wWvdWdzdNRNePrvq+VgqkY56IkWuIZzgEm4Y\ni5tKs1WXQhn73KSdf2r8V152Gct+KkN1b1ksA2mho+4+9Y+fKbfcditWks4yCR5S8zE4awHoHcOp\nYAYHlbfv3v4DBgeUeBTc/gkofSg0feyLOu/cs/lmK0o6g4PxFBWLMMtZKEvfvulWToRe6wiElYJT\nutS5A6OXimpFeXbVc+WrX/tGWbbk2LLkyHkx+CBM8KnyYBlKtqdA/ZxSFzhUYOL0HTyKhzLaaBBH\nfixjs2R/y3duLg898miZzqWxLj9K06TJ47FSbCw33PztcsVVl1AHk2CW/FMxACd1twV582qalU89\nzXIuV44Q19fHvXQMnu4PuvW228u5Z52N1a4PnAziWEH2iR8kRx55JPI2PqyAMZCiAF188cUxUXAP\nUydltk2pFDkY//MXvxw32HvCTwVKRaW3f0JMHKZMn87S6vawKJ111pksZ2NlRM5dlt/HzSXHcaBn\nEgd7tmF1kY+hgOxFWUTJDUVS3ikbIQ/6anfkYE1p4+CRnwVzz2k/k6s4pGH7Q9kEQcimHZpy7WXC\nKmydLi2TustwHnPQ5/YIP1Xno+LhPXdd3coGS9CU1/143/7OHeXv/u7vmKSgoEHvbvlBXTphVJl0\nkjKDe/Re9cqrwMspZBScHhQkyaVqQ4m6FmXkZk6fj+WC6/Fcy2LlRWdJ8Uz/JEv6/+PvP8XkYQn1\nwH2CWHu9VLsHC94uru5YhvV76bHH8OH7uyk3YeyPDb5QxipJ/HXTKo+rAM9iYfvnL3+hPPjQwzHB\n6+KQiZ/R6psE3+mAv3fH7VjcLiozp7EdwG6Tsk6k/vJwyWc//3n2pD5YJrB/0LbZQ/p98OTpZ1eX\n79x6Wzn3tFNismDm9nvdFFZFce7hc4OnYYmzvSvbNCj3JKroXnbJJWUGOFUCrT/3lMojrzD6xF//\nTfkKbWkQee/uhU4sq+7dtHU44dP67ZKrcm3dRrnx69rmrdM6GEZ0+OWHT44X9a2W17AKL8IKIx8y\n3PrJ+HQzfbub8bo+iUfXJ8MTzrCE0Z9PM6yZNv3CJa6E1fXXrgw206TftCF3LTyGG5Y4xZ9hzTTN\ncP35JIzv6T9YHok70x/ITXoS3vf0N/PJfBP+QPjaw5v4DoYj4YRJf9Nt92c+hjefpD3hjUt/bK2y\nP6CdjIRFeZsY4C//Wv/pGxmDHTFoe3Ws9HgV6cWr28o/eBVthEZmW6RNOvLaVu0jY5WQ9kYvxQ+N\nAOVvHP0blyli/NlTBrZsRa8aLicuXhSK2kknLCmLjpjNTQJMonZsKbt3rqPbweiUBdRNf5Kf71E4\nC0nm3l3kMfv4pwJA5j6hFtC5SqjwRy2cz+yt3ltlAV3qEdJO8IGHH2UmTYdI5+6dQFqk3FNkx23v\ny9yXjp/vK4LHQc7B22HW9P7UR9VqtbtJ424HRXBtpFMahobHn11VfnDfA+U5jrDvZfmij8tpvTDT\nfUJ+jN60Q26aAsPzL6zj8lLu3yKMouEyGDkGkdNMvnrgKU6VKEZrXK8Z8JJZlBneASJ/FFEqSDql\nN04gUoahPexlozL8rqpwY2CceQjbhULmwL+Djn2YNA+vWMEy2xN8z5G9cvbqDCxx5xoVPcwetr3w\nKE52kv6JJ1agBFAXWDZiHZyKd+9eH4PlBAZn+ZHKzl7gnQlbFh8Fzp//IDbqKfbi4Xdg3Il176QT\nToxrOAQxnYIpTsu3as2acvsP7/AeUpZ74ScDnepoKLAoHl74GQLK3rZxKN+dzPCVhdggjqI+nUFr\n/oJ54Auk8EIaUCCAXUtdffazX0CBQwkfw8EGVmP3UHaVA+FUIPuxTDzCXV133nlPKE8UDh64nIck\nwLc+Bt0LL7qA+pN/3dQT9YJVwb10PtaPg6KWmXHwwaVZlUw/ND7AwGZTdI+V9LlEuH7T+rKWJW3l\nchgehcJC4TvG9sTVHSoWbuTep7UJhUqr0A6WpizP89zR5uAnFyv/aZjkZ9G9NNlN3n6D1oHRpb4l\nKBDyOSiV9+Tn5cQvvPAiiuzXQ8G3XO6l24W1xKW1Qdwd7J9SHh7khOYKJkG90LOH/WCTuDNMZXsO\nivwclru9/gFRKd3w09kihYo83O+Yyj1Z1v2qlKPuM1SegUNWtZwpA9p+pTFoRbbkv+z1XVnYh+x6\nbYbtUEXL3WCxVEo9mI9LhKZXKXRLgtdeOMHQorXi6dXlU5/5bHny2TVlDIrwOOq7k98w+zzHYJke\nw6EXcz9y4eLgobx0P6GdH8gDp5fw3nL7HeRNH0FTHqQdxhlWyua3UAehY5i8lz/6KFsmboHHWp+g\nKRhvD1DiI+zLli0jPf2EcdH24QOyY57RjsjTNm25Lb93p/Ww59J4Dzp5DUp8Igs+vPjSi3HBsnTa\nX7g/V8ui7VQZXf7goyiXk6CBU6v0S9bfIHLhV1DuYKvAbvOgDpwwKOc2DuV4Msv441H+lTFAoIte\nmM7fi4Y9RXr0UUeH0uDBlWEUXj9FN559fl/8/L+Uz33ui9QLB1z4uQ/RyYD1T0LK47UhdTm7WiJU\nUmw75EE+jgEh1bxb/uCBvGnzg+3HHnnok2ma/hw7jMsn/Yk706UbddKAb+LLuITNuHbcGS5c05/p\nEk+my/eMTzfD083wTJfvzXjDmnk2Ydv9zXTt/iascRmfrvk080p4XWF8EqYdLuMDqPGnCXegtIlX\nHKno6vfXTKO/Gd6Uhfa4fM/0iatB2ojXuP004FNmYxxEjpV13/eLW4NHxMkzAKLHw5Bk76zylYrf\nWCca0k1MKGCgt41oYOgmnQYVDVjiF8pxRD3JiTmbbWjHfPFlYCOGpM0YQIbKeScuKn/02+8of/nH\nv13e8earyqlL5jLmcRPFtudR7ph0j+Ug5xjGKwuVs4EoneWyJC1Xxoz4CTfzkVKqABBtww7LgBQT\noDI2Z86cWP5h5BAT/2z4FJq379Open+R+648keZjMbAT8rNHAA6GmC64GhCijtzDzYozPxWpPq5G\nUDHsZl+PHZSkuCzgLFOLmKcIY/8JsCoBXjfg3g8tdG6EdqOws38/XeOjQmg/3skAhO7AU2kJYbIc\n0iKfgleWrtJmxkRFnIOm2Hz3scN2cPCkZixREOEt8y4hqSxYD8OsXwPJwCqslU4C/vvFADtM9wDJ\n6/igOQql+83soHsY9Nw8rNnVpUxpk0Z/QTs47ejtmcMyajktL0HGC+deqtO54NavEsg3CGpZOFUE\nx3F/3SNc17IN/FjIGAicrVhPIdzgVxFxYA8LGnTIK8ugYrILBfVQvnTg5cNaPntVclSq4G1XNwM2\nS9mPMpBO4g67AQZ2DwFIpwOVrJdnLp9v2TxYHrj//rLr598YVi0ID75ZDOmYjdzNnj2Hj2KzLMWN\nwWO9Ny75DyL/mUZlZXco7qSDTvMJhZM44a0rP0fkRbzWgWVwMBOV+bgs7/KlJ/0c+FVqxCvfXbqN\nfUMqbfBI3HGRMjh6UMQctF0y9ICC1rQpfqnjsMOifpyIUauhTPbAQ0/zTZ06vcyAdyoDaJuB07zi\nB6xMFKdRVqvpY/8Sbg+0+Xmj77NsbB2H5dFCoBiEWAMcijxxooxHZjqCN9piFR3Kj0ewKl8oLfFG\nQMg9OAOPuAIKt8qbbDdNpANcWXcv2yBLpp1MALyE+ev/+o2y/OHlKMxugufiWfjvvj0f26hfpRhg\nP+GihQtRcvpj4hRWJKyYLtX7LdLnqPcnn3qauqdvgYSgG1qsH+XVPZ1a8PySxZ1331Ve9+rLg+/K\nd3zmibqmNUZ92GfsYrtA0K6lFDyVNSCmXLZHM5AHMbmAX5Y/lpnxa83UUqjsuJJgmtrOLDuHF6gA\nJzrmbR8V1+0gKx6G8u5IYb1eiNbGXJN2Rl3ZhlV4rWv3knoApQNZNF8yiP9uV9jBKfAXXlpbTuUe\nQeXcz2G5h83DRtd985sxodrGJM3Lnjs64Q99pjwXi7hsJ/ZfFtg6s2+Ml8hFLihnFACi5LGPcD7B\npza/YflUfFXhbQ/L98QR8iI9mQkAGaebftMlTIY349KfME34A/kz70ybcL7noxwnXMb/tONp4sh0\nB3pPmpt0/LR5NNOIP991m37zyHIYnk+M2Y33hEl44fQ3nybeA/kPlC7D28uXeEbLN+NMm37dfEwj\nvkZQ0Bwy3QLLdMJWvxHINi1iLGPPGIw9gdPgaPi0E/q8QEq71gQkr0KdISM/abcPxcH+0n7OMYZ1\nFvQQDD/c7TjMJdd97KGdPXcG2zyOLadgVfPC+kNZORli+8e+3dtIQ/sawjqOTiAdzAShg0NnWbB0\nswKahU5/LYyVxC8S6KmVXfeV1E7bQcrBkxLF4GGnRE/D8pPz9H0sSz7PLHSgjJ/YOkkpnMygoxOv\nv8gL1wFIhgRzBAJV0mPeKjwqCn57T0vTLjYyezVFH+E76JRkpEzeyudZPPru0movywH9LE/MnTsn\nLuJ0iUP+1wGR/BgbLaNLsqgdlAEbAlYzZ7lWvkqJNIRiiSvPrF6fWNICWe1EFQDo5Z+lMk0Koxq4\n+Xk/l88gFRXH+snLDtylOi839VqDaXwuyhOHXZ3ToL3epD6eJTD3gwWfKJ+XHNjRij8u1YWmyJc8\n/RhtPJJYyQwnBm3iHAwsk0qR9575iM3lrFDADIBe9xuqxDjAiqAqpdQOkppyY927BGYZwupolUGL\nHxifxf7ECQyYOzjdGCgZfEI1hgY3jmt52oElaSynFlV6XHLWlYkOfG5WVzF8/oUXuJZhSzmUL2qE\nRQhkMRsiH79woOVq1eo10O/VLM5woqRRZivW8rbYUOuJaPlmndmQ98BXealirXLWSZphElWLInVP\nYpf63ddl1crn4LtsUt7ggY91Y9lVBqPe8VsT2TFYLvc0SO9hc2YFvAC2FxVv6fbLGH/xF/8Vy2Fn\nyKOKnrSraIm7WkAoIxbDaZxula4ONlqq5NT9YijzLD1rtXMfnxYUqiasPLn5FTKiHFES6jks6TUT\nInjIx0ztq+JXQ6McASaIYYEIZuLGe6TDz0tkEfEV1noP/sAr28wmPmX19FNPh3IzQcs49HvbvzAq\nbk5u6qGAsShUs9lniGxQZptR7XytsRKfeNu4Cdlgq4R3BlqnttNQyO0/MNpbX2Owom3asqms4eqN\nI7gOxuV7La6KirTOmU0eKG2Du1HarU+VNDIwj5hpm29AEmWC8BNofkBJdysilv+l0fTKhxND8SD+\nAads2M68nNmJl3Ua8gImFT9hlRldKyDeQZ/plFP/yQsnGE6i/c6vX0y56rIL2V7iygX8ZhB4BKv+\nuk0biWe/JG1FhdCJM3+DlqCbfCMXBp7IUsIJqf5wgAemVe7q1vAKU8sfNJNWnCnzurVsPw6fIcLk\nU+mpfGqGJb72sHxPtz3vfM/4A7kHy7c97wPhMDzLkvgMS//PQkvmma548jlQHqPBmibzz3TpGtee\nxrpSZpPWdBNPO7zhPs08RoPJ+Apd/zZxZ3jS1sTRnjbjdJv+xPdj8qb01iEhsqniVmUucKdcE6ts\nx+IonaZJ6qpESzmLgUT55mfHSJtw1ctxsYeVHlsP8+5Y0hzmnsZulK8BPkvXyyRp2bELy8UXnF1O\nRmGbxopkTxctGMvbzi2rw1AERgdl+rk6lqgZ7cPaV/ZxMA+8I48FzicL73v126gzvhKY4BbUivUS\nSBUGrQjTudF9f1rhXfXjdBgWl60oWAMoJJ2Y8Zlf2pPVn/YtrG1hcAOnWqo57s/VziTpoSOQo3DS\nSvEEqRYOO65BZuh2VOq//czO/X7nLC6WnE1HPoNN/A6SHhSYzVcauplBT2H/h0unKns+7vuKfPhj\n2aLDDXqMhXmU0cFAvujayaYQqCTYaQakHWwIhyWQ9mp1Ed4E41hurR+dh29R7r3lkBkzYn/VDPZY\necnoITOnxUe6J/Ndy8ncl6YVbB9LrsNxtYQSIW6ruFq0si5iWYt8as4MkXiSmyaRbtPqGBMDE+Ee\nGFBMXLa1LEarCKj4bdnGqUVDIl2tnyg/6Rx4azgnW7Vg8Rqb1MHt0pxK1+TJ0yJfT/9ZV1554XK1\nN9E/jyLvqTjrUaLDmhfyVvkbS+kM4u4FdN+k36o9hO80Rv4x4DgoYVnCQjGRQzDi8DE+5AS//Dc4\nGhieuomeMlJP8q3ywlTAUUZ/4ReHDGw98lGFSAVSfyivyAQZyZ2RtLXdVPkMZa7VfkLJaOFSMVHR\njCtu4HNNU9uQ1qEJWJAnc3+YJ5BtP0oWJQ2ZjLKZI7LkBENFzf1zMdAjW/K4Yx9LYuwpFK/1qCVW\nhdofBSd1/Wf9enG2yo2hdU9kLYukBiv4U0vYIh7H8o50CwL5Ihz4lB8bgHyt/CW1Lz7yCnrEJ5hd\ngFazUDgoh/KiFSmUGd6l3++welJ6Apv1tUo5KfDiYmFdytyD8qF1yUNCnipWO3cpolIZZIW1zXxV\nBNfxyS15GLS6bIw/TllDj9ZPtxxs2sKsV3KjWJZfbKYxjEAfcVSAiDPU+CizdQpfnXCYNpQ25NXJ\nxr6Wwmr/ZftTSfTAk377UK3qHhwI1OAQrwpj0BxZ1/ylxyfIweuhLicxfjc32rBlgz9a59ZxNc+O\nAfpJ7nUbQEl02T/u72MZuVpca13Yn1X5ynKaVy13HcSr8mW9WVYfyytP/KW/6er3Mb6pDDRhjPe9\n5qGc71cajPNpx59hEdmIz/cm/qTBuPSLr/lueDOu6Q9A/iQN+X4gmIxvwqc/0wijv0lHe5wwmU5/\nPpnG92Z8+tNtwidPk8cJo2tc4ko4aUl6mrBJc8Yb157WPBJnRPIncaWb4bqJM8N8Tzqb9DRhD0aT\ncFmuxJN5gDqezEP86df1CQeDDdPgmMzupV/VmuZ2KzSa6O6EzEn0OMazmEQ5vtsuaedlD6e5mTBN\n6e8q8xYfVa645LzyigvPYXWEyRV71fbs2VHGsUo4bi+Hf9BZuNwrlL/obejX69einMiTL31ah8Ql\noVm4JvMz3gKQBOKqTal2Ia1GzGDi3hQ7Gzua7u4pmN+5s0shkHB+Dk5xeorCbscC5uArzF6WaYSw\ng7DD7KCw0dHwXruJynSQBb4Ia9EcHSVQDkQRDtPVir181gs8z+L2dZdS3HB8CJf89rqEZDF43G2k\nfMI3GASj/a6WPRX5aAUTnzWma5mj1LxIW5M/gtV3S1H9NY0NALYzOBEq58CH0uGgiRVlt3ch0Ul7\nfYOfyTqV76OexGmv+fPnl/nz5scdXb1dYqpPHUzNn+VgNkuTKfxm/5Kdvxy08/SfNBNHqarA8R78\nNAi/j/EBEbCmUUnyoteIDXgFeC/ltp4cBFyPdzyuDUckgYg/rfKB0zr06WB2oDzEDIREKgAODN43\nVfN1IHP2pmKN7FA4P4ztwQyXsLdhzevm4IgDSg66xim80umdb26+j8c8NVmg4Ii7Lj26Z8jGQ2Pb\ny7ykkhX8sbBResKCD/Iq/RUj4apFNVH4gcl2UHnbAtQxUx/cQCWf4Jdk1RlYzafKdIsUYPd3IEw4\n2PTtfqtO5M4nrGkgizvQCLN7cPO5ImodKYuh+Af0/j8qaz5KhLIxBuuKyvdOZE0Z32tHo6KAG0qD\n+VlMLD9yReVTCqJDqgWoXLBMwQ7iLWTrkScj5W6G4d8PB7dJEwoAboannAYdXKeildn6yo5TdLE1\nADfC4KmKskVI5Vicypmus1D31ClHLo3aN8Qpc0iMSRVxtageQurhSy18RorJhHVlierexjrA2Jso\nrypOKoTKZGVULbtlSC7oRlkki/DgCTWkbCPQBkZYwkiD/mAdiaWqvlfraMbLCwm2T7ULyTzNuf6r\n5bIuw5oLXh/vIdQq6wGW519aVx595rlYffAgjJL0+JNPls3buY/RQyUMQNLo9hLvpVNpVd59aj1F\n6UboMy9iRugXznIc7IlyN3ggbJSFMOu1+Qhb86g8Sth0m7gM8z3jwtMKSxzir+WoselPtz1t0mV4\n4k63mcawZh4Ve/1rXMabpkmD7xmfaZp5NsP0N/PMtAnz0+YhXKZNfOka59N0jYv21kqX8QnTjisQ\ntP1J2HQzv2Z9t+MRNsP0+0se53vS0pbdy17b8RgpXn/N/A2veSjjtV6EiXD6QYJoGriIKKTQRTL+\n0Daq0oY6xt5mT37HmMfyKYoUE0EUKlY5sJvHBNMbBCaP7yoLFhxSTuLrOWecvLQcu+gIPiU3ruzi\nUMHmDdvpi7juiHRDLIOOG+dVTyiCGL/GsdokNe4B9u7TcR3sOd3r3n4OKCahQSwZZwGz8DXcvxY+\nK9jKBtafmEknvJ2sF5O658JBwsfOR0KG9qJJBg9qZQhfO+k6yETzJf0YOql97t0J3CKvnXZ0Xrwa\nkjRX4bJzrLT5KauZM6eWX37bu8pFfvgbi0svTInbz6kIDzw46ENpMNgKYSUvcHrgIK4xgAZLFo/8\nQPFSZaOEEWrJfYIGXpKWVn1HnMqNfbaYI529biuhd325eVu6trI8c8Zpp8ZFmSps7jnxJnhBB4fc\n1O5eOxRRkHuaU6q8YiBufG/xPKw2lp+4sHbhypegi3SGI66Rf6WVN8sFTTUWAN5N4zKaPDB/lwJV\nXh20rBMVAQeCKJbKFoyzDvHUvMxXvAQ5cIhT/LFfx71r7qESF/DuzXL5WuGEFXXQAacKmkvY1XqC\nwkW+7nvcwSXHXmCayqe0hqUIXD5aM6XFIcW8XTYeqRfKEA1LOP5ZtvhD0rCQWYaRp/rljWkCpwTy\nRFrL1MozaAheVXn2A/BhjYO2wBJ1IA9kkTRAV+Cp9WSHVJUKGjvtwxOUXvYsvLg9yafsvMCBBk/Q\nykfxyIPgLU7LG7QqU+6vAyDSKzMeVnlh7YbyCKdjxWWCsGAq0Sjj8jAtiC2qK70tmnFqJiNO7dwi\nPMIqR2WhtMSTLi/yzzgZLu3hDaD6x/y1eKkoDPodX8rse5VjZYEOi3IFr5AdhUslz/5FfHGhsHwG\nxvaGXo/8IhtkpBV7D32O5auf3oPf5CcftF5FBwtPPQiwF1xOToJOOCCd1WpZlUj7Hmol0lq8WHGA\nlihfpKr1HIU1sY0AQJVFabecoYQRJYy8qnyv/BTG8pjIPlS5cItBtDflySj6L1GLV677KCcqnY4x\n8ZgvcU5YnOT4zd8//E8f5OQwX3jAuu3emuc52OJ1JCq19ofdWC1t31r6gwQRtWipuZDb/oiGv+a1\nPy4oGInP8Ha3Qr38rzAJlzG+y9/2pz0s0xqeOBKmGSeeDG93M49meOIyroknwxO2GZewTXzN+NHS\nJh5d45vviUc3w/Unngw/WB4Jo9v+ZH7tbjuc75lH+g/mGufTTJPly7ya5anQ+8soTD5Nv2EHes/w\ndjfxNF1hEg6MYuW91Z4QOfsXehraFf0pfZMTwmGVNvUA3r2gOxolbQ+7G7YY9tuyf7oDa/XuXdsY\n5/iiDFcXnX7+yeXic88qxx3Nocz+bk7Tsx+dvWpD2zxMwI0QvYwtHCygy4qVEvPau8f+h7Zv1owL\nHegEdApMxFDWWDXZ6/LoywtQi5YMTtdQC2VnVZd2bEz2kgQS4UDg7ekOdLlM42AvVOxHIbybPTUA\njyhz1fIAa+hx7Hw9CRczRpY1NCuSxAyDpf6pA6wFMsvKdOkLpYJQb54/5eST48b68087CWsN3xOl\nE3NfmIO/XyIYj0KEbS1OtLkJ2LuI4lQie7nidGZrMEiBMp/oMFt56q95V1crWuUL9BLnY0cq3e6z\nMy6X5iyDIHbGKkPSezVfMvjNX/917qKbEadonZ27TDuOE10OKp0oKj7oO3GH0jDLQzCQO/D64TX8\nJbwKGPgE5N0BICwLQWzNM05pqnvIPJ5YBoKaGDgIs0zM12OQdICqSo6KC4MX9eKBDvmsNaIOKmKp\ng5bKnakrzyghgq41MZZ3KKMDmKdfoy5lAETHFyBsEJRFjWsvyzdT2LenwqjFxe8sKhcezlDJVoYc\ncEOWQOFy4iS+FRm8BaeNi+Eu+OuBEgcyN5tb3tjXZb48lDjKGhG8K88pS+EGVA23nGGFsR5NC66m\nkmdY3EBPfMg6AWFNlh/KDf+qS9p4p65UlkgXgy3p5JOPn9+yM4gPfVNm75xz75knrW/jyocvfvkr\nKFmeNHRgBTflMwfzd8nTDgbyIm4schP0IEve5u83addv2ITFzfxtn+5rq/sNLaOPImu9VLmJoPgj\nzvYn24bh0pJ1ID8IiX/6Ek53xB/hZlblVGjboemsWxUbf7aDSDNCX+0jhtj20ANvKkxV0qOdKb0o\nqJ6mduuD+99AGXVGoVq4bCvyW4sWG4GRKycHLlsq73ZlVe4jaShtwoesgq8D/PLdJ8oEz4UXo0uW\nKkH+al3XulURt4wqobZLHw9DWA/CSaM8jzTgijBgGBYC1nyUEevBfYbWM6XZT6d5ihN+5aNsuRfU\ntB46WL9ubbTZHg5oeRjIk8bew2ZeyoKPCn90IGQrqsAK4mb7AB1prEtdaa6u0Pkk/eatv90VzvCU\nf3mSMJk24zO98c0n4U0rnoRruk14w/MJ3rTyNCxxJ6581zWsiTPzTTdxJv50DW/6fc806SaM79KU\nMLrttBgmvqRdf+JPV5jE3XSbuIQ1LmF1M6yJJ8MNS9rE08TbTJfho+EQl0/CNN2mv0LthzsQ/gPl\n0cTVTCte3y2HMPvLUftochzhQVjGA14BJ9xWQDdiv1Kv6oAH4HJLBrPj6A+4tIB2ycSOcbmHjmx4\n19ZyOPvTTj/tzHLq6SdwqO/E0usJdC6e7xnLyhBbV5gqhRUOZad0cAjIAcErxvwyFD0/eSt3TGRp\nw95I4A/CiWeMd2mW3iOWR5NpzQI3GRF1HQ222YAolkIXzHDJzw6KDoBMHDS28rFpOBU/yir3YoBR\nAfDi3RBCwlTUHFi9HkFrpPm6zJMDYpxGtPNjMFLJEFXSJt1aIDwBOo9Tie9+97vKmSccx2eP+AA3\ndPjzI+dewbCJjevPPruKyz+fLM+sXkWHtp3DCZvLnEMPKW9963/gDqUZ0ORMXKbVhqTSsg9/KGfQ\nlXnXYtWKdd9RwEchqZfoSGonLZZ6hYQwqjYqQVx8imLmhb7vefevl9l8KN3N7g7yZtCBwuYAvgn+\n3XffQ9C8mkuAX+Aj6wNxGfA5Z53OLeevD1o74nuD1Xog7v17s2rnCkaZFQOS3ihAyyO51l12xFWJ\n3stesU0xEHn9yESW7bxE1ruw3L81jX2K9bSrt8CLN5BAOZ2nmYFPOOQxFEAHKxXUcSx1buW7mhvA\nrVXD+tMa5n7Cuqxe2Ls3o36RQjlwcLUzA84TrX3QsGvX9qrwM+i493AK+7zqINnqXAGnObE8vzvu\nnNLt4Y40JxQ2Vh95bN4kjHfJ9/3lP9gEeOVNbahRNGCtw2RiDNKkNSx+Udm1bOIzzKxMUXHReZiX\nGAJPkMAA2kO9vsS9cJvi0mQtSQ7kUutf97M988wzYS3yO6/DWH6jTOYLo5W/UHKAd0lvO23B/X9a\nVrx7awIHbrSqjWM01qKlBUm51upiG6z0B1UtPlS6IpzgFqtqIH+btAcvWzFikOZawhac5fS/vCDW\n8mT6TCuPIl2LZ5GvZTNNMLD6bVdx+htlaxNyZDL37FlWLVl+9qqX2e4U9n56J1l2wp6spgaiXdZ6\ncVaLYotMuCztlwLsg7xeRn5GCcjXy4tVelTcapkqHVK7n0bfKo/sCy1fpbkOcraPqHPisrxgAapV\nNgpheKWrhmX+4k0emMJkkTZdgiJdC04QQiKN/W98J7jVjiAj2oD97MSJ/WwvYP8a/PSTVTu57kPl\nLZTHqCTLKS5zMzPpwwm3trXISdioBV3jK/3Jm/awLGeG6zbD8r0Z38RluI9hPk2eNfNuhutvwmba\nJnwzPoBbf5ppDWqmaebRTNPuP1CadtyJP+HzfTS3PW2mOZhrXPNpvqe/WabMwzh/vjfDErZJX4Yl\nXObXxJG4Mixh0jXcp4mrGZZwuqPhaoaJI2lp4sgwcez3VznJMC38tgfvdLQfsb/1rjbbgHc5YnHh\nHkU+rYhBaAjL2iFT+8uCw2ex/HkpF3afUuYedgh3LXIPKBdc7+HUtltb9jLmO0LFvmS+VuL0y4l5\nfC0Jo8W4sZ4Wx1hDH+5+0zgpCg3qH3HbBH5XEOwfXrY8KtFZwHbX9mlYNGQHaf5lx+gA5iDpSU4C\n46PjW9yjRHjttOg0okL2xoZrT2a5/OOH110i80Z7LXSelOyjI9nNrb8TMS+qCNZ0arwuMzgy7q8w\nlQKXQ1xWesPrXluWLT2Gzzqx+ZpOWTrCSgNDbrrllvLFL365rHzyaSxZXpmB9ss+nwH2Rp10wrLy\npoE3EBaYgykjVagMOWrJOOhXqQweGBTlsTOED4BJp24KQsaLt/JMF4WUjrOXzeV+k/UQPtnlHVFh\neXMAxezqnXFepnrLd79XL26NfWtauPaVTRvWMYhPRFFlv+AwA0MluYGfnKAjfoS2/gcvBG1/hINN\n0K6y2FE2rl/HZcTrvEEm6kZ4BwCL6ge7j+Ayz142Z/uNTYIibZRXJOIREXU2xIxCpVvFYQAFWouG\n7889t6ZsZRO096lp2QzWgtxBc968uaGYdvTUxhJ6Fnyn3XD1w3b2I9blVFoLV2BMKVNQIK17iZAG\nLXNupt/KHkEPNWjpk6ZQTILaWg9ZL5bNZ4Rf0GCZ8kk4w/KXcboRRpqRRy/5JT7DM3oEVysPG56K\npFc79HIJs18reIETsTM5JGObcklea5sITuEKlqnTpvJVhI1hve3ByqjFRFbLUy+5rpOKWlfTuZfN\n5T+tSVO4PsWPkcufsL7Q6aTimHRXea2DfS1V9Rue9CdsuxtlBc6nckIeNnjSnqDxHmmFDnDdH08X\nMIQbFRZ+Cm37XfP8i8GbsEzKdGiw79jX2RencCdwoa4X94aFizzsn0wvb+uSo99n3Qns7LDaahEL\nXtLGVIrN96W1a+P7prE0Qnye8m4UYcRbi1DpN60cqeWpvMxyjCTIeJI042oaoSqu8Fn4AzwB3xYv\ntJazARR2Fa7xXNS7i/50J5cte4J4B+FenOs+0kHa5mQs1n5hwnQ1//11EnQQUS1uLyeiZhupIqLK\ni/1JlYeEzvd2d39ZM9/qZnjiSzztbnt8pjuQ254+4QxP2vQb3oxrvmd4u2u6Az3tsPkuvP58l4ak\nI8NGw9lMk3AHctt51I6vGS+O9nfhk6amvxmWONvTZ3i6SWMzj4xrd0eDyfQJmzDttOR7u9tMX/2V\n9/pVKxxv4sQ9ExjvW7T/1IjjRFdrm+NOrCIxvu1BURvD4YKpE3rKOReeXS694Cw+JDCPO9Ww3DNe\n7RrYUga3sA0K3SYuNKc/Huv9mbvROxhPnUTvRQlUN3Dbj4paxzjuodzHOKnRhnh6bIqqOQRLHjTq\nhxj+qoe0hCVdmdIssH41TP5H52fiKLTlEIk/Sm2H6KzUJSIvldzAIOMA4X4TE1cTZSAvi47knqVe\nOhOud9jn+gjpvRLCk6d+9NklAbXdKDA43G8iQ803uwS8FFjljCsTGMS9xXw8I7yMZj6IEliXNn5w\n113lYx/7OHcy3cOpKTRjzDFucO/jMstJnGZUAerEgqHCUVVCS1hzUakIxYI/DoyZOSRR3nyVocTz\nHktFeKRBhTPK3OKNN5yr2G3iuP0VV1zO5sQFMdBYNWrgDjIuP/7LV77KJbOf4xLdp6BJMylSoLmU\njYjTD5kV9ypJZ7VA1r1bWV8SkfX4Mjfy8E+L8FYJo24NlWYUIC01d99zD/VXee9MwLpw8LMujz6q\nXmrqFx1cznJBUoXLW9odDC2LdaJCPkz9ef2KSp9y4X65F9lPs3rV6rhPK5QWZirSNAS/Fi+aX5Yu\nXVIGuAcul6K84gHCYqNmKLew2gHp+OOWhbWExCETyoJWWGYg5YmVT4QC5PUlg+CX583lI9PAhXjC\npVzJt3QNlycBGECCR2jLrfEhJ630QsTDe6QVvuUXZCR5C6zGVTx+dukZ+CL9lCR4bXvaBQ9nTJ9W\nLrroInjAvW687+R+HxiOxKBgILGVhjqpUZHbjtLqJckgiSX4vZjyYRKWUa1NLk27PK9lPKVdglry\nq4zjt51FW5OcfKIMtUwjQb62XkbckcISMRLY8hsnT3wNOBPX9wocMQaOPLUeCFcG+Q1RjtUo5VtR\nQjpYAq+fa1PJjd0lZdGCI8r8eUcEryhF9E0WK36UqxMcHpbS2n8a3/PtI118kF4e0UZ95NWTTz4Z\nsuuEQ2u+MhTkJ2WtsuRrrc+kf78MWLr9oUCPpDO0Ppax4m7BElXfK1daUOFkeCspTgs4cjGdy69j\nygSUNS+V9ruv/Vi6PXzh3hu/iOEkWZhuVyK4kNxPDzohVZrMuNKz301rfKWmhpt/0DIKfO3rm3Dg\nbXvMI8YRwlPe8j3j2ulovod8NvIWfcY3/c0ww/PJcF2fdBNvk6aEbcJl2E9yR0vTjtv30eCSpohs\n/cn8Ej5hmm7CZFnyvd3NeHE1acr3xOl7PhmWuLKujc+wppvpMj7zbMK0+xMm0xqf6RNW4YtgRZZ+\nLf0B12oLmT7DxBsPbnhRnEhJ11Jl1a05NBn6Rrce1TyDFq7i2De8mS/VcMEtv0VzJpS3X3Nl+dh/\neV/53XddU87gUtyJfXz+bxffRt65gZbFuEM7c4xU6XMPN+oLqyVeT8b2jn0oaGO8N3YC1n6u8uoY\nz/iJIUbDBJ245dES7mP+4lARGcdvLJPKH7O0JWDTDfrp9WrHp+mfGasvRIjagjsw+66FY3DHIHd6\nPcUpUZZnuHfIPVUywYFarfGsM87kdOdRfKpqOVcacJErncnA9p1xcGAnN4u7GX3J4kXliLmHlwEU\nGfVOB5vKRrNpVRJlcQPtrEMOYWlpWnySxfviNEFKlRdu3slH4p9+5tkyaep09rbBFJdB/EeF7USJ\nixkneai0qXaAOhRRyx+Xx4aVzVJSBv8JEJTAD1w7c5dghqBDNcaN81VRhclYrxQARSWUGsqvYCya\nPz/umVJRc5brKVK/kvDS+k3lh9C7DWW2d8IULIUIAlm78Oy9L1s2bg3F0/vuVExhbFjuKEylKCrY\nskUJJdn/VZnEteJDyaYMplAYVFW1QqiguRTnR9f9KPkpWCBTcFVAVYLnz59XLrrwwvL8i1+M5eX+\n/omhYNTcxMlMAoWuB9gj5s1jsOuMD1r7+RwH1S1bt5Tlyx8sx/KJMy2n1oG0eg/eFK4aeR3W0kdX\nPBFWUMO9QNX72Ma7CZMGsH3b5pCJ8y88r562jPJZQpU5lgOpz5tvvjksTaZPmSOTgKlyA53ygRCV\n7Jx4SHvrP+F4TY/Hfz7BsfBWXMaLR9x14kKk+KjjmncN118fMWW+mrpZzkORVcHX6nsPk4urLr2Y\n+qzpQ9mlfuwU33zNNXxB5B4OFayNL4WoVPtUq5nyhyLCpnJQwodS5i9YGHL3LHLvnq3YXUpcyCrt\nQ0m3DVvv0heTH4dsOwU1P4vSopamG0/wolVWA+SlfYkTrfC34KLsllNi5B9uTUuaVnpBK4+MN7/q\n6q88kgDTCyethMIXW65bJ5544smy/KGHy5mnnYwCVq+q8HSkS/aTuarjrDPOKM889WxFIf9JH2WE\nHnngHsilS44rZ519LlaooTgU5JdHlDFpfoGrMrzA2Uc6XaJ3JSAmr4RFmeQT//OxbLVMtQxUSs2f\nMoEyQAUPHvBmnyhAlC3SUkZ5YY9KAsmOJddgRYs/cGdsaFe8iyvSC2ieBsAh/Cqye1gCXbyYu6Au\nvpjPps0rWznMY7v+5je/xQnb7Swrq7izwsFFxh7g6u7xAIhIxNdyW/5qabMPtF+1nMZXGlvAI+WQ\npuaT5au0miblrdJfZa/6TWd85WOFbeJq+hNvM8x0+aQ/XcMzTZMW/fkk7Gg0tcMkbIYfzE3YdDNP\n3zMv/UmXuPK96Tcsf8Lqzyf96RreDpOw6Tbj9ecjTc24VMwOlHem023m3wzPuCbe9vh8b4dJnOkK\nR1MPea3T1iqLlkCFx3E8+sZWe8jyKM72lRTOlsRrLTOpTUnbBC9jXawSMVlTD3ELhldxTJs4rpy0\nbEk5+5STysnHLSyzZ/AFE+52HNq5ER0Fg1UYicBonXpy32s7mByZRReKWf28J5/Mo515SEh9wLbj\n3jX7YuF0w/AjNdDpP8dIu4Tgie9+kceX5iNjkmnNOKGoylaltDoRhchwXJmoJaAfBWTntuG4lXzL\nVmZ5KG2J03y8GXzGzOmcmHxDWfPcai5V3Vi6WXLz4lr3mHVxB8eF551b3vvbv8Nm8wmhccrivDcM\n4gKfOGW7G2vtyF1CIoLO1fupuCgTJnpLufvd/P6g9NspuuduGM3XKyM8AHHOWWeVWYdOR2mxU7JT\ntOakNFgqyvC59GZhQ3BitApumEIzB+ZSEhHfz9KDG6IHWdKDiCokwLgEuo9vOMY+GhSUThrGNpYK\ne9mM6GkT0ygsVpwbxIe4jK8DC6Do/W7M1q2bQqm6+BUXVX4zmPuRa4UM9dCsKV+tXOtNci2zHl3j\nHTyrNZD6IiDgcB0YvSLCT3v5NYLv3XY7N6kfH/SoPKiI+/UCraA//6ZrUL62lS+xOX7XAHt+tALK\nJPJx7d8Z/S9c86byylddiWIypvzjp/+JD8BfCwwfhGef3gN8bunqV72S8lZlF6zBIzfHX3LxKxgs\nl5frb7yRei8oqeurhcl791BdvaPOD8Yvmj+XcstvOzEbMEzCs3rNC3wv8gdY9VhCRHnUomTBQ4mm\n/Mpp0NrihxOIOjDCI5mHEAffQBc8g/4ReBsW8NkmKu9UdCpPxY2P6oIPhrV4HXAiJS7yatWDFkoP\nwvRiEeziU0x38g1cv8W77NhjYg+hy6N1mXNPmXf4YeUPfu995QN/+p+4N8ybsqk/Z2JBD/Y25EUL\n5OKjF8P3V5VzzjwjFI1PfeZ/ly9jue3gMunYx0Vdeumq1qaRco2UCfrAa7gyGOX0HXp9bDu20WgH\nvgPnM6Ks6KecyQ/LD0J+mZaWAn/lgdwQzg40+ASu6tZ48wq8JBaWSP+ErLulYhVWyXvvv6+cefrJ\ntS0Abztw+0Q3B6KuuOySsvyB+8t9yx+DBDpFFOMwJYFtiO+Iej/jr/zy2/gu56RQbuPbneThJ/W0\n7q9mGf/Rx1fQsdKunCzSZ41BxqpSqRxZJhXAoK6WOWTHMisFQXSUqU78Kl+Ejs9Qka7yp8Vvwitu\n01PmVOha/KtyW/EGHDB2C9aB+2mD5+Lg3cx9P/usM9gz+2tMfhfQcqCZ357LL2eT9Cnlwx/6WFnP\nfW3dTASdUPXTP+5hS4NpwRiuCrL9q/164Bd3rQ3eAYl8CGqFVbmxXMIZX93R/OLLcOFSKUgFxriE\nMcz4djfjAxF/Mn/f058wuob5y/imG4H8SfjMK9NleOJNN9MdzE3YdBM2cbbnlfHC+7S7mc649Cfu\ndI3zyfjM4/+w9ybgnmdlfeev6lbd2qt3eu8GGhCRXRBkU0DAFRXj+iQuMYmJzmOcZHScJPPE8Zlx\nohm3uMW4xn2NJiYE1wFBNKBEFBBETCO9d3V3dXXXduveqvl8vu/v/d9z/31vdbfmycw8T07V/57t\n3c57tvd3zvmd37Lf+c3DuOGms5zfedJunDHceKa1G+FMa5qjLKaPddxymK7reOOapnYcSTL32UYT\ntmESdvKYnfx9QHa8DT7tKX3IsSjjm/3NHSXzWSDiocgHozXmNvv4k66/nm//8k3rlzxzesrNN7Ci\nxny3cZq91AexIzjesq/OGMOeB3Zf7GH89+gPb5vuX/VMdV4dII+xhOMbficdBuiPds14TAZykMbb\npMqe/leFgAblYCywrBpwFCzwcolrxXS8/U4X0XW1ECJkt6uhw90aGcPAgR3lrLDa5HcE3/We90/X\nXndNDLWsIPBk59VjFyj0p7zq5bxRsTH95v/9tumOe/gQKkbDpayGvfBjnze95rWv5NuJfHMQ44tX\nM6Dt6pkDiBMVE7GyIEDOtGCEneVqjAcw+C7jrUqAs82n4laQ6dWvfNX0zne+KxM6XT/fBNRwegLn\nWT7vc98wvfZVr1IgBv15tQ0jxFXElA8m3sfiap6jlwahyj/FU+wpzhVdeoGVJmj6dqSGlqsdz3vm\nx0xf/zVfPb31d98+HeGG+le9+tW8vffg9N3f8z00TL/ccIqn3pN8hFqbTmPI7WCML+S9hLNuL3/x\nS6b3v+99nM07zeWXfsJi4gPrl09Pfc7zpi/70r8xfezzno9xdQajTwu85HZst1JtfK6KqZvtXE2Y\n1KEDIbVnk79wwXXM2m7149m7MWh/8y2/M33yp3xqvh+rIb7X1UIbGnq47JKD01f9nb853XLjddOb\nebPRsz92CA+E33LLLdMnvOIV0ye+/GWZ/Li1hJdDvoKVubumd/4B3wtlknjb771jescf/CEHNj82\nk6QTkosHToSXMXl8zVf9velpbHG99e1vn45B20nT1aKbn3jj9Jmf9Vm8kfNx6Jt2RPo5OoTbZX6n\n9QTf4PzBH/sJyuUhz40c8D/Hea4c1Jc4zhJT2XRiwzgZo6wYIsjazqAGqO04K0nEnWStY+nF0Ra1\nS2yN4tcLJ2zR2RGByTkI23rg7XjofK6YlNcBggcLbc+JpfF7Hjgx/Rjfg/zf/uk/SR/SgNCt0u49\n4/nxL3zu9D3f9i3Tr/3WW6b3vv8D033HfOO03pJ90hOfNL2Qs28veOHHTlez6myf9WPtf/PLvni6\nhwtkf5OPsB/l7JIC92CpHgyXo50rG7J4sbRt2n6kjoRg2JvBhKnyC+81LnlphCTfTpWe/d86tVhU\nDSwpO7AxoEMlms/DlhfiOp74zVarKC1Spdqeq8tFx+fRgTp2sLKf+mLKL//Sr6CTj5te9Pxn01dY\nMQJmP0+tDKHTU266dvrmb/xfp1/8t2/iQ+zv5qjGMfjxYgpt1GMUn4rx8rznPJvtY1+wqZU0z5r4\n/eJ7T5ycfujHfjJPzxvc8ecTr2NOjghYIJzherM4UcpdZbItSa/eYHY8AY7y9Mp7tGjbIC2UgFeP\nTlgxXICv1VPpIdesR8tuPQgLtlnVklFVvqNrH5gNzLOs2l7Oude//be/lM/iPJk+5gMhOLY35H7N\ny18+/RkPBz/4wz8CL1cuOYPDNURex8R/6s8yGbI5lHxbJ17zAhmYtBtCW2GSlT+dvuw3XspNuTq/\nMTvueGZYOF37nS+dDjfuTv52cKa1LI33WHlcjPdOeZ3esjSv5q3feY+W1rRGOMOd3nSaR/ut085v\n/I53vumdNoa3S2sazbv9Tm9fXPNalvbNN7wTXuMn3w6gYXaefsn8tZv7y85zdcbuXRhLfHVgAwMo\nW560d2m68mWTtS+sMgetM1h5J6zngTXS9nBP5B4urF878yA7cadZrT88fQxbni9iVe2Zz/jo6aZr\nj3C3GjsiZznydZJ5AWGyU8TZbMf3ld1855k0P43o8OXceo7wGUTcAz+W4RjHNcxclHE8qfl3Fzda\nEAm8RpxC2tPzgIjvKGHf98FPp38em2ax0qYydK3U9pfTA8SfpDvoz51Go8G3uFxJ87D6SVYRfobV\nmE94xUt5e4ItGvIRSe2OAABAAElEQVQ4GRLjy4lwnSfeT3rNa6aXvuzl3NJ9gtUGPj3FhY/7WWnz\nW3k+ke5zhYcZ1m0LlypzmBolOxDKK4YnRbv/gQemW//Lh6frX8RVH/BVMfty2H1jejEX7P7jf/SP\npvd94AMcsn+A2+EvmW7CAHgub5lezYe7OVjGIMo2JAaXg7oN1lnDscvB2W3f82e9qZ8VPCYMzwId\nZ7Xjtttum27izc9TwLvK4aoeVKA1sYr4BdPrP/PTsazZDvV7iayove+9753e+KY3ZRXl/X/ygWnj\n9fBB5a6oWD3O9W4hfs4bPptPSd0wffDWP8sbpJdcdsn0lKc+le3K509H0c86K0gHMTo3MFSVxQ9t\nW3UOaa7UZXvWjoGOGc5SP+rJ8pii7vL0D06mglS7xsM5VqdcVds//ZcP/8X0kz/9c9M/+fp/aPuS\ncCYeP2Dtytt+jKjP//zPZfL7ZFZKuXWdfHV3CSsXRw/5DdhztAPWxkD2IPTX/I9/f/qfvu7rp9vv\nvCNfxPiO7/zu6Zpv+t8xzm6gXuvMmyslrnhcxT17X8RK3es/49NzNtI3+Fa5Bf8yzi3Kw7ON+zB2\nvB3fqlqjA7rS+lsY/7/15t/OIf293m2Dsy7V0YVYRiTQgV156TlWI9qJyZ6mYRENRS9qTqX5EFK6\ny7clJWG1OW86kUOoVkGc+J1cqr1cWGPVBkPCPuIyuBdIq8MyTCCCq35FPnXuiwgHMERcJfzlX3nj\n9Pmf8/q0R48E+JURV5fcBnzmM54+Pe3pH01751Z7DH9vuXdlyPNZBzhk7oTvapOrog+sPTTdeLUr\nSn+L83J3ZUvRNyt9E1hDaXx7VFlKHtuRrQTn2GLZ0VEML3JsQ/YH8z3/5Zkox4n0RdsIZY2hIj4E\nYpBLD5k09gCJUWNu300nnRgVYszK1niz2blylDZMTKPLwVIZ1Kl9/kf+9Y9PT3zSP54u5QFP+T3n\nJ4z96FreCv/Kr/jy6R7O1noEwbp2xdgvjuynL5/loSsFhOI6DyMa4/so2w/84A9Nb33b79HmDtGX\nXLWnffJw5TdEc+YF+n6qJvUOM3VB80GmmZzxuRy2rjQjKl58Zc+ZFbGIwDJyOb7l7rQQIwP8/KNM\n4lC4TD4O+hmXTfJnY+RnO3QSoVrTJz7qo57OZ7iuTZtWz9RQ6NmWOAWNwfosVqMP5lzgXt7mX6Pf\nKUvqDl4RLhxkjQwRIjVCXqc5+VbYtMhFgjQ6nsDSn4br9mZ28QiTBbRwPYkvEofAMp2OC9Lh5tH0\nO12/4RKY/4wGROeL23RG/DF9pNHhR8NpWiP8drpruPaX6Y5yXgym+eg3DflZ5sbreOfrm+dP134i\nw5+GN6nD7W+H03kDiUXQvGWcTtNvXPuHc1n6wSyfC9RIgKD2u5oXCeSB8WHGAC/Xp8Cc6TwzHcZG\nucDq8rk1PlPH0+DayfunJ1x+hFW1F0+veOkLpqffwiW4h3yxAD7nT05rfPNYuZwHXKSyr/nQ44KS\nK3fp6qSrQx+gdjOPOig4J9QORsFlhU3ZFTx9hXBKr7yOsdCCXgxAy4OR5txk//QB0jJvOdPWyno0\nPzz4k4mOgnTn8iC7RpuDozfTv4NzOv+aLZov++K/jvAwZfL0Pje/WOAAlNUwrE0H2N0o5wyTzalT\nvEHKeYsTbK3ezyrBE/k+qN8Y9DuSDqyWI3VEIeSjrMePH+eD43/GFwWeQyXwZMnkbvEdxFXuiz/+\nRdNL+enqNBDbtEwW4U/afWwVXHEZ3zuEpobPOpOsipQGKakIl1gzwcBTA9LzeB/LQWZXXxwwzzi4\nI4urSa4c+LWHFSdkDD73rb/i7/yt6R3v/AMG+73Tr/36b7DK99em5zz9FiZsjEUmB1f7bJBH2RJ+\n7WteNb1uelWvb8T31eAHeCP3EIPsg8cfxvJn25nx0XNx3szMw0J04fmb3PHiLEIpbATdLGr7hLiN\nzHT42QhoCqyU8RYjW7r7Mcz2sX37Rs6+3Mxq5Jd88RdyNpHvxLLNrcGkIaQhplF2mNWbyzEEXBNy\nUpRf7gAjwbJ4VvGSwwfYBr8jeK62WB/W1fd87/dOX/+1/4ArT67EOGMVBB2sU/9nMNj3YRQewkA9\njIF9DVtZroLUlqAvczDQMGl6FtEb3Q9yaeE7fv/d0w/80A/wILCec3A+IJz2Q++UMeY3HVXp7EQa\nNekayOfkn4EKOPUx/0cnPom52kYHp1ypexI8L2Yntf35wJQzh8h8wAt7cBqreyiHxpTtyJ+NSnXz\nHxmkZbuiXuAtvFuGHnb3bcZ9TN4/Tn+5hutPXvKij4surRu3zt1G98UKa/RKzm1dgd7ViRP2GQxE\nV0QdLNw21qjdv8qnr5DNb7oiQh581IF9NedPFRhnntJZJlsK5FJeGBlL+4jk6oS0M7QB89zS9cC+\nRp3bs07VPij4NJvlfgcut86LPLiuqNXgI760lNeziNaBuqRphHY8+PlPwZTZh5uzXHvjqquXdU+s\ngrnS+y+//9rpH3zNVzFm8ASNbL71lYcveHme9MqrLke2+qSedM+x/KuRshd433i33x7gpajz2Pn/\n5t/9++k/vPE/sl14JGdQKIgotEu2TSmvXw7QMFZ231BHrMibNMIkVz+wfOrG9pIyqB/KYjr4PpBa\n/9afzjNo9q39GIdi6LK6RsNxhbfpWmzp5RN1gDm+mJcHzcjK+EMbsg+j1OjTPqWsGpnRL/B+rN6H\nhDN8YsMdA98qdWy2z/bY33IoS4XlVLJBKq78OWIuCdLwt50b04Xd5PVI6FGWneA6fdmX2nZpzV+/\nw8J2WJzGM13X8UfzC3rr30fD6fzGajm2i3eeOI23HBZvzBvjTbN94aQ5wi/HG9b05t9pO/nbybQM\nO8Is520XH2U0P0YSLd+Wd4FVtfXdPoDR5jTWTMW22OCSWjoBD4ecsedam8s5f33qFBffYntcQds/\nfuw2xhSuwOH6jasuOzK95rP/2vTKT3jJdN2VR5mzeEg7+zBviT7IOCBFVvF4q9NQrZo7rvMfdhpu\n8jHdvreLH1s0eSh1HomMM2x6ReQExRz1zxghHeH841xd87XlCQZ+0RHGubtGJRH+Mm5uQFZoTwYO\nwE4gTkQ+zf3cL/zi9Btvfkuu8uDRlUtvVTCFY7BuaxJsBkQmZqQ/fBCFQe/Hf+Inp2//zu+c7mNV\nwQn0FEaC2w4WVOPNCdqBzo88ewWChtCf/tmfT1ew6iCY39VbgZ/nljwE+BDG0YMYB2f4+f3THBzE\nAPtNZAuf++/PQMcYl0Exb8QilzycZB0YNUp9cvWj5m9+y1umD37wQzkj5zZtDnlrlYvDIO+y6MOU\n1VUUxme+e3rN9Hf/3lemcvzo+k/+1M9Mx3lhQ5oPsd26W8ONcvo07M323pP2ML+T6FLfPC8o/omf\n/JnpZ37252iXTNDOHjZQCix/jUrhNGbT0QinTaVuaQxOAvzSmESdf+KeYUI8xCqZbx76NCD+D/7I\nD08/8VM/m8nKq0o0Tp3wT1Iu69knA/XqdnHusiEuP1cV6pNlK9NP/cKvTP/sm79luvcejQd4Q/cS\nPgj+5re8jfRvm97zvj+lnjws72TEigArqadYmdSgKV2UwXYWPhpBTnYaDn4X8jQT9H98069N3/hN\n/0e2Aa0b6623q/PtSuLRBb7tBg1RQ2VAnENe61alaby2yzmh6I4OwgQHgci2NuP7cEEVgYbBgYEk\n5hrt0Q7YxkkPTGmr8F6jjvxUlW1cHTJHYtizykHdxiihbjUo77zjzuk7vv3buabmN2NUusoobV9O\n0VKsz5ywMkQbW6NPuFKpUSfBc6zHu7Tuyu/Jh89Mv/Lv3jh973d/z/SRj3wkhozGh/1SZ1hH99h0\nhI227PY7hwvL51DiMnLuhqMM6kBj2gejMlrUZJXNt4fF8Osf62zLxTizTULDsvhdYM/9pW+iyLxY\ng8yOCTrb0EKwVIuUccBotDtW+DB0iIeLf//G/zD9n//82/k4+p9nZX4VA2yNg8FnydcCPcvq8Sn6\n/Gn8sxhrWEPUJWdE0Y8D7KGDfEqON1F/5md/fvre7/uXGUsQLe3beqlxrfpDBuxkOv744EBftQ0B\n76qoq5cUMvWouL2a6HjogL4ObD7NRp91W9/zhSmTxj1ljnkGjG1kUX7OR2jsulaWhwfbrnIB4zij\nsSusq3U+hPjt2TvvujtjlOmOJQ7zGnq2FdPuPcbqI2W2ntVnvT2rxBdzVsqju247F/MfnYpiPjZ+\nj4VWwzTNnWRruP+3/IvJ1bL/15RtmeZyvHntJFenN9x/Kz/nQWdmbnNu8Pmn82yLGs4WImOgu3KM\nhHR33qRmQeIsZ9sPYqTxqDZtnLhzevLVR6ZPefnzp6/9yi+dvvUb/5fpy7/ws6cnXXN02rfr1HTy\ngTun86eP8+DrHWtsqfIQ7sMlnZXxwJ0FH2a1YfYyt+9nrj/IWH6Ytz85nsWboBc47uKZNs+mMqWB\n4/gx/wg7RiuX+nNMrPOtDByOLQ4EW35zQdsju0bJTsB3gtvJbZfnoOYErgAaODonJcMqzrNG3/Ev\nvpvLKk9On8Z22hWs0jg5r3Hp3EGsXCc1xy6/s6m473rvB6Yf+4kfn36LSet6rri4gw9AX3v1E5jY\nM2eEvncpHcTAcKBy9eY8E+d73/dezo193/Q/fPVXTs992lOyouYHyB0U/a2w7crdm1kNk89t9xyb\nfuqnf3p60xvfOB27+67pZS972fR6zrpw/RlLoqAA5CCtceR8Li+3llTzXrak/vQDfzZ967d/2/Q/\nf93XTR/1pJsj11lWifa6JcpFeU5K+7Ho9zHRUbzp/RiUv8M5LRSVCfQtrBJ4QexX/90vzwF7CWTw\nhKdbKL6tlpWgUJ6mP3r/n04/8K9+aHrbb791uuVJt/A1hc+abrzuiqw47aFRWSaNH3k5IefJ2oZh\nfZrpHxq1E0OtsDlJUFizmchc6VynfG41OrE60WrIfNf3fS8T4vunL/i8L5ie/5yPST1Yy84V8lpl\nlWlBnrgNai/fVvvDP/7A9KM//tNctfIO6GiksHXFpKKheRpDxQPjb/+9/8RW7K3ZZv2M13/6dBNb\no9K2f6hzJxl9n4h2M7laJoo6rfLW5R++7wNMtD8zveW335avX+yjPcR41fADjppjZYbVQFYI/TJA\n2igGGNUTuWHDRMo33WxY0RGEkU2F2M5dBtfwZG2P+qD77wMRx1rGlGcu24W45Ls96KRMSwyMbXJX\nttRqNW/VcgdX/Jk/MspXI8q75S5jpVcD4AJ1eBffjPyWb/6/pnf9wbu4SPlzp2c89ZaJK3wiZs5Q\nyCtiK6ud3rLIX+mn6Xd+713Tz/38z09/8Pv/eXqI1Tm/IOEKeBkgGvm2U9qKHW9w3b/LTJszkNHW\nZbvRyNKIjS5RB9fSZpVV+9V69yZv5YnxDWwMCXSXYwUYmLu4/8hVnn2kbfDT7UOvyn1uw4cQjRH4\nQCMlEST8bQtsi1OPvrzhalvuOgLelbVf/dVfyxUdn8L48mmvew0vGBylHakg2iINSGNaS9DqjX1E\n3R3k3iTlfus7//P0sxwF+L3f+13q02MYPAjSpqslOA6AB5+cq+UBK0/UyK7R5qqq5bZ9uKppe12h\nPOpWZyl8g9wy2058+Wid86umi6ezDfm1C3WaOOVNmfFX5rL7wJSHNACUCzFCw10LV71PcbVOxiYI\n257+5P0fmN761t+Zbvq8N3C1Em1Ygx5al9AX7mfV/E2/9hus2p9glfoI7ZzdCnljXC+7bg+mG84k\ng9/xMb/Tksmfhu/4dv52+M1Dfyd3Mdrb0dyJznbpI/5OMowwLcuYNuJ1evvy3A5nO1l2Smv8zh9p\nd1r7y7Cd/mj+xWg27kj7YvANN8J0WtPS3y6/0/Q77KTgXZYXPCrFPx+yNdacK+znGf01jGhDGyya\n+PnpXVyGe5azwTffcMX0mpd+4vSyF79getLNN4LLGGx3PXeCcZwFFkYObREfiDbO0J/tGrvocH77\n0wcqBxPmM+cBx/gV5gi3LR37sIR4nwAhGFhgj6txU4kAiDwpg+Ob/WnuS+nU/kkBxLu467EjCrGx\n+csgha9rRXVek+sBv+E7XXiNthgODAZ+jeD4gyenf/qN38R1D++ZXvfqT+TA+pMxWC6bHvbKDZRz\nBv9uDqv/9tveNv3ab/wm38z7cAyj2/kSwC/+0i9nQnLgc5DU0HiA7VAv2TzDhORKVWRE3v/MG2Vf\n/dV/f/qKr/g703M4aHwpW0hetOlTuZPzgwxUrii96w//aPqFX/h5vjjwrtzyf+TIpZxl+ZHpyNHL\npmtZEbNiPGNy593HsJY9U1fGpZWA5su4oozv/P0/mP7BP/za6Qu+4PPyxp50fHvSSdFD8md4meDW\nW/9i+l2Mk39DOe7CULzi8isyeJ8+czL3sXktw+d+zmfmw/ZHjnCOhi2PbMlRzuMPPchh/Hunt7/9\nHdMv/dIvTfeA7+ebPvTnt07f/wM/PL3hDZ/OFqJnyDBuWJL17UwnSqvO9uDUU7qxdqxPDBAahgaN\nD/MC2X5sKzYgJ1vvbPJNMu8M8ylc/f7HN/0qW5C/P33ap33a9LKXvoTvuz6B82ucMcN4lb6H5r1j\n7v777subfe/43Xfy+aW3Tndx3s03d/1eqhOtnekcBz7T1aDvRHjrhz8y/bN//q3T27nq5JM+6ZVc\nU/A0zhpek8Pm++lNvtVzhlURV6S8pf5Df/ah6Y/e80fTv2OF5Q6+y3mUOraNeY7LenPlIUYF9D14\nvcqkeeutt/F5o8tymagTlCst3oHnFSTqLAZqdIFkDAaMBelg3ut3G2+k/ikX+XIwjTw/N+I3Wg9N\nt1MXJ2lLTqYasHZ+TWK7qRXwEE92H/7IbawQn2YL1BUWjUlXY1a5/PdutoTrjGbR49obDGYHGWvJ\nrXXr5Wd/9hemt3HO7ZNf+5rp4174/OnGG5+UK3LyHVrKJZArzqd4MLqH1ZPbb7Ot/T5GzK/Tzk/R\n9rkDiIndNwTtp07o8tGosI2a1s56LMNh1kHKkoKlLVkmKmy6jX76x+jTA7xu65HI6t8KxvGhPJjZ\nX3TxwfHhzSt4+szWPbwU8N4P/QXk0Aky2Lc09Hw5x1WhrI5DI1RspAkwANMO8tUCZHeQdFU5toZW\nGHX5J+//4PSe974vF2l/6uteNz3lKU+ZrrnqSs6BHmb8YCWXSnLl1vJ7HOIvPvIX9Kv/hAHzq+jv\nVF2yC4zHMGSpPrJyi59tTMryEerz3azkH+asy1mMR8dlz20ec+XKsQj9ekYxK97keU7Tl008hvFh\n3njdz7U+5y94ptDxwTI6I6zQVk5kBdV3uTKegttP4vbt99PfPW5im1Eu+djeP3LbbWlnJEJLOd2S\nR9f04R/90Z9IOd/wWa9PH2RQn/4Luv+RH/7R6c1vfitpXENA3dhis/pe1QbnTTeO7dU2ZvnSfzIr\nZa4QQ9j+OTc0/Ca1raHN9oaegNc1jnQu5jpfGv7GeMtgus54h0eajdd5+v5ahobt9JGHMJ3e8J0v\nXucZNr/1oT/yGHFaBy3v6Eun3YhvWDh/4uvrTNd1XiKP888yze3Qm595huXbMo3wDdc0hWm9LcO1\nHjq/cTre+TVSythRl7IzhvjTWjJvF33Zez5d3z+EEfbEJ980veTjnz192ie/YrqeT02tcxTo3Dof\naad+fAlnw+8Uc87eBRB5+ClJjTI6GhNpPbx7Ea4Px3mxgX7veMgWmULwg68yuKpg1HEw/6vODeuc\no6InEjLvBhjdieNvhhN2J7fr2S97TcBa2e1vVwnmja4ro9Map+P6rna5deDA7tbbZTwFu1V4LQeC\nPUTtNRMP8u3Fu/iUz51MCCukOQl7yNZPPjFcswpxWSZ9Jyj3lq3AY/cfh7ZLl1QLA5sacIVjjQPq\nvmF23Y3XcafXzQywh4HHfEEr9917LFsHd91zZxTnWQ4PtDupeBbuCNstqxwgtJz7mZg9n3UXbzDm\nSVnrGh5a2w7+HsLWoPD+o6NMWNdeex3GxtXwO2KvwSA9GSPxTi4CvRvDy9UeDSy/BakxVPfcnc/X\nIzwUeT1v2d5047WUk4GfhuHFqnexzXE7F9L62R7PB3lvmVvBHoR0RcLrVVZ5sne708nO+5dy/isN\ngwZEI6j6tHNbGzRIN1qoRpdr+4WENDhpoNdd6N1OoOGtXpkqM0mc9toNZLIuNNo8a+a5GI1zVzs0\nDO5hVfTYvffXrevc/2QDl7HtV3l9QtFA8qJct/RiODL5H2QV7X7agHVwNXSvp31ocB9ie906dQXQ\nz2Cph/swDO+9717ayb6c83Li1wBzBc9tI2rI7pN/GkQao5ezormX1RMnz27D6kuRjh/3CUu80k96\nTXpQrVheeeWVab+2R2mLUwPILt4K5iJF5KNQ4Vd1WmcTfYvUlVRXXi8wQTsQWHZ1Yju+h7NmMTYZ\nXJxkPX8l8dQT/D2H5BkuDbmHeRnDb2pehRFy2RWXsC14EN2wFA/cCa6uuY9vi/oFknvYgnbr3pU1\nDTS3rLOKMsttCctQUl81mGzXZ20n6ds0FAcihj/KXKtdR+m/GvLKav+0flwVdtvWtzTdltRAQ/Ol\nUeSnqgNvX7sUo8erJrwr7YL9Oa+7V9t4kBd8PBOnjtSzMihn3zNnO82LNzHAMF4wiGhF83ksZdyV\ny4dXaGeek73ysqO0o6MYr745y2dlaMMnHjqZhwvHG18oOnL0KHVUl/Sqa+s2Bi11pe7yEgXy+wWP\ny3gbvI4J8ATPitxcQPrras4OGld2z1xafMcKC+JdfK6kutLmRifPBSmffdox8I47eUvaf/BXVWbS\nU4B1Ij7PdUbIT466sBw+1dtenDy8mFk85aa2QIU3ziMYPkDe8uQnT9dff2220j/84VvzKT/Hl1Ve\nkFrnzKk0NLD9rFy166DnT9NKWyBFv9MEGMOd17Dmj+ERdgwLp2vYkY5w/jqvIItvp3V+43Vc2BHf\n/IZpXxjD6nVMM11nmq5pNkzH9XWdnsgc73D7wqT+5vzG7Xz9ppO6XKLdeY3X8dHvcMsnzTFsXNdp\nDb/sN4+C3tSDcWHbNR39MTzSG8NNt/2RljSX0xt35JewIlQXq77k0479h7HKhx1HBa+nuoT58dWv\nfPH03I95Mm9S3zDddP0l05mH7pnO80WDQ577jNxFXV7OeUnjTHs9FDLekOaluF5ur5GWB3zGPFfX\n5ZVtT/jFmQ6MMY1GtFLppJR+Ss4InxzbJDDQcVJ2QSXSMze7vapBmqM6jhmAOaYyyk0Lo22mnoYV\n4UkYlWi4G3fDjkpvBes7QTtQO5GepyDsvEHMAUzPTQnSGQQ1yBTaycX8A0z0njPxba7Nc1e+MMDZ\nDX4O2qURV4DqpvLIqC7Ah2oGHgt4lld3IcN+M6s1yKRBgFg5cO82natKtSqAspSJPDuLBp6rcb5Q\nsCgf+Fn+lLBGD4WzfLnbBURfTMhLDQymVqpGo8pPpYGySgPxQKSTQekRftIkz6tQNBryYXtWoTSc\nNG6E9QyL8njvGNA5E4VS4d0rStaJtzdjWlF+Jx2rXSW5LVNOmXvgY8oALk8k1g/0zaU0NbnLz3wK\np25gk7I46fSWT87oIbNYtgcnbankLBk4GpT7XFEgLG0bWhSPbCFonP8gxAsQhlsmYzqaT//KZR1p\nQKondbLBSp4TlSuRXi+yTpldybCTFEn5ILdKBV99pRMQtQN6ANU4bCUZ+W3n6kl+qetSRmBsC+Zb\nXtue9GSljoNNuTW6ZC6+5WUq52dZWO0k7TSrMfmkGnluoep6m3g/bd02vjmQQ2nuvKkX6xn+nm+y\nDVQf4DwGy/deK5GvZSCQ7aReyuC8BnrRABE2RxU0kpHHQ+1zoVNO22D6qTwop/H0I+QTNE1Q2Qyb\nlkoiQLuwfqyHGMRz2b2OZy+8Mm4gk2q0S6qbpKl0f+R4VtF+mZZhfZkKL8cCr9Sp73/av+Ssvtwy\nFVf9ky/l6El9kYzAeYiiLhZtlNXNk6zKHuCcg23XF5lc5XRV1JUv68rVtzKaq1400KwL21TrZFNn\nFJ322GV3K1F51ZUieLm2hnd0Ah1LkzZFnmMPCRh98KEcnvGrvmU7ovyURQPbMkXPwNt2XO0VT5qn\n2daxfmwPnq2RZPN2ZVC4aFy94Hya95OCbiX7kOf3Vav9MJHxopNn6ZRHFuqicIqmhm879aEuxrbS\nafqRycYyO9OEFafDnTfS2NreKNcOPBpO3NG1DKYLo2uYGNykd17ny2N0Dd/55i2HW65Obxx5ND3z\nmtd29DtNOHFGvTXdhmn6xju8DGNel9+wznj6GeGGb5mWYYUXxvyGWfabhrAN13TGvKYjXOcb1nWe\n+J3XvnkdLuj622nb4Zgn3kLvxYSmT9vgf7oL+QjMZbiOWyy8sFD2+Z/1qdOXfNHr6bJ8BnDtfoyp\nk9MhLrh1zs8dr8zLHity5ZqhDcc4hpHmQk2+W+w4RJ/IeVvqL29/k+b4ZD92aLLbxV5hHFCOyKko\nxMyLjBFQ4AgemR3KEBcHpHMTnX43xlrdCXkRo+1ZL/2kkBFV14rpijRuWKfiDHeeaZ03hkt3CAHl\neboDkIFSifnvQFqrOkZtcBg7KMY33zxPBWYqx4FUw0iDx8ErA58KgvBCaMJRICkqp+1bDQ9XAHyj\nzIHYwU0eGm9uj2kUkKDYGAc1qZbBhEEEzh5XYvhnuLa16om09rXhBS3rM6pBBgdpa6j81ktqLDxU\nRq7oyMThaotG49wQISJvL/Ur48e1jZrwbDxOwNE9PJ37s8QKLiDwYwJBkNTDUDdVj8BTtqqzlHRR\nh8bkldUEZLOGM3ERhk3qThh15naOzDRGuhzWW7kCLh5SYYJypQE66iIajqJK14UjNWHnegSunirU\ngZNh1a7tRAhXcapubDsaDODaaYQLK6AIN56VkgndjgBssbdj2JnRFWVSGgc6dRujzIqUrR601HEu\nDp7biDqwjOZppGvEByYGrDig8mRkPUkkaCFJu6czV3FpA7TjTNp16KHSwdgMyJuYvEJKoSpuPbu9\nHL2EoYalDwoaM7YFdU4/if4pNzSgkn5XZ0AGLuLPrvUmfPXxak+29UV9kFd9gXbAtrWy6KRywbbM\nz1Zr2czr/pXVPnDbycO6lA9cSkbSrCeV6CqkRK2jdpFvrnOTYREdma981oOrvV4LotN40wD0PsN6\nQaBW7tx+tQwaYBbf/qiTRtGROGVQHtKVQCNdqHooImAGRU/7CgT6xajOZc/kRV8AVRuifDKCBv+r\nzLQ5y9ZlysAfooLBC/jUm+0Iucz33ildtTcNcVUFXX4Zb4yDG+Nc+ZSLuDDKhTQ1vsBbl3QbV0iU\nrPaF0AxE/TEeWWZalq3aR9HufKEju3Wa+qh809qNtDvcONvxaF7LPIz7M1/X+dLovObbefo6cTrN\neKeP4ZHOTjxaB+LpGqf5pm3PeliGFX7k2zid1vGm2/DNQzh/XZbONz7CNJ3m33kNb1yclrV9aY/h\nUY7lsLBNdxmn85Z5NHznS7NdpzVM43a884W3Zdn27XuuWPe8rPGj0UZroNNyk8WFM9OLPvZp01d+\n+eexE8bxI940Pc93Q537DvLSkmtBDAuUw4USxwEMNhZs9rCyZpovETiup8OnW0HZdm3fUQ5XxZy3\nSXLlDXBkmfnTdzXyRPchzJ2tGjdrnDYt82/6K7CMNIyORfPxrLSpGJWlM6xbVlqnJ3PIF05XaEpU\nHSlPcwjvAOrA45OKRRYuAxDh3VkSJN35TWUxqMgngxI+Ra/VmHBQCcpW/BwYjTk8meagLmFxHeSd\nNAMZOnAmT3oKoJoiN1FXOkR1NcQ38MRRhkz8EMykJIYjNv+dt5RTOFfFgkzMszA2YuNZ/QoNIrOL\nPg3P+koQA0V6rqqI6BZLya9gruFYFnxkc9I5z5OBqyqSCC/yFSFWXUgrlT8T7VwQn2HkL47w4qc8\nBVU6oHxIT4nVpaEZkJB6Uydd12FBuiCmK6P3bklf+SOFvEm3Y0Ua4tH0rO+sRpBTMhVtV1wkGqNT\n+mAoa7bV0EFullY06wI4eQsQLAH5X9yrJNYdCdGxPghlYNipZjxSi5y45iOfepNchZXHTq4BV3Ur\nwaxOWFaKqSFgKe1DwuRQfhq17dBV1Vpp6T7mFCyGetP5dpLhXawIRV+znNEl6TGgKXPakHGLZRsU\nP/kWrgZk2wkKQ4jZ4EyOXKp8oQH90SVN+aFhlmT9I3/rqQ1768X6yqoDMHnSjwj+KXw1b7+I4YI+\nSrLipmEJtdDESxnMWdT3TAsPB2bqwvpQrmrr9UBRD0Oejcsqt22Mn3K5+uXgnFVOy4I6HDTdnsyA\nCU156yyn5bV+dXDgbxmWMeICV6kBVhdA+BCo4ZwyEtcgNWfR9knTRVfIZf8uuUmUYbyqT2WrurRN\nqB/lQIep74qErnj8z8NHCz776sc26Jb8CmeArRcfSnTSzxETfKWMEsLFdjS3oUBu/dM6X/a3Qm3G\nrB9hR9dp+qNrmvaHEabTR9gON9wI0/w6b8tYsiTLMp2dZJLmdjyk3fykZYm6rrpOTW+Y9sXrcrac\ny7wbr/ON6x4RJ601bF6PJ02v5V7GC7H+o17mumq4LlvT2QStftdl6fTG6/iy33Is+8twY3wWC/1F\nvEG5m1A2o5qH6dQaOPaYzAU1H6dcPABecoAjUw/fO91w9eHpK/7WF00v/rhncbUOq2o80LmSZi/L\nEQ3GaM+s+VIQAwn0eBhmfIjtMita+jUuOv4oQPWp9NXwJhdfKITK/wCJr57LS17Cti/SI4N4DkqP\nYaVt5Zqbn/INKrR/UExYv515uhFGoW0opnXFpSAzXPIJa6gxvFchVYa0+Lli5BaPqwRuByq4RogK\nyHbpTEceDnT1dAoocZ3GmBN7ZFOBTr788w03EKDCtiTnRQxUZ6nJsJ+uxautl9ItubGgJRV8Olie\ngonXQIqMMZlLF9aA6s5MwCAYgUw0zK+qiCD/JGmZHUDlqzyWOWUBxXnCuVWczBlBkAz6VX/hVfFi\nQQLO6wMyQBOO3CSXAWQcauLFV09iWFf6hJJAYtIr0TwNV+sgTxPC8y+TErJoMCqTW866TCDKyC9t\nIZUCjoXBhX/oG7N0MpjryJToDX3NsmqsZ/ABxhUphUv5RddB3wlPQ8qX3Vq3dpSUB7wYP+FR8EKl\nD4lPerCQd+FCr/QjvRki2eph04lTfDQQsu2ZsgnDz/YiMGC1Eogs1p0PI+bIG7nDgXB0Zlp0WlwL\nrNqhxrJqjCqFF1f9EOYv/+pBRH1pDKb8wKcOgbEqEvFhwAa05ITv/tpZ3SZKn9EUf5Be8QGyvrOt\npvFBik+53jCerWzg0k+ly7/0LYRPGrgRwXqb6aio1GPLAQPzFroiDEDSlMsQLCLHXEgh0l7kb5tz\n3Mj2vzrBYMtqtmSQs+qCtkcZ7H/yinE889fI0zCvMpApr1ltwgaPQPXVSBkxfMHJhzQFE84ymRHd\nRu4kkm6dCGf9qj3/4c/tz3qsSaeYqq82FtW/YdtMeEiS+q9qtV+VzmfMlAGQ6EI5xFF+C5R2J4b1\nyq80LD3TBNHf+usxRJrmtT/CdZp+w0cHJuCEHeOd1n7T6nj7na7fafpNq3l1fqd3PEjDH9MDg99h\n/Q5nHJt5Na2CtwxNaKt+IFh1o45n17i2h364SB3PMLXisqlv4Td5Q69loPZku6BH2Dq0UrvthCVA\nJV7Vt2niLMpGvNt7pwnffNoXT7cc77SWY4w3vU7reNMY/VGmEW4M1wMy0tHAk562uaTzub2qh8wV\nGDzpo8zRfp3FPu/YdIq3pV1Q93z6u9/9Hm5u4Pz5VddwnQcX1PNFhRVuelh1VY2z7LuBt//DlP8q\nGJ0xtjjuQjB6tzZSntQPMPDNeBmdieLYogDkmeYfqst+FrzKncOkQyd9O4Di1NhQSEXbyjZHuv5W\nrr7pyd9AvJCp5Faqae2KWTUC04z7i/ExAzWMviyAqJwIjAgUGiQ5IyTh5DuIJsn6gZ7mnYae+WQE\njoFKiQkXXolufvOPPBCwslVQuAPvx6AN+93FHAan9tIxGCjT+Gz8Gk/AyjuqycRoRUELOfKZGCoy\n35NEjHIKBJ/yggc0tBmUGUyVSyu+LHlouWrkLOpkYZBVFIsvfgZTaZGQzpgyW/WmWWxkI5B6oYFE\nbmRzBcNt4zIElRdgMWSAZ7zrRGYZpDEgMqkIqgsM8sxo5mW10QTDKDM1gpqU04kxq3wxKAxb1+Zh\nYFC2dBrhSLO4FqVkMI0SKpo/AeZySt8l5jIsql0Fh3x1knoBx9WoGAKggrxo2hLNCwCkhezsG/bX\nf2wbMejFhF6MHyZ2gpE97XVGKlmhawee3WIgCTwQlNm6kLc0lDmltE3hHCiUU71IVgPHeOsfzMgg\nHWVJ/fOU5fK6ArYODIu3+LlIbYOY6atQdacZ55Oh4NlqJx4hAO3JQl8XWVMJiS7SKr3qDqIAKjk0\npYWEnqeyzVVcmUp36iH/lMuQehEPfmmvxZaccjV5zInoZ1FG6tw82070I520RRICZvnkq0xlOEqz\nzgvCcX4okmdWADlaoL6tu+gXwh7CdxKVe0pgGeFhXacejKbxEoCO7OQh7UovXBp/0VQW23LArcuZ\nrjiRVZ96DQy60beMcod31Xu0ly5ha7ENWMI4vI3023rgs72Inwk7AMAbB67KpGYQxjE0MvnQpdFq\nnHKqD/GI2maUIbzCIyDFFoLq0TJUu6hwMvnTeanfThz8xjOp8YfsLXS7XY75hnfi0enSbdc8ltOM\nL6eRUAUd8KMbKi+1O5MdcaOj4JVeFtWjjk0Pjr5tbZad9m+bMs3sUY6W27JkThKP8HaueBd+Jnio\nxcCXtvz5V3VZceFtH7qmWfwDHlmKk5CGineXt2UKgaU/XYb2zR7DDW6adMa8Md5hffnX/ISUtseI\nPpdxljaSSg9ouvPCT8hxxqbMEOsLAoG1z9FVHHe9F9Qvm9zOHZi333YnVyg9ZXriLU+lX/g2qG/q\nV1/OSn12vKDg+J6xB+1GWdBVMP8ngUSFwUiUX+CjS5IcU0ivhzDlRRBp8MKEJciuIrTr7Bp0kZnI\nrK+SPx00uhDRGvavtcVOViu1ldhxYB7hzFvOL6Ur6CMrSQKeqVjgOagjiGL5362ulFtAFZJs/qRy\nVERMBmBMw5iTBzFxUnPGSK8FUSpORTlx8U/1+GkfgfNmniyoQLdGsD4WMiVqJahYMTk/4upIZgnk\nPRe5HOzCNXJYnmyLgpYJMZjBCOd6i9CzOeAAW1JbMSTBK2eAxLGcJHt2yvQYe3Z08twL1+2i5ZXO\noVPjdYwsifnCg2N4TIt87oIGAT+ruOtFv0S3bIbJV2eUzcYylwrfMlW+qYbzUkImm4iesvbEBono\nHkBC4lVjK+7Cp7DkWOaKt5+3bqghBVuxvua3f2L4zeVVdfaZbGUpTyYbqZVLJwdG+R3INChTnqRV\nhjUaNZofXspCywBWut4CL37JWnSLg6Uo2qUvY3MOdPg/586pFCwQ+GKmU0cftFkEUJdpc02FqBtg\n4axs4oUu8gRWnaBP+kdBabibB0bglBg89Qa8KJHEvqVwc9y2GaNxpm9y8+r20RNmx4MuPBKOsE4C\nZRxpNaqDKAE/QgVeKSJnZLQ9IJtggNgfAVYA0fGRnXqoei79uXZYcjhGzGUNARD4n/YpakiQIBBO\no0RCjhYtl/Vt/5BnyQiwPFPnCiAvx4vSfZQ7iwgg+cqGb1DnDBDG4pLoFrnpBM9r8OB7dUDVjxmb\nrg1zG6MySqaEl6ZpJIhLOFpLPnIDaAvlmbOKGkThgbXfJW65qgzR3azjzDfUf9FV/Go/6VTCR3pK\ngOzFDikILPQ30pSfdHGtL+MdHtMjQyDrT8N0+iPb2yadEbb0uJk38uhw+y3biNNj6QgTHdgeSETz\nqALj3sKjpmhelaK4fIeVvJbHeujxWGRhu95Et514XknnuGIf2MMLU77wYW3txZdm8qGVdqActAfR\nuo+mrgBKunMVdFI226lPgbSPvKgDTtr3PCEYrvZQsvA3sLJqnVi5uxEOEuGprw7SEkyDhq7LrN9h\n05VRJ9yYnsRt0keYDjfuI+lU21OazDmKb09Qr2GgFomj9hyPIR/VRQ5Ho2rNbv17K4EvNGGEEfZr\nQS4s3HHHbdMtN1/H3aZfPL34Bc+dbrnpquhPPA01JjaW4nhBCmb1kGeDMBfaMoCD2oo+EzbNZqPi\nFAr9C2xlOhYIw39S57iESZeAuYETl3Lzc8a3nJVL4FHc4tujDdcK7vjom7fsurJN77DCIk5AM5nP\nFR2YJKMJaLmVF5rSNZ1fN2Sj0rHi1If0qtCV3o1Pmv30GoWFVKp4s6G5lYRui4q+fI3mjwmmRPHq\n04ZhPeq8ZVnn4UYVnDICY9UYzgFkAQizgRg5fZolWjJbNxoJvjBAS3OILAMjpasykWcZXZCzlSiV\nwSJSZUkCGU5s0V3yI4h1vyiPelKnXVf6yqLElTZMVMJBT11KQInqP3JCU51EGLxywOc+tCAgqrRL\nUdGfQOFnrGQo/qFEpuUHN7wCnHCRLznVqT/P2Ajq1p/w0Zt4JWzEMj9U0hgIkW9tJRmiMWaNmI9e\nQxeYyBR9uFqDRE6m1JF+0yy6JVnJ1EqAB7DWZekz3AQP/ZJPueHDU5t6yJZ10OEhA1FSliBBj9oh\nLe3LydjS6QNTDwvKaZhk8woiYMoQWUyzDMkVlfCsy3ECIzEQ5umqDLPspNXgXG0TEqUz+4CDEVXh\nRBJZkaN1Zl01v6Jnmyg5w4dgUpSJf2UsVZlVhqKop+7fUVDkt7UkM9SUxzzx00HnttA0zUWowiHo\n83PBy9cyCJCUOSAm/1JuM9UlfwPHH33y1JT1atSHjBI4QMFtwlVW0i2QOKGrbmrybR1Zpz3GxKCM\ndopveIEbfcDZfhj8pCCfebKQwSx74rNc1TbRm3H5zgXKKmxV3IxvefhXhU0bErddp7cfbsjdZdAf\n88xfjjfO6DeMumn9dL55po1+wwuj6/joi7Oc13SSMeMt4Ihbq44W3mwfZ38l0EYDjErRws46ogWR\nb51sTrJ+wFtD7Rz47qAcuOQol32fmk7zlvQ50u37q3yh4wB4ZYxZg8U9LyXBxvkiq7gwUCqd5xBl\na/VZupyVjG6KX6qXjPM0EOtaozHjnaWa6zH4My/JdjkAjVOewKo/gNWPv3G8aD237kQcw0Vp+3pp\nWGmIo9/0zNsMm64OaK+MJWm7CFl9DgVgwLq9WcYN+i8VsnqmUVa7JervINuba9y/ts6q2m7uQ+Q2\nrOmma66dPuVLPnv6hJe9eLqGS/r3cY/aHl5Q4FXSGNYxeBXGIz/ytodZV7YLdabyVXYrTVj1lFox\nz7ggc0qpcsYLMJklMCUqLGnico5UdurHhDnd4MXcwmgblbpdpUjE9IbbrmKFSUUMzI135QS3gJJm\nUQgwgDlY1mqCSbF2VSAVMRcz5YnuRMk/OxC4XYMDn9AoQjNvZVAnpeFURCohEgiZOTKVE54OtJVX\nDZ0CiZRylV8TlknVGBc6S8eDIGByC5WuUGFJU36nI/0iutmoSYgreQlGWLxF4cGZ02bQkFAOtxCz\nDU1GGsICTsHVgfw2XcWrwSxyCJRc+uW6zmXU5VR9MdgknTKT5yAgCnkZhAo9OM0rq06kK28GGyaW\nfvpugyEkZp2V5KQwEDXcTDZ8lNWJr4umXC1/yR1q6XPyTKGUXShhnRWNgZj8BXHLJ3dgANxCi/Tm\nVwQLqWBCPMmJI7eU1QdNeqEXuUJ0pl1U5E/LS3omdkDKaCPgQExbd1ATd4suMshIb1NmYpG5dFpl\nME23WZ5IsUgz0GVWYeooaYTKuFBCdVJ/DSZUalrg5kGLiah5h4h/UFppo1LSpk0OH+ugYCIDuqkx\nBg6z4S5kySdXw6hlnqCKYljM9OaUuaJKYmjS3tSjLg8GBixHyuAffzXxtY7VV8kmMHxntemlXbca\ni4iJlU5+63OLD5w1jSD8Nl3ruHRkCSHM/5IduJlPjSniAWP5EDl1GlLyJon2Zg0GKnKFWsEm0dzC\nX+gU8JZzE2+mPZet85f98AdGfwxLZzneaSOPMbxMu+PLdDpdXJ35o1uOL/IGuKpt5KZSaxudx6Oh\ngrOiFT0KieaptuTDyjaxQZnPoWvMgOkodzp+tN8MBuwYF3c/wEfKH+KOxVNevowht8Y9gXt4wfkA\nOAcwCvzihXexujqUC5e90IerifaSt59donwPFmPFHl/jKcBYiD4QpsHC1/HAdrF4Mc8s5bW+rAu8\nhAFyG91WN3SneY5tGFHsV5v1SM7CdboJI5zpnaffrsOj33hjmhJbCPW/wValbTeGDvFuw3520rHQ\nux3Vi+fWvP7Jh9k9u9ERhtjJ4w9yPm3XdN01V03Pf+4zp+c/71m8Ofq86Ybrrqai/OQbq29nz8CO\nOYdzyaiqdGOZ+amn8uSf/yWa+o4ihY+o/afiJpsvWpEhxcTyDHS59WM7qCd/wgOG95hdtkd7cO1B\naidsGepGAYxbAZ1mPG4hcEVHHg1rh5BiCy0d/y3yZ35FQTjhq1GJGD2phHS4pWJvJxMgaSxpDMV3\nQTt5pEmXfNANQJtA0uSsq79JNp+ULr9IyoSYwQ0+wXYplxHh4gmo277MW/SQhgxWMZ55FHb/bd2F\nonBb3Fwm0pTX+pB+1/kILR1d8zfcZVykzfQtx6LMwgXYP5tugTMndVsYjXKzUjfx+QNh8XTx4dfx\nlkW/ZZ3FCbx16OScaTED4lyPCBd5hQqu8pro0LBJP0QCsrVe5KeR0PwbTr/T9ONmXomHhXhLZRrx\nCI96SnhOk161Q6Sf5S6dmIOb6bZ+KnErvYVcc2bzGnHGtF5BDfFqrZFvhJfUcrzIIxCueep3e8vK\nj3mBAD/hio38zRavmgD1l6I3VnILc04aecTQVdm41DdtvdpCtZcFlRkmdQ9kl2V7OeZxZ6YpjabT\nPORnf2r8kt/cra74PIb2BofeImvZpCTFbq/yiGsPv/kmCcVFvrTxyhN+Gb/pty9Mhxf0mtec1/nC\n6jreMrXfeU0nwDN8p42wY37THNMMbwffafrd3np8a/zGjQ75k+sc1Eb0U+3M9Zaep2PIRZG1eulc\no6EQHoSF9eiGx2jOcObzPBe0cy5nOnDV5Xk2OOobd3zNZY1P1Z3EeDt97MHpLF/kuP++49MKhsR+\nVpFWaJ+0hmzl7eGidbcxT/Nt2FXPj5KvUae16I0CyqXxWEYaOJYV7Dx74ldlp5RWMnViuNqAEdci\nXBmUoquGSbNeLT+++m5fzHadpj+6jnc9LfudL07T7vAWPxFko7wRHD6LhQ3G8nw5BaNrne8Z78/n\n8PisJF99ueDdpmjgAtubz37azdNr+arO85777OkpT76ZC3T5ihIKO3vqQe5n4xvNbpty/Cllcf6T\nhzrhxx8bw6LsFnNRUvW0GQncZoK45lfbEU9Sy25ZLwtdyD/A/LVStsFdppW14VashJp4A47xDqfQ\ns2SNq99h4Rqmw2Nep1k6daGc0YklNj7gj3GBzIsLqGGXquVHsLNmOqNM4mTgJi9dJCsXppYLqjRU\nvkn4EszWK7DZ0hm0Km0HBgeFDgddXGRUzoWskhvgx4Fd8NEJ13gjjrQ3z/Sot4ITVjhd4+p3WjL4\n0zTbb3j9pjHij/ldTtN6MGwexRneZnbdJLhZ/qYrSOMZlu8oT6fp6zpvGd+8ZToNsyhLSbTgYT6R\nOXWWd9Zb4zS/jo8ydJ50Wh9j2rJMxsNvnsSXcRo3cAEtXXTbWIYf+XbYNqCTVv+SwJ+GkV7TNG3Z\nmdayjDgN13lNv+PmN66+v9E1XPsNL5RpC5w5POI23cZp+BHGcNNuv+EhvsiLXLNswo2wI40xvMy/\n6YZWAS7KLr3teIw0RNE1fuO0LB0XZkyzesXZri00vabZuF3XyzhNVzidcX87wY98O1yYm7gjzYb5\n/1p767Iqnz9l1qcUqNe0mkEc9DO+MgE7P/T9W66g1CoMGKI52zgfYKhp0GksaV643e12J7dITg+v\nn5lOseJzzreKuch19Shfb7n88HSYL97sPss5ab5isn7i5HTijnumh+67fzrHZe5nWZE7z2cPJ74a\nwnfKQWPbzxdpnGOyNMbqEqtJ2UpVaMrhz38aHikLfyvZGRGXB33BhCr5k08sL68IQlmcF4OIN9Zj\n12/pq/I6XCg7t5/GFU4XGWC+XXtTNsuwgcEGRHTvof0qBQYbqRtcML0XnR49yL2lfInl5IPH88Li\n1Zcdmp5607XTC1/wAj6D+OrphifeNK2xyqkxvnH6RFbt9qaSUCrXLe1zhc25H1e7aAlauARabvW0\n6YgM8VJ/tSPhNqtDoM2xR1qtL/0xLm37qA+xGqca0jn2IcGtzJej0x4Rda1MCRvWNRMZNlyn67dA\nHRZeN/qGOz7yELcLEqQZr2k2TsM0vLCV1spC3upNFD2Z+ChoVshY4mrc1UBsxrHLxBEeOTcbfoUt\njk9VIU8YqED7p+XrcMsXOtbiDNPyN/yyH0D+CNcDbeM27AgjnK795qc/wnf6iDvCNL8RR9jluGnC\njrgjTMsxwnVYv9tN47Q/toX/P7S3LlPL377lb112mYTVNcyy3/psXPMNjziPFt4Jt2kv8+x4mPBH\nuJ3a2yhP09NvmTptpDniCLcMY1x+I07T09c1zhhu+PaFadfwY94yj87rujH+39vbf29vtiJHc1pl\njeu0q1qt0mxwzHde0Z/nBiYB/9GAY+S4Auq8oFG3mwPvqxgEl/OpvGfdfP10nPNUtz90/3T/2km+\nZrHGN0zY0sRYWGflbDerRLsOHp32XH3ZdOVTbpgu44sVG35+8AFW4DBEzuifIM73ls/yssupE6dy\njvIQn0FcYeVoF9ulezIXudomf8+HWxBnJ34RUTPAAtbctWXrjqmd1OBYnpRh7lPdnwpVopL9bzO+\nwanktT7c9p3LthvjS6Nt7z4u92Zr8/ix+6Z9B/ZMT3vSjdMLnv/86cVsgT7vGU+Zrrzu+umCXwC5\n7+68OG2R9mEwr7MtvWsvW6v8sPb4sg6fxtSYruJlPOrV/xQYnanLR3M9Du3ki+9Y0/kd7vGo0621\nsFQgyz3/065sKRRHMy31Rnix0tZEm1kLvcyk02Xqr/HaH/M73HnLtDrecIuCLCmt0xs+PoXiv5qZ\ni1lxC9r702VJd9GLSxpw1FHqSWoIES+CW3yhoq65vEVl69/Wwxb5AGm52xfLcMfbN11c402jYfVH\n1/ntN432G3Y5vgxvvPnp90/8xm2Ypjn6I3ynNw/jhhu/6XW68c7rNH1d0xhxTG9+jde+eboRvvOW\naXW8MDZxRtyRVsMv+8vw5pvWftMfae0U3o5201nm03Sb13a42/FpOu0L0zyaxjKecV3nt9802i+o\nTV12fBneuDjtG24a7Xde+yN/ww23HQ/zGq/9xh/zOm07Gp2mL86IN9Ls/IbvPP0xr+MNJ70xfzm9\n4Zf9xmt480fZOn2Z9ojX4e1oN72GGek1TWG2w+38xpFG02nfvObRNJbxGr/z228a7TfccnwZ3rgw\n7Rte4DjQc6+Kb19rtBFBQDxWtIDKA3+Gff9gnDHlY9xADyDPUnmOzXBeSsBfwbjazdbdtVxm/Npn\nffS0eumh6fbjx6b7Hn5gugMj4k6/mcw3bx/kQteH13azCocxwb1gG7s04vwk46XTwSdcMV3KNy+n\n02em8xgfG6dYrWP17fi9904PP3BieujEQxhzD3G4nrcjOdO1z+t3WJ7x29t+8WeFWd6FNa0wxIsx\nlkJplVk4/mvkOfm7pVpmXcyAmi+FWmq/JMW1DtvvdP2FTncIN832l+tkKy3LYDvTzEXviM5XdvPh\n9zMPn54O7F+ZXvHxz5te/aqXTR/3whfwLeYrpgNe53X25HT2gXt5odtP/LHd7HlAD8sz/QAAQABJ\nREFUXlJYP0PcT8T5QhjxxZVAbDN3WZTHB71RLjJHsR4RHmGbjn6XsRGEu5gLnblurKDgy5vfiGmS\npKrVoRMLKXAL3gLJbAz30+koiHgNM6Z3uP1+ypVH05F+4xvWbUdLmGX8wrMBmkcDzFJ1FbRoVCEt\n7OgsuGlRQBRaqnEZVhouj/cKnX74zjij3E2z5e14l6/9lrv10L7wY/hi8cfLQ1qtV/12ndZ8H4+M\nI27jd9p2PFoG89RB45jeOpG/6f6axhhufY+4I88xvcPtjzyaTsvUMMYNN03jupZZv3XUMB1v+sKP\n9IyPrvP0O2z+djyaduOPcneaNMRt1zjtt1zNq33hx/DF4o+Xh7RaP6NsndZ8H6uMjdd+43dcv12n\njTDqoPUgXIflL5y/pjGGhdM1LcNNv33TdA3T/sij6Qi3Hd5ymvFl/IZZ1tnI2/Cya3n0OyzMdjya\ndtMY5e40aYjbrnHab7mbV/vCj+GLxR8vD2m1fkbZOq35PpqMMcI0cLxrkjJm9qC8tBiFz4O7rwD4\ntj4Q/Gg/wOXFN1erxCWusZSVIN4WvQKj4QaMjiMYGjdecmjaf+1l09pTb5xOcvPMn9519/QRVtI+\ncOz4dCdvht6GUXYc42GDc1ZnoHWWM1caLKsH9077DnHJK4bGwfNXTpc/86kYJeemB26/a3ro2L2s\nyD00rT34UNIe5GzcQfA1NjXmslKIPNlktEzr9dJCdEx6iocR6oYczOouQ+dOy0fmss62qzfT2rWu\n9TtsnvrsttE022/csb2pdefgfDHGFUxexvBawXW+IbwXQ/jyI/umj37u06dXfeLLpk9+3Sun/XxG\nz/Nsu1a4dQE9rbBtCstcqI0yMPLqU3Ua1b7Bj1opL1rRPpc+Xsusn7ZjFj/lHMtC0sKNbazDo29Y\n1/jtXyxNkXIuMXaGDw/QUH/GRcSZRDWlJZqYt0ebcQFUBQaaPzL2J0wLNeaNuJ3eaSPOmCZc020c\nfWFGP5EhvZWw8AOAbP6bcSmZxJOmP7pQb2VEE+QWywF/xgkNFTU7y9/hHfyFXDPflqn9RhPOtIbv\n9E5bhu98/cZpv2Hbb9jl+DK88YZpv9NGWMNjfCf6o2xjuGm3b57hkWaHG8+4MCNO5424puk6bcQZ\n04SR5sin8UbfsE5cXcMv+yOfhmt+QZz/dFrTW85r3NFvmO1wOq/97eQybxlXuJalcRuu87ZLN+2x\n8tiOZ/NoOg3TfvNuHiNc55mma5yK1d/GM8/wiDPCd37TaTzjI96I03kjrmm6TtNvnDFNmKZruN0I\n22n6nd5yLfvmN4zw5htvONN0nTbCVs7OPJbzO76d3/zabz7tN87jla/lFr9pt9+0228ey/Fl+JZB\n+IZdpGVQ949vIfKwzopXeryGGHEP//tm5wVW45zifbPTrVJnf//lXr5CJwmjQYMOg+0KDIyrV/mG\n5YMPTPt3cbH7Q1w7sW/PdMn+I9PlvNH4nBtumF4IzVtPnZ1+6td/i7Nsa9OZvbunNbbr1jUquMzt\nDHQ9PL/Htyg1SKC/Cs2DT7p+uuqWJ07nHz6ZM3Gn7z8+3fbBD03nWU3yEP7DbLNewBjUuNxL++CD\nTKzCUUIMQ+8m3INx6uUY+QYxhgmFqHYEP1Kj1lGHrTMzWm+dH2D+CNN5ndZ+4zdO+8v5xuVOi4Ze\n5a6ylakh/IyPefr0ouc/e3r2Mz56ei7G62VHDwHDVSq8WLBCeTQ3NyizL4KwSbwoU97Uh1aqDGO2\nas1yxCSfS7u1XZhZWqjyliSP/NvleDRfzNbPGB71UvnFI7wjg3KojU2n3JbFcqipLZfrCtbCbKJU\nqNPb7/zluOmdtuyPhWj80Rd+Gabj+o9ws5Z7z9782v5M6BHgWxKiCQhIA9qRdeYxk01Whz3b0OGR\nzrZyzQDbladxWzcd1++09jvv8fK4mM6adsN0fNkf5Wk5GmaMX0y2pjHidbjxOt402+/09pfTO67f\nMMt+l3GEHcPCL8N0vOUb4TvcfIx3uP2GuVje4+Ux0nw0uZr2iDPKMqa3zO2PeTuFhV3m0fHtZGva\nDdPxZX/kt1Oe6RfjIQ1hGr/j+o035pnertPbX07vuH7DLPtdxhF2DAu/DNPxlm+E73DzMd7h9hvm\nYnmPl8dI89HkatojzijLmN4ytz/m7RQWdplHx7eTrWk3TMdHX0NMI+w8yxmccMJgYmSfFzlyIpyJ\nfg+GgJcaY9YBG/MA3WtYOAvwcxWHXFfeYheR53XLfu927eTatP8Qhp93O2NQnT9/guspDkwnz52c\nLr/06uk2Pq008SLCKl9AAYQD+NLCeGOpzBVAzK/pLGfk/DKQb46ucY7tNHe9ncL4WgHm0BWXTgcO\nH5z2s9q07laq95Wt8SF0eG1gvK2d5hwdBuHJ02e5H47tVMTd4H7NC9BjRxhOlMt+og6qNPzddK0r\nUzrc/ibUznmt++3qp/FHepnZe3pHuJNcjXIIi/NVr3rl9Bmf/EnTkQN7J04ETmtneIHDFzVYWRPf\nud4vmeS73yVsCqdxYy0BoKVjgJ8lteTNqOSXzsXkBOEv7cYydrh9iYb3IM/ISIk3JRXWUvCHxMU9\nbY3QBQjB2Ygxr9Mb7q/sD7QXtLakKbKiX8TN2Tm7ZgXhZm8HJGBCtmAp1MxiruRkboYl3xLwYFLh\nNARSF4zImMmFqeGON/IO0iySI8fFgbeoZkYsy7vZyVQaxXwL/FzOThsbzs71Wk3f4WSrG3ls5kln\nbDM78Vjm94h4M4P0JnUToe9Aid6jKQfP1EFijRX/ETTngo/yhWIrZAv2GNkqwVaJlvMKT+lKZ4+U\na6S8Y/hRZdoRczOjadjTcV03DbAc7/TRX9bhmLddeIRv+p22U1vYjs52aQtNd7kEMjwPuCnlXNbg\nD3AtQ9Pt+ONvC03hkX7T7JyOL/NQ5ioLfw1E8Dlllrm8hio/7X4Gr5TmhD+UdVkFpZcBdptgy7pN\n1iLpscAsgJcCyuv4nCtrtuSRM/fhTa0YqhLqV+sVSVj/k8L/TYiCD1wlbuHQeDOFBZ3UCwfcNcDO\ne7aMb14ri0diWNyChZ8J5Nw6W5bCutqVL7dkxc2pvyZ/DR825Tgbt3s6y5ueJzC+Tu3fP62fP8KW\n51nOVh2Y2MnDmMLY4vJWTb9TXKT+7ve9FwNNVM6jaRm6RQspV5dykTL0LrDatMHBeb+qkG8Lr9Zq\n0horTY57ZzbOTHdvnGLX7/y0eoSVwgt+4JytT+Rf5XLZFVbg9p7mTrOHMewwELNCxSTmKl4uiFYp\natJywzs6TNrF/9gW1Mlf1m3Xlqy6nLfTeOb//gOH8qbot/2L75ruvO3D05f99c+frrrsyLQHfWq0\nrfBShneuraMfZdFwC11wNchjD0BoBXoeeaoXSlSbljnMRvGH/vN4yyTPLs+yL620s7+ivraTaXFP\nWzMdK8Swe7w696Avtt+7HXHTpFvCz2E0lg45VPziFVyfODato5BUxzr9DidhiNuZN3Ufe7TqxsoZ\nKykETLShekbBbtR0lWtruGpX2uTQt5Q7aan0qnmzcpEleio46ZhYzBc4YO7oWhchBlSjGyQsXdSP\n/qFmQpylZinfKGmGK+ICOZ0X9jmjZ56DAGCbbDbp9NmDojn+LT2CVbiykUZ8dVJn/mwTJR/8zZ+Z\nmNaydtsxv8Od1/DmxUFPzjzoWoDwC1fp5r8S4OLN4UpZ/O12ux2PzhO4ZRll2Cyj5ZX+Jg/zKl46\nSZR8IRqvoDdxCmbnv6E56Cp1ZZ/rylpCLRmK3xi2Dej82+VJ+aHT8QAs5ZsnXMMY9te6CY1G3MFf\nhhdXt0zTNPMeC01h26lN2zLImVjF32zTpWvTFnRnOPGXy9EymWf4rzq+jXSa/048lDk3vqevipkm\nnhZkdSvL4hLVZM46pJP7VZXULekpcRVbACEXTjWZtDVZzE036qr1M8q8CUl7gmDDdPnG/EcLK91i\nl0LhRufgpcWgzJbK7CGc/kdBgsaAtuh1JGS8m+ELrgiHn2REgnZd1OpYT04UI4tg5O/5lf1YCYcZ\nL9nkdO5hNStjKgbbBitXGmznOWM1sSbnHpy3iK16PwMSbHithKtj/M5hSBxn0HoPZ9eu581QV+z2\nYkHthdg+DLX1NbZC9x2Y7uJlhFvPPDQdY+vyuAadbzg6WPsyATxXEUEDZo03HnaxlbqiUUf2ul9Y\nwKL0xYN1zrGdPcu3tVlC20X+GWRccysV0P38OYgBeVAjcT8zAeP0xpkz6EP6rKw5nVtO9KEWZpWQ\nuOnG9mGqbcM0/Z3aySb2I0MjvW5Lj6SDTMhTVUCbQ7cHuLPul//tr0y3fugD05d+4edOL33JC/Ni\ngW/kesXKgf0HGA+oFHWHjqxXelgESB0yD1o+c3K+LYmOPwEpSPpkKaXSHutfy2RZdF2W6r+V1nQ6\nr+P/NfystDVhfYXRdVh/DD9epuIWvfxNH4XiJh+S6wZ1ArAWPLqtPyLN1ZDglnDDc6BgC1QNb5BL\nR4VoitSEBTUNGcJDugGY/TFsHm5GVe7GLSHNkxZel1N0aEOdtLlSpXExp85TcOjrZi/BOZyDr50N\nrI07rc8JKoD+FcCuWBNjyVtwkl801pYVv+tbEltdDW0px5xR7Ktsyitul7vDTa/T9TtPMmO480a+\neSJPMeCvnP4sYRWSuOUzybwu80hhZx7NT38Mj9ihTUL5M68FQMU7z+St8Io562eRs0BeBFrq9pVF\nF3/WadNdIA2BMc9wdKpBAB1XC3ShPdMddZ685jHyDdYsg/hD3bauZpBHeJ0f+Qdcaeg6veGS+Dj+\ndFlqRX0u/SzfdjxGuJ3K0bLoj+HHIdYC9LHyQKlzm6ZEpRqMCutLY5SWY/3NOpN4xifLqamAUWFP\nt09s9Jhjaxvg0x+iHumAIpFZXQbbyUfX/Dre+aO/DNPxEeZi4dQdwmz25YZWB8hBWWocxs8/8pMW\nrSC+9UOa4GjA8uTTTcJYSH4ZZQ0HbIYHuvFEkpX0o7q5/D7ZngMN04yVndWci1pnGxEwFsH2T7v3\nMeljLPl25u4Nvnmwm81MDKtz82rXBm9wnsO4cJt1HQPs1odOTT/6xl+fnnD1pdNVT7hkuol72a6+\n8tLpmn2HY/Cd23fp9P7b/3y6g8t2T2B4rR/Yx11u2gwY6xhXuWQXQX0hoVbDWNPDePOFiGwFsvVq\n+c9hsJxhpYnN0IWxcoGzcbx3MJ2hHV1ga9XPLxLNytQ6huIB3kx1hbAMDYw364SiqrtUg8qb3dge\nOtz+2NYb/tH8xtXfDl850z6UiX97Kad3se3G37334PSOd71nuvfeY9MZVtY+8RUvARYD+OQJzguC\niZGtzVv9B/VIzD/S4peoBbTuY2zbTqodNVz8GYfMx+S6LGmDYHS5Oi6RhunyPybCjwEoRltbjM1w\nFMA8mbYV2TCPVZCGi2HmyhYNMp9rcf05lYQKl3hEbvKiTAs/FGQM27nUddlGVoawtU9vY8xdOqYN\nSN1AHSt5kMlTTSo06P6pim4/qBDIB3nTxKtTmx8YAJwnLUNSCLuCV+U1BVy90Um0siq1y8rArE4U\nOE995NaTt09IPoX7nGdjlCorXHRMf7qcUaBR+q++jWcnVdfAgKs84uWyYALWS9er/ljnVWd2H/mo\njw5rLMYkJKNWXrvtKB9kHkGneYxwHU5bikzKJh84oUf7Vj8ZJy0DkIMa/G0/FjgVOUs4l6fbpv4W\nHoIPMOaNcjWeZFM1kaXKbtqmK97hH+3M8ACUjkpb/k3KwHOTxowz80g6Yd8gWpap+IyYFR7TDYtL\nAZNpuMtqnsklTeH6d5E/wFp/utZb93fTRv10uH3zR7mNV1vYlGPkt1OeeNs6CqD80Y9tbO5nkW+Q\n34K2DtPegdNtV46WR3+ntmCZdnIjvjBNp8PtS6PzEkb+C/ThfM8Y3vbJ3OZu6yG+woH0DcbFWsWm\n1M4tlneDPjHvClTvq/HAcc/+7baPE5fTu0YcPQURpKkOrNeir1y6ln+sN9O2cyNM4zZc47Tf6V3u\nqBCyybeJ8nmmtMnIBLQDI/JnnFYfDsr06/RxfMtSH1rnSwPn2TyEoIfO3Uk47832wIuyy7NeFhOc\nDREcB4FVvzbrXIRLK0oJoenQ4VjqmLmbFanzrE6dxDDzTNo5wupa5Wsm791zIKtfrlLtxmhYP8+9\naecfBh9ZyF93lYu8U9zUv2djdTp16Irp3feemFYe4sLcD/7FdPjQ/unmo5dOV19x1bT/8sunD913\n33R6Yy80uOgVG9C3T2tU4bNW3h9G3KlxZV75o2glvyt6rpZh7O3CsDzH1SD5TioAq77IQLlUgR9I\nd1Vulx+s56WFsw8+OB3BMj3Mh1Bdwdvgkrc1ZFcXKyjvArpSH9ZLO3XXbrMuqw1Zl53f4eX6F3dM\nazjxuj+O+XKLDBQADcQA2717L4YbOqcuVg9fNX3otgemb/mOH5zuO35qesOnv44VR4zpNdoBq6H7\n9q/Sr1AdBnW2l617CrjL+RTitY2tli33ME4oqA3EscIyU7ad3CivMK2XLlvjGe+0hml9Ncxf1c/2\naDOSmAyaSTPt9BbmL8cUpaR2ZsWoJJyeVr++gxDNKAoPrCpWkeSNMjZ/K8D/drBeYUgFqLimH4CZ\n14xohaaRzL4sFEB/EQ6seJUeAaUVugorQDXk1lO2cJIvXLIX8gtdiTKbgxWaaTVzfZJCX3k2G0GH\nbX65UDgDh0OHjbEMkUKTh6GiqS4cYtSvuCiryikUedLtybrrXnz/6YITX3i1vrXc4teqInI5MgCh\nHk3XNY8xnLIAl/MhDNzJkyM4xoom/JHPMwmpM9JLooAv/rTM+qNRMPIfYcb0BZ+ZWsf1a3VTfVVm\nFadkqjDp8NS1jio2/53zmncAAwxB8yQiH8IXk6noz2W37sLPehCfyIwvjYXhMvOpAVn6C1EBn2U2\nEddl7nDH9f11unj+Oj8Z/Ol4wzf9blOdLnzjd17DNq1H+LOsMNlSzsZrOss8MqYM/MzXide4+mO6\n4c4L8A5/Gkb/8bY3NZ+2QiBF08CgX9qwz2EUrHLH1PkcrGL3gG21wLjKhmz04LnOZ2RVEiM2PQYi\ndnCoZ1yg3wgtgaiuytplfKzlHuEbp9Naf62PUV2dNrO3ZyOHBqZltSSKhdypF9qtMs4EsFsyvjkR\nb/DHbUJXs4SwT15wLwzCGnAaMj5Q+76hc2/GYAvsf2Ajh2HxNZrNiGYiQK7W2MMbiFbCbq6/ytVP\nroJRL8qWhTfEzHdCvRx35QDo8lZYZIOcJvJe9X7osunO42vTgUuvnB7mdYLzrLC5B/TOO45Ne+5+\nYNq1nw+ag3cKeXd5Wa7XbWF0KVN0Kw3oKbPlcNs1/ZeCySP1Lzx5p9ny1Fn/GrGOv24VrvPSwiHL\ncWZ9Os3VIHspwF5oRr/Q1aiJ3Ak7/so76ioZyJV+5JHB7Dre9Wpyh9sfYU1rOh1uHNO34lS5+Zs2\n4Bxg2JnNe/Es16Ejl0+3333f9K9+4EenE/cfm77sb3why4joYGV1WsNw28vhwT0YeuFJPZ9HD3WN\nF+WFRs6FKpP0bBcIQ7G3+kvlbrn1OzyWUV6OP13OHovGso3hxv2r+itX33TLN8hUNzIwbRS0hWuG\nI2ynbedv0onmojAbjRxVoK20uBOmM1hZ1VKlZlyv/A4bT55e1E5+ZS7iMyK5BatfjaL8prHgkfyq\nyOYXGHlLex5Yw69GngZWCGAiQFA2S5QuMSITRh7lT2/UN2n2I2vRIfURrnhYL2YJF+Q0SFNsmMmy\npAaUyYFS2QmX8WYDDLR/CBsvrK7v+FBK50me+cNPstDrNmEnqHDTrkEkDGYeHdYfddXpedU+8juQ\nIDBtQf7hCr/qdCa3HGDOYemNsm/lIXy5Ec6Uln/OjlcaRUZi/sJDPvzG+BgmU8D8WmfGlvmRtK1r\n/Zs5hkfg8CMhGpllWcgwl1/4RdqMjBb5V/pJ/qCrGWRHb7OeLM1FZINm61KcDndZ2m8aHddvHYXB\ndn+gF6e/NECOuE0zsNCN/md6y+UwuXE7r2WeUXash2Xc5tt0Or4MF7rIVY76SLnQVcY/D0074WhX\nYCjMVzdQ3IyUriDsZgXIg9VOZa6uE7RC+ANSyProVvRtIwkTzYr1zLW9UcYx3Pnb+cvluxieeaVf\n9Qy1WU6vx0iUv/q66lXKXj9NoGwHMxZ4FUddx6HJQjppWh8xaDT8MGZnNUKIVTx+tUoJX0DDQ189\nhBlaMa4haFx9auAAyKeBfCsvLwO42uMlILtN45cxVL1rgmlIsS3KdwnqR72d54fVMD3EW5u333H3\ndO/xh6YTXOuxe8++CduJlwpWeeGBlS/Oo3HKnpcPuGcMo2KN1T0F8o1Q7VDPcbmP6vcx3QL2CpDI\nq/liPrmuqrpde8/dd7JTy3UfAFi+AGi8QvfoLr6c8ABfVbj3gekg/Fc9G0eJpa7xq178+SAgg67L\n9slCR0I80m3Wbddx+Y+E3EwZ6Y7hAcKCEaUgloUCVf9QPMIkWebDRw5yyfDx6f1/8t7c3/bMZz0L\ntaNbVi19aSPoyO1WaeYJyUnLf4vykDcXTbotj+F24anicZ3f+ui8at9bYRp+O5gQ2+FPShhh7LnV\nj/XVSS2SWE/WmXVHe3nCjU/+hqbVAho33IJ1uNNH3/D2DkYqrMolz/zqT4UjbCtVfqwLm5ZVG+UM\nsvHCzsReEI7fhNyjF84OLJzh/hmnAuc4wLgqvH6VrSRXFbqFP8M2rcDHYCdD0P4ZEGjRIKSBVDNi\nPekVZf8KVllhQLjKlobV4dkXfnT9RC+HcAEuz2hp7FXOhs9dPGFRlW56dFrSBb9hK2+zrjuuLqI7\nceZ6zKBp2WMFNk6GkpCrekpQoA5syevGb2LqE1oUhV6pciSdig128hcV6KAFT2GK4hyYYxDp9rqV\nR+UXv02YUdYtYQCbTuqRStOXSvuGt/yIWA2WowzjKEmWpAm5STORIW7+KK/5nda4SfNPGpD6Kpom\nAT3Dz22JeFQZGOsmIAoG3Fba0ulfAW7+3WxvldY8WzebkJuhhjFlDG9CVMi8kc7FYNVkOwfeEXYM\nN8zCT/lL7502whtuGTosXMO037jLfuO03/kjXuclTV27AuCKiPUwI+R8Vpo+W21MuG6Rra4y6TJ5\nr/EtylOnHp4OH3BVBiDK7wTl6lJcE3EdxvIKIn0zXVFJvHhtV9YiUmXu/E4LiVnf5o2uy7iM0/HO\nVyS0HHkci5VMIzWCEUYjiE17RiHZylVHLq8FwlUWjTaMKv+B5ojXxz0sn4bsLj/SrqkFnttge5gL\n5FgS+1ch1M0czvAy9wvSLriUhvGzm9Ua3hZwuZMPvJ/JWbYVeQCzh23EXRpQbidCS0OSmsrPregN\n3tw0bWV1Py8L7J6O87H3E7yxee+dx6Y77rxvOsUVHw8fPzmdeZhTaHx71DIePnCYN0v3pU3YHtZZ\nVV2jbjE/2K7VuGK8oXxxGiGI72qf+jzL1uixe+5O0TxupCmsQbbKlu9BDrYdxFJcv+fBaQ+fwDqE\nbtw6Nl8+1lGtNFkXqsZagJfj7uwnzfRtfl3HAeZP1/VyesfNNzy6TmvctAdA6uiL8qkj9KxRTd2v\nQGND45lyHqQvnOLTVH/0x388XXrZ5dN1N1w37VvlpQ+Mt3NcdyKML2/YT8RTY3kZRVpzeQj4P+1C\nr+KEot+Km7ydW9Agc1P+Chsfy9rxEW5bmtZA5FFaZzn/UR/U7XZG2+LtUStN4uNg3UwVxN8II/PO\nH8ObaaUYG0jlUyuESwjSnFlsNbgUlLyARpuCkhd48wMGbvmNU7yMmTFkmkR1mWZqQgSko0pkXUvz\nwrVTQXOZyBWn/oinbDSaZRaNCqJliDzihilKFy9EkhAYJZCQsoy6SkIznOk2TaMN253LeBlR+lIs\n4fJEQdCYw5ehUnNB+JRa5+TIpyNIR9d+81Q+FQA0xSjc1IkpwXECKVzhCj9IFAWec93Ko2VuPp3W\nOKEjj8itzuyg8kzBJK+As/6SSpxE+IiT9hOQlqfSxvba5dMXvstZ8ZAvOkXQEtWWSgnt351diQKG\nYlWNK3TzaH4jAdN0o25aL6a3vA0n7dBRLymDUF126ogJRpLmVb78jackhDd11flFYfOv9M3TNUzL\n1/GGWfbFMU3XNAyb1jQu1t4atnEXtKQ5Tyg0uDQFYRuu8ZZ5KEl0ZnnmNijOsgzy6Z80GqZ5mDfy\nan6mjenCjfidp9/0g2N5LIV8nYn1M04w/bPqA1X6F28jYkDccsuTOMh++fSu33/HdI5rHNTDfib7\n/Uz2a5z3cSKjB4eG40rOq8qPVDfNPO/VGutytFyW46LtbSifOMuwY5lSJEuVQLczOVi+WU+0zxyO\n1yizvIi9+fa+pbaeHBttr5bFkpGGy1k9TBPNM+tSW8ZrZDVyQ8cVN3QXg5Z008RyyM6KFeFaXSld\nL3SAvHuZ3PfwYzNt2rOO1tDxOvTWzxmGo6tjniOTKXkbrGLFcJO+ZeCf/32b8dTDbIky7vnC5579\nB6kzviuKAXeMc1i7McpWDx6Y9mBc7OH7o6sH93Pf2pHp0OVHOLO1b9pP3sYedESl+dF5t8rzmSzK\n4Ht2bP7WnW0YlA/xWazzHnbDkJSf46dbxK4QHtSAZ6Vv5cFT036sP7dtrbuM4VSHGq7jJujJBUxx\nSez2UXVI+g5O3Y2wHR/xOk3fX7vlNmR64dlOlEw5qX9krvOPapfykbPCaqVn9U6xVbqy79C0xvdd\nv+v7f4ht0wPTp7z2ZdN9GLFHDx/OavR5to5XWNms82306WoQUGlZVKp8Kp6/8FzIOss8lhPkR7jO\nNyPHsxw/DM+02k/+kGa8dbQQycTBoZEtDnR6hqmstG23PdoEeyAcsbtgDaPfacJtxsMlDUIdyFQB\nrQSDeQWXUPppng7bOHDQihoLAZiiSVQ301Eh7WiTOIlXJWcQTD4NQdoBbTmFI4HEKl+lVxlmvsLz\n60HYSN7YMhkeKg+pCAeMcKUrgr8YNz4dBUaZFM2/5dqgMbaoWIh4IHd04nQ5x7D4lsmlchte5FSI\nhYtEm3xbB+ApfdMaZTLc8eQTzzkaZQBPhvHFh2fpVFoKkv+RtWQrHorT5VsuR/OrfCdL6onumfLY\noeAbntCwPYRfOppaVVZgk14F77bafFoVoUOkYRuu8/VnVgvf4SN1mxc/4K1s8trpF3jkSn2oJ1YG\nJIpr/h02vixLxxtm1NkCfqaViVlAXJe1dV5x24P6UofqCmcdLTnzG38pK9FRJnU2wi5kCo/i1TTG\nvFHXJU/pRNiG6/Dod7hlaB8ksxa40mzZhNGNacaTDtwiPKc1XDKGP02neY7+AFZ0SZDO6JbxRx0I\nN3eXal/IrIGmiUUr59A7Ky9M/uu+OUfqF3ze50xf8/e/anrOM57GqsGF6e477+Sqh1PTXrf0KG7O\nb+FnvDNhpkONhI5xVxlapvAf2p/xdmM5x/By+UrfYrVO1XH9TJ2rAb/6sCNl+kLLS4t0tbEUgLGl\njLPchpuAfdzoChbL3l3rGB9nWf06xcrYaZI5p8WK5BqGjWO/LxV4ZYcjyC7go4quFgVKGEkMd9+0\n3ohqEIrnoX6meewgjd15qxQDYRd1cZ6PjF9wFc6zb6b5D38PdaUhuZu3Sd0s3c8hf17izHUbG1x6\nu4/wHoQ5tJvvE3ionvva9rAStn6St0fvPT4dZxXuAc66nbjvxHTyxGk+bi4/v8ZQW71eKbuXFzD2\nYHytYowdwIg8e/LUdN/dd7EKiz6gnzJQjj0MWAdYJDzC7/xdD7DKdprPaWFwYtiuU6aUPeVl0s8y\nnqjqxFqzDZXC9DtcOfW308a2Yc52bavxOq9xOr3xpGme1WK/SMWlXhxvrP4avzSkNVK9uPgchtue\nVa49oUxnuUblz//8g9MzPuqp09VXX0NRmROou12cb/PCYe+3S/n4Uw/T+OosReVP2ka1i4WMMp5d\nl1m/w2Y1bPrCTEM1quMe94Xr8hkWp/0xLDekipyOBBWQjqvn6odU+Fddp4WX0dbE9Fu4Jjwy7jzh\ndC38COvT4jmWmC2Qb7pk390O4Zsx+Moevc06q4dNlGKHAXeDDiJMlZGGTqPXYvZwbsIUYgXa54Bb\n4enHnwcVzdMS3+tTEfhuIZhmwyRGhVPxVqitA3orXF54jk+P7FFGz4zIJ2WyZFVJqtlBb4P9dJuP\nnwLRovb18DXuitnLIUgYoWBy8T2XIG333/fxRLWRDs7Ag4zSoDvN4eJnuudX5K2upKVb1rNprePR\nF3809Mzzp/5XeTKx9JZZvSpXxCsWC3rNq3EXvJQFWrltmvBetmyUz86wl5HJj/PaQJVBXzrWS78Q\nYlyaPWl1fEHfQBxSMeieQw97eKq1flxB2Avd1BU6hBJ0bFcMkOjJMlsWnTzajWUZ8ypd3djySs0V\nFnf8SU++TiaEkcO6OW+7UtfUYQwzJaJ8NWYCKRxkokMZ7OBa1tbFom6AzzmmJX1J5v9h7T0AvSqu\nxP8DPHiPRy82FKVYAAULimJFsWvU2GPqJpteTTabZP9pm7Jpmx7Npmo0yaaoSey9xF6CvSBVmoDw\n6PDo/8/nzHfgSdSNv90L33fvnTvlzJkzZ86cOXOmpvGe9bDcBk1Ku/YNapS4d+eYHd126qpzTuja\n6pnWNN6ljWYOUa75bltGx3Dbrr7Xe8f49bnWxzgF11vhrnG8e9V8vHd89lvNp+ZhGJEyXqUrGbd4\nK58KfXdlB6CXOPQyfaXJykRrWTXvju8dnzODxh/DO8JU4/m543N9r2GvWQbtY7z8x7N0JoNWa9TM\nJoR18LXW1uZYtWJZjByxR+w3ZlSM3H1IjOU4n+FDd2XXXOeYPWtmrFzJuZOtaHNwHyFZ2/cqL7Gt\nnXCl9jVpeGs7CqtXhbXeS+jW8Pr+SnEBn8s/5utzoyc4OGb/qe9G41lYjA8fsryiWXcAkn+lHAQL\ncJDiP3E9CYBY/BBeN3N6wNplHKK+LAbvOCBG771n7LrzzrG4rS3a8frfjSXJLvCN9bi16MRgYq6p\nXSQvcevPLpE4F+88C0vutqcsbcjo6ITYp41H+fzS/Qa8R+2VgpcCnQJcCm/0qyZcgDRtXBObVi2N\n7p3W84OPI1TGmuXRad2q6MIh5rFmRfSEV25GmOsEjSZvQ2PaxIaGHjiKbUI427yWXaur1seKBcti\n2YtLY9WCFdE2v43D4vGt5qGlazgcfmNTsJhKeZs5QH4RAl8bS6HWBX0jWkIFxS7wxh7sMg4EwM6L\nV0Z3lmG7Ej95BfVxIkntEj/uyLTZVG4VOvTNupd7vjT+VLzV7zXOtvf6/ZXS1j70anGEolxCIxzC\nWuCxRSsNOYZm/6fdLL8r/WXhSy/F9GlT45CDD4k+fXoXR8aOSbSX4zIRS/KOdQMfpq+rDx3rUson\nTSN+x7vP9Vfhq/GlpFqLV6pvDevIG0pYEiRpuWd72DbW3xfhNOfCJ8pTQ9NWATMTf5VZl0y3VkBA\nX+mq8fwmYn2XkSqw2RedGSpk2RllTgKhIOFAbFwNbE2nNN27Vy9sAFYlDPprkYlxqn0iyzgZxizD\nuw24qhHXygn3OqRv8e2AZr0k2izDQbcxCIvcXCY0ImEtDGLtqFS7oVL1LDPL86BahUENHF0jT+GE\nvFRbgxEYrOpansGkAqmqectrYYeQnXwtQp11lAkBQDaATSHM/tzxYrj2KwoDZdAWJzLCAjPR89l3\nf/U9s8s4OGGEaZvGPNvbOWAXvCfugcdZhnVW8JQ5kkmWWR5Lfplpfnr5ew1XkJJkbDcNolv1+E27\nauxpuzlYpNAL4/PZMkzTcQCteb28DkIBaRJ/A/Vv1lEi97Uw3549UH9zWLAQpSBP2dq6ab+yESHF\n+qUAZX1e4eqIL9veHzk1aKE0B4C+Am6Bn6hGF5+2v3lJH6s5WqVbMt6CU2lFPDiZUEAWB9KF9S/l\nFcBsGy/Dav3Ll1I3C1OQ6kGdjSP91jTGq2kyz8y74Ln0CWnPpRwnH8BL+sLY6FfgUuwobBtmxcSb\nl/GSLsjP/DPv/FL++F7p0O/bxqkw1bupajyfO6av37zXq2O6Gtbxvu33zK8DDxD2wj9Kn/bdOIZ5\nVVwAVLaHYeZpnI6w+dwRbuO92lXTb/u9htc2+4fKECwJjTvifmbZGdrOQcb+Clyb8MM1Yq/d46Cx\n++IcdWk0c3TP7sOHxoFjD4i9R46IF+fNiVkzZ2baVvx9bWAyJU06Tm3KCVXNt04YO+CFVMLtVe8V\nLxnYCK9hNU6pq/RgfzJ/n03hn23zyxrW0CIkmU4NAld1adSVepuHc1ZaM7VWcATSrec4qEU4pl0d\new3bMc4+7YQ4+4yT45QTjo99Ro2K++59MNasdSGxCKtdkFycWGU/hC8JT2pZsjTe5B8WBG63wEoE\nl2EV86yOn0utoCVe1G4m/6Zvq31rpY91I6xp01rOFmVJdeXS6NNMXVa1IUjNxoXHmhg7ao84aty+\nsXN/xCyEuhWLOOid45fWKuQhZHWnDyoI6v8tfbGhgevKBopmfjh9QxuHqMomhvYlaN9efCmWLWiL\nVQuXxIr5CGvzX+K+ALu49ujBOCNn7kLfzh2iuPVoXosj3UXLottKBH+qpCsUG0DhLDcgUCfrV09E\nyBVJIlhvr9rO5a38Nay0e+EJtc943/baNv22aY1f41Ta2pKHQJBlGUIEyHKF1uACg21oOku21dZj\nj+h4tHjhwli8pC0OP/QI+j58PiMQgzYzZmnzzNE/5JuZ+th48Z1EfsiPfvAxY+S91qVjWEZqpMtw\nntMmOz+UPzW+b9s+Jw4oI/9ZFNW1hfyBbeLLn4QLCuVmtezgf3eMleFeZlgLSUTxXsMMr2HGlUk6\nSBvmwOB99eo1DL7dY+3qFbkEqidntU+9enaNZcuXI5itoPym6NHTAZoZk8IB6ZYyg+oOQcqA2x0o\nGXT69O7FTGp9tDOgr16FYW6vntiKckIbcPTozm4cqmP5Ms5WbAO8HPwcDFtoVDuyQqMaBsPUxiGd\ngZyCjLWUA6dLjYr93XfrVLaAgwvypnbkirBG/WQ4wqPGzdmsg7fCoWhd0vZSGYARNFJdayj1Mj8H\nl/bVqNm59Oas4NhOfXr36h2r3cJdaCTxbl3qYJQJ+GM+Xg1aSsGp5INwSX3EpXhoB58KGgo44shl\nTWcVJnQ5pmP7WY75+qvP9bt37TJSCATLXbIOlEUZPcCzbbEeRmG7KtBshElsIP46ZIRe1ElcC49t\nsBbh0qtjGeZvpaUDFUba8fTEC/byJTDD3myXhyEJl+VvAOdJZ+B9AwWkdrOBr8y48afWpWOYzxK/\n6CsDjjgQny+PVdMavJ7jUppRwwv3Gtq3b58+aQCb8NLOCsvdoT3rsIalkLxEsQ+E2Xa1riWoAGsZ\nXh2LlsadNHiZpzh7eXrTmkKBGCENHNs/jCeOpOv21asST93sNxjq+t3JhF7da3uWCU2BTVya1m/1\nu7D5XK8Ka42zLT1uG6++1/w65vVK314tXi3XNPVZBlyfhd2f9OUlnis+DNtSN8KzNtSrI75NY14V\nPp/rz7AK17ZxOsbvGKfm573jtW36fAeQ5DvJtYwtgy50Y79tZoK4EYGN5otluDbYyHJoE05e13PO\nZDOaVHRKcfSEQ2OffUbG7/77irj3wYdj8tQZxGcJjj6SvqnIUzxUvNS62X5erwa78ba9ali9F0jl\nJ6U/VUqWbArplDxKGSU3n6E66FVNCTVGuMoTHuBZpseOHH7scpYTQ/k6k/ee3WPsyL3i6MMPjGOP\nGh8D+/WN5cuWEntTLGZCtwZ6N7+urfBj6uoEcj2+0hR+vWzxHPQa+LVqwic/FJ7O2HJtzo0F8j++\n5XdTqXUDHHClzZ0KB+3J0n8efdRNCd27d4k1K9mZyWpOM24n+rZ0ibOOPjaOOOLw2G///aL/wB1i\nFePTzJkvxFOTn4/H5s6PKQhc8xe8hN0bghy2b+sQsrp060Hd7acIiNjAdYG3raftu1GvLvi66I42\nrhOCKYlQoC2NlQvmUQHGjx7dokdfNHXA0a1vj+iOL7hu7GDtBP2s5tzTDRrk8y7sGxRKrSB1ke6y\nho4B1NGfFOHdOB3povKu2u71m3evju+FFram93vHdPW9hm1797sXUG5JJ8jlKmKMXw1T+LTPVOh1\n/7K+U3PcdffDaNvuieOPPoJxXO0jy8zAyjSWRKYttS+VhQYcG+UPZmqdGvXKQhrPwlnr2QAmbzUs\ncdEhnSBXXBqx1tPnl6Xp8E24VFxoHp6rJsJjuSZqXFtAJNQythwYXyPUey3E9wSu8aFjuEDZuHVw\nVl3vzg7v3dnl4WC2/YB+ccKxE2OvkaNyt4fQLELF++xzk+P2O++I+cwgevRCywD1aKPQFxXnsiWL\no1+/AXHS6aeVTsCzg6gq8b/97W9x+2230SAsh9hJGZjWM/hYcZdAl9Gx++QAuyrTTjjyqPRpc911\n10Vb22JqURq/G4zjnHPOpZx+KeD17t07NVUKJmqM1Kjl8gIpXEdv7dEaN1x/fTz9zGQGc44+EasA\n7a2FQXflyuVx4IH7x4Sjj8pvrqfbIxRkXM4zz3YG+iVLlsQzTz8dk+nMLrt1YxB2lxijdKp711ou\nzw48DkQyWunCcvzj81ZiUDOjbycEJoTOVStWpr8aGZj1LEsVRcApTo0Lw2pkkvlVwjT7km/BTy3D\nnNQmqdFZjyDcxIy/N4cVr0TwPuTgg2P/ffeNQTvvCKxNsWjBQnzpLIxJTz4Tz9G+CrLSgnRgfeqg\n/zIaIv8uMFoFX4UXhfF9yfPNF5wPHbTF7/7wh5g1Zx7MVk2SS7MuhTCoAUe2j1ScdRVS8VPu+dL4\nU4MKVjKWSUoTbolT8jN96d7M9xH0PeuuZ4+eqflz6d76OIHdZedd4i1vfQswN8evf315TJkyLWdZ\nr1RHy69w1TvAZ/nShM9N1Mv27iiIdGybMrgTD7JyWX/0vqPjuOOOQ4CGKZG/WmppwDQKmtOmTo3n\noLGF9LWNMK3EG/AXhiddFoGtUf2/h0+cyhwb6KywbIG/JuyAP79toZtGum2i5WvNo8bteK/fjGi4\nP3lM1ayKI68q0PvNxlwOPRa+0z37s/SWpGHkSgA+N66Xw7oV2I7hRrX8bcMML/2y9KeOMPutXh3T\nbY0j4UljXqb3Th0IVpvvpb3Wepp1+fJl1AVv9rg6WMOSWycG7G4MwqvaFkYvJrYf/MA749DxB8Wt\nd/w1buO3YNESeEgLfa0nhu6tafOzFq1MVzTB4kkhX/wlvisMjftW+BKE/FPDElrgrO/C6vOW90ok\nmarwDytk1WocB9Cu8Kl0X0L/0c0FQUz2mCTj3X4D9QPM2G3QDnHAgWNSw7j3nkNwStsrli99CZuv\nRj3AzfyF89N/2kZts9C25DIX5XVsK8uF7G3AFL5Uv/AITCVezmE1wk8gCw2xmphC3UZNa+hoDui5\nIQBeLv/OjROEbWDpujsCZp8+reB/bJx6wrGxO0vYA/r25VDztbG2bTbt1CnG7rlT7L/HLnEyuzmX\ncHj7gpcWxxy0Z9NemBvPTpsVsxewuxRnu0uWvBTrETJgatFMu7Vi26jj3VVtS5PuV69YFSvhhdim\nUAGQh3C2atEiyAaA2dDQzeOsmBj35czOFvDRHR9w2oyvg6eKAseBnBpYWZKLBS8wkXUUCbWdvPtL\nGslYotC2enlY49OWflD6oWWVvOvdeD7X923vNZ8SrwFZ5gG+ES4Z/qBdzaNKu1nlUgQ1QgigpdjY\ngdID5dDPfnF5jNxzz9h91x3ZqdsWXbtr0kMGCq5UPOthw5NGOGq9OsLQyDyDXhvWUs8taa1j4+WV\n0tWyvHsZp8TbSpcIMeRR/jWiNeLaBvmYf15VaNsaZevT1oJe3pCG52DGQODg4KBhIw7Zbbf47Kcu\njHEH7IeWDKGC2ZFGqP0O7hmnnnJijBt3UHz969+MJQhaNpfLUauw1dhrzz3iox/7WBw87gA6HpoM\nZhouh3aCqE84/rg44rBD46tf/SqMWwHHWZYkSbPQQP0REhcuWBATJhyNEe+HY5/hu8XkWXPjjjtu\n5yiMovVZhyatuXtrvOlN58VOHDMisjv+xA88M9XY0vhq/qxYuTKee+ZZfMQ8b5OznNcCQ6VTSNDE\ncblw8ODBcd45Z2VYNwhKVmA+3h1qMi+8OAv3gw8+GD/96c+Zjc3MJVikT+CnFlBpbViSlIYVIBrU\nhtu6CaAsTariTsYCw7fO/anP3XffDSNoQ4hQewkMcKNcDjZ/f+YLzrJH8Pyy8qiNAp5XpqHcJuK6\nbNkdAWUVbdEd7vqBD3wgzjr7jbE9M2LMLpjplTquJunUGXPjj1dcFTfdfHMOoA4WaoMspw52WUD9\nk+EIJAhtS1YtiXe8/W1x9JEH5wz8hRdewGbh99GdHVarYYhdqVPRpGBfQnsnpKSvTKPeqRW4Ayi+\n2UDF87ctZRAAW3/jWF/i+CtCbnl3UnD0UUdFN7SIN990UwpTLonz1exyVn3SiRNZ2ggMxOfF1ClT\nMj/+5FXy4yPFC6MCrG3rUrUgCaf9ZI899oiDsce47757kxaqsG56r+zYPDs9EGLbTND3GD4szjrz\nNGg/q5eDmAKdqfJHm0+dNiN+84cr49rrbiiCDP1HLYcCj1o3l3XTPpD+m3BaJo/JNoATYktYhaHW\nJ+ERDq5SHzUVBdZy5zlHxJKmEbPcTEPcmkdNt+VjPtS8BKnElWastBMHYZeezEOaEocjmRCOGTMm\n7rzzDvr4SzmBsI8lLVg3rlpmvrzKH+PUeBW2+l7vFf56r3kL41bae+V6iibbMGlOOmg8Z9tCq01M\nTDZoFoBAoJF1GwPzSjzaR19WKbBRXEvfa6bNELvQ/rOEtmJdjNpjKMuFI+CLx8alv/51PPTQY7F8\nzUo0Ekz84MVOKuTJTh7Nt1528WymDChtXQMSrgKcjSDACbNRG+jc8p7Jeav1t47Zx6lftSc0tTbG\nGzDfkJeold+EVn2t2jL+DezbM4a6rHjEuDj4oP1iuwF9WClg0tS+KlYvmw+NMzSTX05QuvRAszgd\n7TfaKI6a0mNHJ3intJKTXAFo0JgkbG+1CiUsHzIko/HaGcFPLUfSukJC5gRNS/u0ib7S5Beb5KFM\nlppZhm2BDocP2TU+8L53x8EHjkaBsA7Y2mM9y6SW2cJP0581i18kP8a7bq2xPdqw3Vt3iHW77RQb\nDzswlqJBm8NmhCnwt6cmT4lHHnsy+2vbghnp440WB49OwNCYAnE3xj81i9ZHHsL2SaX72NS+Dss/\nJLzu7bGpH2MCPMorNx8YW5rmHUMd+ro8xLDSrIkdeSRXpe98abzXPrBtmHEr/dd7x7Aav95r3q8V\np8S1FQWOn0ALr6/g37TlubSvfCv/YRe4EXu+nq29YsaseXHllVfHB97ztujVoxcKgBWksXeRRmlP\npi4+aPzNtLub2UpBFdL/3b1jPV8pp/r95XgFHvGZ9QXGf+AquuRGRDOrjfBKaWthtfBkpkSUWalh\ncxmsPg/eddf4whe/EAeNHBZPIuzccustcf8DD0Tvvv1j//33j1NPfUOccOShMNl3xA9+8COYVNE6\n9e7dJz7+8Y/FIePGxjPPTonbbr897r/vPgbP5pg48Wh+x8ZJJxzDoNMe/4Hg5kDbhemaM6MVaJrU\njJyOhu7CCz8Sg/r3i+X0au3H1GZ1VjuTRMsshHg//vHFsdOOO6UmTSPgZDYSB42rEKaGbdiw4XHc\nsUfH0qVtCGzPZrh4aE/tkYMezEhtF4xoPR1M9rESpvnrK/4cLy18KZcpE0/k28rSl4Ld/gfsHydO\nOAIj49Hxo4sujlsQbvT8vZo8u7Gd32VZbeTstDIrCY2C5StquZMIDdoAI1HDtZ669WA58l3v/Kfo\n2793PDppUrQtbsvNFhu0b6F9ZHh29uzCJN6iFs6GVpiiLAb0bGMoyPwJTJpeD2NoYdai5qkJfB9z\n9IR451suYHBYHdfdckc8P/m5XMruD74POvSIGD1yjzjxpBPizr/+FXX9qhxc1Y5VuxJJs9KZ5dgB\nXfZTy+Qg8/TTT8XY/UbFSrbLz507N+FW09IVGnDDgrYmCurCLJjJxKyTb/zPvHmoZSSDpoO6pJpp\nOtQ/65s4ICnh4ko4tttuQLz//e/BH9JLcTu06/54NZjr0FwoNCyYNzdeQkvctVuXmDd3Ti7XtMAo\nsoEa9ctsgcc8sxwr28BtdlQiHHfscfHufzoPgW1GTJs2LXqybX1NLm8WWx/5TWFlpOUyC80GpA8Z\n8OLFS+KPf7wytZnSmfgbCOyHHHJIjNlzWAxgYFmFX6c777gz8Zx0AG7SlrLBDGufMP/EmcIf5YKN\nLK/iMWHmQ7370bas79aTJiEggc7wwiOsf5mM5MAqXTXS5UNGz4SlfPMlfuZHXGGxruYlLGrDncR5\nqZmdOHFCnPnGM+OZZ56OefPmYT5BX24vAkqFzbimrXXxfdvLb16m8Sqw5+OWOtZvJXTr3xpeyxD2\nevmtfBfTlGH2WRT1BFdiUZStZdm7Gbs0NxFI3wuw1Vm6dElsHtw/47TA59wApDmBg5FHHa1GsGF9\nMPbafbf4jy99Ie7B1uv3f745nnxudtr76ipBMwbL74YGpmhYLd4yLVl4BKgBS+M1BxHj8C3RsgVm\na2Uk8WkgbWMdjOc/IueyJFG8zFpclJgskSJkrwVm5I3YfbcdsM/bPY5EWzVqr2G4N+kFL10BjCsQ\ngNBAJz1DU/zrhPH+Juy9lsLj56OdasPmq0e/3rBFN0shzBDXTVP2UYsGCnix5Ve4rIdQ+JW7z8LN\nq4Jbul9Ro+N30qid1kVJE7PRTfB3+bC06yTp9JNPjTexs3fHHfoA4lqWrjH1Ydm6K4KBpXXSbIax\no4W09qFNGxiX2tlMQXvZdvyJ3l2aY8xOfWLMruPirCMPQVmxJua/uADFwHPxyBPPxNPTZsbzCKcv\nLV7F6tHKFEy69uwDaNhsoU4wr66dVBxoVtE5+vTtHb05kN4NFBvhDZ6pKi6EW57ntbWdklNuwYH4\nqP1CfEn3Hem30rR5FHqgjjbs67xqGSarz969tuZLq9E2toP0+fJxivpQbD3KkLUoNNKOW13RKm6K\nXr37xzXX34CSaDRnlI6DHszXejf4WANmi0x+Qr1ffy0S3Ff8s22dOkbaWr/KC/gKnlUWC00S4hYZ\nUpw0ft4SSB/KlTZttbD/qSH8XguvaSrSs2Py3XdnwBMnTow9YSTPTJ8R3/jPb6NZeqBo4yj7wYcf\nxung/PjsZz7D7OqYuJ2B/2+PPpqd4rRTT4kDxuwdC1j//84Pvh/3Y7Oh7RiW1fG3xyaxc2p2XPiR\nD8cxRx8Td912Z9yDhqITu3fWrFhLo/WOY485Nj784ffHDn16xu13PxDjDzkIj9BokRnMNmP02Un7\nqxaEGIS2P15xJcJCsSdyB5JChUuBLWxCWL2mCBsf/8SFdI5O8dADf4vnn5+KYNojBSUZUxGIUPtr\nZ0QZMlQmtNherIrrrrmeQWQyZWFb5gyJQchlzL6o0IcO3S3e9ra3pLbmox/+UGoX7773gbRBckaQ\nA7IEBtOwvZLBcs/ZFvAJo8KqGzs0WG4izQ4D+kb/3ti0MVPv3qyNmDYkaBZh1Gl/BRzO1FIwA0g7\n9AY6d1fq7dKkdmmrsJtxtk+PLYIsafM4kBRIXS7eGIMG7Rgf/OB7EXrb4/LLL0NguAL4V6fA2aNn\n7+h71fVx3Cmn0H4LYwlLVp3JX/6YGkdgUhhuYmACkMSJtXP4la4UliXi3/7mt/Hkk08Rd2M89viT\nifP1ZLI+7UBYTyGfTu7Wog7+c8lFDZXIMn9RRxQG97rxJbAVcnkXjR9toGZSvG4gknZf2jsWg321\nthrrb4rt8Y/VCyF7HoJ0C7hZxmDTgh3iGpYmmqAUXZAAAEAASURBVBgIb7/zrniROnbHbvOpJx4v\nsFgHyskNIdKThVA/6cIJjZpZqgSc2PHwvYWRq3dPBlLrA4a68b4ZY2UH8hw+CHfGTq6kcxBxeVSN\ns7aUPktrK+IPLiEj3Pbu1QcmJm42x5h9RsVHP/ThOILJz1lnnRHPPPVkLGKwE6duFNFlgP1UgdnL\nCYr8owvl0fxJJxuYwVJQ4kacpeAMLUhXCn25aYJKrgdO81qPQCtdFuG/aJSdVIgGtSHyiJUs9XRn\nSUfk5KHQxPe58B4YMO+pBQTn2rqqLbKdFc664sBUnLqM6EYLy3Gn5Q5oZjZj9L1+PW4WEKLXYnuk\n8OpkzX5Qr1JGffv7u9/9iVt/HeP73vHa9lv9XsM7pq/fMgtpVoRAz+WMYF7Iugu07zmWaVbB5yYm\nbyva18dMjkAaj/ZpDbsJFQIQG5LHW3/5SnfOXYSt0U/xEQYOJqLFOWDf/eJvT0xGw3pjPII5iX1l\nM4O8ChmXXjdQ9mYPIheGFATlT3Z7JzY2uUMmkyTjsk6bdmLELbgpy+rrxQ+uLIy7cRPmCkml0CTF\nuAFNnmleTii1OZNHNaPp23GHAbH7sMHQpztj94zdWMpSq7aReOtYJnW4Jou8utCG4qYz+a3DVqul\n94CYgzuLp594Gr6KTTB5qkGUPiRj+4atbX8xQM1SbY/EObxB+15t/1JYJm/7SvlHH0NrYx+QYOWr\nXfBKa9ndwMvalStip50Hxdvfcn6cfPyRaHZawc1q7EdXRC/oeW1DsLPsjZpvIEjYxjn5QNijIPqW\ntG59XCECUmh6U7viA2Zq/Bm1S58YvfuRccaJh8Wile3xEv7Ynp38fMye82I8+dRzce8DD8eSpSvg\nLxugcWx74dX2qX6ca9qH/tJK/dcyriUMtJ80Zd7yM7WeOiBGrE1aKPTJV/AkjiqejF2fK936Xp87\n3jum6xhuHr7X79s+1zJqeMf44ouE/jcXIC/5ZD3I07u0KiKTz4DL5hbolD6PvhPt7dq44dY7Y+Te\nI2O7/n1oa3zlYSepjRszApKRHyOOf7VraxRkhv/rq+Kt3jtmWOvq3Z9X4odHW0m6hVz8a82I02gT\nZIAa2ohQNiJ0zCRjvMqfGq/ejWbBvhcVfOnQMvQhQ4ag1e8SNzNzuBtN2U477ZQDqwxfG6cnn3w6\nXpgzNwbvvDPfdo7Ojz4GU2rJpdSeDHDXXn9TMpzuCAK0DtWg+SDI62+8MQ4bfyjGqYfFUUceGY+S\nrh1j3RYG2He+413x1reci6ZiTXz5P/4zFs2fFxOPOITdMgwGogKmvxHpqu4Q7dWnXw4mrZRBP06H\nfC6rKNDoTPHQw8fHeeeeg+3Bwrjkksuw0+tlU+cgu97lFzViNLyH9crkFEaSJBgU+/TpjzF9P4yI\nGWj45yWjWI3WatJjj+cyjgLEhPEHxwXnnR+Tn58WC5asYHaMfx20LQpm6daETpllUo4+mprAhctE\ndsh2BslWlnmXLV3GAIAAZunE34jGbzXLuX0HbgfB0nmpz1o1ocCC/ICwySYN8rMLO1hnm7D00qMn\nGz5g0ul+BKZuHd2eLt3Av2k3lvP23CsFz1mzZsVtt92W9oItbB5oai62Xs6EL7nk0qIJgTbcTZub\nGairjF0B0p+XTMywDTB9cWFvTKEK4eaee+6GtjqDCwZk7ptot2Zmks4CHew30hlttB7YGrYTX4HT\nHZgy3cLIyRsm1Y5AJo1q9+ggtBI7oWaEUZsEno8Nymq0W6jSiefuO3cNv7RoYcLRNzdDrMcG8yVs\nGnvFshXLU1sh3Nqi/fXue8irKTfK9O3Xh+9roKEyaVmDhlHhIm3vgHkpdpq9obMu5G+9Vrs0hOC7\nE4NYC/BtWLc6B7g1aCGaoeVc2qZ+anLtwAoznq2XXRgaMMxdYM0Iq9JD//4DaL8+sXwFbgYQJB97\n/LH479/9dxyAacK4MSMRQvuhEZyFE89W8mbHdPeuDY1dGfRSGAQnakEccNRsayMqo1CrLMISjwzA\nbnJZ2dCg0hCpfV2FNsdJhQLuCmx+5AEaWIOq7O/S8Dpoq1eP3jmor0c7pA2eGy+6gnd3W8tHtNeT\nl7gxo/AUJA0HGvBAi2X/kOYVbtppuz59elD3vpQD7UNHGxj8u3TBnhZ67ww8lT+ROJ+9v9pV+Vq9\nm/bVro7fjL9tGt9rnPotmS74pEXFZtKqNJjh0IiaEOuZmg6ENp21PvDIE3HeWacibTHppM6bmWh1\nol/aHp0ZtOVlqX1RK8Rv4+ql0QObqGMP2y/G7zcyJj3+ePz56uvi4UlPsEEIGsOB7GaErW44KHWj\nlMKDsNjntRu2XbopHMIznHw0Yyy/EalQm8kUlmUGpOnCZBfOR7gTPvoN4WsQbBTsmcLmhBb5GZcX\nXWL7Qf1w0zEo9t97ROyHBn3Y0EGYYllXDjRvx+YSrai8SE5nW6ut9kiq9QgnTSyBpnDa2hO6bYkX\nZs5FA7kYDVhv+C7wgzPtmiGcTF9ceZAPecjTk27567AoftWqpVaDb+kWxQYwOn9ykwKCmyqaJvLu\nwmDfxV2iaNJ22b5f/OtH3ptLuBvWL0dY45gohLNWhEe1753g+eLFkcDjq2j+FA4zb1/oCwaKb9gC\nj7absPgsrZAcrdkGcKFT34FsKtuuz8DYYxfMdzq7qUwt46p4hqXUu+95MJ55bmpMmTo9XngB+7lY\nxd6EPrGWvt8V3ubE0X4kLOsR5rtSdgoo5CGWyw96odzEl/hJGMpYXulV+t1W2yxGO14dadznmrbe\na1i913Dz+PtnYAPvtk+erZ3tUtqHRyWALLpMzOlHjAktCPZuStFjQxf4RiveJ+57eFKcMu0FVtEO\nzslOExOWFIKouwhPWCCOXKHJHP9v/lifWs9tc6x19V6fbfQUpoXFBJJD2ZGQPBoM8Z8v+d+2MgTa\ntBCves+XV/lTC+sImM82bP1Wk/71rrti4fwX49abr48dEdjWIKx07lw0HN26osZFW+AOzGYZBIOO\nB+DutddesduQYXT4jXHln/5MVggoaDVWrYaBM4C0MmivXNYW995/X0xEaNtr5F4sBQ1kJvJCuokY\nMXJETJ85Ly6/7FdxwzVXx7ix+ydcanCctaealFzBG5dioOyKARMmKCHIcIoQhs8bjM/PPOPM6MkA\n9lM0cnPnzGFHJJJ7Q6OzEZsEz60zvgShcOTF+AMu7SwIRjDAps0ISpJbo7HUZPRAAHgBoeeKq/5E\nnUcwsO6fdk2//9M1KYSoAVuxbHkKusOGD2czx3a5W9PO/sQTT8SLONnUBYVaMvNTIN5zzz1zs8Rq\nGO12223H7rJ9ooVBfB5xVyxfkoLgMpZ4Fer22Xvv2HXwbggr3XMJZRUOG5997hlU8W2QBBiBQacG\nznZVYKOepX3ZrYtAIAO0jdJoXkKVkBwg6UQKuz2YeSoI0o9S+5IzTAboZctXxO577IHN4l4xhGVi\nl7iWYLMze9YL8STaqiXMLAcMGJC7aU8cd1LCdu99aCCpd1eWtrXrWbJ0JfS0XRx6yNgYPmxIuJyu\n8e+kSY/wm8RSAjZA9nM6qsLp3tj7DB06LB5Bu7uYpc4RlL3PmH3YgNKfNtsQz0+ZEpMenUT9qA+z\nZQWVQeBzNNpembj1GjVq7xwAFM6XLl0KnG0J5/HHHZfxH3jgPjailN2bLkX07NUD+A6JIWhUuwK7\npgNPP/NsPMVEpZ2B0eNr+vbpC1PZHmFqYPa97bffHhvQIdGNDTxqiJxdNyPwSrfSpQxGbZdH1dgm\nDqLZhYFJGtDWyUFELZrG563sRluAbecCtGu77bB91sOubj7S6ipg2n348Dhg7FhMAIZFH+h9/vz5\nMWPGDDb7TGJSsTC1PTJR7UN2h77UXrmJZiXtuBfteODYA5NeV0I/T7E06fLkSnaFd2fSJWzyBbWL\nGkbvsvNgNgbtH/3QNOcSHXTyJMvgmhwsZoOQQp7Cs8vpfVjqH7PffvCP+dj5TEEQ7I4GfSInBAxh\ns0tbPPzQw/SBedFK249GEBhG+ypY7rrbrskrWrsrvLKMRh285FH+/qer8jDj1v5an2vamo/f6/O2\nd+PWsPosLUEKMF76FIM1ZlpG4k8Sa/IRNUYu6YC2FHgVxh+d9Gj294G9FV4QqOBHm1KIQjjSoJJc\nzc98LEETEDXn6xC+e2JHNf7gA8D7vvHEU8/GXXfdgxD3VEybNQcTjuUIPs3gnV2ICGD2hVa1lKRV\nMGR2USZiCD8K1/r90/FvloOgs57lPjdnIZnEqmWLlJGiP7yhP3TdBy/1A9ngtQta+Z132iF2px8M\n2XVweg5worJpE45koV9yRguHsEWfky8VrbKmIU68yNrBm99mhDL5s/ZdbrpYrVaLCag9IPEMfF0U\nJh3gmLqKV1m8WruC4tJW9psU8mg7tZw+mwcRqRsp8j9w+Qxs6esQwXHwoJ3iM5/6ZBwCn3ZTRJcm\nvjH5amHXqOPTOjZR4Iotyy15UB6wOMgWI3qy9uRzPnZckSIgL+sgPdn+ajWllc30YUYl+CnCKzxA\nxcVOA/vE9v3GxlFM9D0RY9bsufEAK1E/Z5K8cvVy+l1P2gHvAfQ5EAotgRcFWvK2dJFR7Bp9o+YA\nWO26Kj1vS/fC62W4V4W13jOww59sj8Z7fe54r+V0DKvJs62ANMsCF+KSJiIkoc/nfCyvCUsqJegn\nbuhz93AL7bFyRVtcfe21Me7AfWlDbDoRkMNJPnUoeTspyNe81/L/t/dXqlPHPOv3LTjgo0KYZCud\nl6XgBp6FVQT443vSMj1GuqJFX99lwVlxkvm87c/cNA7+61/vxr7iHlxyMCtHA9GdGb6XM431qPUd\nDAcM3B4mu55BcDEzZI5tGTo0dkQIm4OgMWXK9FADpi8eZ/5Winldaio0+t5I2dru9OzdixnkJnbm\nLIpv/ee3mPW1xrMMLM7EWxmIrK7LT14KQ01o25zq5BIBCOlC2lw7t8NYNwQPifnggw6Jw9ko8fS0\n6XHLLbdhi9eXZMW/mnV2I4L2VXY0/1kv8eLEzTv/ywCZnKLBHIQGAtPmoHffAWgJn0Dt/UwcjzZw\n3MHj4+eX/TbddqxiRjV+/Hh2UL6ZgXFM9G/V+JjNENDecgbMyy77TVzxxz+ktueQQ8bHp/71I3jj\n7sbg1pJ4/jy2hC5LUqG48eY741vf/EaswUnloJ13jne84x3seBofw3bsL0ryms9yrsvT2te9iB8g\nGao2ZgoATuohFYQE6kQHnvnCLNJ0DoWMYxFafvPr3+RW/FY0KNZ5FfYXPfv1Ta7rgK+toAPCKmaB\n55x9drz5zRfEHkN2Iodkr1n+UoxqH4T5/OxnP40H738gjjz8sPjqFz8Tzzz/Agcwz8Nm7vlsy6VL\nFrJjdTy75t4XB+wzLIl3KX2RCVacjTbivvv/Ft///vewDZue+dpOE48+Ot7xtvPjP9C8Oii855/f\nyWaNPpj5ZnfIZYirr742fvLTn6SAccZpbyCvN6KJ0J0Hy4z7jomLf3xRapbUMH3z29+Nm2++JYYO\nHRof+tCHUiO3COHAXc2WNxhh+GMf+yB2Ogdlm0l5drKlMP9rrrkufnXppSwnt8e3vvGN2HXQQNob\n9zXg+6Mf/nCshjn3Rrs3beZsNhmcG9shbElb0nJZ1kKwJI4aLX+yYstUOLLPtTKpcJmMwBSWt0f7\nNpCZZ9saNK/MRt14sJm+p6bzlJNOhr4uiBEj9kzP7Qvblsdg7CFXALA2pD/4wUVpT6i9iHPzc89+\nI7aoBzJ4fTrt5c47//zo18qEi7pRYixcvCyuYhLyq19dlnhLH3c0sgL3Gae/IS44/1y06jugFSiX\naVZDW39FkLDdZ2GQvQFNg9qevTkB4Idf/Vxc+se/sAQ/nw1FH4vjJh6RA6zt9oWvfA8crqKtv4PR\nek9oA20QMF74kY+mhlAu+CAG+Z/793/Pvl8HnkbRr3kTn9vyt9Kfy4BbExvv9VzkSr60V/JgkJzl\nkAMByTfoqy4FK3ibtZph23MpAtHtd9wVb7/gHHx+LWBHHEI7/9JZucmJS5ZQQmH8zi6aEWi0ddMF\nhLZgnRm8xx2wN8umI+nf7NyHt97/4EOsZDwai+C969foi1AXPQgjNJj9XB4t7Zm5GgwfdDvSFU2y\n5ih9WxGiVi2QxcQx4/eP0fvsHYMR0AbtMBDhu5ndrd1ZQmyheghm8MnNm1agbUaQZKLoxgKX0t1R\n2p0dj7pUSruIFBAs08HJ1ZtOTE5XRksP+AkasEefeC7+xs70rhidb4AX0zPIw16g1koM0EaJT/Eh\nlgzj58037mqWxJcCm98Nc9DMCbxSVn5l1YKJ/vJli2OnAb3j/e97b+xH/eRhulVavXpZrMHmTo1v\nO6YhnRvtZp80P2GXd5hXtq2ankbO3DKs2NYSt8JjhIwl1kmn+QdjkRrPbt1ULLAiwiYt9YlqHmmV\nGLZz39j5lAnwsjXxs8t+F8vQCHbpgkYSvqtzGOM4odO+Lmk462y9ixugLM/KJ6yWX66OfcCQSus1\nvN7Ns37r+NzI5u9uHePIs2o+NWINq+E179J+NVa5WwuVMK5GudKzWc0iOHTM6U67PPTQI2gk74uT\njjkq1tNenmDhJT8SDgaDHLO3lFGy/V/9rfXL/MmpvtdMa3jHMrO1s+2JZWei/0r/SZRMiLJS5uVn\nP1G/1yW0WZiI9eo4YzDc96ptctbspWYgNWxIu11QGTtw6Dh1JcQ/lln6jv16xJOTp8WU56eA1M3M\n6PFbA1bnzVuQy52r2HGq76I+CAEenOxRHRvIs43dposwwO7Tt0/0xZZLA9RuCFHzmJmvRivXh6Uq\nd1q55dlO5C5IdwHq/0cNEbrsrHzx9q/Q5szWhTrt0xQQOzGonRQ9WbJzUFEDpOBn1XPpBnsgl3RE\naNrqWAi/2ihVfSteRLLkIp24vGCZYlD7snYMxKdOmxnHIrTtvvsw7MUGoY1alpqPz37us7EzHsAf\n/dsTccttt6RgdODYcXEaQsVH3v+uXNq6/De/TTcmk5iNb4fmaNyBB6Tm6mnswV5Eq9SM0PrUU9iG\nUaZLCB//+MfjuKPGx/Mz5sV3fvxz3HI8y+7FPePss8+K4ydwfhuatot+/F+xAbhM4z9V+MgUXOCG\ndpw8dVo8+MgjMWHcgfHP7/ynGDpkSCj0TJs6Izuhtm5rsQd0mUxfROt4Jmmccdpp8dlPX4gQvj5u\nu+s+NLC3xNSpU2M3dhifccYbER72ju05iqSJGayaPdmot3W0YwsagE3szhqx+5D41Cc+HLvsMjhu\nuvUulv9+l+5jtt9xB/ByWpxxyvEMWP8an/vc59IgvX/ffgmHy6Xvete7khbuxQbyzrvuZtBfHkce\ndXSc+oZTEF7OZpIwOf6Edvf5yZNTu7EjWoIBvcfgXmBhPM4SE6NfLuVpHO7Aaj9QYFcold5dztt+\n+/7xwfe9J45DYLv/8WfJ70qMi+fHyFEj44jDD48JRx2JreM1MX/u0/EUE4tFC/qyQ3psatSeefoZ\naLottWwr0IL1gPFIl04G9ClFN07NZGfgWAWj0nZF55J28qolWIF/O5Hmjuo+aKHecOqp0Rt/elff\ndlfMnj03+6jtegAar3/9xCcQEHshSF4bV115Ve5W1P3N29/2tphw+KFo01bHd7/33dQs6pOvO0Js\n397dc5PQgAEDSXNF3HrrrWh1B8aECRPoLxPjgjedH9OnT40bb7wBrXSv1Ay98Y1nQa/vTg3Sr397\nRTLSNtze7L3PCATTM+O0iYejgWlBqP56Tt7Uf7vktxYmOxTN2Wc+/SlwdFA8wJIHXT9tE2fPmZ30\neDcTw92H7xqHHXpILlE9+ujj7LhsQ9PZB1ugqdlGpQ9KxxDh/3AZ55X4m8n+kfSvlX0RFYDBQTI5\nQOEJ/C19jbaug5Y8RptDxRJt0e6++/44/8wzaD8MIJKp0zHgJWlgLie3n5Jn9nPe1mPXSjdCCCSU\nJb5mom9cvzILHLrr9jF0yCDa+EA064tj8nOTmTBNiscffSYWtC3NCTAOwOCTwCU+FACAQXMNhbFO\nm9tZLmTZkMnBxPH7xCnYr+6372i0Ttg6ov1H0UdFWKZGKNuMOYd06/RiE0JIUw9BcOOEvATNGuS7\nEUHRpfm0t+Id8qQMxDGEpo2sVii0UDMOUe8a1996J7QPXEyexIv1tw+qAMwBjbIs3j+AnfhovJYP\nhGefyj9CJly2hh8cMxFU5Xu4FlID1QTMb0VYnsimsY1MKBQQN8C/mvWfZv7gyMmqDuCRj8wgC26I\nXWUMJp4wNorI+tnOtlUBSgi9Ch1IpqlZ572JeqbA6yRaIYPJr6sW2rs2YVawBrcWDLJx7hnHxiIm\ntL+4/Ao07l3Z3Y/fxlw16J5LzK5opMoDpGjGU+Q06k9Z+eNP7R7b9oECJ9AlvAnoy55LCNnUDGrA\nK9yTPq1H4rj0yZqv6X32XmF4rTwzPu2vnbF9BXJBxqDHkD8ZIXesjZtuvDUOP3gcXgjcuoG9oyt9\n9JucUDbgq2W+EhyvUIXXDNo2r5qniRLeDvV7+Tf7GvTAd6glm6S8yzUadEEopERG0IX313NZmAJa\nBdC0DrJVYBM4n9WkadzuMpl+glxC6cUsRU3RnsN3jwvww7UGJnzVlX9mRj+HgU9DeRwrkr+bFBSQ\n7AzdsWXQFkZKkzW5A0qidzDdnt2Kuhqx/A2pImcA5btLMpZbGbCCklo6rybU/BqoaqeRQyGN6MAn\nzNrUrWD565hjjmagGBdTZi2Mu26/K2egLQyiK5jdd6FOEoa7IfPoFfFBHltxItplBMXWTQGQ/wm/\n5drpFBDTZgSNx4vsGFoN5+jJIDd89+F4+r6PgWdxXHftdbgumc+uv9tj8Utl+ei6a29INwAfft8/\nxYknHocwd0cKFE8/9XgOtGOYDbqD9uKLL44nn52MNm8gAhczdo1mwYmDnMLBHbffxvLszNQq3kPY\ns88+Hd//7nfj6AlHsrHgqpg5e1bpONYNIVpjZDU9to2akJ/97OfgLljWPSDOROg5buLEeOJxtIYI\ni08/+1zc99ADHMOyIjUga2G87tA9/7yzIbjO+Lq7ES3ODxEQF9HhWhg0mD2jcRzIku7sF2amplAt\ng63j0mIvZubz5pYdsB9473ti1PDBceXV18c30FQplLtsoBNLtXEeY3IYSwfHoF274g9/pFk3IOwu\nSdsv4f7xf/048epApKbi8SefIHmneOu5Z6YrmTvA9cOPPBR3/fWOeMtb3hKHYQ/2woyZ8dX/+Fou\nzUgDuXMxNQ8yY5AAE3SZWEP5XQfvGqNGjog5i5bEN7/5zXiW5UJ3nz3Acv4tN93IzLxnLnVpe/f9\n738/BiFs7rbrl6M/k49fX/5rlv0fAmccHA2eXUZ0gqENo4KbkxXxJ3GpVeuBhkJtgMunu+yyS3Rj\nEqNNmwPtkN0GYyw9MR1NPoHw8stLf0n/W8mSaUsyufPOPT8G9esVf7n5dnZgfy1p0gOWn0GIn4Ig\n/d3//Cb2oodgVzo8HnzgQQYRNyngUNniGa0++YmPs6T8KH1J9tE5JrGc6oTr+KMPQzh/A9rS+9AQ\nLYu9WYZ/6wVvyvr88Ef/hZD9++RL9ofJk5+Op596Ir70pS/FEQcfGCefdHz84pe/TL5RDKg7IwyM\nQrBYEl9Ec3zPfQ/lku6O2w1iotLGYLYxfvTDi1gi3zWFUO2vrvj9H+J+Ztg9W/vapZUWXvfVkb+Z\nuA4chv9vLunZejtgijNvmXe+y7ChJNpZ3uIkU+2WfitdZZg5cw6Tr8kxesRwhIdi11qWzJMAaRNy\nT/AoA76jtqwTriqcuAq39mddEXI6NcEn0TqQOedYdondmBQOHzwhJiD0zp41H/p7OK6E70ybtzBa\nsKday6RA2zKFlU34iIPrx/K2BbHLjn3jnW8+h/Y+OO1b29A0b1iJZgxwtMHMY6gQ3GTi2N8Ai3WH\nB7PCIA7SETCQKlil1ARsYsQJrkGbEZ6Uc3zLFQMkomemzIjHnpmC8T2TQc7v3CxfAj4n+e6ehaWm\noJkJQbLleJXBUrGsDH6Jf/+ILyQ9+0sO9BCM5RpPB7prWW4887STWR04PTVuLr/1cNWANrkPIfpx\nzFQUFsbgAeDIo44oxZJHTjiptwCIe+1HqwmNMGWYZTZ+wljDfN5CExIw+FJE83uxv6OutKvay/Wr\nFueEtBmJfOniOXHaiRMwqZjDhPhhlo7ZZboZJQVwOMkjedbT/JU2hSPrT+55L8STn/2T5UGHFa6O\nsG6J1Hgo+BWZ//PVMW7WkyT1bur6XMt9zRxLQyaMqZRB2eLJMOuoswqDWNcF11MzY8q0GWhJ94iN\nrDZIZeLCSQGtXdrdQmynREopsePza8Kwzceart79/ErP1u8VL+HgQ8Lm8j30CaWYSZFl4P/2mdfN\n1ioQ3ityFXgUkjQqNsxBrApyGo+vRmDTRkzntoMZYD79b/8WO+/QN377h2vi+uuvh/mjyuW/ndDL\nHWYKSD3RlKxmZkPWzG7YIYKNkvSlMCbTghxziVBbI11lrEGQamUWtBYG7lKmQ79XGlT7AMxph+VA\nyLOCpbN68yoDYDF+PuONp+OosHP8kR2CTz3zTGr92hmUW/IUAJ1AMuNlliUO6qzJe2E8WZB/KA++\noGQPGHk6AXfTaHQtSxJX+n+T7zgb03WIODSvSxjAPBlCNxs7MLhr6G2LPYr9VfuGtyGI9YBh9kkj\n7/Uw8uJuRRuL4sRWQY2iCgFQmu1x9dVXJ0Fr86R2qAXP2g52Dz/0UMzFRmg3BvvBg3eG0KciaGMz\nQnkOJOmFHwHJ3Zgucz/6+JPxtW98CwHpkJgw4Sh8FR3AcuA4lnTHITSujr/ec3f88pJLMZKdmdqh\nMaNHx67YtCxCC3ITG0mkA+3wpBk1qSsZXBZNxk4s68PpFEDt7jNn0mpntVUYNUpfXHvHotwt+ftY\nuHBB2kCt32hdWmIOgv/NN98aRx82Dvu+vZKmtPtS+PEIoMceezRuvuWWdOSs9lBhWrvA5yY/F6tp\nS+EZOHAAGqnZeZRaDqvEcWbWnXZ38FSYqnSvxqMJu5/URCJAKBA5SdHGZTN0msecMTPu09qP8rHL\nhJ7bFi8Fl24XYUCF4bew8097Ipf3s/0ozyVYcVJopEyQFBRdnvZygMmOLVERf+edd4rPf/5zUBO0\nTJC7WfvjCqFvc1P85dob43dX/CFewBeguzvVEO66624xHv+HL2Ab9u1vfRt7RxyFIoxuBBdqo6fT\nZj/+yU/jVxf/IA49dHwuV0ubbiax3F9d+isGrMfSNEFNujY4ixa9hNuam/CfeFDsuQc7AhFeF8x/\nOI5FeB4GfHc9+Ah+Em+lndRWuslGjQFMdcrUuPWWW2P0HsPj8MMOR6C/IWbMnJG4o4PSNzfFz/7r\nv9DK3oqcgZYHQXsxpwRsYler/USYdJHiZpd2lgNziZiZt7SezI4Bs5pG2G7/yFXjee/4/KqM9h/J\nlDiF+TaYcGlKAqUEL+6AJy15qYVXiHYw6oohvja9T7B7cDQTgs3gTQnBZe7UCpmgwkp/zfwkBJ41\nwNYo3e86hmaRHVs6Bm2+ubS0EbOETeuxzeJ5L7Rvw4eeGaPGjIrL//DnuOGOe/G6v31ORtXceRKD\n7jp2H7pzXPihd8XYvXfDtAQ+vXhe7laHy6WQ4Xm9aoTU7mSdG++UlAd5UzQbyopw1gk3OmWZ14k+\ntEQ/dVIgVuSX8p/ojEaJ+Pc/8ngsXoE9HI6DEdVoV3HGDwFGrGVcSrSd7BqJ0/KQ7ZhB4ph/atck\nB1vDB22a4Qg5nij8rYXXjsYVyVsvOA8ZaUNOHJvpt/Nnz0nfmjfdeBMrBmuxn10SQ4cNywnxyaec\nkPm4yU6hQR5O7hRSeEaBx+IKXQmnz97rhN/oXmpUOzdRf8ZRV3Kk+9yIQ5srdImnJpeQEVbBHHZc\n8A3sC88540TcJT0bL7bh4J5+thLTI808FIZVULjSlDSdeLUhgDA3ZjjuJrRZfke6zwC/NmCt37YN\nr+//073m81rx/pE4tr2cMBVE8EQVNfJcbVsV+JuaWli1wpb4uckxZu+9aPOCL9uj8FOkg9o21M1w\nL7Hg07b19Nv/1fWy+lGuZhPZ8xWUaYr8bi9ImJQTaHPrCE11wVXM6xbaakXr3YqYoYO8BGuBCkMO\nEA7KGlV3hYhXIpxsv/0O8UHsgMaP2T1uvvsRbLMuY8kDQ2UYrUdbCY1I0y2GgoIClnm49OnRPd1d\nJtOgkzLUVmifkMbZDNre3RXowGr5qUq2Bzbgs6f6T+3YRp6dfXpczGaYWDI4OsoKlsxOOflklhnR\nsCxYGtddfy3wrYte7FRaR4exDF1DVCTKVMWDPzupg4Xkn41uTXio372LJ+sjfBqyLqfju0SVaUiv\ntoYEgIMxO4Ov56qa7yZwR/emI+LclrC2Nmwr6KRpZJo1rJJ4KdwBWvyl4NyATaLw1AcPVrbO0Dza\nF1xyALOw6Q5il8G7kI6OoAYr0QzGhFtGprYF5rGGJWtGXGxh2lIwu4blvsMPOzQO2n8sS94HoG0a\nHGfgo03D+K9//etp0O4O4f7Yt8ycPj1mvDADjVifxIMORN21prjrbkV3egqzS6TI6XxzmUQtZieM\n0IflZgwN6I8/7lja6MCEZx34dNlWVxyj2Hyxkc7pTko1lytwMKyG0TFMuixl2dmZ9dMRFIDU5qrZ\nU4h1g4AaLZc8c0kj6+7SAs0CPnInLfkUQZylX9qrFVhlHtKxhv8vYo95ADO7f/mXTyR9T5k6ORYv\nWpSzcrXJOjoWll60n7Zl4r67Rt4N+NSuSSdlQKFcaAHnDjAiAKCk4lmeTTyUpw2SDWV8d/b2Y1PD\nDttxogg+n770nW/HX/70l9Qwd6WvWAEPF1f7VU54aGO59qikCQdIhVO5nYPh4EGDMt+BAwbS1Jbr\n0qxTJOlB4+ZCx+IOkqA9+7KR5AmWUpfHjtsP5Ld9amZHjhiRgofL4PIDbQoBhLqiP6CeTpimTZkS\nK5msDGEpdKcdd0wnxdImplsxZe6LbG54tkyqcNPDmEN+8Bf6eWoh6Uf2QRm3OJAZpysQbIBcEgdd\neYnbf/SyPYzv3ev1pH3tMuQT4M/KJTj+EZ/WSVB5FteUa5905SA1QIgSazi7chLaaLWn2/VjOYhN\nBLqwSe0rbZGCUuZJWviF/VMcEyXLyDyhbcvrBr3WS+2N/VshehNaJn1/HYIN7c67DYllTLQnPT6Z\nzR7dsIeFZ0FJPZnIvvvtF8ShGHivWjqHfgLPgye7cSEFA/Bt/dyhqRAmzyr1cpJEmxPuBgD9ywGk\nNQZ28GLDokHyrnacnVBZ903p4qU5Fi9bHbff8zBL5kx4MLOxD9HcSa8uddn2yYspo7ZbvVtXm9Ky\npAd35xENnlMEV2lYpYEbIpzcd2JM6A79nHby8WyeGJQbLvz22OOPxsU/ujjuvfteTiPZP84991wm\nCe1x0UUXsbJxERvodmHJfxT9B/GWNtCGygmaxdr3JMFChoW2OtKYsNafba6GLLWuTBRNW+qi8MaP\nvprjD3nrlsS6C/daaGS/UcMxETkufv6bq+F7boziSEdw6WVbCIC0ljAZ6PMrXJZX4fu/o/9SUKnL\nKxTaIegfiZPAK7i6xi6+ofm1yAupiKGSju/tKDOew/xqGUqgXvAPlUJN0mejfo6tXvJW6cer4v//\nut6ZeePPy+pH2fKAnIAATuI+28rmchzgzh9lnQ3IIp2hza09uGOur/FcG1Ni8bKQyjQV3Hx24JVJ\np+YN4nU3Uz+c/330ox+KN5xwJDPvx+Ob3/omRrE4wlT4SuShoYO+IBe0PYOyU5qHu/wU+OycRtPn\nVSs77LbfYYdk9jq0VTD0hAPxru2FsyKXzqDvchGezDIbq2i9HPzMvwVGn1o5BpCd0Gidjm1UK35f\nLvv1tblc1I/djLmjKns8pA9B5OSEvMq2ZDtk+SXC7aTZCrKl5BMMuYUw7Dj+k7D0K6P9gdotLDTQ\nVizGHuh5diX2S8GsvX0dNkR9ODR6JFqmvdCoDEq7op4sMQ/oz+7TF3TNUJiUedZ28W69NFbtrIM6\nL8JckvUILTWW7szz0OVBGIZ7RqhC3h7DhsnJkiHajjIO8cfwh3CCvze0i+LWOrrhwU0YGsrLlBXc\nbrv1NmyQdmPH7RvjDaedymaHcbEHy70u3/Xv35942BnA5NQ4qY3SnYgzXHcWqsXs3oK2B6JMLSZl\nS11u2LBuluWGE5d3XN4+CBsnl2wV9NwKLxNXE6MA9+SzbIOfPSt3I+dyEGE5FoIDacs5jYOnNSuD\nqIOHTJ9O4QDSCFcTK94SKdSZ/1l3ApIGpFT7gFkZSyPkl1iyv+zyy6LzP72DHbp7xte/8ZWYOXMW\nS4HP4cLkXnbv3QVzQXikM7oZwUvhMBmGBXA5oEhj5mtI0hZ32FKWo2+51AxQtkvtC5csi49+5GPY\ntCyLAUyKLvzEhXH4Qfuj9TwsT8Zowx2MG0t0TbCCidHOaBSLLVBT2pRZR3UbCgwyBt/d1f0Yxuqz\n587LgUJjX2H0s4K2wmeCm4NvEVjdPLOOvmg7u0mnN1pT3YuYqJ0Jl46j1VY6aRHL1lvhfA4aXrXN\nA+AP3RFkFVYUIrFeoD09h5IsaHdh9Nk/wpJCQL7ajkSmL1jPFGNtF+jfYPH3eq7aj2zb+vx60r96\nXHlEtihw2Zalb8qsG9XKEKnU/8lfGZTUIHVG2/bwpCdjMm2y/aH7USkFaHBAXyi5FBxk/uA18WEP\nSuSVMmncpCDTkUH+93u+GZV/urlYtWIpgmGfuPDD748v/vs32FG8EBciLquujJPfcGIcPv4AjpR6\nCXonDxCs0CeKMx/o1qOefJOe/JZlKIwBT37je9ntKgjCSlvT5l3QDOuuhdXYzAt2BR3aV7rHNTdc\nF5OnzY2W/jvjKBotLfgoZZsrkFOOedpHDJfr1mYnpHxv1HELrNa90R5qfbtixqDA5maYA0bvxWao\ngzkXegk56VtxY/zlL1fF3yY9HG9/xzvwe3hODBs+LDpJ35R/0UU/SuHtS1/6Ypp55KkxaNF1C+RY\n6BmgVipB46HSVcc7GZXLSACZmqGkE2rAe6EZHq2ejZ6CLXRAvbI/sBy9GW3zCcccGfc//FQ8/twc\nBGrtuKEReTlJStubh1iz7c3bL2Jp61Xh6jjGF5raGsenVwp7eYyXvxk/eSZ3n2s5xqrP3v0Js/dX\nu3KJs8IOrXmlwJU4K2M8zUafmYYLp7bojS1n2VRVJovC0bF+W8pqwPVq5b5W+LZ16ogf86/f63Pm\nRXmVbLM9kqIlVvsRl1WDt+VqIHxXBcPrFtpeCem18lV4U0OWgIl4SKMXy0v/3+f+LU4+4uC446HH\n48tf/gq2Kgux32GgptPmoAFjWIz372U4xxs+bGhRr0Nwy7GNUTjRGHotM0xaEwGwH7uXWjCofyFd\nLUiEBGcHITuIWCKwrqXiyTwMtEH5kR2DfnseNu8uJu0ujDruoAPxxL9PHsN0EzZIzQiHau4Svi30\nw0PjuSDZfAXLnsQDl2X4bHs4AGf0/IRwQVmWKWS7sHQ0auSeGaZNmHmswBbMhO6SdNfSSOxY5mFj\nom3WyuUY5Sucktbt6GX2aiGlM+SSB3noKiKJEkbmgNujT69Y8tKi9Nl1zllvTBs0bd8WLngxpfdl\ny1dlntK+eFMI1jZQhuMHjWAVnMREOYjeg8rZBewsjvJ64+/OQXg6NgS/+/3vY98x+8R+o/fmeKER\n7FCbRFyHUnFRmIeahPXsClbQVmNSBCk7MWfHMmg4uHspxLs8ILLU4qrlnDzl+VzWW7wQ9yXgwA0u\nnteqNs1G7IENpCcUdOU5Z+TEEf8+ywitoO1jWNlJVpiXycuPd5FAXOMY33cHF+lnE4Ofs3PpW3s4\nE5lb7iZGCNXZ87QZ02L//cZg63IkwvFIziY8HpwfG39BuP0Ou08V3BS8yg5khAvyknpkOsl4sGVI\nI/NkSgLBN8rRua6Cs7tAFbRdJtHHnf2mnTabPXd2XPSjH8fQb30tjmVjSduSd+PYml2zgKkgb8dY\nhnDXneWUx6ZOj3/55L+wg3tgTnBk/EyLGnXFxhJzBnfFihOXHwExn5OoG8/OZtW+emJGDyYSan5d\nwbF9xY82WevI16VfBQ2Zpvnp10q/SmpIxZ52l+JQzYQDqNo+UauNis/FkNryaQdwY8uYj2kdrOVv\nqTFOhgcurQu05vecrdp2PP8jV0f+ZnzrkYMeefr8v7kK0wb6RCZ52aiNLB1QBbkUITbkEAjmMKuu\nXTjrF1cT11x3E2f9jsBmr0dq23T5YRbm6/KZG7XSDmZTmYh4ILrIMY5/yk2cWYtSvmGpaYAejdGK\nreQyXARpP3fBuafHD773wxSAd9t5uzjx2CNRiLFMjkE30g30B4xZPrzWsskz65jtQG6Wk4VaF2E1\nfimfZiQu8AGj9Km2jq6FMAiNAOtqNkO19NwpHpw0Nf7wJ3hxjwGYETDQqtpNARQagV6Tt5OB3gRK\nGcJhoVnwln6VmoxERIIgNFm+/UiNLy/pp1Gn6m88/ZTcBbtuTVvyvs2scJxz/jmYCxzGZPRw6JHJ\nBzQLU47TzziNHfVT2TX9q/jOd3rHl778pWhlJcGzQh3fNtEHylXgqTRU742PW28irWHLlPhLvAkt\ntcs6ikNWQqh9RuWLdGOLa+IwCNvgww85MKbOWsCmDVeqHBuIm/guNFwEQPIkU7qXJZCf8JWrwmZb\netU+YXih4XKv30uq//lvTW/MWka9dwyrZbxqjsIMjty8YmuXCQJ1yTfHxUIBzTjC12Z8ERts9hy6\nC2PhGroD+GK5PTcQwqeKcgIahPeCxtRay4P/X65Sl5fziVern/lvxTjP4Fb4bSu3TdgqWzSuthOx\nVVBoQfaqQlvHBqmZ1zAB8bki1/dqx+Yyk7YldgaP29Fnz8c+8sEU2P6Ko8hvfvNrOEecFz1YqlMb\npDBgGmfTundYsGhh7In2af/9R8ftf70Xv1U9YebYeTG4d2OQcBbjEo9zhfnsMl2MhkrhYiMEmt7X\nGRzSfoMK+k/Ys2NztzGzOaRUvmlI2srSrfF1rHoMh733wvfObbffirf7eSCSJUu+5YzFFiWNHCbz\nIAsPrFVayNly4kS8ZCyi2bl4SUowWcGZQpuaira2hdhoHRP77LVHLGUp4sEH72cQK8vKp2PM/Ql2\n960Bf7/4xa9SQ+NJEDp53Y8zFn/844toXGao4M7Zte1QO5ZQqinx3eVc7ab0fTV8+PD4NDvx9ho+\nJJ3i3ngTzovxsN2G01fxdwlL1aMxqrUt7cJ2BPPNZQMJiXC1We6SdKm4D64paBScTLajrSsHyMNR\nU+h0d7B1b8drt7SwjM0dMtWeGMqr2XNHsR7NXeITRWpkPfC7L9oW7RK0wyEYGtLoWPuerrFkxfJY\n6XIkeag90lUBlcxdUt0Q/jzGxPqmfRYD0CbbiXqlN3fysrOWQYV7o44OaIoL2UTkZUdOAY22S3s+\n0iWpiA/SlPzwCYTQlLjhoxMAK6Evtn7b7Yj/q9VpEzhn3uz4/RV/jAP33y9OOPHEOPnEE+Ikdto9\nzUaQm2+6hfqDS+ivC0KldbVcEW95OQGAjgvT5pvl8/Obdmer0EypubJGCr0KRe3UXbvO6TOmx28x\n+H/vu9+Jb7Oj0dBMihtvu52BX3w2p7GyNnQ7sIyp/YdLurnxw+KJpLCYLnQWsvuY91y2RluqIC0M\nXaFdj5yTrhJmBtFV+gbcAV+CLEmvgSYXstSuVjd9CZJGuz21tw50asPMw1p7IPqQXYdgM4RbEvwS\neoyP9olVqBYB+iRzWUOBVVcULm/5LDApdIN7x0WFOwc724iGzKVShbeqTQGMl12237ZXDevI32qc\nGubdy7j1ucbZ9l7zq+FFs2u6oumwDpBl0iCQJk9TM5JcysanLDXAut9oZjJy2513xbETx8cJ6f7E\nWBCfeCGj5C8UlMJQhhlqHuKq5C4+5WkKunzhypSUgVbe2GjTN7Djs5W23YirjdPYEfzAXbfH3WiI\nDzv1mNhtp4Hk78kL2JEisGnXa7nJEcFH1RqnMFZqk3WgGC7iUWjiLXFH+xGaAyxI0GbTiaK+2Bw0\nu2GSsmIVtr2/vgKtK5NnjmxayzFWLbh00qmydqpladU2dsAt/brAU/qKdSwaZO7Qh++ukhRZlnQA\nYJt4yZdXw2P2HT0qJjIOrGEjgn3GzXE6bXa1Y9SIUWmG0MSOi7Sbtn+wKvMmdk1rY+vGLDeobYKv\npTaaWacuV8SzrZzX35Nd+Vy+EtN2bQiyCiW2X162kBMU3hHKAYpmZcLHN4VhJ9Ze2sEdgs3qjXfd\nF9PnLc7mJ0aj3qRX4G20v+1Uak+pDXr27q+OJ5XuDfOq75X263tNn5Fe5Y9x5W3eO+Zv9I5l1udX\nycbqkIA/0jW/rAPv1ku+rzCXEzc+rMVsZBrKhEPG7pNhxrX8lAlqnRoFZT58+3+9zNerZlHfDUvl\njbBBh1twlY1nGh6AHcrMSa/uS6yL5h6GySQ0p2qi3aU3lndLJt696t0C67dGtqWyQtSIW+PbEDlj\nYQBRU6QQpmpYhv+ZT386zj7lxHj4qafjc5/9DEuAUxlYy3l47Ri4ilylSBnyLJZjNBh3CfS8s89m\nqRDfaDCHdHJIR2jHKF0HpBMnHMOAt5ndZ0/h+2dpCjt2dI/dsTEcIMBCNmaiEZjtzDK5JG7jOFtC\nINPoV9uQg3Ayesgh4+IFBo477rw9DcW1kfNEAzUB4sIOZP75z84krsUHv4IrapLxxLPll44kDL7Z\nSdTSeI7pIeM4CeFN53FUUjNG2ney5f7RTKNz2XPPPS8Hn1/96vL43ve+F1PYGalAJ44tS3s1G7UQ\nfofmyMrKCik/BZaivVBLNf7Q8bHvHkNYMrsvPv+Ff093DYI+EE1LCn8mKiRQtJzAqyG/nuY36SSY\nqrQzC91RZ5m7D8cId3ksRfPXhBChPVUv7JqErd8AToLgmaZIRqa2c/r06QhcZUPFiJEj062JbgQc\n/GVl2qnpkFWtqnkoAFkLBRLfFbyex2h9zuzZGLnvHAcfemgKLdpC2kYyXx2zepKARvxpO0U7qLlZ\nw/mlVsswZypF21YGdmf2plVQyeUI1mboKgTwn6Jz0CetdZCmjGf7FmFZLQgZZHp37GHvB55Noz2d\n/tcURqexCeCH2L08+cxz2Gl1YlMJgh1CtEKbDIfk5Qcg2srlIAPEdUdypS/vwmGby6rTDsf6UAnt\nLsVTLjNBJ1dfczU7Ae/N3bTvec8/x9Dhw1J4VjifCTxzZr3IjtOd4qSTTk6BPpcqgd8+JP7c3ZcD\nobQM7sW/7N0NP50gBJemm1kaEq9pW0Z/PwAfbn17NMdLC16KeTgG1v5GR9DCNXTYMOzttqPNGPBr\nnuKTDPY9YGz0Q0iYOWsOzkLnkE5fiGUwKkeg0XOSlhEowVcKYeTJA+WTAQxN/pHG+8TTsF0tpvaL\nFN7ol/YRod16F5+lz24NN6yGG7c+13Dv9arPNY9693t9runrO1/4Zrlb42QdDLBs6pJl1UKIa72K\nWYBHjgVHU10X89GQixOXyosWW97UqA9h5lkmc+U5yzU08Ue8XK4sM/fEtGkpeyP8ODkWdmXrOZ6p\nB7zvuKMOjwFMvPfFmLtXn56c0rA0VwrkB52hWQWHFDvNm3qQTdKo8GgGYD+X74q55PRo5wscDt6l\nnZ1wW48N7gpVj9AJzW7nnnHVn29iY8x84jOp51QAT7RJhQC0o82YLa/4mxBQjm8ARHgDj+I0/5W2\npECAsIwEJnHuICo9O/HRbvqC889PgXQjwppHcGnj68RqJZPKNbowsY8oNHJ8mpP9TexK3wEzkc9/\n/rPpOqm1F5NZ+nGuUohXcKR2nMIs1eJf/gOaDPOedMB376VWvuSY4z3Dgdc6+bdEd0Bn4wJl5PQP\n2h+E0+5RI/cCn3pDzN5R8hA3SWPq5Ur/MKfMUViJnfQnnhrPllngKXDV9xJWv5FDpinvrxbn1fLp\nGL9jHEpslC1kHfJOWhPWxELhy8YwWuXnINWJnHzL81zd1KQs4URT3pm81/GFRLXvZAbiITMir9d7\nNdJl+nzeCn/SvHUAZi/jiPGC6QyA5zPGYy7WglmU7ro0I1IRJc2rMXzu+clpZoNssZXAzawgv5Fp\n41s2ZvlohKx4KdpA46rlYHYBMvqyFLccP2oefPztb36dHWRHsPNnUnzlS1/OnWrpEZ3ZuMcVpVYF\nIjKtHEm/ZffgEG8hu+wOR8g4GQ2FUucyllJbmN3YSc8952ycb+4V8zHuviv9bWHbxYAsszau/ty0\no1qxcgXMH3sEkOPSWDuCwBo2GqxhZ5DHwLiNfQDLehqDK9Gedc45LLk2x/X4D5vOsmtqEWAC7krp\nwmAusSvBe+VRE0Ajw0j8iXoQYof2PYmFOsoEtNPSeaSCqINuX2yzLjj/TfGVr3w5Ru65ezz+/LS4\nEqekHpFkI/bNzQLM7oBxAfY+LgsrMGiPpHB80EFjgQUtGnXSUF+GYJm6VQGyhNH6LGWjgNCuRwvi\nmaeeGWpcDeUVrD1JwAFXD//auA0ZMiTdsribVKauPRnjQgrgCowus2qD97EPfyT+66Lvxzlnncky\nNcc/oVlSmF6HwOLs+0zC99l7BN7unwGPM1JQmjxlCtqn6bETzluPPfa43PG3gmVQW9SNArsM2glf\nbaezXLwzeITJAVeyFNpVwV+hYe7c+XH//Q8mjs+lrfYcsVduXtGIeiXtuowlwv5o6t75jrfEQOwC\n84QDGGpXBp52O1AOINC6HZn2kFnbIYpmJostDA3cZnRwKgxqYKXPZdC0WrW17qRr4ENh1Zmv+F3F\n0WkKnv2gKXc/L0PTpDG2uzN1N6Ihfzv1StzjmkRtWdoGkrdL8AoZCn1OIBSa0pCecGkqBwDhgmal\nAZfMUriR5zDGdabtFV6F08HPCdPPf/HLeJhdvnuyMeTd7/rn3PAi3LNmzYx7HriftuoSb3vrBXme\nooOAxz7ppkV63QlaOeONZ6BN7ZvwaseWmgVwMmbMvqlZXQ7drFiJk1Fwr6uZY489Bvx0YufwfSwX\nzYx+/QfGXzlP97kX5qaDYv0yukPbfrcaLcYC6HC//Q/Ax9q4dC588y1OlNj9jaALayttQJ3VWNse\n5RIH/ByIwLt8x0vcqQlU86N2z8HKXcfJsoGZ/9lHjPtK/K2G12/1Xpm39/ozrlf9ZtyOP7/Vd+PU\n5613v3cIZ3ARPhUotkOOOqYzIwQiJ2ftCBXuE9Sp7KTHONngnocQ2DS8hgDoG2UzFfHlUdIG+ReN\nGmH5bN4WYL4KWiXcchOXCQBDPvjuBI0Y2sLEuh33IMNxsbP33nsgmNCnmLy5M9Kl83SZZLrMivLM\n32eCnNhanuUUH4PWDEFhIwIckwzr6vmfnRAO4QD0cVxDkXA9M73OOHNrau7Hrv0X4qZb7uFkC1dQ\nym5MXZkU4IvgZ33VtmaZWS8rRD0EJXm1/JH6ZlmW5x5rf0zawW033luhlf5ku3rxghi15/AYzjIa\nDBtaZaczGmEFutwEx4REkwvpV3g3Irh5RrUYcMd+bvKCF62hD8mL3RySigInvgLI5V9x8rIfofnu\nnXjy7JzwSxfGtUqZFvjhy1bOf36zjnAIypNHujHBMYaj4bptjkMP2hd8u5NSzSUpyMiNJjAOSzJx\n41fekj4th3j1VxDZCOMbT5nMFInjDnfT+L2mrfcaVu81/B+51zTe63OmU8pNUpA3+M1L3NBfaFN/\nIihhpP9MRdOmZwnHb/lqCq4JOzgQn8C+pX/7XipXsn0df4vMYDuRX+ZpXywwZltmmxYc2cbSbpq8\nZPU4lxnPCLNnzIonJz2GP08cvv/kJ/GVr30r/vVTn4/3v/9j8b73fyT+5V8/q+JJMimXwPpeK1C/\nyRqNpTbCgsTQfjLmAABAAElEQVRhzrIYIGxFhSbtT7R90Wv0Dtv1jwvxYn4EhOOuPrfmfwCno03M\nyJ1Fy2QdQFwqMbMHH5qE4HIVay+RvoKuvu6WePP5Z8eHPvDBGI1N0EOPPMSg1BUGz5mjR07IGfsP\nfngxgsCM0kHAvXZivZjlHHPKSTlAOsjsPmxoLsv1ZjCfcPTRObjr9+rJ56fiFXxqrKdjOsidwOaD\nA8buF9PmL4rrbrgFhsgSpsau3juXpTAxkMsKMoDsNDQ+dzt1D5yDpgAKw3S518Oe3/K2CziKaikE\nUgYel/kUlPbdd98Ygid8rRJuv/thbCEu5YijKeBd/3OcDoGAuhaG0BPtw5lnvAH/STPTHskTCE44\n4QTO7ts3ha31G9j+TifthjC7meWnRWgcl6HBGTCwfxx11IT0zD+GsnQWe9Wf/hRzZ70Q6+iwhx8+\nPk4//bR4/vnnKbML9d4/jWvXMatsRTvkDFJVrDM9rQ3bsT1zuUrBUQFKQWZXXEp8/lMfZ1PJsXHX\nHXfk0VEttO14XIBMPGZCLEG79Tscts5l6U0N3Nx58+OXv7gk+n/yk3HWG07AM/5O2Odch0CzIh0K\nH3/88XEAhvufp96/nzrF/obvOkpnduRh9LIyHXBe8stLOQJrBDYbY+N7+JW75tprY86c2QzSm2Io\nbX0yO3+HD9oB356r43f//VtmyM7QMYwHZgUKhYZUV0DD7rjayPItpAhtSQfQKQKLxvHt4FbhCss1\nmPgwTkg4E7vCF/OUiltuuRnfZQ8hqHVmYGPDC/STB1dDF8L2hS9+Lv72yMPAdg1HbrE8AQ6PhvbG\njt4nZs6Zi7NkbPzWaRvYijPZZczWmcAAz0knngRsnfOYLzv8b37zO7qWWjTwD6xqLBS6dYWi0Lac\ntm7iQOv0Xk83XAa8avgU3Bw0pjHxuOzy32IY/fE4FeegSxa+O777ne+moH/FlX+MvTgJYfz+YzgF\n4wdxLQxiBho4bXBGjBwVx4FHl5yXYXpw5x0LUpByR63Cw/lnnRPDhwyjftfzji0bA7g+A/dl59rj\n+IS74qor8NrPcjV9Z/qM2fGTn10Sn7jwI/Hv//YJ/CWNSNwI425DhiPoHRsjdt0lrrrh1rjz9ltz\nWUntkWrO1FAg7NqPfe+ktgV85OYf2tN2VRvpJqUlnMaw2y4Dc+d3P+hNAXHWnDlx9Q03EhEmSdt7\nvRp/M1xG6+Ugv4Xv8VzDkxF3YOY1jeH1W71XHlrzMtyr3MugkEHUR24ib3UIle7pzTS7A08JUE9C\ng6dg29yFHeUsH155zW1xIMek7cKJMBvXcuYrbh3ygPNSTPKRLIv3vAO3fTl3TlqwAxvZW4gClH1C\nOoI4cudjZ3izk0J35vUZ2Ct22XVHNgKpiULzhHBcylIAKPhS12V7pVae/JWXbCvpV/AtAnGHP24g\ngFg3aFtkvYRCoQhzCXcgNHs6SDOmKavi4l/+MWbObcOVRf+EzbNN13P8VRfSaSWWky3vlFfqQA3p\nP5s3kU+Wb5uit+OnEAlxAQEwkqZLDuwsCTP+9GH53felm1fDO/pzwga7+RlLulkJHPl2xsWC7QGD\nYHlKzaC8kW/wTvN1gxeVT9pyfUe7WzohVbPu4tAWTVTzt14ZwgvfsyUad9FBvxGxaj79l0KJODWp\ndfFuffzO5NwJroKYu+Y70e83b2Ii2c4JGKOHxZAd+sTcNkxQuoLXDYiq4lh8gQsKor1sv8yq5NmA\nOeG2HC7px+KE1XrLm1IoN66h1tGwjFeeDW989nHLs/nU8Ppc8i7hNcw09Xnb+CU/8G2cjCeHpU15\nc1k5v4gLnlI4AyezVVQwIW7tx+oAskgK8g14s1a1sJJ5wbHPr/Oy7KQ1csiVG2lIiMhfvpWTSCED\n8dbLcPmd51Gvwz3Lz378i7jl1luzD67Gtt88VAZoMqGJUGqt6aOcGSvYW6/6XhvBL/nsPSvHA0mM\nV+KUd2cmamnUyLhD7aADx8K4sTdBk3IYWjNI22SJYJvbZ0nHAXUTs6Prb7ghHe92hSlccsnlGFXP\njbe97c1xKkLYKfyMZ7r7WEb82c8viYcffARtEK4/WBaTN7gk6+GxF154Ics0Nhr5U0j7Wnxo9ewd\nH/v4R3EoWcq8+Ge/iucR+MxxR5arzmP7tkblN996Z+6YcxlMBKXAlXWmEWAIZXmmwCEDtA7659L2\nTK2emhu1XNtt1ydOOWFiMgiibLmMv5hDoG+5+wF8ht0ejyBR6+NK2bUVbY02e57DeNGPLorBX/1K\njD9sfHrTX7p0RfRn2XT69Onx7e98L977nvewTLkjuJaJqNnbiO+0x+KBhx5Jz/TvfNc7gR9hhTpd\n/t9XpnuUO+68M88jfcPJx8UXvvDFzGsQAs5KBKxvM5iLh4999EO0IX7TsLHT/5V+47SX8OxHhVvP\nQ7344h/HUyx7nYEB7kEM+g789YJ9xLPPT49fXHo5doG3Iwy5pMOslra59777YtM3v4XT2jdzJuyY\nOPiAMZwhiCCLy4D5y9fEdy76GceeYcMIPj3ftSeE3czyZwuG0WvWzU0P/w7QX/7KV/I4LL3pf+Q9\n74ql7iZD8uqJUfaUWfPiS99CmLv6agYyBwg1WMzS6SHr0OJ64PoK3Jy4bCmjs53F4UraxPa2/Wzd\nLsR74skn4/a77omJGPR/7KMcE8aX5cTVD1LnLn8za/BOp4PI7Fzd2dWr5vIFdouefPIJcdTRE9D+\ntaWmrkevHmlX8d0f/JCTEJ5iN+12COIbaeu2+O8//CEGD/lknHjcMaHPuxaWYh557BkmMX8G5y6n\noy1GA6EHeWnLdlDY1vZrA+U2wZB7oRFbjnZP2P3m7E4fWA89PCn+/Kc/x3vf+XZsoY7DLcfTcV0u\nry2Mr33t6/HGM8+KU089JT7+4Q9kv9QfVivlPIRj5r9cc0P6Y9MwfCPhTk7sw7+85NI4kN27//Hl\nz0Ub7davN97hCb/rgQfiO9/9Af7y5iUuxa12jB7BpAb9fe9+e5x32ik43z0FQRTv+rTZMgbF7/7k\nUmC6FgF3KfXog+sZnC6z9KpWuhuGxC2NtlIzmj2PwpIh865mcy7l/Q4bvk9+/IPx5nPPyFMg+rY2\nxXW33RN/vu767MMk3HK9Gn8zwlaeVhit/M1fvQq/E45y1bx82/a5Y15+r2lLnoZwNerig6Uk0288\nK2TJ8ivHlLHri653j97xxNOT49e/vTI++dEP0FfKWbVOGj2v0mVTBQvttijUP6VeEKy8IrFY64Sw\nYhjEkpohNxPwmJrorgjEbhzpyUafwzDl6AeNeV5qaswQoFG1MYaTLuuQfyjHu/1HfJiXeCwCorv/\n1d6nkFXkHCIBJHQqrW5k6dOJ6yrs2C7+6WUx6akp0bX3AA5o4qIc8ZH8N+GFH2daBkP4sPou4S61\ng2cJJwG6P+lKPBUMXTCvaUJgbIL23A7TDficADXB45rgQT2guTFDh+Kfkw1YaNpSmhFO/xFPLY1Q\nCLPvYId7Fa5LXRMZMga+kyDvBeu8ElQu4jYg9V7DiF0fE/ZSF/sxcRDQEldShBEbyTJvylKTqMlG\n1+4oQpj4BpM5d+UfyxFOF196JY6Se5EGW2H4QtHe2iamdpzMaQFllhI70qkAFbqmjEaZ8vNEdlbP\nwA4AmeA1rg5o2ZJfzddk9bmisGNW9ZthSbPAbStkf6KdUz6yRuBCiOj43PlHZvKbOcgTOw3cM008\n+JjhpS9SBzLPehI3a+S9Y4Hm9w9c2Z4SounFD2n8lT8lTz5V9HEHPiJa6kqc/z7x3NSYMfvF6NuP\niUoSTGe02jpMty7C6cof9D3m8OOyjtvC1LHxsiCSiabUtFWgVEdauXxXbeyggrqbwUXtgrYyK1ke\ncsehy4yKGKqWi20QVWSAcWBWW/LoY0/wVeGFjovWwPXn/v374ntrRB5w7vLg/Q8+gOH0whxEmmAm\nqxE4dHi7nKUQmYGzniPwPeUELv1K2bFpRLV6bopwyUwNh0t1k/m57KTPsNGjR1sFNgM8wN3l1FIv\n77rnsFH/f/beBNiz7K7vO69fv369zvRMz6LRrkEglpEEEmgBSSCQwDY4YMfEQKDsuCABx45NuZyQ\nSqgQ4sriLEXZximcgImJwTY4wRCDwQkIkLAExEJGkiW0ISFmX3t9e+fz+Z37/b/zbv9fd89ICuWq\nud3/d875nd92fufce373bFcHUTt2T9pK0freMK7n42weHgqebP+5L3tZOUm+/XmOT41CguPi+ouM\nGv3+73+SRdp8dJxOSnv6uR9vSqd2fVA6Yukc9gs5PkNn1xP23Un1q7/6q6z3+20e3Jvt3nvvbXfe\ndWedXq89zjCl6mYDD9x961vfyhTWfXTiF9pvvOs322/+5m/U8Rd+J+829Hv1q16FPe/jzLw7GeF8\nV/s1HKWHmWr2E0Z+PPzdOMUPPvRgfUXB+tBp0wlwdITHK06Eaz222ue89KUcYvtSpqo/n3riG4mU\n6T3v/m0cjnezmYTT+XkIpuH7ZlNrsHyzZWrw3s96aU2hul7nwx/5CB9z/61yeMpWPHwsW33dASft\n/Xxhwc0Pblo5SV37YXanLO9kl9QXvvIV9UkrR8X+9Qc+wKe0PlzHpZSziEx1vo+puxe88MWsLfs4\nn+36QNW5I1EeQ+N0pJ/E8uBe28iv41haN+6+db3jnUyzOp3rZ6ge4hNp73jH2zmZ/n3VPs6yg/mL\neTGxjB54/AS7Mr3RHIl4xSvvqxFN26/Tqu/no+jvfOe7anG+I7h+au2WM5zaTyfmdwxf+xq+c/uG\nN7Du6zY+ofUeNor8UjvvCCOOi05YNWh4O+p2Aj1tH37+6ws4l877Qr19aOt0VieJTrbjaruEn/uy\nl/KB95fVYcd+I1W4elsvz3ve8+pD7necu71GPj/4oQ+3j3A/PvwIzhP3R50Ej3P0177/v2xv+tIv\nad/1H/5lvnrxfqbUvwi7fH498r1v3sWU6x2sW6OagPGQQZdLl1wTxDoN7mVHOl/20nups/tqRP4T\nn3ywvteqI+7zwN2tNe0EA4+Iee3rXsthxI/xXPhtRtsYPbBsPrx0RihTTYNwP9oWfd688Y1vaH7R\nw2nR3+Kw6N9gSYYfFqeg80dbpS2/Nko4ItUDfAAExzDXSLssX7wRPuKHxzz0oe8jXJ1RTSvWM8JR\nFM+fO86IsJ+FO85ZTReeeKR9L6Pd3/Snvr5deJzlI4z8HuVTUrssC9HRrcN35eOPfz6PfH75U4RX\nZNnR1QiY9zpR68ORpCO8SO5xH7icAPODo0PE+km9SZwDD5EuAhlW5wNHFSddZac86ViF297Vxued\noyL+99y17ausL2azwcbesfZ3//7/2f7Jz/0SB+ryzKUvwA1d2FG5zpQ4onWEkUB/R/3JEt3rlQtd\nDbXdKjKP+dN2FPw48k6QPsEL2kn4HKNQrgPdXj/Snjx+tX3zX+LQ4K94PXqyFgyvd4UXwR0cs12M\n57PvqM9x+DjyoZdQDg91c71Le2rz/ZZDGh3SNg7SBpnQ0T1kdGIrTphcplYCY1N16C4zNFevMGqP\nU39E554yHWW37T9/x7vbf/Hf/m1mlG6h/7mlBkeuUoeOOLrS0P3CpX21t2t16nVZIidZvT0dLMuk\nVsfoyPzNpcpRfQyTvyy8GRrbbreE7jzlQI62Lntb+6aBMxTN71L7nu/+TmYJvrZtPMUGK/pZab2s\nBxWsshJPvRR8mXLXgZVOiFSzWruGEl1HIMDVqB5gyLFqqeH+Es4z/eHHN9p//D3fz1d0/jW4bgyi\nrfP87XpybBIzXqu+QOOHrLzyjV9d7GQ5XgcaluVDAoNNVHzdhuXd27BkqnNm2WvXJnFP877EInUF\n+zkVOxQfto6GaSBHwHyYq7QjHU4n6Lx5BtfWZc5Ow8mz83H9kEPvvqE5DOzXFaSTxtEQFVefVR8u\n4JejxBB+nR6PPns4kPQXdBJ+JYG1LjiOvsXrLNS5btBbTjt9F6Kqn/x11uzQ1Fu4naVebskC3zc+\nHwqWvRoMfOokbxSS1o966xA66lhrzaaG4dosT9KW5zoOiCNZ8q0hdCpqF4foGDZwt50jcH7VwHU+\nLnK3U9MZUUd1M60z5dSI36H0TduRGTt07el0pjsydW4sh3q59kWbFD26KdtRIHdD6uBcwrHVufOg\nwjqGgYeTnYVvezpd1p2NWR6uZXOaTnvZUdrA1NPRppO8lfvgF+6UsE5XfwD44NaJXqspVTcSKEce\n8rV86qEDrp0cbZGvN4POi3pb/ioj9esobjVN9aIOHNFTB8vqCJXroy6hQ7VYnOZMe5mvkxZddBy8\n1MtROPNrYTtt2TVSfd0g9YRe2kd9YlPp5OuHr/2KgTiuk/TcJ48P0FlxhEydPax2i6lR5fotT9sk\natR6RstVb1HwcpTQduM94/C5ZfOpZFuzQ9IO2lPHU162J23oPQO42obtz/Lo7G5xH7kQ9zibXtTV\nN27tLh/1dRepGw5cr+QLwh43zVm+96sHZptc52Hx177/+9pXveF17a/8p9/b/gnfmvV7wG6qcfj+\nLC8+yvfsPbsDN4C4m9cjc67Az+eAox1bLOSundq2VdqU97wveerpvVSbGuCjPh7ZIbyXgfuE+ucP\nP5oh/zSOW+KtYw30BCN0juY4he8GGm3uFK/3hO2JghZt/ozPt8TN0ybaqLdXyfbpxnj4XC8MX8Nl\n8dAmT7lz+T7jquzoZf3SDCg7zzVGU05ST//Zf/KX25u+7LXcDNyPfGrK0XUX9ltm71tfsj1ixoZR\ndsNYfbRk6liw6Sq8oaKjsRbIp00Bok0wAkaNutB9h7bs83mXo5LcgLNCm+Jh3e3Eg1e9vE98DisP\nbflxTTMSTrWu8rF563iHcx/dib7GqQCXL+PI8ZUD17H98I/9o/ZTP/OLLE/QraBNUP8+o6xnn/+O\nnOlsrFGWNZy1Y/4QskYPaAvijsE543mCLv785qQzNDpr+GRtHV3WiR+jfKu2C8JtFH8KvTbuON7+\n7Pf+lXYXB79fPWqf5EgxP/qvXfo517KtebA7NqWAUycM86F9WNzF5Y045KWOr98WbNfylxZFB6ct\n9N4D7rjdI9/+zp2/eNbt6uUnuF9Zw8YD5QplWzl+tv2/7/1o+/7/4Yfa/Y/Rh5xg9AZa60jr2udY\nx1aczo11nvZnGWzrykwcrcCa1CsocfKD1+ml6ZnJ0zdI3hgmf2JVQWA3Q6OYDJy4jrP6Y4Cazpc7\n27gw1/jtbpxvf+5bmZn5C9/eLj/6AM46z2RwrJ/wsXxVXxZgqrfoYzheKfOB5wE4Omr9WBvajJUj\nK9u/LwDUpaPftS4Z21u/vuR7P7jT+P0fub/9pb/6fe3hBx+o9fvr3Hv1fKfvtoZ2aHvHOUnDceKl\n06MqMypWBpgUquHa0qZXmAx9wNqB22naYTny5O5Mj2zQD/YNRaP4IPFhfhI8DeMGAfomonYirJ9i\nak7n4ArOjOf29N0T5ulocDOyINWOwrPKHLmrzwjR2HRslGUnvk7n6SiJmyLcZdl3Iq5w2OdtjDjh\ndWNcvzHaOwgWqeNQuIPSTtWOx463OjaMRpLGjeZlf23Sq84g1ejaCrdZ2/gdKdJBWDvp/DMPDPRU\nXh0fQVnFPcs0mh2oW9vtWHU3ShdbGzb0gXCJTus2Ong7PKd/7dhuYRRNG/gQ83ccGZZbnkd5U/UB\n61uozoYdnbh3sg7Ow2x1hpxytPGIb1pay+ON5NpC17CcvY2zkIALUw/LtH7sJJs3GPWhHKpY60+w\ntUexcGug/1V0vBUaHsTIP3Gmb9svp4n1To6Mac/qmBHoiKQOmJ/DsvxHmRZxE4lOxBXqQjyP7vCL\nF1dwCFSF/2yCYGE0+SqtbX04MQlUcb91KI4316YONuFJZLsg388AuRnBdlNyfPiXPu56vVL1rizb\nuw6jMvrNyM2GnNMcUaITl/sB1lwYjjw3IMjL3Yq2X8tVzhZInjzvm5E29iF0+vRZPiuDE8e6EnEu\nsYlBh866d9TOTunYOq0Hu29QB326XUfTO8yHs/a3I+wjaOrTbaU9fQD7EOgP3mpX4mJT294pHGdf\nJOrFhpFA68DjQXTofAE5zeYJR3htf6dYF7oHvy3uRdeTnWTUEQFVPz7jt6mQk04FY2edSz+YbVvy\nvoYdB+QykogNjzGi7boMdaEI8OcFiDa8dhRduE8ZxKh7QIezbEu57Ei0rbuA+3OlO9+5r5wirdFH\nDQKu6zysY6yDE8mmIsrgY1gH2Be7WnSMncp2YHnlQZz6nIfBMTQv1xgPD0OvpIOb9Jx3eCQ/9KEb\nQ3HjwHmEhHb08GdfeNc9iJpRridpvz/4d/431pvxzV2+UnDx/GP1QfNj0Lqmqt72KYJa2tEb4zbv\nnUsVjfuG0DbA06HEV5GxrbR+NcS25ZEw22T47Gh807I7cr48MnuCbppBl9rp8PrHvaHbZiel40MF\ngIuP571Jzmmmf7ZY1vDUU1fauTtf0M4/ud1++O/9WPvpn/1FeHEP8ULufXGCpS1HKbBl8Umpc1aO\nGTqdAE+HzWUL69wz+F1tHUVsOe6kpAOp8Ah8dM5cN8rdSl+ELcA7oiHBOQ4vT9K//fRdrL9l1sM7\njGdZObA0XJ9v1oX9nuV0RM/erBa7Q3voBU1dEkk/pQ1vpv4P50sOPLWz+quhfx1xXmfzyFWec35x\nwulhZ1Nupf94wOORoClM1bI+cPwdMewHxKPjdKXdjenS3Qqs8oork9CM8VD94Yfap9cdzy7anQMz\npflkf/Ns21UX2sayadeyU7/3xzqblyh50li/9VMC0ZLDn7q/cd7UpeopeCXDZ32HG15kY97WlSfZ\n2PUYaxAZ8BHHPsGXd+oJYD1n2WC93GlTQZXKQ6UcNdsnla0DqWJdPozVk3QdUMhN7eJvH8p2WJsI\n7Re8rHM6BacJHbFyh6eHi/pg8gatb+SBU2sycCLkYyPzywbuzvHB7S47nQ/nqB0Z8GFSHSWdpw9s\nF5Eb9uktvpTAqJ276nTIruAkZbTGDtcdfY4I2PE5wmGhyhHUubFQQsBzPU+vIAysIS27VWClGFpG\nbUWlWxbz3Nl3hQ6vpnts7MCO+rZK49GpEq9qFni5Pdxgrotyas2RFXm5XmrNUQMfPugp3E7Ijl7t\nhOuh10J1aJ029cGuTXUy3D6sA6ojXfaFp+Wx/nUKdWrtzOTDn9JPuAvOdRJtSDoiHsvhujBtv0Yd\nrDIXIX/ffquupKccvjnbqV7E0dI50vnW+XLEozoc7aTe4FhHjn7qIHrj2PHqMFue6qgoR30lwZFG\n8pz2E8dOI051jaCQ9lI36yy0xnV8agSTfJ1SR5e0v7pYn/JVtmnxddh0ZuVh3Hah3cy3fOXIEjNf\nenWSnx2ATlhvO/2oG9tVH50lz/sAWXuc9VTtnabmobPGdYpqFIO0ZehtpDvdHjptu7LB2UZ6G1QT\nL6cTu77C1Uk9+whhH7nq5cCxov59WbG+bb92nN4H9ckXbcE/na5Ob8vq9ascRx0t4wnOLlxjZNDO\nsx8D0x0mXz76LkXua/L81uUl10PiJD513tFrDhelA/WNsdoQneE2U8M6uzSDmsazNNrZ+tdxx8K9\n/VI31o9t1jWLyjIuoQMQ6ldtYMKxTam9z51LvOzYjmHY72XNSNm9Emq3MT7mGTc/ts3DXbhX6OZh\nz93Pn8sQf6QxP1fiCcXr9LRdbEIVT/cbjj5tYoeDZtePn24f5XiV/+5//Bvtu//8d7Q3vPZVOG2X\nsAv1afvRTj63lVtv9oQkfRGtNmUlwMu053dlUbvPiL7+CVxs7zNLB9269D73wNg9Z1B4Lm870oOs\negrITlk8M2uEGd6OjBHQvqFhBE1n/vyj7py+lXVyd7RHP/pw+9//3k+x4eUd7STnUK3ZJ+BZepTN\nWe6VW4WhX/102ijQMUSyQbKtof8x8I7SfnSijrrEZLontV2s222qhuraO9Fq+Y64oN8abecsnw2s\nryJQrnquaS9+3jO1RAR53XGD69QJak2lpE7HugR9IT/whKnjXr/wGNpBUal4wSrS48oXhj6VpzOs\nbMpv2dd4udq69BQDBow82z/yz3VtfkFntT1KivKAiykpF5pjO0dEs1a0s5bnJKdivT67KurS83uW\n6VxIm/Qp3N7KSs2oW9oO6qt7xw2fXp6uRy/ijWjQnrKEPrr0sHNT/z4rZX+yYh8EviQHbam1uCZe\nB+vjIN/DUsqDQbUF7evO6ElQbzdKwPjqXA+/SUFnk/y84Oe85LntB/76f17LuC6wROfJRx5hydNl\nduhfZp3vhcay6/axTzzSPvbAYzxnUTSNznh+PvTzsOIWonK7UjXyVEXEYN6wquqTAYdMB8DCO/VR\nDhph3cQTXzPlb4dkx6ZT4FubhfOhZKG6Y8J0WQ0vog88vIktrnJK5sTHUQh5luNhng2R0Ld6b3pv\nPtcsGDqy7WW+cp1OTAfsw0i9LG/HUZ8qMCaux1vJ6Ytre6Pfb8DIseNAdhrQDm+gtYarygRPKqgc\nHZjrQNTIAc4P7zqUT4+fpyThLqMDJBgx0yHQIbW8klvDmqc7EAVHZ79xh3B0J6+cXB9L6A6srpTJ\nMsODbrCcDHe3agPZuti4Soid63Ne6OeifC+HkMtGOtvAfWuu0ZDCsZMVF0T+UHx+vSzKh930QKii\nkZ50YkqnHDd40MPSAfEmrbNGaC3XuiUV44Gy6cPHdmIOuMpwKFy8hb2lK7nawfbW67jXae/4e7wK\n1PWycLYdLsve2yijSDirdSHb0TOEdh0K2OsZYDlYdmo6016OPpWjTaHV0+mUMgwiti0n9dvbHa1J\nfSmDLxzeS46emKcdd9icUKMj8LSjALPqyD/1IKgOkHZD3au/Yb0EUQ+B1YuJNyvmLpnErdeduoes\nHydYzXPUszt7vb6tH+uTclXdOQXHSxAPO52+t//6v+BzMI/VwbmWB8H8bKPoAR/XXZXjhvPVnUTH\nbnw+UL/ArDysU/dF3zVO+axLH6Twc+BD29UIB7xIYmdgVf9QolM9EuBRzys7CZGQbx0S8dbBrpQR\nedYlEOBcZnNZ5vwOPN+mNiROngHGldPbVA+F5RLuFZwRfpiMESfxw0OVVoY695c4n0Xeu+XUAN9i\nI8cxHLePfOyT7X/6gb/dPvEnvrb9iX/rjzEqz4valQvOwEDeC69DbL06Io4bXHx7m+C+dzOANvfm\nmZ5lOujaz8ONWTRiVSMddqSPcs7MVVb718GxZlCHNXrFdzc9+PUI9631Wvjw83DyVb7qwFJ41sLh\nrF/hHnpis330X723/fRP/mz75Mfvb/dy1IdLXlZ2wOG+89lzFnXO4JyuWKfWBf0NLaWmNp29WaVN\nuZ4NP6ueo0wbEUevundoFZTXn+2jpokXado+cf6julPJLq3gRdOXNo1GQ6MHqfJrP0cMde4wEES2\nYqLagrT/0hYA1VVtgljh2CjF45e2VHaecOe0E/jaADYlHz10RPYvpZTK9Km8gPps8EKesyIez1IV\nQboPWmA/e4m6xyyJ93yem/3eUr/e93TedhXaQaevylR/FaKYjqM1E9VC6mgL6i8Emq3nJ538feqn\nR1N0Uz07CKRwm7o/85TTy9BfkB0gaLRBB5c89zW6L+qyIAf/LKszy9HLMtU79VsDGJDazhyJLVtp\nL2xwxHulhPFHAymw2pD01Jtg/p1m3v7V9z2vHG7bvw8/770LLB84fvqO9omHnmr/9X//t9r959lQ\nV/xgZgFVJs5KFEul9IpUYZSjFm2LkwboUmYiLyqAA0hwddYV7x2CVHWVtaaCA9Dhcgi/3mwq3Rtm\nb2gwEJ9LGaWnOgO0EzSv9CFeKmAEcYJn6OX7YD3IMSZUJcvQsmckRRN6FW2VU9oux5vb/AqKJw1N\nSBWUWBcuOpe2tEwk+C9O12nChzJ53VA9v0vvOoWm23efR9kfpoqptyZFp4x1hynfi4rnJu42I4U+\nqiqh+PL1X3EiriNiQysdZM5Vb9zlpIE/VaojXqWTDVQOk9JFD0QO3jxe0X1iJ3q/IIrOMK6yFCPh\nE440RUd6MvcCL/oveFgKkNVFmWnPxrtTogw0m/JVwnKbNlYjbjQ573+nDMrxpF3YWchYPlUW4qVT\nkU0xUWwcUzk6SXh3OaL3l4pO741eDxUL2/+Lgijp+E3AvMGa12G9nKZtX5ZZu5cziGDblPK9ijW8\n6uUGYD2oK+x6K98robL91dsfna7OWI2IMir9U5wlKB+XG7h5xrI4mujIlqO6ZR807PWBIRFRbQ95\nPgMsR7Uf9Sq56GnbLA34o17GExrvABtUXVX+wMyssgrtbbc7/l2HKjso7i6s+x6Z6nb959s+TmzS\nJR/+V55pG9JcT0a3zeG8qn2RbQhbdLVupuJbbn8GPmdcjkDn4yfcbjl7rj3I2ZY/+EM/wu7k97c/\n8y1/qr388z6bEWOmrVl3lk/e1fmUvKTRTHGKcEP0u2krvjjt4Owc8SsX3OuO6uMZliOzx4sErYsX\nNJ4lOsK0gXLC6Tp0sFb5HeGN2CnZ8rJ9RnjhQNTN5EjBhz7RHnvo0bb1BGdlPvJke/iBh9vjDz7e\nznNUy/FLO40Pc8GHEXnbqnz42dWtMQNylDWg/d7CJlPbcKrU0SU3GhQ6Ir1jyiEwzo9UtyM8ReoO\nVjeg9UBN2dSwAQ6x7w1s4lhhenHPFwl7RcpR9QB9/bMdiQ/nKtfUnms0X0bDVW0CGy7yyO91ut9W\nRBfvRm1iwVYR4MvHZ5LJOjalSt6f8xZI/ap9kO+aaAcnQJl0NoAHWAJHnZImo3RKnmmlaYMyrPkC\n6yrGxAz3oVL0cvVym1UW0mboaDr5xbd4PX2aPBsd2KFYgxZdl/STsnf2RP0d4Ml5q5ZLS/jckKJ0\nFFkdK9gPS++Cdt2vSVd9a9texq6B6RDFBsBoSKU7+nhI9FVmYY6tct7og59g6RZt0H6Vo2Z2mRI9\ndeYcX0y61P6XH/mR9u73v6+tnbqjT49qwCgxNqIR1uOq4BNUxXqDK7gGo6ALBatiJoUnAxyQUSbq\nhXHExKvfDD1eb9vFD6g3HZylLx7iV5zQwvvUofC+DfXGILdeicYK6N9JP+69qihpPQvHq2uuDPDs\nAH1ocZU886sMlrnA5kw/aMz3J/Ekoxwdn4xyHmh0iLzctGAGWlZavM7SR0m/DuggX/GRUaEoPM3t\n+GsEZoIXZRjIsqsEjSNI3X48cotHrzdgk+iuAGyxt+6NaidPPS1HHnQqaVoedlSGpksgwZEage1I\nqqPtx6tSwORrfgkzKFhnUw17wujwwuzIFoxylJboK/uUlYzFVXSFO4EKtxSdbAkdWUIWKpKQrgo/\n5Umt7XON8cCs/3oU2q5mesvvYBm68yitbOtNUS1MoGPppPEX+hIXuoAVBvnqKhk0Fe+yS6cpLcsF\nXsmLvaCpzMLu+k1pjxhZd7qb9uq0o52005fe+57l5lmLovqB9206VqdQnU6OU8ajsXiXPcDrD0ra\nCkSoVZ2OSvX2NN4HXZfFX2irHXCfWrJ6uBqvsnVziWs5xPOflWB+tVbx+Ff5HVhxc72qngnH/MqY\n8gI3HK+qS2VOPM0LbuLBD07yEyY/acMx3vlMWLYJVOAvD3naDmAGg+s55VIQp7o9XNU1fj/7i2/j\nSxTva9/2zd/Izuc3c9gzDjb3vxsB6tgKHHBHsdxdWhZjjaWj9Juru/BhCh8n3E01roHcdBkF51T6\nPNMhqrVSPhtx5GxvRzZpF5cxOCOxO0zlbD15vl3iE3NPPPZEe+yRx9nV+mTb5PcQTtpTDz/edp5g\nzSryzvBJrlWnd1k3eQdT6GuWD8+ppiwpl+3GF3hnXWr2xvugSq/Glh/hKlD1Al7ZBntIw6ihtV7Z\ndH5kcfHXuiobmw0cnoUHrGYsaN9Xme6Vt6O+auFWuZoaLS4Ce9vzCVkdf7GFYmgHUtYF32onJkrP\ngCeNJljhDPkd69q/6tXLhNbyho1dX39ZUwT9FrAKtZvLWjhCRda2K8vaZZlmiRI4UMu18pQYXXym\n2/+YzstL2UtU+i5tUmQS7Ucq5R916i+S8Kg+GsKyP8GUTn456c+QxlZhPV3jtGmf6mrR1cbEVaOQ\njDD6Qlr3Gcb0fipfQwRoLN786rbbt03ShhWnXNVctDERbWakegNAjvDqZFs3VWeVa11qR/O1EWt3\nL3smIV8C4SXMJTVbIG8y2nbh4pX2Az/4I+1tv/5b7RQvZ49fZBZPwV3QQXVHWCovsIXCKqeyVXgV\n6Wb0sFFhpvyFriRMlWcJqrhqziVm1wXKTt5pycnD3gqvMf8y1EQPqG5T1YBnBcWtug7wtZZ05FGR\n6uYNVzyBl/5D6DPJhi/JpBWAxA3HS8lmgwwB1YAKhCTl333CIp7wemMXp6gWWT1dhBOs21W2k45T\nyTqjPmLgIyk2H1kVN+SX3aUv2o7hlJX5lq1fwCuLtDQAfQtQRcE2tlyhWDif1YE6HC9SlweLuoJb\niQB7VtnKaMmaYN3ePVEvBFPnXBD1WvCIACuKXB8iBLalvHn19tY1SOnlM7bD2DWh+f2Sz3SnM7LQ\n20ey4IkevZ12/qknp2gsEE0QHLURsK93V78jVQ544riWzQJo75IqfVEK7LEC1J/ALEuHKr86NrLq\nZWGSW5RVDnWYbKQQxYEb+n3eE0OEOpJa6yKpg9oRzKiOm0TsuJ0y7fxcl9p377qZQHwZW3473KlY\nVQSgVT4LRHZXgCB1mnBflyG20BUuyO+Ky8VOpddFiuy94KJzbdLrxSe30lO2fb7ztpCXDzH26Xt8\nn6rHOu/9vJHXiDvC084SjnjpGO0o5R26HqaMvew5DqDaOvg7HgUAjW/nV6iD2+98fnuYNTF/83/+\n0fbzv/DL7cte/5r25W98XXvh8+6q3cGeg1g2dB0v9qpnKqNZp3DAT51kTSJnBz752MV2+933uN0f\nNXnGcXTLHk7ZVafK2Wl9mZPbNx5+uF3iuKHHH3yoPeX6Gw6Kvsw5jjseCsru0E1o3OjiEgJP7L9j\n5TQjghwqzgYcvCTH6XgZ4ExGXwCopnr39uHL5XPNOqvF4WwDtdnqkJU9bNM0Lp+2fkXBNlCzDZin\nP39tG72j9AWUJ3nRFxQ+ypG2WkS1pyKsdZ0rOL9XHWajsyw9dE46JjLQCmK06e12uoFSV2kTpv0t\n0jKawQTlCl7SY6gW6l2hZbVjoUxCSJYcZdluXENYI9jVFigCMA8n3+IAcZ00n2ldd+rTPhBHofeB\nQGVpbo8c1F/d1aD+q0mXW5FD/pQcbeA/beyVYEqXjQAa9uwefzo0UpZ20a0DOgx5VWLajeXySKsV\nlwZgiy6bugVHtboGvVyVN9lBvRb6DbARbjxXx5WpXLtutl0tUZKqrZrd27kN05eVq1c5BQAn2un5\nlRV3VLM2k7NlXS31v/7YT7Zf+OV3shv4Vs5y46X5JDv1ZW6hFDgqHFjyl4Wqo2lKqUm5alNA8yB2\nlKU7XfIXLqcUQ3pSBN6LlWVBBFpaLzKrMREWXlmh41QaFGlLFTsnDYYQgxpdk3dldpT+l+rUgCXT\nBx6loDH5zOgOSWkADxnbjGSCTJWvLHUTSqIrVXEbkJdwY7bPjlngHg99VWzHL6xCJLPKnQJNdOSF\nl+KqcRApm1V5iRe/jl+C+FOiTJDXNSJfObmAd0mT3chMEYsteJXfWXQqmcpjKsd+O4nuHa3sIprg\nicScIuOP5ei2E9rx5KsN5Rm8hF1ox+0ES+LFl2lH6C197LTPLIKVV5y7rCleHKusE542HsTU/UE6\ntGb1/Mkg1TZDICPjCad4ZXe+dh3aoWoH2uKiLgWcbFD4+3+qTCRjd9OlF42hw3qeFMWvSAcd1Mlk\n6TYlStFuL+GugfM8vpp+peHJP6NtjqrZSXi0hp+Ncoq01kfCtuyS0WSEVFM2LB3UDxz+9XIKjF5C\nll8HcrxHJUGfun+rEHBEZp43Ln/oMqREoB2t9/rCTl2b2E+ppfeS0Lxl14jfbd953qyM0Ms79COt\n8boIqlVM6xB1SyCgSEAZOXOdlesAXSPodP4Ko23neeCv87F1j+X44EcfaB/+6D9uP/N//XxNl76a\nM/I+iy9Q3MO3Mm9js8gpNhj5jNugY3/y4w+2h/lqym+8/R3tFka//PrKUzhgl/iszoVyzh5uFxlB\nO89o2lNPPN7WcODW6HDclOALi6NlR3nDO8Gv1n+tsHOetYqug3Lq0zrY4ZgQz1j0QetUa3/bxv48\nZGwlHinlA8iRZ1ocZdQAtm/rzyztTBoCYTppDNh1F8x+kPzexqrmycVW/J2oirbOGS0xnY8d4DGm\njDcY0di9wsaoW92P6pQwPJQtte0OQD3/0QNg/enLE/brXmgu75E448LGOg/ONWHxBWpZlTylSwLl\n9RKkXvztNgHiyJY2da2iNtGgbkA7j0Pfz0F0trqvCXZkp9dPd+TkuHhJVcAhV1kR1r7Ea1P//2Fe\nVrd1pCL1b9KnB12/ySzVHzz/+c9ng0yfIrUuxvuu2PAn92DSI17iY17ihnnhqpqr9tvtepWGo59R\nL5ho6gtDb8Y8s1j7vsdn1PwdZYPOxgXOrGR09OiJO9qFrbX2w3//H7b/45/+MtP2t7cj64yYb3jC\nBksGVDSNK0oHllCFx0YoXFgum5D3lzeQbascSbOB1Y1GgyqP23TdYlL48PEG7fI1fJdB1kSbltEb\nKTS04nIzqjWL1A3QG13dtQu9hLkWoxYJctO5+UFdJPVXehpO4ozIcfFXXMvoc5LAMhdy4UjV4Zbb\nt0CPSaj8yhLX246waAu9Kk9+fc2UDxQujGU/54NLnbttIbd3MtvpR4hqfdwUV5UqBIG6KbiHxuWj\nXaeHBhnGSw/uuHrwQFNlA6/WVpFZtpG2eMsF25ZXq427LjLxjb6md7Xu8GBy/RKIkNk2xOzJKlPh\nCenlqlEN+Fc5ZE3E9rFoC7JZ8AZhoVNx4I+8tB7lMhzzC723KcGpN53xenNHlvLLRpOMwgHXSxr1\nKdoqSNdbsJd20inMVXYUWZh2rri6EbFSvBmE1WVN1iOPlG3Zf15WPnn8bE+9fYiyICwsZY16C+zt\npXNJORZhpyp968Wko0FjnXYbKEKe1UTMRwePzKlNL8RZ2aYXVyNp1om4TpXW7lzitctbeJXHupeX\nIeUpOZZRWcoBVuYw3WnsoKn6pZelr36bP9otZRXOHQFD/iNLe1VcSQhShvK8qHVg1ke3lTz8VRuc\nwuvZtAhnf6JHeBo+nWeo9OOVtHp4JawXyP5gqPJUOasObDtUC4Mmfo3F9WPrHGO0hRPtETcuFfEM\nyFUOxGDjb7vw6Pn2K7/4q+23fvnt7RTr4O7kkO177rirPf/uu9mVyadyHn4M5+yTNVK2wfqZOzhC\n5NI73tue4iPVHrOxykicG5E8LsNjhe6iwko+dbK2whScdmRO0brQIfCrNn1TiZuVaE+brImzzMja\ncS2eFU6VeKTIUQ5kd1NOt4H1ZEuifTDN6Q5Y1Adiu4deoZpO+cZNUPcFJl/n3eM+ZO9zrrdJQtDS\nXiS0udguJLRTdVf8Jk7bBqOAJ227vbkUvVJEBVyileXN0qXCAn7eF2Mdpm0J8ydO2ofkh14yx8ba\nRhpETo+PrqsaaEbLUCrWs8VyA69G35X0/nMK3M9HeuSS66ZqLaK8pcfLdkSa6iBdJSJyg0tb8aNm\nFP+HelkEnwvWn0VyqYBFKbX4UzanERSKFUf8Obyo5CW097NQmoURxrqDTdne0Gv/XpTb/jXWe3BG\nWF+2pIjSAsJut94Xd157jES77tS6c3Xv7tEzLGU73R5hs8GP/vg/bD/zC7/SVjlvT0dugyUJHpl0\nhRepxfRoGldC1VOJsUBjvKuvmWg0qqbhqkVJKBjFFmHnUyBrfGooBjZ+O2tRNWaPVwaQzoaMYrdv\nNrG75LIJFVMcJiejxyfYRJsHu/g+AKbcCuVUMioFNTTV4ahdVX6HqWspWtKJc/NW5VAQ13HFdj2U\nZS+3YV1djNK6DmUH71DLWVY0p8qqPl7yMs+0timPvfDNVK5wG23H7zSi0xhtlyXTh6A5XMWq61VJ\n+RrpiJVvsiNO4cBbtaJrypdyh6aXrz/oLJVPQdnXBYOUqfMCaqSCXhZTvS3IUYUre/ozJqZ4QNqn\n4rFVrzflKaNnHSz7vu4Te3CrviaFw9rcKpehcqb8iarb74CuUE66jPprD+ulOh5CH7i13ohK1AyS\nVHWXysVgENGNOLd7dAm89J+oih/xsnU4kZBT6CosxF5Cp4F017qTRgfglKhPRrQrNHS1o+ttDDw6\n3dqcYnuTcwpCl1vtlSZuG+116V/tByfwDugV/YZQtMIF5pqn0hWb9fauvlyyItDJsTvVtqVHZXUa\n6eb2SbpYaJOpTkf7mTe/kh+e5htPOqHwZTJCH7oRZ4TVdBd8jzKa1S/LqyF97jA9yLdyT/DZMe/g\nFb9BSpbrzo6DvsZI1iqdQh0uy3Nxbe1UnVV2TOfqAc6D+vij7eN7LGyG4wm+13mOA26fw48zIhg9\nYz0bxwvcxeG3J2qzQR+d2aFdbLJrdJuHCdsGyokrD9myw4cmQVvgu8E4eQxroCOKoI871D1kXW9S\n25TLM01T1afybEsyQM/+UknCdXjWSdWtayh726t67o2pOm75aRPxvOJO1XObrN7abGe9TYjt5Su9\nuQo+Stu+yBdqLjOtfOql9/D5RaaDyXIUTuen0LSyJMIYnVAsLBd1Lv9cqf+CTXoHFpylocrJhrBe\n2uVfv6ph5FF3KFUvoLVLljVa2Okqp/4fYTF7XyvtSCe1wyjqww98jNGbJ1gndZ5KgbWFwnYOrlgA\nXxK74SJYrXTmdJW9AjcUFfm9Qip96J9940AE7RLbTMbbz5vwtNPcVklXHU54XXV4o4+jp9UCSxQ6\nkrL/9gXOb3Qf5zNlL3rR83micfkFDkd8eeNZbBQ5tCD7GQvZEyg6mUzdB2baavTqRdd+PvRJqzJl\ncHZihy3Me7vcgawbtVjHOJ7lox//ZPuxf/CT7Z/+s19qO0fW22lGTK9wvqd34OXtC3LoTtv8TaG4\nm41E87z0SI0ffGNQNY3EFS3Vr4MrrIIUrfaVFzfmhLtALREU1IdtoYSZ3PtlmHiE9TS4RCpuyRHu\nvx6rZM8cdSJ3SGIQsIuNVb8fLyTh8K2bXKK6eqRGDswz6YOEeOUYerN3pgQT/qRUb/ddx9KXmqyO\nCbrCLbxOozolHyFWhXFp/FsjPjCzIQjLVfjWHbiid7zOWhzzC4e4DVc8cYpNmCz47fM1y5SjTTVC\nN7WJ4kW8rqmsyhUuRZ967tz3p6F73oReso3vjzAqA5wybmd97d+Dumm70oXwsDYtzrxN56a7lv9y\niDJ62ab8UhxdDRcqLSIDE1um9rM9oQehVq/6g6fvz33E0QfOZM+RetI99+IBHQa8RKNBtzRypwzL\nW3HrZ6E7mRW33rzPe715P+qUKavsJC1x7wfxlJG3Vdu1+GlLsatiuq4TT+l05BXJr3QhnF+Vxx9D\n768ySe4z21vp36nkoV1FtsnYpr1qwTM3TmwVncwzPm8LB59vYh1+SR+7HNbelskYdVjGPTwtjFVi\nm/Dm175GV3FuPN5Cn+goZ7L5ZQAPlfXAYvaetZMgroO/Rl2cAPcEpjjBbjS/t+mXANZYt8UAF4fR\ngg+tNtrdoE3TV++ueMiy5wuynm2L0NE7/lmv5XTh4OzqkFEPNU1pS7CpwquOMIKvHzLvlWYbsa35\njy4TJjXKZtXAr/jCr47vAVbVSRnk5cuMPoZ3jOhy6LGOYFqxppzO7LF+fxmXxhurjp8SCUPWMxm+\n1RY0bCHRFvE0txhhvPzgw/iaLys7eBzNHrqtOjsBeRVRm5Po9Sdxbz/zNmNbECZdySUQdqN6L30U\nhG3Use4Q0trBEUGVmErW2zoEK9TFEabZjrj2TwaTvTfZ5X2CSv6at7wRJxo8z9qk4/c73+WsaBuW\nNtxQJ8vwDK5uHfXtZi5bjHxmGRRXU1UbCO2Ifk089FOZ9eDTRsq5hcD1n7s4s2d4ETnLN5IvX7nY\nzriRivMxlVGmtk6JV5+mEjd5Vf1MfV5smHofWVgmLVAybBcAHI+2sH6q8wgfDPDyiLANXs7+4P4H\n0fdM+9Zv+WZ2MfsFJV+I2QzE2lA1tow1PRqhhtWgyU7ccIwrYP/q5q2//KG9QDjljqGGKa17wyrT\n8GeBQqTni9cL2Ll0jOAJ6/GSWCiF79Mcg5jZnSV5iGkRO++SOTGqt4UFL/JLFzJFSrzy4VKF6pz2\n3zJE1PiRQnwityDmelVM5tMljioUqOw65ZFhOXouYTdGp6o40dhQLHHTwGTYlTZSl6BqwJW3H1+Q\nhKehfAe6KVocFvrsA4lZ5q6jbcW24VXtZuA3ihh1H+O9HOq3X2TpirZ4K83cZZdyi/LazEGv0o90\ncYl+hIe36WvZzSEps/BFvCt9sDALy4ZD13eyWOWW2wNt16/jTRa+hjryRrunHJEwhrFOl6ctpyv2\nKZ2BJTS7kNCHNllv9KTL6S80EuCKUm/dxJQRB966rUzaZ5Wh5Ewsi558CTqH+puU4bIrt4X3jlc9\nXHusdOn8elRwaef9VDiK22+jo60SNxzjE9nTCg6rj5HvGL8Rc3G9ynHBS9vyGU/P7SPbqU+dseMM\nl9zKouWTdFansekpOvVT4PDtE7oEHvR20ThWrjvzg3/rfjLU0RlG347iPPXPQPWwdhPylRMP5d3h\nM1WeM7lG57aJM7PBGYqs9mI3Il0Nz9hjHMl+m2se4blVu9KxMOr2+unPknLoegnAsm7qdQRfENwa\n7rBOCoEy4hxRydqwO91kmCchZZevU6Ws2JZT/5FXGwNsb/4ose1Ce/m5NPHVxByfMf7z6s/yns6O\nbcYAa4rYVd9PfPL+9iJCvwHdT6HvjpZ8HXDgy2GlgiJtl77sp15LwPRnAUOnei5KlgKPiPN4ym2Z\nS38ituVKI7yM7BMDuShRaznVzR/fS62TFFjXeOx4P0Pzvvte1j73FV9Ih3+cQUx3xrofVl10V7oE\nmC7KEL37KJU4z/yKAxOeN1X+JeJybxmG5wE0y05ZrI1e171cvhx4pqvnEkJZ05B+OWd3m0/2UXlS\nLHgTr9Ji6JtyrsFPueThteA1peWvkBqMqbq30cCffGk9Yiovu6Y9gPwEZwW+5c1val/x5W/ibEO+\nH8yI5y7nHvYzZsXRgWPHdoQrw8t0rjFvjCe/tJJGAH/2KfcxqkjynAojVvAXWMkrvInZInNZZJDU\n72rYBqbExCdZA6S4JXtkPcKM97rorLS3PBc4PRK0BXiQs4+hkIOpnoTpQvchvhAycpUF6djpAE7w\nEirPRumt3QsRKyxMJEquA3wDNAy/hPO83vjSaBft5oCQLv+A7gfkwbv/78wVlTIu8JbJjy6H5C1o\nJzzSC0zio86Jh+OnFiJlX9ASVotM8oz3h0eghh06sFnGZSjDkuwFKHwXgES0zw2ujgJe6mPC39ev\n86i/c35Tuy5wxSW2LYAtsHh2+ont4cGEVh3VgLWo0WVshKXpITP3geSLdjrFU//Ln29S3Pia0366\nZNg6dGS6uSiQo1v8031h7JMjAZwCdbQNTBw2R8M2QTuOI8dKM2yAs4S9HZlzalOH74jTlDg59tt+\n3SRno12h0weL4z4cq+NrKjhJj/Oh7R32E1yBj+sYz3Ju1FUO+1xljdoqH62fzihFE0cyqRFk+C3M\nqnfi1jcuGWlGFDx0Fx2762kTKCpwnEJF1zhXRWz1dd10v3RTdJLkR9L/kEwRgj2mWk3SJVaeidqh\nh4yFkz/ZrmZzkCFXx8KussPSF/4VDgl+gE0X97EGzEN+7Si1seqUswl/RzkV0DczWDvQI2Osb7UM\nTHQZFFlVooAbXJMMxCCP6X4VoP56eeBl2bQIlX2Vjt4NHdqqnDGckh02ELmBqA41gAAAQABJREFU\nY4Op8xU2lDhCs+s3Ymsjgk7DZD/0qZG8ZepUGZdlPA3YMh4WalG+br9KT2xjt0oGdxQ58Ayuoai4\n9RW6XMhNOq5ht6495N8RRe20dust7cqF87VpJqOjCz7SL6nLUfw8nnpPuIze6lOzms1iZE6n0MuZ\nDI3hi3HtHMVhcwR0m9FAHWzr11UGHuWjo1aHp1N5Wxu+dFlofje6luFFWWkP4xH4PBxpI3uOM4cn\nfSC0TaO+tPI03g11AOtAInJG4DLY08kfcRMPz4TC98uN4lWh9edAfMQPr8PC4CYM3jwd+BiOOGN8\nxNnX92AdH4Y/0hqf45mew+Y0oZvjHabLSB+aeTjSBn+OM4cnPQ+l8yfPhHOcMR05N4I9nfwRN/HI\nSSh8WbmDn3DED+ywMLgJg3cgfU277lgjzhgPD8NR3xFnjI/48/gcz/QcNqcxvQzvMF1G+vCehyNt\n8Oc4c3jSCX2O1VpcHCyKUc8IZ8k86mIL58tPAV6kY1+nx8KH4g3c0TC+YMAZXWtMtdQoEp2Ya908\nhsUJlqN2ZOAY90BcDhmAjtG740y5chTHqZK13S4d2WknX/aC9oqveXM785x7+GrBJ9sH3vbOtvnx\nR+hE6CShcQCsL4CHWSnIPeGUETr18zdxyHSkcCqdljvKyKB4/qOiKZvORo+X/YlzR5WjBSL/cVLQ\ndTHd3nPLJrUrT5y66PjAtYzaRyfLrrF/qBtHBVlXccrKySLfSx1qcxcjHh4/sk6BHv2DB9ql+x9o\nt9x6LxgUkJFGfE2cG1NqBqz/l8Wn9bL8sO7FJqi4DhqRvksVGHaty47eESSm/vyGaB9hQksdARy2\nVXbonuJoFx2WPZw43Hb4akecZ1DkqU9dbRS7lZNbEmNPYAvbdpFP/2/nUXW9jLeiKN+1YigzOmUk\nv+QWrvj8pjjFqXKU3SpB+SsfG1nfth3K65dA1qlj135uXbzAuYOMRNOAcy/KXzvoVAmLMyf8U71K\nN42NYgZJ1/T0UBhfoHbYNOIosYeVX+V3BOduDX38pvjuFp87dKreT2Ey4l0jbSoXD9ACpEBjPIWp\nip6VJsrMwItkaObDm3O6yAu+DIJjOMZH3BE/8RF3ocgUCU7gI+4YH/HGeOgMxc810gobhz+DYzjH\nEyb/wOeyDpMh3kgnH6/wWUaXfPPUbxl9MZn+hJfJuV6hDf6Ia3wuY+TxbHvr9R2bJYwt57YOXLxc\noQns2fZ2sE1rp9jx38T21p/rlIkRKm6mcnD8KLufk9umH+YJT/nopEXEudHB8fDd43gabkZYdb2a\nHQHr2ITrhNT5e3A6wgiTn4ByR6iL2dd5rV/DCTxWB+wy5XrXbe3PfMc3txd/5RuQvddewgLu+974\nJe1tf/fH2wd+6Z016nacb4nWhU5+d1bnptZD0rM6QlZOpGrq5dEzbeFolFMHzMXudqqsfqty6UQg\nhgxCOzmiOm0g0YmTWaFp8XsnWB14ZfEHWKdTC/mbdizNZ5xr24yHHh7Yw2lAd7XWqAy2+8RHP9Ie\n+N2PtDOf/WLWhlMCnB69U9fFHYW+vuCBHjVqYn0Qz71XQqc/gSGtHNAKwc/zsvKncpXmxuVl/SFS\n30ycmlpD51UAZFWGeGhAepsRJNcWulINZ8zOnn+eQ1qffaTMOmjC/HavCc0poxqtg59fvyibqKfs\nKzSDiFcHVJjogHgQ57AMCLuMSJDMuPU0CaJMVn6f4hZsTXpFak91/OR0fjUlLgngPo1NOe3X4OFY\nqS8X0mGmsnHxFBec+tau2cOVuhtAi2jyUo/zcMyXyPxchWtiKps5VYKqTyzEAddozjIEX3S4TxjZ\ndikD87m1DrTn8V1v6nkx0ibTCEmojMB7I+odcfLHMApLM16hEyZ+8MJ3jms6OMlLepRnXtLzB/LI\nOzjhZRh+y2DBTxicZTTJSxgaQ3+hSShe8hIP7Zge8Y2H74gTWHATht88HfyRx4gzxsNjxDUenIQj\n3hw38ua4pv2ZH5yE4WE6eMFNXkLhy67QzfFGeaELj4RzePSah8+2t/22MLdZ0rGZ6cRHO4/x0Iy4\nxoOTcMSb4y6TER7Smx+chOFhWpz8kj+Gh+kQmvAKnrShN88reQk7dB8efMN6oPNH3Iy0VIu39+aJ\n7zdre0fldzSn8un50Dlv4eRdoFNyBKk7ZpaNDtrOqnoL8FjrVk5dOXR2bvxYz3aWHaQXnniofdFL\n7ml3fOmrG8dF9aOcWMV2630van/sr/4HbfvUavu5H/1H7fbVM3R8OIkcN+J3c9fwONZ1JOlo+M4C\nI3mM6KGTq6kcAbvq1kd0cuQMNwOHEoeidOodeDmd5OsK1ggc86/1WSnLh8rCVN+CTzFTxa8bDO7g\nOfqnY5X7FFC/IC576vTQi2vXp1gbuMVavosMNz7Ah1F/8Wd/rn0ujurVE8wL47Rt6xTZwXOW1hof\nYN/hfLraTQ3HhTNZRo2QSdQEK33FTTqhaMSTr15mVduwvHpvmkXbUZ5ytEiLf5Xpvqs41/UdWQqH\nepSIr7LSyXs48IoL19l5eARHWwKdYXXV2ZNfAbS/I078U4s4PHUGoDilDOjqUAbseIt06TblIaPa\nbJVBDTtJ6dqTBVMXFOy8O2T4q1NNlg6r5a/UkH0gqkJiFzIstQ9tQi91Ko/6C9c4ToHrEPqN610O\nBPfq9hYfTupUEaRa7utcyb9RKItRxiJeeiEPmZPUbg9eCtT9SB1ojc6k3ZFf5/qYw/1aX7HAQAun\nbdmoSwSpoA3H9AhTsSjfG1YvcHAMvZJWRm4k6fwFZ8QbYZEt7TiSIE7So2z5jLyN54oeKUvylskI\n7+gylyHPUQfToTH0Ck1CYTfSTZ6RmbiLFnONMsyXd2DBUYZ5KZ/wwBI3lDbpyCzA9EdYZBsff+Gd\ncM4n8FGGOOGhztEpuOYZ9yddcAOLDEPz53Tie4WPMkb54gdnxBthkS1t7Bq6pEfZ8jE/OIa5okfK\nkjxDYaOM8I4ucxnyNC94phM39ApNQmHK8hddhHklbegvMOOpc2GjDPOid2jEWcY/sOQbSpv0SF9A\n/oyyjY8/+YU2+DeSIV54WI7gh5d5xv2pW3ADG+WNNg2dYWRIo4yxjMKCM+KNsMiWdm7rcsqmzoma\nrxgs9Vno3HRu1B/O9k0Cpx51C+DONELEN+ULD2tC1OtKBq5t8xw0P8a+inNy1SG37Uvtwual9vwv\n+Jz2J//id7YTt5xqe3h9StKH2MS5WX3e2fYN3/Od7cErl9pv/N/v5PiEvq5qlcXvjtwct8PFQ3Nq\n5yjOxaqja/z6Wjcdtq6rzlV34VxB1x01y+OoYS8p6lAwHVKtbOnMsaknjiXocIGRR6QMo0+rLKlw\nzSrcpy9E8IXIR7lu20DOFlB2ePzWr/16+5dv+9X2qn/n63HQzrdNck+e4SgUcLa2+AyXIyAIcZRN\nudbf/BphyQ3MsOK2b+MQ2x6qTVg2bGf/3R0XOXvPWM/WA5c7uTniw00j5mkPM5x+rh2mVNQRzvVa\nxWFzn4haSukhx9reeuxWtm0Wx8qX9X7aREH4o4B+b1RRy7lApwrFIS7TyQ6WyUvyAywCML8yCu3g\nH+Bdpc7jYOYsJQ/kUgqq3r/Q8qffFaYot3q5ANQXCYJdnLcawdKZs6FgkJIEYdVLGRPEQ67UodmJ\nLwtzfxuO+Wpl2tDnxOKZRLymTMs2xPknTlXu1DYsyxFGTH3RWH3Oiz7r+8w/7IoCER68hUAtNV3i\nBG8MA08oevKX0S7LD170SXoMo5OwZXh58CZvrsPIKzzkOY+bllY+KVN4FvL0Z+QfvJFuxJU+PIKb\n/Hk68OAnLZ7XHD/w4BlKO+IlPoYjfniMdIGJN8ZDN+IGtgwveYYp0xwvdZt8ccUJ3hgGnjC4hrnG\nPGGhT37CUV5gCaOT6WV4z7a3WOrZ9va029t0f2pBR42KvtpZv8frNY7Oyg6rzt/iMVy7Iwl3eMDb\nMevO6Mvsd6ruROO5Rb5fUKgxMKY1t3AELnE22bFTa2391LH23d/9H7VXv+bVyKSz3mJBu46C3zdV\nGWBr525tn/3yl7cPPPBA++hTT7RdFnhv3XKmbXMo7xUWv2+cONE2T3Ig6Al/6+0yH6LfJNxaX2ub\n/DYMWXhdP6Z7Nnkp3ea3yaLrLZ63Op1b6LVDp2oXhl9Zfa9FsTcr/8yEdsFBw4vBRjheeCl8JIsy\noil8HNnT2dWBg6rbAXit7XJ6FpnydqH3VeJ7OLIbjKg99uQT7fWvf207xndbj55gJ6YbPsRhJMuw\nOnw4elkvuffHeOXxZ3TM5vniHLzUEQgF9J9l8jriCKoXo35XWaPmlJmjZZas6gQ7OIV71e/E4qz5\nebA+2sYwafcAp/bT2wuoXNi22gJsCcujU4Txgmv7jucIVh1MDrxgpgsX9oVCWrqC9Tzjypk07+US\nuOzqpIXjSgCTXfZ+WPImWmq92kXpGRjy3QWtHqVLhcrXSnI0X2vZZihuxTpx1YtR7HgzV+pxHqYd\nJBx5iRv+FSdzEWpPnPWqD/Qsp3qhimXq5agvhVCG1btf2J02GSyYHBJXiTgxUUgalfQ30icdvimI\n9GPenE/whV8vnvyRPvHoKH1kJRzpwt8w8DEefgnn+KFJONImHtrgGMYWgc11S354RG7wxzDxEVfY\nnGfyg2/oNcI7ZP9v9Eidhadp6ZIOn5HXYfFwNz84h8XFTV2OdMqdy046vEyHfsyb8wm+8OvFkz/S\nJx4dpY+shCNd+BsGPsbDL+EcPzQJR9rEQxscw9gisLluyQ+PyA3+GCY+4gqb80x+8A29RniH7P+N\nHs+2t94+sJaGndnMPNqZWbY3fh6ZoaNSDo6jZsLtpOpft285akTdFVkjENWBdTyo+cwon8dhK+pf\n/K5vb1/5ptfxdYTH2jHOkXIUTqfNXnSdY0Ds8S57Bti5O9u5F72o/frvvKc9yndpd0+dbpc5RHfn\nFKNznIu1De4Oztv2qeNt+/RJwhNtF0du+yTnZOHMbbJQfoNPoW2xuPoyC+evMIpwienQS4QXkXkR\nr3QHJ86ddDp0eytrOFVOFxniQOl04Zi6G6JG4BivE74F/S6jjDqurv2z83ewpaaa6BzdjuAInF9j\ncOqTApYPtuOULqNoHk58mXO8ztx+a3vJa17FwaYXfQjVuqJjnKXl9Gg5B0O92G7TZmHf66tXUze+\nf017jXDqabwfrK/Oi2eXdYgzWo4ZetcmBEcsGe3bdfRyctpWmNaWbgfnzM+Yra2yAQE9V7ATFT21\nBVwUG8wku0am4CnAp2TpYH7ihlO88qe0OvXjf7re0d3QX3gVXJj/CKUrjonPQ6VNsHrxIB66hOYf\niMOxaKaW3vMjSn5qQ9WVVoTyp57qZafyeh9WPGXlb5Jxo1C+Czr53iA94hrPcy5yej3pRqp3/Udv\nWu7E25KUe05ax84R6pu+RmHGk5ZBlBlD4cGJgqbnOOJ5JW+ebzpX4sE19JebJrTCvJIO3ZxP0sGd\npzNaMvIXZ5SZ+Eg7j0cP+XhFH2mTN9fZdPLn/EYeh/EKfBntMtgoax43HZljfBmfTxdslGM86VGP\n2C5lDY7pMU94cKJfYCNeeAcnNME19De2h8BCG9zwCHxML4Mp69n21u8tbRgbjfG5DT+d6VGO8aRH\nPeZtJTjCxzzhpscrsBEvvIMXmsIBCNdk4Vz0x7f9kBN/NVxQL8H9/K2aUtMZc+oHjFCqBqXBQbGj\n8qW5fDD6NbsC1p7hnO1tnm9f+5a3tLe+4UvaxlMP4eSAzgSlHo+fpHK0zg/Ab3PkgJ/M2mTk7ZVf\n8ur2bd/x59rf+Js/5Dfl2xGctC26FAe/XBvlSNYq+1ShxBli1ZWOhn1RqUc+I1hg1xqtFaZWj+gc\nEnoP+DmqS3wTdZ1z03RQnJJ0Z2xNoZLvmXHuEhXmJgF57jIitePoILDaeIEpKHJ9emtbffwhTyfP\nkSrPXnP3pd/alf8aX4u47eSJ9skHH21v+5mfb6/+qje2Yy++p3CdYNu+tFE7M8uxwMJj3auzl7zL\n1sT6hbyhHVh0q6Jcx0p0QNHYhjpR0XQHiRx5s1P0Ksd4uI7N0cU6jw5kdbEtVL+CvY+wS9Jdo7K2\nPTgtWgkNlB95StJPqxNglFmC6w/xfcdidYpbVqxMMyBP+5bTJ91EUzyGuGlElq+4KKfA618L/Bmr\na6hKrmUCsf4rrDd9u1iql4t2A8NygMgsVOFEnG7u140ETWg3EaSe56GkufcNE+8sTaMSN0a1KxNc\n1moVjJi7oqts1gDlWb3rBfd+n0wKsQxhmQ4WZEwbX4YvPHhznDFvmZzwG/NKodmf8B3lBCUybsRr\nzA+tYeCjjMCCN6YTTyjOSGs6eQmjd9LiHHalPMkfeUuf9GG8Ag9u8OVn3Cs4yQvcPOP5JW3oFXjo\n5zLG/OB0yv43MPG8Evbcg2nzluFHRuhHnDEv+WMY3BFmfH5FtqFXwsSTX5mz/MBGWYEZBh4eCZfh\njPihExYaw2U4c3ghHfJH3OCLYlxZ83CUP7IKPDShCy/D4CTPMJfx/IQtywv9XEbohAcnfA0DC8+E\nwRnTxpfhCw/eHGfMk+eIZzr8xjzj8yt8E8Kp/utcOHpWzoZP7wKTskNi6Mxnuh3qUaZY+kyaDtvk\nJFUe9VjCpJXYtD9wcMY2Lz7RXvfKF7c//+3fwmdzyN653Nb5aOkqn1hwddgRFuXXrlWcmvUzt9UO\nN79B+tRT59t9n3cf4cX27t9+Hx0PZ4I54gVP19Lt0rGjEiNmTHmCv0H+Bo7FRo2IMSrGwvAtR68Y\ndds6zueFdPoyOsd3FndOkz7D75bTbfMWpl2Zur3E2rkrJ9aYhmV6lRP/L3PeyWV2el5aVwa6I7N2\nqOKI1pRflXeyNEV3apT/hVfTomVXvhjB1KIOoHbaZPfeQ48/2jbYofnqN72BTyG5SxObuv5PB6+8\nAnDljX2sX391Lhgg46KUaP6QXFxl98JRT34ikS+O3KruBfBLfBcH2UOPPWtMX6mcWCxd5ejkFAzn\neM3NB4ywgWRJykEnZvePhl2ADIyrI+1nf+2cYOV6Qetf0urgj+IQmiesh+FToSD5zq4FqpFrs2fY\nXcWbweuEE8MK/KNuHWZg+1ZsbTTgxhDmqHKfJtVGwArjGjWeEaDaAMYxnF+BJax8DTnh62b3pHqi\nGU6cbLT7aDjXHS6O/LBibnSlAouNjJcot4yPsOAelj/Cgz/Coltgy8LF284kLzJDG70NfTOpNzrv\nrulaxvOwPOHBH+PLYCMPZS7Ta8Qx319G5ca8ZbIiUxrjCQOf04e/+cEZ6cQXZ9kVmuSHPrhjOvGE\nwTFcBhvzgxO86LwMZxnsMP3mfJMWP7JGfoEtC59tb8+2t7H9JD62n8DSfpK+UXurvsRbkJ8OW79I\neM8K9jlil0PCUa0JkcEFOliAezzXegdmXn9rr04cx2QahqBDYKrzylPt+XedbN/17d/U7rmdEbTL\nT/FReY4fYETn6i4Oyhrr05j+PLrOQa1yYgPCmlOKdH5ncJTWcCi/9mve2t7zrz7Y3veBjzF0w3Sm\nx4ngkO2wPszpWJ9jOhhdC8bWHAZBje4/kIH+/VlHefQ6WYtmGVc5umRlD2cKRKe16ueI3DTy5mic\nU7cejSDPdY5LOLnBZolyvuAzHarq6J0jc9Lx0KdTZERPHH6e4XXE0TxCHRgW+LVTJ84wYrjV/vGP\n/WR7zr33tq/5d/80pUVH/KE9zr87wgHEEMDe733Sj9CRZiG5teL6L6dgq8QWxDojtJrIBYDlKbaw\nbhR4F7zbpZwL7KC75QG6nuK/xzc0HbFcYRStf14celhZpx4ufNXvu6LgCk6lTrN5XqjmXxAJ1IEM\n3ZVKopD/OspEoEJWlnmFK7Z5wsSEd3HQISrKwi0UckuweFOWoKWwyhj/KAMijSRt1BlRrokHcaAb\nBU/ZpQ78SgJGrxBgHLxr2D5DQO7xhHM2c7jqlUOpvbmPpsZQZnaDTdUB0G7Ofr+LU05bmKVjTHou\ndN4R2mkF1zD5oUte+HpjjvERb8QNfBk/YZGVMHjLeAQnefIeYSNteAc3aWkSX4Y/5i+jjbzwEH+O\nF74jjnF/cd5CkzC4hrlCI07wkjdPCxcWmuAlTJ5pcerhO+CbP+dpenRm5vnyCixykzZvvMz3Sv6z\n7a23fW2ibbRLbJN07DW37Rwvth3pQvNse/NxyuPxD/H5VlMlpQZOmP1o3XcVqboHgIa9Y627pHCJ\nAceVYvemnTvbBzlU1u6gpolYF6bf4qG7W1uXcEJYy7a60b7tW/50+/zPfi7Toqxjo+Pfw1FY4esH\nrgNb4UiMtRU+aM3BuzVKVR25O0Y58JMRsitXnmwvefHz2jd94ze0/+av/6224fQmzhJzkqwRY4KV\noylcK7YDrKb7Sj+UlQ9xu366hepILQfg3kmptPLJ2ca56sc6uMZuv80DrC66t1sOCwbvJM7mGvVm\nns6aBT7CerUV5buGTSeP31XwWAjWTlGu4/w2yFu9yhEZ4LveDWhb2dxp/+Dv/ES7+7kvaV/4lV/a\nLvGh8TVG+7Y47PT4ydPIxpI4TJy/gpZVAThMlkg3x/LZxWq3XjDUQ61epuqIUY+ig2fJSaCDzrgO\nnPzqiwd+domp0aOrTIlWxx6+2lD5jvwRHj1F6IfH4a9Anb4uEJzJZoSTZigCuVLUqeSjgg6zDaQy\nVVpsLvh4/tsKHzdf4UgRi6pDWRjQOvJXz5MCFEOJpLRwIJvhlbCnDv5VEvmiqIOOzE1dRQDm1IiK\nBl7KrR+BKtlWtAuwcpRsH+Z/Gq+SAc+yxYxvv3/RQfmRS12X826NC7Pd0p7AgAfl0bbakXqvzUhY\n3bZyYPdomCWM3KQN/alUFAxM3OQlDMz0PJ60YQo58kx++I88kjcPwyfw6LEsHPmNcWlzjXQjzhgX\nN3qHzjA4gYmTzjD483BOE/xl/EaYdKFNKG+vyBBuPPB5euQXmsDC07RX0uEV/PA0DE6nWP43OAmD\nlbShP/mPMsb8wA29QjOPJ20Y3NCO/EI/wkbaER4+yTcvPOfhSDfGpc010o84Y1zc8A6dYXACEyft\nJ/jzcE4T/GX8Rph0oU0ob6/IEG488Hl65BeawMLTtFfS4RX88DQMTqdY/jc4CYOVtKE/+Y8yxvzA\nDb1CM48nbRjc0I78Qj/CpLHzKhH2OGO6p/blmu3j1Y5RvXnWu5LMA3n9nFFNrVY2U5Y4Fx7nsgpP\nJiXBv9S+9PVf1P69b/l6voyAQ8Ki9r6OqvPTIVnhQ/O0JDo8R296p2GH7PED25t+75JRN2Q99wUv\nbo89+nh77/s/0E6zi/Q8p8+fZnPCtuvWGH2rFzlUTDmRwOWojR2Tbgq2N1X2r1h/SaQs1aE5eqR3\nh/66Czvo4qJsN2DghtVImNOwmziLNQWLfltscNhic8M2mx12PUuOXay77GLdYzPELlO+e9MGic3T\nx9tlfldOudOVKduTx9gkgXPCh7vvf/LJ9jsf+t123xe9qt15z/PqwF2n2FC49N9mtO0YeFvssi1f\nSdtbGvTCxQSGU0fd7FExOlRWkOUVZsw1dzVlV6N/OJc4aO4O3YPfHrzxlsFzGpuiw9Mu3Ut/zA7e\nw1ZX3Xjg1Gg5JTgCZOpIlRMAhZ8qs5EorzvvCCWuzVF0EVof1rUtCGOjr6N4+7igAnbMkfIT2g7K\n8n5twg0R9bPsicu+y3QE1abcNVkWWufiTz9Sh+PO6UOrbOL1A4dyV3szDe99KuMqY9k+fVfJgt2+\nDtEFG9e908OFRPSqto0qVmdVU5W7txWy4WWGrn8vgW2e3aP3ft+CifkT8xEWZcaHzzw/dME1f4yP\n+OLOO4jgRsaIn7g4kTOGyU848ko8oThjPDQJzRt5J538ZWFw5uGIa954mQ5spAtsxDU+4oz6zfFM\nJ3/kZXxMj3TzvOCFj+H8Sl5wzQ+fZfhz+qTDJ2nD8AyfhMExP3TBHemCl1DcZ9vbfv0fZr/YK7aM\njcdwxEk8+fO6GNPBDe8xL/HwMZxfyQvuyGcZ/pw+6fBJOnwMwydhcJQZurn84IyhuJ+u9lZP85E5\n8eiw0MkHvQ948SokjQ57dJ64beXcuBbGk/Fd1OzU59qR7XbrySPtO/7sN7UXPucso0UXgev+qDtM\ncICOHGUaEIerH51RgjVS4XgmW739V8eIY8C03Itecm97+zve0a6w+/IYO0M3+JyWR2TsMKJVR2XA\nO7qXqlE4rLv6FrDkVIdWJejtodaAFaGI3cZ2dKLXJ5sIN3EOtvGEtimD4Q5O5Q6O3gb4dZwI5dKp\n20avLcLLJ9fbJXa46rBt4My523X3zEnWyjFqxS7Ytdtvbw9euNB+54Mfap/9eS9vd951N/IYjcMx\nWsNh8kPfe35FAgdRp0Q3ABW4cHxwZmtkitGpIzXC1h0ooIWnrRlOw+5u+HDN2iY/Nhzg6NZuDurJ\nuqrxSHnih3lrlMNGOZSvw0bE6prwOpK80ybUq+xuXfGv9BJbx6wclx5mV3F3JNzyAS7luKrjSfzI\nCnodwZF0vVV3k8lzJKg7cI7Y+dJQoaRcvQ6JlBIJpVkSByRcZytTs4KWXWn7hoddUzMqUWgyyRRb\nGgUZrz9GPuXrejpFz4S5D3obUAt0qjrUtfZSv36vdYB3ssbFcXcjQuFMfyI4TCPE7MSTJyxxw/yE\n56ElTXiGPunQBi5d4uYlnjCweWh+eMkjccPxZ170ytRHeCcUP/wCM0xcHrlGmPHQmj+nMS8yo8Nc\nt/BNGJqkRxmRNeowwox7hWaeF/3UJTzmekVueJme8xG2TIbwm7lGWvGjyxifyzdPWH6mo7v04Rle\nSYdP4NIlbl7iCQObh+aHlzwSNxx/5kWv1H14JxQ//AIzTFweuUaY8dCaP6cxLzKjw1y38E0YmqRH\nGZE16jDCjHuFZp4X/dQlPOZ6RW54mZ7zEbZMhvCbuUZa8aPLGJ/LN09Yfqaju/ThGV5Jh0/g0iVu\nXuIJA5uH5oeXPBI3PPDrmTzr7ZRwqnjo1w8HRqdNsA7A0atbbefKE+1r3/qG9m9//Vsa40o4bX4w\n3qk8Owv05I+jaHV0hJ02PHqWuoDOeWFrp/giAofr6jBhEL7ZebodxYF412+8q2h11DzQdJXROj/a\nvermAD2P6VJ322i/pvsAPqU/ebYoy25pdM56qaoQC1jRgmue6+d2kFHnu+GMmHYDhcd/NJyb3Tou\nxCNB1rrThqN5CfwL6L9BfAOn1k0SV8jfJNwmZFNsWz99a/vkQ4+2337vB9stt51t9977krL7Juvn\nTrDb1NPqLVdNczrCFVurtI4b8utXqvOHMrm+TgfNLy2s4Kxd3cNh81uiOG94gVVP3Vba2458Gv1i\nOvQI06JuOHD9WjlJNbIGX23pFDDW6I4PsrVf5QtWtqraZtEN23h1f0p7i+9fLhgbBibI445rKlQm\n8OqYXT9H/XTQcM+VDm539GrqtQRAUwwNl8V1BPtldjltAiYdK0f9p3TuiWofwodLWL96m+o0aFv6\nqUaVcMFrIP2UoqNOMtrXQ1FT+yZMvPC560x3lbScdvc+4Se4VPUe0Lb8ANT0qET5ySgPJAUHbjx5\nUaaEmcGVePI6dB8ePobhM+KM9JEfmvAPzjwMnxEvMkZ95vHwH/kZFy9hdBl5h26EzWmSHnFHPUdd\nwkfYKC/4wqLPGCZ/lDHmG88VnDwkkxc95nKDP9KP8bF8I1y6lCM8rhcGd87DdPIMveSTK/HkzeGj\nzPAZcUb6lD004s3jgYVHwuBFxqjPPB5cw/AzLl7C6DLmh26EzWmSHnFLyPRn1CV8hI3ygi8s+oxh\n8kcZY77xXMF5tr0dbEujzWMjbTaPBxZ7Jgxe+OzXK89w6pMaxSHozpq4+Axc5FGnOlon+LL89uUn\n2he/4qXtL/z739LO8YX4jYuPtmNMIzrA5hEPNR0jLzpiv4nowvo6XLU6dJwC8laZjtu6cJGz207V\nurVVjprQMXv+c5/X3vf+97ff+/gn2nE2L2yxXmz9OGe0MTLnCFVvIvvtRO2WtjdlqgO/mhaFMPHa\nhAF8vMoOtlscTQtt16cD4iRlTSrq3ZRwZFMu8+twYfD7pCN04Gg/xpNgwW5URKwwrXqZDQ5nzt7e\nHnj0sfbuf/medunSxfbyV76inThxio0cl5mixN1lStM1Z04XltOJU1aDUDpSfpqAn+voVnDO+JYS\nAhihw2FzbeBVaK8yDdppu43KqSodPUdOh4h68Kw6J7ZJb1M2TMuU9y6jfTg8/lzDZ4VrGuSXs2Zx\nJ9Bi7VzpCW6NkGFf9Su9cdp1OonXiCxTtjr5pRehTn33v3QqaBs13euEraOMnh4mzPgUQqEyynVh\nfbVdsK/5NzmK6tnzrCvppJeFFTEVJGlC+eXKfRFY0uZXvEf2acIzDD5N4Si/i6RE6FltdwoDrza7\nKAJltNj80QY90W2nDatKgQPZP1w3TKN7hBfjAKdQWB72iQcvdAlHuPHAZZV4cCIm8KSDG/g8HPES\nH3GMj+kRZ9TpMLzoFx6hH8ORVvgcN+kxDI3hqEfkzfkEfxlc2HhFTvhGhjjJM25+HpqBz3EP4xH8\nw/IDV878mueNvJbhPtveDlpFe8Vm5ozxMR148BOO9jeeK/jhkXTCwIOfMPnhazp8kyeusGfb2+JJ\nHfNV/cVO83CBNERGHON2jD7Q5dxjdNrV6dkT0N3SGeOXMbO1ybTo1fat3/i17bWv+rx25Yn763gP\nKaur4A/sihfDOWxWYCepjpAOnD22z3Bl0Ld7ZAZeAnB+OCduQDhz7vZ2iuM6fvs9720XLl5ux/hC\nwuUrW3y3k7Vx5RzI4vrtLbl95AYR6lRSiXupYAWVQZKuTofNf4x6efbYEfRxmlIntM4iU9/6gWM+\nToQuwbFdTpLbYdOE7dIjU+SFvfxSworr4nCG6mPspNfWjrdLl6+0D/3uh9t7f+f97fkcLvycu+/G\naWJnp2u8MMqqa7ewidObtd6LqU4mZjHTBtnsAp2mQJvOGnXhKJ1n2JVzVLblvsHWe3w/dGfPnaBs\njuDA3A10vMJvZc1Pix1nbR1r2HCcV46daGsnTjPIxoQlSuvA+du1Phh183uVhjqFZX/CXeVSF37K\nTB11U7vDSOjaukoLM81vpY+w1SgcDlYfhcN6OlvVxrqjXA6HMHf91kjbVC5SfQSP8LB/xct6lq9V\nrJyq5EV9o3SPm1dZPZzHx/S8rRVLEbwmPj3x6fmb+3LkJix6JDRfuCpUsSystyp/tFFPUD82VvL6\nX/iQ51134Fom9AACCW+QTL1EoYRz3GXpm5GxjO56MHmqUzoEjXM9OdfLu56cz1Se+ow6pyxjJX8m\nZLsw+TAZo07i+NO+h+FHv6dj25vBfba9xbKfvnCsW7k+2972bftvYnurx7odavV5Og29TrfpyI/z\nNYIrlzfaSY7o2LzwZPvCL315e/1rXsFu0Ufacc5js2P2RH2du35v8+xk2G3Xjp0Of5XRuVrthgOg\nU2OXYuehQ7THiJEH5LpT1aNANp96vL3hdV/c3vXG17Wf/Wdvaxusb1s7egJldAY6ZSydNpj0GNrJ\ne1iuReoSJQ+9oR2YHZ7P+Z51BMelOrTpWVXo5bDw3CqnE07kSZDdqEdxmjyvbLemMf0cFi4Lpsih\nsjpwXu4o1Qk8us6oIUjv/M33to994r9qf/Rr3tRe+5qXt5d/wb0cUny1XbrwFE6i1mG8isOB3YSx\nWqNqTH3KwylnWRJ3ZEwb1DQnc7k72pqp2j1G1bbYEXry7K1tc3OvvRsH+Dd/8z3tfqZoz95+rp27\n4/Z2+7lz7dQtJ9qZM6faLWz8OEcdn+Rj46c45+4YnwmzXra2NtsGO149QDijZ25m8EsLOgPHdhgV\ns8GUJYmhS98hbP+OowdO7SAGY8+RPL9p6mgaU+BkwJJ2xnRtFVZjYx/NW39KTm+HGKFLoMw9onVE\nJpDOq0J5yLMA/JkYFu9u0yIx+5leU/0/U/JnSpe2XvVNefb7UF4UqIKaRtbZv4lr4bT1xk8DgmEc\nMunDPMKW8TQvuIkHT3ofgmP+M5ERfoeF0f+wfOGjbsalWUYXvOg5lmHkn3xhKWNgSWtLL+H5pYOs\njEP+iBvdwiM8zbvelfx5+cIvvK/H43q44S/9MhnqOYfPZY38n21vvT61q7bQNqnr0W7JF5b8wJJO\nWxGen7Dkj/zGuLipk/AIjXnXu5I/r/PwC+/r8bgebvhLv0yGes7hc1kjf8sXnsK9TAc2pw08PMZ8\nYbFT8sV/ujJGnsvi4b0sT1jVkHLp9HwR2yV096dfO9hlJ+ItfEJqZet8O3O8tT/5x7+6nTmx2k6s\nMTJz/gkaE2XnPDY7jjomgs5y8S/PyIJo/65BnwJMF6rjxHOOkap1nA4dra/7I1/d3vmud7dPPPRU\nO37sFF83uMKIFd0NJLFZynRYe6tBhpRNwrosaeJGe2deUPUn0s+wU6eOSw1hoF7n7qgVLoc6ad7R\nJhLu7txlKM5p0b1aaA8JcKeMKVGPi+PznBHIY6fO8uWER9pP/ORPt1/+1be1+z7/Je0tX/Gl7Yte\n+Xk1XXqJg4dPsXt2l6nPLdb96ec4+mSZ/TkaprJOg26yUeM4zuA6R6js+H3T9VOsDTzRfuFX3tF+\n/R3vau//4Ifb/fc/NPlIjLypO0VaZzfsKQ4dPs1O2Ftw1O4+d1t77nPubrfddqbdcee5ds89d7d7\nnnOu3XL2LOsJaRuMCG5sMp2LU2iP7HpEd6Xu4Hz5aayjlN0jVbZpL9k44ndXjyLsGFPcVzaeams4\nhnuXtdcuI3ynONcOm+nM45jpAB6pdXa0J/h7HEk5d9qs6smyKxh71j2rTRyhxMJVRbYd8rS4+FV/\n4HsZz307wnvugb+hi60rExp1WvC9AY8DDD+FxELeKHuK+9woNbTJ07iwar/GgiZujvGkVSDXCB9h\niScUL4qPfBIXb+QV3NDfbBg518Mfeacsox6hDV5C4WN8jhfZ83BOY9prxAuvZeGIN8bnfOe0yZdm\nvMJjhEWnEWZ8Ga3wEV+cZXjBmedJnyt50XWEj3nL4CMs8YTShufIJ3HxjCcd3NDfbCh9ynkYzcg7\nuJE70gQvoXljPLiBRfY8TP6Ib3zES96ycMQb43O+c9rkSzNe4THCxF12LaMVb8QXZxlecOZ5o5zk\nRdfkjTzDx7wRPuImnlC88LxZGcELj5sJI+cwXLs6rMVfOt2ysTHcBDqGHTrhq0xx7W5caN/wdW9u\nX/gFn00HfbldfvLxcurcJarTooxyvuAkrZ5NOZ+OqOjIlEdkl2q/CwwUq9yjIfr0F4MvnofGLsMv\neNnL2pe/8cvaj//UzyCfaVIcNr8F2q99m422W8TR36lRpzMtijJKWBHLQ0APK79rW6XfkUgFyVbd\nHunOXNdVZwAo+a5Bc1StyonzUPUfh01SOYKng+p0qqNTlt5jRhypW+MQXj8y/7Hff7h95GO/1/6f\nX357e82rX97ewMfm733xi9rttzWcMRyr9dM4Jb1udCjlcYwvORytKdDGt1y32gUW0F188lJ75NEn\n2gc/9vvtn7/9Xe3DH/s4X5u4UOsHj52AGXr0o0OwM/I9EeTCI5dxCp9oDJgC/GDb4iBk1Gu3nj3T\nzt12S7udb6ie5jiTc+fOtpe8+IXt+S94DjqttxNsZLjr1lsZfT2Og8gO1FWcL5x9N5WsHnENHs4U\nhloF7gjg5UuXcTzZbbvJ+X4I8Oy9LQ5mthaO4tnuMSJY1qmRROzj5oyawmXqFgdVm9coIxFtt4ej\nWpcZ8LP91BpKbWvTcpR1Qlm0C2khWrwwSLvkGvHNHu+3RVzmh9AvYfmMQQt5gx7Rr9qbnKuc6nNz\nYhZOW9AVsmAW4BSOChyGMyOp5Egn4GZlLOP1qcBGPW5GhxFnpI0Oy/IDC/5oJ2Hz/PA6LAy++eGZ\n8Ho018ub8xx1PIwu8BvJFm/kH7rDwuvhjrI+FR1vVsZhOj5T+Kj/zegw4oy0kb8sP7Dgj3YSNs8P\nr8PC4JsfngmvR3O9vDnPUcfD6AK/kWzxRv6hOyy8Hu4o61PR8WZlHKbjzcLp1uo57zO/Okw7Q5y0\n6u3oPLc8coOpsXVGTzxg9gXPvYsRsDfXcR9HcUB26aAdIdnliwAMpTAYZUdJjylXR9/oQMtpywjH\n1Kv0kSunRI3p9fR+h663IHtMyXpq/zd8/R9nGvHdOCEfb6dvvb1t8G2r6p9Kgrh2VPv9Teyvw6az\nlDX1k9iSU7pVrPdwxc+ofOqfIQAY9HAi62oCE1d90dEQOqdEqwQ6C1O8WHavr3BrFFJC+GBlqfnh\n5IC/duIcTuk5nJiL7Rff9p72a//i/e3uu25vd995R7vzjtvaC+65s53lU1ynOULkOF+KUAF9his4\nWBdwyp48f6U99viT7QFG7j7xB/e3Rx4/z5o1RsNYs3b89LkaobxMXZbwmuZVX2zEX53yU+xuvXrV\nI0O2OPT3NnThmBNGzn7vofPtA7/3YI2eHWdB497er9So2Rl2+Z7DYTuLPrczBXv7bbfh5BmeYaqV\nPBy8s2duge9JDl9eo2mcarfedhJ5O0yzX6zRWKfOr/DxekfqtEPVne3EqVftqLZM+e5yFqCbUAoL\np1C8GlnFAJratCPDNVqNLLatdOLYXjyN5UVZQ9MB419ypKECYck1pQulqEbkLuMg5P+3lGW2TIb+\nvHpx1fPG1zVO241JrsVYGJWsxBNei/2ZhYxyx/hnVurNc1en6+l1o/ybl/T0MaPXPHz6nD6zFNFP\nKYkn/MxKvpb7KHeMX4v5hwNRp+vpdaP8z6TW0WsefiZlPhPe0U/axBM+E343T3PtQ7x3daUJHePU\nianX9LML2J3qfJ1NAC6wX2VIZoWzxN70+je2z3nJC9hy+AQ7Pi+y+/E4h7iy65GRNped14Gs9B7K\nKN8Nj6TWYVUejO0Tlalzh1NnR2N3rD8k3DGkozgalzd2cCC224tf9ML2lre+uX3yx3+CtVkcZbHC\nAnpwqgx2rvwjUT/1diTLpPEpl1hPV+SQP0UrJQrpOBr1DLk6vkSwPBw4UmcSyl2EeG61UUHe5tmh\niiE9ab+datqyVccKe0eBtpjGrPV9tVOSWcIrTIGunW23cK6bmw3uf3iT6dPfx6n6eF8XCJ815kiP\n6iiXDJw+jLdba9lc+q8ch8twYE7eTujIHnJx0jZxqrWr5dhkJ6vffa0lAeUUWXrOpdNxYsOC8C0+\ntXWVzQBHjuGYnbqzbOEInAVyF/D5S1dxFC9SuCeh/SS2qNLVhhRHBk8cZz0dhxCfPXtLew7TrHfd\nfUe7lXVzz8MRvecuHNAzp9tJjjq5/dydjMzxdY3Ll7AXR7qgitOsfiO1j9Qhgg0XaugIIyajTJZT\nQBm7Ent8dUPnc8WNLU6zEreW6rxAcb2go3lQB5TB0D91JZwQStqUVQTGS4OSVcTFbFLErD/EyxZf\n98HT0IF7uhc6YTVaYAkDl2dghuOVtLgjjunQBz7nM+KMPMf4nEd4JUy+YZ8n9qbsuox8Eg++6cQT\nynO8hCdvhCeevJFO2Fy3pOuNAuIRf+QVeNZ5hE6c5I34kR/YPEz+nI/w5BmaH5wxlF/wwjv4gScc\n6YQFHroxTN71aMa8kVa4lzxGnFFm4OIlnjCyzVt2JT/48zD5hs+2t4MWjG1iM3MTT56hsMDHUPzg\nGfcKfuAJRzphgXeqg3+Tdz2aMW+kFu4ljxFnlBm4eIknjGzzll3JD/5+iINEh5p8Q0e2fMj71Dat\nZjpOqqgjpSfgdNdFzhA7ptPlWWBMi77w7lvbW978BqZF91hDZR4jL0xluh5pheM6pPe09XID4Quj\nKofOi85cdzR6nZGo6T6F+xH1nPnlyJyfq5Lm2DGmz3AU/shbv4q1be9s73nfh9jpyG7HrjikSuIf\nPJRV06EkTHbnSLkgK7+A4i25zAccnH4MBWng5bSRp5zirGyubt8e1rQujlvpIi+dNBXQOWC00B2l\njqlpW3wk4PyYLnSDgfy3caj8bJjn2bkNYgOnypFGR8lc31e7/8DXmXE9nJslnF50TZiOCpWFPGoQ\nmLXrqJ+6rnuuHM6PU5NHWUfmaOg28aoH9LREtUlA/SByhNXRvxXLwtEgsCpel/DVVtFtlZFUNz5s\nq4OFZNOEH6H3qBZtpz5X4L+xsdueZK3b9sMX2t7HHqipz8qnHZ1hSvQc6+PuYd3cXWyEuOMcTuGt\ntzCiaPw24owmsiHi2LFVRhTZ1Yo3fHSV9qBNkVs7XC0Dulvm2t2KXHf6onx3bvlcV+1ghaYKYVUY\npU5qitk2Yjvn8m+Rar+6RJaXOVY2NinbmgkdBRFadVKgzsfop+Oq+1EZ1I9XwsTnaeFVF0aexrX0\ng/EWzssw8fCcp4UvU6aG1Sf60MRhkSYww8SFL7vG/MQPC5fpMvI0P7TCo9MIG/GFH5Yn3rK8wOa0\nppU/6jjKMp78kTY6znFHnHle0uLkWhYfYamz6Jcw9AlDMw/NH2GJh24Mx7zEDRMP7jwtfNQr8eg+\n8hjtFj5jfmTMw+AKT/ywMPLFHeOmvYSF1nR0GmHCcwk/LE+cZXmBzWlNK3+ZXpGX/JE2OgYn4YgT\n2DwUJ9ey+AhLnUW/hKFPGJp5aP4ISzx0YzjmJW6YeHDnaeGjXolH95HHaLfwGfMjYx4GV3jiPUzb\ncVrJjgD3QWeCjsnO2e9Bop1dde/YjGN+O/9jrFXa3rnc1jlmYnXlyfZ1f/St7bPuvatd2XwSh40+\n266TTly/oT6dhIOxA1+dAZ0JR6p0wNb8MoCOn/ir7pxkowMORb6eUKNjygS/HAo6ZY/32MYhcGfh\ni+65q33Vl722feiDH2ybHHuxgkOxyqL7K5uss9PRsA6qHBalpBCB1I7X4v1/7L35k6bXdd93e997\nZnr2BYMdIADuBEWIlChSomRLlOyULKvKcapSFf3o3/IX8Mf8mnKVk5QrUeJKyk5S5VRsK4okW5Yc\nyZZIkRIJkBR2DIDBYDCDme7pfc/3c+777T5z8bw9PQNon9v9vufes93z3Oc+zz3vXWnwieu/M1DH\nTYg461xxRHBsFICKRIoIzgAE4fUfeJwKAtcQ9yvyFDEcKbKuDNVM6owcXpUd/EzSrz6EnCr1ZrL6\nc0TODSW5KUfNPsSgHCe69HAvcI4xalM68KxCv66RyfhcJ47GqnomsZnL3pIjNSIne0ST/JEj4GRx\nj3BQqoPKPdN1CxcnR0R50UOIoybb1BNGnWG/tDjFAN3q+cMeScW90JisbgHyWuSgs1WlXE4RW5Zo\noYSGMLH3rZtr5fV33xD+VdWr3dorp/tND+KsTpI4oYl8s+qJOy54XPPpjs/NlNPqqTuqnroRHSc2\nqSHXI3L0hth/RvWKjZ6LzlcdVF3FWdtdv6Vqo6F6bXXCHDfy5kSOGKrnlmCc7KiXB1Ra94ArjRBO\nGlTKhltIvPeJrUiEhNc3JhSF5If+uv3ZxdZ95TlORk7Xe7zPdxgj9py2zGyFhqa5UgNzcBr+zEPa\nH+MtZ92Gxt8Jmr8f5GVKgG67ss5+dmSeHHc+GXenuGUM4Xe+2NdlFzy2GToNgNNZD3wO/fCmtzDz\nO24Ir23MEHzmcdo8pHMwr2Gm9Yub19B8zgOYg9PwZx7S/hhvOes2NP5O0Pz94P361r8EXWZwOG4I\nzvcow8xLnICMeSpm/9v6DPcp/WPmNTSn8wDm4DT8mYe0P8ZbzroNjb8TNH9A2bGfRlJNk20LZ4QG\nrdoKOuKyaVMHnU/IMaJ3g8bw6UfOl5/5iR/VQerafV+NdzTS9Aa5MZNmGmdpqHkQkx7eQVvaNmJA\nPSfD2vaDnie2p9jWOBeNJJPUo2coGkYaeDkXaow5j5M9zaDtasXiV778xfKbv/lb5bV3FzQPalsL\nDtfUyKv3CF1qPLfpbeE64t1IM6yPnBEcUJVw7QG8Q7uG5RHEV50SQTXglB8NI6E2kGrko8yEd9kF\ntUcnT3Toj14QskUa1sBHQde5ZD0x5UPZCacVmjgEscIUBEkJVQuk0UYSgdZ7x3NPY4GCLjjyChJx\nZKufiU7XBe6LriJ0hO6wSWXGtUJAjwzGcYW3Xrc0QRMvLSTOHYOx+MNRv8M2XS9jnMqVFaWoxcmG\nvqrFBKwMHRyb1Q8C7hHCddXpLdWHXQ0P39B2MpfemdfwrE7LkBM3Fg4/c/G2tXffeDl16lQ5deZk\nmZnVIomTx8r508fLU48/WM5pvtyMHL+dNa1sjZ45OXJamMHGzvLuQj5a9Z4TzX3hqnZkWz2WTYb2\n6mAUCqXIZQSUpVykk5Wwx+ZkZfhw374/hofRhlNd7/JhuCvP3vCoRaKS6yYZGm8YN9iJHsxGOm6Y\n+R23bsNGXd+k+VtovUBofAiGfRWKYFnztDIt3XwtzHK2o5U1HtnMn3UZn2UdN838xjt9EETW/I47\nDQRn/S1s9Wa5TLNew0zrFzevYcvnvDIeXgfHDTO/49ZtaNk7QfO30HqB0PgQDA/Sa1nztDIt3Xwt\nzHK2o5U1HtnMn3UZn2UdN838xjt9EETW/I47DQRn/S1s9Wa5TLNew0zrFzevYcvnvDIeXgfHDTO/\n49ZtaNk7QfNXKG7ypTGlB0Kv9tBPzwokrXIc0NAY5DgBIVpRnB319Ggcb1Ab2k7SI7YxWH7+a3+7\nPHTmXFlb1skHOApqbGnMacxofiML6SE/eohwdmgWmSC+qd6XldW1Mq5tIibU8G5JZki9PvV8TOmi\ndy70cD/r+xT72biV4bgt7Rd28eL58gu/8PXyjf/mH5eZY2c0h26sLKmRH5CDRw9N9AIpe/TU4b/q\ndIRTpWuMnjiM7Aigozz8JR17gXqmP8qtllrl9XfArFdx+IJX8ersVG6r5doIvteRSLiQtgl7OkBg\nA0HfkaScyUFJQQrPuoMPQlgAhLxPD7kevaqSbnUDogaNtXPJ1y0a9sHfUxy6lMRRxJML83s2VN3U\nj2AWXUG0uC+KsmpV/r7SYYD4UMuctNHooVXV0A8FbfyLjHrytre1MlknP9xa3SoLl94uP3ztdfXg\nbsQqVbZB4fzbX/0n/6167CbLroZs2XZkS0P71G/1L8s2KdQnFjyEF1/LIVYsh3HUFRyfeon1YnRd\n3DCeCX45EOIGhutHQmUuOcXSVcL1oQJlR9kCDxvi3hyWucc3dObBx74RNzFVCivK+IxzHsY53cIs\nD81pxw2NvxM0/0Ew04h3BecDzXHDlt/4O8EsBy8hyzgdhB7N8S5oWWg5nnmNPwxs9SBjXKszp9u4\n87Ks062+jD8obj2Gmdc4IMF51NQHv7tkLZNh5jsonvPM8hnfxj9o1e33r82v5W/p/dJZLttm/tYu\n82S5HG/luvjNcxjo/K2nhc7beKdb6LyyvhbXRTNPC81rmOnGAQnQDgpdspbJMPMdFM950ktCu4gJ\n0f44IiTp+H2OeT0TaTgZOsLxGdbGrENqrIY1/PTUo+fLr/wXf09phknVWNLPgqNVMwsF8os01Fob\nQ9w2tbSi05OhZlM9Zi/88KWyrLlap89fKKur0hNDW+pti/JBTjZKIT0gO2xWqz3D1umhE55GfU0r\nDh/72FPl5VffKa+++rq2i1Cvigwf0nwuFk3QY0P7Sh+QriL+6GmziSqJmhcKm0/YAE48XFT0MBEP\n4coeNKOCt5LNE+yJXq8LWSH1iSFc7MmyiodIDxKv/FU35Rv3EBnfyGCq9J5wT2Vo2tNfdYWCns59\neqX10lLCH3lx+gV2Wi95hvMQ9xXHHMeL0oWX2oJZtS7FlQhnp0Okmi+8wYMzrXsLj/TG8C5M0kmf\nqzQLVxdTsAkxu3mw3x0bO2t/YTnp2hxQQ5zbqk+j2ttt+shxzbHTULsY11Z1tJr2mfvUpz4d9559\nTDjWi0thDhyhOm69mhHXENZTbaBW50z3J7+l0aQAAEAASURBVJ6BwNRyqc+Q4gwby250+oNYvW50\nfDQh1xvih/mQ854d2Nh7AuKiwua4uypjSpuyFkfcFG4MDw+EDph5TA/mQ3x1yVpHhi1fV/ow9pnH\nuvuZaHqbj/lb/GHT/eRtl+ld0HmY1+kWWrbF90tbXwszv3UeBmY5x1vdTpveBc3TwpYX+mFDlyw4\nQoYtX1e6lXE682Yc8X6hX97mzzrvJt5PHrzzNE8LnY95nW6h5Vp8v7T1tTDzW+dhYJZzvNXttOld\n0DwtbHmhHzZ0yYIjZNjydaU/IMNLWrp4VQc/L3HSaqDwIaDUQ23qzvYiyzGDIJdIPV2bOnz8q1/9\nce2aLydJTpt8JDWmOvOSIUkxb6rt25RXxb5jkpJeNRVqKKOHQw0dHTGsbnz+hR+WN968zESn2jhv\nSYdyp7mJ+WY0mGQr2+ihGdBQa/TE4BzqEPQB7ds2oYUJ/+CXf6mM070ivgkNfW3QoyItQ9Gro6sB\n9vTgHJBDL5d6/ZI7sNxQVgUEzFvtEuXQoc0De8NQQbIg7ayIt/ykQ0ZcEb8NVlJlQXbfrNDdSyb0\nPkNkvZ9f1AsJhSPChUtZrR9AHC3di6goNR2rfnu2hV09WS6GNE4GMH/I3M6IuPS37xrheMdmxOLR\njDn1mOqjeWNaOqE6pe07tE8bx2xtyWHbkaNeRia1yfJuuXpjSc6cZIcmdULXsfJrv/E7Wmm7IGdv\nXEPLuzGsytxAzmvd0ty+nY1VVUSGWVUh6XWOnjVKqFdiypd6CCY+qrv1soXjmqhLex/xUGBihEeC\n+kqhTSfSnaJRpmLK5Xen+J10Zrr1f2BOm29chlkQvOdlmQd6VxycP+YxxADLAA8bzNsPYlt0/fcU\ntvk4fVDe5jmsTZnPsrbPNOOBOZ7tsIyvwWnDVleLN72FbX7QLWsILvOZB1wbd/n2kzXeMBT0+YIn\n59vKkL5f3/oUntAuu7bcjAfmeC5vy9yvb/vl+5epvtGREP0L0cDwjpQTxPOiaPQeQFUDpVqgd57e\np72eB41kaouN5fL4w6fKp7/w8bI9rDlGarTWN1fU6yHuGGbSZPrQo6ZXCpFlcUH0YajBrKswtX2E\npmtdelt7fWkbim0lxrQ9CPPihtVrQkPJHw15OAtSUufcqZdPo1o08czFYlPWLU02f/yRi+ULz36u\nfPM739M1iEH5cU4lmeIAyMSoq/TqcJH0joTu/dvTGWvrN0yu24bgMp95wLXxvwzvNxwuypK7HnVS\ncXBK3HZtUUdgUnlVJy0Ebr/WeolcpoJ0RlpfUeAqa8m3ZROc5Cmn3mXIUHhdjIEo8giSNTZxz0Jx\nxJkTx9FhDJGyQCNWwUrXqOZajkhsWz2yY1phu72xVG7Mr5X/6X/+F+W//ke/Uk7o5IV1LUZAN/ly\nQsOufnzsbqqGaKhdXb/6QaJ5dspP1slMFoIApZR/lQM9xwKylaHVSgoEtsKK6WLAWl9b2M718LnH\nYF2Gh1FzN3Pa0IvNQ6cvPvINV1xnEkTdAEPwmcdGAf2Bp41nuSxv3raikDafYdaB/izjNI2OAziH\nLntMtx7zOj/LkDauhci0OKezfuNyHtYPzryG5s9p4+B3/E50+MzrfEgjl/GOm2a9wK64ddkWyxtv\nPRnvODDHkXGwXYbgzUu8taVNZx7LGUIjWLchOHjMZ2g80LwtvF/fKJ39e5TLEXxbXuAILmMgPHwI\n/eKmAe8lj5wfOhy67DMvPK1dbTrzWM7wTnmYzxB+x2+3S3ZEiyO63m+qqeKkB0Exik2tDxPDKUKc\nG4YlY9WnhkRHtEBge3Oh/OLf/Vr58ec+oUndt7TzPXrqZqiIs5IQh1C/2tWzpr41qY8mMG6JcmYl\nobayWNac8H/1a7+lIdFxnVf6heAf1FYUcYZl5C1dko1rQBYzFeLWqlckHE25ZIPqbRnVJPY19a79\nyXe/V+a1qewxHS6/qV47tqEYVuO853SgA538qa44OA50HNrt5dbND0+/+2i8dQHvJQ/bZIgeQpd9\nmcf5A/2xXMj2dICznGHggt6jxT2o5VN5eoUZN6aWjWWpXxRvzt95wGM8TPxRX+SGKSPuleSAOHVq\nfuGHzveQ6k4M1Vdl0ZMaA7QsbpCjXjm1v9vmpjbvDY3l8ltv6fSG2fLJpx6TFFudqLdWdaI67qrP\n6mnjPNUY5qSiEujVpaIp71hNG7qlPSqfbFGvHX9i0L+fIdFld2URlGwkAgFrL43+uwwuM5evYZca\n07CfP/55kOpTSUIXSZqHK66Ca4RHp1EgbAXcgNwgiWWPluP+JQLONxYdbdx67yaPnE+WB09ocdYN\nJP/2GpwGmscy8BPPeiPRy8e0TO+Hy3jzZ5zzAua4ezmA5rfNpM1rnUAH6JbJuDaODoL5s37zAp1X\n5m/jpG2r+S0LvFMepsNrO4g75OtxHD6H1h7w8GVb7iYPy3fBLpx1O8/2GpwGmscyrY3odzBPThMH\n7+B4y2s+00k7L2CO369v+z/wXG5AgsvvL0t9o2GsTY3qN8+6Xul1LzacN97V7FaqPeS1xcRWOEjb\nagQ1l2jtRnni4lz5+Z/6sTJetF2HGrtNbdg1otWNMVeMBQx4fjS66OSZ1gxyJo8zy5wFBDiFw+Na\nMKChrBv6TM7eLOvaNHdEh85HGxjPnPToL3pfeMdIHEADSQQHE2TMh5KtHG/FMU//RiczLC2/JTs1\nP075Dqjx3mHxRHgCXLR6VZCXfbHPFjenF3yPSDoOr9Pg/AyaHkR95efA/FmWOJ+/DO83etmq81Gv\nk3jtxaxpX5uvletRaemzzweOQPFwa4E19N6X3H3VH2gE6zR0ecSPBskOqU5EeaFHn+ihFa5XM6UA\nHuUfzoeG2XsZDuh+Ukeou/xxT7F0VOP1nIU6o4181xfXyv/wT/+XMjG0Xv7W17TSWfMiB7RnG/Pb\nNlY5QotFDVwExmowVquPB3Y13q+eN43BKl7bT5Va6MfpieuIixeL7MVOIcNuVRIuOdK1p1B2yU7o\nXYHrRl8LM6/LrYWZx3Hz1F5CY7thtYhCx7yoF7WiGhE3Jcg8O7e/4EDbaGcKbOMZ11NVb7YS0A7K\nI9OcnyG0fh9WOjlQkc3n/GyTIbzECc7TMoHs4TPNeMNMcxxa1mO883L+htCJWyY3GFyT8YY5b3DO\nz/iudL6PyNgWy1vWNhmC74q3cvAdlEfmJ+40uh1vdZAmQO+yAZrxhuAcrPdOeZivlQN/0Od+fXOJ\n7T8/xhxUF8wD9H0zzLgcb+8RtIPyyPy+h9aXaVkHdAL0O9mT6VVqvwygHZRHpjk/Q2j548aEBpuX\ne/g0OFu0mDRADIkiTJ5Kb2nuDwdwz2jl3T/4ua+VR07pvMrFxTIhljpXTSv5mMi2o60bdtVLpwZX\n+25o6pB6MtSHskPPHU5UaA93rCwsrZb55fVy9f3FcnNhSU0hQ07iYEhK+QJrYywh4rxS47Wqa6HH\nBW1CMkVJ2+2Whx86X37yJ76ozVd1ULqOfRqUs8l14SgylMqZlVEG4VCgU//65NCWYb6P0LgHhJbP\n980Qnq54KwffQXlkfuJOo9vxVgdpAvROG0QDr6/4hK6QqF/We3seOJz12ntcUXi1OMhHqlSghrVc\n9+21LUDeb5G/FHFCQeTHfZCw7nLUJ91S3WNw+ijf6HlTlD7aWD0avDhs0ARj2UL1KdgDkPrNlh7b\nqtPj07Pax2+g/JP/8X8t/+o3/7+yPTJdFjX/bUUH0o9OTiojsVLl9AOEEydiyFTb2ewqznA9q2dx\nATgHtV6gajTPjGyT9YjHdzi58IQZIsoGaMhwjf0+sEQZNLAff+Y9iCccSZQfELDP9x9dsRDB/L5J\npHM8ZwrN6X5x0yMjbkwKWW+OtzJOOw+g+VsIL7gMW3mnu2BXHuAI/fTmvGxPldi3Ex5CV54Z1/Lk\nPE27mzws7/zRkeVzPOvPNlnWOPO1eKcPyiPbk/PuF3ee1u30QTbA43zgc7hTHpZp80Desi3MefWT\nt74uiG7wBOuORC+d9Wd559Ulg7x1ZpmuuHlNa/WCv5s8LI+cQ5bPceedZWyHadbThTcN3qy3jVu2\nxSNHyHjzWrfT8HXFjUOHZeAlZL053so4jYx1mL/C3o9h5RGuT69oaWLq5qm9RkYNVWyhoAZxTL1g\n21ur5WMPXyhf/vynyubCDTVc2lyVPbZGJsoKq/U0TKl+i7Imp21TbhQ7jGnQqaxoyHNZn016LGiw\nteP/hpy69+YX1Xhulsvv3dAE8gVNHtekcs4jwsGKetLr4ZCd2F2vqzpvNEjRG4ODJ927uytyLJfK\nL/ydny1ntUdX7HzP9UlPDIX1ykJSqI9Qy+b2xnQ/n7/+9U0F2ivTO7/fVMC1zHrlyONY5xqio1eX\nReNHACV3e32raddLl7Eh95FVo8w9jB7QiOsOy2vj4zrJqQXSpPwqjL3yqBeS128JQeWv+sUGzKua\nIzmkeW3AJdWxsem5sj4wVf67X/0/yz//l79RxmZOy2ETTj80BlhFo7zptdvVkPq29oLb1lYiOHDU\n+YLzpmdgdxCnX5lEbx7WIoYtXDd2QNvHgQ+qrodr7fuBrycbsJfO/KELnl6IuhtJvuqHZ8JxYNhn\nXPAivM8TMemUefG8oVP3r4rBSrAR+eaBc7pyHfxtnS201EF5wOO8LO/eJ//aQZ6Q9WQbMx0dTlsf\nMPfGoSvnYX7wWYZ4+8k8xJHFTqB1WsZ5QrNex4GWN3+LC4aUB+k2D+sFIm/9OW09wMyf05mnK45c\n1tmms4zz6NLfz0bry3r6xa2/heY/KA/blPNzmd6vb7UEKT+XhcvG5ZXLvF85+z64rLtg5umKO7+7\nySPnY5395K3ffAfBfM13m4f5c34uU5dx2KgXt23dT+dnTu2U5v3oMYxGaVizu4doMNV4/egXPlem\nJ9iYVAsBRN/UZPA1HSG1PqU5ZTPHypIOCl+Ymiy3dPbosnao35iZKrs6fmhbfOvSwTq9TSneVuN6\n+dr7ZVO9IQuai3ZtXrvVs/pTgcaHTh1eW9VOzKARgiI7GUpj6EyNtd62MbQXR2ptr5TjOpj872rf\nNhYrsKkvpwrwiTLp9YswxEbAwVBrVWm9dw4XDa/Lx2XpdAj2vqARWtgj9wWtzjadBa0bXI6Ttk2t\nvNPw3ClYZwstx7Ap+VhnxJW2cwb0h9KgvgFzfUNXtvUD+rivug/bkmW18bZ0co/iFA3VGYo5jpkS\nLobFhQuHTr1n+ke70voxIFnqDUteYuNejgMbmyojUzNlVZV1eVs/Lranyj/9Z/+y/OP//p/pnFQN\n/4/PFq1lUFDPWdQPxfDq9WEPuK2NFS1oWI2NnIOR54LykOMWQ/U4cHv1lNqJLXz3rpk0f2JyWbos\nKCPiYb+giiDSLT14ennAy4f7EWVBaSMoyB9xrKjKgPoHR9mFoYr3eMLJlJ58b+MJ5Cb6BkrzXgDn\nF4qNhBjGxIXsV1Lo4AmOk0YH8DB5mDcMD031y2nrN0wse3YaZx7bAt5x6zOvaUDLEcdm84J3HBoh\n49rrsx7LZF7HgTmOTvMTd9kTJ+Q8kCOY3xAcNJel460u+MAhx8d04ll3jlt3m9dh8kDWIV+HccD7\n9e1+fbtf3/bfQbz6a3nwiq9ODS94cLQBDP8wAVv71+sZVm+ZDu6+qCODPv/c58oAvW7q2ljjGdfx\nQUt6rm9oj7VFLUpY1TmW2xqeGlYjMaGzJ9mEd06bm87q5AM2vt3VqQVbzHtTg/rGlXfVQA/pFINS\nbi4ua+6cDJC+2J6DDbkYasJOjKUhUotc3ydKYiSNj1pttnBgErpSZX1lsfzU175cfuPf/4fyvR++\nWkan5DQiTwOp6yTQuNX3DNcayqUrSOQStFix2GvoXG8qR/3+m/J+q3egXjPzsrjuKKNe21sLN5VM\nFHatR2D7ld2+hNoT3RZVgbgFdbNj5UDdUvkP6v6yvIDbU+8e+7cRaN/Eoz/2AcThokowNU2T0rQD\nyKjOalVvGSdoCB9nsQ5qG5DhaQ17Lpd//f/8+3Lj3Svlv/zlny9PP/GATru6FW0Ec+HQgz2svmSR\nAqdSMMeTTZ0HtcI57j0MOI+CYq8yunaZHUO2IOu1y07qqXg+EOAREnrwuw5G+0tdRwflAlcv9Hgh\nUo/5p5yiTpMLKNGCLcQoJxkpRLUHXjKCp+K4BgI6YiECjL5xNJxBNDMZJ3oQERYuh5x23A6AofF3\nysN86LdsfYBrjsaRgpePcYaV8/Zv6zU01TJAgumk+fjhN76Vy9eTadaFnPMAl+PmN+zH2+aBDkLL\nDy7r74pbpksHNIc7xbMe81onZeYAzmmuA17z5+uyvky3DvN3pU3ztRoaf6c8zIduywIdjCMNLx/j\nDM2bofUammYZIMF00nzu17f9Msnl43J3+UFzGbp+Gef0X+X6Fk+iqgi9EyqR+FMNqfN01Ajyt6Yu\niHG1eDscUaWhxy8/91PlkQd1+sHae9oXSwsJ5JBdunGjXL61UN66cVO9GRouldwGu9LLqVP7ViY0\nj+2MVnZenDtaHtLh39NMAt8ZLeMzR8qbV65r+LXOTbv5/rwWD2yVUbpOVE/rMBSWhXn6wrp674C1\n7ZKV1GldA6dY0ts2or27Tuqw8ed+5PPl+y++Gr1sqzp1YVi9eDtqnYa0OTAbrw6pK87bt/oZidzU\ng7cTDZxS0h2Oq503SkVl42dJZtz2vO7rqXjohC78X5X6FhPodQ17DbzKRBcU6d7FBeArnpfe+8vI\n/Dxxzb5uQ24wdU0aQyR6f0DWZMVZWQ9SJzAj6iuSQuDYEYnqjLO1vqrzVOXQj2t/NjleLErZ0TzI\ndTZo1lzLwZGp8u/+03fLG5cvl//qH/798qUvfLpM6Qit5aWbdbWxHLLtTa0ylQ6e863dTT0bnGcq\np069w4NarMD8TY5ei2eIa5PjKCBLag+aaiaJcO64XoJhJMJk6cfp4iJ0UZRzXJy0Ba94qmQtJzGG\nSmCNINuTQ7/iJmGHuigpoaoDvjCiDu3S8xc0ZRB56EeRTkR49BvBI0N88/zC27tpZNRcEGnjLA/M\noYvnoDz6NVZtPlkHcQI8xmdcls22tfEuPvS4LKw7y+V87BhAty3Eu+RbXc4763PcEJ6ch/OxrCF4\nZFyWjmd+cNZr+7I8vISMI+50htbVpcc2mD/rBIcsMMvaLstk6HjWQ9wBestzUB5d9qHrIB3ZPuvO\nuCxru7pgFx96XBbWnWVzPrkuoMu0LvlWl/O2TJbPuJwHdsBnWUPwyLgsHc/84KzX9mV5eAkZR9zp\nDK2rS49tMH/WCQ5ZYJa1XZbJ0PGsh7gD9JbnoDy67ENXt4767uAVzgamYooGYFC/yHnhs0pvS/PE\nBtWDNahVdkWTss8fnyn/6Ff+YTlzcqYsbS6XBYl8+603y7f0eVlbbCxrXtuiGsYtnQm5oh62ZfWs\nLaoRXFCjd21lrVyev1lucFC5hlLHj56SQzhc/q//+9+WxYUNHX81XB49d7Z86dnPaNWfrNKcokHp\n0kup2o9RmKhPmBoQHOWucpIzpjeYetxwyGS/bBnRnlzf/vafqLel7uMV8hKJA9ellz261OUitO5b\nOGLublDjTuMbesmT+9r70JvDn+41Id/rQKSvttydzhA9fLr0dN3PVpZ0lrVdmQ+TSBvndDI1ol08\noQ9Zer16erzKlHwjLrpDlIrStXRqvuhAt68HXtLGwxz3IPAqC9KUd+AlJ4jbwR8Q/khHtvW+xHAf\n90RVWbdSPLq/UiALywCLTxCq3XOyo17PGnhtNfOeFsD8x2/9cVle3y4nz50vs0fn1JvG/m/s21Z1\ncOYtR6KxKGFH+7rtaFNnFi3ssqpa+WFZ9RZJyGGrxkccg2NFq0wIx4wCQIhv1bGaA1xhZVxDvY96\n9nrlznw5iUdZAOHcjUl8sFNWKCfO81vj1XlDa69ekyF1ukoowbPFjxKeHfh0DWLVPm2PfuO2G4Sg\nQsYR5+NgmvmAezfYTD1YL+52fWaxnqw/xzNfG4ePYH7nb2i605bvB82fdXbFW/kuOedpWgut17oy\nP7w53fJCz/py3PoMTbMO9DqeYRsPJn3ZDtJZNsfNCyS/lmYbgDmedWdZ85k30xwHtvLgCDn/lged\nxlm/86vS9ds0Uo5nSNx6DE13OuvripvfeTgNzPFW1rQs5zxNa6F5rSvzw5vTLS/0rC/Hrc/QNOtA\nr+MZtvFg0pftIJ1lc9y8QPJrabYBmONZd5Y1n3kzzXFgKw+OkPNvedBpnPU7vypdv00j5bhh4PS6\njkZSCc4WjbliEOQzjeikgS1tpDsyuFV++id/rPzsz3ylrKjX7fLKrfLNV18uP3jvvbKi1XcbOj5o\nRXPU4pB2NQCDcp6G9WHl6LAUjWv3eno7Fpfmy/LyahmfnC1LS5vld3/7D8rSLa3W29gs50/NlS9/\n6fPKU3mrQaQRjDtMWauxESL+9qHKh8YGpxPnTk4YzRMHzrPg4dzFB8pLr79evv3Hz5cjx46XDY3B\n4giucyD9sGSoP70GLmaxK16TDLRRJj1HJfLw3KNaVmGD7HLI5Wmc7w3p9j6Ca2VIZ77MA8385nPa\nfM4v82aa40DzEs8h59/yRH5RQNWWuPqeXfXuVE2tXWCNs23WvQetB6eC+B7k/qpc5FwI4HPEPa91\ng9pRnY1WPzey6qlQbNEby33jEqoLVONjY+Ny0LbLSy++WF743gshd+LE6TI5OS3HXvWfLWNw8uk2\nVr1i4158stguBodHNHpjVdmFxzPEJuaAqhbpE0G9x+RL/lxIuJ/U26BT20DjvoXrVG3nWiXDdWN/\nlEnlpPNMgS+Y9KGMSBMVDAsC1+PDYKeDXV8E4TkBItQqiVydVQoNgWp1xIM/4UgTcuFXTP02PuOI\nt3oPyiPztnq60pnf+Ruav00b/2cJu+w6KL/WxjZ9kGw/WpcNXXozX6sr87dx30fLmJ71GWeeDLv4\nMs681mHY4p02zDraODwtrr0O6+mCraz1ZV54/rxDl10H2dDa2KYPku1H67KhS2/ma3Vl/jbe3ifT\nsz7jWr2ku/gyzjLWYdjinTbMOto4PC2uvQ7r6YSqS/FjnZ4BvZtx2GgImAxOozasuWXrG4vaTHeg\nHDs6W37sx75YVjXs+Y7m/nz78lvl9ZsLZVOLDjbUmK1quHFYPWiDmuw9oHlEvPjp8RgdGBeelLq/\n1APHxqiXF+bL9isvlbmRU2VB+2htbq7FQfO3tH1IzF2SnJo/5tbsm91Z7dXEMJSqrph4LOSM0ZCO\nsC+XtvsY3Z0sX9fWJP/2t3+/zN+8JTum1LjqmhnupbEdYDsQDc2qEDjxgeO3hI6w29uzi+Elei/2\nGkTJ07BFK6rvXP5Vcv8bmkMbb++T6VmfcdaRYRdfxpnXOgxbvNOGWUcbDx6uyfclx63gANilL3CS\nCSeI4nKR7cEaiR4pRffQugukooYEcr+uEIshRsFaMYiA050LNtXzyiSyhtVVb8bGZlRnN8sPX3q7\nvPLqr5Y/+OaflL/z9b9dPvvMY2VGK0w5cWNFczZH1Ns2OjEjeTlqG2vSJydNQ/KDOGw4YRyppeOy\ndmPoVHUMx001iKICavSxXoMQtRhx4Kh04hWiXme9yupY8g2P+KOQuA5xow8xeohFQ1m9ZmSrjCIR\nrzmCUz3GRiQQ4RN1W6goGJ6BXk8bojlwo3Jo0y2NCp55nG4rfit3UDrTctz5AB3PdOLgbUOmGXeQ\nXZa3XL88TM+w5W3TWXcXrcu+1tYsl+PZjjZ+N3y2wTqcbu0w3bDNo02brwu2vG06y0CzTcY7fZCN\nrc42bV0tNB/Q8S4e25Bpxh1kF/xZb45nXV3xlrdNZ91dtC77WluzXI532WPc3fDZBss63dphumGb\nR5s2Xxdsedt0loFmm4x3+iAbW51t2rpaaD4gf7ysNaCJ36MgZ01bdYSbosZmUytFh+XQ7G4tl+ee\n/WT5+a//tLywnfIfXv5BeWXpVtlWT8SmHDb60gY01Dk7OFGOykmb2h4uY5ozxKjqpI4V2lYDd/zU\ncTVkg9oWZEPnkaqZ0qal712bL2+8/GZZmV8u43Ke5rTqk7NMR9lgl1WfslEGUYGxNILLppeM5gm7\nYQ0unC/mHml4dl1bN5w8dU49e1vlzbeuabj0aLm1pInpyosGKzbbDedNkpGVrjXKAe0gBGBU61j1\nVzzxrkCZfsC+Xtt10L0MrY1S36eufFpcy9umM/+92tjqbNM5jxw3H9DxTCcOPtwMeEj3PtyMkNm/\nKbB/IFS99aY4j/YW4RDheMcPE6oU95bh98hNPxLkpK+ub5VJ7ec2oM10f/jia+V7z79YLl+5UqbU\nk3z67Hn1tE1Up0ue19rysuqp5rVFHen1sKnO7urD+ab0MLN1yC5j9fwS6F1Dvc2igwsjsADvS713\nkSZOwF5o+q6RHj/zMHvlFOVVyzXMQHmNqCeuVwKRoZ4n/dOjxtOOcxmsYmEuXdgSOckSeW3R0+aC\npIvRldow7MM4aWlxmeY40PoMs9zd5mFZYI5bd86vy4YuXJaFnvU63sp14Y0D5kDaNOfldOZr4+Y1\nNJ20yw0caevLcfObBnQwjjRxPozHt/Kkc3Da0DTrAzq0OPQTjG/jvqbWBvi6cOAJrS1OG+b87jYP\nywJz3Lq78r8TLsvCm/U6Dt4B/i68ccAcSJvmvJzOfG3cvIamk3a5gSNtfTluftOADsaRJs7nfn3b\nL8e2nFxGLl+VerzIJaE3N7/yeZbqL+34JU9cq+VG5LTNaNuOL37h8+qpKuXt96+WNxbeL+vHjpRN\nzQE6ceR4+ewTnynjOGmruzohQQ4be15pc9tbmvuzPrZb/vB7f1TevXatDE8Ml5ua0zasBQA0eOOa\nI/fw00+UxavqYVveLKsrq3KqlsqUFiiM6NlmAnzUFd1bIMEwElxD/Ov+q7EZGGRcVZPHtU3DyKQm\nh6vx3FZPyNf/1s+WxeWxcvXmWnnl9UvaE+5d9amsq9dPXqWukQYN9WwcS72MYS2lpTWyoS2luSP0\n2tn79Y2ySM9tFI6+/Fy29S3ftxy33EG4ltaVh/UA4TfP7XjVJyqMHCbmccZpDUrv6HxajmxjOsDa\nloY1y1iZPHKmzGvz3V//d3+geZF/XD77qY+Xn/naV8tTTzxU1JFbJkY1pKqtQPTTJnqU0alxU7le\nDJ0q/wEtx+GZYsqAng0cpSE9F4PsQ8im0MIHnxxHnkHO5WVeXq11tUIGnWpH75igqbBx8kjsWcc7\nER4+wcQVorE+M1xx7TeHKjuCXddMpQ9+bBMyni8pxk7mtKGO4MIHOp7xwdR8dd0A3xBgG6z3bvLI\nOvrJtzy2IeON67Ir8zkPcDmeebri5m1h5j2I1mWfbe2SMy7r74rDl3lzPPODtw3GO207jG/hYfPI\ncrbjbmTv1sZ7yeMwNrY8LqeMN+4wZWc52+v0QdC8LcwyB9G67LOtXXLGZf1dcfgyb45nfvC2wXin\nbYfxLTxsHlnOdtyN7N3aeC959LORX+y8ugc1TEgDwb4LbL/BHlm7Ol90XL7X2q3r5XOfeLL84i/+\nfBnS0QfffvmF8pbmtC3pCKoNbVp6fu5MefzkxXJmZKY8OHGynJs9Wo5OaId5woQaAK0wffXKm9oG\nZK1sqCHToVcaJh3T/lhrmuembUA0LPXO62+VVe3RNjU+XL74pR8pJ04eK8NsrxC9EfVe02ARfP96\nKSFoaGgH6CUU0OrVITmE7M/GCtEtNZjT2kT1nSvaimR9sFx85HGtJtRu+Esrsl/HXFGXVAjR60ZT\nRkbocYa9hq2unCQX8pOMWNpwt/cyy99NnbHcvdSFu7XxXvKwfcB+8i3P7fe1Uo07zLNqfc7P6T2o\ne8ptZYmJe7l0G4XzO0J3FgdKTtWa5rfhbA3JMVtd3Sgr2pj3lTfeKr/9O79XLr1zpUxMH1FP7kiZ\n1N5vrFTGMZK/HzLoYH0LexryoTMvhtc1R3Ob7Uc0lBonLmytKXMNqzIhQD8ecLJYbFBrGBrB0OuG\n8yWgQK1jGB+avvjf/1AnK7qHMzVE4+Ljaaey05cWsMqQK7px6pgsF04bv14I7hkhnguXeHuDfKMy\nDTlCywvPveSBLssCbZ8hOIJ1H2QTfNku84LvygM8AVqWq9j6nWnmNcy2ZXnjDbO+zGf7DNtrdppr\ntx3W5bTzADpu+4DWnfltg3U5DTS/dZjmtPNwfpaxfvP5fvkajAcSzG8IznkbB3SwHZnnXvJAH3pd\nprbP0Hlad87PNtgmoHFA84LvygM8AVqWq9j6nWnmNcy2ZXnjDbO+zGf7DNtrdtplYz7nb11O5/wc\ntwxp8xvaLqeBfByyTJsHNNOzvPl8v3wNxnfpdp6G1gt0+KjysB0uU9sHrLnxrTJgPg7dDDrJIDYn\n1bt7SD1lAxoWnRzeKf/5f/Zz5bPPfly9bFfKdy69WJbU1bAs9hHN3+HM0Stvvl3efPGVMn/9Wjl7\n4kTZUMP0n/74m+W7r/2w/PDKK+XyjXe1Sk95aoXBhoZotjVMuq2esRFtvTGmoahVzTe7phWoU9L7\nE5o3d+HcmbK7rp4wtUIu+7Zsalo26h7qW38yOrZfYAistl7MVyvq+xsd1eapmyPlhR+8olWBU+Xo\nibPl6LGTZVHblKzr3MlaC2oDOSSvbZsTHvSH5mhypZpO/V4uYRP5d91D3zvoBKeB5gff3vd8nY5b\nxryW+6tY32w70Pa7PHx9wBygm2Ze6ODaOm058xtWPHWcf/SpPZNe3CK9JXRjhZOXRR1gzlgMIGrl\n6K68LfYMHNP+ggOD2luQZ0P196VX3ijfUs/bK2+8qaPXboo2Uo6dOKV5bprbqTq9rj0Ih/QjSFcp\nR04f9b6R77AWvkTPHj+Q5KhxXu+WHDdWojKEursJL71zsid+Oag+Sp4fE3FMVzwLoqFNxVRrZlgd\nNVVicvp47yGH+wUNvqonfnRIF4Of9ADGG0As6CM7evniKDtd597wqAsx34jQ2vuCTjDM8Yzrh4eH\nD/rvJo+szxXDEBrBuh3PkLiD7WwhdONa3ZlmHuvLtIzLOrJMjmd+x03vgujMeh1veVtdTpuftHUh\n28o7bTmnWwjdOPM6D8NMb+Oksx2WsS7zG+b8Mq4fHh4+d5tH1mebDLNttqGF5sl6uniMa3V3yXXp\nzLisw3qznsyb4+btgujMeh1vea3PeKfNT9q64DFfCy3X4p2GnuOknYdhprdx0tkOy6CHYH7Dfrh+\neOTuJY+szzYF5IUtR4T4pubzjLGdAa90NVY76mXb3FguQ3LaPv3M49qb7bOa9KPzQedvlFv6Ecdm\nuiNsraEGaZEd4zWR++aK9nFTD9dNrTJlPtnVtfny8juvl3JkQnPYtDhAurcku6neL7YRGcBxI8ex\n4TIunm316uHssQUHu6PW1kDWU08EnM7lBz4CXQy0TeijudI+WixQoGkakvyOevkee+RcOaOzUi/f\nWNbw7aT2cXugPPzwfLkkwetX34qhXxpHmm2Gb3c0TEbj6WFRkdTYhTnKstZd3xNssF2GYVcHPtNz\nHP7b7k+ShZZ5ifOBn4/j8DmY3xC844Z34oXvbvPI+bTXk/OzDS00T9bTxWOc8zhILmhySnDK+ONG\nhjOjByCGILnLvd4ueNXHK7ocflW6VTnw1KUhbQqtLaHLkI7CWtBctd//9p+Wb/3JD8pvnP69cvHC\n6fKjP/Js+YkvfamcOnm67Ky+p/qzLMeM3jZ+OGgOnPY7xAGLLUKEGZZjGEOc6lHGiWPe5Kb2hNvS\nVjfDnNGrnj79wgh7cbJiQQO/HKQvFjxgKPVAlxPXgycnO6NcFCUpZunm1wZ8vcqr65QV+uPp0EMj\nBTiX4sIEYbar04Y4wQXteFeBB+OH+PoweSCLTYYfwoy+oh+Fbl/jR1l+1mn7DPteSEPI/Nb1UdpH\nds4D6Hhjxm1J25Flb2P4CBIfJg9fg+FHYM4HVHwUun2NH+X9tE7bZ/iBC+iDyPzW9VHaR7bOA+h4\nH3MCbTuy7EH890L7MHn4GoD6XR/Zx4ozDWEyZLK5Ktyg5ujQuGgIdFwrCb6kBQintHJ0fm2l3FKv\n1NbEhDbOrQ2f2oiypV6KDZwwOUqrs4Nlflg9DfqsaS7b4JR2jp8ckVOoHgQ5QvHrn4ZMw7D8umeb\nBK17KJOa27at6WjryjM2M5UTqFZFgXx6DRGNThNofDivUp0ldUK1Wp3Ys43GjV438bOQYl0N6PTE\nSPmRZz9W/t/f+V7MnaNhfvDiE3Lo1suN69fV2bhSxrSwYk1bmTC8FS0Y2UeeygmDe01dDxltRZA/\noq98fxw/SDU8DofhN+/dwA+Th20yvJt8D8t7WN115aju416Zueyqqx9PRFQ34eXE4Nao5qn3S48E\nPbZysmovmk5a0A+WAdUnVhu/9Pb75c2r89rn7Qflf/s/fr38uLasee6zj5UzJ46UkyeOlzHNs9xW\nr9ogx7xpBSrzLHGWNnVs25h+5AzLGWQgkgUMLLyhlnOyx45637Z3tTpV5sTPDxxMnjPZEgsJFIfI\nY1EXMBCXxTiJ/BoLQa4xPT9kxNw9HFIcQcg4bLKP+h35SGH0tIl0T8EvYcOspAuX6fcSb3W2aesE\nfxDNfH8R8F5ta6+nTX8U12Kdhuh03PCjyOdeddgGw6ynC5fp9xJvdbZp6wR/EM18fxHwXm1rr6dN\nfxTXYp2G6HTc8KPI52508FImVKhv/nnztgEcaNqQHq2FWSRYqSf1TZxJitcmCGTo0BeNHb0MNE9x\n1iOTo+mB4EWuQ7GHNWR69sSx8oXPfLxsLM+XXa3oZCf5be0uzzGNw/qLhk4CnESA4Ba9Zzh8soNV\naeEWqqGIfa3kSOH3yCeMM0G5vC31WGyPjpaRmYmyO67p35pDNK5tQUZky674aeBiXFKgK9Rm1URB\nzZnDMhokTcpTmqGwLQ3jygY1Vg8/NFeOHZHdK3Iw17X/lubknT17sdx4/1p5+80X1buoI+61VQNH\nFklDXEM0bpRT7dLoFWC1pubs/I1LaUUp+fjngv+Cg+uZYTanC5fp9xJvdbZp6wR/EM18HwZSrbkD\ntQeN3iVVLXA8B7q39DsBww66qRAQE5vqUg/XtTUNJ2qQpkdsc3NXp61p0c30SdUj9aKp2r07v1l+\n9Z//m/Kvf320PKTetyefeLw8/uhD5aEHL2hD6uPlxNwp/YhQHqyg1nzKxVWtQGXNDg6YnDQWwDBE\n6ZrCs7irOZoypGcPTp0+IjAXE6eRHy0QqZ67DHvitKEPHM4bQTx1hSjScjjJQw9jnIYgwejpkyxT\nI3Y1B/RDOW01x/vf90vgfgncL4G/WSXgF/dhr5pXNy/ngL1GBx28zKOBEsFDJLzLmdOjN3k4R/Q6\nsX/ZuCZXb2qIcmNtrWzurJQvfO658uC5k2VEQzsrNGjqbVjUitFNze3B4au/zNX4qU0Z0s4GI5sD\nZUzdb8PKAP9pS70Jo5PMKdMxQvpFz1mmcg3LID11gtty6Nb1K39F83pWdtbK9JHT5ejMrASlULb5\nuCh60rikNsiiek00SvwNyH2ET2OtbO1ALlqKoDnlOxp63dJB8qfKo4+cKb/z+2+W8akj6jnZLKPj\nU+Whhx4r169fLrduXi5HZ7XHlhpKVvNxfTi1iiQD0FoD6Dq85rQwsMseIuFAU/gk74e/wBLA0cE5\n4a7Qy4RDozqGL6RngR8ffEePLVby0OBkI6D7x/0cxXkTflkrnEmzCGFd8y5vrWxqLuZ0DIUuijY5\ne7osySl74bUb5fmXf09O3u+V0zpS7fzpU+XBC6e0+vTh8slnniwXzp5SfZ8r63rWdrV59RiHo8oO\nfuAwD455p/S87ejh0tMUNOpj1O+eadT6WKHKRUTFkwbkuS7+hI/ngsvRxdVrlrYYdpVIUOX40ROo\n/MgpnLbsRXOx9qgdb9OoIoCPCbOSIcDvAM3y4Eh36TFPF826LA8Mw3XFlnPa8kBofAiGkdCX6UDH\nTWth5iF+ULA95nG+1gHePNjsdESaL/M5T0Nfq+lOm96o2cvPdMs5b/CZlvHw5uC0J6iaZp1ZTxt3\n2jJA4ywPzvEummW4ZttiaJrlne7SY54uGnIOpruMLee06UBofAiGWY9lzWtaC6GbB3hQsE7zOF/r\nAG8ebHY6Is2X+Zynoa/VdKdNb9Ts5We65Zw3+EzLeHhzcPrPq76RezTgvXIPaxTnJVwnHd9+b/kF\nzKRiHAbaj3BJgp+4pK1HPLrq3nVDoXdL3zRQ6Ii45fVCZz6Mbhc9B/DWBksZCLep9964XuzDGrLk\nUOzpscnyk1/+oubYrGmIR3Q5ONOzU2Xt/be035kmZ0sI/UPMh9OGusNy2qY1JDmlxQnbarTG5DSN\n64ggTKVxG9KRVsNamTeiCdkc7k7mMcwjHevapHRDW4EcmZ0pRzUUq9xkoxRqnDLaT65TTh/B95g4\n11AbMfGpd3CXCeDavgEhajjfMflb+7axvcfA8Gb5rHoOl9ePlz/647c1eVzLYRVGZOe0thnZ0Dw8\nhrK4P+HUSk80ezF0hFql6MFTiDlQXByXErnpfiGIwUGHpLhs//Oub+Sfn49qz9/s9rTWiHo8GZWG\nuxg9VjEUGu5Q1C1uIbc16g13kHqowKpS7uiYfthsi2FtVdvKKM5K5U0tIhCH6tNk0NQlJ5x6dFUn\nqetX5zfKm+/8afn9b36nTMj5e0A/hJ587OHyyMMXy8MPXiwXzx4vc9M6NURDqGP6QaTfRlEHqevY\nQQ/gjqYM8CNHCT0W1PveB56Yp8Z7QT3Eyo/eOi6CTaMFdA1cQfSpS576CbJC9bOLX+4az6NQ7GEo\nZ3G/0iLqCuy409XAyusHE+g4/OYh7tUjxK2jhaYZb3nSjgNpMIDGWc5p08ETyNu0rAsaeILzjETH\nF/Qsm+OwWz+QDza0wTqMtw7bAL7VYxlDX5v5kLEeoOkZB6/5wTt0xTPO9yzLO+584edjvNP98sj6\n+/FkvPmz/cQJztP85iFt24lbRwtNM97ypB0HukyNs5zTpoMn3K9vf/XrWzTsDB3u1W3dV5yKcKDq\nffb9j4aDH4+4A7yLJRPvWcGg8V3/9aLlGQ1O1TEh5XjFr3O9yMP502uDfaG09E0v/Tp8MiAednif\nHJec+DZ4q8uZWtF5onPaS21ZCw5++sd+tDzy0PmyNbBeluWEDWsY88T0WJkeZLGAutHQGWI0InLE\ntMo0rkiOE/PluDZcyDGtCF1X7xyN3ZqcMxYl7I6qqWDYR0NMUxqM2bqxVqa2RsoDJ0+WY3Oa8K15\nZbisDOUQouwoA+I9GAlRAhtloYnd4bDxntRHvWuceECDxxYmdKzgZs7JMXzo4k751ndeFp+GZXfH\ntKfbEfWQHCvvXr8kp1KrBrU1A1srUJzx7Kr3guGoIfVQ7Gi1KybsqCtxR40kG5ZWx1DvEBFiXhEW\nq/GLQ+dVtpyLylWgyx/u9d79RmEv5Oszr2mGLU/Gm5Z1Eyc4T/Obh/Rf//db3J6o73rquB36p5aq\nXKL4qWVE+JY/gBPDn5ygKDduIeWoquVVmtSTYfZeo3KJFq4gKvTsspiAbUNYgQp+WD3O6saKHF9+\nd608/8Z3y/j4n5bpqQk9V6PlwokpLZQ5WS4+cL6cODFXThw/Vo7PHSmz0zPaF25YR2rJmQtbZLN+\nWOxsassaPZcx9UB1HBp2sc3Irp5PerYHY+4oPyb0Y4bnjfonC7iIuFqcNT0njKhu6tlkr7rBYe20\n6Eokzgg5neMQnTakIuXgygc9VzjztzDrtJ6WJ6dbnW0aHeD8sU7SBHRZxnrN08JMd9zQurpg1pP5\nna/LzDZl6Lj1Wh5oedPatPFdEBzB+nLcusFZJ5CPcRHRF86KdbTQPMaTznHTW5h5cjzLG++ysw7b\nCN22d8lZPtOsw7Qu2Ops0+gA5491kiZku6zfPC3MdMcNrasLZj2Z37a6zGxTho5br+WBljetTRvf\nBcERrC/HrRucdQL5GBcRff151Tdyjl+x8aokoesXwKmJdygo0j0bo5dNcSCB136NBVe970EQBZ76\nD2O8jmMeFg0JktEiSZ5f3+oK2tawH42AFnjqDPhbASflPOGsjNAYaKPb0xqq+bq23jhKo6N9quif\noG/tlHrfzk/OlCvrOoBdPQI1h559klnVbDdOIRjXKQib6mVYlmM4sD2hhkDz4dTbpk44toKLBkUz\neeKQ+IG1gfLWi2+XAW1k+vEnnlbjsaE5aHK2lHcMPXIdukaXQL3set0uV93dXvlIuXrDorBlXcxD\nU8EPShfHUm1pKGpDjumIugUn1cm2Ck69g8Ojk2Vi5pgkGB7W5r9qvIaGB7TSVav54j6o10TluM0R\nXRSyvunRYA4RK+/oAal1sWdJlLni3BuGRyPUH2uusy3sMfX01JR5TOuCmSfH4XXa0M+q9bi+QSdu\nvn4w67SOfrxdOrvyAOePdZJ2XpZxPuZpYaY7blh1VQmc+KixPEoR42727mrgeg+T2JDHBcEcfhiJ\nLZxbFqpwbylPTj2oNMqQHwkQe/YL6K6rCvBDSnQeGNEHtcfh+KgW36j3bEEbUq+vr5arOh1k+7uv\nkoWGYgfLkSPTGs4/KjhVThzV8Or5M+XC+XPlpObGTckBHNdCn5Ny7maPHIk5cisrK7KHVRPaJ06O\nW/QkakrAln5w8EMuTkPQtATsC5dNzxXOnR5G7R+3pSkMWhDBk65V0zo+rl4ABYSA0208LlY8FAQv\nUwfjSRN32hA8OvvpNd7yOQ0uB3RCt25D22QasJ+NWd9BcdvhPA/ibXlsl3Ug28bNk6H1ZOhrM591\nmaefXS09px3PNqEHfIY5nnlbm0yzXssZH0o7vvrxg7ctzsvixjsPpw3Bk6/zBt8Vt7xppNtgWes2\ntE3Imud+fdsvZ8rR5ZLjbVm7PA3NC8y8Lm/zmdaVB7L9Qn9+bNdHgjhqMXyBEiGQ4amAFnHqE3Fw\n+qKN4QUsBcLDCzKSe7L4BRUv3XIk5GKoodB2AShRGJS3JP9Dv8Y1b03DPDuri2V4e1Ve22o5OqoN\nZ+eOlzPHT5Sj0+r3Uu/BiZnxcp5X+9VrZVwv9np+4ng5PTNVHj9ytlx/70rZGMWxUoOkPNZ0oDZ7\nry1r+PGNpXfL7sK25sDJ+ZoaKzeXF8v4zKR6CtTTIN5lDbPubA2WCfVYjevIq6X35+U87pZzpx4o\nH3viGfVo0XjIwZNiFUUtiygIrrk+D5QTIb71FY6pCqqWEL0nOG6SjzIXpOESjlk7E+pdvHDmSHn4\n4ony/KV1uZnaK05HPYzpQPsx9o1juEh8NGQjWpQwokaQXjMaWD4j9LAxb0iNXWQjh5BhXxpMGnhw\nBHpQ1SKG4y2zMRJ0hD/r+uZ6RGbOq+ZMsdSyI535Mp5yPswzgIz5rD9D063b0Db5fgL//N5vvXrV\nux21DvFkKQjnu7R/XWAoj3plcU01GjZXPOWgWy/HzNdWSxm9VZ7bHxP/xRgYVRYcSPRt4/zrx8Pg\nqA6oV3pT3t37t7bKtZtXVOfW9QNDtVK9amtauDCts35P6Ui4M6ePRy/d7IymFByZLXNHj5UjOqVk\ndmqqjIt/fExzSTUUO6KxVj6TmgowIWcx7KJrTXnQY8dUCBbqYBVHWO3qB8uhetr2C6hWJNJ8uCDf\n6F45dQLztBBm44hbJ/GukOnEczDNEFrWbV7jMp9pGR6WD5l+uqzDep02NN7QejKERtoBWT7mMb6F\nXfScr+PW1cqbnvG2o5XJvP3iWU+Od/E7H/icl68n82c9OW6eFlqfea3T6RZmerYJPtMMwTk/4g7G\nZT7TMjwsHzL9dFmH9TptaLyh9WQIjbQDsnzMY3wLu+g5X8etq5U3PeNtRyuTefvFs54c7+LnhcjL\nUpcZMfKNj7D0ptGZRA9UfdFXyC95XvTgkCdWG4BAVF6hgyIm/AXCIM6OhgljjheSZCpu9isbVU/A\nkOaoDamH7eyRsfLkQ0+WZ598uHxs7oSGW7RoQEOgc+ol4yV+6/XXy+XL2xo2nCpTGlKcPl3KjFaO\nfvzUhfLKjZtafSmnT0cmDKhB2FADxN5uV9dulPnv/2EsQNjQNh9j2n9tTXyDajwmJnTsj3aaHxuc\n1DVrSHJrvOwsqsHYGC3PPvWZ8tjx4+XhC4+ql4AzQ/VrXz1dcc+5UhUEVcb3KfBxXVwxtFo2oIKP\n8o0hYxAqWDVQOJ7M+RnRcO/RmTFt93GkvCrnc1DOF+thdxeul6nVW0ovywmrc5E2Nc9uNbzdcW2y\nqh5DObgMJ7P5Lm4gPRP0tgkliKuMOXJmZRMdM/Ru4MXRt8GNklVw7F1HJHrpO8VNb2FnfaMQeqEt\ns8xvnhaap4XwGUf89vsA5vaQ6cRzMM0QWtZtXuMyn2kZHpYPmQ/qijsnA+J/T611Gu4RepGqZ18f\naYIhcctCCbwqKc98OKk4a9SJGJacjPrBsCYhtvzQnoec3rEqvUOjU1o0o4ULql+Xrq2V1y+/prmg\n2kJEvJM6YWRMy1DRP6wfEaOK46DNzEyXKTlxo8LpN5VObxjUlIhxPYvTcuwYbtU8PPW6T0/r2VQ9\nH2GBkXrAb+tpwxguAuWG4BzyxYLzBRM3LeMyPset2xCag/U4naH5nYfT5rFsxjveQngzzjoytD7D\nTGvj1gfe8SzXL6+W13zGZ33O07Ss37QMM916oTtuuvV1ycLbJWMc0Hqs1xDanYJ5DTO/9RoHj4Np\nGQfN+By3bkPryDwZ57j5nYfTpjuvjHe8hfBmnHVkaH2GmdbGrQ+841muX14tr/mMz/qcp2lZv2kZ\nZrr1QnfcdOvrkoW3S8Y4oPVYryG0OwXzGsJfX+U9vcpetyqQsQhB8bpwoKd5rw7S9ItIGqdFr9M6\ntFP5UIFT5960PacNsnp56G3a7k1EZm6XXullRMMlo9o095FTs+WntWHupx67UCZ0KPyk9irbGtFK\nSg3L7C5d1xDhdpmbHCuLWkm6fvNG2bx1qyzdWiqj+qX/4FOPlY+fPlNWr14uSxryZJYObsqOGgDm\nvq2pR29sVEcBrWjfKckPyPlaWl5Sp54WA8iKwR2GhibLzpJkFnSsz8JWeWDuXPnKc58vR7SSc3Xp\nWlzYgOYK7ahXzj0wLERwmfr+iFEXq2uNQqCsKJW6yo9iIOC01jWrGgbScC2H29NQPf34ifLSa1fL\npbfeKaNy1Oa0IeqE9pmblG3jOg1iWFuPrGl3+4WVtbKoIdvFtQUdfSWHV3vayRI1eDisIxo+HSxr\ncvzCKay3SmbAIdvFWbdk2LO03vtqWlxP2BgVQjyy1XV3/xp7zH3AQTKtDngdTMs4aMbn+N3kYf3A\nLJfT5nFe5ss8xhnC6ziwK1ifYRePcdZH2vEs1y+vltd8xmd9OS/qse12Pjz/Q9EbPKh5pfS2aW82\n1aURnCwdTs8PgE1dNz8AYnhV8VgAox8D4zrYfljVnekOW3K4NjVnjWH9dT37i3r2tKliKde1z1t5\nP7bW0cMkunRJd/yQUd2k139HeKYCxIbS+sG3sqR5ejbUFwA0ztBditAcBxK4WOJcKHEXjiE6+Dgd\nQvqybsOst+V1OusxDsiHAMyF3/KbL5h7X84/4+CzrK8J+1renF+mm8/Quq3TELzj5jVEH6Erj2yf\n48Hc40eH7wvQwbpJO24IzroMbYN1gXcciCw8XXlkveg+KJjXMOt0vJ8tttUQHXycdr7WbZj1trxO\nZz3GAfkQgC4H0i2/+aA5OH+ngfBZFn2ksa/lzflluvkMrds6DcE7bl5Dl29XHtk+x52H09jtMjXN\nup1vhsQta2gbrAu840D09csj54Xug4J5DfVW08uTHhf8qTo8qtdlbDEQc82E53B09iaT0aEawC9y\n1YZwzHTXwgGpmJo7vgoOSzzJepHrauQkKCX8lmTpDZKXpBWecqDENaIDrp85d7z88td+vDw2N1MG\nV+a1J9pzn3H6AABAAElEQVSmVo6ux0KE5c3FMqH5Z+NywDbWltSzpF/nkh/UVhorN6+VG0vz5bh6\n1D794Hldx3Z54c3XyzzDnRqOkcunlz/z3FS31ACNaoUpv97pZWNIdlxLDna3NFSjyf9Dy3Lq3l8u\n42saslzZ0TFA0+VBTcLeVQMyqLlww3Ied+QAUjb13n3wfVLLlrKKQhBvr+4Jo9quLxD6ly2UIUNX\nMkUbgKhXbXuxnDo2WZ44L8fs7Wvlgo5KffaT58v07tFycm5CvWrqqdQeXBty2pZ17uQNOW4vvf12\nef7VN8rr783rKC5tRKyh0k3muOlA1lE1ljSu/JFpPUZLVggnE2q9wi7dmtuG0P6M6luuw473q/t+\nNgwpVz5Oy+wIrsuGWW/L63TWYxyQDwHo5450y28+aA7O32kgfJZFH2nsa3lzfpluPkPrtk5D8I6b\n19Dl25WHZbJtNQ9qR603bD7NRrvqxhWqPrs817wTAqrIYsseeuX0XCyt69kSbVDTDNQNF+o2KAdx\nD2moX+OsKgf9pFKlG9YJIKwkpae5Omy1zSYXziXRz5mov/zAGNPZwTp79JFvoJGLIfgCDMH7woOh\nx2NeQ/O00Hrhc9y6DXMeWZ54m3Z+GbZx0l15ZT7rbfM23tC6SLcfaA6mkbZOoD+Zz3RkHM98xkHP\nIeeRacYblyG6CODauNNtflk+x62nhdbjPAyNh78NppnX0LZkfmiEDHM806wXnOPWbZjzyHqIt+ms\n27SMI07oygu8ZQzbvI03tC7S7Qeag2mkrRPoT+YzHRnHM59x0HPIeWSa8cZliC4CuDbudJtfls9x\n62mh9TgPQ+Phb4Np5jWseF23zA7LFVXJV3HuAcig1fcgcnzgite5Xr68xON1HNeODBr04hUf82RQ\nh1uIGD1LW7yseS9r4v+Werum1HM0srFYHj46WX7pK8+VJ+WwjS29X47KhRnUodVL4p8+f7bM6tzQ\nG9dv6he5vBv9gmeVKY0Aixa04FNDq9vay+x6mdHWBhfPXdBGueJRRgvzK+LVsIrmqJVtTeJXxswR\nw+nc1ny34W31sW1p6GVDO8ALKkP1sGk4Vr7iuJy+rz73OQ2NHpctWiSgHr/dQa3e1HXRQ0bx1B5G\nl4sQgaOMqI+UQ4+HclSeyIDjiyYP/41AjwXlrf3oFdmWm6kGbXG+PH50pFwY3igXpwbLzLB6Jzbk\nzGpBwpQc2iO6+LNH5VSenYttGo4cPVpWFpfKvM6dHFav26CGlGLGnBxTbkDNirlsvfziGoTv3ad6\nb2GtnMCD6061vf0+SMa6LeN0hjkOn9PWC85xaMQNHc9y0PwxnrTjGbZx0l15ZT7ravM23tC6SLcf\naA6mkbZOoD+Zz3RkHM98xkHPwXlk/G28YkcinnPqKQsJcKzkYIUqfXEWbgRV3KjHcsJYec0PJH7U\nxPMvHnrtwj4x8y6oH8nwHuApkDC88cOOHzKap6lfHCLpB8qAerXjSdGpJXIAh049cDin7baLCStr\nRQLfeuOQXRDQnW7jcRG9G+E40LIh2PvKeNMNrd/Q+H7QfEBfl3HIZDnofLjGNsDna8p067RslrNM\nzsN5Z+i4+Uk7D8uCI+S049kG89hW63TavJbN0LwtDp2Ws57MC854eNtgWpdMxjlf5I2/X9/26wLl\nQlm6bFyu4AnGuxz7QfOan/TflPqmUqIQ9cLkLa3nn4tXoCxiThu0Ht5lIoEod+az79H0kq4Om17M\n9CTor24tUDUytBIvduaDydljcvyYJhoPaEj0lHylX/rKF8snzp0og4vXyxlt37G5cLOMT06WJTUA\noydOliMPP1KuvfNe7LGm13k0JvKeyigvd22UO6fJzINyshY1p+2Y9jV78PyD6r3S3lTqR1tblS3R\nm6aBWG2yO6jPqHqk2MdtVE7b5M6EHKKZsjG/VrYXNsuMZLYXFsonHnuo/OinP1YmRtlGRL17g9ps\nVE7VsPLclUNYF0FEcUV51VgtOzHWsqTsaouG0YGrjRVx6q4g3RURFwO9DrJ6UtuQ7CzK+br5Xhlf\nWdB2JpqvpqFSfFbkhlX4w2ogBxmC0pYIE+PamuH8A2Va84JWtVrvxo15tXsakooVemrwlBF3Ofa9\n0j2lvd3RPVOG1SjFuOd+RvJzJVLgM6591uBxMM3Pk2GWz3khZ57777f9dw/lksvM5Qqe4DIDOt0F\njTM/aT/LWT/0+kF3cIlPkBXTqjtU1JqT4qqjHg6NiZPhiml+Gwy8k0Mu+uGUlrwcu6oTXA/PylHU\n9nr4EVLNjI+wPUcOBikVjfNSbxse7XfhykEyPVMxphc3Phek44a1AKpsG7c8kGC9LsSK/ei+s95s\nX5uD+Qyh57j5jcNux6H5Ogwzro2TPihYb87DuC4505w3MMct04VDltBC81r2MHlYxtCyGZrWQniM\nc16WA2/7wDluCN2ybRx+03K8zQPaRxGy3mxfq9t8htBz3PzGcQ2OQ/M1GWZcGyd9ULDenIdxXXKm\nOW9gjlumC4csoYXmtexh8rCMoWUzNK2FvIVlteyWLbyYQeyF+r6jwZehQQXGBx7ezHqRxuHTYmFo\nRL+N9aLnMGn1pGljT3Y0x0OY0EKCLb2cNzQ3hiEPDp8+JudsSBuBPq2NPD/16MUyrf2dtjSPbWtz\nMDbU1bteKz85H1HO1ozOSpw5UTau36hDfhouZZXkxJSGZOTQbC2uaqHCuLbn0OrQ1y6Vk7OnypPH\nzpfjZ58p/+K3/2O5+r6GNLUtCPPCttVTNTM7UuZOntKq1Jlyaua0hkmndCSWGh0Nkx4Vz4gcwDlt\nXXBkRoO32th2d0BbhMju6FykCFQmdahxr7Buj4get7h3n9UvEeXGMA/zBGm4aKDUbkUTVu+Cikr8\nDBuNa0XrEfU6zr+ubT7kfG2qHNe0/9zksdnYKHVF2zDsaIh0WHN9RqRzQNs7jKg38HOPPCiHT2W9\n8Yfl1esLZWbyWFlSmbIKMPd46M7KHuVKLwnm9MKfeX1TPq6Dzst5g/fzAM5xQ+iWbePwm5bjbR7Q\nPoqQ9Wb7Wt3mM4Se4+Y3jmtwHJqvyTDj2jjpg4L15jxyHDofKkacZqAfEDz1A73h3Covsm1UHYJe\n/3hvSJYfKBGteph4ARffBHgNeQxizqxIcSxcUEI9WShwv/V8MD1Dcd4v6jO+u5ALzpLGuUAyNM/d\nQOu7G5nD8Ga9xOvN+aCk+TKPcZn7TvTMe6/xrjy6bLH+g2jm6QedV4bwtuX0YfLol3c/fFdexuV6\nZpv76TkIb30H8dwLLes9yD7zZR7jcr53omfee4135dFli/UfRDNPP+i8MoT3w9c3Xor1BVnzri/J\n0J1emJWmb16cFeib16sDsdoLU3tplOSFzltUn3Au9DJlwDE2d8WBi54f7e2kA9yHNBF+XCvFxofG\ntd+Yhk1W5WDo5IGQYExTYUiT6E+oZ+jZpz5WBnVczub6Yiz/f39puUxqm4B57dG2pkZgXFsOsALy\nxAMPl3dvrKivS7/Cx+RCaajyytKtcnpqtmwuKk/1ng1rSHX+6ntl+q0rZezhubJ0daUsvrOq+V+6\nGm37sTGiVW/aGuOJR58qTz75QFnWykwNnGoxwmI5MqF9pbQ3W5EdJ7VFwbFxXe/2iqhMgFbvQDRo\n4ZbW+xTdEPQa5PJWkhANoCjhlel6GfZRI8i8PnoWaKxqfyTS9C6QEpRcOFLCHNP5qtuzskm9fhsy\nZVMr7HaPnylTGv5dvPV8bPTLDRvW4goas80l9ciNb5dPP3RBm5tul//9t3633NAOdZTLthy+AZUh\n93QvH8Vq34mU9MKHqdPWcVjYlZdx999vhy3Fw/P5XYOEy9lxv3f28aoTevaiZvPMx7tAOEUDF+T6\nowOHy6uR608Q6rDEhee1oFhPiHj9uSJMzwbxwAcP34AI9R0BLqwAL9RdO22uSD2tAXyxJBw3zHyH\njXflcVjZg/iy3oPsM1/mMS7rvxM9895rvCuPLlus/yCaefpB59XClv/D5NHqulO6Ky/bh6zjhnfS\n10XvyqOL725xWe9B9pkv8xiX87wTPfPea7wrjy5brP8gmnn6QefVwpb/7vOIV6rU1JdgfVvW37c0\n1/uLDXq/ecXOiBxS8SMZZyP+qgNhe8IOJ3Da5KzNaN7UluaFcY4n2U1qKHNcvTynjmgOmHi3Ndmf\nDW3XWempXrEd9aCtabsNhjSnRiY0BLlYzp0/Xh46fVrbbagHTkN5u1oZOaUVoAvSua4eOx1RoJWQ\nHDmlQ9vPnCsbL7xSbiyvlrHjM+XiJz5TLr/2p+VdzeGaGJ3QlgP1l7nmTZdlrSadk8N46ZU31FM2\nouHPo7JIPVCra7L3Zpnd1ZCoPlcvX9fCCDlmrE7bfU+9VuNlTpvZjg7Wide7uyuay0bpyHHUUGTs\naaeWyA3gfiPnwunBni2RUpxmKYaPKV8cOXq4OI9Uw6yUJac4wBP9b6KtcSrE1Gg5fe6UFlksxka7\nW+qt3JVtuyrfTfVADmiV6BBdf+qFG1APptYsxLFbm2oEn3zwXHnmyYvld7/7YhlQz+GgykKXqDyV\ntyJRF5Tu19PWXM2fSbKrbvt5IEPHDe/FiK487kVPK5P1HmSf+TKPcVnnneiZ917jXXl02cLbIHrA\nVFXoUbarVB0q0sEBkceemh1xYvXTw5FEh/iMRwcyVZcikmGjaX62QOEvPD79uOGHTDwn8VRUwb0t\nP3wx+UEE5wsybB9Q8P3Ghi0fZunCSee487JuwzaPELqLr6580Zn1tnln9eYDRrdkusaWz6tSXAbQ\nfR3ZDss5X+dxEC8ytoG487AsuDaYlvXCAx5cjjttXvNkCH/Mz5G8w53ysLz1Wy5D08xraFsMnZdl\nwbsczJMhcYL15bhxmR9cm0couIsv9LX5tnrbvLN65w+8X98+yvrGq1T3Jl6c4TLEC9H3Iiaf1+oS\nPLyko/pQ14WP1YXUD8VhC1bqHw6LhjvVv1YWtPnshPYIO3fiTHng7Lly/tQZ7TM2o0Oqp6L3DQuW\nVlfLtRvXy5V3r5T3Fm6VS4K7q5rQrH+GMs8dO1mmNPw3oCG8QcHRY8fL7MWHy7WXX9VWFlqMoCHS\nFa3WZIh1UMOf02fPapPZAa0MXSjD57WqUqdJXf3O98rEqSNlkYUKcnaGNFfu/fmFMirnblHDppvq\nPdvRdgLDchRH5LBoplfRlmg6dmCnTMnRnB7RBH85Ossaqp2e5MieGS1wUN7ahJdzQaPhoP2IY6KY\nz6bJ/LKn1vso4Fyl9+KUp98cNFzEq8+kspanzFE+4aiJNqhPnWOmxkq9csODDCtvlolj2rcqjvHS\n1gkq+2Gthh1Qzxpz1SakUFMEdZLCutxRzd5jspwyXda1TGhPu08//bHyrZde1VYLrNqTfnr45BxK\nce+ecnNpHPeDn8f8noC6V29UJ/Izvy+5H+t6H1gm63FeloTn/vttv62jXCgTl5nL1eVlvMvxIF5k\n4GvbbMtaZ4X1XVBfBSwUYEEAOGorP8d4L+he4Uz5OVCdo0c+Fh/o+YNHC5jr+0N499bHNUT3Gw9H\nvKHEIz09/fVNQz7KTzj/qIg6qvQ9z2lz4bjQfMFhkBKG0F0obRwZ03LcusHdbThINtOyfW0e5jOE\nnuPmN45rcByar8kw49o46Tagy8F6cx7GmSdD05w3MMfN24Vzvi00r3UbGg/McfJo0843w5bH6Szv\nvAzhIe7guCF062njWW+OW7d13g08SDbTsn2tfvMZQs9x8xvnMsjXCY/TB8WtK0P0OnTlYZx5MjTN\neQNz3LxdOOfbQvNat6HxwBwnj9vTXA/uAY0zLz9eiIrFpw7I6XUovBpuXorBJRm9fCOuBp5WfFCN\nPI7MroY80cermrlq9NKQ2ljR6QQ6F/PTz3y6PPXY4zo14IxOEdCEd4TpMZNjwwv8/LET5dHTZ8vu\nM58pb8/Pl+/84IXywvc1tLc8X8a0Ue0xHWo9qZ6nHfXKMWts9rh4H3isDLy3pLNBtc2GdK1o53Ws\nWNe2G+Ma+mOH9QGtrNzUflEzZx8qZ5/mJIGzZV09bhs33y4Lb72mMhmKYdo1bYkxwhCteuy2tmUd\nzpecw9ijTL1Vaxty5tgwVw3NKZ28MHd0TluLyClTjyBbDnCWKfcgqkmv7CnvuG8UGNfbFUQLMl9R\nzip7cPoa0uKH6H3olWXoCx00hGhUCWvFwa7s3NUxQUXnPC5ef79sa1PSos1KdzXcOahNSNeX11Vm\nktCxQ/TMsW3INj1uWtgxoN7D00fHygOnj5Wbl3Veqs53HeIkCq6foV55w1EHqBjKkevDvruvb2H4\nB75ur5P1us1kmvMyjHKIgq6cUcaKGkK3bBtHwrQct25wdxsOks20bF+bh/kMoee4+Y3jGhyH5msy\nzLg2TroN6HKw3pyHceapkHJ2nVAtUZw6ghz48MRUe6g5EQInu6nfIJQnEsKIlRrta670sEk8UOpP\nBvTyvkKauN4f6NJX6MHJC916Tl0QhpIIwwzB45ni/ZORLxA8cfC5d8B0y8CXedFLAGdI3PzWFcTe\nFzrNa/0Zmg70r5Scr/M3H7qcn+2IDHpfWbf1wd8G52f7rStDxy2bdYODbpx5wDm/rjzMD+STg9O+\nL7YfnmyL44bQXSbWTxq6dZnXdNKWQZ5gHqDjlXL7d6Y5bhnrJJ+cF3Hb4rjplrEO051rvzyQgzcH\np5Gx/gxNB7p8c76WMx+6s305L+JZt/XB3wbnh37oQEKGjls26zavceaxPtJdeZgfyCcHp31fbD88\n2RbHDaG7TKzf12Rd5jWdtGWQJ5gH6Hil8DqM38Ex0Z3huPjjRRyvQV2rXozSoAjf9V5zdRQrvUi8\nQutQqlZYyrnZ0aICete25Whs6RilE9PHy9e+8OXyjOaGMdo3pN4sjmTa3tLkMelmV/NlrWIc3GQ3\nczkauqWn5eT93Fd/WkdRHS8//JNvluUrixq2lHMimW05EhvawHZlYrbMTJ0ow0dOahXpeJnRlhYr\nOm6KN/xbV98tJ86dKyuapD93+tGyvqJNOnVawtmHHteRUzfklOmYde3OvqaevB0dEr+tc0jZBHdo\nV0ODsntQdmzuyomTd7OMrdr6Y/rIqbKzrC0+NM/uuHr9ZiZ1xufyLTUOW2o0VFr60FDhRFFYu9r2\ngDLC71EtjHgUoqi3BXiEiCqjAlIJxx9bIdDGqeuvR5QOeitCZ633NJJbQrAVwtiUhjYfOFuWZZO6\ny3Q25LQWVOg0B9m+Naz95SR74eEHyppWml67ckm9lurhUHnuag+3o1NHyunjR8vum/Pq2cShVi9d\nNIiUt/aEU/9c3GmyDaMwyY3z3dS3265ceXDlNTjuOuo6TD45L+Ku+46bbhnrMP1OeSAHbw5Oo8v6\nMzQd6Oc552s586E725fzIp51Wx/8bXB+6IcOJGTouGWzbvMaZx7rI92Vh/mBfBx4J8Tzr1oevcr6\nAUc9rUF8lJ/+4KPu8I4hL+tgPlssYIqnhHdJr15R1/kxSFp/vDs+sAqbuhimSDdQDl3krOdhb3h0\nz9BepjlzxyOTZJTxyDoOdBroC8jxzGt6xlkHMoScdrwftI25EhlnXc6TdKaRJmTd5nVlqxz123yt\nDqcta53GOw00DmibjbP+zJdloWeeTLMOoPFt3GnzWhfQOGQdB+Z4P72Wh36nYF5D+B0/bF6WASLj\n4Lj1GUJ3HMgnh5x2vB+0jb538BmX87H+TDMu67bN9+tbLUeXl8vF5ZvL9jacCNF7FvWAl6LS/FF3\n+bEav3rVYHCfeGEShUuORIxoIAeNbST0qVVDvWpyfNikdUC9bsPqrTqueVVf+9JXyyMnL2grCq3s\n1NFJ0bMmrcM6PmpIPUJDEyNFPpIWF7BdhuZuqSdtFMdnZbN88ZOfLWenxsvv/Nrlsqa5a8NyCld0\nYLq2VpOtOEcDZXpuTisoNYdLTsgQG3tKzZK2sXjk0Se0oGC4rNzS5Hz1ot249EZ54sknypKGXV//\n0++XKS0iwOEamqbh02pQzsjh6KxdnRawKbdTeW1qNejMmPY906T9dS02mJYDOqUhyFHGGjX/bkxO\n3RBDNlEGKikeKz57zhXlRFGB3K/zUc7pGRSx90yKWa1TNGR4n0rmsHefe8+PXoZx3E8tj50yffJk\nOamFFjeWlyWr8tY5kAOzx8rxoyfK2oJWtmqrj7GVI+XK25fKaW19MqZ7tba2WsZnJ8qZo6fkqr1V\n1tQDt4PDpkaUxngL25VPDNESp45wWbZBBnbFMy5fQ1fcvIbwOL53zb3yMj7zgHMaiIyD45YzhO44\nkE8OOe14P2gb/6a+35gKQYiyVjG6zFWoUV94d/C+iV8c/CqrzNwA/ev5ibKHt3dPqtjePYm7uaeX\nvFQHe/oiC6UjD9920fZ62mpu9bu9gdUOCYcBlQfjfUMzPushDo2PeU23jCH4lse8hpne6rQeeDIf\ncUILzW/oPDJs88i0HM/5gbdOQ3DmsR3gHIxzfuCJW974fmnrydD5ZZzlwTlumPky3fhso3FdfNZn\nmHn7xc1rCF9rP2njMl+rExof85puGcOuPMxrmHW0Oq0n22WdXdD8hs4jwzaPTMvxbBd46zQEZx5g\nG4xzftCJW974fulWH2nnl2mWB+e4YebLdOOzjcZ18VmfIVdb33mqL2qclZKvwLX1HA+UxIR3/QoW\nnk+8WNULpQG3GAqNg5/knOzgYOk9uk19kvMyrp6o3XXO5xzUDv2fLM888VgZ1okBW8us2mQp/lA5\nenyuzFyYLScfUu+VvEDOKly4tlAu/eC1snpzqcxqOHNRcEC9R08+/EhZfvZZOXU6eFrDdhMjU9q+\nQys2Nadtdf6mfLTtcvz0qXL1+98rr//g5XLhwsWy897Nsn7t/TJ77kx5/aWXy7COqlq59FYpkhm6\neVMb4mryvhxGDqbX271M6zD4cR0LxZ5wHE+1ru08wkHUqlVNhdNmvFfK5Uvf115sn4iTFpjQv6ue\nQfYyI4RTpjLCyaKM1UEQjQhpFYq+aqPm8m8hOgjgY682Gqi4QSCDROWJCN9x30kzgiMHdkTOKr1m\nw1Mz5YGnny5zC6sqqxGVz1I5rfKb0dmN8+9dLUOzs2VV92fk7AMqs5Pl6gvPqzdUQ8naKuX49FH1\np+nMVBTq3FI1pQz64q/pjmEQ/7VxtP09y8Jux4GmG2Zav7h5DeFrnxfSxmW+Vic0PuY13TKGXXmY\n1zDraHVaT7bLOrug+Q2dR4ZtHpmW49ku8NZpCM48wDYY5/ygE7e88f3SrT7SZCMVt4ceQppFpA4B\nzYRdQakyRvc0ZBv3lPKOqookWq+rPjPCJ/nbetp8MSjJcaeB9rgdBxLM74Ko2PqNgdnIrnjWkWVz\nPOeBDqetzzhs7ArmB/K5U7A+6+/Hn/VaBt4s5zgw82Sd5qGXxXHDrjxMyzocN39X2rSD5KGZDx2k\nsQtcrgNZR+bPcdvQwsyT4/CRJuS88n01v/mCufeFTbbLfJByvCvdE98D5m+hdQOhZbv2hBXJcsTv\nFKzP+vvxZ72WgTfLOQ7MPFmnef461bd41XHNaqR3GK6QM1YnwPM6rE4G1LqKUbjofqswFibQ8yKH\nbUBbc3ByAXPJ+LHN0U3zmzoRQCoeeOCh8vFPfUyT9m9pu9oJLUTQmZ0alzx/9kx59Lmnio4yiMVm\noVqe0dypY1qYMFFe/KPny8o7C+XMzKkyz75h2mPs2c99obz14h9o7tlueeypp8qInJC1paXyxiuv\nlImTc1pJqjl02PL+1TKv+Vtj6nraevd62T11osy/8bpODFguY7eWy8r3ni9rV9/RWaVrZXbmaJnX\nsOmYbJ7SHm5zc1Nl+1XJ6DisOE1Bq1nH6QXQHLCj4zPl6UfPaTWr9l+TRxbHU4VzozKKSsW3Skz1\nNxxfYavTVRsl1yfXb6DjLc310HWSXgx6vCRQh5F033SzIh25cq2MHWnrFJ31U3ZVXjMzo2VhWRsI\nz2tYWXvM7ah85h57tOys6tQHrYQ9J2f66LE5OdPrZVd7nNySQz2gYW1cS7YaqZ+oAcqnzm+jgYz6\nwH2XLfmd42eEa4HmdI77OluYeXLcuoA5r/weMT+wDS4/8OZr411pcDlYtoW+RiC0bFc/efjuFKzP\n+vvxt/ZYd5ZzHMjHPFmnef5i3m/1ubE9ttE2AQ9sT+MxUH3TH/8uE/R9oKctX3yOO1MyysFGgHPc\nGVi+H0TGNMvnNLgcbAM4+JzOMrbBMPMZZ/j/s/cmX5ZlV57Wsd7cvHcPd49GEYqQFJIylalMKUuV\nXSUFrBzQLViLASwWY/4P5syYM2EEMxawYFBVrAJKJJlVFJW9lIpQSKFQdB6N99a4Nfy+895nvv3E\nfWYWoaykEvxE3Lf32f095z572889zWhbu9KrrrQpiD1jEI62rI++1QVWHDte6Mqrdqov6LVUeelV\nXhyILEUdYKWpL/QZUF46ULsjXmUqvkhe2/pSx7ioi3sP2loE0ZGnfq1Dq8UYoCFnveoYg7DKSROO\ntrUrvepKm4LYMwbhaMv66FtdYMWx44WuvGqn+oJeS5WXXuXFgchS1AFWmvpCnwHlpQO1W/H+85EP\nIK8o+p9P/uXKqFquhNDxno0FJxwSLPZd6yNLeU24l4n4d7Nv2n72Qltj8nteMZ7LFhgXsvryte9+\ns7XrjPZklWZ2OGNkaj+v7S7c/yQT4x+GttY+vPNRu7+y2y7fuJrtPzKv6pVb7dHHd9sP3v7TvNLk\noPb80c4ryMf7mfz//Jfag9A+eOudPqr0aba3eJBBvptLr2bfji9ns9uH7XLksxNbjjHM2FBOCGjb\nL2R7kRxenSWoV5K4bP88c7myh9lS5ro9yPw3Es+rWXV5mM1mX/nylfbcj++0D7KCdW39ahKz+21j\ndb9tLu/lEPi0SbYT4fD4oySejLDl9pPEpFFiIy3S2wuMRBjyrAED+TX5HMW+EqLq8zBLCukfOmN2\nreQV5+MkkIe8ss3Y2H4S6A/fySrcdz5sL331a+1cjuu6l73lNrIX3ofv/LxdunS+Xcv8tdtvvNku\n5hXw8vmV9iiLFx7sbec80hz2nfsiCWROHb9iyySpJPXz+8idElL/MQWe9XlDdlEZ71U5bftsV/qI\n20baWgTRkweuD/CpUvnVx2gDXWQpVU6asAvMP6RVW1W3yo44uuoJkam4df1oQ11gxdH1QlZetTPa\n1+YoL73KiwOxXXWMRZr6Qp+BGpM87VIXP/NIm4EY1OhAgyPEWQ1afYPQrnKVrqxQmUX1qZiQ1WZH\nTvhQVpGpuJXR12ky2gKqA66dKRwesvLE1Z+qqyNUphvJh/Rqc0pGfoXgFOW1ZX3GnfYhbwpqB17F\nqWtbOnVwi/gI1R31oWtLG6OMfKG2FtWnYkKWIuyVBR+jDPamYkJdX6fJVFfqQKu+Rpz66Bcd9eXV\nujpCZdCjSK/4lIz8CsEpymvL+oy7wEdXjK4/xbPf/5kKCVvq9BA293nXl5GeVXbPz3ynvSRFy0nW\nHueH/VFG5TZvXWzPvfJiJv7fbC9kFG0zoz1LmZ925fK19ubOu5kHdj4HQz/KaFv2QLu23j7c/qQ9\n+P4/yT+Fj9r7wXdj61d+49fbLTaHzavSSzevZQQv88oyB44JdFl20GO4eOlGe3TnnfZ4O0nZ4532\n/PmNdjcjcYe332tLn3yQkwnuJu4khbwqTHK1/ck77er2lzOfa7Pdi8zG2mYSxeW2nY12V85lwUHu\n8EKOsbqU0wQeH95vL+RV6isvb7Y7Oc/0KIsQzm8ett/5u99uv/bNlzO6xggV2/0yzyujbUnU+BFh\n7hkNRVuR6IYcCRqOj/CGQt/YTwPr1Cp63WwktUESlyj6lZloiSGvpS9fSFzvZl+6N3JPr0TnqN19\n9712797HGYm805771teTiLb2ox/+ZXvjp++0S0mwV5+73n6eZHU7ye1B9pqjbXglvpI5fiTp+4w4\nxhfF5+s4hvBrkQ6t4lWm4lWm4shM+ULGIj5CdUd96Kf5kC/U1qK6fYocBTku8Y6c8KGsItgb41ZG\nX6fJaAuoDrh2pnB4o1/k1JdX6+oIlUGPIr3iUzLyKwSnKK8t6zPutA94PWlDGEWVYYiPPA0D+XIr\npz668qqsuPJTPkaZahO8Fn0wdMulXWD/ozO/J/1U3UX46EOb+BJXptKqD+nQwIXGBKRop0J1gep6\nb+iJw9MONPEpfWnGr2/oXNaB2KnynZkPdfFFqXraQUY5ZMS1B80iTRno4iOPOgVIfMoBuSqvyoor\nj5w4PPFKh8YlrSPzD/3TBrUfkK/tNqVb7VRcX9Ko46fGp0ylVR/SoYELjQlI0U6F6gLV9d7QE4en\nHWjiU/rSvBd9Q+eyDsROle/MfKiLL0rV0w4yyiEjPpPl5zx68z8Zncbkfn6s+ZGGkf9JCh7nZ3x5\nJX0anNWWO9m87DCjWd/49i+317/zK23z2qUsx1ztr0rZxmM9fj/JvmvJrtp28NUkeFtsrZGD2C/n\ndRsx72bD3PXorGck7crG+dl+bOmGjz64ndMNMul/PaNz8bOblZ1bFy9lpeen2Ust87ZyBunr2R8t\nBtrFrJDYzAjYvT/74/bo4G7mdiWhy95qe5nDdrSW80h//MP28JPbGbE7bNs5bH4jw2P7K/s56/1R\n+Ovtys0bmay/lAUUd9u5HKL++tcutbff+Vnmt6233/7ed9qvkLC1+xn1y+vVLHTgKVnOaCIratni\nhNVsJG59MjWNxUrPxNRHxHrD9ham5XPN+qj2AfhUoS/gVf6Io9mtJ5mkJzezJcp2RssOHyUBff65\n7IeX81nvJgHNSRDb7/ykffrez9tW7G6/tdK2302Y9z5pr9y8ntBW2/tJfn+aV8t7jGrmdTErf9f2\nM9KWe1thbmPajdfoxPVFn7caP/dc77E/e6EhAz7y5AP5PigH1K68KiuuPH7F4YlXOjQuaR2Zf+iD\nNuBSH1i/p1O61U7F9SVNmzU+ZSqt+pAODVxoTECKdipUF6iu94aeODztQBOf0pfmvegbOpd1IHaq\nfGfmQ118UaqedpBRDhlx+MevRyHK7MhcsNKUka8zoXRgpak3QuRGGnV0hdpSTh350oXKV//QxqIP\n6cqPdqzXDkYHujTq2lNeGaAFHnL6ki6sdGS1pd5YH/Wm5JCpeupM0fQvRFYciI56i+xUvrhQHaA0\n4RSt8uDXWKjXIg+aeiNcxPPetGFd+9jhqnRtIwNdXXVGWHXVAY52rPtsaRe6NPWhKT/asn5SbNpW\nVlvAGq915CjqSa968Mf6Ipp2hMiJA7GjLXgU6yN8ikcikf/zWzwbWevV2IsQf1bRfcxKzsxFO8qr\nsge7D9rWhQvto0f32tVXrra/89u/1V55/bW2FwP397PIYH8tL+d4PZftMw6ilwRgYyuJXOZcrSR5\n28+oGYco7WWSfHZ+jZ8ka1kA8PrXv9FeufUiu3+0+7cftB/85Rs5O/Rye5TtQlYyGreaTW332Q4k\nW3x8/OiovfEXf9Fe/rd+OyclsMrzQdu996BtZ67W7mHiS9K0nlepTAHbz4a7n7z508CMviVBu5DE\n4yB7qa0l3r0kfJevvtg2b2Z1ZeazreRIq/28Dv3SjQvt9//+r7crl5L0vJh94JII7j3KwoW11ehl\nbldG+GistDhN2fsh3oLME4ngfVI0vP6qGfE8J71tZ22K3lS/QK9FGWn2NfXe//Q7yUP2aEvT9iRy\nheeB5DLbkTyXEcTsSZJGvdPW7t1pNzMKt54FFA/f+lG7u32nXU17HrGv3dZGezebDf88mwzvkdT2\n+8sPdPyQpnKvS9E9SqMawxib9RES6xQNOmWKN9KszzTm955KbwOJc1hp6o0Q0ZFG3XvThnVdIFPl\nqh1w5NVVZ4SjTeWNRzvW/VtW5aRVWeWhVdw6+tqAVkulo6s+EN5YV1e9KTlkqp46UzTtCJEVB6Kj\n3iI7lS+eWa5fvFSnGsSaARngWT1oY9TXTs2OsYm8vOpDO0J5PBTaGPWsVx1oZsvg1Z84kKs+cPqb\ngshShKMMdGOpvJFOHZ9VVhkg1+ctVb/qaqv6qvy/KbzelzHhe+ybs8ajjVHf+/RZUQ4or/qo/Ep/\n9rzV1vgsbnvafkpYn2prZU6CPZEgO5snGiwkYEEC3whG2Zi/xtyw7fywc3T7OvupJUl67svPt9/5\nt/9ee/VrX2kfZyUmc94u5xXo9l5eO2Yvta2trZDyWjWJ295e9vnK34TVjD49TuKzn73SLpzLaE4S\nsluXLrRv/9bfbTczUT5bgbUHH95v/yKLEDKhiohyYHwWAmQ0aw1bj1PP/KuV7Mn2xz97v219/w/b\nv/N73808rQsM7CXxXM7Gu5klx6rHbIC7wkhRNrBoOTrrXEbcDjMClXwxgjlMPXPwXnjparv2lRez\neGGn7WSe3GHONd1L4ncum89+62svZU0DqzFvt/0kqptsSbKczXWzbQgjiLTPLBHrjTf/exc6DZrI\nww0+56UWgVBmdKpftNjf6Hc8Jumjpcxn6+4Y+eN1LfuzpN+u3LjS7r6dUyUyb/BcRj3X9x710xBY\nLLK6udVXje5nFG07ffEvfvRWEuKMTm4lkcuktgxMpk35YFUwr6iD5/b6nczv7Yvexy+qx73bFkJs\njn+fzupHG6O+36tnf99mzzLtSVv9bfk9fSppozPHDj7rA3JWuV/Ehw+b8Kw+P4+ctoV/U7qn+SGe\nGlPFT9OFX+VHW2fRP4uMPoSn6RgHX5iz6pxmc+T/Ij6MSTja/uuoa1v4eWyqI/w8uqfJYrParfhp\nuvCr/GjrLPpnkdGHUJ0+EJQfYhKk2WfuhVGWHJmUrCPJFvuv5fUIr0rzanQn88SWMon/e//ab7bL\nL91o7ycZ2MvGrD3RO8zCgrz+PEgCsZtRq6VMit/Pj/5aJv9fvXqpXcrJBA8fbLdPsxXHSlZtPrqz\n0175ylfa1ku32t6Dx+3R+3fbn/2zP2sfvPNxJsm/0Lbv7+d4pY22EZ/kO7yu28k2HI+WzrdP1y62\nf/xXP2lbN6+0v/edX2u7D7JlxdJGWzvKa9HIH+Z13+p64k+CyEaenFawFlsPdj/Na7699vwrz7W1\n5y7mYPgPW/KU9iCjiSvnksRlpekmSWD2g3t8lPMDskBiY43XoJm/l0RybS1z7JKI0lx9fhdJTR+P\nAsyeg+XEyWvEPj41/63rbUoS3BO36H6OpEdZ4XHfJYhuL3bTPbN4AtfIvBNXNlhpm9cvtQ/e/mn7\n6Ed/nhWid3LeaFLv9A1btKysnGuHGQk9n7NJ//SNn7b/41/8ZdrgSubkbeTUhyS/iT292e/lgCSQ\n7PA4KTWKaWiswmmpJ1TkuJ79fUsTf45nwxZURyj9rwNis9qt+FnsV/nR1ln0zyKjD6E6PWmTSOZt\nGR80ZCpNHWlAyyirDPyz+FBem1NQ/9gUF476yFCqHfEZZ/YJbdTFJhdxA9WrNG0v0lVPWH1WXD6Q\niyK03UYfyNSYpnBltKUM/7KovCnb6EhXf9TpRvKhHJDLf7lIr3rg3tNIp179Wq9y2LSMstXfWXwo\nr80pWO9dXDjqG1e1Iy4PCG3UxSbXs+ftyXfAtqJdajvWtgP3eeuz5vP1me3Nxj8IZi/DSDJ6opbn\nnlGy5cz5yqZl2Wn/Yfveb/1mu54J+/eTHG1tbLVXXrjRbp6/mpGZzH1ilCdfFRK2ntjknd2dnfvt\nw8yVWssrU7bSOMjg18NzmV+Wkwh+eOeD9t1svfHqxXPtB//05+2j9z9u5zcutId3HmZ+1oUkSDl9\nIIkjIz5LGfk6zAkGu9nZ/9MkFh9k492NV7/WXv/df7392R/+afv0QRK2vBZdyyKIrbwK3WJFQEaW\nSLp29+7k1eeDdu1LV9uVFy4k+buXuD5ou+Ht5JXnpSsvhv6VjKZdz4jcemB8ZUFDP0s0r2d5NczJ\nDixDYP/d48UHoYc7ez5JotJWJGyzm4fzhEcSnKf4qe/r2E/0n0Ue/WVfCrsM7czPEPlU4mKU7zDJ\n5XK2/djPsOXjLBg5d/lcO3/1Yvvo5z9o1xLWuWwSvJc+vZt92Y5yUsL5bLj7R3/+V+1//Cd/lPmA\nq0nRzuV1aV4DJ0FbjVwsZtDzcV5/581L9nHLhi15dp78rSUOYjLWHtdAg+/zpmzVAz/L3x58UITa\nAlqMY5SBfxYfo01tV6htbIoLR31kKFVffMaZfUIbdbHJ9ezv26wdbK+xnaBXGrjPW0/aIChAg4pr\nUAMVVhz5WqwLldXuIh/aUE8ofZEecsqOUF1jqLDypOODUuGUfeWVRabqQKcYz4h35vCh7BTEtvZR\nAx/loEOrctAolQau/mjD+kzrSfzShfArTl0fwsofceo1DnWwQ1FeuIi2iI7eaT7QpehDOKM+aeOp\n2JQdobon2VUGXW1XCH3KrjRkp3SrzxHXZ4Xam4L4MCZ09AmuvHiVg0apNHD11R3hTOuJ7Sm+NGX1\nIZTPN9h/fpK4cRRSfpMTd+LIT3aQ5GrZMT/7lLEQ4Uq25fju3/1uu5uJ/H3T1SQoL770YvvW9dez\nMjSnBORai17OTMgqxJ3A1fbm3R+3n7/9k4x0ZTFDXlGyIPT+QfZxu7TWbj/8uP2j7/8v7cZOXnve\n3s2rzZyQEC1WeR4kycvUrDTQSt88dimJA8shHiXh+DR7tT3/0tfb0fUvt//uD/6kffh25mLtsnN/\nDkPPSODh7r0cebWc47M22nM5OP7FV5/LsVMZ9dvKqQi7H2b+XTbtXU9Sk3lzX7r55ay2zNy13XPx\nmRGoBEgCtJRY+rmjfQ5bRp2SKKZz+g8C2VKaKPE8+RtIm3KR7PaBKfrSEareETNZ0LEfOnv4OO6j\n2KGooxj8zqKbiCQxczYXR1Uxx4193djs+OL16+1RVuUe5tXu3bT/UkYLVy9n1HPpYvuzH/6k/cM/\n/JP2w3c/ais3X8qr7CRq0V+JXvfZ7zC2udm5j34WaTwaH3IV73pDzJU/4tS5Ny5xbFiUF0IXF54m\ni9xJPk7Sh3dSbMYwQm0CT+LJxwelQvSmdKWNcamrzW4wH8pbH6H8KYjNalef2FBevMrpo9LA1Vd3\nhOqNdOv6Ug6oD6Gyx0lbFT4LroGzyCJzFnllDBLIBb3SRnvqCRfFNNpSTjqZbLUtHRq8GkelSa/+\nq26lo3eWcpoO9vVhbNiFRjlNvwt9zo8vYnNKZ4p2WiifV+cs8srYZrVNK43YlK14pU3Fjw1ktKWM\n9GfPmy0yDU9r3yktdPpPcxKvnoDkg3OY+Wbz1VhOssQrsZUchbSUuWWPs9v+61l0sJLtMw4ziX8j\nr9j2l/fbj95/q92780nbyokHv3Tz1RxX9XJ778777QfvvJG9246yD9v7GQHbyejXxSQRGTzj8PH4\nivW+yOC9D95uG0s5HWE3O7llq471g/ASE/yj+N9bziHoa9kkdv+DwJ32wXt/1X71m99pL3zllfZ/\nv/UoRpLM7T8fmJWmq5/wljI3kb3ikoC9d++gXUrStX39Qvvq+YwTLb3fPn2UxQqb6+25my+2cxcy\nurb6Ql6HcnRVznlgdG7pYdKTpLI8j6Sg/VUxbZUVlPmPtgqrl/p89jMRaVPnBOaNw3IatE7en2l9\n8U+/H72/iSGdxVvLDCn2TjvK606S6ZZRs5z1kFiP+mjayrVsMHz0advI609sfJjX0f/8Jz9rf/jH\nf9p+9uHH2eT4etvFXm5uLZPZ2NIk6d9s5WhsbeaeZu1B45JI4OTzlalndIp2mtXPq3MWeWVsXyAX\n9EojNmUrXmlT8Y+2lJH+7O+bLTINT2vfKS10nkraaGQbXKgiwiOt8sSBBiOsep/Xh7rAimu7+puK\nYYpWdeFXu1M48tKrPWlALoqy8vRlveqPuLJC+dRtN2jUtVdx5eUBLdKog3MxRD3qU6/FulCe9oCW\nkebQvXTkKu49jTEgN0WDThljsS78RXyoC6y4tqf8n0arushWu1M48tKRt0gDclGUlacv6+pOQWWF\nylC3b6BR117FlZcHtEijDs71N/q8MaqE73zkZ2o+qpJMIK86GXE6yHFUJCSr2Zj11ksvtPtJgpbX\ns4oyP+us6Hw/+599muOlziVBunq0nq04Xm23P/2k/fFf/kU2vt3J9iCZR5VRr62DlbyaW+ujeZwR\nyrwz5oWtbZ1r3/rGd9v5rGf44T/9Qfe5lZGibPTGgFbbzUICXvXtZ/uP/bz+vHL9pXb5S8/nNet6\nRvP22l7OKs2Jm2mzvNoLRqK0lj3eDpY3+6KJ/Z1P2//5xz9tb779sL365bX22pdebs8/f6mdv5iV\nlYfXMu8tq0eTrM0OuOawpvRBRstmZ6/y+jNB9MwofcYctsTcS/qpPw9zaJ/2fuf3IUK9XVGLzLz2\nmWdkZuyzn912yNoVKkmvOa8urZn2jA+SzsQ6QyORBHgpi0LOP/9C+0mSs/0c3fVmFhz8X3/xZnvj\ng3tJiCO7dTGvnVezFQv3jc2YyH/cAXVWpUaKx6E3A3u39RubB0JcPuvGNtKe/X3jSeDRmcGpdqpt\nJm67nqanbfSqLnTr+pyC2hcqQ/1v89+3nrTRAJR6cxWHp4wQGgW5sQGtV1nxarfi2FJGHL4yI0TG\nUvWgIQtNHeUWwSn5qqstIXbEgRTk1RFCly9eedBqGW3CU1+9CsHVUVa+etqXTl28ymhHqJ71Klt5\n4kDtArmqzhSufNXVnvJC6dqtushIV069Kldx5JQRh6/MCLWrbK0jawyVvgifktef9kcZ7RszfHWE\n6upXHesjlK/Nqq/NCsHVUVZ+tQFPesWrjHaEyFGsV9kZ5+n+gqYPIJc6/RuZOhkGP/SzEpkkJ/28\n0SRWTGnnv7UkbRezF9t2XpUeRmf3MKM7mecGnk0s+6Hla3kVmVlr2W5iPcnARibzZ5uPzAkjITpg\nr69sx8EIzmFwtv7YT9LwYDf7i+UkhGvZ7PZg6Ud5tZeVpQkEn6sZRXucV5lHGUXbX7nYPn6QPdo2\nX8heYjnCKvO3ljKZPm9Ds3qUUa1YXtrM6BB7iyU5TIJ3kHlobNWxtHK+PcyKg4sXX82K19fzGvFh\n28l+b+ub5zIHjBFF2oi5uHGc+yFZPeqjS/MmIYEpf7+Uk2ub9j6B2G2Q+nSUT0gd9s9Z5bgPoY2l\n28LO/Kp8aCROfYVq8KPcczfPvQfrCVzojzMncCWvQ8/l9IN/+oO/bP/k+/+0PcjGxHtJrg83L+VV\n6XoS6ezbtpNey9y+zXPn02dpee4/BkndyJzpY54JEtmes6UBjh+XBGbbGGOPLxVjr/wpXHn0K05d\neSE0CnLQqrz1Kite5SqOLWXE4SszQmQsVQ8astDUUW4RnJKvutoSYkccSEFeHSF0+eKVB62W0SY8\n9dWrEFwdZeWrp33p1MWrjHaE6lmvspUnDtQukEudp0baJFZFcZU0JB040qwLDRTZs/iYsgltUdFP\n5U/RKn/EkV8Um7xqs9IW6eFDndoGo2/rygorfZEP40C26lW6dkaIjHLqCpW1LpTu/SyKCzl1lIU2\n4tCmCrpVtspoV5p1YdUDX1T0AV/dRbKVPiU7Ras6I159L+JVm8oLRx3r6tQ2kDdCZYXyT/JReVWv\n0rUzQmSUU1eorHWhdO/ntP7s8vzA5OqjScnaXOXYj6nqj8NBTkFIcpUJ/ZubF/q2HysZlWFp4Vrm\neLHvGmNT+VnPfmmZcZZRL/b42s3I2INsE7IT0aPIc578UvZpW8pxUEeMjGU0LLty5ESFPLtJHN7/\nhFGgrGYkhtB2HnP2Z/gZ/WG7ieWcR3r/4X5779P9vMY7lxG0bLh7wKkMSf6S5CU9yQrP3EuSlscZ\nGVzJQennMi+ODXVzoGZ79dVX23e+/bsZabvcFyTEcV7NXkwsiT1XH0UiSSNNyX2n+TNyN8djnVec\noXY6OAnecYlwbXNxhOkb6se0Y6UZMvZdZZ/EeyKXe6b1k0zNIkrgxJ77YCR0Odt+gK1la5Xrr73W\n3v1fvt+W04/L5y4mecth9zHEaNph+mApfbLXtw6ZaXdm2rM3S5+nR1ulcfife5sH4b0BFxXvRVnk\nRvwk3Spb5bQrzbqw6oEvKsjLV3eRbKVPyU7Rqs6IV9+LeNWm8sJRx7o6tQ3kjVBZofyTfFRe1at0\n7YwQGeXUFSprXSjd+7G/pFeoTk/aYCCswkkGRp6GpFcn2pWGDJd0dK1LU/YssNqr8sakzVqvcotw\n7H5eHW3V+zmr/9GfNozB+iIf0iusOtqvNGWnaJU3xkB9Smf0oYz62hTCV2bUVQY48rQnvcoqLw0Z\nLulj7PKUPw1We1XWmKqfyj8Nx261cZp85Y/3cBZbo4w2jMG6fsa69AqrDPjY1spWOWlC9agrd5Kd\nyqvyXT8/v/wAZ2wtv8e8XkySlF/q/gOdet9UlQQgK0JZGbmaUbQH+9vZgiMT3ZlAxnMe3YP8sPNK\nLVP5k6RldCsJFUnTYRK7/Yy4LeWkgqW8Lk12lcQsI2HRCzHxH7Qfv/lGu30vOiw+yF5sq0tZ0pBM\njy1GkL23u9/3EGNrjsc5YqllXtz1q9mcF595XbsGLdnWfl6lbuUIp2VG2XbvtEvZD+5b3/xG+43v\nvJb917KJ7MH9fq+rSeh6dkMCmfsAnyVmtAg47Zp2CXKYi7luM5r9FSkaLcW+qO2KTV4JVtpMevHn\naAdJn7Mprdm3Nf6R464S4Oz1ZmIEz3/klsll28r5rfZrv/Xb7bl/9Aftp+9n3l/a/SBbsaDHqOJq\nRtmi3PdtS9hzv9hLs6aP8ZEm6KOPy1lcMUtsaROjeBLheB/KLLoX+MqMuk+scnu2/cyn9qRXWXBt\niltX3rp84FkLulVfPWOirh95Z4FfREe7YzxnsTXKaMP7sL7Ih/QKq472K03ZKVrljTFQn9IZfSiD\nfE/aFMC4X0xwBGZffh/4z0LkKAYzqz35NKiz+OAPAv4W2dKqtpQTVj449JGnzEkQHXzop+JVD7pF\nXH+222nzHtBXZ7ShX9ul8sX1XyG8qmMM+kG2xrfIVpUfcXWA+sMuctjGJ3iVg0+Bpj1loasrPgWh\nUdSf1Z586vMsPmyjRba0qi3lhJUPDn3kKXMSRAcf+ql41YNuEddf7U9ktDXi1NUZbVDnsl0qXxz9\nsYw6/0o8b/kx7qslk3IFC54f6NxbWjoLArIQgD3MAh9nfzI2zn2UeVHs28W8NiY8HWZD131GaJIh\nLCV5ouWRp+0OohvhtBOmSQjzSrMf/cTmGWx+myG4zIvbfngvO/Yvtxt5jbkRP+wR9jgHlyeQzInb\nah/kMPNPszp0Kacr7CZJu5AzR3/v9369vfxSRueyeS8vcY/yXVrNis/d7dSTbWxlX7albDFyNatU\nN9YfJI6HSSaZsJ+9xzJbf4kRut6P9BLfM4IMfXjGYjh9TQJG+8zkoha5Ln78/Ez1OzTs+RzNNKY/\nlRFOSemj24wArzFJsvtoWdqTzpslbLMkiyR2OVt77Cdze/6lL7WvvP7N9pOP/q+MmK71UdG19OdR\nVpwepg9WM9LGyt10U+LFZux3k7GZ++5jqtxzGMYINCYgV32m/Zs1ynlvyGtLWXjQ/J7KH6E2pFsX\nQjcmZRb58HusnDZGaLzKCZWDT4E+8pQ5CaJTY6541dMPNHH92W72A3x5FUe30sc6srZL9SGO/FhG\nHWPQD/I1vkW2qvyIqwPUH3aRs3/B4fWzRwlC4SoEjTqXRRqQIk+6ckBlgGfxMWWj2hPXpw0lXSif\n+lltqlt1sGPslS8On8tGVRcoT//ULRWHNspQpyi3iN+FJj7QUwe2OHFqE6hclanm1JMPrDrW5cPT\nB7rya/uIw9d+pRlXV86HMtUePOnKSRM+e97+//285UHNQ5LvwfynOQ9Mqnkm87eObSNW88POK8S9\n7SwMyK84R0MdZfeLHA2QjWx5xcY/PDLqxgOVX/yDjF4d7GdWWpKzzewZ+fv8NQAAQABJREFUdpik\ngARp5YhNQbLpbvZl4/QCZrWvJKHbyqKEzSRzV7KH2IW8Ul0LP+8wk+vdb1vXr7YH95czl+3T9njj\nYkbeiCdHaj1eac9f28oebvezm//bfNmSfHBEVc4rzdFWF7O4YSuHvS8n8cusuchvZxVsRgsTH9+2\nFWxkRSz3vJxkDZrf1/H7MvuedQnukC9Ub7Jo9Cp8yggrbbTZFYYPZYDiVUSacRLEDM89kXBS71uM\nBMYGcXKfJOSPt/fa9UvX2jcyn+8f/a9/lCQ7I5iRZ2EHcwtXok8fA/OHySeBHHDmgz6eN0HPXWmx\n6BOTxfs3zmd/32Y5ge1zFmjb2ccmPaMufC5/D+DbF/KqLfXh1TLKVBvILeJXGxXHvjpV32cBWo2v\nyoBbRhvQta2M96KsPqgr388ehVCJGqhwlBnlqY8OqVeno061X3HlpI11/VQ+NOT8sR5lkIWvnLrC\n0YeyyguVB0oDUrQBJA7o3D9F2Yqr1wXmH/pVT576+pBuXSh9Ck75Qw5dv0jgyo04ssYBPlXgK2NM\n1pEXr7wpO/CrTMWRp46tilN/9rw9e976c5HnY/7rnB/y2SvOPDV91OWAUTHehaXs5+SD9376bvvq\n936p3T/a6a/KTOo465Jz0neSrOW3P0kao209r+uvQQ8y3y1DZnFzLnuxZYQtSdxqkrmDbLy7yqvY\n+JidOnDQNrNtxXpea65dyVEFNzKyd2evHaxHfSPJRxYtLB/m9elKVnwG39n9JEdL/aRvGHu4t5rN\nY89l0v1z7VJe4a4uP8hChEywz3Yj65kgl78ys+9vAjzKnLt4TaD8I5zvGt8T/qEWWk/hZvfMfc+/\nOpHnxqDk+zRDqBx/t/yOVVoX+AU+/J5Wm/ohQkZED3l125NR4mOLlsRHc2d/FeBRhhU50ms1vK++\n9FK7kgUf97If22FGJbn3vjo0cJm/v+kH2mlWgoOG3PuUdgni6BsN49+aucJTgDi5kFHOOoLilfeU\ngXnlJH1E4GOr4tSf/X179veNb/Pkw+dD48PFA+OFTsWtAynwKNoQB8KDLs26ssJqv9pTrxvIh3L1\nYVZGW/rTjjpC5OWpow0gRbo6QO3KB1Y71qWpqy31tKU9+dwTeL20qexoW1tCbSmvvr6ty9eedCAF\nujxxIHqjD+voaRfcIk196OoAxfUDv+LWgRR4FPXEgaf5UKfar/aqLe3Bf/a8Pfl7YBsCK057Ucb2\npI5c5U3h6gG9pnzoExvHdvmRzo9xH1UhocFnvyLEaFu+W4zGLGdU7M2/+FHLyU7t4spWkq6lrNzM\ni8m8etvZ3c2muRlVy7y3hzlJYOcg9SRujGYtsUs/wzSBB6Hv5/XmUUbTVtgId3m7Xbxw0J67kfzs\npdaee/kw23nk/M8X7rbzL+W4pQv323sPf952spnvXjLBtc0rMZpzRB+tZyPf7OuWRGQ59jZz3uit\n6zmd4cUbGVHKCBzjflmssJLYN7JVCJv8LmW/sSUSx6wszR4kuev8SScP4Z7nbQxIz6TO3xN44HPI\n6tSn6LM+nMl8Fn+qjdOepxX7Gug/ZLFtfwqPacQZ2f5qGzm6q8dLwKHnv2C9MCeP+YK//LVX28vZ\nIHk1/bCWe2HVLwfM9xMnSFp5zcyDEM0Ogs1G7bDOc8EnaP98KjbbwftAzFjFgbXAp0zpVHveu7LU\nLVP4lN/TfKgz+sKPcQqhKffs71ueLZ7DXLYhsOK0FwUZiu2oDjR5U7g8oNeUD31iA7y/HqVCqcxa\nx2A11oVP+NBOhYpLG+v6EMoH+gA5GoQMpcpWHDl0gNWfOFC8G8pH9QHPolylncRDzji1qa62jBVY\ncWMGUuAJtUH9JB9VXn39wqOMtmoMo+xM47Of2vg8Phb51rq+jce6/EVQuQqVlTbW9SGUD7Tf7Efv\nscpW/Nnz9uQPG+031ebQKfJGOOMu/kSeYl+or4Z86sd415n9WOdnu/+XjCujVSQ2jFLxGnO1ffru\nx+3tP3+rvfrtr/Yf843V9b7B7uO8Qt1OUvDjd3/W7j64325/cqfd332U16is0mzt6pVL7fqNy1lJ\nmvlTd7MNSJKGfvJBJsNfu3a1XY79jcxNa1ng8BhO5sbtZMTtk+2tdjfJ4d7yxbb3eCO2WEBA4Lxm\nTXxJDDezqOBqErXrV2/l+KmsGJ2P2pHMkDlmzUJuJaNKSfAyIJWGIcHJvZKkkMz07GT29yPE/B+c\nKsIdh5arK9Me8FOfpS+Bi8uiPpjSsJ+O+2QupA2q4sey3AtDX/AYEiMRZeStv34Oj2SZ+078B48f\ntRdfuNq+8uqt9qO3fpx5bNl+NwsSaAvupr9i5Z74Deu3yJMAPW2Emc5LPbRajHeMTRn51I1bvMqo\nL486FzpVT50pqFyFykkb6/oQygc++/s2a3/bhDb0b71tA81iGwIpU22urLwRyl8E9XcWH8evRzGm\nwmi4BiBPGnVwnVoHTtmboqkjT9sjhD/S0K0N7Q9otTnqUOeyVLs1BvjWlVWv0tVX3nr1C6/qVp7y\nyHgvQvWqDLj1KTvw1OvI8KFuJUszxqo/2kOm+q12xLVHXX1xfVS6esAp29Lka8M6cMreFE0dedoe\nIfyRhq59A+/Z85Yf0X/Fnrc+qsLrSX6400dsucHFjzS/0awi5Vea+U7s0ZUdO9qf/7M/bjeev9Eu\nv3C5fbLzKNt+ZMXm1vl2lHlT79/9OOeMfpx9wPKDv5k93JJ87TLqtvug3XvzB/015i6LFmJ8LSNn\nhwdr7a2377WP87ruQibDr2WE7Cjz0FiJerB0KSN2OX5p5WaSuBczL+1c3wJkI4sJNjZ32+OMsF2M\nj4s3vtTOc9pBf90X/SRteRr789bvbD/JTHwtsU9c7qVvhZFMrv9VyweJ2+zZzT1D7BlK5wZHN7TO\nQBh6F5rTZ38/kBhL/T6IK0OdUr83Fa98dY756iUOwunbtDBC1vHccSDddsgoZAT6I5cR0MdZlLGR\n18e/+u3X2//2h3/Y7jNHMe9G01IE0l+zHvIsxEBfiNAzt/ltxicRz8Pu7UVcxOm9GTP0WowbGrhl\nEV0+cMq2NPnVr3j1o70pmjbkaXuExlohus/+vvndeQJtU+BYbL9Kl2bfwROHV+vQa9905vChPch9\npE0FGCd1GArI6JS6uvKAFJ3Apyh3Vh/Ko6u/akubQnhmy8qpW21BG4vywjF25KXVWKTB14c0bQmR\nmSrqAZXFBpd9oZ6y+oAOLpSvnc7Ih4mFetSRqfLwqi111dGHMuord5IPZYT6xZb3CE0byFGnIKNP\n6urKA1KQgaeecmf1oby2gNXWWIdHvJUObhw15i5UPka76kifsgNPOfjWpakrLO6eQtUDKosNLvtC\nBWX1AR1cKF87nZEP+1E96shUeXjVlrrq6EMZ9ZU7yUeijFj6J48QR0zNImaeVPD8gPeNczPyhcz+\nXuabZZPb+7fvtj/5w3/evvf7v9MuXtlquzlx4Gg9qVCUlzNytryZA8czoe0B55UmUVjJ5rr3cnTU\nWvZOW80xVasZDVtZ2spZn6vt49vb2di1ZUVqXrXu5WLoLCNzu0n6drezU//hrXawdi1xXMiJDDnl\nYO9e1jfczT5tP2sbW6+1a9n2YyWHvGePj9BZdJAb4VirjMD3lZW8Fs0+c31eFiNwfeQpvCRjJIez\nUw9I5rjzJGh9In/Q3neMXFliN/3SGwofNFAf2ZI/h+ghR6EfZ1jvP/BZ+2Je7Ale++2pPsu9cCJF\nH/HCHm8XeCawnkS6Lz6AhL/cHyNmhMA99lG3JMlsv5Je7QsQvvmt19uFS9nrLvu0ZXphX2ySRsq2\nLCTMsYptYP5jtJI7JTGkbYnaZ9N7qHET3lOxJ5D6TMOvpdryOwVNG8hSp+BPn9TVlQek9Nijo55y\n0M/iQ3ltAautsQ6PeCsd3DhqzF2ofIx21ZE+ZQeecvCtS1NXWNw9haoHVBYbXLaTCsrqAzq4UL52\nOiMf9qN69VmQBqy21JWvD2XwUf2c5KOPtFVFcY1b16mGgfCUk65cbSBtKLuoji52tDVCb8RGqvbE\nsVH51Ks/69KoU6xrZ6yPsaAjbZStdeQs0qmLT0HsctX7qHLwqNPGxqAP68pDVx4c+lQdnn2mDaE6\n1tU/i48qgw+KNO1Iq/UumI8pn9CkK2fs2hJWm96H/pGptrQpfPa8Pf28/G153noikR9k9iLjZ7on\nPUkEoPNKlBGX/uPPSFv+W89o1UqWjv74z9/MBrtL7dd++9fbi5kjtb27l2unPU7ytpvNbFdyUsFR\n5o+tkskdPsg5pY/blWzG+/hguycH2w+32vb9c63du9DOZR+2nWxN8Wg3eskz9h5nuga79W9lpO3h\nZl55Xg4t+7bl+3guPvd37uVVaLb02Mw2FcnxDtjyI3uErCTRS96WEbdEzo9obIWUe2HRQQSTkPX7\nImHreQD3l7vqjTD7O0ES1IXmo0zpVZ78gBhKeyR7yRWIUnRn/AALhju9u+8x+ywQv98xv4P1e+Z3\nrdL690s9fczt47uPsiWmPmKacGD1RIt7IpRc+ywuCIM2OMyI5pdffLl95eXX2kfvv9FlN7La9sFO\n9rrbzIkUjIIy0hZ1+r7nuPR5VpnMFqnMgvB77/0YO1xp4PVeqgw8irRFOjOp2eeUT2jSlbVtqWu/\nxiG9+oRWbWlT+Ozv29N96TNNu1lsK9scOjTri/oAOftMG0J1rGtPmyf5QKYnbQidVHDe/2BECNxS\nnYrDMyigl3R1R2jg0CuuHHYoQmWE0kd/8keo3SmorSl/VV6bygurXpUXV2+Eo572gBX3Yai00TY8\n7cubgtqApzzQekfmPGnweR7Qrc+Gsr8orDafPW9PWtP+sc+ESFT8icYMU2+Eo542gBX/2/W88ezy\nY57nuf9As2J0XidJIxkgEeqjN4jOEqG8iMxh5KvtzT/5q7b/6GH79m98t13PmaRra9nQIwe6H+Ss\n0d0kYNkdLfPNcmrC3p0cOH6vXWTPsGy2u3bhZns7Z5Q/vr/R1g5zgHm299jPVh/Xr91qN1682t58\n95320YO9vBLN6FmyOFY7Zsiunc8ct6XMy3r9qzfbb377m+3a5RwQf3AvVzbkzVlWjDQtMUcrCyZ6\ntsK9zP4UJnhWhnKjfHfnd03y1e8eRknKyHRMzsKZySCbQpOhg0zXpV5KNw7fdiWGtGNEusY8IJ4v\nSuf1uGdy0jpz/Ci2ZZFe9VeZEPKal9fYvB7mdtIivQ/7+aOZ17ee5Jj92q5fvNa+88u/1v7g+3+Z\nEdFzbS99tbm+lYQ68w3z3+xOMzqX9uEZYOUpiWpPeXvCG/v9/yf/YOY+6t8i4/tFYbX57O/bk9b0\n71P92yNXmvUK1RshMlVPHFjxv11/3zLofuuVr/znNgA3Mt64dWQqTl15cJM6G2Pko1tp6go7c/5R\nbahzEqy8uYnj5LL+a6LKeS/GpZ6+F9GVq7amaFP6+tQH0C8wUL66Va76sK2nYlCnykOrtq3rR572\ntLHIj3zlhdqpsMYx4sYxBZHVjnrKUTe2MRZ0KEJ1RtiF5h/VBiTri2CVmZt49rzZEPP2s+8qtE+k\n2Y62s30qXZPyKx2adirkl3f+BMzSj56s8FPvc9HzgJjKDzajL/kBxy+jcpznyTDWxx992D549732\nSRYe7GZ7jZUkDhwftZa5ait55bkW2qXst3Y112sb2eD1QmsvPPdc+/SDvAK9l9TvMKNtGaFrGS17\n4cbN9nt/75fbCzevZ9L8UvZn4/XlRkbPspghKcNSEr+Xbq22f+N3v96+8tKFrBzNBLssXFhNbCvs\nL0LuRaJButLzJn5wnjyjtpHQNiYXNR+aN0SU0gYz5RkkiYPZaeFRX5S4IUOZf79AOwV6aPSH/Wd/\nCY9jiox9dRxctSsey6Ce2tBHAXvaRS+mzdIubMtCX62uryeZPsh8wPPt0aPH7X/8H/5Bu3L5WuYG\nPs6q3iRrGbYkbTMWVqKSBHabgSR0PSayOh6RsJTt9ziPCZqxV4jMorJIR/vaUV956mNbQqt8dCtN\nnrAz5x/QarG+CCIrTz2Ty/5dKYM4ynkvxqVe5UsDSj8rbcquPrUF/P/D7+lnRtpqA9TGtYFsZOoj\nTV1l1Jd+GhztVTvglY+tsa6M9CoDrZbKq3RxY9WW9Ck4JaO+8sqcFod89LUBVH+0Z32Eo3y1hexY\nH/VHfo2ryio3ZbPyqk7FlRnhGD/1kabOaE/6aXC0V+2AVz62xroy0qsMtFoqr9LFjVVb0qfglIz6\nyitzWhzy0dcGUP3RnvURjvLVFrJjfdQf+TWuKqvclM0nvNzLXKnnbPno85pIBuTw45wfbS4TlSze\nbBs5amo1E/p3PnnY3rjzg/bmj36cI65y6PiFjXbpPNtKHLWtpYftd37zVvuNX7/Wbu7fyWa89zJg\nd7WtP0xCt38+892STGQj3MPMl3u4fT+Hzh+211+7nCTiXLv90Z+1Ow9yYPzju+25yxcz4vOwfe/X\nX28v3chY38HHWcTwMHOy8upuOYndYbYRyZys2WrI/CAl1J5+5tHyXsd2P24X7q03Qv8IOUrH92rj\nzCHgmKd84YnyjMzx47lofC+lBScu+w6ycY5wHtxcsws+wecWY6mHzagbhXFDIsD+SvbEY8T0gJMP\n8v54J6Ojv/yNr7ff+93faf/79/+oPXfrhbwezV54Uc02u8nvMsoWe4zi9VG76PZRt9TZE44EkJiM\nszvE36wRe1V8hMpOwVHW+thv1EeastUuNOmnwdFetQNe+dga68pIrzLQaqm8Shc3Vm1Jn4JTMuor\nr8xpcchHXxtA9Ud71kc4yldbyI71UX/k17iqrHJTNuU9teWHggaoYelAM1lxIAWD6s0os89qQ7zK\nSqs2qn7FRz3r2gBC818FVVdcGXWlC6FblNW+9BFqS90pPW0A5Y92lOFfM+LC6kN9eaMd6srLq3Vx\n9bWnLFBalSEudOszIB8d7QqhnVaUFSpPnVJ91X5VXjn1ajziVVYa8tLVHaH8EWoDCK/GNdpQRhsj\nH7pFWe1LH6G21J3S0wZQ/mhHmf+vPW/8NPdf+37DwUlI+LnuTf2kvfN73SX54DXkRhKldGYGybIC\nMYNuy9l5f+/BUeapZfHBR9vtfhK0lezddmn1Xlv9ynJ7MQsPLh3dzuKErDZ9fKWdX7qYvdTy+jPe\nHj3O7vxJFA5zwsLPP3zY3n//w/aTt263u59Ed/1qO3c+I0A777Xv/cZr7euvns+KsI/y6jULG5Ka\n0B9E1vdaY4TJPoQWTu1/n4GQe7Fun9vHMy4py/Tfadoilmdi9TO+Kd0vkHoasi8QIK7gzmvrcqEZ\nH/XPX2K/v+Kdj46l74iaAGYhpp52pVnws5/TKzYyQsrI2pWcjvCf/kf/SfvZ2++3T+8+yLmsWWCy\ns515imyKnO/pPBj0sLWURO2II8hinLbu+76FV//m1PbzvoRnuTdlhepQp1Rf9e+I8sqpV+MRr7LS\nkJeu7gjlj1AbQHg1rtGGMtoY+dAtympf+gi1pe6UnjaA8kc7yvx/7e/bZ0bauHEbSwjNhpn9QYEy\nKzYMNfHa6OC1Plc70UeV1y9QHBtVZqpTpmKZ8o2dRaX6qDjyxjLGBU+bQmgUbcxqs88pO9KQ14a0\nake+vArFqy9taaNCcHWAXNI6Uj58BpQvrON4q6/Kn8KVFSKjbX2pZ1zKANFTHrzW1dO2UP1RXjtA\n8dHHs+ftyQ+zbV3bamxz269CcHVsa2nAWnwGlK88+1MYq2HPfpSRm32785n/+fHvXJ7t+fcefqfl\nfSJHWbHD18WNzIXKvLPd/JAzd2o9yRw77zNP7RKb2u7caev3c4zUp59kVO1hZrnxyvMgScJGEors\nv8aQ2OaFvLY7bO8lefjHf/DP2ycffZTVBRttI3uysb3Hyv7Ddn7jcfvVb15OTnE7V0brHt9PMOvZ\nBiQZSRK35cx36zlbFj70EbZ+G0+eddqjFvsCaHsIR7laPxGnnZLI0k602bE9/gEXOoUoZm04i43X\nmunczkN+qt86c/Ij8hlZm+lFgDltM+9p27mn2DzMsWJ4ZSHCcvatY27a0d5+e/nFF9t/+O/+++1/\n+gf/qL3x05+1zUvn23a2Ucn6kb5aNUZ6PMQXTx3P5zySfpfzpJlbmMVRw/T+hZW3CFdWiJy2fbbV\nrX0qjp7y4LWunraF1UeV1w5QHNkq8+zvm8/fE1jbamxz269CcHVsa2nAWnwGlK88+1MI78wjbRik\n2LmjA42OUD10xbUhhEeRX3FpFVa9SgfXPzbArQuh16K+tFGu8qdwaFxVz3qVx7508Co/4tTVFa+6\n6FOUmYLSZpJP+o16tUld28YxQmQo2hz1Z9wnduVLPwkqK1R2yhcyFvERqoecuLaF2pBfZaVVWPUq\nHVz/2AC3LtSXUH3ro1zlT+HQuKqe9SqPfengVX7EqasrXnXRpygzBaXNJJ88C9SrTeraNo4RIkPR\n5qg/4z6xK1/67EfYH+LA/n8+8vikh1DstvvqRJSoJwFh6w5OJDjIK8p9jrrKcBsJG7nCchYNrC9n\ntedukrTHq+2Td263/YfP5XipS5n0fj9bfUQ+x12tkEzkDMylbJ/BIoaDLEa4d+9BJsXHR44uXT16\nlFesSc7y6vO73/uVduNipr49+KAtbWTuXHT7dh050qofoZV+Zl4WB8XXclJ7jW1R9cDla2Pkf6ae\nGHr78GyHaZ8g122Y0FmHMdfRhxDW6YXvUJLBPo8vHmOr9ycjbsTQwyGNo89mK0j7yFvq7N+2Fvlb\n16+3v/ud77afvfNu3+2EffkIqdvq9zG7l9xBH11jZLTb60Kz++I+670SN/cBTQjttKKsUHltS9eu\nfOiUEaoHT1wbQngU+RWXVmHVq3Rw/WMD3LoQei3qSxvlKn8Kh8ZV9axXeexLB6/yI05dXfGqiz5F\nmSkobSb55FmgXm1S17ZxjBAZijZH/Rn3iV350o+TtupIHCiuInUK0AzRoKArZ7auPHSGWYHKCE/y\ngU31sCmuf+qVhk19g1OE4sZEfdStssorQ73qghsHPAs07MiHbkxAin4qnNLThnpdea4/3js85CnV\nP7j1kUddv8ZYY6p6+FMeKE9960LpXWn4kKescKRTpwBtA2Qt6hm78tDtN2WEJ/nArnrYFNc/9UrD\npr7BKUJxY6I+6lZZ5ZWhXnXBjQOeBRp25EM3JiBFPxVO6WlDva481x/vHR7ylOof3PrIo65fY6wx\nVT38KQ+Up7514YzO1h7ENIurw6DQ6B56yPlY4Fx9a5Aw2RPtMdtDZHNWDlznWCg2ZmU9wAGTo1LY\n1+3yucvtzTffbnfv/lLbyVy3nHTVHmZxwtrBg3Zh+U5GhrINSBK05Rx3lWWg2d4jq07po9hjo92W\nLUIuXjjfXrm1Fvrdtr4Zf0n0+hYWkePYLIKdbSSb0Tb2T/N2ehSnf9hGSo516adC+jfPkG2GHW31\ndqevubdAZWjT3thz4/DOXmin2bPMBsFx1vuHXu2jjvhJG2KSbVB6PHlOmAd4lFel5zMSupnX2q+9\n/HL75uvfaH/6Vz9s61ubbT/71x2mL7CRiGf9O8N6sof5L/a8Td/bU21k+4xtN6/TNsj7navt1dt1\nzuv3GpwC3b8TyghH39QpQvXwJw7PeqVhc+p72g3mQ5/WR134tVBXBroxiRtH1YGmH+WNCUjRT4VT\netC41NOPcRmbfoTVP7h1fWuXOjh8YwRXrurhi3KaD3W0+9Tr0WpcJ1MQGkVns9rTdXnYrHYrjt6i\nujaFyBm0emNdWej6l7YIYneMYZStMiNvqr7IHvSTYqsxn+YT2UV+jGnkW4cvLoSm/zFG6chW+Sk7\n8keI7FhGmUV19Yxjqi4PG9VOxdFbVNemEDlsVvmxrix0/UtbBLFXbU7JVZkp/khbZA/6SbHVmE/z\niewiP8Yz8q3DFxdC0/8Yo3Rkq/yUHflPYJfqydgMm3/2v5tpj1RnaGwH73X6DzwjPPv47PTIJnGj\nxtynvLtse5n0fu3qtXb/7nvZv22p/cH//eP20s1vZguQxzkL9F77cs4a3cro2k4Ont/P6s/l4GQJ\nK1kRmjG3rFrMCFr2B9tPInj50ka7cSlbhSzt5B5z+DlJYpKU4/iCsMqxv5gkiYml00pvg3k/2R7q\nHNdLP8o7EaY90lG9TRLocX90e9TDg97jDt77Dtq8IAft2L+MhTDyvB7Nf71X8NFx6r014g+fM1/0\nEa3MiRccEr+R1aLreV3KcWLf++5321/+6I0kybGXV83oEyjh7QdhRC/oPGZuI55y1WL9NFh1xE/T\nka+8z/1UXR466o04epVX69oUIlf7ZaquLHL6l7YITsU0ylaZkTdVR54iVIb6SbHVmE/ziaz2hfoR\nSh8h/Cma/scYpaOj3mk+lAPmTf8XL9WQVqDZAAYn7xeF2tbOWK90cOOTLvzrjku7Z4HGJBx1Ft3T\nF5Ub9U6q69vYhOr8v9luxGA8QmnPnjd76LPQthKOEtDP0q9nlRvtn1TXprEJ1TlLXMqeGfIrXX6X\nqfbCDxPJQEbNOjsbr4aQZy7jOnmVuZTD3Zc3Ntrd3e22uZlVn6svtX/4B2+2b33z+fZr397KCNxH\n7flrR+1LN9bbTo7BOuBVZ0Z8lrIrf46ezygPc7CSSqxeynmmF9r165vt+oXY5gD4HFBPNjE7emo1\n/cFIUGLhhyR0/ut7lZW4Z0E//XmW78HY5k9bWFDLM5IbWcCckTs3MsdSRX7s1xMNhdlvHUP0CXVa\nYI7TTrMyg337jshy6APJ9frqaru4tdXeycKPSxcvtZs3brSf3/6grWQ4lOSOfZG1kWae2QcBj4//\nN4vtJCSW2l9/3fFp23se65VuLNIq/OuOq9o+DbethKP8onv6onKj3kl1fRubUJ0v2m6fSdpOMnQS\nz0CmIHo14JPsjLJT9r4ordo+SwxVpurqf4ovDSh+kry8RbDaAB8fhCk95RbxKr3ar/RFeJWvfVrl\nq0ylT+EnyZ7Em7IlDb0a20l2Rllt/HXAavssMVSZqmssU3xpQPGT5OUtgtUG+N+25623Q7+5/AAf\n/0CTmIaY+iwZmv1YkxJ0kSQYsI+y+IDDyA+zkS3px3LmVe33iWgZJcvmupwD+mA7o3E59mozx0zd\nefBJ+6//+3/W/rPrf6d9/Ss5/P3TT9tG5qttJkE7yOa4R9mLbWllqx3k9ehRjqTqxzatXs2h5hfb\npc1bmSd3rz3OFiGHWcDAHC5Ggma7/M/jI3sh7CQV5BXHZX4vx/U50p/54dkfZWiI+t34DH8RoTfg\n00yflVmU8+Z+WmReKwEX9DOi+OA+A+gb9lSD1I+xAs9/9BTjY71/gKHzkokcESpbgOzvPW7nkmAf\nZB7izeyT9/4nt2fP8VybM2DpW16BM4jaIY5wPYfgi9qpyiB3UjlJ9iTeaTZrbCfZgVdlT7L7eXnV\n9lliqDJVV79TfGlA8ZPk5S2C1QY4bSM8SWdRG1Z76I/1RTalV/mz+uAfH72o7E1UeuXBV0Z6lRUX\nImMwyqtfZSpP+ueB6p+kYxzIiE/pyTNOZKRV+1N8aUBxfVQa+GlFv0BxdE7Tla+efrQh/yRbyNai\nLXS94EtXVh/ypI9Q+9gSV8e6fpSRrq2xrj7y4kD1OzEf6KmrrLyzQvVPkq+2xaf05AGNTVq1P8WX\nBhTXR6WBn1bQqzbUES7Sl2/symlPPvSKKwc0ZmnaQt5LuSqrD3nKdshPe7Kd2Zyr3Bv93tt4/gzQ\nJH2UZTb/JLt+ZQd9RsWScPVXaUkcYoMVBI/3H7THbbedu3wp7+Auto8fpK/OfaX99NOX2n/13/5J\ne+u97M6/cS3nmGakJ4nfpcxnu5zkbSuT285lV/7NvAJdzyvWzaW7OQXh48y9epgkMLTVrBY9YHRt\nPSN6eYlKkpJkrR+vhGvuP9HwX4QIOI3Y73aGU6/XsUy/ORoc4Sew82ekM33O5YlDW7Y/bYz33r4n\n2p3HUGM3Tmjq9ljxM38OU8cHfWS/zkbKCIV2mF+x0V+p5rXoftp6+9GjtplD5M+f28p8Q0Y7c+oE\nc96IN7Zivb9Opa37PcT/F33eFrXhU23k/UVYP+h5TzWGak8bIw15inz1lRt9SP88UNsn6RgHMuJT\nevKMExlp1f4UXxpQXB+VBn5a0S9QHJ3TdOWrpx9tyD/JFrK1aAtdL/jSldWHPOBx0qbjKoTAlEFl\nqo6ywFqQQZ5S5cWlW1e2K3yOj+pnkVq1La7fqiMPCH+R7Sm+NKC4PioN/KSirrDGcBZdbBu7frRR\n9SuunLpA+dqi7qUcPIs+5EkfoTrYElfHun6UqXRlp+wiX/nqK4ud0Za8s0L09bNIp/LF9Vt15AGN\nTdooN/LVAYrro9LATyrqCrGhjnCRvnxjU04b8qFXXDlgjdl61VdvkQ91kGNVYZdP0hQsr8TYXDWJ\nUU/B8pqSvbmSVK3kB345oy5LWXywnCEXFh3sR+6w5SipHAB/uJJEionOHAh/7lJ7lC0ltve2+8rO\n9SQD+/srbefganvrrdb+y//iv29v/fl2jiS9kk1yn8vctpez6vNW9nW70la3L7XVnctteftCO3qU\ng7AOcxRWziw9TNawnKQtg0PBE1ZPMGkj9g5LXKygZDQoIeSJzQd/rgN7V/Kdm7j6dxEZhIRB7f/O\nT/2sZS5PYqaN2ldE0JOhE+32gCNJPDgONM5jHEP64G7F853oStTRy+R5Lqpw0j9LSdZou24qE9vQ\n3nmQUyWysOTccpLw3Yy0HWTBR0Y8l7Jxclp7FkZeS5O4db3E80Wet2hPlqfaqLRNfX77s5p7Bo50\njGqjOoDWn+3CV1+5KVvyzgqrn0U6xgFffCpmeca5yPYUXxpQXB+VBn5SUVdYYziLLrbR0bd1dKt+\nxWs86snXlvojXV3kKg96jrH66n8OolFWNNSVFRpHBmWNIFPxykPWoky1cxYf6gurPjhFWGXEp6A3\nD89VItWGPuq92BbSql1otR3QlwYU1wd1Cjri1Z44vKoz5UM+OhWnrn6lg3O5YkXeVDtoUzvAsR3k\naUcdfQArD34t8s7yLOgfHXH9A2tRBvh5fFQb4FVfO0Jlx7p0YY1tqp31Ue9lbGdtAZGbehagwat8\n5YHywaeK/uFVG9KF6o73Lb/Svbe/6eeNWGaPRJ6L/loye3jl2KjsqZEr7bfEHLIcxp7VhOy9tsLK\nzPzN41ikw5XzmaB+NUnUVpKxtZY3oe1x5qXt57XoTkbDuh1Wk2Yk7sJ69AOXM/q29vBRu3gvrfPB\nTnvx0pdCu9ru3V9rj3Iw/NH2Znt8L7u/7eQ16d65trX8fLv/SY5e2rvUzl9+uR1l1O6IkSDmY/HM\nsucbI009CZmNEJGq9RG3xNv/8vVHniSF2sQFHTIfXQa0EyA+jc8oiz/RS4Oi7TetPk99Y11k+D2Y\nNfzMVvXXNbHDFTa83Esv1OerRHvHdXKeZ9ogSVd/ZRzbrPBllAxZ5v7NRs4iTGKbVbn9hFn6aXuv\n/eynH2fdyHL652F78fn0eXu/ffj+m0nQkqhnQcIyCTcrg49y/mv6Hm2fXZ9loXRirc+0eL+HiQ/1\nnv19m/3Npj1oU54diu1bm06+skKft8rXBlB+tVXx6qvakC5Ux76zLr/Swbn+pv++EdPxlh8GCDRI\n8cozcGQo1Kt8rUNXDtkRH20hQ9Ge8sLRdtUXB3KNX5aZ5SfxWte2UDuVL08oD3gaTb52KxTXXo1Z\nPXljXd+Vjr1aB+fST+Vp1wceGfWVr/VqS3qNQR19CPVzEkR21Fd+pOtbeq0bo7o1hpN8yFNeONrW\np/L4gcZV+07/8rVHXVyoTXWgyxPKq/qLaOpot0JxdWvM6skb6/qudOzVOjiXfipPu/8ynzf89gtn\n+dEnH8uwTFCSAPoq7Z+LiUyr+YF/nLNAD7PgYG0ze63t7LQ795fb+oXn2nOZvH712o12+cqV8DLa\nlhG7x1kRev/enfbBz95q926/m1elJG6rbTXz0r56/eX2737r99pvf/VGO7eao5Pus8pxiyhyeHmC\nYDuPnYzm7R22nWwZ8v4Ht9snb95v/8Gv/v2cvvCorWxcIMyExeystGFPIoiVoBN7hpUyW6vbg98z\nKO4DnD/D/Z6esDvWbxZZDBcI/nlLbOiGZ4Zy3Mfg2sQXfOtdMB9dmRggUIJD46PHFxRIQbeS02GQ\nGHGEQeKWru2J2+z80dkzyL549Ovj7Z0s9+AEhOzZtvaofem1c+2rv/Tb7dL/vNf+4T/5YTY8zqFW\nm2yWvNIe5VD5rfTh0cEunmN79uxybz67QOnKVAh+WpnSV+e4HbnJFH1Lr3VjUZe65SQf8pQXjrb1\nqTy2oXHVvxX6lK896uJCbaoDXZ5QXtVfRFNHuxWKq1tjVk/eWNd3pWOv1sG59FN52v2X+fdNH09t\n+SHRoKiDG7x06yfdgDekjrbO4kMdYdWVJjQG6uDVr7g+gdLUFy7yMcWv9uCPMmNdeenGIKx8aNKr\nPA+DRfoI4UsbcevwufSjXX0iV3HqFGnaH+FM6snzIl/6SbDKgnPhT7r1SjMe7VpXB/pJuDaBygmr\nrjShMVAHr37FjQkoTX3hIh9T/GoP/igz1pWXbgzCyocmvcr7XCyKs9qYwtXDJpd+tKtP5CquLWnG\nNELltH/sIz/sfWJ5fM4ztDwITDzP85TXjkmB+oKCnZ6w5QSDHD21vbOa0Zfsm/bi1/Ij/xsZnXkl\npxtshZf5ZstJ7njdmleqyUja11//tN376J329lt/2T788Z+1X75xq/3Hv/+d9muXD9qVvdt57XmY\nHfgzN25tI6Nzh9kmZL+tJ2ncXONg893c60G7cfV69mh7Na9S77elc7yOzd5wCZdtQlb7yFHqREp2\n0r8H8U/G0++JO5/Re32e6xwnRNaRQZ5SofiMc6ZP+sL2tb35QcR6p2OTK3Idjj6szzJmtOby3UD0\nZongzEaqjLIhm8SK0hM2E+/ej3mmeIUcd/2vYmiz5yXP2f5RFiIkCcuK37Z8L/36Sbt241H79/+9\nX4ndpfYP/td38rr0UkZnDtsF2p4N9UL/Is9bD+4MH7SRxfazTaH3Npzfg7LGo551+erJH+naBMoT\nVl1pQuOiDl79iusTKE194SIfU/xqD/4oM9aVl24MwsqHJr3K+3doUZzVxhSuHja59KNdfSJXcW1J\nM6YRKqd9+dA/s3pU4ZNgDRAcg2MQ0rFTHZ5kdxHvJP2TeMYgxL74qDfWx1im+FO0qjfyrRtDjafS\nTrJReeDaHOmL6soLq98R17708V/Zi3z8ddPxz8UXwliAxgeUXmngX6TYNlO6J/GMQYi++Kg31kdf\nU/wpWtUb+daNocZTaSfZqDxwbY70RXXlhdXviGtf+lmfN2xrf5bP5HlJYsCpAn37jP35akFGgfJL\nf8Cw1vKFXFcyRy0rQS9eb1//1rfai6/8eg53z6rOJGs7GRnbP8wk9uXzSdqWMtLG83eY/diutluv\nvNwuXXu97bzyK+03X1prz1/fbQcP30gysBedvZwtutV29zfa1oUkB2sH7dHHH7S9vUSUV65b5zba\ng/1H7XzmsiW/a2vZouLeo5yYcH6rD1Ix0b5v75GkhUecN4cWnvjjKszcd7/EufkuAZzzUUauwlnt\n5E9tBtK2WLTYL8d2ZaBT/nHZySjiHijeGfOP4md2w3nd2fsp/Ucb9AE22iLKiQPzHiBPO83z2pjm\nGVhNOx+0h3ldvbaShSDnI7t6pz28/1a2AbnYfv9f+3p740d32k/fzakWSaL3st3KYeY1rmTxSLc/\nD+n4Wapx/kvE8c317O/b8dM92dpjv1in7Ua80qox5Sqt4qfxqyy48sLqd8SVl+73SN3R9qL65Ejb\nImGMVwc6NxigNKB0dAjQLLTKiQv1oR3otei/wmobPXWRER9h5VX74NW2eqNMrVeZqjslg6zyI0Qe\nGgU7XPXeRtvWu0I+tEddOyPNOrpVBh3tKQONoizQC3rVH3WtI/dFS/WFjRqX9qUZizq13UZdZdVF\nR3yMVT8VVtvoqVvtSBNW3kk+lB9lar3K1LimZJBVfoTIQ6Ngh6ve22jbelfIh/aoa2ekWUe3yqCj\nPWWgUZQFekGv+lVXujRkD5MRMVjDyBr05f6KkbGy4IyC7a+3hzuZfXbrK+1XfuN32q2XXonW5ba7\nvdweZ6RmY/1cH217tJOEbS9HUm0yGpd9vmLv4e5OFhA83y7f2soR7x+0n997P7vwb7aLm+fbeua+\nbWcxQyy06699vS1vLbdHf/IoicS9dmntXOw/iu2Ntv3po5Z3pa2d22tbm+cy2JQd+5OBHDLDPvHm\nbklD+n8hzNo6tOPSZRCb04TKwD+mRW6sHxtagBT7TPbvtmIPb7Z311SOyiIfhl1lu3I+Rh4+Ikef\nsXEu945dWgRZEjmStv7MwMUmcozK5VX33btZeJC98ZY28uo6ifD61rm2sp5X3Ht326svXWv/5u++\n3v6b/+5Psko4C0GyKd9KFpl0W9iZ2/M58j4rX1yZrvQFP7BR7WjbOIDSgNLRqd/TKicu1Id2oNei\n/wqrbfTURUZ8hJVX7YNX2+qNMrVeZarulAyyyo8QeWgU7HDVexttW+8K+dAede2MNOvoVhl0tKcM\nNIqyQC/oVX/UtY5c3hrMbgooDmOqKKMj6+oBq3Fx6VVeHn60B1QGurhQ2girnnbVkSddCF87Fe/E\n+Qf0s8jrY9RdZF+b6gmNo9aVrbbFlQeOOHpeylMncQYiX+vGCpQvTfvQ5akvDVlK5deYZtynH0z5\n8ka4yK96QPxZxKWrb73KGbcy8MSF0kZY77H61I8QvcrXDnzxjsw/ql6VqTii+h91qSM7JQ9PPaFy\ntQ6+qCg/+qCOnpf61P8mnjf/Mdjjyg+6cfRzPBmqYTiGFaO0e04kOMz2GntZnHD51tfaN37ld9uN\n53McVTa83d4lSeBV5lI7t5ZTDfbeT+1Ou3g+iwMyhy3LEqK70xO3g7yk2Fu60N7NQoMffJp5akvn\n28cZlfs4Z5Xez6KHlas32vILL7X9K5fbo0x+f7wRnzG/nIRiJWeLHmzvt517jxJWjmDK68GjDmn7\nWQyMIkHvpzEA5/c1z5ro6FwRp7+EqFMHwu84dQgptf4ZXD4wV7c/s9H7N3XcUGaq8/5OHX6X79xj\ngblf/c9jUOYYwkdnrhegPcx2p314jZMP0rdJtXidymgccRz1/s3igqz0ZRXuux89aEfZ/Hgvydjb\nt3fbj3/6qN3+kOPEMsJ68FH7/X/j9fZa5rkd7N9pa+mTPi8ubig+N/05irx1oAVcfo8zDCEy4sqo\nNwWV0Y/1amP0rY8xjlFutKnelA95wmpbu+rJky6sMVccmxboZ5HXh3rAarPi8LSpnlC5WlcWvbEo\nDxxx9LzUo/438ffNeIypj7RZOemGCHQM2uCnILLYVaf6qDx05Y3yyI1FmnDkn7U+FYM2xziwuUje\n2BfpjnTlzxoncsYzwkUxqSMcY4D+i5RqDzvGJf7Uj+j8GfC+jRlZ7YBPFfinyainXXWqv8pDXp5x\nj3xtAuFV2Ctf4GP0oW9MiSsDTVz/ygDlA6WfJt+VzvihzREu8mEcwjHmM7pdKFbtLfJhbMdG0kyH\nSXzyBy4T0/MchcEIDiMrexkFayuX2pe/8qvt5kvfbLsHF/qZo5sZsdl99FFOOLjefv3bl9u77zxo\n7753r/3k7bfyuu1c28nE9eWM2qyvZZFBEq+9HBJ/tJZjrTLh/ccP9vKa9Uq7vrGZlYuPswY0M0+2\nzreDBw/bThY9EMdFkredzHPLq9LVzc22d/9RO5dXr0fZdyKpZH4AmN+WtC0fjAz2NGm21f8s/v5d\nyo3Nn8ncUf+/J6X9seCjI5FJ8sezwoU81/zZeaJPayFP63BR5hDAqB8rNfNfn1+XOinlbCUnkc4K\n3/e+aILXmo7KyQTiohd9WA8koab0WAMTp/09O3sUHnqzeX8ZKom5JGw5Iuww89c4TWL/aA1y++ju\ndrv9aL/d2z1ouw92s7feUlu73dovfS2LS65s90RtZeOd9ne+92L7F2/8aV+IsLSSZyEWbYVUjv37\nXfN7AA/82d83WuLp4vfPvhvbDLoyaIqP8rb5SD9N/uloTq4Z2wgX+cCacakjzThP9ngyVxuLfIzP\n2/HqUQNGUaHRlUZrwDqENuLIVx19VKgtoTzrQIu8CsHrkKf+oFsqLk25EVbb8OSjN4VX2km6o75x\nGJtQn9S5uDcKOLwRVv/IWa8QHXlT+soqh6y4UH2gRT2gcuIVgnPVgrz0Z8/bk36t7TSFV5ptKKw8\n2nqsQ7OfhMhwUef62/688evb74kf4iQE/bHj0YOe5CMzmDKqttqee+m1dvNLr+e159WsHM33Ixul\n7T++225ebe27v3oxiwV224vXl9v9r95qH3x0qb1/+1F7+4Pd9sEnH2a+W5KBpWvZGPdi7J3P69Dr\n7b0ke5dXk0ScW09K+Khd2WT1KIfQH2U+XF6tZt+37bx2jWZe3a1nsULyxofb7VKSq6w/iH8Snvzt\nTSjMdSNWgl8ieWM+fmTyjaEDUxmLtJnOsQw3j3xvhOiA4+cpGzhHn0s8aC+p99eRqXQWERBZkU/8\ns/aOzNyXz5Ymjk2P5hHosXDDc8s91viJi54o4o0GSUF9dkpCErisFl3OXLTevmEfpn777sP20aPD\nJG0tr76Psi/bjWxk/Lg93L6dUdMPMn/w4yTIt9vzt5hvuJxX1rgnuWUktYeAm+PCfVH8flRcWr93\nYp/LdoV80Abynv19yzNT2sM2qm0mLkRGHWHlwR/r6lSIDBc2uP62/33jXo6Ttnqj4FOl3jjKPIzA\nsdjIQMooQ10efO0qN+ojY1FPqC3gqK+OsNqteOWDa7vKVNoobwyjbq0rY5za1pZQer2Xyqs2x5iq\njypX9bVrHFVu1FdPGR/42u/GoKzxU1/ko8qKT0FsceEXW9VvldcnkIJsLd6XNO0qN+orB9SmUFvA\nUb/qqav8lA9tVljltaFd5ZSpfHlCZYAV15YQeWWqvYprc4SjXfmjbepTPkZ99YDY+sLPW7of/T6R\nvd8/iQov1zJfLUdUHWR05YUvf62dv3Qz+6XlBz8rSdkC4mjvYfvGq1nZ+cJS+9M/++PQ7rcLW8+1\nV198rX3phevtlw+uJzFg5G27ffjefvv4492sCF2LvWwZsvJC+yTnj968mIRi97125dq1zFc7ly1B\nsrnuxpX2KCM/ly8lGbz5Yrv9ySdt+97dtpsJ85eDb914LvOw8uwyssUjTCJBisJzTNLU0fQjrFwn\nFnQs2KQOrLj8DrWo3hwC0InXboIqNcyBdR4gz0++n/A4piudFpmn/753paIT0Selu5sladideY9+\nl0itE4Azbh9l43cnfvbi5zCLRpYz//DRw/32g5+8035+90FbyuvR3bWLWb0bI/t76fMkzo9zxFhO\noMjuxu3mc1fblStb7fY21pJoczsZ8QSn1L8zX+SZ7kbyMepKF/ZnNO337O/brEVsr/r8SBuhMsCK\n27ZC9JSBpp2KSxvhaFf+aJv6lI9RXz0gtr7o37f+elRljOkIfCzwKAZ/kiwyVV4ffCHAtVF9SFOv\nQnjaHGG1Ia4t60L8U4yh+oBe9eBZH+WrjRoPdAq62p5Rnvg0Bm3LH2HVn5Kd8qHOlDz24dsH4qPO\nlC4y0LnArY8xn8WHz4KyU/7kAeWf5NO4lNeH96oN+BZp2KVUCE+bI1S/Qm1VGrh9PT4/+qp69f5G\neWxJq/FAp6CrzRnlibwxVF/KVFj1p2SnfKgzJY9t+PaB+KgzpYsMdC5w6zVecXjHPvLDy5Yfs4UI\nM72wZwlchrF2szzzYs6jvHbz5b7B6t7ufttY3mpL+9vt4sX19uor59udj27nmKm7Ob9yvz26/177\n+Zu7SQyut5WtzXbj0tV287vXkui19qM3dto//n6SBM4XXbrV3r3/oH35hfV24fxe2+XM0qQBG1du\ntluv/XJ7eOl6criVtv766+3BH/5RJszfbatZufhRzit95Utfytw2TmqIRq5E3dOXPuG+Z2xph/nN\ncq8nljm/n3PK39nT5I+N4QHbc086hDK30bn0BwNfvW9m/Zta1+qRQSdxg3hcZrWwZv2oD/i6i4++\nAAHIFQajbX3YsSexDKcl6aI9Ushvj7JadCmrcA8z4vYoW6s8yMrRg7yefsjr5qzgXU5f72b0dO3c\nRcLtcXEv51azyXH2amOO4sryubR9fKX2hZ632OPZs1+w4d8e4oQObapUndNk/R4gV3343E/5kKaf\nCuFxGV+FU7Fqa+Thn+LfpuoDetXTx5R8pdW4oFPQ1faM8sSnMVRfylRY9adkp3yoMyWPbfj2gfio\nM6WLDHQucOs1XnF41UcfaRuNImQZcZ3AH/Ws1wDAa318oPVT7SkPpAgrLg2fPjBdePgwJnWpo8sl\nLq+qKkNjiVd5cSDXeF/qaHOU17986mPRrg8lfOW0bx3e6AOapcoZq/LIgFsHUqqOPGjKdqHyUeXF\n1VNMfetAZafwqg9ei/VqE7zWvdfRNvVR3ziEVUcaOs+eN1rmX9HnjR/7+XeprzTkeeC56YlczqZM\nJnDx8nOZU7aVieuRTZbE/rf7O9vt+vXNdu3KWrt35738kD9qu/eyFUe73ie4P7yXd2l7e+3jJFlH\nqxfaq1/+crtyOdt25NSFnSQJB0vnsl3ItbaW96vf/tbr2U/355l3xaKHtXbu+Vfb1S9/ta1kI96j\nzIk7uny53bp4IaND99s7t2+3W/fvZVPfHBxPXtKTFT6zQCHz2fojn/ejswn30Gc/krMeWPCJEt9T\n2mGOd0l+YHHSjYbS26n+3an4Z23z7esSmJ/bOEoGB43Xlt1eYE++9HFspislfozM/cwBVhNtp/e+\nw0b/L6S8GmVfqpxXkbjz4xV6T9hydNVB+vIgie9BYrh64/n23d/6nXb7+z9od27fabtJ8DayOGHv\n8V5eRd+NbjbdzWKPpSwUOciq4aOMrmZdcBL8mW/yQnxz8R33b8Nx+D3s44C7HDzkfN6oqw9uGfmV\nXvWf9kkMM8lqE3xWn3Xj03/fIk+I8zC1F5VuCwhzKh5p6Dz7+0Y7Pelb2sS2nHFm/SxuHyBT29G6\nuvKqbWjwldEmsMqLI7dqB9XkxCShGjQwaCO9yldnyiqPnHYMFJ5FuWoDOeneWIVVXzvw8eM9SVd2\nhKMP/dU4TsOxUe0oL230ad3YkBtjVqbGoz3gIh+VXu1jR5v2RbWtXtUBr3GpP8pQNzZlvKfqQ9y+\noQ5OkaeetJFe5ZURIqu89wgPm8ZHnaKcOFAZ5aUJ0RkLsrWN5Cs7wtHHVBzYUG8KN75RV9vqjtDY\npmKusvAp2rOuP6DyyEkHp6injH0xyslXB1jbsvKrjDh8ZfCJbgj9d4sjlpizBJ1kB5zVgmsZjWFu\nWz8CKbTV/HBvbq61l15YzXYc2bwyq0ePsn3ESmMrjs12OUnei5dutXc+ztyo3axOjPZ+RnV+/OYH\nmVOVV6RLGWnLlh8r56/kAPn77X7msD137XL7+Pb7ben8zXb++gtJIh7nBIVzmU+/15778mvtUrai\n2Nt+0O5/+iHb9/dkipSEkbae2STm/dzHbBUpt5T76uWzz1+4cyXk5j8C8zbo/TDXJInrCdW8ngaR\nc6w/c54q7cj3Mjr9mid8/RVoEii24+jascGryh4BsvO6LoCzmDorsokPW9038tiPjRhbjh0WOfR6\n5vfNVswSM8nqLNbeDEGpsz3K+tZW+/ThQfvzH/1F++Hbd9vtO/dJd9O1JOj7GSHNkpD1vAM/4viy\n9GlW+R7trWZBSM4hZfNkNunNvZDUcxN1NSmx036W3pa0ITGmUOd5s82hifO8g3PVv1foqKe8OtJn\n8ugiQXmCa7O3Ie3mcxG7JKD0BP/Nm2ZKnlgAAEAASURBVKtrcwea4nawC8QfpULsj6XGVfniI0Qe\nGrDi2FX2NHyRrva0M0JjR67+Han+jA2a9oDKSNN2pXehfIwyf5N/31ZXVvhXHA/FrJEN0OAM3Jv6\nf9h7EwA9r/K+95l9RhrtiyVLsiV5X7GxzWZjYxtwAoFioCTNCiFN0iSFtmnSJDdN6E3ulvSWNkl7\nc28ICQk2IUCABDAGEzB4FUZe8CbZWmxZ+67RaKTZdP+/5/3+M0evv2808tKmrY/0feec5zzbOe95\nv/PMczZip01Tx4HWOKTLDlzCTQcOwWWOK2hFT5qHQJnpnK+/FKVedV7OO24lw7wtzzKMT2wexjGN\nY9OUeHU682uls3kbz7wd12UYzzKdd5sZbnnQO+0yxyVNHcd58ycu8eFhHMsAx2mXlXRl2joQO22a\nUg40BOOQbiYDuOlIE0zjuIK+0t/KdnI/c0zblm3nNqu3oXkYTp60nw1plzkuaYxfljltmSU+ZZM0\nDMI6GZ+BSQM4VxylR6VtWL8hWls2a6aO09DRG9Gf3rZRnZ4/e+ZQnL6iP2bP02Ee/cu14UC/i5p+\nmz9/SRw5ciyGNPB34uLZMyaDa1b069C2gd175OlRv9I1WMeU75Dnbttzu+Oebzwe1122KA4c3BWL\nzu7XQa7DMhT0GT0WhwcGY/aCxdElI65bB/H2rzgjhnftkqdPZ79pt2mnrs3iQvRRee962KUqujQo\nNOyqxSQsK0XFlObDCDzRIlWS33O1hxq4ahNwGoZSet+SRuXEmZ6kdwrayfJGugHLq6QkPE0E0dP2\n+Wwa5Sc+J48ryMJbhs76YJ2CD0B5DbHSGUOQDOMRxpRoRTPOsR65G0OeS9YeCoXduW069254rDse\n/v66uG/tutg+oLVrM5dGT9887eBV+40NRqduoejSc+nQcSxHtOOX5jsg+MFjR3TW3izNuKpMemRf\nkjym1gnuS5lpfLXqb+7ToDld0puOcqfdRhNt1ygjX+HwRwYNxbin/isjNt9B5ds1zZ/8pSobV2g9\n8mzOSL48k8a/3IwjnskqcTEioXllPC3b4L+n37dc01YqP9lp1BUmOlDVGcHLTkFiimCcekzD+Ecf\n8ux4kuFgeaYrcbJTNn4gTOcYfDd6SWu+jl3m2HDzaSbDOHUaw6FxKPmAz8cw4ziu86vnjVePzc9x\nMxkuI3YwzHL8LJyvx9AZZh71mPKpZFDG8y75OF0+L/Mo+bmfGL8uu8wbpx67jsZ1GzhveaYDbhzi\nMl3iki71N796bL6OXV7yLdMlXpk2HTH4DnVaaAwzjuM6v3reePXY/Bw3k+EyYgfDLMfPwvl6DJ1h\n5lGPKZ9KBmXZ3xiw9LNS4ZJmlOIPPu4c1eA3OqI1a/1xYP94zJDXbfTYvujtH45lK2bG088+HLu0\n/XD1+ZfGoAyGu59+Itate1g7Si+Ic+UhO7Jzb/SL386dR+LAPt0pKi9b7vgU/05NySkXvUeGY929\n343uvvE446zz4vjRgRjcsVPTdIOSeSBWXHBxDGx5Jh675y6d2Sbjraszlp1zViy64Lw4qum841qj\n1akT+4e0u7RPHrm2MdbH8TupemDI0A5p4OB9E7yxu1IZpbPimbRXzU8FDqQn2pnnVTyzqjRJJ/lQ\nDk/zlXy1suosY0pG7ESbqxxtcprUVkGySolKKeaPbhoLxJSLRvo4rTIgXOtFDDwvicdzpl232jcn\nD5rqLgMGki5Nfz79zBY9n/Xa+TumtYT9cVibDbqPD2k929GY064jVToGored59Srw5HnyivaHgdl\nCB84ckSeOIwh8ZXlnXJVB8xGh2n3N9qmEdy25e+D+2zJr/Xvm9ur5FkxN+98FLQnjUB7NnRGTtWC\nDXzlkpsIkpu+ILEeia+yekx5qX+jas+LJvWZ1BWkkl+ZNj44ZZq8A/gOdVpoDDOO4zq/et549dj8\nHDeT4TJiB8Ms57/m71uuabMCKFSmyaOUK1Iq7bI6PnDDiE1TwkzrCpMnlLgVpPo23Pj1uBlvw+p8\nXJcSTrqVDOO53PlmcTO9wKvTWgfjm5d1ruMbDp5pHBvXccnL6ZLOeNaBsjrMvE1PeYlf0hiH2HTG\nL2ksw7R1XPMBbrqSxvzN2/glP8pMYzznzbdOZ/pmcOtYj5vxNqzOx3Up4aXMOm/jWW/nm8V1WtM4\nNo11ML7h1rmObzh4pnFsXMclL6dLOuNZB8rqMPM2PeUlfkljHGLTGX+CRrZNwrRmqVNTYmlIyKOi\nidDo1fzngLxdozLcOrr0R2SnLnEfGtQRILrSqn0svr9xS2zZsSu2DB6NPQMH4tDh/ZI0Elv3bI9z\nzrkgVpx1Tszpnhvf/NoGrWXr0XSqDtEdn5lnq/XrfLZ5uj5pYWdHzJCbr1dGRYcMuHHtXHx27YPR\nfmxAx4TIUJg7KwY2rovZmr5jym5MRtratQ/Fabrs/KLXXiVrhHPHdE9ql/qzPIN4hzB0cPTlGK2h\nmH94T6phhNGYFlHw+Kk2JNAOfAjZPsTk9Z7lpyoASkrBMckinWVVOaZAmgfJo5KRJcqnh68hryJB\njuSpEm14yQSErELhOcMri/M5Vce0oJ+Aul1CCwhzqpMpT4DtMqTbZZi1a1foqG6m2PzUmjiy/5no\n75qjIz6OxIyO/WDJONTO3y5dV9X2jNpwLA3McXnauvTsHn3kITVmr+DCxJ6XMtz6ULUn2gCq4sw0\nvlr2txp+9r1G25Vp2MDD/bQuw3DLqRqBNmIbLHTZDRrpyoChX1QtKAwM2tQbq1heSd4DJbOKtGeW\nCTurBl+AlU5lbJ2t3/P1SrKU5bIKMvld0pa8jeFy55vFdf1M49g01sH4hoPnMsOIDSdtGsfm7Rgc\nQj1fxy/lGNcw41acJuUbrxl/YKYDj7T5TXjazMCIFuDYcMd1uPPExqnHFl7ilmnw6zjOW78S3+mS\nri7TOMStyqYro+Tl9HT1Mr5j6+I8sWGOy7JWaXCtv3Gcb6abeRvH+XpsXsStyoBPJcO0pnee2HRl\nGXAHwx3X4c4TG6ceu44lbpkGv47jvPUr8Z0u6eoyjUPcqmy6MkpeTk9XL+M7ti7OExvmuCxrlQbX\n+hvH+Wa6mbdxnK/H5kXcqgz4VDJMywYEvE94gzTRqOFO3hQNVEyF6XTdGBrSdOfRQW0caNN5Xofk\nZdOu0fPmR8+s47H6gitirG+jDLcdMTQ6KKNuVAPfiGYph2LfvgNxxoLVMXhgNLbv1XRe52wtgp+p\nwb4ruoU7U560ue1Ho19enj7JHdXhuYPsRJ2/ODq1s7Tz6AF51obiwNojMS7DsU/eoUEdENsjD9Hj\n6zfG5+68Jz5yzvkxb8miOCb9+npk0DH/qvV1qpAG5VyOT6phB+nHnPGZkJYdceY0YGPgyKuoD202\n4dlJXCGpLV94QAObCtXzymcjhsm1zhud0iKSYdTQN59x4lEXgOIn64I0ZXgusIQ5WS+nCWXgas5T\nz+KIMPVMu0fi0LbN8qQ9FRedrTLOuOvUZg42bYB3XB62bt04MXJYO361lq1T5+O1zYkn1h2MNfdv\nkEE4XztI+3VgsiZa1Va0U2UQT7bLtPtbUd+sF7URP4LzmSm+DHfsosm8H6xKsj/T92krtRNtmd5j\nJqiRVbVfpTntiNmq+gDHKJZ+1Tsx+e421LPYE2J0aPW+lojW1bHLTOs2MLyM6zQuOxmNeRvfcTN+\nhjk27lQxuHUZzjfTzbyN43w9LmW2KgM+lQx4gHPCOW0ATVRnYDg4pxrqtM6/lDJa6YQs5LzQYF2n\nop8OzsnoT6bjqcoo8UmXbV3KKvGm0rFZWUk7XRklDTydL/Ur4c3kngxmnsZz/qWUYd71GFll+9bL\nT5a3rlPhTQfnZPQn0/FUZZT4pMu2LmWVeFPp2KyspJ1KRtLqleetB4+F7AxcpDEGDh44kMbcqNY2\nMVK3d3fIaNqrqcn+WLZkWSxftix26KDW3Xu3xfadT2tDwXOxb/ve2NyzMZa/blVs2Toob51uPRjX\nDlTtRmQM7Rgb0jq3QR2wOxi9x8V/ZEDTd2qHkaPRpntH+2WsdeoKrFkdmvyT165TBmSbbmfom78o\nnjt8NB5/+tl4bOv2uPVzfxcf/NkPajeELq0fludInjmG5hyGGYArWyANjDTIGg1FXXNgps5VxfmF\nr4yoRjs0UBuDeIORgZJShSpGDj+bkjiBMdGeCdLXZFGZnMAnkc8pY74aHxj7k4IqKVWf0XMCMQ0T\n4bfpTlYqhAGnM9ZCZ+cdH8Wbdij273ggls4djo5FPTovTwaxDjDu0jVh423yTnZoirRnJMbU/j0d\nM2W2c5bbzPjaHXfFgUPaQcrmkVH572TE5/q5lFpOjla6S4MMU/U3yhzKNDDny/ehhJsuYdKBJ5Y0\nNFHS6yvTgqvN8JphsHEHLlIrQxMoN0ZUDUxzZUpfwACTh5+/M6kvq87jcDCMvNOUl3Wpyqr3vJ4m\n3yqYR6ty4M1wgPl3pCx3u7rsZHyNV/JolS551XEsFxzzJF3ikT+VUNKSbiVj4pw2E5QKkM6/eCSZ\nv9RIl+XTVch8Xi4Z8DVvdEIeeeIXom/J72T1Btc4pQ7TbRvrS2ydHRt2qjLq+BN/ZfPmNeSAQ6DM\n6QRM8+tUZdT7kWWWz4d0Ha8sn6Zq+czh83LJgK95oxM6kid+IfqW/NyXWvEB1zilDtNtG+tLbJ0d\nG3aqMur4/637G928XW6b4/K6YMjgieiQ8UNo08XsgwN7Ysc2GWArT9P4p8XsI+2antwaj649FKfr\nEvgVZy7VWrR5cd6Z58Q5y8/Uwbg747lNm2NG36LQcqnYtmlI1yTJA6TDc9s0ldmuM966ZUzM7joc\ns3sOR1f7YRkDwpEeh557KvaMjMfo0P6YpeNBunXsBPocZwOYaAfkbbv34cd1T6Y8cbMWx5e/9h15\n+y6Jt7/lOsmQt05ePqZQGXjH5XXrZBovB2wxb6wpy12xhtEPVU8W1PNc/Kl20jY8StkQwlJ5fmiw\npCqGdkANaFUGvn7/00qgnyvLP+ZsFWhdDghukCWMr+zH0HGhO1hUBNok88AkOnaLCgODo9osgVeO\ny70EUFu142nT80yz6vhw7Hz2iegY3ScjTXfB6oTk/h6du0b76Hy8MW040T4OacdhIZoGbZ8dA8f6\n4ht3PhaPrNsX450LNMWq+0lpK+lT9QyhFuFU+3T9dwt6Qvkek67jnVDeaJgTYNlWVZvRdOwo5h9t\npYl2Gl3NU/3+jKnuPBc23yB+TH+sVC2mcohFx7Sp+wT5SpY4qsg6e6MDMHW3iVDqBW6ZL9MTBI3E\npDz4TW1HgGsc6wMb+JuPf18sp5Rd0rjccZ1HyW+q5wJeqZPlW675IIeyqXSwLvX4VGR0nHbG6o9Y\neFkpp4nLcoQ5Xxdcz5fKm4bYlXSauCx32vzKfJmmnLxh9TTlyHI5+VahxHG6VWweJe9muHWY6eqx\n+TTDNwwap8u4TNf5usy07piGOzZdPW94Pba+5uty6FvJoMz8yxhe5ue4LK/LsKxmMfQOJY+TyTBu\nnZZ8szLDiMs0+K4D6amC6cBxulVsPiXvZrh1mOnqsfk0wzcMGqfLuEzX+brMtK36gulKfMOaxdbX\nfI0DfVMZjPwMbSrHCuDYDDYhcFQHE4zD7FzUZVOLF52ZRlu7vGWdndpCoKnOoYGOeHrj7ti0ca92\ngg7ohI7jMX/Wojh75ao4Y8nC2LZlNO67TxfJd8wTN3natF6qLw7G7PEdsaJ3byyfeSB6hrdHj6ZV\n23WUxxEZFEcPH5LHTMeK6NgJJB+VQTnW0x9jM+fE/U9ujq/e91DsPKJpUB0ZcmBwODZvfiYue9Ul\ncdqChTKKuLJJRp8Mkm7dVzqqRfTtMmJUIS2glyHTGHhVw4QR0y5Z9cnXQXgKwIn5TSR2ALkWeJWS\nh/gnMuz1D4OB5wEPh3yODd7JqeCXfIQIdp41l1aZyZObGGdpA6fBVzzYf9Gmo1RGhjXdqX/s/O3Q\npoLDB7fFzq3rtQNY59tpOrojjkVv55i8adoRqmfRIe9cV48M6vZ+7S6dqy6wNO5/YGv83e0Pxb4h\neeP6T8trxNq7e8VT6+OyIqpbow6n3N9EX7V51Y7ZHg0YvMzPcVmOaOepI2nwMohdJvVVwZnu1JLH\nTt1Rq8OEO2QId8nwH9YO2XEZbKzXzCcsQ1rHQmTa70clB4MCw4L+wbuDblkimPCpv2VCnVOw1KnC\nn9ALSKGn08QOzdKG1WPTuH3IlziWi0EEnLxhpnVMeatPyb9MW14p02nzNY7zlLttjeu4xHF6qrjU\npeTRSkbH4hWrP2LL0Q0BMh/yZUOV6ZJ5XSErYR6Un4oM61HnS74ul7x5k3a5Y+sCrdNT8QePYF7g\nlvWuSqvvOg5Q87b8Et9pyqyLacyLvMtJu27WA9jJZJi+pAVWBsszr6lwSzrrfaoyyjYsZcG71KWO\nZznErUJdJ/BORYbboBn/ulzy5k3a5Y6tC7ycnoq/ZZoXuGUbuJy4jgPMvC0fWD1QZl0oc9o0LqfM\ndbMexic2PukymL6kreOSNx60U+GWvEtd6zq1kqHaqo6cyYaHisFII5M8NTLXBGfxf2cc1gXvbboJ\nYcXpZ+nHt0cbE+QxO67rpo7oQvjexdqkMFf3jQ7Es8/KeNt2RJ9jsX9/e2x6Zjg2bj4SHT0L1SBa\nJyVvz+z2A7F8xmAs6z0Qc8d3R5/WUx3XcR54idq0kL5Lg003g6XWYh2T9+eY7js9pDPC7l+3OW67\nd21sOTQSIzPmyJiTDjJSDu4/GFs2bYqrrrhc6664wzRH1nxuXd098rixzk7Ghl4JNas+7IKknvih\naGc/42qQO6Hd3Rdo5Iq40dzI4B2blJV8yAPmo5BnsuEpVD8l5HPFu6BPbvhIaBY41SBNzQQTLsXJ\nFzOl4mO5Y+LbprqAAe9hGWxt8iTJbI3eGV2x9bmNmpreqfVqrFk8ms+zTc90TB5LDPMOHWjc3jNL\naxU1Jdq7Kg4OzY8vfe2J+PLXH4n9R2T0yusmf6durFD/kJQOGlH1wWtV2fqVgeQ2m6qfZt0b7Qle\nMxqJqNqoBZ5piFWZbCvahGwqJMOq8m7CR7Pm+kNgTBteenVI84Bu1ZDlLuNNJ8PocOgueZNHtfu4\nt4v+jGdS9dOmGAxTPKLtMvLgVRkbtDs625XGb0RqKxh9CQUmYfnc1E4E6lo+f6ezsMUX/FzXsq1K\n9DoOZfA2XVlugwlefAjGg8Y6OabcafBYK0oMLelSJ9LGLflaDmXQloE8H9NNhVvSmZdpp6KzjI4l\nZ571EQsyMwoJxDQOcVkRlxu/Hru8rlCJZxxiyyhhpMs8tOZnfR2D53Qpw+k6H/N2DJ5xLANYmTaO\naYgts0yXdOZZ0pQwcB0ML/PAXoiMUm/a1h2hLsN4hhM7bT3qMeXWyX1iOjLMp6QvYaQpc18wb8ON\n2yy2zmV9rKPxjVPKKGGkyzx05mdejsFz2vzLuM7HvB2DaxzLAFamjWMaYsss0yWdeZY0JQxcB8PL\nPLAXIqPUezp9wbKJnbYe9bjUyX3iZDKwZvSLpTFPZ3mlDAYsjJxq0OnJQW08BmW4dbb1xIL5p6nf\naS2UBvLuvhnyxHVjImjwn6OBfaYuHG/T2raheHbrqK6d0g+27rUcFh08F3QPxNFdT8Ti3sE4Z1FH\n9I4f0jq2IxpAdSaYfD/cdcpGhU4ZW6xhO6JdjltHOuPbj6yL29c8GNuOjMawFsSPyIjDV9Qug1LK\nxJbNm2Po8OG48sorxKtLl9Qf1dRoZ54phpelU2uxcqjSTzUDL+MpYy5ORD1FffStuuuBTjRptnUD\nVh2SqyLKgQm/CpPpCjL5jJBX9Y9JWLYvcH0mzoBrDKLwS9YZV3zTgG6IsL1g8XpKDc2r6T28Rx3a\nQdspD1J7d1fc9vXb4y8/9RfaAdqus9g6Y2Z/v4ySbm3kmBO98lKOHO+Lkc45MTg8R4cZn66p0KPx\n+b97OL51zwYZbDLG5WEbURsPyhBM4xdPk6arK8MNXat6+R2Ybn/LdqWyCqRNX0EqmMv8+9aUhgbh\ncaQ1rn6D8aC2Yvoz8aUvU+X0DzyurL08T9eiXXzxhbF61RlpvLFeM72xou2WYXdUXjj+SOE8Vh7G\nMO5LlcFvjH4kow590YsAnooyuB7gTup7Yn8Cx+WOITa+y4GVaeOYhriU5zR4BJ4FwXDy5fPJwsZX\niWs9XG4a8sYjbT3KtGGl3if77TFNyYd0qwB+WSfSJ5VxydVvnnwK4gwTghllRl9m7nLHLi9jV9Id\ntBkv8JvBTVvyc7peVs8br4xLvY1P3Co0wyl5lHSnglvSlfya8ShxnS51LuldXsateEJHKHmRNz93\naONRVg+mfSEy4GV687WsZnDLANd4pitj473S38pWmUz7+dbjSYznp8rnUdI9H7N6psYpy4ERSl7k\njfvy9jc8bfKE6beeZdvtrPfBQ6QF7SO6wqijc24MHNW0aM/yuOyqt8bq866Iw0Mz4/AxDVoayIbl\nnejqadMZajpZXxsC2rWOqk+Gw/CxoTRQZE3oSImxOLTp7li35isxv3Mgrr10SVx0+sxYPkcbDOQR\n0T4vjYI6LFepozqeYkBHi6zfdSjWPKWzxTZvigEWXs2cJe+PFslrGnZm/5w4oquz+rSrdWxYa9y0\nNuunfvwfx8/9zE/Io3dM04Q6gJe1XRp4O7WhgUNh2YxAM9vgYRIYr1E6kMS+8QjyGdDuiVvAeR7N\nQ/XsMBBgxrlwYpIfP08/x3zODKro0vhtzVlQfYlCofGNfGA5HVrBQa9sFT0liUIqhusYV07JczQk\n46Rbhxd/7Vt3xp98/GPx7OYnY97s9rj4vNPi/NWnxaJ5M2P2rN6YqfWFx4S77/BA7Nx9JB59bHs8\noc0lg0M6lmWG1i72zY5BTVWPyejplBHM+kDZQJpaRWKln7RTqqErdZG+rivaErKuil8KODzMjzh3\nsMJbHzY6p3z1wzQqaRu1SY8MMWHGNVe/IX74H78nXnXpxdppPKxpUnkP1T9uu/32+MIX/jYeefRR\n9adZImqPYzLOsq6qN8+SjR35nLLBq+dc6uI08q1fPieWGChRGhXGlcoTAf0rrlU7ZT1g0AjOm7fh\n5kXsYFznjQOcj3/zXe64TgfctCX/Er/EMbyE1emQ4fIS37Kb/b5l2+iL9yNDo66tdGsmo+3Sa94i\n/KqRjGAFSrgfFDhuKCtXpzMu9OZhnnVcl5e8DIMGuPmVOOZ3shhelmk+xCW8LoNyB8t0vllcx/HD\nsjzXxzIpdxn8DC95Wwfj1nFayYCH9XFsWMnfOhkGLp9SL5dZNjGfVrKhL4Nl1PUo4a3wrYd1IjYf\n4jIY1/qVZXXcUjZp8zQNefNzWZ2HcZvF5kmZ+RCX8LoMyh0s0/lmcR2n1fOwTPchYoLhJW/rYNw6\nTisZ8LA+jg0r+cOvDODycRuVZZZNzKeVbOjLYBkMSBgZaWgIgWk7MLWZMwe8bnm9jh7VnZV4t7Qg\nfaxzXixfdXGcufqqmDNvpTxpvXFIx4Ic06n6XTLUZOfFzB5Nax45qMHuWPTP6ol9un7q6Se/F/ue\n/V4cP7wlukYPxrye4VjS3xlL5syKRbPmaF0bd5N2aP3UaOzV/aJb9+7VrtThGJRXTwe2xbh4DsuQ\nPKbBs7OjV7y1RgkPgvx84yPa/agz5EJeux9/3z+Kn/gnP6ypUp37JuNRB4HIkGQ6TJ5EFvBrimxc\ndNSSYyHYdOCNCPU2Sosgm42Ro2w9gACqNq1SasdE0bNSKmHi7Xb280FG9hvFtD0XxqehZ1o8Wuk9\nEu+GCA394lnJ4hQypu5GR5mykldIB96yhm9kXEavboX4yh13xsc+8anYsWe/PEHSULtwh4/qkGNN\nkfbKwOUWMNZ3IWNQu0XxoLbrLtienrlC1rrD43hOudZKgoTcRd/QOX1SV31EBrJ0odUxJnMakbZU\nPdw3Xd96W5bwVulsgsZXMxyXmzcxA3p+0FdtyeYTnu6ojDLOHXzfe98dv/Tz/0wbY3QdF9PHojl2\nbCT6+nSVmrxyjz6+Pv6P/+v3dFOEDLfZmg4Wj9yBq7qPqq9hwOX5hWp/plGhT09cipucWUtdGu3A\ns+nWLmvqQLtQxqdaF1fly7okDnonzvN/38zbNGVcLyNfhjLvNi3LSYNjPcmDZ76mp5xA3yVMxauk\nB9c8SBPqtJTzsQ6kq66vPqaE6Sk/1d83bUSopkchTMaNyqGIGZN2MKweu9yxy52nUi9UBjzq/MyX\nuN5gJQw6Nzjwkg/pet44piNPMF5JYxjlZf3IOxjfuM5TTtq6EfNxKPFKXLeh8VxW8i/5uNz4lMGD\nQLqkK9PGJ67Dyb8QGeZlHcynzv9ksstyp83D+RcjAx51fuZLXK97CZuqTpSVfJ02vORbL0OGYZY3\nVV8wrnmbHhnAiOvyTFPiTiWjxCPtUPJBxn+r/pYn52tAZgRs09Rnh9aXdcr7Ns5Ap2G8s0Nrodh9\nqKMkDg7sigN7n9V1Urs0rg/KQNJtCTIIemUkdGh9WtuwYJ065mNoZ2zZ+L1Y//jdsXXLI7oq64A2\nKMrA0AL5I9rpeVCD4nO6//KpbXtjw/Zd8cQWeXx27InNugprh3ZDHmufJefbbHnXOuMoa40wQmSJ\nKMrdj2MjunZJNyS0daIhfrPxWPfY96Nb06GXXXKJjArVR542jBeNCGn25LEOuKv4CMJAyQgx4dGa\n+Fmh/1GkPoBVQGbiAyn5ZJFJdRCxZFwQTSNdUWNkgagAXHLFWfIkuyFL0MY/ocgYSrb6ShH5BSK0\nGtiUpI/IfmjwykaJIa3du+Wzn4k/+fNbY/ch3WAgj2R04w2VF7RvTk4py/8po3dmHBqWoa0dosPj\ni3Qf6RJ5UOW1PFYZxG0yboclpLtH69y0DnFMBojO55UxrpawYtIBjfO/dCrfDao5nT5tPPd5aLLd\nqG/y4Pk0GijzgiMXT2a2o9pPD1a9Qu1BWv1V7dKhT7e8v8eGhuLC88+P3/13v6Vnr2lOKY8X7tAh\nbXTRJhWmyKnbkiW673bm7Ljv/vt1HuEx1VvTyxxtIpkj+gMCTyZT7kyzt2HxooN07FQ7deiTGjb0\ncb2pQqf6JR7K1FW88r3Ge+26KM4HnfyqJKDy/SdfBvhPyqjS8CdMlAkHGHz4uJy24sM7Aa7LgVW0\nFb43WVCeslQX/1EDL08JY4CCU8lGfiarmHSl1gROVarvBh68Kv4CNOoATqkzyOC4DqmnYBO0DaYT\neihPmfOk2RN9ApN6PpUA2AgQ8amHOl6z8pKurjj4ZXmdnrxpiG2hEkPnMuM1o58OrM7H+Wa6GQZO\nGUxTwk4lDV8+PKjSUi95TEdGK73Mv15e8nfadWyWh77Og7z5E9fL4WMc8yzzdXzzMq7jOp7hjkue\nwMq8aet1M61j0xC/0t8mf2jcPvXY7Wq428/PsF5uvDKuP5MyD32dR1MZwlMnbHzEHQ+KImYj+YHt\n0EDFb/OYDmHFz9KhtWks7t+7fWcc2PF4zNq4JPrnLIlZuiS+t3eOBk6tKRs8Eof2744DB7bGwKFd\nGi91zIeMunF5ueB+nKknDRZHmfrTNFKXjC68X1gkIxpchyVzWN6gvAFBAyfTtO2ikblX6Ske3C+J\nAce6I3a5dnKciOjGtQbuT/7i05pePRYf+Mkf1U5JTbnKkOxhcBIe1WXETtHio6FcAAwp4PquEimH\n40ZYVzaxU1IoSQ5uPcBQ/DJIN/4R1BP0j+M4YC9pya/Bh/PUcmEdv8vCTOWQwLOrBv1qWNTgC664\nsEyL6cDj1FXez/aOftH1xOf+5tb4f/70L6NNO221qC0NyBEZDV09OmMN35nqPyIjmUEZw4Y7Osfl\nVRvWgx4b1WaRzj4Zu+3C0TOW0XJMU9udePLQSf8ZuMdwoxKQzz/6TSNMu7+ZoKA7kY94wzfF8h6B\nKB01dmH8kkUW68uOycjq6dVmEz2nYV21xc7QNOC4i1V4N7/nXTFTHtcDh7WuTWUf/7OPazr0C9rd\nvDp+9ud+Pi677DIZZmNx3bVXxyVfvCju+OY3s14YrV06FqV/5swYlmF3TBsWeuSZGxGPLsnFgBs6\nchS11JX43ZYRLR0wGvv6NMXc26Xp15E0ktCb55rnBCqmHTE88yBoaekupyee9UpDT7rzjLLqWV/a\nhL87MALZYCEdlOB3ln4/os0WwLLdBKffjuronE5NmbMWj3ahjHabqTohY1g0eGjzD5tGW1MhcPQl\nqcjTe4YxrHeP/lOd0wecfsCzUbnqQ/srmW2fYzCtLx7w8jE3uamD/qc+Bm2+V0ohn7Gb54a83KFM\nJxcLeDL13642JzOW09+iFzxli45AWqCqvZBJXh+qMWG0TSBOFCKw6tC28pyviBsPpKEgsDI4TyWh\nMw/g/rgMOpdnA4kmG7pkWEu73HEpzzBi4I5hYbwauxOy4Fgf8yrrADJww4xjmPMnMC0y1qHUzTSO\nQXc5MMOJ3UYFy0wax/obl0LqA5wPgTLS5uU8ZcYxnutZ0pOG58lkwIMAnoPT5kdc5wMucgkuN47r\nkoWNL3AIJQ756ciAhs9UweWOS3mGEVtXlzueijc4r/S3qoVowxfd3xr9qYPRQ6Hy9OhQWw62VTfR\nb2kOMm066kPDQv4IH9d048we/ZBzrdXh53TrwZbYxgXcuMIU6B4MGOM6501jqvD0g6sBgtsK2oaR\nAx4f9WXJwGDTEJiyIeafZvNUquMrRKueIrmVLoxy5PFqMXApI5NLg5jYs5nhKGdxaS3TJ79we2yU\n9+5ffejnY8mCWZr20u5JznHLH34RKZ1eG2qVbIA1hFABBn7WJSFLumn4yHrJepLODBYiapRQmkkY\nFWmoaT9MCD6yQ1MWlc77SFOwaiMcZPAG53uhwev4UemqzRjHWViPXuzolcE8ojbVSK3dszoWRTtr\nuW3i8Sc2xt9+7QGdzKKz8dQuaDc2rL23GmgZDLPNJBy9GUQR26G66UAVCZUBpIGUWo5oTpT7RdFG\njqIcjJmObeP55aQjLa/xSQM176HfV7+T7o8iyXe0xKHMoVnauPQHyjk3TS0Np9wwgt5jtBu6q44M\n9h3SQysxNf2+L+bOmROXX/SqWHLaaWq3jjg8eDhe9/rXx8Cw+qAMrj/9y1vij//yVhlxM+Ku72qq\n/tDvx+/+7u/EeeeekzdivPvdN8f6DU/FnLnzYvOz8iLrDxMMHvrEsP5w0Ix8dkBaYPTokZgt4+es\n1WfHokVLpFBnbN+9I/bs3BFbtz0bc+bMVhuBKWNORgd/OPBejWhatlNLCNjNjHHcrbV19K9cl6gp\n6B49B6a+eaeZuuWdqbqIjC/9cZIGHzh6pqzNw4iiX/EHTRpf4pWeMMkd1mac47oeboYMyNMWzovF\nCxfn9PC+vXu0y3g4Tl+9Mg1hDC7+CON9sgGW/VZ5jFH9SaUDlgdi39591XPJF01edXkrBwcHqXp6\nIkdk2PKHBvUel6Hbrvef58OUcnok9fzY5JFGriqlbPKXmGyDEeGx1pD2oNK0jxBk5Klf8t7KkMNw\nPjKkPzD0wnA0EcZnbixSfTv1e0S90pOtd7dd7U2fet6NCHRCOhiF7ojufC4jBuZ8iesy8zCe4yTS\nl8ubyajjOl/SACtp62mXG16ndbl5OzY+ecPqsevgupaxy0p6YKX8Mu0yYmhcRp5QwqxHVVKV1WFl\nGemyPk4bh7g0gCy7xKvLp8x4lm1845q/y51vFZtfyce0JQz6Oi4wyyU2nWPKCXW6qXBNW9IAK3Wp\np11ueJ3W5ebt2PjkDavHVQ2q71ZlJX29vqUuLiOGxmXkCSXMsqqS/876m+qWQWOkF78zXPLjzSGw\nOXg22px1WAzyGGSjGszY+dmDl0uDjVooBw8GAv6Srn53q3SHFskd11//2YaJ2RiQU4raS/JSCwZm\nlFGsBq60UBpTzYf/YphQBgeIxFk0DDKyZ7QGD49Irwyee9asjV2/+ZH49V/5cFx87modLKtbHSCS\nfu3yRuGRQNccaGCkMtLJSDKyPuDLvsEjhzYTFhaZ5AVQIQurZKZhA1jwyiirfHpgZNUopQ4qhBSc\ndrxfgqeJxxo9GVV5HVMObBwWq+nANl0FFlpbKB/CU5uH4+57H0+jbdc+bb6QgdCFlwJ+/MtBTaNq\ntpXqkzL4QjZ6aNBTOmVkvUUDUmqk9uQ5Uo6uBGj0z+8Pz9LvhPs/+URFZiPtfBa0/KrkprdxQo5k\nqbHQqdpwwXSl2lHG6MDAQCyYO1dHvuyNa9/wuviRH/nhOOvss9OYmDVrpu7I1R8W2lyAd7dNfe+J\nxx9NI4znPX/BPJ0vuFHr2B7RFOpZeT3Xa3WP7Z/92Z/Gjp2apn9yfXzsz/48DulqtREZIBhXQ9q0\n0S8v2uED+2QcXhT/9Kd/Oi44/zztxNUGBlmSR2Qk7dq1Nz55yyfitq/cJu/zgjT8+uTpw0hTJbSm\nUEaNjJkjg0MxS7t5MWjG5JEb1z2+vT29MSQjiJ26x2Ro4uUbkuHO9D+GH8Y0U7LDMo6oQ582k+Bh\nG1e+V15BfNispeOasTZZRPPnamewDNcd27bFP/nwh+O92oiBt/kTn7g1duzaGR/+0D/PDpreb/Gj\nzzN9jDE1KqNR6uZzx8v12GNPx+/93u/FAR2bUnn5ZMjKEztb7YwOI1obyQ7tUd1xS//o1PpTDE8O\nu2aDzDh/cIgh+vNuEmNkdmrj0pjcxnjXZmmKev/+/VpbqZ3mevdYW4uxh2GGx5eNM2nM4v3V+6BF\nEeob9EXpq/Y5Jr7VH/NVbxU46zRx92i937njVniNDt5Acpl/4AG7gzdQJvLu5I5dTmw+TrusFW6J\nZxzrUPIyrK4T9IaZ3nGdt+GOy3LSDpQbxzFlTjsuYdbBccmrhJkWWN0TU/Iznvm4DLj5GYfY8JKv\n8aAt0+ZpWJ2PeVmmY+OZ/mRxMz6mcRk6mK/1MY7zLnfscmLzcdplrXBLPONYh5KXYdbBfIkNM73j\nOm/DHZflpB0oN45jypx2XMKsg+OSVwkzLbD/ofqbfr744c020Rdp6sgPJnUmzV/luLZy+kTeH7wx\nTA8xlQFpnnGFZYK1ow94IlRZ/pROxjks0E8bcKwC/qdNBowyIgGIU61KO+sCQgMsz6B00MA1Y2av\nPIAD2iU5IzZu2hq//Mu/ER/6xZ+LN77uylg4b54GDt2TKpZClrdhWK4CyZGOqJhONMmtxjE8Sg3B\nNmYUq7ShCzHl6Eo4MQ0eempYSkM018apHTMjPpURKhwB4FCZxxif0GkqOE04ta0M4lGtRxuRsTYy\nrvVpw33x0KNb4oGH1msw7I5ntu+P3brrdcbMymCjPzIwUif0S+3gqQpmNVLVRr0klSpkndAhn0Wj\nHtAmcX6plFiYjazfgawj9Uz8qrBehsiTB9pKEvhSyIh20r98z9ILhXkSMUebBg5qfdo73/mO+PAv\n/Zy8qfO1e5Y2O54D+Kz+mdkXOLfuiNZIXnD+OXHvPXelAcUgf+FFF8YVV71GOrMOTp6j/hkxQ5+l\nS5do2vTSWHHGqvi13/hN9ROt55TntkdrPIePHIo3vfHq+M1f+ddxxvJlqJhKDuuRzp41Q163+fFv\nf+PXYljeoG9++15twpkrY0OH+eqZ9/VqPaHWYA4dGYkZM2bEIGvrFHsd3qFDB2LeXBl66r892omN\nscgZcPS/Tv0BgidrVJ669KSpnYeHZczIeunTH0yDR3SX78wZMsp60qjD8joiGP2nR569009fGqct\nWqAT97SkVJ63fuGesXShjnqR8aP3gF5TPdlGmyvPO83bC82mjVvlPZPXWx/W/OEy5kzAI3rHMCDZ\nrEQvwyOMx0tNmlOyHGbcqQ0Z/HHXjXdYhi1e0PTCSeox7RKnn3A8z2HtBJ87W+0l44sOQB8bk/FK\nP6bO4IzoN4c/RMhz1h7LI6rpW3mR873ifaUm6jGKxjWdr3Pazv5I2UFVmkKJHeqdFSbZ4fQiVQyN\nWcXg+wcRCC+c8c0LuNPmQQzMcKcdlzTGKWGkCZSZZwWpvoFbr3JQMn/zLONSpxKvTBvHsh3XcSzT\nOrTS0TqX9E6bt2PDiQ0jNm/rRrnTJZ7TZblpKXNwOXnXw3jmaxzi6X7gB24ZnDcP+PNxPypxSYPn\nNiVvPGLzMh5xM71dbpmmq8fGI3YAxzwNIwZuvdxmwMqP8RzDpyxvljaOaRyXuOBYpnVopSP0hJLe\nacMdG05sGLF5WzfKnS7xnC7LTUuZg8vJux7GM1/jEE/3Y/5lDG1OuVEn/Thj3OS6HRITgekPpjcE\n068nP+zE+omtBmDR4dGChUMm6btKVGCerdJpRFR903pDQ7oMLuMne0SDY4eOGaEtcHIMDQ3Hvfeu\nif37dPXWshUxd/4CLcjXACAvBrOBXGlEGJPODFYYf1JFg48MH1lxfNA8a8BAKtFjyGdw4fda6epT\npDHEUkcZBfRTBFTjCSnxVCbzlMBd+I0PjTo+hpdNg5+MhWPHdVtB20JNWS+Kjc+2xR13Ph2PPrlT\nU3az4okN6+Pxpx6WN4hdoFqnJO+N2yJ1hgny0EBJ4qrtlMEr08jTT6q+U+FjaGcVM1vBKoWBS9cG\n35euv6GlOkalJg0EgGxOjzIlqlLJ1bPRs2P6743XXBO//ssfiiUL58sgkFdMXh+8Tmw0YLqNKU76\n3lxNqy0/Y4WMtnvikLxFh3Sm30x5ic497/xYtHhxrkP79nfuiW/d+R0ZFNrRvHiRNiicHvsOHIyH\nHnpIcuX71G5U5PybX/5XccF558goGY4tW7bGLZ/6TDz8yGMxe/a8mDurX944ZC2Pu75zd3oDqUa3\n+tmQDDk8l7OFgwFEffbt2x2LJeuw9JmvPyaee267fgNljMmw4TkSDzPNjaGTHtTjMujk9RuSZ0vr\nQJkCpB0w/OCf05KCcdxNrq2T0bR395543Wtfo+NOLk3v1T33fzd5vv4Nb9D05XFNBW+Nr97x9/H9\nJ5/UTton45HHn4iHVJ89+iNg0aJFeiTtsWfP3vjKV76sHbg6zPrgAfXNUU1HawpY/adLHrZD3E+s\nh4OBmMYl0616cKyHxVPG+8hzq/L6Q0nl9CVipkv7dBYk8f59+9JrzzRpt54DZ+hh2OkhphEo04wO\noG/W7I2qLWelAZh9Xr8uTGdjyNFn6CuEXNNWJaGtBsf6j0dZTtrl/vF0+VRxSTP5MlUUlJXl5uOX\nyHlwLNMxMAal8kVzmeleaFzycZqYUOpSpi3L+M4bx7RlbBzikn+9biWecUu+hlk2ZWUwP+KyrJQJ\nfllm+pIn6TJvHNPyPJwuy+rpkk+9jDzlBOtjmQk8yVdJA537h/mV5WZlec6DY5mOgb3S36rnQjvR\nLmXbuO2I3VbEfBzAJxjm2OXEJc/pyICmGR/gDubpuILzg6lnSh+Rimg5rh9+fiAZyCtDjPU3Moj0\nI51TjVJfJojS+ntesIqDCGiLjOhv4pTVpLShm36oGzWfwFVRButETEAn/ld51nr1VQObvFAYYHhK\nWCP0hdu+GfevfTB++H03x83veltO/R3VNA/TVmOSp0pIT9blwFW6iJZ2SoMKu1NeRWqLZqytSoMy\nVaje4VRCZVXAsBEcwy7x1QrJX22gdWQYfuBjvNGGNtqAjWvX5riOVzk2qjVbvfM1MLHOajQeeXJb\nbNt+VGer6d7W+Qtj03OPxfpNa2WAboteXUdFc6Av7c87jAjaJNOCp8SGen6OqEvRZH+o8BIZ/Say\nJPioNuKZ7aJC0mW+omtQq/yUft9ERrtisNFG2SbikR5KNRiDPEd1sDN0nqZGf+LHfiwWaqozd4TO\n7NNznxFPbdgYGzZuiIsuvjROW6oDguWxevq5rfFHf/hHsWe3zqLTlOF73/telS2Nj/3px+LOO78p\nL9z58Yk//4Tadnucp/S///e/H+esOD1ec8Wr41t//63Yu2+vjIQRnfd2dVwogw2DAY/YxzWF+rcy\nZoZHx3XO3br4nd/5bXmfjsZlF14Ul8tb19fXH9e+8dp45plnYs0D3433vOe9mkLdGX/wR3+Y09j/\n4kMf0pq6c9MQw3t175rvxef/5vOxVJ6x9//UT8noHEvv1O///u/nM73qqqviHT/0DnnKOuOuu9Zo\nGvbv1FfH4vrrrosf+qEfkNG1Lv7wD/5T/MwHPqD1fK9Lg2rNmjVxmgxTjjvp0VTtDE2rHjiwX29k\nW/ToxX3iiSfjo//hP8SADMde7gdW52dt2NXUVd5IjFB2affIiNq9a1euE3zrW98SCxcukmd3RhyU\nYXvbbV+Je2QQv/pVl8Z73/fuPONv7dq18Tef/3x6O9/3vvfFZZdflnX4ype+HPfcd08sWLwkn8P5\nmmL+0hdvi6/e9tV4r9YVvkHG5MKFszVlPRKbNz8Xt37qlti+bUecvvz0eMfbf0jP9dx4WPcPDxw6\nGK953etizXcfiM9/8Yv6TcILqWlX+qY+dFV60Alr2iY7edlNn582njsvGMDc0Z03pV+CEl7ikiYY\nVueVhY0vyzbMNMT1NDh1XqYHl+A4M/oq8Z2mzOmS3jCXE1uHsqyEky6D8Us9Slqnm8UlDJ7m5bRj\n8Jy28WJ5ZVmd3vxLWsMcu6zkQ7osT+FNvkzTpOgEkPFe6W/VO0bjuE38zOrtbfgJDamM4cQOJa3T\nzeISBq15Oe0YPKf/ofU313tSd7VpGlOTvwcYZpgcrNvBQEpDTRUizzRq8lD75aJ+vFT6x8AMh6rq\n/BadmM72gCs/vHh1GGKYc6kFt13iI0MDDvKHZIh16a7MkdxB15ceCHxpndpZuWXHgfiDP/543PO9\n78XN7/zBuPJV50VfTumw4JxbHyoPARrK5KgU5ZBeGX2ptNIMBhgW5Cd1aFRCUQMxcTA8MFsx0lix\nlm2ZVmFl/MqiEjfWqmHsUlPJ1ar3sXbd16pjO/YcaJN3bV88tv5APLP1kIy4OTFTXplnnnsyHnzw\nW5oSfFZelwGJUDvprDampNhlh+r0J+TlM0i1UC61lxTalzpKW4EncKgUWNSvEVJnqg+iKIhtCFZl\nFQx058u03wVgrUK2I8ZsZbWJEf/RTi1ow1f1Gdduz4GDh+Jd73hHXHXZBVpLpp2dMtIHB4/FF/7u\ns/GXn7wlDZ1+bUx4+9vfEW+96a3x0f/4URlnd2bb/MT7PxA/JmOP3ZMXXXhh/LuP/HbcfvvtVFjT\nmf2xbt36ePrpTbFq2emxfPly9ScZzpraw1t0wUUXR9+MPvaoxNMb1sV9Mhh6Z/Rrdr09br/jjvjF\nD38oFi2Yq+e0Q966JbFq1aq46cZrYtvO8+OqK18dl196Qdx17wNxzlmr4gPvf3/cdMN1oSMQtWtX\n3mHV94bXXxEXnXNWfPZzfxNXvOrCWLl0UewfGos1mtb9609/Oq6/5kPx3re9KVtlvozWb37jq2rv\n9njXze+M6157pQzCPfEj//i98S8//Esy9HWOoVrvta+9QlOlmkrk+SmfnjB5pHrU0Uf0HJl+ZJo2\nd3HKI8g6MgKPultzp12iS4+tNkK89S1vjl/7tV+N0xcvSI80T4ep1Tdo2cG//78/musIr3vjNaHZ\n3Vi25LS48+//Pr2N1wt2/etfoyn+iO3a5LHm3ntiyaKF8Z53/aNYNn9OfOEzfxMf/MBPxT/XpqEu\nvWfoCe83XX1lXC26X/3VX8ln+o63/0CsXr4oLn/VFfqjbCiWL5oVO7X5A4O6R95Vfm/GtJmGfpMe\nWTHJ2pSdUnxbBjqhOysDaHbKBjY8/msGy7Y+jtGrHCis18nqeLLyF1M3ePNBL/QjXQbnXSe3retU\n4r7YtGWVMXKayTIOMil32xqXctJThWY4zWDNeMDbstwmxit1M+zljF1P6+PYbYJsdLJeJ6vjycpf\nTF2sxyv9rWrFZm3t5wfGienqx51XVL1PP5rVu8rPbu7wqwqqH31ZEYnDu5EeLBkz+To03u96Oo0G\nDB6YT/3epF5ilrpLB9a8VNN71e491gax1g1v36w58+UZGYq7738wHtN00OtffUncdP018VpdgTVn\nziINPIPp0WF3JXWV8poa0+G9GrxzUbW8LPDJez9pD2onPIYKDijOVMN7Xg0eGpX1W8YnNwaoOpWX\nLYmTdlx0XCPGFVQsqhsa645dhzrjyae2xboNu2L/QS3IbpsVM+fMi8M6tPjxh9fGhqcf0AC8W9NJ\nWoyu0ZAWQt3cpZuZ6v3y86KVAZ8YGm1PG+enjuFylfIsGwGefpcn+Kuc9FShWd+agMF+wlBUpsGL\nPsOVabIqcpqQ6bbZWsR/4QXnNc7t47l0xn0P3BN//LGPx979WhsmL+TmLdvj1s98Nu773tpYt359\n/PCP/Fi87W1vE9258WkZQH+v4z3+gzxMv/Kr/yZuueWT8cymzbnY/Qp51/AKYZpv37Ezb+fgho4O\nHSK9SFOmaVTL6N62a7eOSxnTNV9jMuS0eF7l//a3/1ctqJcBKS/Qgd27Y5nWxzHdyUadc89elU0z\nrKnL9//kT8ZbZLBx68Ttt389vvWtO+Paa6+VJ+kH4m03XR+7d2yN27/8JW12+MmYJQvo2tdfFV/+\nwmfj/HNWpfdtUNOjF557lm67mJVrzM5etTIOaHPDk489Fh/86Z/WOi/tnh0YjC996e80tblHHr73\nxGnaVUvA41xtOGCyv01Xeq2MH/+JH8/3g+eH4bPpmc255GFYBjKPfVwG24L58+IX/tnPyhhdICN0\nT3zuc5+LrVu3xk+I9sLzz5Wh+M/jP/7H/xRrH1gbr3n1q+J07VZdMn9+LJg1O1YtX6FzALVzVobk\nOStX6jzHzjhTns6lc2fFY08+lTtcf+5n3y+DfCTWyov2Z/JgztMfJh/84E/rJo8V8eu/9svx0Y9+\nVN41eTzHtDZP1uhMbQDRxSh57Iv/UGR6NHeUU1F1RY7TSU+bO+90Oii07pTu3M3oShj4dRnmYX6O\nzdN5YgeX1eNmvJvRALNelm9ax614Q2ucMl3CSto6Tr2smR7mRZnxSxhpwx27HHkE58sY3LLMRm1p\nCJl3IurLNKZzvs6XfElbTxvffM2P2DzLsjJtWvME3+kSj3TJCxzTGl7SucywMl/yLeWVuMYveZuu\npCn1KumBlzzKMsNLnDJdltdluazkZx0dl2XGp8y8SliJWy9HJ4Lxy7iUBc4/pP6GntbHOuPN4p96\nDb+L+eGr2gVZDtwAQcjRWJWHpgJVi/tJC0HACt5ISyZhAjdz5Cs4WbeZ4yzLmUjh6IdaDV19wNWH\ncqZIOTaBGxc4PqBNi7YH5MX45rfui7X3rY0LLzw3brzx+rjujVdr550O9JWhNjJ2TMaZ1knpr/jj\nY9q9pgE3j1egXTTwwHlM/IjJj8lTl+fayTODpxEjjbrmuWrI5Z2UgcEaHHZDYggIRUaHzkWRIbhT\na+6e01Tejn1aL7WvK3btHdGaHtYzzYp9B5/L4yS2bl0nz8nOGDl6QF4JDbxj4nN8ljSQL1GGJq2E\nzMqbqZpLVz87JYSTrS68xFRe+HhPKVNQ8QnxJIyCE39TTEPMsyB2Grp6mnw9GJYeSS0cZx0g09J6\nEyrjVkl0Yvqas+WQ061Re8WypdVUav4BcFxTbms0xXckFi9Zpl2fh6OnXztstdv2nvvXxHXXvSl+\n7hd+KR74rtY1arcpnsgbbrghvvzlL+e6qJvfdXPcc/c98V55fhYvW65dpzrbTs/rjm/cIV54N/vS\nSzdzZn8clkusU9XguqujwunRZpchGW7Dgj+pXaej8sjJUJD3rC03S6hnxCytvWLN2Uf/4L/I83Qo\nfuaf/tOsz25N1976qU9puu8h7RwdiGted4XW0i2Jq664NO74+h2axjyYa92WylB6gzxp87QOj/tf\nZ8vbx3u5XG0wf8Gi3Fzz5Pqncn3cvHnz1e66j3fLlvijP/ovKXe5jKabVTdCjmM8e/WRo5puXrVy\nZZyuLYv4AAAn4ElEQVR71sp8T/BG4527/8Hvx6f/+q+rxf1q+1FNrV7/pjfF6pVnqM2Px4anno7P\n/vVn5NnbFQu1PpQ1fnO1MeQ6TdNu2fxMvF5exUXz58Y5q87K9XNLFizI9W54b5cuWhzLlyyNK3RG\nHnW49zt3x1vefL3esU4Zc13x9Tu+Km/no2k8vl4evNUrlsXKM06PK2UIzhAO7/AM/XHzyGPr4qu3\n3xH36/mypo+QG6R4oUjT1/R/YveofyyytMXXRGds0ZmTMb1Roezc5u24xHOasjr/Eh88gmHmT2y6\nZuXGN3/Hpnd5SWuYcYlLGLgEw8yrhDVLg+cBw7QlXsmHNKEZjWnrselN6/JkpK9mecOITW+5xMBd\n5nyJB6wM5gfMacet8Ep4mS7rQbqUW5ZBU5ZZnmPK62nyJY+SHnwH07mc2HTg1MudN3/Hpnd5SWuY\ncYlLWCtdSh7N0sh8pb9VrVe25/OeRf4W+rnS9gIwraWfsmoqUzx4Hfnkz5sSPCPhVL92ygq5yglC\ncYptpDNPf6vo88gJDdjEzUL2L4qkB3y5ZimVEQOmZLkaK1WU70R7S3OqrV2DQ49+6PEgdOv8uQF5\nLu6+/5F4+NGn4wt/e3u85qrLdKPCBXHOOWdqofr8vBJJR8xp7VFvLkBvl+dnRMcx4M3j5Hs8exgV\nx7lBQLUZ1QCO3cGAXS0glwGiHQ/jqgPrbvIMO/HQWB8Dg0djw+ZNcdc998eDjz4eB/YPhA5xiNHO\nJTIW5olJRxohBwf2yYA7KEONRejaIcu5YaPaKDGs9Xo6XHe8/bB28B7B6pcGNB7tWrWZtFFbTLT4\nRJmg2VYqqmBOKEf7O5vPwjwEzDYXDjzdPyoOJ367HwF12nGJWcEkMPtFYkORzzOVAK62YypvWM+q\nWzsg9+zbnwbGqOBsWp4lrxNrI4+zmUQDdz4rxYc1jXb5qy9PcRgiD679XvzWb/6GFuZfIuNgXd7D\n+i153d584w15dMheTbdy5MXnv3K7nsl9OvNPuyFVz0Ed3juqZ9ytNDaClrFlW1dXY3XGfBkvRwYO\n6l1AdU09soheH2g5PPqrMk7++P/7Y62Lu0Z59Rm1OceWsFsSXdkByg7S005bEkv1YYPBM5s2pcfp\ndHnsrnz1q3PX52EZfWxcWHHGGXGtNmIMyYPV09UeGzdsyCnfWf296nURTz2tvOSzaSF3b/P89A/d\n6R2dsuo1z5ZTp6zzw+Dp1pKCGTpYEY8VGwxYt0fXYHPHBdq00S2PIR1j5/YdOrZEx5OoHjt37NBu\nbG2aUNniBQvjSfXhY3o3evq6cr0em5RYS7d543OxctWyNCyXL1sWb77hRnm1R7Sm7rG46R1vlT7a\nTar38cd/9Efjx/7Jj+iZjudGCH6Tl2qqeYWmqw+rvfiNGVPjf1GHJLOmEK9qn4xijlHp0C7WiaB2\npw+dsBFhorBFouqI1LHxAokJMCxdYB4gIDduC1ZNwaYx/zKmjA8wpy3HeORJo4fxXEbstOmIpwrm\nAY69UiUPw0q9WvEzL+KSB/hlGbzgO53Qihe08DnVUNKUevi5lvJch5LmVOWdDN+8S1nWC5j1go9x\nT8azLDeN+ZcxZXyAOW05xiNP+pX+9uLa3+3qfu/nStu6rR37mUHzQsPzeOhVqRaGK+YnPT0d1AkJ\n+srfN/IMwsCqv4KzDEDiNWKnG6QVQVVmdlkXZVwnYvcxp3PBv37M01LSurAsT20w2iowMNlWqRee\nrrxkXYUj+rTryqbePqZbRuL76zbFuk3PxN/e9jUtcp8Tl1xyvnYpvkEekEW5I2+h1hJ1yJOGt0XM\nsr65U1E8mZZi+o46dmmgqqZpqyNP2M16TNM/GGkMuuuf3qidiY/GY0+si2e37oz9hwZlCIhQHrc2\n3SE6Iq/T2OhWDV6aqFMbt3eNx8xuhMoQIJIxx2L9ykhlg0TlZVNDqZBy7Ae1heJ8ThX0+d8SCW49\nVM+zglbVrJBevv7WUGRCH9pCmstgk60kI6IrvUYzZUDgrRrQLkbKaft+GQjXaOH9l7UpYOuO3Tq6\nY04utuccsPk6RuL2226LN7/puvjVf/Uv4tvfvlO7FPfGNk3tLVt6emzbtjU2yji6+eabY5c8dPD/\nohbFf+xP/kTnpGkHr5qAtuUMsj17tWO34+xslIVau9alNV+a4cxjLQ6K54/+sBbcX3KRdlPu1W7l\nu/IYHKiPaprxnnvv1W9fR6xctSqNPab0jrAzVEYhhuEBrdM7qivH6Ke9OqNtt3ZSfv/xx+PyK67I\n3c7Xv1mL/xedFt/+zrfToDnjzDPjyitfk+fD8YTXapfrwoULJa56Tge1S7YL77LeR+rhZqUvYNji\nje2Skfvkk4/Hrbd+Su04rul2vLVt+sPhYCyTYdWntW4O/ZqSZs1lJ9OrMta61U4YhRiER3T8xhy1\nNevMnnn2GU2f7oyVZy6LV8lYxtDetXtffPFLX4xf/IV/FotPWxw/8Pa3x/yF8zVtvaHyinbrOBsZ\niKPygLJjO39TlH5uy7bYJBl0AM7MY5kDhuMzz22V3k/EYq2L69DO08PyUvbq5g/er/S2pdJqB9Xx\nlIw26Gyo0NF5GP6RcUO8mBh+BPMkdp64lTzjlS9fK1zDk/FJvuALT2I+Ja3TxHzcLq1YgkOox8Yv\n+RsHnsBbBevlcujMxzxc9kJieJQ84WGdgLu9Xwjv6dK4XV/pbyc+W7dLq3b086/Hxnc/cQzcz9Y4\n9fh/9P6WU5wYGfrhx7eTg4EaoWpDvf/6x4inXwMNvPpdIK+dblXg/fanAcr8ZLrxEzDxjtKeBMfI\nmXge+nGuhKFL9Vuba9qwF7WrsppHU5mOIND4q4EMbfi90sGnGiS4JPyYPhhCY/K8qRJxYOh47Nms\ng1af3hJ/8Vdf1IA4P70zZ686M87QFNZSrRGar2kf1u4xOLKYGwtpXAObFIs2HTOCFwVvymF5JXbr\nRPndWue0/qkNcf+a72oB9R4NOLofVFOjHZ2aJg3Ra4BjbRRr/rgjol0H7PbJI8IOQQxTFuFryKw+\nMgA4X05Dpvri4TRslKnaoRGRTaNNzQMm/xwynQiGTB3T3ie0udD9DgB/0b9v6JJzuo1nia5qRx47\n/DEQujVA47XZr6My7v7Od+Ltb3trY3fjcFx68QXxK//yX8YnPvmp2KEjKi7XurTF2jX5zW9+I9Y/\n8UR88s8/Hh/5rV9X610df/EXt8g464sxrat6Vjs7N23cGB/8mQ/Gv/2t3453aOPCoK5he1bTi0tO\nX6HjQQbkyeqW0Sjv1ROP5vqyGXpOZyxfGmepL9yto2RYjr9s6bL4mff/aJy+aF7+obBt+7Pp8cMY\nYuocgwQDkx2qed6YKjZTGx/YIYpHrmfGzLywnjVZQzqfbI8Mp6c2bs4p2Fma8jxfxueQ1tZ95fav\nB7tIOUh5mY4x0esXh7TRAGOJK6oIHEezePFpaURxfAabLujTBP6IYbOKDfp9e2Vg3odBqRsFNLXb\npx24w5KP0ZZPQu3P+WpH1Cbkea/waB4TDA8cR5L0yVPIgcA9eg8elzG1Y/euWLVyWaxYtUo3UHTp\nCJHvx4OPPBz7ZRTPmTc7rr3hWu46iS3bt8YTTz2VfRdPW5va6V//638Td9/1HdWlX8eozNYfTgvS\ns7dq9aq48YY3qz+wZrUz3yvWGs7W1HV3h56PnglT1lWgM+kNV+c/ZaOt7OgwI0/wD09mXuCXf7DM\n0zHsnHZcigDGp6Qv83Xc6epqHq3kU06w3MxM48uGoOlNYnnwmw5P0zuGj9PTobfcqeKSX8nT8Klo\nX4oy5PBBNsFynX8xMlwf83RcyilhlgWMT0lf5o1nPtPV1TxMV8Zl2nKBTSe80t+m00rqW0LLN5pF\n4qRkOHHyPCGfIYZUYUzJClEeV1di6IsEn4pmMm0e9Bs2A5Cv+pASGXj2BMdKKIPHHSH6yMCBrnoN\nZOgor6EGay3L2VSA1wM9mQpj2gsprDNj191RDXKc49apuz1lUcUMnUl1ULsTb/uGpsvinpitNTW9\nGqAYJP3hJHe8CnCCL16LI5pSGzw8qKt3BnNH66GDh9PD16/BaNa8JSl3bEybJVirpamp9J5pmOmU\nG+/48UFNGXGOlY6X0KCO4dvTqV1+o1ovp7ogZ0Q4x9tl3HVrUB6VATguHmqKqgXVZqoTGdqBR0Hr\nTExNg5dtC9L0gtub+vFx3vH0uLTAQtlUEmVTUx4wQLWBNiHIi4lMDKqZ/TPjvjX3xx1//4147zvf\nmcYGmDfe8Cbt0rxCd40eibka7Fkz9uADa+KIjrjYtvVZrUkc0dEefx6fuuWv4t3vfo92Xd4chw8O\n5PlgnM+2afPmOCxZF19yiab3+mRQVQvbqztzx+Ouu++Kd7/rnTFbxt5CHeb7AR3LsVhTd9zz+dYb\n36p1XLPTaN+zY298V4b5matX5x8KHOlCD8T7umXrc3nyP2u+FusctNOXL4/vPbg2ztdO1gUytEZV\n541aF/bE+qfkhevR7uFDeS0Wi/jZKbvmew/GQk2fsgFiXN4/1rl997EntM5sg25ZmJXrJofUzzHs\nzj77HN3wsFPeuivjqDxZM/RHC22JkUi76i1Jj9lM7YDdr7PWuGUBAw8v9FHJGhvVQbehWw9Ee993\n74/rbrg+16addc7ZcZr+cNmm2xaufuM18lLrPVHAMHtq04a8beLV2tDRpaN08HZu0o7RDZs2qZ7f\ni7dc/6b0hvGHCRtEdutare9qs8hNb7lRf9ONx0033aS1crtzR+gv/OIvxpvffEP+sXLLLbemVw45\nHAfCeXWd8r5i9MLrsKaXO3Q7C57F3JigvkT3OWWjDQEEOvVL0rErdhM8i+wpJ19qfVAAnrxYU4Xp\n4ExF36zsxfJ8qdvC/E7WFs3q8lLAkG8dXgp+8Hix/F4sfbN6wPNkbTwdnGa8p4K9WJ4vdVuY38na\nYqo6nXJZDkQYR/pl9KfBJH8BMAgaRsGEccDImgEMMnz8e+F0VVYZayBPEJFpEcwPYwJvnvq/vAEV\nZ/1sywZIdcQKDyH/cpcZQBlsXP3DAvhxXbsjV1tenJ5yVcyauHHRtMsj1j9bhpkMvuMazAf0ObR/\nMNoOah1Z7K68Tkp5J1u9j3CPaN88XUGl38dRPul0hC83p+oy93EdQCpF2zDiNBBp4lZTt5Vh1NYu\nY0x6HuNQVsHYpZo1xsgZ1+XwGpr48Pxd69Sf1hKKW1CUygAAS+lkAtKphZelv6EkNjV1yoB+Vf/K\n/iOdmdZW48uImZNey7/41Gdj1epz48qLz5exwdlpOvRVm0hm6wonLnpfMKc/LpCBsfXZTblurE2D\n/OWXvzr2yRP34Q/9Uqw+c0Wcfdbqaj2ZBv033/iW6NcaxQfWPqwm6pThIuNAU3dHjw7qfLNZsfGZ\nHfGJWz8X/+LDv6B+0aVzwl4TF+s8NvRe0K8bD3TcBP3uU5++VefqPSOvqQxs5dP5yhPStPpzmpb9\n6te+Fst++gN5GO/P//zPa5PAu+LMlSvTSGN95e13fF2etn06OuS5eG77Nhmg89K7tWHzxvT8PSv4\nMRlUvfI8DsmT94DORNu1d7d2zG6JhzXd/irtrB3VZorf/d//t/T2rTjzDNWneu4jOqy5XR5eTebn\n8TZHRX9MbdUpXjr+Vn+kqG+or3Xryi42ckA3Y86s+LbOYbtBxuV1V78uzpAx+r985Ld1u8OReK3a\n4Kjqv0Nr2279zF/nEShflf43/eBNaVxjGD759NOxVUdzrN+wIX7wxuvZwpre50fllWOl6Wf+5q9l\ntJ4TK5efET/0rnfE+fKacnXY6lWrYqG8kdwVu/b7D8UNN7059enEs8eVb2pPqZ/tNiZDFA8g8oSk\nfsJvgbxyp51x1kfoT1TEHddx9rNGmdP5EsGgEcD1D2udzjiOKS9x6uk6b9MRl7Smc1xOFZV4JT1p\n62m46cu8YY5dRnwymMsdN6NtVlbiOY2u/nhqkDLTOy5hpiUu2xLcVvglvKQv0+BYF/MmLmlJ1/Pm\nUcJLmOGOyzKny3oAAxeY05lo8QVuybuervMu2ZS0pnP8Sn+bfP/dZmVblm1HudutnjZtPQYffn7O\njut86nnzKeElzHDHZVmVbshsOEX4rczQsAUyL5jUy3GYeAJH1gL5hKXlUKarMrptJRvCEwNw61XF\n0KCIvAcacDDS+KrwSgUnlZD2OcAy4uaZcjIQ2N3Jzz5/uSempj7VsNm2KUcGBet6uAUBA6BNgwZT\nOv7wl367PuTZZVrFVR7DD4/eiD6SXNW60QgcC8ExDBhkrFJjFhdPoEw66VbpXNGobjgrNY2Inhw9\nUt3YIFkYO9LVNUzWNANgfYAj2QiphQrcjokK0UkC+C9Lf0OxrL8qn3pIVzoBrSU4d93iXeEsvaNa\nSNY/e45uFDgQj8vLxD2ey5afnif2H5PXq0eGMAYw6664//Lbd96Z02mLNKX9trf9oI7WeHseFbFL\nU9aLFi+M62+8Xh6dG2OZpsDve+iJ+M//+Y/lHR3KxfVMy87Q1CX9il7xmKZa9+45GKvPPis9O/26\nMo3drKxVPKCNBJ/UOXG3fvqv8tw1Dn+94Nxz5GUd1WG4d+tst42i6coNECPqR6tlMC7TAvvzVp4Z\ns2RoctvArbd8Wjs3Px1zNSW6a/eeOF1evcu0aQIv1C2f+nQ8uW596naV1rNxhypT8H/+ib8U7u40\novZqg8YlMkx50MuWLo7BoWM62uZx7WCdnevBvn3PGl3/NRBvuPrq/OOAo1G+qfYZlsHbpfalnmy6\nWCmdrpL+XTpc96mNG+P2r31dNz88EktXrNDBxEvibN36cIaMQQzV9TLK/k/dTfrk+nVqi+7YqV2l\nr3396/OYkZ0ykNmlu12bF2bIo3fF616bz/GpDZvz6BX60m4dS8Ll86drupdp3aVqk2V6Vngnv6bj\nUP7fP/mYNp7si+uuvz7mat3eDnlQb7/jm7rdQucT6l1k7WjVJ1VrGZ3Zi/njhvfh0mveophOVHV2\np+nnpAllpzbMhgR5w8qXJQmLL3BKGXW+Ja1xzdd5ZDJgltM9lAEj1OElT8rNp54u89AYr5RVpsEH\nz7AybVrzLGPrU+JQ7mB4GZMu27qun3HhUZbVebqsxCtpjV/GlBvf9G5r8i4zH+OUcJclcuPLMOOb\nVymPtD+QlW1Q4pV8yzQ48LUMypx2mfGdN1/nkelnbBix2+CV/jb5rtTb0m09VbubxrHbv3xubmtg\nJa8Sp4T7OZknsWHWybxKeaTLQ3bd37AJMHgIjZ/OTJ/wJdXqMhJfOiffRl80jXGJCc4/v79RJvmn\n+Ps2lczssxgN+mc8y7d+xLSR+37ZbuA6mN558PiU74V5MHCyho1y1UqfSfl5Xpzg1eaLbMw0Piua\n6j1OGdDSlvrH/9SkkU8dK0jL99x6OnZdrDd5t3WlZ9UOwEsc6FOe4C4zT2LDjJNVTniW6kvKK4BX\nBowpNn5oL6GuqerL3Z/nnnderFixPPp0Vtp+rQnbIe/OXXffrQvPH5NhsDtW6OiLazSdt2DO3HhI\n3qkBTbVe88Zr4zU6wLVDU+Pff/xJnW32FV0Yvy5vBzisYzpm9c/OKbeUJ1W4wP2I1mZdeMEFcfHF\nF+pOz3m5rnHXzl3x9FPrky+H9LI28YwzV8bKlTpbTVOODz38oG5k2KMpyBny3A3JYBrXrQmXaaPL\nJTmFivH1iIwiDvflAFzWSNK+3Gbwam1G4Pk+oFsVDmgakxa5RNdSLZYBc1hr7h544IE0emgr9Lvg\nggvjUhl67EqljLPaLpC+s+WhfOihhzU9eizljsg7uWPH9mwfDJ/cfSs5TDEi91wZnOzKZRr08ccf\nk97H8hiTiy6+WFOvZ+fauJ2afn3wwQdjs6aW8YDSTqx3u+zyy3NdHHeUrtFU9iFttJins97wdCKH\nae67Nd08UwZxuwytfTI2L1VbnHf+hbFUR4LQBmwQeVzP7tlnt8oAVDuwg1YG+qAM6jWqFztYeX8I\ntAnec/7GIU2Pz751KkabX0B3trIjuyx5N/mqd2RQ3Kld5rgJeYKMT2x5xGUodSJdBvMnNr3LXVbK\nAHYqoaSFzvTmTVz+oNV5l3hlul6nsszpqXiV9OBZz1a05uU2KvFNbxxi8zGecYC7bCp86AjgEszH\n8kt4vSwJmnxZrvFLvi5z3IQ8QaYlti7EZaCsxCvLzJ/Y9C53WUkL7FRCSQud6c2b+JX+9vz+SbuV\n7eV29DNyOwKvlyVhky+3ufFBcdpljpuQJ8j4xNblhfa3VjKAw78K1ftJt6tg9L/Jsio9CYNssg6T\nRleDWfKADx/jlXGrNEZY0mB0lTKUNY1lODbcsWVS7rTLTFOP3cYlvulLXPMxnnGAu2wqfOgI4BLI\nWzbTn8Dx5vhd1V8Puii9Q2sHB9LQwTDhD4dhGUGDMrowGgg98hjBhx2OYzKi5szW4K8F/HN1Z2i7\n1l3hmcOQkMAc/GlePE8cyoxBhUx04S7Mfs5r0zEZeYC0dDqqM/16tf4s7+TU9Cw7Qbksno0H4zLO\nKoOo8vyiA4YNl6xjmPAQMbRGNPUNLtWeIaOTo0Sgw1CCBt7dMsJGhderuoxq4X+XXLIYYFxGz9Ez\nEHPEB2vxWGuJgTdDRiJr8ka0Bo7L2juExzQt58ZRJ9avcQ4hZ9cxtZ+Gj6bnaWfkVgakzoVDF/GG\nB/hsTMBDzEYHdMKryYYFNiPk8SGabmVXZ64fleeZPzKqtaTSWW2IQSmF8/nAgzWhPN8B7RLtUduw\nWWJAz3SmjNdOea/RC+MXvY6pvTvkTUUPPOzoyOYEqS/ParWmDTw+pzw9ykN2J6TjEGBkmOMSVmFV\nndXlwOpp0xhOXH7qNGXeNMAI8DpZqNNYFnROt9LJOMTg2Dou4aTLYHmtdDPcsfEdw8tp4lZp8ODR\nrLzkUU+XNGXa/Er8ZjpaXolXT5Mn1PWvoNV3nU+ZB6PUzWUlzLxKGcCM67RpDDe+Y+MRO5S4hhG7\nPUpYPW1aw+tyyLfSCRrTg/NKf5vs/2Xb1NPkCfW2rqDVt9u1jmccPxOXE5cw45UySlynTWN5xnds\nPPMr86ZxGbymCsY3b8fWoaKtjAmXAaungUFT9bdJfGDmNVl+4nsA3PTNYmQRHJfpuh7GcWzZpjHc\neWJCCS9pyjR41tX49Txwl9X5lnDKCCV+q3IMCNqVwZzB3XmMMnZmdmrQZxcwtwUMaRH9oIwdTvSf\np7PDBrQZhDPIuCOUGOOH6UkW+g/hGZIBlDz1DLo01cmZXxgRHMI8pLVuGAdsLMGoQT+Mrj4dlAcO\nT407O1m/1injQwmZYUzxYgjKIJMRw6MFT04shcozxI5SDA48aJxxhucNfuBTpzysWWV9ut8Tg2mm\nziITQdZfCU15a42ccDHsmIbnGbArGrpu6ctmA3ZgUtejSs/RUTV9MuSYWsaThlGHPj06l436YLzR\nttQvb/tQ3cnjGRzGoBQNGxVoB5YIoBN511HFqXvWT/XirDyMQ8ozpg30gXfqhDGqPNPF47kEAJrj\n8qTh2eQy+XEZ4dRZN4Roihda2qhXnjk2pbBblHpQ78pg01pQ9QuOBcnGllzijsUrVn+k7KCk3cma\nwSkr4TwyYP6QJ5gHafBLmnraeXAdmsEs27Icg2t5ThvX/IiNY1iJY3mGOTYusXHKdAkzDXEzHF5Q\n8EuaRGx8lXSknafYtMCgd1zyctoxdE4bH5jTZZnhxARw/HE+C/RV/YBP8i751NPOm5bYMOtB3Apu\nHMqNR+xPEhZl5OFflwHcvFwGzKEZzPiW5Rhc0gSnjWt+xMYxrMSxPMMcG5fYOGW6hJmGuBmO+0xJ\nk4iNr5KOtPMUmxYY9I5LXk47hs5p4wNzuiwznJgAjj/OZ4G+Xulv0+tvtJfbuJ4m70A7O7TCN9wx\n+H6O5XOi3Pz8nBgMmwXjmcZ5cP9n7G/szCVgYDhdGQZsNMFIwuskgwLDRbgYLwzmh7U+q1femjwH\nTIYE54BxNtqoDDiMrPQsMbhj/IjHqAy9NMb0rPCwYXBUz7Ba/kF3oP1ZQ8hCfLxKbCxhDSKPkvt3\n2bzCsRnCTJ39iHnWGB7oxXPV//RQpc6iQcfKeMJ7Jc+XdMKAw7Crpr/FTjryqfoNBlblycsdofz+\nCAV+GJLQshu0Q8YXXj/45w5nCaZO0OiXJPXAU4dXEZ1UqJeD//KEiZ57PWkneKRhqnLqnbzV1sCQ\nhRFFG1I/1gSiAzBoqW/VRsjW7m3VjToRY7ghNr1pekbUjfWhhOoqLbyrPAcMu8pjh24s0QCWOut5\nELeJn76THzzzRoTy5WmW9ktG7NAM5rJ6bJ71GDxgdXg9X/JzWalLyQPcsqykLeHQuA7gmG+Zni5s\nOjTIKuVDUw8ud31K+c10dblj+Dldj8uyMg2e5QJvFYznGBr/SFsWtPV0mTfvEtYs7bqWejWDmV89\nNs96DB6wOryeL/m5rNSl5AFuWVbSlnBoXAdwzLdMTxc2HRpklfKhqQeXuz6l/Ga6utwx/Jyux2VZ\nmQbPcoG3CsZzDM0r/a1qrVNtv1ZtDLz+3Jwvy8p0s3JgDEon08vl4PsDbwJl5t0qBm86ZXU8ywXe\nKsDXOhDzebn6GzrAGw8PhhVTepXBQjvoAGJ5aXI3rdJ42yjD44aXDDqm3jAOGNzx8HD48bCmCmXZ\n6TBWGXFs5uAgYxlcMo2EXxlUyIMWGUwvsis0N6qIj4DyPuneCnnBRvE6KS/rI6cgO8WXDQvc8cna\nLYwM2qsyLqqpXTxCNp7wIrHBgoCBiP5pzIifnqDqK29eo43BQS/wejUlmgasNsRgjGHkSEwGplmR\nS7swbck0JsZTtqPqj/F0TOvZ8NSpabSxRsahjFg8iX6O2WaqarcMsGF55/AGcgQItOhDHfI6OOnI\nsTaUe00ctDnlKh1I89xsqHbrGBC3CcYem4BGdD4ccqE3/vj4sLyhqpfqR1uNaUOJnmLyoj7j8v5x\nyC9tm3VTzTmHkfrIpKbpqnZ/1RvfOmmJVe3T9JtKEdy5Sbvhqwc42ekpK4NpiF/KQGfwA7GMUqep\nZBn/pdaplUz0ssxWOMCNB26JX9Z1KvpTKbMs4nooy5x2W5V6GVanf7F561TKAlbq4nRdlmleat3K\nZ2AZpU51Pcq88V9qnUoZZdptQzxVMB56WUfwy7pORX8qZZbVTKeyzGm3VamXYacidzq41qmUBazU\nxek6P9O81LqVz8AySp3qepR547/UOlkGehAsp57OwiZfbkPoStqyrk3IXhDIsqxryaQsc9ptVepl\nWEn7UqQtE16lfqSrzbXVmqlm8hlFaf1cr6URXbaBBnZ9NQZ21sSxOxXP2XHO+tM4qdZOH1kaAIkK\nB31Ep2KVqq9jkAkqP5PSeMJ4vhgN8MKQYw1bQwykqUWljduMmA+GSqVl1UeUmQiT9a3sgeQJN+Tk\nDskGTSEDnKq8sjPgjiEjM07XnQlfAOtgQZUelYGp0sqAEn4bRp6QVD0ZrdSPVEOmYuSwVo0YoxdJ\nKa3UrYGnKEMlm3ZucFa7o2O2gdoNTuZJ21Af2jZbjxhkycuCpFQ7KptczFLPh5C7RzNFRpzcMMBI\n10OzcuimGywD/DJd0hs+Fd+6bqVe8KrnS/5TpeuyLacZ3DD4WddSrmmnkleWlbTA63lgltlKnsvB\nLUMJL9MlTqu069FMZklT8i3TJU6ZNk7JtywnXbZBXY86brO8ZVBWpktcw61HWea0ZZf5Er/U0zjT\nieuyLacZ3DD4WnYp17TTkQtOSdssD8wyW8lzObhlKOFlusRplXY9msksaUq+ZbrEKdPGKfmW5aTL\nNqnrUcdtlrcMysp0iWu49SjLnLbsMl/il3oap1lc0lBep7Ocuk7GK8tb0Zu2mfwSZp6G1fPAzct6\nlzhOE9eD6UoedZxWefNrJrOkOVUZxi/5lvxIu06k0zgCxjiM0aA0I2sO7I2YHAbUBExIss3yM0Eg\nXDEWDEOrYUYIJ+kaYzwoDuhn2TDGTKGJMSoI2T4C5Po3IWCAYAROxCAjPI0QoI0sSmIbACCdBY10\nCYCUcniKV9Vu5A1HhyrtGGPGRql8X6JMBieKaiBXJfCoeGetCp1SHsLAJ6TOCCRjRNaVAROwgdYQ\nCVIjqICHkYdiayoZq4u8EKu2qgzBZCA+eaSNSpNEX2DCujJGK1EAgLlMyWh71RvfAmzKUOlaNagr\nPiWBCku86iHQYCejmn75C9EJ7tbr5dBpKu3/Iepb6lS2zVT1KPFerjYs9fLzmq5O4L0cer0Qnf5r\ntFWrdvmHqG+pU9k2repguPvAy/FcKz0m+4xlWXaruMR7OfQq26qU1Uofw437cuhkGc3if4j6ljqh\ns9ummf4lzHgvVxuWellW6qcvDKs8FFkDvkZMjf+VscTIzS0EmnDLqcvKFmDgr4bvNPSgUEEeEQGc\ns++USdtBlsqkWaCB2KN+jsnIghZDUSaQCCowniyMPspEgqGhNJyqICplaSfG9kxTkMV8lUJOpCt5\nZDqJpaRipFtCJef534kloXjJpkdR8QBbk8fTGyOsclYDU8+A5+sDxDrl0TU6YrfSq6RLRsIE5tBo\nJ9UFY811SUn64jnXpVYrIU3fIp7svGIsX6w7muM6GXDjUTaJZ6XrFNPMF+TNdDKXssww4lKvl0yn\nUsAU6VIntw2wMlgnYgfjuoxOPRFOJJ8ATzdR6gSNZdX1oszyiY1nWNWtwHppQqmXZZWwupRSJ8pe\nMr3KptazMl/rZD1a6VbqZdqXuq2sQz0udbK+wMpgnYgdjOuyV/rbiW1GO9E2bifnq7adbEe35ynF\nBXmz52deZZlhxKVeE88vf/JLrJcnXerktqnaZFKedSJ2MK7L/qfub3pWaThhITGIE3Wq/9FejTxT\nnwTMGq4ym/DWyLxKU0tenrx5DTIgvPPpxano0gpI/mLCY+CTRoySiNEUnBa6A8yiXIWG10+F1fOs\nyrK8ge/n2SBL2gbjBh1CoGvo0CQ9Tv00OYvBmfVocGkVwQ251e7XytijjU4IjXajYpUGyCBIQqOM\nppgINfJUk8KEW/eSYIIyE5M6kWVtmp4JbZ/00CGdj/RRduKdkQBK3caVtuQFhDYZN2JFnXlJshJT\nhwab5FIxRxO/lCkw52lTu0oYisFUNI4btZ9aVL20UJjKJ68GX3SgotWHRuBTwaoyxKtjp5u3wqtI\nSWdKX5XO5F66APMGX6IJWehT1aAAqZhuCmJDd0ga9XIbV/URFZVMzILthIwsOoUvJCugE3xT5iQ5\nOvz/7ZvJDsIwDETF//80897YTSUuXDggNRI48RK7k6VWm+KfhayLiakmv8TwFpfhNb7Fgpj7lU2x\nIHzQKDn0GgPE35bFMlRI1g4nYey4TFN8HFNlQPjMt4Xsk97GRnDTdtCq+cw3ZvGUZ77Neg4euyYX\nm6/pn803LpR1kSt/5UOB7mfZe5kLJl7QqKTtUy/qYYQIkXyt0aOf/LIfoYuSd5k+MlM0bC3snyyR\nvtVFm/0/SQZnx6PM+uQ1qnWs0jdJiPsfRtFp9KlbC0lRZJRtE8kprfNMT3vOzSmE3xTr6LbXWng1\njffKvEYSh94r7Cg8Lj88XwETY9UmsHqrjwiQwVqdi9Fkq8J7RKfuSGwX+CT+W3+bwInpxNT8C6Rz\nmjAxrrrIRoejgfD6V19vg+itleqLXzQAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 389, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image(\"data.png\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### HTML Looks like this" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", " \n", " \n", "

\n", " Here's a paragraph of text!\n", " Learn Data Science Online\n", "

\n", "

\n", " Here's a second paragraph of text!\n", " Python\n", "

\n", " \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### several tags" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m https://developer.mozilla.org/en-US/docs/Web/HTML/Element\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "https://developer.mozilla.org/en-US/docs/Web/HTML/Element" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## we ask permision to the website" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Python/2.7/site-packages/requests/packages/urllib3/util/ssl_.py:318: SNIMissingWarning: An HTTPS request has been made, but the SNI (Subject Name Indication) extension to TLS is not available on this platform. This may cause the server to present an incorrect TLS certificate, which can cause validation failures. You can upgrade to a newer version of Python to solve this. For more information, see https://urllib3.readthedocs.io/en/latest/security.html#snimissingwarning.\n", " SNIMissingWarning\n", "/Library/Python/2.7/site-packages/requests/packages/urllib3/util/ssl_.py:122: InsecurePlatformWarning: A true SSLContext object is not available. This prevents urllib3 from configuring SSL appropriately and may cause certain SSL connections to fail. You can upgrade to a newer version of Python to solve this. For more information, see https://urllib3.readthedocs.io/en/latest/security.html#insecureplatformwarning.\n", " InsecurePlatformWarning\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "website = 'http://www.fis.cinvestav.mx/es/content/view/10/18/'\n", "\n", "import requests\n", "\n", "page = requests.get(website)\n", "page" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# La pag de Fisica esta muy mal escrita" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## to get all the content" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'\\r\\n\\r\\n\\r\\n\\n\\n\\n\\nDepartamento de Fisica - Investigadores\\n\\n\\n\\n\\n\\r\\n\\t\\n\\t\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\r\\n\\t
\\r\\n\\t\\t\\r\\n\\t\\t
\\r\\n\\t\\t\\t
\\r\\n\\t\\t\\t\\t\"\"\\r\\n\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\n\\n\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t
\\n\\t\\t\\t \\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\n
\\n\\t\\t
Thursday, 14 May 2020
\\n\\t\\t
\\n\\t\\t\\t
\\n\\t\\t\\t\\n\\t\\t\\t
\\n\\t\\t\\t\\n\\t\\t\\t\\n\\t\\t
\\n\\n
\\n\\t\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t
\\r\\n\\t\\t\\t
\\r\\n\\t\\t\\t
\\r\\n\\t\\t \\t\\t \\t\\t \\t\\t \\t\\t\\t\\t
\\r\\n\\r\\n
\\r\\n\\t\\t \\r\\n\\t\\t\\t
\\r\\n\\t\\t\\t\\r\\n\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\\t\\t\\n\\t\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\n\\t\\t\\t\\t\\t\\n\\t\\t\\t\\t\\t\\t\"Print\"\\n\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\r\\n\\t\\t\\t\\t\\t\"E-mail\"\\r\\n\\t\\t\\t
\\r\\n\\t\\t\\t\\r\\n\\t\\t\\r\\n\\t\\t\\t\\t\\r\\n\\t\\t\\t\\r\\n\\t\\t\\r\\n\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t Ayón Beato, Eloy
\\r\\nDr., Cinvestav (2000). Gravitación y Geometría (T): física de agujeros negros, gravedad en diversas dimensiones.
\\r\\nayon-beato at fis.cinvestav.mx
\\r\\nExt. 6162

\\r\\n\\r\\n Baquero Parra, Rafael
\\r\\nDr., Cinvestav (1976). Materia condensada (T): superconductividad, física de superficies.
\\r\\nrbaquero at fis.cinvestav.mx
\\r\\nExt. 6179

\\r\\n\\r\\n Bermúdez Rosales, David
\\r\\nDr. Cinvestav (2013). Fisicamatemática (T): Dinámica de pulsos ultra cortos, análogos de la radiación de Hawking con óptica cuántica, mecánica cuántica supersimétrica y soluciones analíticas de las ecuaciones de Painlevé.
\\r\\ndbermudez at fis.cinvestav.mx
\\r\\nExt. 6142

\\r\\n\\r\\n Bretón Báez, Nora Eva
\\r\\nDra., Cinvestav (1986). Relatividad y gravitación (T): soluciones exactas de las ecuaciones de Einstein.
\\r\\nnora at fis.cinvestav.mx
\\r\\nExt. 6133

\\r\\n\\r\\n Capovilla, Riccardo
\\r\\nDr., Univ. de Maryland, EUA (1991). Relatividad y gravitación (T): teorías de campos, objetos extendidos, defectos topológicos y membranas.
\\r\\ncapo at fis.cinvestav.mx
\\r\\nExt. 6182

\\r\\n\\r\\n Carbajal Tinoco, Mauricio Demetrio
\\r\\nDr., UASLP (1997). Física estadística(T/E): fluidos complejos.
\\r\\nmdct at fis.cinvestav.mx
\\r\\nExt. 6173

\\r\\n\\r\\n Castilla Valdez, Heriberto
\\r\\nDr., Cinvestav (1991). Partículas y campos (E): colisiones protón-protón a 2 TeV con el detector D0 (Fermilab).
\\r\\ncastilla at fis.cinvestav.mx
\\r\\nExt. 6112

\\r\\n\\r\\n Castro Hernández, Jorge Javier
\\r\\nDr., Univ. de Oxford, Inglaterra (1972). Materia condensada (T): superconductividad de alta TC. Teoría de muchos cuerpos. Dinámica de redes.
\\r\\njjcastro at fis.cinvestav.mx
\\r\\nExt. 3798

\\r\\n\\r\\n Cobos Martínez, J. Javier
\\r\\nDr., IPPP, Univ. de Durham, Inglaterra (2011). Partículas y Campos (T):\\r\\nCromodinámica cuántica no perturbativa, Física hadrónica, Ecuaciones de\\r\\nSchwinger-Dyson.
\\r\\njcobos at fis.cinvestav.mx
\\r\\nExt. 6116

\\r\\n\\r\\n\\r\\n Conde Gallardo, Agustín
\\r\\nDr., Cinvestav (1995). Materia condensada (E): superconductores del alta TC y fotoluminiscencia.
\\r\\naconde at fis.cinvestav.mx
\\r\\nExt. 6145

\\r\\n\\r\\n Contreras Astorga, Alonso
\\r\\nDr. Cinvestav (2013). Fíe;sica matemática (T): Mecánica cuántica, soluciones exactas a las ecuaciones de\\r\\nSchrödinger y Dirac, mecánica cuántica supersimétrica, estados coherentes.
\\r\\nacontreras at fis.cinvestav.mx
\\r\\nExt.

\\r\\n\\r\\n Cruz Orea, Alfredo
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1994). Materia condensada (E): técnicas fototérmicas aplicadas a semiconductores y material biológico.
\\r\\norea at fis.cinvestav.mx.
\\r\\nExt. 6148

\\r\\n\\r\\n De La Cruz Burelo, Eduard
\\r\\nDr., Cinvestav (2005). partículas y campos (E): Física de hadrones B en D0 (Fermilab), y proton-proton en CMS (CERN).
\\r\\neduard at fis.cinvestav.mx
\\r\\nExt. 6156

\\r\\n\\r\\n De Santiago Sanabria, Josue
\\r\\nDr., UNAM (2014). Cosmología y gravitación (T): modelos de materia oscura, energía oscura e inflación, comparación con observaciones, agujeros negros primordiales.
\\r\\njsantiago at fis.cinvestav.mx
\\r\\nExt. 3841

\\r\\n\\r\\n Falcony Guajardo, Ciro
\\r\\nDr., Univ. de Lehigh, EUA (1980). Materia condensada (E): dispositivos tipo MOS. Películas delgadas semiconductoras y dieléctricas. Superconductores de alta TC y fotoluminiscencia.
\\r\\ncfalcony at fis.cinvestav.mx
\\r\\nExt. 3703

\\r\\n\\r\\n Fernández Cabrera, David José
\\r\\nDr., Cinvestav (1988). Fisicamatemática (T): dinámica de Schrödinger.
\\r\\ndavid at fis.cinvestav.mx
\\r\\nExt. 6137

\\r\\n\\r\\n García Díaz, Alberto Alejandro
\\r\\nDr., Universidad Lomonosov, Rusia (1990). Relatividad y Gravitación (T): Soluciones exactas en Relatividad General.
\\r\\naagarcia at fis.cinvestav.mx
\\r\\nExt. 6121

\\r\\n\\r\\n García Compeán, Héctor Hugo
\\r\\nFísica-matemática (T): teoría de cuerdas, cuantización por deformación.
\\r\\ncompean at fis.cinvestav.mx
\\r\\nExt. 6131

\\r\\n\\r\\n García Rocha, Miguel
\\r\\nDr., Cinvestav (1995). Materia condensada (E): propiedades ópticas de semiconductores. Física de superficies e interfases.
\\r\\nmrocha at fis.cinvestav.mx
\\r\\nExt. 6160

\\r\\n\\r\\n\\r\\n Gallardo Hernández, Salvador
\\r\\nDr., Cinvestav (2009). Materia condensada (E): Interacción Proteína-Superficie. Interacción Ion-Solido.
\\r\\nsgallardo at fis.cinvestav.mx
\\r\\nsalvador.gallardo at cinvestav.mx
\\r\\nExt. 6129

\\r\\n\\r\\n\\r\\n González de la Cruz, Gerardo
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1980). Materia condensada (T): propiedades electrónicas en sistemas de dos dimensiones y dinámica de red es.
\\r\\nbato at fis.cinvestav.mx
\\r\\nExt. 3881

\\r\\n\\r\\n González Mozuelos, Pedro
\\r\\nDr., Cinvestav (1992). Física estadística (T): propiedades estructurales de suspensiones coloidales inhomogéneas, propiedades termodinámicas y eléctricas de polímeros cargados (polianfolitos y polielectrolitos).
\\r\\npedro at fis.cinvestav.mx
\\r\\nExt. 6120

\\r\\n\\r\\n Gurevich Genrihovich, Yuri
\\r\\nDr., Academia de Ciencias-Leningrado, Rusia (1968). Materia condensada (T): películas delgadas semiconductoras, propiedades fotoelectrónicas de materiales, fenómenos de transporte no lineal en semiconductores fuera de equilibrio.
\\r\\ngurevich at fis.cinvestav.mx
\\r\\nExt. 3826

\\r\\n\\r\\n Heredia de la Cruz, Iván
\\r\\nDr., Cinvestav (2012). Partículas y campos (E): Física de hadrones con sabor pesado en CMS (CERN), Belle II (KEK), y D0 (Fermilab).
\\r\\niheredia at fis.cinvestav.mx
\\r\\nExt. 6103

\\r\\n\\r\\n Hernández Calderón, Isaac
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1981). Materia condensada (E): propiedades ópticas, eléctricas y estructurales de semiconductores. Crecimiento de películas epitaxiales. Física de superficies e interfaces.
\\r\\nihernand at fis.cinvestav.mx
\\r\\nExt. 6166, 6187 Lab. 6168

\\r\\n\\r\\n Hernández Contreras, Martín
\\r\\nDr., UASLP (1995). Física Estadística (T): Materiales Activos: su reología, estructura y dinámica. El problema de la Serie de Hofmeister de sales y electrólitos en líquidos. Dinámica superficial en interfaz liquido-vapor de cristales líquidos. Ferrofuidos. Realizamos comparación de teoria con simulaciones computacionales o experimentales.
\\r\\nmarther at fis.cinvestav.mx
\\r\\nExt. 6033

\\r\\n\\r\\n Herrera Corral, Gerardo
\\r\\nDr., Univ. de Dortmund, Alemania (1991). Partículas y campos (E): hadroproducción de c y b en el experimento E-791 de blanco fijo (Fermilab), de tector ALICE de iones pesados (CERN).
\\r\\ngherrera at fis.cinvestav.mx
\\r\\nExt. 6174

\\r\\n\\r\\n Kielanowski Chomicz, Piotr
\\r\\nDr., Univ. de Varsovia, Polonia (1971). Partículas y campos (T): interacciones débiles. Modelo de quarks. Fenómenos de polarización.
\\r\\nkiel at fis.cinvestav.mx
\\r\\nExt. 6177

\\r\\n\\r\\n López Castro, Gabriel
\\r\\nDr., Univ. de Lovaina, Bélgica (1988). Partículas y campos (T): fenomenología de interacciones electrodébiles.
\\r\\nglopez at fis.cinvestav.mx
\\r\\nExt. 6141

\\r\\n\\r\\n López Fernández, Ricardo
\\r\\nDr., Université Joseph Fourier, Grenoble I, 2001. Producción de quarks pesados en CMS del LHC. Física de aceleradores.
\\r\\nlopezr at fis.cinvestav.mx
\\r\\nExt. 6146

\\r\\n\\r\\n López López, Máximo
\\r\\nDr., Univ. Toyohashi, Japón (1992). Materia condensada (E): propiedades ópticas de semiconductores. Crecimiento epitaxial de películas semi conductoras.
\\r\\nmlopez at fis.cinvestav.mx
\\r\\nExt. 6109

\\r\\n\\r\\n Manko Semionovich, Vladimir
\\r\\nDr., Univ. de la Amistad de los Pueblos, Rusia (1986). Fisicamatemática y relatividad (T): soluciones exactas de las ecuaciones de Einstein-Maxwell, relatividad restringida y general.
\\r\\nvsmanko at fis.cinvestav.mx
\\r\\nExt. 6132

\\r\\n\\r\\n Matos Chassin, Tonatiuh
\\r\\nDr., Univ. F. Schiller-Jena, Alemania (1987). Fisicamatemática y gravitación (T): galaxias, materia obscura, estrellas compactas, campos escalares.
\\r\\ntmatos at fis.cinvestav.mx
\\r\\nExt. 6134

\\r\\n\\r\\n Meléndez Lira, Miguel \\xc3ngel
\\r\\nDr., Cinvestav (1993). Materia condensada y estado sólido (E): propiedades ópticas. Películas delgadas. Espectroscopía Raman. Fotoluminiscencia y reflectancias moduladas.
\\r\\nmlira at fis.cinvestav.mx
\\r\\nExt. 6107

\\r\\n\\r\\n Méndez Alcaraz, José Miguel
\\r\\nDr., Univ. de Constanza, Alemania (1993). Física estadística (T): fluidos complejos. Propiedades termodinánicas, estructurales y dinám icas de suspensiones coloidales y soluciones poliméricas.
\\r\\njmendez at fis.cinvestav.mx
\\r\\nExt. 6106

\\r\\n\\r\\n Mendoza Alvarez, Julio G.
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1979). Materia condensada (E): propiedades ópticas de semiconductores. Dispositivos optoelectrónicos. Crecimiento de semiconductores por epitaxia en fase líquida.
\\r\\njmendoza at fis.cinvestav.mx
\\r\\nExt. 6178

\\r\\n\\r\\n Mielnik Manwelow, Bogdan
\\r\\nDr., Cinvestav (1964). Fisicamatemática (T): movilidad de sistemas dinámicos no lineales, manipulación de estados cuánticos por medio de campos externos dependientes del tiempo, fundamentos de la mecánica cuántica.
\\r\\nbogdan at fis.cinvestav.mx
\\r\\nExt. 6178

\\r\\n\\r\\n Miranda Romagnoli, Omar G.
\\r\\nDr. Cinvestav (1997). Partículas y campos (T): fenomenología de interacciones electrodébiles.
\\r\\nomr at fis.cinvestav.mx
\\r\\nExt. 6127

\\r\\n\\r\\n Montaño, Luis Manuel
\\r\\nDr. Cinvestav (1998). Física médica y física de altas energías (E): aplicación de detectores semiconductores a radioterapia y col isiones de iones pesados.
\\r\\nlmontano at fis.cinvestav.mx
\\r\\nExt. 6126

\\r\\n\\r\\n Montesinos Velásquez, Merced
\\r\\nDr., Cinvestav (1997). Geometría y Gravitación (T): relatividad general y gravitación, gravedad cuántica, física matemática, cuantización canónica.
\\r\\nmerced at fis.cinvestav.mx
\\r\\nExt. 6180

\\r\\n\\r\\n Olguín Melo, Daniel
\\r\\nDr., Cinvestav (1996). Materia condensada (T): superconductividad, física de superficies.
\\r\\ndaniel at fis.cinvestav.mx
\\r\\nExt. 6121

\\r\\n\\r\\n Pérez Angón, Miguel Ángel
\\r\\nDr., Cinvestav (1972). Partículas y campos (T): fenomenología de modelos de norma, teorías efectivas.
\\r\\nmperez at fis.cinvestav.mx
\\r\\nExt. 6113

\\r\\n\\r\\n Pérez Lorenzana, Abdel
\\r\\nDr. Cinvestav (1998). Partículas y campos (T): modelos para física más allás del Modelo Estándar , física de neutrinos, modelos con dimensiones extras, cosmología.
\\r\\naplorenz at fis.cinvestav.mx
\\r\\nExt. 3834

\\r\\n\\r\\n Roig Garcés, Pablo
\\r\\nDr., Univ. de Valencia, España (2010). Partículas y campos (T): fenomenología del Modelo Estándar y sus extensiones.
\\r\\nproig at fis.cinvestav.mx
\\r\\nExt. 6151

\\r\\n\\r\\n Rojas Ochoa, Luis Fernando
\\r\\nDr., University of Fribourg, Switzerland (2004). Física Estadística (E): Materia Condensada Blanda (coloides, polímeros, etc.)
\\r\\nlrojas at fis.cinvestav.mx
\\r\\nExt. 6199

\\r\\n\\r\\n Rosas Ortiz, José Oscar
\\r\\nDr., Cinvestav (1997). Fisicamatemática (T): formalismo de la mecánica cuántica,estados coherentes y comprimidos, solitones, computación cuántica.
\\r\\norosas at fis.cinvestav.mx
\\r\\nExt. 6147

\\r\\n\\r\\n Sánchez Hernández, Alberto
\\r\\nDr., Cinvestav (1997). Partículas y campos (E): Física de hadrones b en los Experimentos DZero (FNAL) y CMS (CERN). Desarrollo de aplicaciones GRID y Generadores Monte Carlo para Física de Altas Energías.
\\r\\nasanchez at fis.cinvestav.mx
\\r\\nExt. 6115

\\r\\n\\r\\n Sánchez Sinencio, Feliciano
\\r\\nDr. Univ. de Sao Paulo, Brasil (1970). Materia condensada (E): propiedades fotoelectrónicas de materiales, biomateriales.
\\r\\nfsanchez at fis.cinvestav.mx
\\r\\nExt. 6170

\\r\\n\\r\\n Santoyo Salazar, Jaime
\\r\\nDr., IIM-UNAM (2006). Materia condensada (E): Nanopartículas Magnéticas para diagnóstico y tratamiento contra el cáncer. Microscopia Electrónica y de Fuerza Atómica.
\\r\\njsantoyo at fis.cinvestav.mx
\\r\\nExt. 6756

\\r\\n\\r\\n Tomás Velázquez, Sergio Armando
\\r\\nDr., Cinvestav (1996). Materia condensada (E): espectroscopía fototérmica, aplicación a materiales biológicos.
\\r\\nstomas at fis.cinvestav.mx
\\r\\nExt. 6124

\\r\\n\\r\\n Torres Vega, Gabino
\\r\\nDr., Cinvestav (1987). Fisicamatemática (T): representaciones de espacio fase de la mecánica cuántica. Análogos clásicos de los sistemas cuánticos.
\\r\\ngabino at fis.cinvestav.mx
\\r\\nExt. 6172

\\r\\n\\r\\n\\r\\n Vázquez López, Carlos
\\r\\nDr., Cinvestav (1979). Materia condensada (E): microscopía de tunelamiento y de fuerza atómica.
\\r\\ncvlopez at fis.cinvestav.mx
\\r\\nExt. 6108

\\r\\n\\r\\n Zelaya Angel, Orlando
\\r\\nDr., Cinvestav (1985). Materia condensada (E): crecimiento y caracterización de películas delgadas; propiedades ópticas y térmicas de materiales.
\\r\\nozelaya at fis.cinvestav.mx
\\r\\nExt. 6159

\\r\\n\\r\\n Zepeda Domínguez, Arnulfo
\\r\\nDr., Cinvestav (1970). Partículas y campos (T/E): fenomenología de teorías de gran unificación, física de astropartículas y rayos cósmicos, proyectos Pierre Auger y HAWC.
\\r\\nzepeda at fis.cinvestav.mx
\\r\\nExt. 6163

\\r\\n\\r\\n\\r\\r\\t\\t\\t
\\r\\n\\r\\n\\t\\t \\r\\n\\r\\n\\t\\t\\t\\t\\t
\\n\\t\\t\\t\\t\\n\\t\\t\\t\\t\\t[ Back ]\\n\\t\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\tConvocatoria de Plaza de Investigador CINVESTAV Visitante.\\t\\t\\t\\t

\\n\\t\\t\\t\\t\"\"\\t\\t
\\n\\t\\t\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\tGanadores de los Premios de Investigaci\\xf3n de la Academia Mexicana de Ciencias 2019.\\t\\t\\t\\t

\\n\\t\\t\\t\\t
\"Ganadores

\\t\\t
\\n\\t\\t\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\tQuantum Fest 2019\\t\\t\\t\\t

\\n\\t\\t\\t\\t
\\r\\n
\\r\\n\\r\\n
October 28-November 1, 2019
\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\tGrupos de Investigaci\\xf3n\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\n\\n\\n\\n\\n\\n\\n
Altas Energ\\xedas
F\\xed\\xadsica Estad\\xed\\xadstica
Estado S\\xf3lido
Geometr\\xed\\xada y Gravitaci\\xf3n
Gravitaci\\xf3n y F\\xed\\xadsica Matem\\xe1tica
\\t\\t
\\n\\t\\t\\t\\t
\\n\\t\\t\\t\\n\\n\\n
Proyectos
\\t\\t
\\n\\t\\t\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\tPosiciones Acad\\xe9micas\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\n\\n\\n
Posiciones Acad\\xe9micas
\\t\\t
\\n\\t\\t\\t\\t
\\n\\t\\t\\t\\n\\n\\n\\n
Egresados
Reconocimientos
\\t\\t
\\n\\t\\t\\t\\t\\n\\t\\t\\t\\t\\n\\t\\t\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\tServicios\\t\\t\\t\\t

\\n\\t\\t\\t\\t\\n\\n\\n\\n
Coordinaci\\xf3n T\\xe9cnica
Solicitud de soporte t\\xe9cnico
\\t\\t
\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t
\\r\\n\\t\\t\\t
\\r\\n\\t\\t\\t\\t\"CSS\\r\\n\\t\\t\\t\\t\"XHTML \\r\\n\\t\\t\\t\\tAdministrator\\t\\t\\t
\\t\\t\\t\\t\\t\\t\\t\\r\\n\\t\\t
\\r\\n\\t
\\r\\n\\r\\n\\r\\n\\n\\n\\n\\r\\n\\r\\n'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "page.content" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Parsing a page" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from bs4 import BeautifulSoup\n", "soup = BeautifulSoup(page.content, 'html.parser')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "#soup" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## In HTML format" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "#print(soup.prettify())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[\"\",\n", " \\n\\t\\t\\tCursos optativos,\n", " \\n\\t\\t\\tOptativas,\n", " \\n\\t\\t\\tCursos optativos,\n", " \\n\\t\\t\\tIn Memoriam,\n", " \\n\\t\\t\\tEl Departamento en la Prensa,\n", " Principal,\n", " Admisi\\xf3n,\n", " Examenes de Nivel,\n", " Posgrado]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "anchor = soup.find_all(\"a\")\n", "anchor[:10]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "u'\\n\\t\\t\\tCursos optativos'" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "anchor[1].get_text()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## same with links" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "links = soup.find_all(\"li\")\n", "#links" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[\"\",\n", " \\n\\t\\t\\tCursos optativos,\n", " \\n\\t\\t\\tOptativas,\n", " \\n\\t\\t\\tCursos optativos,\n", " \\n\\t\\t\\tIn Memoriam,\n", " \\n\\t\\t\\tEl Departamento en la Prensa,\n", " Principal,\n", " Admisi\\xf3n,\n", " Examenes de Nivel,\n", " Posgrado,\n", " Cursos Proped\\xe9uticos,\n", " Maestr\\xed\\xada,\n", " Doctorado,\n", " Doctorado Directo,\n", " Prog Cursos Proped,\n", " Cont. Prog. de M y DD,\n", " Reglamentos Acad.,\n", " Optativas,\n", " Investigadores,\n", " In Memoriam,\n", " Directorio,\n", " Ubicaci\\xf3n,\n", " Correo,\n", " Roundcube,\n", " Webmail,\n", " Squirrelmail,\n", " Contacto,\n", " Inicio,\n", " \\n\"Print\",\n", " \\n\"E-mail\"]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "names = [a for a in soup.find_all('a') if a.get('href')]\n", "names[:30]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## but only those with no class" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "names = [a for a in soup.find_all('a') if a.get('href') and not a.get('class')]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Principal,\n", " Examenes de Nivel,\n", " Cursos Proped\\xe9uticos,\n", " Maestr\\xed\\xada,\n", " Doctorado,\n", " Doctorado Directo,\n", " Prog Cursos Proped,\n", " Cont. Prog. de M y DD,\n", " Reglamentos Acad.,\n", " Optativas,\n", " In Memoriam,\n", " Directorio,\n", " Ubicaci\\xf3n,\n", " Roundcube,\n", " Webmail,\n", " Squirrelmail,\n", " Contacto,\n", " Inicio,\n", " \\n\"Print\",\n", " \\n\"E-mail\",\n", " Ay\\xf3n Beato, Eloy,\n", " Baquero Parra, Rafael,\n", " Berm\\xfadez Rosales, David,\n", " Bret\\xf3n B\\xe1ez, Nora Eva,\n", " Capovilla, Riccardo,\n", " Carbajal Tinoco, Mauricio Demetrio,\n", " Castilla Valdez, Heriberto,\n", " Castro Hern\\xe1ndez, Jorge Javier,\n", " Cobos Mart\\xednez, J. Javier,\n", " Conde Gallardo, Agust\\xedn,\n", " Contreras Astorga, Alonso,\n", " Cruz Orea, Alfredo,\n", " De La Cruz Burelo, Eduard,\n", " De Santiago Sanabria, Josue,\n", " Falcony Guajardo, Ciro,\n", " Fern\\xe1ndez Cabrera, David Jos\\xe9,\n", " Garc\\xeda D\\xedaz, Alberto Alejandro,\n", " Garc\\xeda Compe\\xe1n, H\\xe9ctor Hugo,\n", " Garc\\xeda Rocha, Miguel,\n", " Gallardo Hern\\xe1ndez, Salvador,\n", " Gonz\\xe1lez de la Cruz, Gerardo,\n", " Gonz\\xe1lez Mozuelos, Pedro,\n", " Gurevich Genrihovich, Yuri,\n", " Heredia de la Cruz, Iv\\xe1n,\n", " Hern\\xe1ndez Calder\\xf3n, Isaac,\n", " Hern\\xe1ndez Contreras, Mart\\xedn,\n", " Herrera Corral, Gerardo,\n", " Kielanowski Chomicz, Piotr,\n", " L\\xf3pez Castro, Gabriel,\n", " L\\xf3pez Fern\\xe1ndez, Ricardo,\n", " L\\xf3pez L\\xf3pez, M\\xe1ximo,\n", " Manko Semionovich, Vladimir,\n", " Matos Chassin, Tonatiuh,\n", " Mel\\xe9ndez Lira, Miguel \\xc3ngel,\n", " M\\xe9ndez Alcaraz, Jos\\xe9 Miguel,\n", " Mendoza Alvarez, Julio G.,\n", " Mielnik Manwelow, Bogdan,\n", " Miranda Romagnoli, Omar G.,\n", " Monta\\xf1o, Luis Manuel,\n", " Montesinos Vel\\xe1squez, Merced,\n", " Olgu\\xedn Melo, Daniel,\n", " P\\xe9rez Ang\\xf3n, Miguel \\xc1ngel,\n", " P\\xe9rez Lorenzana, Abdel,\n", " Roig Garc\\xe9s, Pablo,\n", " Rojas Ochoa, Luis Fernando,\n", " Rosas Ortiz, Jos\\xe9 Oscar,\n", " S\\xe1nchez Hern\\xe1ndez, Alberto,\n", " S\\xe1nchez Sinencio, Feliciano,\n", " Santoyo Salazar, Jaime,\n", " Tom\\xe1s Vel\\xe1zquez, Sergio Armando,\n", " Torres Vega, Gabino,\n", " V\\xe1zquez L\\xf3pez, Carlos,\n", " Zelaya Angel, Orlando,\n", " Zepeda Dom\\xednguez, Arnulfo,\n", " \\n\\t\\t\\t\\t\\t[ Back ],\n", " \"\",\n", "
\"Ganadores
,\n", " \\n
\"Quantum
,\n", " Poster ,\n", " \"CSS,\n", " \"XHTML,\n", " Administrator]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "names" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "soup.find_all('a', {'href':'http://www.fis.cinvestav.mx/~stomas'})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PAgina web, no muy bien escrita!!" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "table = soup.find_all('table', {'class':\"contentpaneopen\"})" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "54" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(table[1].find_all('a'))" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Ayón Beato, Eloy\n", " Baquero Parra, Rafael\n", " Bermúdez Rosales, David\n", " Bretón Báez, Nora Eva\n", " Capovilla, Riccardo\n", " Carbajal Tinoco, Mauricio Demetrio\n", " Castilla Valdez, Heriberto\n", " Castro Hernández, Jorge Javier\n", " Cobos Martínez, J. Javier\n", " Conde Gallardo, Agustín\n", " Contreras Astorga, Alonso\n", " Cruz Orea, Alfredo\n", " De La Cruz Burelo, Eduard\n", " De Santiago Sanabria, Josue\n", " Falcony Guajardo, Ciro\n", " Fernández Cabrera, David José\n", " García Díaz, Alberto Alejandro\n", " García Compeán, Héctor Hugo\n", " García Rocha, Miguel\n", " Gallardo Hernández, Salvador\n", " González de la Cruz, Gerardo\n", " González Mozuelos, Pedro\n", " Gurevich Genrihovich, Yuri\n", " Heredia de la Cruz, Iván\n", " Hernández Calderón, Isaac\n", " Hernández Contreras, Martín\n", " Herrera Corral, Gerardo\n", " Kielanowski Chomicz, Piotr\n", " López Castro, Gabriel\n", " López Fernández, Ricardo\n", " López López, Máximo\n", " Manko Semionovich, Vladimir\n", " Matos Chassin, Tonatiuh\n", " Meléndez Lira, Miguel Ãngel\n", " Méndez Alcaraz, José Miguel\n", " Mendoza Alvarez, Julio G.\n", " Mielnik Manwelow, Bogdan\n", " Miranda Romagnoli, Omar G.\n", " Montaño, Luis Manuel\n", " Montesinos Velásquez, Merced\n", " Olguín Melo, Daniel\n", " Pérez Angón, Miguel Ángel\n", " Pérez Lorenzana, Abdel\n", " Roig Garcés, Pablo\n", " Rojas Ochoa, Luis Fernando\n", " Rosas Ortiz, José Oscar\n", " Sánchez Hernández, Alberto\n", " Sánchez Sinencio, Feliciano\n", " Santoyo Salazar, Jaime\n", " Tomás Velázquez, Sergio Armando\n", " Torres Vega, Gabino\n", " Vázquez López, Carlos\n", " Zelaya Angel, Orlando\n", " Zepeda Domínguez, Arnulfo\n" ] } ], "source": [ "for i in table[1].find_all('a'):\n", " print i.contents[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ni modo, ahora a mano" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\\n\\n\\n\\n
\\n Ay\\xf3n Beato, Eloy
\\r\\nDr., Cinvestav (2000). Gravitaci\\xf3n y Geometr\\xeda (T): f\\xedsica de agujeros negros, gravedad en diversas dimensiones.
\\r\\nayon-beato at fis.cinvestav.mx
\\r\\nExt. 6162

\\n Baquero Parra, Rafael
\\r\\nDr., Cinvestav (1976). Materia condensada (T): superconductividad, f\\xedsica de superficies.
\\r\\nrbaquero at fis.cinvestav.mx
\\r\\nExt. 6179

\\n Berm\\xfadez Rosales, David
\\r\\nDr. Cinvestav (2013). Fisicamatem\\xe1tica (T): Din\\xe1mica de pulsos ultra cortos, an\\xe1logos de la radiaci\\xf3n de Hawking con \\xf3ptica cu\\xe1ntica, mec\\xe1nica cu\\xe1ntica supersim\\xe9trica y soluciones anal\\xedticas de las ecuaciones de Painlev\\xe9.
\\r\\ndbermudez at fis.cinvestav.mx
\\r\\nExt. 6142

\\n Bret\\xf3n B\\xe1ez, Nora Eva
\\r\\nDra., Cinvestav (1986). Relatividad y gravitaci\\xf3n (T): soluciones exactas de las ecuaciones de Einstein.
\\r\\nnora at fis.cinvestav.mx
\\r\\nExt. 6133

\\n Capovilla, Riccardo
\\r\\nDr., Univ. de Maryland, EUA (1991). Relatividad y gravitaci\\xf3n (T): teor\\xedas de campos, objetos extendidos, defectos topol\\xf3gicos y membranas.
\\r\\ncapo at fis.cinvestav.mx
\\r\\nExt. 6182

\\n Carbajal Tinoco, Mauricio Demetrio
\\r\\nDr., UASLP (1997). F\\xedsica estad\\xedstica(T/E): fluidos complejos.
\\r\\nmdct at fis.cinvestav.mx
\\r\\nExt. 6173

\\n Castilla Valdez, Heriberto
\\r\\nDr., Cinvestav (1991). Part\\xedculas y campos (E): colisiones prot\\xf3n-prot\\xf3n a 2 TeV con el detector D0 (Fermilab).
\\r\\ncastilla at fis.cinvestav.mx
\\r\\nExt. 6112

\\n Castro Hern\\xe1ndez, Jorge Javier
\\r\\nDr., Univ. de Oxford, Inglaterra (1972). Materia condensada (T): superconductividad de alta TC. Teor\\xeda de muchos cuerpos. Din\\xe1mica de redes.
\\r\\njjcastro at fis.cinvestav.mx
\\r\\nExt. 3798

\\n Cobos Mart\\xednez, J. Javier
\\r\\nDr., IPPP, Univ. de Durham, Inglaterra (2011). Part\\xedculas y Campos (T):\\r\\nCromodin\\xe1mica cu\\xe1ntica no perturbativa, F\\xedsica hadr\\xf3nica, Ecuaciones de\\r\\nSchwinger-Dyson.
\\r\\njcobos at fis.cinvestav.mx
\\r\\nExt. 6116

\\n Conde Gallardo, Agust\\xedn
\\r\\nDr., Cinvestav (1995). Materia condensada (E): superconductores del alta TC y fotoluminiscencia.
\\r\\naconde at fis.cinvestav.mx
\\r\\nExt. 6145

\\n Contreras Astorga, Alonso
\\r\\nDr. Cinvestav (2013). F&iacuteesica matem\\xe1tica (T): Mec\\xe1nica cu\\xe1ntica, soluciones exactas a las ecuaciones de\\r\\nSchr\\xf6dinger y Dirac, mec\\xe1nica cu\\xe1ntica supersim\\xe9trica, estados coherentes.
\\r\\nacontreras at fis.cinvestav.mx
\\r\\nExt.

\\n Cruz Orea, Alfredo
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1994). Materia condensada (E): t\\xe9cnicas fotot\\xe9rmicas aplicadas a semiconductores y material biol\\xf3gico.
\\r\\norea at fis.cinvestav.mx.
\\r\\nExt. 6148

\\n De La Cruz Burelo, Eduard
\\r\\nDr., Cinvestav (2005). part\\xedculas y campos (E): F\\xedsica de hadrones B en D0 (Fermilab), y proton-proton en CMS (CERN).
\\r\\neduard at fis.cinvestav.mx
\\r\\nExt. 6156

\\n De Santiago Sanabria, Josue
\\r\\nDr., UNAM (2014). Cosmolog\\xeda y gravitaci\\xf3n (T): modelos de materia oscura, energ\\xeda oscura e inflaci\\xf3n, comparaci\\xf3n con observaciones, agujeros negros primordiales.
\\r\\njsantiago at fis.cinvestav.mx
\\r\\nExt. 3841

\\n Falcony Guajardo, Ciro
\\r\\nDr., Univ. de Lehigh, EUA (1980). Materia condensada (E): dispositivos tipo MOS. Pel\\xedculas delgadas semiconductoras y diel\\xe9ctricas. Superconductores de alta TC y fotoluminiscencia.
\\r\\ncfalcony at fis.cinvestav.mx
\\r\\nExt. 3703

\\n Fern\\xe1ndez Cabrera, David Jos\\xe9
\\r\\nDr., Cinvestav (1988). Fisicamatem\\xe1tica (T): din\\xe1mica de Schr\\xf6dinger.
\\r\\ndavid at fis.cinvestav.mx
\\r\\nExt. 6137

\\n Garc\\xeda D\\xedaz, Alberto Alejandro
\\r\\nDr., Universidad Lomonosov, Rusia (1990). Relatividad y Gravitaci\\xf3n (T): Soluciones exactas en Relatividad General.
\\r\\naagarcia at fis.cinvestav.mx
\\r\\nExt. 6121

\\n Garc\\xeda Compe\\xe1n, H\\xe9ctor Hugo
\\r\\nF\\xedsica-matem\\xe1tica (T): teor\\xeda de cuerdas, cuantizaci\\xf3n por deformaci\\xf3n.
\\r\\ncompean at fis.cinvestav.mx
\\r\\nExt. 6131

\\n Garc\\xeda Rocha, Miguel
\\r\\nDr., Cinvestav (1995). Materia condensada (E): propiedades \\xf3pticas de semiconductores. F\\xedsica de superficies e interfases.
\\r\\nmrocha at fis.cinvestav.mx
\\r\\nExt. 6160

\\n Gallardo Hern\\xe1ndez, Salvador
\\r\\nDr., Cinvestav (2009). Materia condensada (E): Interacci\\xf3n Prote\\xedna-Superficie. Interacci\\xf3n Ion-Solido.
\\r\\nsgallardo at fis.cinvestav.mx
\\r\\nsalvador.gallardo at cinvestav.mx
\\r\\nExt. 6129

\\n Gonz\\xe1lez de la Cruz, Gerardo
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1980). Materia condensada (T): propiedades electr\\xf3nicas en sistemas de dos dimensiones y din\\xe1mica de red es.
\\r\\nbato at fis.cinvestav.mx
\\r\\nExt. 3881

\\n Gonz\\xe1lez Mozuelos, Pedro
\\r\\nDr., Cinvestav (1992). F\\xedsica estad\\xedstica (T): propiedades estructurales de suspensiones coloidales inhomog\\xe9neas, propiedades termodin\\xe1micas y el\\xe9ctricas de pol\\xedmeros cargados (polianfolitos y polielectrolitos).
\\r\\npedro at fis.cinvestav.mx
\\r\\nExt. 6120

\\n Gurevich Genrihovich, Yuri
\\r\\nDr., Academia de Ciencias-Leningrado, Rusia (1968). Materia condensada (T): pel\\xedculas delgadas semiconductoras, propiedades fotoelectr\\xf3nicas de materiales, fen\\xf3menos de transporte no lineal en semiconductores fuera de equilibrio.
\\r\\ngurevich at fis.cinvestav.mx
\\r\\nExt. 3826

\\n Heredia de la Cruz, Iv\\xe1n
\\r\\nDr., Cinvestav (2012). Part\\xedculas y campos (E): F\\xedsica de hadrones con sabor pesado en CMS (CERN), Belle II (KEK), y D0 (Fermilab).
\\r\\niheredia at fis.cinvestav.mx
\\r\\nExt. 6103

\\n Hern\\xe1ndez Calder\\xf3n, Isaac
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1981). Materia condensada (E): propiedades \\xf3pticas, el\\xe9ctricas y estructurales de semiconductores. Crecimiento de pel\\xedculas epitaxiales. F\\xedsica de superficies e interfaces.
\\r\\nihernand at fis.cinvestav.mx
\\r\\nExt. 6166, 6187 Lab. 6168

\\n Hern\\xe1ndez Contreras, Mart\\xedn
\\r\\nDr., UASLP (1995). F\\xedsica Estad\\xedstica (T): Materiales Activos: su reolog\\xeda, estructura y din\\xe1mica. El problema de la Serie de Hofmeister de sales y electr\\xf3litos en l\\xedquidos. Din\\xe1mica superficial en interfaz liquido-vapor de cristales l\\xedquidos. Ferrofuidos. Realizamos comparaci\\xf3n de teoria con simulaciones computacionales o experimentales.
\\r\\nmarther at fis.cinvestav.mx
\\r\\nExt. 6033

\\n Herrera Corral, Gerardo
\\r\\nDr., Univ. de Dortmund, Alemania (1991). Part\\xedculas y campos (E): hadroproducci\\xf3n de c y b en el experimento E-791 de blanco fijo (Fermilab), de tector ALICE de iones pesados (CERN).
\\r\\ngherrera at fis.cinvestav.mx
\\r\\nExt. 6174

\\n Kielanowski Chomicz, Piotr
\\r\\nDr., Univ. de Varsovia, Polonia (1971). Part\\xedculas y campos (T): interacciones d\\xe9biles. Modelo de quarks. Fen\\xf3menos de polarizaci\\xf3n.
\\r\\nkiel at fis.cinvestav.mx
\\r\\nExt. 6177

\\n L\\xf3pez Castro, Gabriel
\\r\\nDr., Univ. de Lovaina, B\\xe9lgica (1988). Part\\xedculas y campos (T): fenomenolog\\xeda de interacciones electrod\\xe9biles.
\\r\\nglopez at fis.cinvestav.mx
\\r\\nExt. 6141

\\n L\\xf3pez Fern\\xe1ndez, Ricardo
\\r\\nDr., Universit\\xe9 Joseph Fourier, Grenoble I, 2001. Producci\\xf3n de quarks pesados en CMS del LHC. F\\xedsica de aceleradores.
\\r\\nlopezr at fis.cinvestav.mx
\\r\\nExt. 6146

\\n L\\xf3pez L\\xf3pez, M\\xe1ximo
\\r\\nDr., Univ. Toyohashi, Jap\\xf3n (1992). Materia condensada (E): propiedades \\xf3pticas de semiconductores. Crecimiento epitaxial de pel\\xedculas semi conductoras.
\\r\\nmlopez at fis.cinvestav.mx
\\r\\nExt. 6109

\\n Manko Semionovich, Vladimir
\\r\\nDr., Univ. de la Amistad de los Pueblos, Rusia (1986). Fisicamatem\\xe1tica y relatividad (T): soluciones exactas de las ecuaciones de Einstein-Maxwell, relatividad restringida y general.
\\r\\nvsmanko at fis.cinvestav.mx
\\r\\nExt. 6132

\\n Matos Chassin, Tonatiuh
\\r\\nDr., Univ. F. Schiller-Jena, Alemania (1987). Fisicamatem\\xe1tica y gravitaci\\xf3n (T): galaxias, materia obscura, estrellas compactas, campos escalares.
\\r\\ntmatos at fis.cinvestav.mx
\\r\\nExt. 6134

\\n Mel\\xe9ndez Lira, Miguel \\xc3ngel
\\r\\nDr., Cinvestav (1993). Materia condensada y estado s\\xf3lido (E): propiedades \\xf3pticas. Pel\\xedculas delgadas. Espectroscop\\xeda Raman. Fotoluminiscencia y reflectancias moduladas.
\\r\\nmlira at fis.cinvestav.mx
\\r\\nExt. 6107

\\n M\\xe9ndez Alcaraz, Jos\\xe9 Miguel
\\r\\nDr., Univ. de Constanza, Alemania (1993). F\\xedsica estad\\xedstica (T): fluidos complejos. Propiedades termodin\\xe1nicas, estructurales y din\\xe1m icas de suspensiones coloidales y soluciones polim\\xe9ricas.
\\r\\njmendez at fis.cinvestav.mx
\\r\\nExt. 6106

\\n Mendoza Alvarez, Julio G.
\\r\\nDr., Univ. Estatal de Campinas, Brasil (1979). Materia condensada (E): propiedades \\xf3pticas de semiconductores. Dispositivos optoelectr\\xf3nicos. Crecimiento de semiconductores por epitaxia en fase l\\xedquida.
\\r\\njmendoza at fis.cinvestav.mx
\\r\\nExt. 6178

\\n Mielnik Manwelow, Bogdan
\\r\\nDr., Cinvestav (1964). Fisicamatem\\xe1tica (T): movilidad de sistemas din\\xe1micos no lineales, manipulaci\\xf3n de estados cu\\xe1nticos por medio de campos externos dependientes del tiempo, fundamentos de la mec\\xe1nica cu\\xe1ntica.
\\r\\nbogdan at fis.cinvestav.mx
\\r\\nExt. 6178

\\n Miranda Romagnoli, Omar G.
\\r\\nDr. Cinvestav (1997). Part\\xedculas y campos (T): fenomenolog\\xeda de interacciones electrod\\xe9biles.
\\r\\nomr at fis.cinvestav.mx
\\r\\nExt. 6127

\\n Monta\\xf1o, Luis Manuel
\\r\\nDr. Cinvestav (1998). F\\xedsica m\\xe9dica y f\\xedsica de altas energ\\xedas (E): aplicaci\\xf3n de detectores semiconductores a radioterapia y col isiones de iones pesados.
\\r\\nlmontano at fis.cinvestav.mx
\\r\\nExt. 6126

\\n Montesinos Vel\\xe1squez, Merced
\\r\\nDr., Cinvestav (1997). Geometr\\xeda y Gravitaci\\xf3n (T): relatividad general y gravitaci\\xf3n, gravedad cu\\xe1ntica, f\\xedsica matem\\xe1tica, cuantizaci\\xf3n can\\xf3nica.
\\r\\nmerced at fis.cinvestav.mx
\\r\\nExt. 6180

\\n Olgu\\xedn Melo, Daniel
\\r\\nDr., Cinvestav (1996). Materia condensada (T): superconductividad, f\\xedsica de superficies.
\\r\\ndaniel at fis.cinvestav.mx
\\r\\nExt. 6121

\\n P\\xe9rez Ang\\xf3n, Miguel \\xc1ngel
\\r\\nDr., Cinvestav (1972). Part\\xedculas y campos (T): fenomenolog\\xeda de modelos de norma, teor\\xedas efectivas.
\\r\\nmperez at fis.cinvestav.mx
\\r\\nExt. 6113

\\n P\\xe9rez Lorenzana, Abdel
\\r\\nDr. Cinvestav (1998). Part\\xedculas y campos (T): modelos para f\\xedsica m\\xe1s all\\xe1s del Modelo Est\\xe1ndar , f\\xedsica de neutrinos, modelos con dimensiones extras, cosmolog\\xeda.
\\r\\naplorenz at fis.cinvestav.mx
\\r\\nExt. 3834

\\n Roig Garc\\xe9s, Pablo
\\r\\nDr., Univ. de Valencia, Espa\\xf1a (2010). Part\\xedculas y campos (T): fenomenolog\\xeda del Modelo Est\\xe1ndar y sus extensiones.
\\r\\nproig at fis.cinvestav.mx
\\r\\nExt. 6151

\\n Rojas Ochoa, Luis Fernando
\\r\\nDr., University of Fribourg, Switzerland (2004). F\\xedsica Estad\\xedstica (E): Materia Condensada Blanda (coloides, pol\\xedmeros, etc.)
\\r\\nlrojas at fis.cinvestav.mx
\\r\\nExt. 6199

\\n Rosas Ortiz, Jos\\xe9 Oscar
\\r\\nDr., Cinvestav (1997). Fisicamatem\\xe1tica (T): formalismo de la mec\\xe1nica cu\\xe1ntica,estados coherentes y comprimidos, solitones, computaci\\xf3n cu\\xe1ntica.
\\r\\norosas at fis.cinvestav.mx
\\r\\nExt. 6147

\\n S\\xe1nchez Hern\\xe1ndez, Alberto
\\r\\nDr., Cinvestav (1997). Part\\xedculas y campos (E): F\\xedsica de hadrones b en los Experimentos DZero (FNAL) y CMS (CERN). Desarrollo de aplicaciones GRID y Generadores Monte Carlo para F\\xedsica de Altas Energ\\xedas.
\\r\\nasanchez at fis.cinvestav.mx
\\r\\nExt. 6115

\\n S\\xe1nchez Sinencio, Feliciano
\\r\\nDr. Univ. de Sao Paulo, Brasil (1970). Materia condensada (E): propiedades fotoelectr\\xf3nicas de materiales, biomateriales.
\\r\\nfsanchez at fis.cinvestav.mx
\\r\\nExt. 6170

\\n Santoyo Salazar, Jaime
\\r\\nDr., IIM-UNAM (2006). Materia condensada (E): Nanopart\\xedculas Magn\\xe9ticas para diagn\\xf3stico y tratamiento contra el c\\xe1ncer. Microscopia Electr\\xf3nica y de Fuerza At\\xf3mica.
\\r\\njsantoyo at fis.cinvestav.mx
\\r\\nExt. 6756

\\n Tom\\xe1s Vel\\xe1zquez, Sergio Armando
\\r\\nDr., Cinvestav (1996). Materia condensada (E): espectroscop\\xeda fotot\\xe9rmica, aplicaci\\xf3n a materiales biol\\xf3gicos.
\\r\\nstomas at fis.cinvestav.mx
\\r\\nExt. 6124

\\n Torres Vega, Gabino
\\r\\nDr., Cinvestav (1987). Fisicamatem\\xe1tica (T): representaciones de espacio fase de la mec\\xe1nica cu\\xe1ntica. An\\xe1logos cl\\xe1sicos de los sistemas cu\\xe1nticos.
\\r\\ngabino at fis.cinvestav.mx
\\r\\nExt. 6172

\\n V\\xe1zquez L\\xf3pez, Carlos
\\r\\nDr., Cinvestav (1979). Materia condensada (E): microscop\\xeda de tunelamiento y de fuerza at\\xf3mica.
\\r\\ncvlopez at fis.cinvestav.mx
\\r\\nExt. 6108

\\n Zelaya Angel, Orlando
\\r\\nDr., Cinvestav (1985). Materia condensada (E): crecimiento y caracterizaci\\xf3n de pel\\xedculas delgadas; propiedades \\xf3pticas y t\\xe9rmicas de materiales.
\\r\\nozelaya at fis.cinvestav.mx
\\r\\nExt. 6159

\\n Zepeda Dom\\xednguez, Arnulfo
\\r\\nDr., Cinvestav (1970). Part\\xedculas y campos (T/E): fenomenolog\\xeda de teor\\xedas de gran unificaci\\xf3n, f\\xedsica de astropart\\xedculas y rayos c\\xf3smicos, proyectos Pierre Auger y HAWC.
\\r\\nzepeda at fis.cinvestav.mx
\\r\\nExt. 6163

\\n
" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "table[1]\n", "#print(table[1].text)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "persons = table[1].text.split('Ext')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\n", " Ayón Beato, Eloy\r\n", "Dr., Cinvestav (2000). Gravitación y Geometría (T): física de agujeros negros, gravedad en diversas dimensiones.\r\n", "ayon-beato at fis.cinvestav.mx\r\n", "\n", ". 6162\n", " Baquero Parra, Rafael\r\n", "Dr., Cinvestav (1976). Materia condensada (T): superconductividad, física de superficies.\r\n", "rbaquero at fis.cinvestav.mx\r\n", "\n", ". 6179\n", " Bermúdez Rosales, David\r\n", "Dr. Cinvestav (2013). Fisicamatemática (T): Dinámica de pulsos ultra cortos, análogos de la radiación de Hawking con óptica cuántica, mecánica cuántica supersimétrica y soluciones analíticas de las ecuaciones de Painlevé. \r\n", "dbermudez at fis.cinvestav.mx\r\n", "\n", ". 6142\n", " Bretón Báez, Nora Eva\r\n", "Dra., Cinvestav (1986). Relatividad y gravitación (T): soluciones exactas de las ecuaciones de Einstein.\r\n", "nora at fis.cinvestav.mx\r\n", "\n", ". 6133\n", " Capovilla, Riccardo\r\n", "Dr., Univ. de Maryland, EUA (1991). Relatividad y gravitación (T): teorías de campos, objetos extendidos, defectos topológicos y membranas.\r\n", "capo at fis.cinvestav.mx\r\n", "\n" ] } ], "source": [ "for person in persons[:5]:\n", " print person" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "def all_data(person):\n", " person_data = person.strip('\\t\\r\\n').split('\\n')\n", " _, full_name, info, correo = person_data\n", " surname, name = full_name.split(',')\n", " lugar, tema = info.split(':')\n", " otro, campo = lugar[:-3].split(')')\n", " campo = campo.replace(\".\", \" \")\n", " tmp = otro.split()\n", " anio = tmp.pop(-1).replace(\"(\", \" \")\n", " tmp.pop(0)\n", " lugar_dr = ' '.join(tmp) \n", " #campo, tema = area.split(':')\n", " return [name, surname, lugar_dr, anio, campo, tema, correo]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[u' Riccardo\\r',\n", " u' Capovilla',\n", " u'Univ. de Maryland, EUA',\n", " u' 1991',\n", " u' Relatividad y gravitaci\\xf3n ',\n", " u' teor\\xedas de campos, objetos extendidos, defectos topol\\xf3gicos y membranas.\\r',\n", " u'capo at fis.cinvestav.mx']" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# for zero, doesn't work\n", "a = all_data(persons[4])\n", "a" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "#Careful with commas and stops\n", "i=0\n", "df_persons = []\n", "for person in persons[1:]:\n", " i+=1\n", " try:\n", " df_persons.append(all_data(person))\n", " except:\n", " continue\n", " #print(i)\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesurnamelugar_draniocampotemacorreo
0Rafael\\rBaquero ParraCinvestav1976Materia condensadasuperconductividad, física de superficies.\\rrbaquero at fis.cinvestav.mx
1David\\rBermúdez RosalesCinvestav2013FisicamatemáticaDinámica de pulsos ultra cortos, análogos de ...dbermudez at fis.cinvestav.mx
2Nora Eva\\rBretón BáezCinvestav1986Relatividad y gravitaciónsoluciones exactas de las ecuaciones de Einst...nora at fis.cinvestav.mx
3Riccardo\\rCapovillaUniv. de Maryland, EUA1991Relatividad y gravitaciónteorías de campos, objetos extendidos, defect...capo at fis.cinvestav.mx
4Mauricio Demetrio\\rCarbajal TinocoUASLP1997Física estadística(Tfluidos complejos.\\rmdct at fis.cinvestav.mx
5Heriberto\\rCastilla ValdezCinvestav1991Partículas y camposcolisiones protón-protón a 2 TeV con el detec...castilla at fis.cinvestav.mx
6Jorge Javier\\rCastro HernándezUniv. de Oxford, Inglaterra1972Materia condensadasuperconductividad de alta TC. Teoría de much...jjcastro at fis.cinvestav.mx
7Agustín\\rConde GallardoCinvestav1995Materia condensadasuperconductores del alta TC y fotoluminiscen...aconde at fis.cinvestav.mx
8Alfredo\\rCruz OreaUniv. Estatal de Campinas, Brasil1994Materia condensadatécnicas fototérmicas aplicadas a semiconduct...orea at fis.cinvestav.mx.
9Eduard\\rDe La Cruz BureloCinvestav2005partículas y camposFísica de hadrones B en D0 (Fermilab), y prot...eduard at fis.cinvestav.mx
10Josue\\rDe Santiago SanabriaUNAM2014Cosmología y gravitaciónmodelos de materia oscura, energía oscura e ...jsantiago at fis.cinvestav.mx
11Ciro\\rFalcony GuajardoUniv. de Lehigh, EUA1980Materia condensadadispositivos tipo MOS. Películas delgadas sem...cfalcony at fis.cinvestav.mx
12David José\\rFernández CabreraCinvestav1988Fisicamatemáticadinámica de Schrödinger.\\rdavid at fis.cinvestav.mx
13Alberto Alejandro\\rGarcía DíazUniversidad Lomonosov, Rusia1990Relatividad y GravitaciónSoluciones exactas en Relatividad General.\\raagarcia at fis.cinvestav.mx
14Miguel\\rGarcía RochaCinvestav1995Materia condensadapropiedades ópticas de semiconductores. Físic...mrocha at fis.cinvestav.mx
15Gerardo\\rGonzález de la CruzUniv. Estatal de Campinas, Brasil1980Materia condensadapropiedades electrónicas en sistemas de dos d...bato at fis.cinvestav.mx
16Pedro\\rGonzález MozuelosCinvestav1992Física estadísticapropiedades estructurales de suspensiones col...pedro at fis.cinvestav.mx
17Yuri\\rGurevich GenrihovichAcademia de Ciencias-Leningrado, Rusia1968Materia condensadapelículas delgadas semiconductoras, propiedad...gurevich at fis.cinvestav.mx
18Iván\\rHeredia de la CruzCinvestav2012Partículas y camposFísica de hadrones con sabor pesado en CMS (C...iheredia at fis.cinvestav.mx
19Isaac\\rHernández CalderónUniv. Estatal de Campinas, Brasil1981Materia condensadapropiedades ópticas, eléctricas y estructural...ihernand at fis.cinvestav.mx
20Gerardo\\rHerrera CorralUniv. de Dortmund, Alemania1991Partículas y camposhadroproducción de c y b en el experimento E-...gherrera at fis.cinvestav.mx
21Piotr\\rKielanowski ChomiczUniv. de Varsovia, Polonia1971Partículas y camposinteracciones débiles. Modelo de quarks. Fenó...kiel at fis.cinvestav.mx
22Gabriel\\rLópez CastroUniv. de Lovaina, Bélgica1988Partículas y camposfenomenología de interacciones electrodébiles.\\rglopez at fis.cinvestav.mx
23Máximo\\rLópez LópezUniv. Toyohashi, Japón1992Materia condensadapropiedades ópticas de semiconductores. Creci...mlopez at fis.cinvestav.mx
24Vladimir\\rManko SemionovichUniv. de la Amistad de los Pueblos, Rusia1986Fisicamatemática y relatividadsoluciones exactas de las ecuaciones de Einst...vsmanko at fis.cinvestav.mx
25Tonatiuh\\rMatos ChassinUniv. F. Schiller-Jena, Alemania1987Fisicamatemática y gravitacióngalaxias, materia obscura, estrellas compacta...tmatos at fis.cinvestav.mx
26Miguel Ãngel\\rMeléndez LiraCinvestav1993Materia condensada y estado sólidopropiedades ópticas. Películas delgadas. Espe...mlira at fis.cinvestav.mx
27José Miguel\\rMéndez AlcarazUniv. de Constanza, Alemania1993Física estadísticafluidos complejos. Propiedades termodinánicas...jmendez at fis.cinvestav.mx
28Julio G.\\rMendoza AlvarezUniv. Estatal de Campinas, Brasil1979Materia condensadapropiedades ópticas de semiconductores. Dispo...jmendoza at fis.cinvestav.mx
29Bogdan\\rMielnik ManwelowCinvestav1964Fisicamatemáticamovilidad de sistemas dinámicos no lineales, ...bogdan at fis.cinvestav.mx
30Omar G.\\rMiranda RomagnoliCinvestav1997Partículas y camposfenomenología de interacciones electrodébiles.\\romr at fis.cinvestav.mx
31Luis Manuel\\rMontañoCinvestav1998Física médica y física de altas energíasaplicación de detectores semiconductores a ra...lmontano at fis.cinvestav.mx
32Merced\\rMontesinos VelásquezCinvestav1997Geometría y Gravitaciónrelatividad general y gravitación, gravedad c...merced at fis.cinvestav.mx
33Daniel\\rOlguín MeloCinvestav1996Materia condensadasuperconductividad, física de superficies.\\rdaniel at fis.cinvestav.mx
34Miguel Ángel\\rPérez AngónCinvestav1972Partículas y camposfenomenología de modelos de norma, teorías ef...mperez at fis.cinvestav.mx
35Abdel\\rPérez LorenzanaCinvestav1998Partículas y camposmodelos para física más allás del Modelo Está...aplorenz at fis.cinvestav.mx
36Pablo\\rRoig GarcésUniv. de Valencia, España2010Partículas y camposfenomenología del Modelo Estándar y sus exten...proig at fis.cinvestav.mx
37Luis Fernando\\rRojas OchoaUniversity of Fribourg, Switzerland2004Física EstadísticaMateria Condensada Blanda (coloides, polímero...lrojas at fis.cinvestav.mx
38José Oscar\\rRosas OrtizCinvestav1997Fisicamatemáticaformalismo de la mecánica cuántica,estados co...orosas at fis.cinvestav.mx
39Alberto\\rSánchez HernándezCinvestav1997Partículas y camposFísica de hadrones b en los Experimentos DZer...asanchez at fis.cinvestav.mx
40Feliciano\\rSánchez SinencioUniv. de Sao Paulo, Brasil1970Materia condensadapropiedades fotoelectrónicas de materiales, b...fsanchez at fis.cinvestav.mx
41Jaime\\rSantoyo SalazarIIM-UNAM2006Materia condensadaNanopartículas Magnéticas para diagnóstico y ...jsantoyo at fis.cinvestav.mx
42Sergio Armando\\rTomás VelázquezCinvestav1996Materia condensadaespectroscopía fototérmica, aplicación a mate...stomas at fis.cinvestav.mx
43Gabino\\rTorres VegaCinvestav1987Fisicamatemáticarepresentaciones de espacio fase de la mecáni...gabino at fis.cinvestav.mx
44Carlos\\rVázquez LópezCinvestav1979Materia condensadamicroscopía de tunelamiento y de fuerza atómi...cvlopez at fis.cinvestav.mx
45Orlando\\rZelaya AngelCinvestav1985Materia condensadacrecimiento y caracterización de películas de...ozelaya at fis.cinvestav.mx
46Arnulfo\\rZepeda DomínguezCinvestav1970Partículas y campos (Tfenomenología de teorías de gran unificación,...zepeda at fis.cinvestav.mx
\n", "
" ], "text/plain": [ " name surname \\\n", "0 Rafael\\r Baquero Parra \n", "1 David\\r Bermúdez Rosales \n", "2 Nora Eva\\r Bretón Báez \n", "3 Riccardo\\r Capovilla \n", "4 Mauricio Demetrio\\r Carbajal Tinoco \n", "5 Heriberto\\r Castilla Valdez \n", "6 Jorge Javier\\r Castro Hernández \n", "7 Agustín\\r Conde Gallardo \n", "8 Alfredo\\r Cruz Orea \n", "9 Eduard\\r De La Cruz Burelo \n", "10 Josue\\r De Santiago Sanabria \n", "11 Ciro\\r Falcony Guajardo \n", "12 David José\\r Fernández Cabrera \n", "13 Alberto Alejandro\\r García Díaz \n", "14 Miguel\\r García Rocha \n", "15 Gerardo\\r González de la Cruz \n", "16 Pedro\\r González Mozuelos \n", "17 Yuri\\r Gurevich Genrihovich \n", "18 Iván\\r Heredia de la Cruz \n", "19 Isaac\\r Hernández Calderón \n", "20 Gerardo\\r Herrera Corral \n", "21 Piotr\\r Kielanowski Chomicz \n", "22 Gabriel\\r López Castro \n", "23 Máximo\\r López López \n", "24 Vladimir\\r Manko Semionovich \n", "25 Tonatiuh\\r Matos Chassin \n", "26 Miguel Ãngel\\r Meléndez Lira \n", "27 José Miguel\\r Méndez Alcaraz \n", "28 Julio G.\\r Mendoza Alvarez \n", "29 Bogdan\\r Mielnik Manwelow \n", "30 Omar G.\\r Miranda Romagnoli \n", "31 Luis Manuel\\r Montaño \n", "32 Merced\\r Montesinos Velásquez \n", "33 Daniel\\r Olguín Melo \n", "34 Miguel Ángel\\r Pérez Angón \n", "35 Abdel\\r Pérez Lorenzana \n", "36 Pablo\\r Roig Garcés \n", "37 Luis Fernando\\r Rojas Ochoa \n", "38 José Oscar\\r Rosas Ortiz \n", "39 Alberto\\r Sánchez Hernández \n", "40 Feliciano\\r Sánchez Sinencio \n", "41 Jaime\\r Santoyo Salazar \n", "42 Sergio Armando\\r Tomás Velázquez \n", "43 Gabino\\r Torres Vega \n", "44 Carlos\\r Vázquez López \n", "45 Orlando\\r Zelaya Angel \n", "46 Arnulfo\\r Zepeda Domínguez \n", "\n", " lugar_dr anio \\\n", "0 Cinvestav 1976 \n", "1 Cinvestav 2013 \n", "2 Cinvestav 1986 \n", "3 Univ. de Maryland, EUA 1991 \n", "4 UASLP 1997 \n", "5 Cinvestav 1991 \n", "6 Univ. de Oxford, Inglaterra 1972 \n", "7 Cinvestav 1995 \n", "8 Univ. Estatal de Campinas, Brasil 1994 \n", "9 Cinvestav 2005 \n", "10 UNAM 2014 \n", "11 Univ. de Lehigh, EUA 1980 \n", "12 Cinvestav 1988 \n", "13 Universidad Lomonosov, Rusia 1990 \n", "14 Cinvestav 1995 \n", "15 Univ. Estatal de Campinas, Brasil 1980 \n", "16 Cinvestav 1992 \n", "17 Academia de Ciencias-Leningrado, Rusia 1968 \n", "18 Cinvestav 2012 \n", "19 Univ. Estatal de Campinas, Brasil 1981 \n", "20 Univ. de Dortmund, Alemania 1991 \n", "21 Univ. de Varsovia, Polonia 1971 \n", "22 Univ. de Lovaina, Bélgica 1988 \n", "23 Univ. Toyohashi, Japón 1992 \n", "24 Univ. de la Amistad de los Pueblos, Rusia 1986 \n", "25 Univ. F. Schiller-Jena, Alemania 1987 \n", "26 Cinvestav 1993 \n", "27 Univ. de Constanza, Alemania 1993 \n", "28 Univ. Estatal de Campinas, Brasil 1979 \n", "29 Cinvestav 1964 \n", "30 Cinvestav 1997 \n", "31 Cinvestav 1998 \n", "32 Cinvestav 1997 \n", "33 Cinvestav 1996 \n", "34 Cinvestav 1972 \n", "35 Cinvestav 1998 \n", "36 Univ. de Valencia, España 2010 \n", "37 University of Fribourg, Switzerland 2004 \n", "38 Cinvestav 1997 \n", "39 Cinvestav 1997 \n", "40 Univ. de Sao Paulo, Brasil 1970 \n", "41 IIM-UNAM 2006 \n", "42 Cinvestav 1996 \n", "43 Cinvestav 1987 \n", "44 Cinvestav 1979 \n", "45 Cinvestav 1985 \n", "46 Cinvestav 1970 \n", "\n", " campo \\\n", "0 Materia condensada \n", "1 Fisicamatemática \n", "2 Relatividad y gravitación \n", "3 Relatividad y gravitación \n", "4 Física estadística(T \n", "5 Partículas y campos \n", "6 Materia condensada \n", "7 Materia condensada \n", "8 Materia condensada \n", "9 partículas y campos \n", "10 Cosmología y gravitación \n", "11 Materia condensada \n", "12 Fisicamatemática \n", "13 Relatividad y Gravitación \n", "14 Materia condensada \n", "15 Materia condensada \n", "16 Física estadística \n", "17 Materia condensada \n", "18 Partículas y campos \n", "19 Materia condensada \n", "20 Partículas y campos \n", "21 Partículas y campos \n", "22 Partículas y campos \n", "23 Materia condensada \n", "24 Fisicamatemática y relatividad \n", "25 Fisicamatemática y gravitación \n", "26 Materia condensada y estado sólido \n", "27 Física estadística \n", "28 Materia condensada \n", "29 Fisicamatemática \n", "30 Partículas y campos \n", "31 Física médica y física de altas energías \n", "32 Geometría y Gravitación \n", "33 Materia condensada \n", "34 Partículas y campos \n", "35 Partículas y campos \n", "36 Partículas y campos \n", "37 Física Estadística \n", "38 Fisicamatemática \n", "39 Partículas y campos \n", "40 Materia condensada \n", "41 Materia condensada \n", "42 Materia condensada \n", "43 Fisicamatemática \n", "44 Materia condensada \n", "45 Materia condensada \n", "46 Partículas y campos (T \n", "\n", " tema \\\n", "0 superconductividad, física de superficies.\\r \n", "1 Dinámica de pulsos ultra cortos, análogos de ... \n", "2 soluciones exactas de las ecuaciones de Einst... \n", "3 teorías de campos, objetos extendidos, defect... \n", "4 fluidos complejos.\\r \n", "5 colisiones protón-protón a 2 TeV con el detec... \n", "6 superconductividad de alta TC. Teoría de much... \n", "7 superconductores del alta TC y fotoluminiscen... \n", "8 técnicas fototérmicas aplicadas a semiconduct... \n", "9 Física de hadrones B en D0 (Fermilab), y prot... \n", "10 modelos de materia oscura, energía oscura e ... \n", "11 dispositivos tipo MOS. Películas delgadas sem... \n", "12 dinámica de Schrödinger.\\r \n", "13 Soluciones exactas en Relatividad General.\\r \n", "14 propiedades ópticas de semiconductores. Físic... \n", "15 propiedades electrónicas en sistemas de dos d... \n", "16 propiedades estructurales de suspensiones col... \n", "17 películas delgadas semiconductoras, propiedad... \n", "18 Física de hadrones con sabor pesado en CMS (C... \n", "19 propiedades ópticas, eléctricas y estructural... \n", "20 hadroproducción de c y b en el experimento E-... \n", "21 interacciones débiles. Modelo de quarks. Fenó... \n", "22 fenomenología de interacciones electrodébiles.\\r \n", "23 propiedades ópticas de semiconductores. Creci... \n", "24 soluciones exactas de las ecuaciones de Einst... \n", "25 galaxias, materia obscura, estrellas compacta... \n", "26 propiedades ópticas. Películas delgadas. Espe... \n", "27 fluidos complejos. Propiedades termodinánicas... \n", "28 propiedades ópticas de semiconductores. Dispo... \n", "29 movilidad de sistemas dinámicos no lineales, ... \n", "30 fenomenología de interacciones electrodébiles.\\r \n", "31 aplicación de detectores semiconductores a ra... \n", "32 relatividad general y gravitación, gravedad c... \n", "33 superconductividad, física de superficies.\\r \n", "34 fenomenología de modelos de norma, teorías ef... \n", "35 modelos para física más allás del Modelo Está... \n", "36 fenomenología del Modelo Estándar y sus exten... \n", "37 Materia Condensada Blanda (coloides, polímero... \n", "38 formalismo de la mecánica cuántica,estados co... \n", "39 Física de hadrones b en los Experimentos DZer... \n", "40 propiedades fotoelectrónicas de materiales, b... \n", "41 Nanopartículas Magnéticas para diagnóstico y ... \n", "42 espectroscopía fototérmica, aplicación a mate... \n", "43 representaciones de espacio fase de la mecáni... \n", "44 microscopía de tunelamiento y de fuerza atómi... \n", "45 crecimiento y caracterización de películas de... \n", "46 fenomenología de teorías de gran unificación,... \n", "\n", " correo \n", "0 rbaquero at fis.cinvestav.mx \n", "1 dbermudez at fis.cinvestav.mx \n", "2 nora at fis.cinvestav.mx \n", "3 capo at fis.cinvestav.mx \n", "4 mdct at fis.cinvestav.mx \n", "5 castilla at fis.cinvestav.mx \n", "6 jjcastro at fis.cinvestav.mx \n", "7 aconde at fis.cinvestav.mx \n", "8 orea at fis.cinvestav.mx. \n", "9 eduard at fis.cinvestav.mx \n", "10 jsantiago at fis.cinvestav.mx \n", "11 cfalcony at fis.cinvestav.mx \n", "12 david at fis.cinvestav.mx \n", "13 aagarcia at fis.cinvestav.mx \n", "14 mrocha at fis.cinvestav.mx \n", "15 bato at fis.cinvestav.mx \n", "16 pedro at fis.cinvestav.mx \n", "17 gurevich at fis.cinvestav.mx \n", "18 iheredia at fis.cinvestav.mx \n", "19 ihernand at fis.cinvestav.mx \n", "20 gherrera at fis.cinvestav.mx \n", "21 kiel at fis.cinvestav.mx \n", "22 glopez at fis.cinvestav.mx \n", "23 mlopez at fis.cinvestav.mx \n", "24 vsmanko at fis.cinvestav.mx \n", "25 tmatos at fis.cinvestav.mx \n", "26 mlira at fis.cinvestav.mx \n", "27 jmendez at fis.cinvestav.mx \n", "28 jmendoza at fis.cinvestav.mx \n", "29 bogdan at fis.cinvestav.mx \n", "30 omr at fis.cinvestav.mx \n", "31 lmontano at fis.cinvestav.mx \n", "32 merced at fis.cinvestav.mx \n", "33 daniel at fis.cinvestav.mx \n", "34 mperez at fis.cinvestav.mx \n", "35 aplorenz at fis.cinvestav.mx \n", "36 proig at fis.cinvestav.mx \n", "37 lrojas at fis.cinvestav.mx \n", "38 orosas at fis.cinvestav.mx \n", "39 asanchez at fis.cinvestav.mx \n", "40 fsanchez at fis.cinvestav.mx \n", "41 jsantoyo at fis.cinvestav.mx \n", "42 stomas at fis.cinvestav.mx \n", "43 gabino at fis.cinvestav.mx \n", "44 cvlopez at fis.cinvestav.mx \n", "45 ozelaya at fis.cinvestav.mx \n", "46 zepeda at fis.cinvestav.mx " ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "info_fisica= pd.DataFrame(df_persons, columns=['name', 'surname', 'lugar_dr', 'anio', 'campo', 'tema', 'correo'])\n", "info_fisica" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "47" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Pero en total son 50, faltan 5!\n", "#Look at Compean, Ricardo Lopez !!\n", "len(info_fisica)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Por lugares" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesurnamelugar_draniocampotemacorreo
0Rafael\\rBaquero ParraCinvestav1976Materia condensadasuperconductividad, física de superficies.\\rrbaquero at fis.cinvestav.mx
1David\\rBermúdez RosalesCinvestav2013FisicamatemáticaDinámica de pulsos ultra cortos, análogos de ...dbermudez at fis.cinvestav.mx
2Nora Eva\\rBretón BáezCinvestav1986Relatividad y gravitaciónsoluciones exactas de las ecuaciones de Einst...nora at fis.cinvestav.mx
5Heriberto\\rCastilla ValdezCinvestav1991Partículas y camposcolisiones protón-protón a 2 TeV con el detec...castilla at fis.cinvestav.mx
7Agustín\\rConde GallardoCinvestav1995Materia condensadasuperconductores del alta TC y fotoluminiscen...aconde at fis.cinvestav.mx
9Eduard\\rDe La Cruz BureloCinvestav2005partículas y camposFísica de hadrones B en D0 (Fermilab), y prot...eduard at fis.cinvestav.mx
12David José\\rFernández CabreraCinvestav1988Fisicamatemáticadinámica de Schrödinger.\\rdavid at fis.cinvestav.mx
14Miguel\\rGarcía RochaCinvestav1995Materia condensadapropiedades ópticas de semiconductores. Físic...mrocha at fis.cinvestav.mx
16Pedro\\rGonzález MozuelosCinvestav1992Física estadísticapropiedades estructurales de suspensiones col...pedro at fis.cinvestav.mx
18Iván\\rHeredia de la CruzCinvestav2012Partículas y camposFísica de hadrones con sabor pesado en CMS (C...iheredia at fis.cinvestav.mx
26Miguel Ãngel\\rMeléndez LiraCinvestav1993Materia condensada y estado sólidopropiedades ópticas. Películas delgadas. Espe...mlira at fis.cinvestav.mx
29Bogdan\\rMielnik ManwelowCinvestav1964Fisicamatemáticamovilidad de sistemas dinámicos no lineales, ...bogdan at fis.cinvestav.mx
30Omar G.\\rMiranda RomagnoliCinvestav1997Partículas y camposfenomenología de interacciones electrodébiles.\\romr at fis.cinvestav.mx
31Luis Manuel\\rMontañoCinvestav1998Física médica y física de altas energíasaplicación de detectores semiconductores a ra...lmontano at fis.cinvestav.mx
32Merced\\rMontesinos VelásquezCinvestav1997Geometría y Gravitaciónrelatividad general y gravitación, gravedad c...merced at fis.cinvestav.mx
33Daniel\\rOlguín MeloCinvestav1996Materia condensadasuperconductividad, física de superficies.\\rdaniel at fis.cinvestav.mx
34Miguel Ángel\\rPérez AngónCinvestav1972Partículas y camposfenomenología de modelos de norma, teorías ef...mperez at fis.cinvestav.mx
35Abdel\\rPérez LorenzanaCinvestav1998Partículas y camposmodelos para física más allás del Modelo Está...aplorenz at fis.cinvestav.mx
38José Oscar\\rRosas OrtizCinvestav1997Fisicamatemáticaformalismo de la mecánica cuántica,estados co...orosas at fis.cinvestav.mx
39Alberto\\rSánchez HernándezCinvestav1997Partículas y camposFísica de hadrones b en los Experimentos DZer...asanchez at fis.cinvestav.mx
42Sergio Armando\\rTomás VelázquezCinvestav1996Materia condensadaespectroscopía fototérmica, aplicación a mate...stomas at fis.cinvestav.mx
43Gabino\\rTorres VegaCinvestav1987Fisicamatemáticarepresentaciones de espacio fase de la mecáni...gabino at fis.cinvestav.mx
44Carlos\\rVázquez LópezCinvestav1979Materia condensadamicroscopía de tunelamiento y de fuerza atómi...cvlopez at fis.cinvestav.mx
45Orlando\\rZelaya AngelCinvestav1985Materia condensadacrecimiento y caracterización de películas de...ozelaya at fis.cinvestav.mx
46Arnulfo\\rZepeda DomínguezCinvestav1970Partículas y campos (Tfenomenología de teorías de gran unificación,...zepeda at fis.cinvestav.mx
\n", "
" ], "text/plain": [ " name surname lugar_dr anio \\\n", "0 Rafael\\r Baquero Parra Cinvestav 1976 \n", "1 David\\r Bermúdez Rosales Cinvestav 2013 \n", "2 Nora Eva\\r Bretón Báez Cinvestav 1986 \n", "5 Heriberto\\r Castilla Valdez Cinvestav 1991 \n", "7 Agustín\\r Conde Gallardo Cinvestav 1995 \n", "9 Eduard\\r De La Cruz Burelo Cinvestav 2005 \n", "12 David José\\r Fernández Cabrera Cinvestav 1988 \n", "14 Miguel\\r García Rocha Cinvestav 1995 \n", "16 Pedro\\r González Mozuelos Cinvestav 1992 \n", "18 Iván\\r Heredia de la Cruz Cinvestav 2012 \n", "26 Miguel Ãngel\\r Meléndez Lira Cinvestav 1993 \n", "29 Bogdan\\r Mielnik Manwelow Cinvestav 1964 \n", "30 Omar G.\\r Miranda Romagnoli Cinvestav 1997 \n", "31 Luis Manuel\\r Montaño Cinvestav 1998 \n", "32 Merced\\r Montesinos Velásquez Cinvestav 1997 \n", "33 Daniel\\r Olguín Melo Cinvestav 1996 \n", "34 Miguel Ángel\\r Pérez Angón Cinvestav 1972 \n", "35 Abdel\\r Pérez Lorenzana Cinvestav 1998 \n", "38 José Oscar\\r Rosas Ortiz Cinvestav 1997 \n", "39 Alberto\\r Sánchez Hernández Cinvestav 1997 \n", "42 Sergio Armando\\r Tomás Velázquez Cinvestav 1996 \n", "43 Gabino\\r Torres Vega Cinvestav 1987 \n", "44 Carlos\\r Vázquez López Cinvestav 1979 \n", "45 Orlando\\r Zelaya Angel Cinvestav 1985 \n", "46 Arnulfo\\r Zepeda Domínguez Cinvestav 1970 \n", "\n", " campo \\\n", "0 Materia condensada \n", "1 Fisicamatemática \n", "2 Relatividad y gravitación \n", "5 Partículas y campos \n", "7 Materia condensada \n", "9 partículas y campos \n", "12 Fisicamatemática \n", "14 Materia condensada \n", "16 Física estadística \n", "18 Partículas y campos \n", "26 Materia condensada y estado sólido \n", "29 Fisicamatemática \n", "30 Partículas y campos \n", "31 Física médica y física de altas energías \n", "32 Geometría y Gravitación \n", "33 Materia condensada \n", "34 Partículas y campos \n", "35 Partículas y campos \n", "38 Fisicamatemática \n", "39 Partículas y campos \n", "42 Materia condensada \n", "43 Fisicamatemática \n", "44 Materia condensada \n", "45 Materia condensada \n", "46 Partículas y campos (T \n", "\n", " tema \\\n", "0 superconductividad, física de superficies.\\r \n", "1 Dinámica de pulsos ultra cortos, análogos de ... \n", "2 soluciones exactas de las ecuaciones de Einst... \n", "5 colisiones protón-protón a 2 TeV con el detec... \n", "7 superconductores del alta TC y fotoluminiscen... \n", "9 Física de hadrones B en D0 (Fermilab), y prot... \n", "12 dinámica de Schrödinger.\\r \n", "14 propiedades ópticas de semiconductores. Físic... \n", "16 propiedades estructurales de suspensiones col... \n", "18 Física de hadrones con sabor pesado en CMS (C... \n", "26 propiedades ópticas. Películas delgadas. Espe... \n", "29 movilidad de sistemas dinámicos no lineales, ... \n", "30 fenomenología de interacciones electrodébiles.\\r \n", "31 aplicación de detectores semiconductores a ra... \n", "32 relatividad general y gravitación, gravedad c... \n", "33 superconductividad, física de superficies.\\r \n", "34 fenomenología de modelos de norma, teorías ef... \n", "35 modelos para física más allás del Modelo Está... \n", "38 formalismo de la mecánica cuántica,estados co... \n", "39 Física de hadrones b en los Experimentos DZer... \n", "42 espectroscopía fototérmica, aplicación a mate... \n", "43 representaciones de espacio fase de la mecáni... \n", "44 microscopía de tunelamiento y de fuerza atómi... \n", "45 crecimiento y caracterización de películas de... \n", "46 fenomenología de teorías de gran unificación,... \n", "\n", " correo \n", "0 rbaquero at fis.cinvestav.mx \n", "1 dbermudez at fis.cinvestav.mx \n", "2 nora at fis.cinvestav.mx \n", "5 castilla at fis.cinvestav.mx \n", "7 aconde at fis.cinvestav.mx \n", "9 eduard at fis.cinvestav.mx \n", "12 david at fis.cinvestav.mx \n", "14 mrocha at fis.cinvestav.mx \n", "16 pedro at fis.cinvestav.mx \n", "18 iheredia at fis.cinvestav.mx \n", "26 mlira at fis.cinvestav.mx \n", "29 bogdan at fis.cinvestav.mx \n", "30 omr at fis.cinvestav.mx \n", "31 lmontano at fis.cinvestav.mx \n", "32 merced at fis.cinvestav.mx \n", "33 daniel at fis.cinvestav.mx \n", "34 mperez at fis.cinvestav.mx \n", "35 aplorenz at fis.cinvestav.mx \n", "38 orosas at fis.cinvestav.mx \n", "39 asanchez at fis.cinvestav.mx \n", "42 stomas at fis.cinvestav.mx \n", "43 gabino at fis.cinvestav.mx \n", "44 cvlopez at fis.cinvestav.mx \n", "45 ozelaya at fis.cinvestav.mx \n", "46 zepeda at fis.cinvestav.mx " ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "locales =info_fisica[info_fisica['lugar_dr']=='Cinvestav']\n", "locales" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "25" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(locales)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "53.191489361702125" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(len(locales))/len(info_fisica)*100" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesurnamelugar_draniocampotemacorreo
3Riccardo\\rCapovillaUniv. de Maryland, EUA1991Relatividad y gravitaciónteorías de campos, objetos extendidos, defect...capo at fis.cinvestav.mx
4Mauricio Demetrio\\rCarbajal TinocoUASLP1997Física estadística(Tfluidos complejos.\\rmdct at fis.cinvestav.mx
6Jorge Javier\\rCastro HernándezUniv. de Oxford, Inglaterra1972Materia condensadasuperconductividad de alta TC. Teoría de much...jjcastro at fis.cinvestav.mx
8Alfredo\\rCruz OreaUniv. Estatal de Campinas, Brasil1994Materia condensadatécnicas fototérmicas aplicadas a semiconduct...orea at fis.cinvestav.mx.
10Josue\\rDe Santiago SanabriaUNAM2014Cosmología y gravitaciónmodelos de materia oscura, energía oscura e ...jsantiago at fis.cinvestav.mx
11Ciro\\rFalcony GuajardoUniv. de Lehigh, EUA1980Materia condensadadispositivos tipo MOS. Películas delgadas sem...cfalcony at fis.cinvestav.mx
13Alberto Alejandro\\rGarcía DíazUniversidad Lomonosov, Rusia1990Relatividad y GravitaciónSoluciones exactas en Relatividad General.\\raagarcia at fis.cinvestav.mx
15Gerardo\\rGonzález de la CruzUniv. Estatal de Campinas, Brasil1980Materia condensadapropiedades electrónicas en sistemas de dos d...bato at fis.cinvestav.mx
17Yuri\\rGurevich GenrihovichAcademia de Ciencias-Leningrado, Rusia1968Materia condensadapelículas delgadas semiconductoras, propiedad...gurevich at fis.cinvestav.mx
19Isaac\\rHernández CalderónUniv. Estatal de Campinas, Brasil1981Materia condensadapropiedades ópticas, eléctricas y estructural...ihernand at fis.cinvestav.mx
20Gerardo\\rHerrera CorralUniv. de Dortmund, Alemania1991Partículas y camposhadroproducción de c y b en el experimento E-...gherrera at fis.cinvestav.mx
21Piotr\\rKielanowski ChomiczUniv. de Varsovia, Polonia1971Partículas y camposinteracciones débiles. Modelo de quarks. Fenó...kiel at fis.cinvestav.mx
22Gabriel\\rLópez CastroUniv. de Lovaina, Bélgica1988Partículas y camposfenomenología de interacciones electrodébiles.\\rglopez at fis.cinvestav.mx
23Máximo\\rLópez LópezUniv. Toyohashi, Japón1992Materia condensadapropiedades ópticas de semiconductores. Creci...mlopez at fis.cinvestav.mx
24Vladimir\\rManko SemionovichUniv. de la Amistad de los Pueblos, Rusia1986Fisicamatemática y relatividadsoluciones exactas de las ecuaciones de Einst...vsmanko at fis.cinvestav.mx
25Tonatiuh\\rMatos ChassinUniv. F. Schiller-Jena, Alemania1987Fisicamatemática y gravitacióngalaxias, materia obscura, estrellas compacta...tmatos at fis.cinvestav.mx
27José Miguel\\rMéndez AlcarazUniv. de Constanza, Alemania1993Física estadísticafluidos complejos. Propiedades termodinánicas...jmendez at fis.cinvestav.mx
28Julio G.\\rMendoza AlvarezUniv. Estatal de Campinas, Brasil1979Materia condensadapropiedades ópticas de semiconductores. Dispo...jmendoza at fis.cinvestav.mx
36Pablo\\rRoig GarcésUniv. de Valencia, España2010Partículas y camposfenomenología del Modelo Estándar y sus exten...proig at fis.cinvestav.mx
37Luis Fernando\\rRojas OchoaUniversity of Fribourg, Switzerland2004Física EstadísticaMateria Condensada Blanda (coloides, polímero...lrojas at fis.cinvestav.mx
40Feliciano\\rSánchez SinencioUniv. de Sao Paulo, Brasil1970Materia condensadapropiedades fotoelectrónicas de materiales, b...fsanchez at fis.cinvestav.mx
41Jaime\\rSantoyo SalazarIIM-UNAM2006Materia condensadaNanopartículas Magnéticas para diagnóstico y ...jsantoyo at fis.cinvestav.mx
\n", "
" ], "text/plain": [ " name surname \\\n", "3 Riccardo\\r Capovilla \n", "4 Mauricio Demetrio\\r Carbajal Tinoco \n", "6 Jorge Javier\\r Castro Hernández \n", "8 Alfredo\\r Cruz Orea \n", "10 Josue\\r De Santiago Sanabria \n", "11 Ciro\\r Falcony Guajardo \n", "13 Alberto Alejandro\\r García Díaz \n", "15 Gerardo\\r González de la Cruz \n", "17 Yuri\\r Gurevich Genrihovich \n", "19 Isaac\\r Hernández Calderón \n", "20 Gerardo\\r Herrera Corral \n", "21 Piotr\\r Kielanowski Chomicz \n", "22 Gabriel\\r López Castro \n", "23 Máximo\\r López López \n", "24 Vladimir\\r Manko Semionovich \n", "25 Tonatiuh\\r Matos Chassin \n", "27 José Miguel\\r Méndez Alcaraz \n", "28 Julio G.\\r Mendoza Alvarez \n", "36 Pablo\\r Roig Garcés \n", "37 Luis Fernando\\r Rojas Ochoa \n", "40 Feliciano\\r Sánchez Sinencio \n", "41 Jaime\\r Santoyo Salazar \n", "\n", " lugar_dr anio \\\n", "3 Univ. de Maryland, EUA 1991 \n", "4 UASLP 1997 \n", "6 Univ. de Oxford, Inglaterra 1972 \n", "8 Univ. Estatal de Campinas, Brasil 1994 \n", "10 UNAM 2014 \n", "11 Univ. de Lehigh, EUA 1980 \n", "13 Universidad Lomonosov, Rusia 1990 \n", "15 Univ. Estatal de Campinas, Brasil 1980 \n", "17 Academia de Ciencias-Leningrado, Rusia 1968 \n", "19 Univ. Estatal de Campinas, Brasil 1981 \n", "20 Univ. de Dortmund, Alemania 1991 \n", "21 Univ. de Varsovia, Polonia 1971 \n", "22 Univ. de Lovaina, Bélgica 1988 \n", "23 Univ. Toyohashi, Japón 1992 \n", "24 Univ. de la Amistad de los Pueblos, Rusia 1986 \n", "25 Univ. F. Schiller-Jena, Alemania 1987 \n", "27 Univ. de Constanza, Alemania 1993 \n", "28 Univ. Estatal de Campinas, Brasil 1979 \n", "36 Univ. de Valencia, España 2010 \n", "37 University of Fribourg, Switzerland 2004 \n", "40 Univ. de Sao Paulo, Brasil 1970 \n", "41 IIM-UNAM 2006 \n", "\n", " campo \\\n", "3 Relatividad y gravitación \n", "4 Física estadística(T \n", "6 Materia condensada \n", "8 Materia condensada \n", "10 Cosmología y gravitación \n", "11 Materia condensada \n", "13 Relatividad y Gravitación \n", "15 Materia condensada \n", "17 Materia condensada \n", "19 Materia condensada \n", "20 Partículas y campos \n", "21 Partículas y campos \n", "22 Partículas y campos \n", "23 Materia condensada \n", "24 Fisicamatemática y relatividad \n", "25 Fisicamatemática y gravitación \n", "27 Física estadística \n", "28 Materia condensada \n", "36 Partículas y campos \n", "37 Física Estadística \n", "40 Materia condensada \n", "41 Materia condensada \n", "\n", " tema \\\n", "3 teorías de campos, objetos extendidos, defect... \n", "4 fluidos complejos.\\r \n", "6 superconductividad de alta TC. Teoría de much... \n", "8 técnicas fototérmicas aplicadas a semiconduct... \n", "10 modelos de materia oscura, energía oscura e ... \n", "11 dispositivos tipo MOS. Películas delgadas sem... \n", "13 Soluciones exactas en Relatividad General.\\r \n", "15 propiedades electrónicas en sistemas de dos d... \n", "17 películas delgadas semiconductoras, propiedad... \n", "19 propiedades ópticas, eléctricas y estructural... \n", "20 hadroproducción de c y b en el experimento E-... \n", "21 interacciones débiles. Modelo de quarks. Fenó... \n", "22 fenomenología de interacciones electrodébiles.\\r \n", "23 propiedades ópticas de semiconductores. Creci... \n", "24 soluciones exactas de las ecuaciones de Einst... \n", "25 galaxias, materia obscura, estrellas compacta... \n", "27 fluidos complejos. Propiedades termodinánicas... \n", "28 propiedades ópticas de semiconductores. Dispo... \n", "36 fenomenología del Modelo Estándar y sus exten... \n", "37 Materia Condensada Blanda (coloides, polímero... \n", "40 propiedades fotoelectrónicas de materiales, b... \n", "41 Nanopartículas Magnéticas para diagnóstico y ... \n", "\n", " correo \n", "3 capo at fis.cinvestav.mx \n", "4 mdct at fis.cinvestav.mx \n", "6 jjcastro at fis.cinvestav.mx \n", "8 orea at fis.cinvestav.mx. \n", "10 jsantiago at fis.cinvestav.mx \n", "11 cfalcony at fis.cinvestav.mx \n", "13 aagarcia at fis.cinvestav.mx \n", "15 bato at fis.cinvestav.mx \n", "17 gurevich at fis.cinvestav.mx \n", "19 ihernand at fis.cinvestav.mx \n", "20 gherrera at fis.cinvestav.mx \n", "21 kiel at fis.cinvestav.mx \n", "22 glopez at fis.cinvestav.mx \n", "23 mlopez at fis.cinvestav.mx \n", "24 vsmanko at fis.cinvestav.mx \n", "25 tmatos at fis.cinvestav.mx \n", "27 jmendez at fis.cinvestav.mx \n", "28 jmendoza at fis.cinvestav.mx \n", "36 proig at fis.cinvestav.mx \n", "37 lrojas at fis.cinvestav.mx \n", "40 fsanchez at fis.cinvestav.mx \n", "41 jsantoyo at fis.cinvestav.mx " ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "foraneos =info_fisica[info_fisica['lugar_dr']!='Cinvestav']\n", "foraneos" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[u'Univ. de Maryland, EUA',\n", " u'UASLP',\n", " u'Univ. de Oxford, Inglaterra',\n", " u'Univ. Estatal de Campinas, Brasil',\n", " u'UNAM',\n", " u'Univ. de Lehigh, EUA',\n", " u'Universidad Lomonosov, Rusia',\n", " u'Univ. Estatal de Campinas, Brasil',\n", " u'Academia de Ciencias-Leningrado, Rusia',\n", " u'Univ. Estatal de Campinas, Brasil',\n", " u'Univ. de Dortmund, Alemania',\n", " u'Univ. de Varsovia, Polonia',\n", " u'Univ. de Lovaina, B\\xe9lgica',\n", " u'Univ. Toyohashi, Jap\\xf3n',\n", " u'Univ. de la Amistad de los Pueblos, Rusia',\n", " u'Univ. F. Schiller-Jena, Alemania',\n", " u'Univ. de Constanza, Alemania',\n", " u'Univ. Estatal de Campinas, Brasil',\n", " u'Univ. de Valencia, Espa\\xf1a',\n", " u'University of Fribourg, Switzerland',\n", " u'Univ. de Sao Paulo, Brasil',\n", " u'IIM-UNAM']" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lforaneos = foraneos.lugar_dr.values.tolist()\n", "lforaneos" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "uni = []\n", "place=[]\n", "for f in lforaneos:\n", " if ',' in f:\n", " a, b = f.split(',')\n", " else:\n", " a, b = f, 'MXN'\n", " uni.append(a) \n", " place.append(b)\n" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Counter({u' Alemania': 3,\n", " u' Brasil': 5,\n", " u' B\\xe9lgica': 1,\n", " u' EUA': 2,\n", " u' Espa\\xf1a': 1,\n", " u' Inglaterra': 1,\n", " u' Jap\\xf3n': 1,\n", " u' Polonia': 1,\n", " u' Rusia': 3,\n", " u' Switzerland': 1,\n", " 'MXN': 3})" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Counter(place)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Counter({u'Academia de Ciencias-Leningrado': 1,\n", " u'IIM-UNAM': 1,\n", " u'UASLP': 1,\n", " u'UNAM': 1,\n", " u'Univ. Estatal de Campinas': 4,\n", " u'Univ. F. Schiller-Jena': 1,\n", " u'Univ. Toyohashi': 1,\n", " u'Univ. de Constanza': 1,\n", " u'Univ. de Dortmund': 1,\n", " u'Univ. de Lehigh': 1,\n", " u'Univ. de Lovaina': 1,\n", " u'Univ. de Maryland': 1,\n", " u'Univ. de Oxford': 1,\n", " u'Univ. de Sao Paulo': 1,\n", " u'Univ. de Valencia': 1,\n", " u'Univ. de Varsovia': 1,\n", " u'Univ. de la Amistad de los Pueblos': 1,\n", " u'Universidad Lomonosov': 1,\n", " u'University of Fribourg': 1})" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Counter(uni)" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "x =foraneos.assign(pais= place)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3 EUA\n", "4 MXN\n", "6 Inglaterra\n", "8 Brasil\n", "10 MXN\n", "11 EUA\n", "13 Rusia\n", "15 Brasil\n", "17 Rusia\n", "19 Brasil\n", "20 Alemania\n", "21 Polonia\n", "22 Bélgica\n", "23 Japón\n", "24 Rusia\n", "25 Alemania\n", "27 Alemania\n", "28 Brasil\n", "36 España\n", "37 Switzerland\n", "40 Brasil\n", "41 MXN\n", "Name: pais, dtype: object" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x['pais'] #[foraneos ['pais']] #.str.contains(\"Brasil\")] " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Por anio de Doctorado" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesurnamelugar_draniocampotemacorreo
10Josue\\rDe Santiago SanabriaUNAM2014Cosmología y gravitaciónmodelos de materia oscura, energía oscura e ...jsantiago at fis.cinvestav.mx
\n", "
" ], "text/plain": [ " name surname lugar_dr anio \\\n", "10 Josue\\r De Santiago Sanabria UNAM 2014 \n", "\n", " campo \\\n", "10 Cosmología y gravitación \n", "\n", " tema \\\n", "10 modelos de materia oscura, energía oscura e ... \n", "\n", " correo \n", "10 jsantiago at fis.cinvestav.mx " ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "info_fisica.loc[info_fisica['anio'] == info_fisica['anio'].max()]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesurnamelugar_draniocampotemacorreo
29Bogdan\\rMielnik ManwelowCinvestav1964Fisicamatemáticamovilidad de sistemas dinámicos no lineales, ...bogdan at fis.cinvestav.mx
\n", "
" ], "text/plain": [ " name surname lugar_dr anio campo \\\n", "29 Bogdan\\r Mielnik Manwelow Cinvestav 1964 Fisicamatemática \n", "\n", " tema \\\n", "29 movilidad de sistemas dinámicos no lineales, ... \n", "\n", " correo \n", "29 bogdan at fis.cinvestav.mx " ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "info_fisica.loc[info_fisica['anio'] == info_fisica['anio'].min()]" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "53" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2017 - 1964" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesurnamelugar_draniocampotemacorreo
29Bogdan\\rMielnik ManwelowCinvestav1964Fisicamatemáticamovilidad de sistemas dinámicos no lineales, ...bogdan at fis.cinvestav.mx
17Yuri\\rGurevich GenrihovichAcademia de Ciencias-Leningrado, Rusia1968Materia condensadapelículas delgadas semiconductoras, propiedad...gurevich at fis.cinvestav.mx
46Arnulfo\\rZepeda DomínguezCinvestav1970Partículas y campos (Tfenomenología de teorías de gran unificación,...zepeda at fis.cinvestav.mx
40Feliciano\\rSánchez SinencioUniv. de Sao Paulo, Brasil1970Materia condensadapropiedades fotoelectrónicas de materiales, b...fsanchez at fis.cinvestav.mx
21Piotr\\rKielanowski ChomiczUniv. de Varsovia, Polonia1971Partículas y camposinteracciones débiles. Modelo de quarks. Fenó...kiel at fis.cinvestav.mx
34Miguel Ángel\\rPérez AngónCinvestav1972Partículas y camposfenomenología de modelos de norma, teorías ef...mperez at fis.cinvestav.mx
6Jorge Javier\\rCastro HernándezUniv. de Oxford, Inglaterra1972Materia condensadasuperconductividad de alta TC. Teoría de much...jjcastro at fis.cinvestav.mx
0Rafael\\rBaquero ParraCinvestav1976Materia condensadasuperconductividad, física de superficies.\\rrbaquero at fis.cinvestav.mx
44Carlos\\rVázquez LópezCinvestav1979Materia condensadamicroscopía de tunelamiento y de fuerza atómi...cvlopez at fis.cinvestav.mx
28Julio G.\\rMendoza AlvarezUniv. Estatal de Campinas, Brasil1979Materia condensadapropiedades ópticas de semiconductores. Dispo...jmendoza at fis.cinvestav.mx
11Ciro\\rFalcony GuajardoUniv. de Lehigh, EUA1980Materia condensadadispositivos tipo MOS. Películas delgadas sem...cfalcony at fis.cinvestav.mx
15Gerardo\\rGonzález de la CruzUniv. Estatal de Campinas, Brasil1980Materia condensadapropiedades electrónicas en sistemas de dos d...bato at fis.cinvestav.mx
19Isaac\\rHernández CalderónUniv. Estatal de Campinas, Brasil1981Materia condensadapropiedades ópticas, eléctricas y estructural...ihernand at fis.cinvestav.mx
45Orlando\\rZelaya AngelCinvestav1985Materia condensadacrecimiento y caracterización de películas de...ozelaya at fis.cinvestav.mx
2Nora Eva\\rBretón BáezCinvestav1986Relatividad y gravitaciónsoluciones exactas de las ecuaciones de Einst...nora at fis.cinvestav.mx
24Vladimir\\rManko SemionovichUniv. de la Amistad de los Pueblos, Rusia1986Fisicamatemática y relatividadsoluciones exactas de las ecuaciones de Einst...vsmanko at fis.cinvestav.mx
25Tonatiuh\\rMatos ChassinUniv. F. Schiller-Jena, Alemania1987Fisicamatemática y gravitacióngalaxias, materia obscura, estrellas compacta...tmatos at fis.cinvestav.mx
43Gabino\\rTorres VegaCinvestav1987Fisicamatemáticarepresentaciones de espacio fase de la mecáni...gabino at fis.cinvestav.mx
12David José\\rFernández CabreraCinvestav1988Fisicamatemáticadinámica de Schrödinger.\\rdavid at fis.cinvestav.mx
22Gabriel\\rLópez CastroUniv. de Lovaina, Bélgica1988Partículas y camposfenomenología de interacciones electrodébiles.\\rglopez at fis.cinvestav.mx
13Alberto Alejandro\\rGarcía DíazUniversidad Lomonosov, Rusia1990Relatividad y GravitaciónSoluciones exactas en Relatividad General.\\raagarcia at fis.cinvestav.mx
5Heriberto\\rCastilla ValdezCinvestav1991Partículas y camposcolisiones protón-protón a 2 TeV con el detec...castilla at fis.cinvestav.mx
3Riccardo\\rCapovillaUniv. de Maryland, EUA1991Relatividad y gravitaciónteorías de campos, objetos extendidos, defect...capo at fis.cinvestav.mx
20Gerardo\\rHerrera CorralUniv. de Dortmund, Alemania1991Partículas y camposhadroproducción de c y b en el experimento E-...gherrera at fis.cinvestav.mx
23Máximo\\rLópez LópezUniv. Toyohashi, Japón1992Materia condensadapropiedades ópticas de semiconductores. Creci...mlopez at fis.cinvestav.mx
16Pedro\\rGonzález MozuelosCinvestav1992Física estadísticapropiedades estructurales de suspensiones col...pedro at fis.cinvestav.mx
27José Miguel\\rMéndez AlcarazUniv. de Constanza, Alemania1993Física estadísticafluidos complejos. Propiedades termodinánicas...jmendez at fis.cinvestav.mx
26Miguel Ãngel\\rMeléndez LiraCinvestav1993Materia condensada y estado sólidopropiedades ópticas. Películas delgadas. Espe...mlira at fis.cinvestav.mx
8Alfredo\\rCruz OreaUniv. Estatal de Campinas, Brasil1994Materia condensadatécnicas fototérmicas aplicadas a semiconduct...orea at fis.cinvestav.mx.
14Miguel\\rGarcía RochaCinvestav1995Materia condensadapropiedades ópticas de semiconductores. Físic...mrocha at fis.cinvestav.mx
7Agustín\\rConde GallardoCinvestav1995Materia condensadasuperconductores del alta TC y fotoluminiscen...aconde at fis.cinvestav.mx
33Daniel\\rOlguín MeloCinvestav1996Materia condensadasuperconductividad, física de superficies.\\rdaniel at fis.cinvestav.mx
42Sergio Armando\\rTomás VelázquezCinvestav1996Materia condensadaespectroscopía fototérmica, aplicación a mate...stomas at fis.cinvestav.mx
32Merced\\rMontesinos VelásquezCinvestav1997Geometría y Gravitaciónrelatividad general y gravitación, gravedad c...merced at fis.cinvestav.mx
4Mauricio Demetrio\\rCarbajal TinocoUASLP1997Física estadística(Tfluidos complejos.\\rmdct at fis.cinvestav.mx
38José Oscar\\rRosas OrtizCinvestav1997Fisicamatemáticaformalismo de la mecánica cuántica,estados co...orosas at fis.cinvestav.mx
39Alberto\\rSánchez HernándezCinvestav1997Partículas y camposFísica de hadrones b en los Experimentos DZer...asanchez at fis.cinvestav.mx
30Omar G.\\rMiranda RomagnoliCinvestav1997Partículas y camposfenomenología de interacciones electrodébiles.\\romr at fis.cinvestav.mx
31Luis Manuel\\rMontañoCinvestav1998Física médica y física de altas energíasaplicación de detectores semiconductores a ra...lmontano at fis.cinvestav.mx
35Abdel\\rPérez LorenzanaCinvestav1998Partículas y camposmodelos para física más allás del Modelo Está...aplorenz at fis.cinvestav.mx
37Luis Fernando\\rRojas OchoaUniversity of Fribourg, Switzerland2004Física EstadísticaMateria Condensada Blanda (coloides, polímero...lrojas at fis.cinvestav.mx
9Eduard\\rDe La Cruz BureloCinvestav2005partículas y camposFísica de hadrones B en D0 (Fermilab), y prot...eduard at fis.cinvestav.mx
41Jaime\\rSantoyo SalazarIIM-UNAM2006Materia condensadaNanopartículas Magnéticas para diagnóstico y ...jsantoyo at fis.cinvestav.mx
36Pablo\\rRoig GarcésUniv. de Valencia, España2010Partículas y camposfenomenología del Modelo Estándar y sus exten...proig at fis.cinvestav.mx
18Iván\\rHeredia de la CruzCinvestav2012Partículas y camposFísica de hadrones con sabor pesado en CMS (C...iheredia at fis.cinvestav.mx
1David\\rBermúdez RosalesCinvestav2013FisicamatemáticaDinámica de pulsos ultra cortos, análogos de ...dbermudez at fis.cinvestav.mx
10Josue\\rDe Santiago SanabriaUNAM2014Cosmología y gravitaciónmodelos de materia oscura, energía oscura e ...jsantiago at fis.cinvestav.mx
\n", "
" ], "text/plain": [ " name surname \\\n", "29 Bogdan\\r Mielnik Manwelow \n", "17 Yuri\\r Gurevich Genrihovich \n", "46 Arnulfo\\r Zepeda Domínguez \n", "40 Feliciano\\r Sánchez Sinencio \n", "21 Piotr\\r Kielanowski Chomicz \n", "34 Miguel Ángel\\r Pérez Angón \n", "6 Jorge Javier\\r Castro Hernández \n", "0 Rafael\\r Baquero Parra \n", "44 Carlos\\r Vázquez López \n", "28 Julio G.\\r Mendoza Alvarez \n", "11 Ciro\\r Falcony Guajardo \n", "15 Gerardo\\r González de la Cruz \n", "19 Isaac\\r Hernández Calderón \n", "45 Orlando\\r Zelaya Angel \n", "2 Nora Eva\\r Bretón Báez \n", "24 Vladimir\\r Manko Semionovich \n", "25 Tonatiuh\\r Matos Chassin \n", "43 Gabino\\r Torres Vega \n", "12 David José\\r Fernández Cabrera \n", "22 Gabriel\\r López Castro \n", "13 Alberto Alejandro\\r García Díaz \n", "5 Heriberto\\r Castilla Valdez \n", "3 Riccardo\\r Capovilla \n", "20 Gerardo\\r Herrera Corral \n", "23 Máximo\\r López López \n", "16 Pedro\\r González Mozuelos \n", "27 José Miguel\\r Méndez Alcaraz \n", "26 Miguel Ãngel\\r Meléndez Lira \n", "8 Alfredo\\r Cruz Orea \n", "14 Miguel\\r García Rocha \n", "7 Agustín\\r Conde Gallardo \n", "33 Daniel\\r Olguín Melo \n", "42 Sergio Armando\\r Tomás Velázquez \n", "32 Merced\\r Montesinos Velásquez \n", "4 Mauricio Demetrio\\r Carbajal Tinoco \n", "38 José Oscar\\r Rosas Ortiz \n", "39 Alberto\\r Sánchez Hernández \n", "30 Omar G.\\r Miranda Romagnoli \n", "31 Luis Manuel\\r Montaño \n", "35 Abdel\\r Pérez Lorenzana \n", "37 Luis Fernando\\r Rojas Ochoa \n", "9 Eduard\\r De La Cruz Burelo \n", "41 Jaime\\r Santoyo Salazar \n", "36 Pablo\\r Roig Garcés \n", "18 Iván\\r Heredia de la Cruz \n", "1 David\\r Bermúdez Rosales \n", "10 Josue\\r De Santiago Sanabria \n", "\n", " lugar_dr anio \\\n", "29 Cinvestav 1964 \n", "17 Academia de Ciencias-Leningrado, Rusia 1968 \n", "46 Cinvestav 1970 \n", "40 Univ. de Sao Paulo, Brasil 1970 \n", "21 Univ. de Varsovia, Polonia 1971 \n", "34 Cinvestav 1972 \n", "6 Univ. de Oxford, Inglaterra 1972 \n", "0 Cinvestav 1976 \n", "44 Cinvestav 1979 \n", "28 Univ. Estatal de Campinas, Brasil 1979 \n", "11 Univ. de Lehigh, EUA 1980 \n", "15 Univ. Estatal de Campinas, Brasil 1980 \n", "19 Univ. Estatal de Campinas, Brasil 1981 \n", "45 Cinvestav 1985 \n", "2 Cinvestav 1986 \n", "24 Univ. de la Amistad de los Pueblos, Rusia 1986 \n", "25 Univ. F. Schiller-Jena, Alemania 1987 \n", "43 Cinvestav 1987 \n", "12 Cinvestav 1988 \n", "22 Univ. de Lovaina, Bélgica 1988 \n", "13 Universidad Lomonosov, Rusia 1990 \n", "5 Cinvestav 1991 \n", "3 Univ. de Maryland, EUA 1991 \n", "20 Univ. de Dortmund, Alemania 1991 \n", "23 Univ. Toyohashi, Japón 1992 \n", "16 Cinvestav 1992 \n", "27 Univ. de Constanza, Alemania 1993 \n", "26 Cinvestav 1993 \n", "8 Univ. Estatal de Campinas, Brasil 1994 \n", "14 Cinvestav 1995 \n", "7 Cinvestav 1995 \n", "33 Cinvestav 1996 \n", "42 Cinvestav 1996 \n", "32 Cinvestav 1997 \n", "4 UASLP 1997 \n", "38 Cinvestav 1997 \n", "39 Cinvestav 1997 \n", "30 Cinvestav 1997 \n", "31 Cinvestav 1998 \n", "35 Cinvestav 1998 \n", "37 University of Fribourg, Switzerland 2004 \n", "9 Cinvestav 2005 \n", "41 IIM-UNAM 2006 \n", "36 Univ. de Valencia, España 2010 \n", "18 Cinvestav 2012 \n", "1 Cinvestav 2013 \n", "10 UNAM 2014 \n", "\n", " campo \\\n", "29 Fisicamatemática \n", "17 Materia condensada \n", "46 Partículas y campos (T \n", "40 Materia condensada \n", "21 Partículas y campos \n", "34 Partículas y campos \n", "6 Materia condensada \n", "0 Materia condensada \n", "44 Materia condensada \n", "28 Materia condensada \n", "11 Materia condensada \n", "15 Materia condensada \n", "19 Materia condensada \n", "45 Materia condensada \n", "2 Relatividad y gravitación \n", "24 Fisicamatemática y relatividad \n", "25 Fisicamatemática y gravitación \n", "43 Fisicamatemática \n", "12 Fisicamatemática \n", "22 Partículas y campos \n", "13 Relatividad y Gravitación \n", "5 Partículas y campos \n", "3 Relatividad y gravitación \n", "20 Partículas y campos \n", "23 Materia condensada \n", "16 Física estadística \n", "27 Física estadística \n", "26 Materia condensada y estado sólido \n", "8 Materia condensada \n", "14 Materia condensada \n", "7 Materia condensada \n", "33 Materia condensada \n", "42 Materia condensada \n", "32 Geometría y Gravitación \n", "4 Física estadística(T \n", "38 Fisicamatemática \n", "39 Partículas y campos \n", "30 Partículas y campos \n", "31 Física médica y física de altas energías \n", "35 Partículas y campos \n", "37 Física Estadística \n", "9 partículas y campos \n", "41 Materia condensada \n", "36 Partículas y campos \n", "18 Partículas y campos \n", "1 Fisicamatemática \n", "10 Cosmología y gravitación \n", "\n", " tema \\\n", "29 movilidad de sistemas dinámicos no lineales, ... \n", "17 películas delgadas semiconductoras, propiedad... \n", "46 fenomenología de teorías de gran unificación,... \n", "40 propiedades fotoelectrónicas de materiales, b... \n", "21 interacciones débiles. Modelo de quarks. Fenó... \n", "34 fenomenología de modelos de norma, teorías ef... \n", "6 superconductividad de alta TC. Teoría de much... \n", "0 superconductividad, física de superficies.\\r \n", "44 microscopía de tunelamiento y de fuerza atómi... \n", "28 propiedades ópticas de semiconductores. Dispo... \n", "11 dispositivos tipo MOS. Películas delgadas sem... \n", "15 propiedades electrónicas en sistemas de dos d... \n", "19 propiedades ópticas, eléctricas y estructural... \n", "45 crecimiento y caracterización de películas de... \n", "2 soluciones exactas de las ecuaciones de Einst... \n", "24 soluciones exactas de las ecuaciones de Einst... \n", "25 galaxias, materia obscura, estrellas compacta... \n", "43 representaciones de espacio fase de la mecáni... \n", "12 dinámica de Schrödinger.\\r \n", "22 fenomenología de interacciones electrodébiles.\\r \n", "13 Soluciones exactas en Relatividad General.\\r \n", "5 colisiones protón-protón a 2 TeV con el detec... \n", "3 teorías de campos, objetos extendidos, defect... \n", "20 hadroproducción de c y b en el experimento E-... \n", "23 propiedades ópticas de semiconductores. Creci... \n", "16 propiedades estructurales de suspensiones col... \n", "27 fluidos complejos. Propiedades termodinánicas... \n", "26 propiedades ópticas. Películas delgadas. Espe... \n", "8 técnicas fototérmicas aplicadas a semiconduct... \n", "14 propiedades ópticas de semiconductores. Físic... \n", "7 superconductores del alta TC y fotoluminiscen... \n", "33 superconductividad, física de superficies.\\r \n", "42 espectroscopía fototérmica, aplicación a mate... \n", "32 relatividad general y gravitación, gravedad c... \n", "4 fluidos complejos.\\r \n", "38 formalismo de la mecánica cuántica,estados co... \n", "39 Física de hadrones b en los Experimentos DZer... \n", "30 fenomenología de interacciones electrodébiles.\\r \n", "31 aplicación de detectores semiconductores a ra... \n", "35 modelos para física más allás del Modelo Está... \n", "37 Materia Condensada Blanda (coloides, polímero... \n", "9 Física de hadrones B en D0 (Fermilab), y prot... \n", "41 Nanopartículas Magnéticas para diagnóstico y ... \n", "36 fenomenología del Modelo Estándar y sus exten... \n", "18 Física de hadrones con sabor pesado en CMS (C... \n", "1 Dinámica de pulsos ultra cortos, análogos de ... \n", "10 modelos de materia oscura, energía oscura e ... \n", "\n", " correo \n", "29 bogdan at fis.cinvestav.mx \n", "17 gurevich at fis.cinvestav.mx \n", "46 zepeda at fis.cinvestav.mx \n", "40 fsanchez at fis.cinvestav.mx \n", "21 kiel at fis.cinvestav.mx \n", "34 mperez at fis.cinvestav.mx \n", "6 jjcastro at fis.cinvestav.mx \n", "0 rbaquero at fis.cinvestav.mx \n", "44 cvlopez at fis.cinvestav.mx \n", "28 jmendoza at fis.cinvestav.mx \n", "11 cfalcony at fis.cinvestav.mx \n", "15 bato at fis.cinvestav.mx \n", "19 ihernand at fis.cinvestav.mx \n", "45 ozelaya at fis.cinvestav.mx \n", "2 nora at fis.cinvestav.mx \n", "24 vsmanko at fis.cinvestav.mx \n", "25 tmatos at fis.cinvestav.mx \n", "43 gabino at fis.cinvestav.mx \n", "12 david at fis.cinvestav.mx \n", "22 glopez at fis.cinvestav.mx \n", "13 aagarcia at fis.cinvestav.mx \n", "5 castilla at fis.cinvestav.mx \n", "3 capo at fis.cinvestav.mx \n", "20 gherrera at fis.cinvestav.mx \n", "23 mlopez at fis.cinvestav.mx \n", "16 pedro at fis.cinvestav.mx \n", "27 jmendez at fis.cinvestav.mx \n", "26 mlira at fis.cinvestav.mx \n", "8 orea at fis.cinvestav.mx. \n", "14 mrocha at fis.cinvestav.mx \n", "7 aconde at fis.cinvestav.mx \n", "33 daniel at fis.cinvestav.mx \n", "42 stomas at fis.cinvestav.mx \n", "32 merced at fis.cinvestav.mx \n", "4 mdct at fis.cinvestav.mx \n", "38 orosas at fis.cinvestav.mx \n", "39 asanchez at fis.cinvestav.mx \n", "30 omr at fis.cinvestav.mx \n", "31 lmontano at fis.cinvestav.mx \n", "35 aplorenz at fis.cinvestav.mx \n", "37 lrojas at fis.cinvestav.mx \n", "9 eduard at fis.cinvestav.mx \n", "41 jsantoyo at fis.cinvestav.mx \n", "36 proig at fis.cinvestav.mx \n", "18 iheredia at fis.cinvestav.mx \n", "1 dbermudez at fis.cinvestav.mx \n", "10 jsantiago at fis.cinvestav.mx " ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "info_fisica.sort_values('anio')" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "array([[]],\n", " dtype=object)" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFGVJREFUeJzt3X2QJHV9x/H3Fw5KYPEE0RUO4mqIJMSLyo1PZcrs+kDAi5pUkookPiDqxUQJGlDPipaVShlJSixNNJWgYvBxo0biA6UWia6UT+geAQ841ANPuQM5KRRYJOLpN39Mn47n9E7vzvbO/O7er6qp6+n+dff3Oz37ud6e2ZnITCRJ5Tho1AVIkpbG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBrZGJiE9GxPNWaFsZESeuxLZWS0RMVXWvGXUtKovBrZHJzNMz8+JR17FXROyIiKeMug5pEINbWgGeNWs1GdwaSkRsjogbIuKuiLguIv6gZ9mZEfH5iHhjRHw/Ir4VEaf3LJ+LiBdW0wdFxGsi4tsRsTsi3h0RaxfZ7ysi4paIuDkiztpn2dpq/e9V23tNRBzUs/xFEbGtp+ZTIuI9wK8AH4+IhYh4ZTX2GRFxbUT8oKr3N3q2syMiXhURXwPujog1Ax6Pg6vH4raIuBHYuE/dx0XExyLi9ojYHhEvWvoR0QEhM715W/YN+GPgOLonAX8C3A0cWy07E/gx8CLgYOAvgJuBqJbPAS+sps8CtgMPBSaAjwDvqdnnacCtwMOBI4D3AwmcWC1/N/BR4EhgCvgG8IKeencBjwYCOBF4cLVsB/CUnv08rOrnqcAhwCurGg/tGX8VcAJwWIPH48XA9dX4o4HPVnWvqZZ/DvgX4D7AI4HvAU8e9TH2Nn63kRfgbf+6VUH2zGr6TGB7z7LDq6B6UHW/N7j/B/jLnrEnVaG/ps8+LgLO77n/sL3BXf0H8SPg5J7lfw7MVdOfBs6pqX3f4H4t8MGe+wdVoT/dM/6sJTwenwFe3LPs1L3BXYX5T4Aje5a/Afj3UR9Tb+N381KJhhIRz42Iq6pLCT+gexZ8TM+Q7+6dyMwfVpMTfTZ1HPDtnvvfphtokzVjb9pn7F7HAIf22da6avoE4IbahhapKTN/Wu13Xc+Y3joGPR6L1X0ccHtm3lVTt/QzBreWLSIeDLwdeClw/8y8H3AN3UsQS3Uz8OCe+78C7KF7SWRft9AN4N6xe91G90x9323tqqZvAn61poZ9PyrzF2qKiKj2u6vfOg0ej8Xqvhk4OiKOrKlb+hmDW8M4gm5wfQ8gIp5P9wxzOT4AvDwiHhIRE8DfA/+RmXv6jP0gcGZEnBwRhwOv27sgM39SLX99RBxZhelfA++thrwDOC8iNkTXidUY6P4n8dB99rMxIp4cEYcA59K9DPPFmh4GPR4fBP4qIo6PiKOAzT1131Rt9w0RcZ+I+C3gBcD76h8yHagMbi1bZl4HXAB8iW7orQe+sMzNXQS8B7gc+Bbwf8DZNfv9JPBmuteMt1f/9jqb7ouCNwKfp/vi5UXVuh8CXl/Nuwv4L7ovFEL3mvJrqssc52Xm14FnA/9M90z+6cDTM/PemroGPR5vp3uN/WrgSrovwPY6g+6LqTcDlwCvy8zL+u1LB7a9r+5LkgrhGbckFcbglqTCGNySVBiDW5IK08oH4xxzzDE5NTXVxqZX3d13380RRxwx6jJWlT0fGOx5vGzZsuW2zHxAk7GtBPfU1BTz8/NtbHrVzc3NMT09PeoyVpU9HxjsebxExLcHj+ryUokkFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqzMDgjoiTqg+G33u7MyJethrFSZJ+2cD3cVcfbflI6H7ZKd0Pdr+k5bokSTWWeqnkycANmdn4jeKSpJW1pM/jjoiLgCsz8619lm0CNgFMTk5umJ2dXbEiR2lhYYGJiX5fkbj/sufxs3XXHcted/26tX3nj3vPbRjnnmdmZrZkZqfJ2MbBHRGH0v1mjt/MzH7fA/gznU4n/ZP3ctnz+JnafOmy191x/sa+88e95zaMc88R0Ti4l3Kp5HS6Z9uLhrYkqV1LCe4z6H6hqyRphBoFd/VN2k/ll7/cVJK0yhp9rGtm/hC4f8u1SJIa8C8nJakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUmKbf8n6/iPhwRFwfEdsi4vFtFyZJ6q/Rt7wDbwE+lZl/FBGHAoe3WJMkaREDgzsi7gs8ETgTIDPvBe5ttyxJUp3IzMUHRDwSuBC4DngEsAU4JzPv3mfcJmATwOTk5IbZ2dlWCl5tCwsLTExMjLqMVWXP42frrjuWve76dWv7zh/3ntswzj3PzMxsycxOk7FNgrsDfBl4QmZeERFvAe7MzNfWrdPpdHJ+fn4pNY+tubk5pqenR13GqrLn8TO1+dJlr7vj/I195497z20Y554jonFwN3lxciewMzOvqO5/GDhlucVJkoYzMLgz87vATRFxUjXryXQvm0iSRqDpu0rOBt5XvaPkRuD57ZUkSVpMo+DOzKuARtdeJEnt8i8nJakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgrT6FveI2IHcBfwE2BPZvqN75I0Io2CuzKTmbe1VokkqREvlUhSYSIzBw+K+BbwfSCBf8vMC/uM2QRsApicnNwwOzu7wqWOxsLCAhMTE6MuoxVbd93Rd/7kYXDrPYuvu37d2hYqGp22j3PdY70a6o7V/vzcrjPOPc/MzGxpehm6aXAfl5k3R8QDgcuAszPz8rrxnU4n5+fnGxc8zubm5pienh51Ga2Y2nxp3/nnrt/DBVsXv4q24/yNbZQ0Mm0f57rHejXUHav9+bldZ5x7jojGwd3oUklm3lz9uxu4BHjM8suTJA1jYHBHxBERceTeaeBU4Jq2C5Mk9dfkXSWTwCURsXf8+zPzU61WJUmqNTC4M/NG4BGrUIskqQHfDihJhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMI0Du6IODgi/jciPtFmQZKkxS3ljPscYFtbhUiSmmkU3BFxPLAReEe75UiSBonMHDwo4sPAG4AjgfMy8/f6jNkEbAKYnJzcMDs7u8KljsbCwgITExOjLqMVW3fd0Xf+5GFw6z2Lr7t+3doWKmqmru5hNOm5VHXHan9+btcZ555nZma2ZGanydg1gwZExO8BuzNzS0RM143LzAuBCwE6nU5OT9cOLcrc3Bz7Sy/7OnPzpX3nn7t+DxdsXfypsePPpluoqJm6uofRpOdS1R2r/fm5XWd/6bnJpZInAM+IiB3ALPCkiHhvq1VJkmoNDO7MfHVmHp+ZU8CzgM9k5rNbr0yS1Jfv45akwizpol5mzgFzrVQiSWrEM25JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwgwM7oi4T0R8JSKujohrI+JvV6MwSVJ/axqM+RHwpMxciIhDgM9HxCcz88st1yZJ6mNgcGdmAgvV3UOqW7ZZlCSpXnRzecCgiIOBLcCJwNsy81V9xmwCNgFMTk5umJ2dXeFS27V11x19508eBrfes/i669etbaGi9o2y57p9j0qTnktVd6wWFhaYmJhobb/DHuM2fq6a9DxM3cPUPDMzsyUzO03GNgrunw2OuB9wCXB2Zl5TN67T6eT8/Hzj7Y6Dqc2X9p1/7vo9XLB18V9Mdpy/sY2SWjfKnuv2PSpNei5V3bGam5tjenq6tf0Oe4zb+Llq0vMwdQ9Tc0Q0Du4lvaskM38AzAGnLaMuSdIKaPKukgdUZ9pExGHAU4Dr2y5MktRfk98NjwUurq5zHwR8MDM/0W5ZkqQ6Td5V8jXgUatQiySpAf9yUpIKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhRkY3BFxQkR8NiK2RcS1EXHOahQmSepv4Le8A3uAczPzyog4EtgSEZdl5nUt1yZJ6mPgGXdm3pKZV1bTdwHbgHVtFyZJ6m9J17gjYgp4FHBFG8VIkgaLzGw2MGIC+Bzw+sz8SJ/lm4BNAJOTkxtmZ2dXss7Wbd11R9/5k4fBrfe0u+/169a2u4Maw/Q8bM11+x6V1TjOo1J3rBYWFpiYmGhtv8Me4zZ+Lpr0PEzdw9Q8MzOzJTM7TcY2Cu6IOAT4BPDpzHzToPGdTifn5+eb7H9sTG2+tO/8c9fv4YKtTV4KWL4d529sdft1hul52Jrr9j0qq3GcR6XuWM3NzTE9Pd3afoc9xm38XDTpeZi6h6k5IhoHd5N3lQTwTmBbk9CWJLWryTXuJwDPAZ4UEVdVt6e1XJckqcbA3w0z8/NArEItkqQG/MtJSSqMwS1JhTG4JakwBrckFcbglqTCGNySVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIMDO6IuCgidkfENatRkCRpcU3OuP8dOK3lOiRJDQ0M7sy8HLh9FWqRJDUQmTl4UMQU8InMfPgiYzYBmwAmJyc3zM7OLqugrbvuWNZ6bZk8DG69Z9RV1Fu/bu2y1617rJv0PMx+F9v3qIz7cR5G3bFaWFhgYmKitf0Oe4xH9dwexjA1z8zMbMnMTpOxKxbcvTqdTs7PzzcZ+kumNl+6rPXacu76PVywdc2oy6i14/yNy1637rFu0vMw+11s36My7sd5GHXHam5ujunp6db2O+wxHtVzexjD1BwRjYPbd5VIUmEMbkkqTJO3A34A+BJwUkTsjIgXtF+WJKnOwIs9mXnGahQiSWrGSyWSVBiDW5IKY3BLUmEMbkkqjMEtSYUxuCWpMAa3JBXG4JakwhjcklQYg1uSCmNwS1JhDG5JKozBLUmFMbglqTAGtyQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1JhWkU3BFxWkR8PSK2R8TmtouSJNUbGNwRcTDwNuB04GTgjIg4ue3CJEn9NTnjfgywPTNvzMx7gVngme2WJUmqE5m5+ICIPwJOy8wXVvefAzw2M1+6z7hNwKbq7knA11e+3JE4Brht1EWsMns+MNjzeHlwZj6gycA1DcZEn3m/lPaZeSFwYZOdliQi5jOzM+o6VpM9HxjsuVxNLpXsBE7ouX88cHM75UiSBmkS3F8Ffi0iHhIRhwLPAj7WblmSpDoDL5Vk5p6IeCnwaeBg4KLMvLb1ysbHfnf5pwF7PjDYc6EGvjgpSRov/uWkJBXG4JakwhyQwR0RF0XE7oi4pmfeIyLiSxGxNSI+HhH3reb/WURc1XP7aUQ8slq2oRq/PSL+KSL6vXVyLCyx50Mi4uJq/raIeHXPOkV8/MES+z00It5Vzb86IqZ71inpGJ8QEZ+tjtm1EXFONf/oiLgsIr5Z/XtUNT+qnrZHxNci4pSebT2vGv/NiHjeqHoaZBk9/3r1HPhRRJy3z7aKeG4DkJkH3A14InAKcE3PvK8Cv1NNnwX8XZ/11gM39tz/CvB4uu91/yRw+qh7W4megT8FZqvpw4EdwBTdF6dvAB4KHApcDZw86t5WoN+XAO+qph8IbAEOKvAYHwucUk0fCXyD7sdU/COwuZq/GfiHavppVU8BPA64opp/NHBj9e9R1fRRo+5vhXp+IPBo4PXAeT3bKea5nZkH5hl3Zl4O3L7P7JOAy6vpy4A/7LPqGcAHACLiWOC+mfml7B75dwO/307Fw1tizwkcERFrgMOAe4E7KejjD5bY78nA/1Tr7QZ+AHQKPMa3ZOaV1fRdwDZgHd1jdHE17GJ+3sMzgXdn15eB+1U9/y5wWWbenpnfp/tYnbaKrTS21J4zc3dmfhX48T6bKua5DQfopZIa1wDPqKb/mF/8o6O9/oQquOk+OXb2LNtZzStJXc8fBu4GbgG+A7wxM2+n299NPeuX1nNdv1cDz4yINRHxEGBDtazYYxwRU8CjgCuAycy8BbpBR/esE+qPZ5HHuWHPdYrq2eD+ubOAl0TEFrq/ct3buzAiHgv8MDP3XjNt9FEAY66u58cAPwGOAx4CnBsRD6X8nuv6vYjuD+o88Gbgi8AeCu03IiaA/wRelpl3Lja0z7xcZP7YWkLPtZvoM29se27yWSUHhMy8HjgVICIeBmzcZ8iz+PnZNnR/0I/vuV/cRwEs0vOfAp/KzB8DuyPiC0CH7hlJsR9/UNdvZu4BXr53XER8Efgm8H0KO8YRcQjdAHtfZn6kmn1rRBybmbdUl0J2V/PrPs5iJzC9z/y5NusexhJ7rlPUR3t4xl2JiAdW/x4EvAb4155lB9H91Xp277zq16+7IuJx1TsNngt8dFWLHtIiPX8HeFL1roMj6L5wdT2Ff/xBXb8RcXjVJxHxVGBPZl5X2jGuanwnsC0z39Sz6GPA3neGPI+f9/Ax4LnVcX4ccEfV86eBUyPiqOrdGKdW88bOMnquU9Zze9Svjo7iRvfM+Ra6L1DsBF4AnEP3FelvAOdT/VVpNX4a+HKf7XToXje9AXhr7zrjdltKz8AE8CHgWuA64BU923laNf4G4G9G3dcK9TtF92OItwH/TffjNUs8xr9N99f7rwFXVbenAfen++LrN6t/j67GB90vSbkB2Ap0erZ1FrC9uj1/1L2tYM8Pqp4Pd9J9EXon3Regi3luZ6Z/8i5JpfFSiSQVxuCWpMIY3JJUGINbkgpjcEtSYQxuSSqMwS1Jhfl/QmPQnuxMmBIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "df =pd.DataFrame({'anio doctorado':np.array(info_fisica['anio'].values.astype(float))})\n", "df.hist(bins=20) " ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
anio doctorado
count47.000000
mean1989.851064
std12.314676
min1964.000000
25%1980.500000
50%1991.000000
75%1997.000000
max2014.000000
\n", "
" ], "text/plain": [ " anio doctorado\n", "count 47.000000\n", "mean 1989.851064\n", "std 12.314676\n", "min 1964.000000\n", "25% 1980.500000\n", "50% 1991.000000\n", "75% 1997.000000\n", "max 2014.000000" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
anio doctorado
01997.0
\n", "
" ], "text/plain": [ " anio doctorado\n", "0 1997.0" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.mode()" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Counter({u' Cosmolog\\xeda y gravitaci\\xf3n ': 1,\n", " u' Fisicamatem\\xe1tica ': 5,\n", " u' Fisicamatem\\xe1tica y gravitaci\\xf3n ': 1,\n", " u' Fisicamatem\\xe1tica y relatividad ': 1,\n", " u' F\\xedsica Estad\\xedstica ': 1,\n", " u' F\\xedsica estad\\xedstica ': 2,\n", " u' F\\xedsica estad\\xedstica(T': 1,\n", " u' F\\xedsica m\\xe9dica y f\\xedsica de altas energ\\xedas ': 1,\n", " u' Geometr\\xeda y Gravitaci\\xf3n ': 1,\n", " u' Materia condensada ': 17,\n", " u' Materia condensada y estado s\\xf3lido ': 1,\n", " u' Part\\xedculas y campos ': 10,\n", " u' Part\\xedculas y campos (T': 1,\n", " u' Relatividad y Gravitaci\\xf3n ': 1,\n", " u' Relatividad y gravitaci\\xf3n ': 2,\n", " u' part\\xedculas y campos ': 1})" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Counter(info_fisica['campo'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Arts" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 Rafael\\r\n", "1 David\\r\n", "2 Nora Eva\\r\n", "3 Riccardo\\r\n", "4 Mauricio Demetrio\\r\n", "Name: name, dtype: object" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "info_fisica['name'].head()" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namesurnamelugar_draniocampotemacorreo
38José Oscar\\rRosas OrtizCinvestav1997Fisicamatemáticaformalismo de la mecánica cuántica,estados co...orosas at fis.cinvestav.mx
\n", "
" ], "text/plain": [ " name surname lugar_dr anio campo \\\n", "38 José Oscar\\r Rosas Ortiz Cinvestav 1997 Fisicamatemática \n", "\n", " tema \\\n", "38 formalismo de la mecánica cuántica,estados co... \n", "\n", " correo \n", "38 orosas at fis.cinvestav.mx " ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "info_fisica[info_fisica['name'].str.contains('Oscar')]" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [], "source": [ "website = 'http://www.webometrics.info/en/node/63'\n", "\n", "import requests\n", "\n", "page = requests.get(website)\n", "soupa = BeautifulSoup(page.content, 'html.parser')" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [], "source": [ "#soupa.prettify()" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [], "source": [ "for i in soupa.findAll('a', href=True): #'Oscar Rosas'\n", " if 'Merced Montesinos' in i.text:\n", " link_mer = i['href']" ] }, { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [], "source": [ "#soupa.findAll('a', href=True)" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "u'https://scholar.google.com/citations?user=dobwpMYAAAAJ'" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ "link_mer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Solo Merced" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Python/2.7/site-packages/requests/packages/urllib3/util/ssl_.py:122: InsecurePlatformWarning: A true SSLContext object is not available. This prevents urllib3 from configuring SSL appropriately and may cause certain SSL connections to fail. You can upgrade to a newer version of Python to solve this. For more information, see https://urllib3.readthedocs.io/en/latest/security.html#insecureplatformwarning.\n", " InsecurePlatformWarning\n" ] }, { "ename": "SSLError", "evalue": "hostname 'scholar.google.com' doesn't match 'www.google.com'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mSSLError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mpage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwebsite\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0msoupm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBeautifulSoup\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'html.parser'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Python/2.7/site-packages/requests/api.pyc\u001b[0m in \u001b[0;36mget\u001b[0;34m(url, params, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'allow_redirects'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'get'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Python/2.7/site-packages/requests/api.pyc\u001b[0m in \u001b[0;36mrequest\u001b[0;34m(method, url, **kwargs)\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;31m# cases, and look like a memory leak in others.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0msessions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 56\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 57\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Python/2.7/site-packages/requests/sessions.pyc\u001b[0m in \u001b[0;36mrequest\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 473\u001b[0m }\n\u001b[1;32m 474\u001b[0m \u001b[0msend_kwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msettings\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 475\u001b[0;31m \u001b[0mresp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0msend_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 476\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 477\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Python/2.7/site-packages/requests/sessions.pyc\u001b[0m in \u001b[0;36msend\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 595\u001b[0m \u001b[0;31m# Send the request\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 596\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0madapter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 597\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 598\u001b[0m \u001b[0;31m# Total elapsed time of the request (approximately)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Python/2.7/site-packages/requests/adapters.pyc\u001b[0m in \u001b[0;36msend\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 495\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0m_SSLError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_HTTPError\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 496\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_SSLError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 497\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mSSLError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 498\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mReadTimeoutError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mReadTimeout\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mSSLError\u001b[0m: hostname 'scholar.google.com' doesn't match 'www.google.com'" ] } ], "source": [ "website = link_mer\n", "\n", "import requests\n", "\n", "page = requests.get(website)\n", "soupm = BeautifulSoup(page.content, 'html.parser')" ] }, { "cell_type": "code", "execution_count": 509, "metadata": {}, "outputs": [], "source": [ "#BF gravity and\n", "#soupm.prettify()" ] }, { "cell_type": "code", "execution_count": 510, "metadata": {}, "outputs": [], "source": [ "all_merced = soupm.findAll('a', {'class':\"gsc_a_at\"})" ] }, { "cell_type": "code", "execution_count": 511, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "20" ] }, "execution_count": 511, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(arts_merced)" ] }, { "cell_type": "code", "execution_count": 512, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([u'BF gravity and the Immirzi parameter',\n", " u'SL (2, R) model with two Hamiltonian constraints',\n", " u'Relational evolution of the degrees of freedom of generally covariant quantum theories',\n", " u'Covariant canonical formalism for four-dimensional BF theory',\n", " u'Statistical mechanics of generally covariant quantum theories: a Boltzmann-like approach',\n", " u'Self-dual gravity with topological terms',\n", " u'Symplectic quantization, inequivalent quantum theories, and Heisenberg\\u2019s principle of uncertainty',\n", " u'Alternative symplectic structures for SO (3, 1) and SO (4) four-dimensional BF theories',\n", " u'Topological limit of gravity admitting an S U (2) connection formulation',\n", " u\"Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem\",\n", " u\"Minimal coupling and Feynman's proof\",\n", " u'Geometric thermodynamics: black holes and the meaning of the scalar curvature',\n", " u'Two-dimensional topological field theories coupled to four-dimensional BF theory',\n", " u'Cartan\\u2019s equations define a topological field theory of the B F type',\n", " u'Gauge invariance of complex general relativity',\n", " u'Heisenberg\\u2019s quantization of dissipative systems',\n", " u'Hamilton\\u2013Jacobi theory for Hamiltonian systems with non-canonical symplectic structures',\n", " u'BF gravity with Immirzi parameter and cosmological constant',\n", " u'Unification of cosmological scalar fields',\n", " u'Gauge invariance of the action principle for gauge systems with noncanonical symplectic structures'],\n", " 20)" ] }, "execution_count": 512, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arts_meche = [i.text for i in all_merced]\n", "arts_meche, len(arts_meche)" ] }, { "cell_type": "code", "execution_count": 513, "metadata": { "collapsed": true }, "outputs": [], "source": [ "authors_merced = soupm.findAll('div', {'class':\"gs_gray\"})" ] }, { "cell_type": "code", "execution_count": 514, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([u'R Capovilla, M Montesinos, VA Prieto, E Rojas',\n", " u'M Montesinos, C Rovelli, T Thiemann',\n", " u'M Montesinos',\n", " u'M Mondrag\\xf3n, M Montesinos',\n", " u'M Montesinos, C Rovelli',\n", " u'M Montesinos',\n", " u'M Montesinos, GFT del Castillo',\n", " u'M Montesinos',\n", " u'L Liu, M Montesinos, A Perez',\n", " u'M Montesinos, E Flores',\n", " u'M Montesinos, A P\\xe9rez-Lorenzana',\n", " u'M\\xc1 Garc\\xeda-Ariza, M Montesinos, GF Torres del Castillo',\n", " u'M Montesinos, A Perez',\n", " u'V Cuesta, M Montesinos',\n", " u'M Montesinos, JD Vergara',\n", " u'M Montesinos',\n", " u'AA Mart\\xednez-Merino, M Montesinos',\n", " u'M Montesinos, M Vel\\xe1zquez',\n", " u'A P\\xe9rez-Lorenzana, M Montesinos, T Matos',\n", " u'V Cuesta, M Montesinos, JD Vergara'],\n", " 20)" ] }, "execution_count": 514, "metadata": {}, "output_type": "execute_result" } ], "source": [ "authors_meche = [a.text for i, a in enumerate(authors_merced) if i%2==0]\n", "authors_meche, len(authors_meche)" ] }, { "cell_type": "code", "execution_count": 515, "metadata": {}, "outputs": [], "source": [ "cites_merced = soupm.findAll('a', {'class':\"gsc_a_ac gs_ibl\"})\n" ] }, { "cell_type": "code", "execution_count": 516, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "([72,\n", " 62,\n", " 36,\n", " 34,\n", " 26,\n", " 24,\n", " 22,\n", " 20,\n", " 17,\n", " 17,\n", " 17,\n", " 14,\n", " 14,\n", " 14,\n", " 14,\n", " 13,\n", " 11,\n", " 10,\n", " 10,\n", " 10],\n", " 20)" ] }, "execution_count": 516, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cites_meche = [int(c.text) for c in cites_merced]\n", "cites_meche, len(cites_meche)" ] }, { "cell_type": "code", "execution_count": 517, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "457" ] }, "execution_count": 517, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array(cites_meche).sum()" ] }, { "cell_type": "code", "execution_count": 518, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
authorscitespaper
0R Capovilla, M Montesinos, VA Prieto, E Rojas72BF gravity and the Immirzi parameter
1M Montesinos, C Rovelli, T Thiemann62SL (2, R) model with two Hamiltonian constraints
2M Montesinos36Relational evolution of the degrees of freedom...
3M Mondragón, M Montesinos34Covariant canonical formalism for four-dimensi...
4M Montesinos, C Rovelli26Statistical mechanics of generally covariant q...
\n", "
" ], "text/plain": [ " authors cites \\\n", "0 R Capovilla, M Montesinos, VA Prieto, E Rojas 72 \n", "1 M Montesinos, C Rovelli, T Thiemann 62 \n", "2 M Montesinos 36 \n", "3 M Mondragón, M Montesinos 34 \n", "4 M Montesinos, C Rovelli 26 \n", "\n", " paper \n", "0 BF gravity and the Immirzi parameter \n", "1 SL (2, R) model with two Hamiltonian constraints \n", "2 Relational evolution of the degrees of freedom... \n", "3 Covariant canonical formalism for four-dimensi... \n", "4 Statistical mechanics of generally covariant q... " ] }, "execution_count": 518, "metadata": {}, "output_type": "execute_result" } ], "source": [ "merced_info =pd.DataFrame({'paper':arts_meche, 'authors':authors_meche, 'cites':cites_meche})\n", "merced_info.head()" ] }, { "cell_type": "code", "execution_count": 519, "metadata": {}, "outputs": [], "source": [ "f = lambda i: len(i.split(','))\n", "merced_info['#authors'] = merced_info['authors'].apply(f)" ] }, { "cell_type": "code", "execution_count": 520, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
authorscitespaper#authors
0R Capovilla, M Montesinos, VA Prieto, E Rojas72BF gravity and the Immirzi parameter4
1M Montesinos, C Rovelli, T Thiemann62SL (2, R) model with two Hamiltonian constraints3
2M Montesinos36Relational evolution of the degrees of freedom...1
3M Mondragón, M Montesinos34Covariant canonical formalism for four-dimensi...2
4M Montesinos, C Rovelli26Statistical mechanics of generally covariant q...2
\n", "
" ], "text/plain": [ " authors cites \\\n", "0 R Capovilla, M Montesinos, VA Prieto, E Rojas 72 \n", "1 M Montesinos, C Rovelli, T Thiemann 62 \n", "2 M Montesinos 36 \n", "3 M Mondragón, M Montesinos 34 \n", "4 M Montesinos, C Rovelli 26 \n", "\n", " paper #authors \n", "0 BF gravity and the Immirzi parameter 4 \n", "1 SL (2, R) model with two Hamiltonian constraints 3 \n", "2 Relational evolution of the degrees of freedom... 1 \n", "3 Covariant canonical formalism for four-dimensi... 2 \n", "4 Statistical mechanics of generally covariant q... 2 " ] }, "execution_count": 520, "metadata": {}, "output_type": "execute_result" } ], "source": [ "merced_info.head()" ] }, { "cell_type": "code", "execution_count": 521, "metadata": {}, "outputs": [], "source": [ "f = lambda i: int(i)\n", "merced_info['cites'] = merced_info['cites'].apply(f)" ] }, { "cell_type": "code", "execution_count": 522, "metadata": {}, "outputs": [], "source": [ "merced_info['effec_cites'] = merced_info['cites']/merced_info['#authors']" ] }, { "cell_type": "code", "execution_count": 523, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
authorscitespaper#authorseffec_cites
0R Capovilla, M Montesinos, VA Prieto, E Rojas72BF gravity and the Immirzi parameter418.000000
1M Montesinos, C Rovelli, T Thiemann62SL (2, R) model with two Hamiltonian constraints320.666667
2M Montesinos36Relational evolution of the degrees of freedom...136.000000
3M Mondragón, M Montesinos34Covariant canonical formalism for four-dimensi...217.000000
4M Montesinos, C Rovelli26Statistical mechanics of generally covariant q...213.000000
5M Montesinos24Self-dual gravity with topological terms124.000000
6M Montesinos, GFT del Castillo22Symplectic quantization, inequivalent quantum ...211.000000
7M Montesinos20Alternative symplectic structures for SO (3, 1...120.000000
8L Liu, M Montesinos, A Perez17Topological limit of gravity admitting an S U ...35.666667
9M Montesinos, E Flores17Symmetric energy-momentum tensor in Maxwell, Y...28.500000
10M Montesinos, A Pérez-Lorenzana17Minimal coupling and Feynman's proof28.500000
11MÁ García-Ariza, M Montesinos, GF Torres del C...14Geometric thermodynamics: black holes and the ...34.666667
12M Montesinos, A Perez14Two-dimensional topological field theories cou...27.000000
13V Cuesta, M Montesinos14Cartan’s equations define a topological field ...27.000000
14M Montesinos, JD Vergara14Gauge invariance of complex general relativity27.000000
15M Montesinos13Heisenberg’s quantization of dissipative systems113.000000
16AA Martínez-Merino, M Montesinos11Hamilton–Jacobi theory for Hamiltonian systems...25.500000
17M Montesinos, M Velázquez10BF gravity with Immirzi parameter and cosmolog...25.000000
18A Pérez-Lorenzana, M Montesinos, T Matos10Unification of cosmological scalar fields33.333333
19V Cuesta, M Montesinos, JD Vergara10Gauge invariance of the action principle for g...33.333333
\n", "
" ], "text/plain": [ " authors cites \\\n", "0 R Capovilla, M Montesinos, VA Prieto, E Rojas 72 \n", "1 M Montesinos, C Rovelli, T Thiemann 62 \n", "2 M Montesinos 36 \n", "3 M Mondragón, M Montesinos 34 \n", "4 M Montesinos, C Rovelli 26 \n", "5 M Montesinos 24 \n", "6 M Montesinos, GFT del Castillo 22 \n", "7 M Montesinos 20 \n", "8 L Liu, M Montesinos, A Perez 17 \n", "9 M Montesinos, E Flores 17 \n", "10 M Montesinos, A Pérez-Lorenzana 17 \n", "11 MÁ García-Ariza, M Montesinos, GF Torres del C... 14 \n", "12 M Montesinos, A Perez 14 \n", "13 V Cuesta, M Montesinos 14 \n", "14 M Montesinos, JD Vergara 14 \n", "15 M Montesinos 13 \n", "16 AA Martínez-Merino, M Montesinos 11 \n", "17 M Montesinos, M Velázquez 10 \n", "18 A Pérez-Lorenzana, M Montesinos, T Matos 10 \n", "19 V Cuesta, M Montesinos, JD Vergara 10 \n", "\n", " paper #authors effec_cites \n", "0 BF gravity and the Immirzi parameter 4 18.000000 \n", "1 SL (2, R) model with two Hamiltonian constraints 3 20.666667 \n", "2 Relational evolution of the degrees of freedom... 1 36.000000 \n", "3 Covariant canonical formalism for four-dimensi... 2 17.000000 \n", "4 Statistical mechanics of generally covariant q... 2 13.000000 \n", "5 Self-dual gravity with topological terms 1 24.000000 \n", "6 Symplectic quantization, inequivalent quantum ... 2 11.000000 \n", "7 Alternative symplectic structures for SO (3, 1... 1 20.000000 \n", "8 Topological limit of gravity admitting an S U ... 3 5.666667 \n", "9 Symmetric energy-momentum tensor in Maxwell, Y... 2 8.500000 \n", "10 Minimal coupling and Feynman's proof 2 8.500000 \n", "11 Geometric thermodynamics: black holes and the ... 3 4.666667 \n", "12 Two-dimensional topological field theories cou... 2 7.000000 \n", "13 Cartan’s equations define a topological field ... 2 7.000000 \n", "14 Gauge invariance of complex general relativity 2 7.000000 \n", "15 Heisenberg’s quantization of dissipative systems 1 13.000000 \n", "16 Hamilton–Jacobi theory for Hamiltonian systems... 2 5.500000 \n", "17 BF gravity with Immirzi parameter and cosmolog... 2 5.000000 \n", "18 Unification of cosmological scalar fields 3 3.333333 \n", "19 Gauge invariance of the action principle for g... 3 3.333333 " ] }, "execution_count": 523, "metadata": {}, "output_type": "execute_result" } ], "source": [ "merced_info" ] }, { "cell_type": "code", "execution_count": 524, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "238.16666666666669" ] }, "execution_count": 524, "metadata": {}, "output_type": "execute_result" } ], "source": [ "merced_info.effec_cites.sum()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 1 }