{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Analysis with Pandas \n",
"[link](https://www.youtube.com/watch?v=w26x-z-BdWQ&list=PLyFizHxKlcupyh5YA-3ZFKGBwjoi8zqC4&index=6)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import pandas as pd\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"from pandas import Series, DataFrame\n",
"pd.set_option('display.mpl_style', 'default') \n",
"\n",
"#pd.set_option('display.width', 5000) \n",
"#pd.set_option('display.max_columns', 60)\n",
"\n",
"pd.options.display.max_rows = 10"
]
},
{
"cell_type": "code",
"execution_count": 285,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" AAPL | \n",
" MSFT | \n",
" XOM | \n",
" SPX | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2003-01-02 | \n",
" 7.40 | \n",
" 21.11 | \n",
" 29.22 | \n",
" 909.03 | \n",
"
\n",
" \n",
" | 2003-01-03 | \n",
" 7.45 | \n",
" 21.14 | \n",
" 29.24 | \n",
" 908.59 | \n",
"
\n",
" \n",
" | 2003-01-06 | \n",
" 7.45 | \n",
" 21.52 | \n",
" 29.96 | \n",
" 929.01 | \n",
"
\n",
" \n",
" | 2003-01-07 | \n",
" 7.43 | \n",
" 21.93 | \n",
" 28.95 | \n",
" 922.93 | \n",
"
\n",
" \n",
" | 2003-01-08 | \n",
" 7.28 | \n",
" 21.31 | \n",
" 28.83 | \n",
" 909.93 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" AAPL MSFT XOM SPX\n",
"2003-01-02 7.40 21.11 29.22 909.03\n",
"2003-01-03 7.45 21.14 29.24 908.59\n",
"2003-01-06 7.45 21.52 29.96 929.01\n",
"2003-01-07 7.43 21.93 28.95 922.93\n",
"2003-01-08 7.28 21.31 28.83 909.93"
]
},
"execution_count": 285,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"close_px = pd.read_csv('data/stock_px.csv', index_col=0, parse_dates= True)\n",
"close_px.head()"
]
},
{
"cell_type": "code",
"execution_count": 286,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 286,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD2CAYAAAA3Zye5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdgFFXXh59N2SSbShJSgIQOAiGhI9KkN6UoUbqIfDRR\nxPpSIq8CrwUVKTZQJNiQoPTeMdJrQgm9kxAgvZed74/NTrKpu6mTcJ9/mDlzZ/a3d8PZu+fee45K\nkiQJgUAgEFRpzCpagEAgEAjKHuHsBQKB4AlAOHuBQCB4AhDOXiAQCJ4AhLMXCASCJwDh7AUCgeAJ\nwKKoBmFhYQQGBtKsWTNGjRoFQFRUFEuWLEGr1VK/fn3GjBkDQGhoKEFBQahUKvz9/fHx8SnULhAI\nBILyoUhnn56ezpAhQ7h8+bJsW7VqFcOHD6dRo0ayTZIk1qxZQ0BAAADz58/Hx8enQLtAIBAIyo8i\nwzjNmzfHzs5OPtdqtTx48MDA0QOEh4fj6emJWq1GrVbj7u5OREREgXaBQCAQlB9FjuxzExcXR1pa\nGgsWLCA5OZm+ffvSrl07EhIS0Gg0BAYGIkkSGo2G+Ph4+Ti33cPDoyzej0AgEAjywWRnb29vj62t\nLe+88w5arZaAgABatGiBnZ0dSUlJjB8/HoDly5djb2+PVqvN114Ye/bsKcZbEQgEAkGPHj3ytRvt\n7PUpdMzNzXFxcSEmJgZnZ2csLS0B8PDwIDw8XG4bERGBh4cHWq02X3tRtGrVylhp5UZwcDCdOnWq\naBl5UKouUK42ocs0hC7TqChdp06dKvBakc5+/fr1nDlzhtjYWJKTk5kwYQIjR47khx9+ICkpiQ4d\nOqBWqwHw9/dn7ty58qobADMzs3ztAoFAICg/VErMerlnzx5FjuwFAoFAyZw6darAMI7YVCUQlAMH\nz29h09FVFS1D8AQjnL0JBAcHV7SEfFGqLlCuttLUlanNICE5ttA23275kN8OLCryWU9Cf5UmQpfx\nCGcvEJSQkV+0Z/yS7gVej054KB/fiLjITzs/KQ9ZAoEBImYvEJjIuVvHeKpWSyzMdSvRhn3eGoBP\nX/mdOu6N87Rfunk2wRe2GdhWv3+y7IUKnjgKi9mbvM5eIHiSeRQXzrw/J9OyXifMzcwZ33umfO3C\nnZN5nH1qejKX74VQ260RtyIv536cQFBuiDCOCSgxDgfK1QXK1VYcXTcfXGLFrs8AOH09mBNXD7Bo\n4wwAPKvVxt7GKc89ryzsRGTsPZp4taJPq5fLRFd5IHSZhhJ1CWcvEBiBVtKyYvdnnLr2j4H90r2z\nAIRH32LTsYJX2wzrPJXU9GT5fPXBb3TP1WZyOGxnGSgWCAwRYRwTUOJOPVCuLlCuNlN1jVjQVj52\nsXfncfwDALRSpmy//fBKnvua125Pgxo+WKttSEyJk+36L4n9oRtZtmMeHZ7qXSxd5YXQZRpK1CWc\nvUBQBDmXVQ5s/wobjwYaXP928nYOXdxOZOx9ElLisLN2kK9pJS1NvVpnPSfb2SelxgPw9+EfAUjL\nSCUzMwMbK9syex+CJxsRxjEBJcbhQLm6QLnajNUlSZLBssrhXd7A3MxcPnd18MTZvjpWljYkpSYw\nfnE3+VpSajzpmWlYWujSiUzs9yELx6+ju+9g2jR4FoA2DXX/zgwcxVcb3qv0/VXeCF3GI0b2AkEh\nXI+4KB9/MHQxKpWKN5//hLC7p+nXZgQqVABYWqiJS4oCdF8Qhy7uYMnmWbpr5lYAeFTzAqC6Yw0S\nskI6KWlJANx9fB1UqvJ5U4InEuHsTUCJcThQri5QrjZjda0/sgKACX1m07JeRwDaN+5B+8aGa5kt\nzdXceXgVgH8ubOXbLR/K11S5nLjawpotx7+lRd1n2B+6UbbffXSNTuMqd3+VN0KX8YgwjkBQCMev\n7GPQ06/S3W9Ioe1UKjOiEx8BcOH2CdluaWGFd/UGBm3VFrqR/r2om3mek3PFjkBQmghnbwJKjMOB\ncnWBcrXl1nUt/DzxyTEGtozMdACebzemyOc9jssutfnP+a3ycYfGPeWdtnqs1DYAPIi+Y2Cv5Vqf\nbXs3okQqy+eoFJSoSzh7wRPP5XshzPplDL/s/crAHhF9B49q3garawpCP9EKoLHKrtlsrc67usbK\nwhqAbSf/oI5bY5p5twHA1cGD+NTo4rwFgaBIRMzeBJQYhwPl6gLlatPr+uPgUjYc+Rlne3eOXd7H\nlAG665Ik8e4K4wvteDp7y8f6XwjDurxO6/pd8rR1dfCUj53t3dBY6cp0uti74+7mYvJ7KQ+U/jkq\nDSXqEiN7wRPLz7s/Z8ORnwFwsHEiPTMVgEt3z7B8x7wSP//pxr3wyhWvB6jpUlc+joy5x/jeM1g8\nYSPWljYiZi8oM4p09mFhYcyYMYNff/3VwJ6RkcHrr7/Ojh07ZFtoaCgffvghc+bM4dy5c0XaKxtK\njMOBcnWBsrRFxT8kKv4hMQmP+PzX99lx6k8A6rk3oWPTvmRqM5EkiV/3L2JvyHoa1fTj52kHjX5+\np6b9DM5zhnNyYq22YUTXNwGITYrCWq3BzakmFuaWXLt+zeT3lZaeQlT8w6IblgAlfY45EbqMp8gw\nTnp6OkOGDOHyZcOMfTt37qRu3ewRiiRJrFmzhoCAAADmz5+Pj49PgXaBoLyZ8l1f+djKQiMfv/vC\nVzjbu/HHgaVopUwcNdUA3WjflB2tU5+bR3XHGqw7/FORKYw7Ne3P7wcWyytzACzMLbkZfZ6MzPQ8\nk7oFkZSawML173Plfigrp/9T9A2CJ5YiR/bNmzfHzs5whJKWlkZISAht22bnCwkPD8fT0xO1Wo1a\nrcbd3Z2IiIgC7ZURJcbhQLm6QDna9InH9KRmJPHpK7/zf31mUc2uOgDmZuZkajNJz0wD4MWOE0x+\nHTOVcZFR66wVOVpJK9tuPAgjIv4GryzsaNQztNpMxi3qSuito6SkJ5ms1RSU8jnmRugynmJN0G7d\nupW+ffsSE5O9VC0hIQGNRkNgYCCSJKHRaIiPj5ePc9s9PDxK7U0IBAWRlpHK5mO/yJujOjbpSx33\nxhy+uJM67o0N8s+nZ6axYtennL1xmI9GrqCu+1Mmv56tESt3QBficXXwwM2xpmzr1LQ/p679Q6Y2\ns5A7s0nIkVgNdLn2tZKEm2MN4wULnhhMnqBNSkoiLCyMFi1aGNjt7OxISkpi+PDhjBgxgsTEROzt\n7Qu0V0aUGIcD5eqCite2ZNNM1gR/B8CKaft54/n5PN9uDP3rT8q3vX5Hq7tTrWK9Xu+W/nw7eVvR\nDYEvxq3lP0MXy+dNvVvLx9EJD/Os+8/N1hO/G5xP/f453jNhBZEpVPTnWBBCl/EY7ez11QvDwsJI\nT09n0aJF7Nq1i/3793P37l08PDwIDw+X20ZERODh4VGgvShydlZwcLA4L+Q8NDRUUXqUcP7z+sWk\nZaRyKzI77bB+iWNwcDChoaEF3g8QeupCsV7fwtySC2cvG9XeWm2D2tJaPtcnWKvv0oJ3lvsza9WY\nAu9fveVn+ddKTlLTU8qkPwvrL3GurP4qiCJr0K5fv54zZ84QGxtLkyZNmDAhO4554MABUlJS6NOn\nDwAhISEEBQWhUqkYOnQovr6+hdoLQtSgFZQEraQ1yD9vpjLH1dGDxRMK35363oqXuPNItxqmomrE\n/nVoOdfCz3P5XggJKbGsfv8khy7uoG3DbnL2TIDP/3pLLqTy1sBP+Xrjf+Rror7tk0uJatAOHjyY\nwYMH53uta9euBue+vr75OvKC7AJBWXAjIkw+ru5Yg4BhP2BhVvTqlrruT3Hn0TV6tRhalvIKpYGn\nD2F3TmNn7UBCSiyZ2gwWb5rJ3FEraVijOVpJy/lbx+VJ5N/fO66bFM7h7AWC/BCbqkzAmJ9KFYFS\ndUH5a4tNjGLWL6Op594EgHmjAnFzrIGzffUidY3r9R8WjFvDa71nlIvW/Ai7cIn0zDSS0hIA+HSt\nbj2+PhXykbDdzF8zhdCbRxn57DR59c/Kt/5hXK//0K35oDLRpdS/saqiS/+LsiwRzl5Qpbgartu0\n984LXzLq2bdwtHU2+l5rtQYv1/plJc0ozM0sSM9IIy5JlyMn9OZRAHkkb2VpLbd1tM1OrWCt1mBr\nZc++0A2s3P15OSoWlJRHceG8t+IlAvd8SaY2o8xeRzh7E1Di2llQri4oX22JKfEs+Hs6oMsz81y7\n0QW2VWqftW3djmsR5/PYMzLTSctIld8fgI1aY9CmY1PdprHtWTuDSxOl9ldV0PUwVrfvaNvJ3zl3\n63ie68M+b82NHEV0iotw9oIqQ3j0LQD+N+bXIloql4J2zmZkZnDv8Q0Dm00+GTUFyuTinVNsOZ7/\n32VMYnaqi0+CpjLmq2c4dHEnkL2XYvPxX3n167xJ9UxBOHsTqCrxwfKkPLXN/uUVAOp5NCmyrVL7\n7OzpEIPzZ5sPpJ57E/4+/COX7xleK8zZF7HIzmSU2l+VRdena9/kl30L5fAcwLrDP7H1xO8s2mg4\nR5SWkcrDuPsA7Di5GoCImDskpyWSlJpQbE3C2QsUg1bSsunoqmIl9Qq5eQSAsT3eK21Z5YqVhY3B\n+fPtxmBpacXdR9f4efdnADhk5e5xsXfPc/+3k7fp4v5ZMX5BxXM/6paczXTC0p6kpacQEX2HP//5\nllV7vwTgs7GrmTpgrnyPRq1LUZOSngLoiusAPI5/UGwdwtmbQFWID5Y3pmhLSI7ltwOL2B+6waTX\nuHT3DP9b8zoAfVsPK3Vd5Un3rr0A3U7cuaNWUtOlLjOGLjFo42Trwi9vH8bJzjXP/c72bmRqMxjz\n1TOlqkup/VUZdP208xODa28sG8jD2PsGNq/q9enUrD+uDroNp/rVV8mpCTjn+FLX24uDcPaCCiMm\n8THRCQ/5esMHHDy/hQlLewKY9FN107FVzPn9NQC6+jxfJjrLE31x8uiERzSs0RwAK0vD0f7obm8b\nbLASKJuHcfd5/8Wv5fPYxMfMXzPFoI1+Ce3U5+bh5VpfXnqblJZAekaq3C45LbHYOoSzN4HKEh9U\nEgVpO3frGJO+6c3kb/ty5NJug5KAxvxBZ2Sms+3kH/y2fxEAQztOZHL//5ZYV0UTHBzMwvHrGN97\npmzTfwGALk7fvE77Qp8xfdDntGvU3cD2zZYPWbHrU25FXi5WgRQl95cS0eu6fC+EyJh7PFXLMJeY\no8aZKQM+JmDYDwb2p2q1pJvvYHnAk5yaaLDvIzlVOHuBQjkXEYw2RxbH8KjbrNz9eZ5NJPHJMQzp\n8BoT+gaw5+zfBql/8+PGgzAC93whnzeqWXV2aHs6exe4P6Bjk7752nOitrAiLcdoEOCf81vYeTqI\nD1YOZ8ORlaUhU1AEG48G8uFvrwK6vEyr3z/JqGffAnRFa3xrt6eZdxv+eO+EwX3OdtV5FBfBvpAN\nnL4ejINNNVa/f5JuzQcRnxxbbD2iBq0JVIb4oJK4eOcU+68HYbPPgqdqtaSmS125rquTrQv+HSeS\nlJrAzjNrSc9IpYffEBJTdCOaGxFhfLftv3wxbk2+z34cF4GluZqpz83DwtyS5rULH+3mRql9VpSu\nXi2LzmqptrTm4p2TpGekYWmhzrNkM/cXQWnoqiiUqsunxVNM+nZaHnvf1sP4db8upKPfFJfzlxtA\nXY8mfL3xP5y8egDIrnhW270xF++cpGeLF4qlSTh7QZlx/rZuxLLt5B9sO/mHQUw9JvEx9Tya0rJ+\nJ3q3eol/zm/F2c4NVwdPvFzrM+sX3YYorTYTMzNzAn4dy3svLEQraZkZOAo3p5p0atqP9o3zT/pU\nVckwYpWNlaU1qekpHL28hyNhuziR5TT0RMbeKyt5gix2nVmbr12/j8LdqVYeJ68nZ40DQK6W1sCz\nGf+c21JsTSKMYwJKjw9WNA9i7iJJEtOXv8DhsJ1cunsGP89n5euRsffp3GwAn2RtempWW5eZ0t2p\nFkM7TsAsK8WvpXn25OPj+EiOXd7LlfuhTFjak38vbCMqIZKwu6fl9sVBKX2Wm4J0eVTzBnQhnqKo\n46YryLJ08+w8jh7g2OW9JsftK1t/VSRxSdH8dWg5tVzrM6HPbN4evCBPm8L2SOT+Eqju4AmAhZll\niZbUCmcvKBWSUhOYtmwQwxe0ITz6Fos2ziD01lEaV28jt7l45ySRsfeo69GEH17fZVB/NSfXH2Rv\nDY+MvWew3OyXfQvl46ZerXlSWDj+b1a/f1LOyV8YBe3C9XDyko+XbJpVatoE2WglLccu7wNgYt8A\nuvsNyTNZDrpQW2HM8Nctt+3fZmT2IMhCzZ2HV4utTYRxTECp8UEl6Lr76Hq+9ud7voimugpbawe+\n2RLAtOc/BSg0QdmwLq/LNWPnrp5ImwZd6dikL/9e3A7AhD6z6e43pER6ldBn+VGQroJ+8hdEU6/W\nXLhjmNf+6wnrSU5N5NVFXThx9QD/Xtgu59Mprq6KRmm61vzzHeuPrKBjk77y0tncmJtZFLnL26/u\nM9npq7NIS09BQkKSJJP/HkA4e0EBZGSmc/leCA1q+BQ4As/J6evZP6d/fGMvITePsHjTTCwt1PRt\nPQytpMXVwTNPquH8GPz0OHr6vcihsJ2s2PVpnlBEkydoRF9cpj43jynf9ctjzznqX7J5ltHOXmAc\nsYmPeaHDePw75V/2EuDntw5iYVa0681dvN7brSEAmdqMAn+9Ffo8k+94glFifBDKRtfSzQF8vHoC\nX61/T14GOWJBO5Ztn5enrSRJ3I+6yRvPzef3945jZ+NIh6d6892U7bI2M5UZTbxaGv36djaOBmuT\nc/5xu9i7FfdtyVT1z9I5Vx8tnaSb2DM3L974rqr3V2mwau9X7AvdQHe/wfz7778FtlNbWBVrvsnc\nzAIrS2syMtOLpU84e0Ee9oas58ilXQCcuf4v326Zw40HYWilTPaGrON6xEWDXa5nbhzi6KU92Nk4\nyqMRlUpFNbuiR/GFUd2hBgAT+gaweMImuvsOoX3jHkXGOwU6cubmd7BxAvKOFgWlx+EwXaZK16wJ\n1bLAwlxd7EnaIr/mw8LCCAwMpFmzZowaNQqAZcuWER4ejiRJTJkyBTc33SgiNDRUrjXr7++Pj49P\nofbKhtLig3oK0rX37Dou3w9lUr8PjX6WJEks265LyFTX/SluPAjjcNgOpBybnGauGsVTtVry3xE/\nAvBnVnw9vxhlSfrMOitfe+v6XXC0dWZC39nFflZuKttnWRw8nWtz59G1PDVpG9f049K9sxWmqzSp\nSF0X75xi4Yb3+eH1XZy/fZzohIcsm7q7THVZmluSnqEb2WslrcGX9+4zf+FM3QLvLfJrPj09nSFD\nDCfDJkyYwJw5cxg6dCgbNuiSVkmSxJo1a5g9ezazZs0iKCioULugdHgQczffwgZaScvaQ8uNTiq2\n7vAK/jiwhOsRFwB4d8hXzBn+I/6dJpGpzeTfi9tp06ArjhrdxKo+pcH9xze5GXmJkc9Okzd/lBYq\nlYoFr/5pUrUpQTYFrdyZ4f+NfFySxFqViZS0ZP77+3g5O2ppEB51i7ikaI5e2s25W8dp6tVazkha\nVliYq8nITCMi+g4jFrTl7I3DbDv5BwAPYgrfP1Gks2/evDl2dvn/J7axscHSUhdLDQ8Px9PTE7Va\njVqtxt3dnYiIiALtlRElxQcBDl3cwbRlg5ixapRs00pa/jq0nBEL2hKVlQ719sMrBT5DK2mJin/I\npmOBbDi6ku2n/qRvq5dp07Ar1mobXnzm/+Qt+uN6/QdnezccbV3kUffxq/sxN7Pg+XZj8n1+SfvM\nq3qDEt1fEEr7LPWUpq7R3abLexpyYq3OTqwW9O8Pea6Xta7SxFhdY7/uRNjd03J21NIgPjkGgJT0\nZNIzUmlZP3s0X1b9ZWFuyYOYuzyIuQPAxqMr5bQhe8/+Xfi9JXnhvXv30r9/fwASEhLQaDQEBgYi\nSRIajYb4+Hj5OLfdw8OjJC/9xJORmc7iTdnJsh7HP8DK0obVB5ey+8xfBm1/3r2AOcOX5fucL/9+\nh5PXDsrn/5zfQgNPwzDboKfH4u5UC2d7Nz555TfuPLrG/D8n8ygugj8OLMn9SIFCsLW2p24RS/xy\n5i16Ujh59SCtG5Ss6hNAXJaz/37bR5ipzBnbs+xrKViaWzJ/zRRa1OsI6LKjgi6CkpgaX+i9xXb2\nJ0+epEaNGtSsqdvaa2dnR1JSEuPHjwdg+fLl2Nvbo9Vq87UXRXBwsBz30n9LinPd+bY9G1kbqsuv\n0bZhNy7dDuH17/rn6cO+rV4mNimaCzdPc+DgAeKtb9O39TCOHNYVsb6VcUp29LUcG3I3VvcLwEvT\nzKD/b196QA1Vdjz+/NmLxCQ+Zur3AwAY2nx6gZ9Xp06dKry/CjrXoxQ95d1fACqVWZXvr8AN2WEr\ngCOn/yE5wqzErx+fHINf3Q6cvXEYrZQpL1Euy/6yzHqNM9d1q33uR90E4J/gg9Rwrk1hqCQj6pdd\nuHCBkydPMnq0Ll/J9evXCQ4OZsyY7J/uWq2WOXPmEBAQgCRJzJs3j7lz5xZoL4w9e/bQqlWromQ9\ncdx7fIN3fhqKvY2jnP3uj/dOMHxBG4N2Y7q/w6q9X9K/zUia12nPZ2vfZOSz0/ht/yLaNnyWd4bo\nquMM+1y3Xv3r/1uPRzUvDl3cgdrCijYNny1UhyRJBq/50cgVNK7pV4rvVFDW6D/7FzqM56XOkytY\nTdmif6/NvNty/vZxpj43j05N8+5BMJb7j2/y9k8vArrU2muzQmGD2o9leNc3Si64ED78bRyX85lc\nD5wezNTvBzC54xf06JF/vqgiY/br169nzZo1nDp1imXLdKGAr776imvXrvHRRx/x888/6x5kZoa/\nvz9z585l/vz5+Pv7F2qvjFR03FJfmkzv6Id2nIhKpWJki5kG7fq0eomlkzbzcufJtKzXEY2VnZz3\nXStJRCc8lP8DfDEuCI9qum30zzTpU6SjB93EaU+/F+XzwpZYVnSfFYTQpcPY5bGVtb+Cz28F4MNh\ny3hnyAIa1/QjqYhwR1HoHf2zzQfyTJM+sj3n/52y6q/ErALkudl5OkjOGFsQRYZxBg8ezODBgw1s\nS5cuzbetr68vvr5584oXZBcYjyRJ7AvdCOhynLzUeTJPN9ZVdqqmceeH13cx8RtdSTtzMwuDtb4e\nTl5cf3CRFvU6Ut3Bg/O3jsvX8ittZwxje77H0I4TcLB1Fmu3KzHnbx+nV8uhFS2jTLhw+yRLtwQA\n0NRbN7jxrt6QFbs+w9nOnTYNu5r8zJwbmib0mY2ZmTl/vHeiWOkLikPudNV69IO5whDpEkxAH0PT\nSlpUqDh3+zi1XOqSmp5CNTvXPOXjSpOElFgu3jnJsC6vM6j9qwZ/XHpdvnWeZkiH1/LcO2/MKr7d\nMgef2m35fttHwJ/yNVsjEmvlh4W5pVFfFGJ9tmmUt64jl3Yb1a4y9tfHqycAsODV7L93fVz9UVx4\nsV5Pv/JlSIfX5F2w+Tl6JfaXGJIVgxEL2rL1xG/M/3Myk7/ty1vLB7Nyty6N6eP4B1wNP1fqr5mQ\nHIe7Uy0GPz2uwFHEzJe+oYlX3rkOM5UZU5+ba5BWtZm3Lr1weY1IBMqih1/xCmAokQu3TxIV/9DA\npi/fN/W5eQbLd1VZv0KNyfeUm5jEx9yPukkz7za83HlK0TeUMR8MXWxSe+HsTSA4OJjT13SxuENZ\nW6P1xCVFA7pv/tm/vMK5W8fybFi5EXGRqPhIAvd8Ia/RLYxMbQaX74UAupG9nbVjgbqMIecvj6Ed\nJ/LrO6W3waQgKmust6IoL13/12dWoTnVc6PU/hq3sBsfr57ATzv/Z2A/ff1f7Kwd86QX1ud5MtXZ\nZ2ozmPRNb87fPkHLekWP2sujvxrX9OP3d4/J571bvlRoe+HsTSBTm8E3W3SpB/STpW5ONenZ4kUe\nZ21gSs/Q5a2Y9+dkxn7d2eD+GatGMeW7fmw7+QdT8lkqmZtNx1bJNSwTU+Kxs3EokX79ipnmtdvT\nuKZvsTLnCaoOVpU8x5AkSSSl6yYscyd++3HnfJ5vNzqPU9dqMwDYddZwL0pRXM+xS12/e7yiyZ1Q\nzbKI/88iZm8Cv5z5mISU7IK/fVu9zNie7xMedZtP176BVpvJ6evB1HCuI69/1eevyJ2prrAUp/tD\nN/L9to/kkZdWm8m6Iz/JFWtyY2x80MbKlhXT9mNtqSlRlSdTUGLsEoQuALWF8c5eaf2VlBrPil2f\nAbqEb9a5fqVkajPp2SLvxHNm1iay6Fxhn5xkZKYz989JjOjyBo2zMq/qd6GP7jbdqDrA5dFf5kak\nSc6JGNmbgN7Rfz9lB2N7vMfgrMlQa7UND2LuMuKLdgDMfvk7+Z5P1kwFYNSXTwPQqWk/Fk/cRHJa\nIrGJUXle4+C5zVmTqNkjiJ1n1nLn4VVGPpu3gLGpaKzsy83RC5RNZc4eeujiLoIvbAOgZ4uhpOQY\nbaekJZOekWaQFkKP3tnbWmcvTLj3+AY5txvtOLWGS3fP8MW6d2Tb8h3zAWjdoGux4v2ljbmZhTzf\n9uObuspYRRWSF87eSPSTrl++thYnO1f6th6GU1Z1+JyxzwaePjjbu8mOOfTWUTkdcD2Ppkx9bh5u\njrrUvRO/6UVCcmzOl+HbrXMAqOFcB4BW9TuzcvfnJKUmFJhkSanxVFCuNqELrEwY2Vd0f6VlpHL0\n0h5OX/+XvWfX8eNOnfNt7tEJK0trUrJq6qZlpLI/dAONa/rlO/LVx+xT01MAuBV5hXd+GsrZG4d1\n17WZ/LLvK0C3ug10Xx4Aq94+JO9JKYqy6q8vxgUx6+Xv+O3do7LNzloX3k3NSCn0XuHsjeS3fbp1\nrDVd8qYQzTlCysyKCT7fbgwqdN+8MQmPcHeqxf/G/CK3G93tbQDGL+nOsM9bk5aRyoajKwH4dvI2\n+XUcNNkZH0392SYQFEajmrq9L9oc6auVyulrwSzc8D6frX2TZTt0BXTmjQ6kaz1/1BbWpKQlcThs\nJwfPbWblngV4Va+f73Ne7jyZ13rNID45hp2ng7h49xSQnXbgXta/gFyUfcHfb1HdsYYiRvS1XOvR\nvHa7fK88LiImAAAgAElEQVSlpQtnX2JiEh5x8e4pPn3l93yvm6nMWDppM5C9pBHgj/dPAPDN1g8N\nnDbAgLYj8c6xJOzKvRA5qZiTnSvTBn7Cey8s5GUjtrIrLZ6aE6VqE7pgdPe3sTC3JL2In/9QMf31\ny96v5J3eCze8n+e6t2sDOnXqhIW5Bcev7GPRxhncfXQNgA5P9c73mdXsqtOuUXfik2NYsetTVu7+\nHNAtgHgUFy5XYhvQdhR3H98gNjGK87dP8DD2vknay7u/XB08aVij8I2rwtkbwaKs7JL6GpD54erg\nSXXHGrg71cpz7Vr4+XwLe7w16HP5eO2/ulQUP76xFzOVGRbmlrRu0IVqdtVZOH4drw8oPJ+QQGAq\nZiozbK0d5DXpSmPLid8AuPngUp5rHwxdLP+itrfJDm/eeniV5nXaF1jsG/JfhZSUGs+xy/u4cj+E\nDk/1pl2j7kRE3+bzv94CoFvzQSV6L2XN0kmbGdB2ZKFthLM3gmvh55g/ehWH/j1UaLslEzfl2Xr+\n9mDdZquXOuUdoXtW86aGcx3srB25ePcUzzYfiJ1N3rX0ns7edG5W8FLNio6nFoZStQldOjRquyJT\n40LF9Jdj1pyYfrfr91N2sPr9k6x+/yQts1L8BgcH08SrJeZZiw4u3jnJlP4fFbqsOHc4ppl3Wx7F\nhRMVHwnoygvqC/HEJ8dgbmbBRBOqvel1KQ3h7AvhUVwE32z5kLSMVGq51ivWM9o16s7q90/muzJA\npVLx1fi/cHPSpYn2LCJFqUBQ2mis7AzqCVc0yamJ7A1ZT1xSNLGJjwG4cOcUdd2fKjQ9R85f1E62\nhafxyL0azd7GieNX9hukjqjhXBvParVxtner9PsR9AhnXwhTvx/AP+e3ALrdp2UVh7PPGs17VvMu\n1v1KjT+DcrUJXTqMdfblpevVRV1Ytn0uW078hoeTFz1bvMjWE78VWMRbr+t/OSpyGZMC5KlaLeXj\nAW1HYmvtIP+C6Nt6GOZmFrz/4teE3T1drC9DJf59CWefi2+3zmHY5635Ze9Xsm1Am8JjYSVlTPd3\n6Nd6uFHbsAWC0sTGyo5kBY3s9bH2DUd+plnttvKyR3sbp0Lv05fJLKqAh57/jviRD17MSvutzcTV\nQVc5770XFjK2h67ilLHLLCsLwtln8fWG/zDs89YcPKdbVbPlxG+4OdXkj/dOMKrbdKDs4nA1Xery\nSo93sbRQF+t+JcYH9ShVm9ClQ22hJi0zrch25aUrZz4pZ7vqcnzdPp+5rNy6vp28jdkvf2/0a+mX\nN9f3bCbvJs5ZhKckSQKV+Pf1RC/cTkyJ53rEBep7NuXIpV2yfXiXqfxxcCkatZ3ICimo0piZmSum\nDm3ozaPceXQNF3t3Hsc/wMnOFZusidL89rfkJnd+nKJwc6rJz9MOYmFuKX+p5N5V/PqAuTgbWeBF\n6TyxI/u4pGiWbp7N/DVTWL7DMGPeoKd1ycdyz+grMQ4HytUFytUmdOmwMLOQNwIWRlnruvngEg9i\n7tGuUQ8Wjv8bADenWvTKym/TvnH+pfZKqsvGSrf7Xf+r2tLc8Nd152b9aVa7bZ77ikKJf19FjuzD\nwsIIDAykWbNmjBo1CoDQ0FCCgoJQqVT4+/vj4+NTLHtFMmFpT/n4cNhOxnR/h91n1uKo0S33+uSV\n36jlUrwVOAJBZcHMzNwoZ1+WXAs/z6xfxmBtqaGb7yC5qHYN59pYWqhZ/f7JMteQmjU3UJV/yRc5\nsk9PT2fIkCHyuSRJrFmzhtmzZzNr1iyCgoKKZa9I8ksY1LhmC74a/zdzRiwHoK77U3li6EqMw4Fy\ndYFytQldOszNLOTkYIVRlrqu3A8FICU9iWbebVCpVHz+6mpc7N3LTdewrlN5d8iXpfIsUObfV5HO\nvnnz5tjZ2cnn4eHheHp6olarUavVuLu7ExERYbK9LNFKWoZ93pr45BjOXD+Up4jItfDzcqHleh5N\ngYIngASCqoy5mYUcs09IiZPrMZQXryzsxMo9C+RUwo2yJki9qxe8W70saFzTz6BgeFXE5AnahIQE\nNBoNgYGBSJKERqMhPj5ePjbW7uHhURbvB4BbWduroxMe8unaNwD4bOwfeFdvyLaTf7Bq75cMaDuK\nlzpN4sPfxgFga110YRAlxuFAubpAudqELh3mZub8sm8hHZv2Y9I3veni8xxT+n9ULrpuRFyUk41V\nd/DkEmfkDI7GIj5H4zF5gtbOzo6kpCSGDx/OiBEjSExMxN7e3mR7UeT8GRQcHGz0uVabyYxVurmF\nnBOvH6wczp6z6/jzn28BkOKssLK0oXNTXRqCU8dPF+v1xLk4r8zn+t2kO/ZvAuBhbHi5vf69xzdk\nW0J0sqxHSf1TGc8LQiXlzNpfABcuXODkyZOMHj0arVbLnDlzCAgIQJIk5s2bx9y5c022F8aePXto\n1Spv4WxjOHHlAF+se7vQNuN6fUBPvxdNLuIRHBysyG9speoC5WoTunQEBX/PX4eW07imH5funaWp\nV2s+HL6sXHQt3RxAdUdP1h3+idHd3ubZ5gMNiooYg/gcDTl16hQ9euS/cqnIMM769es5c+YMsbGx\nJCcnM2HCBIYOHcrcuXPl1TUAZmZm+Pv7G20vK9KyEvjXcqnH3cfX6erzPAfObTJoU1RhXoHgSUE/\n4Ll07ywAKlX5rMa+EXGR4Atb5SI/HtW8THb0AtMwamRf3pRkZL/1xO9sOPIzn439g9e/78/HI3/G\nu3pDMrUZjP26M8O7vsGg9mNLV7BAUEn5+9CPrAnOLqNZ0Mi+tDkStouvN/6Hbydvo5pd9Sq95LE8\nKdHIvrJx6OIOXus9Ayc7V35795hst0RNXfenaFW/cwWqEwiUhZSrSlUNlzrl8roJKfF0az7I5F2v\nguJTpXbQZmozuBp+rsDCBZ+88htervmXKzMGYyZBKgKl6gLlahO6dGhz/bAvaG17aesKuXmkVArf\ni8/ReKrMyH7JpllyHUk7a7FmXiAwhtwje2M2WJnK4bCd7Dq9luFd35AHYuFRN+nYcWKpv5agYKqE\ns0/PSOPfi9sB6OrzfLGzRxaFEmf9Qbm6QLnahC4dEoYj+4JSJzTyKToRWUEs2jgDgB2n/qRhjebE\nJUVz59E1WtR7ptjP1CM+R+NRbBhHX2jYGEZ/1UE+1u+IFQgERZN7fca6wz/laRMU/ANvLhto0nMf\nxUVwOGyngc3R1oVbkVeIT46hhnNtrCzzVm8TlB2KdfaAUVu3H8aGG5x7VMtb8Lu0UGIcDpSrC5Sr\nTejSkTuMkx+P4x9ktTV+4d6v+75m0cYZpKYnY6Yy5/UBc9ly/Fc+WDmMvw4tx9pSU2zNORGfo/Eo\nOowTlxxdZDKkN354DoCRz05DK2kNyo0JBILCyR3GAUhKTUBjZUd0wkPO3z4h10/O1GYUWsg7J/r6\nEOFRt7G1tqdajvqxCcmxWKlLx9kLjEfZzj4xyqjMdwDPtxtTxmqUGYcD5eoC5WoTunSoyLu+feWe\nBQzr/DpTvusH6ObBAG5GXqKBp2npyf8TOAIwTGxmZWmNuVnpuB7xORqPYsM4Let15GFceB67VtJy\nPeIiYNrPSoFAkBf3HHVW3ZxqArrQ6OGw7MptybmyxhYHB001+fj4lf042bqU+JkC01Css2/g6cOB\nrHqwOQm9eZSZWYnO5v05GYDFEzaWiyYlxuFAubpAudqELh3dmg9i2dTdAHLa74t3TvLLvq/kNslp\nuoLkuVOFF4a+gHdOWtTrSK2sfS6ujp7F1pwT8Tkaj2LDOFpJy8mrBwq8vvXE75y/fRzIHpEIBALT\nUKlU8qg7MzP/ZZe3I69gb+VMTOJjo54pSRKxSdHy+XdTdMui/zN0MZnaDEZ+0T5P+T9B2aNYZ9/M\nuy1/HVqex56RmQ7Aqr26qjLlmedGiXE4UK4uUK42oSsv6Zn5r36LTYqiqVdrzt44THT8Q9o37oGr\ng0e+O2AlSeJRXATpGaksnbQZO2tHrHNMxupj9c28Ta/rmh/iczQexTr7Bp7NAIiMuWcwcn8Qc9eg\n3aCnx5anLIGgypKQHFvgNWd7d/45vwWA3w4s4rm2oxnV7a087T4JmkrIzSMAuDrkH6opj5qygrwo\nNmZvkbUL9s1lAw1qxkYnPJKPA4b9gMaq/NKiKjEOB8rVBcrVJnTlJT45Jo9tUr85TOz7IdUkb5rX\naS/bI2Pv5Xu/3tGXF+JzNB7FOnuzHHm195z9m4Ub3gd0pQbbNuwGQDPvNhWiTSCoalhaWBkMqvQ8\n23wg3XwHYW5mQejNo7I9v/X2ITeyHX1338FlI1RQbBQbxslJ4J4vADh36xjRCQ/p2/plvKs3KHcd\nSozDgXJ1gXK1CV2GzBu1kvTMNCzMLOW18Tlp7uPD+vPZ5/lNsAbu/UI+HtvjvTLRmRvxORqPYkf2\nAH+8d0JeDga6pZbRCQ/xrFYb/06TKlCZQFC1qO3WiAaePtjmKPg9oW+AfNzE2zBXVe7qb+dvnyAu\nxwoctaV1GSkVFJcSOft9+/Yxc+ZMAgICOHfuHAAhISF8+OGHzJkzR7YBhIaG5msvDJVKRS3Xega2\n+1E3sbdxKonsYqPEOBwoVxcoV5vQlT/mBeSYP/TvoULvm7s6O13xy51fL1VNhVHR/VUQStRVIme/\nZcsW5s2bx4wZM1i9ejWSJBEUFMTs2bOZNWsWQUFBgG451po1a/LYjWHG0CUAfDLmV9mmsbIriWyB\nQFAARRUUMTczZ1K/OQBos3Lf3310Xb5uo7ZlSIdxZSdQUGxK5Oy9vb0JDQ3lxIkT+Pn5ER4ejqen\nJ2q1GrVajbu7OxEREQXajRJoZs6bz/+P2m6NeKXHuwBllq++KJQYhwPl6gLlahO68kc/sm9Yozkt\n63WU7Xpddd2b8GzzgdjbOBGXtXonOS1Rbvdqrw/KUW3F91dBKFFXiSZomzRpwoEDB9BqtXTq1ImE\nhAQ0Gg2BgYFIkoRGoyE+Pl4+zm338Mi7pTo/nmnSB0DkvxYIyhi9sx/fe6bBfBlADec6NKihS4RW\nza460QkP8+S46dJsQPkIFZhMsZ19REQE586dY/r06QB89NFHvPrqqyQlJTF+/HgAli9fjr29PVqt\nNl97YQQHB8vfjvr4V7s23UnLSJXPc18v63O9raJev6Dz7777jubNmytGT87z3H1X0Xr056GhoUye\nPFkxepTSX2YqnUsIOXuO2r0aGfTXV5P/ym6fbk5MwiNwh6DdK8jJk9RfBZ1X5N9XQaikYqaODA8P\nZ8WKFcyaNYuMjAxmzpzJvHnzmDt3LgEBAUiSJJ9rtVrmzJmTx14Qe/bsoVWrVsWRVabk/AJSEkrV\nBcrVJnTlT3pGGqO/6sDiCRsNdq7n1vXd1v/SuKYf3f2GGFSVK+/dsRXdXwVRUbpOnTpFjx498r1W\n7JG9p6cnTZo0YdasWQD0798ftVrN0KFDmTt3LiqVCn9/fwDMzMzw9/fPY69sKPGPCpSrC5SrTejK\nH30Yx9zc0DXk1lXNrjrRiY8MbN9P2VG24vKhovurIJSoq0Qx+xdeeIEXXnjBwObn54efn1+etr6+\nvvj6+pbk5QQCQRmjytq5nnMHe3442bmycvfn9Gn5koFNoFwUvalKaShx7SwoVxcoV5vQlT8qla5y\nVe4KVrl1OWdN3j6K062q6+n3Yjmoy0tF91dBKFGXcPYCgcBknGx1o/iHcfcB6NWycoZmnySEszcB\nJcbhQLm6QLnahK6CaVW/M3Y2jga23Lr0BU9uR14BoKZLnXLRlhsl9Fd+KFFXpUiEJhAIyo/3X/y6\nyDb6ME5sUhRP1WqZbxZMgbIQI3sTUGIcDpSrC5SrTegyjdy61JbWdGs+iKj4SINKVOVNZekvJSCc\nvUAgKBYOmmpExt7HWuxsrxQIZ28CSozDgXJ1gXK1CV2mkZ8uB40ztx9eqdB0xpWpvyoa4ewFAkGx\niEuKAsDKQuSurwwIZ28CSozDgXJ1gXK1CV2mkZ8u/Yi+Ikf2lam/Khrh7AUCQbFo2/BZANQWVhUr\nRGAUxU6EVpYoNRGaQCDIRitpGbGgLUM6vMbLnadUtBwBhSdCEyN7gUBQLPT5c2ISHhXRUqAEhLM3\nASXG4UC5ukC52oQu0yhI17KpuxnT/Z1yVpNNZeuvikTsoBUIBMVGnzZBoHxEzF4gEAiqCCJmLxAI\nBE84wtmbgBLjcKBcXaBcbUKXaQhdpqFEXSWK2UdFRbFkyRK0Wi3169dnzJgxhISEsHbtWrn8oI+P\nrhp9aGgoQUFBeewCgUAgKHtK5OxXrVrF8OHDadRIV4VekiSCgoIICAgAYP78+fj4+CBJEmvWrMlj\nr2woMd8FKFcXKFeb0GUaQpdpKFFXsZ29VqvlwYMHsqMHCA8Px9PTE7VaDYC7uzsRERFotdp87R4e\nHiWULxAIBAJjKHbMPi4ujrS0NBYsWMDHH3/MsWPHSEhIQKPREBgYyMqVK9FoNMTHxxdor2woMQ4H\nytUFytUmdJmG0GUaStRVbGdvb2+Pra0t77zzDjNnzmTdunVYW1uTlJTE8OHDGTFiBImJidjb22Nn\nZ5evvTBydlZwcLA4L+Q8NDRUUXoqw3loaKii9Cj9XPRX5emvgijROvtFixYxevRonJ2d+fDDD5k9\nezZz584lICAASZKYN28ec+fORavVMmfOnDz2gihsnX1CQgKxsbGoVKriyq6SmJub4+bmJvpFIHiC\nKWydfYkmaEeOHMkPP/xAUlISHTp0QK1WM3ToUObOnSuvugEwMzPD398/j91UHj9+DECNGjWEU8tF\nUlISkZGRuLu7V7QUgUCgQCrVDtr79+9To0aNClBUOVBi/wQHBytyZYLQZRpCl2lUlC6xg1YgEAie\ncMTIvgoh+kcgeLIRI/ty5ObNm7i4uPDXX3/luebr68v06dPz2F1dXRkwYAA9e/bk9ddfJyUlRb42\ncOBAzp49W6aaBQJB1Uc4+1Jm3bp1DBkyhPXr1xvYjx07RuPGjfnnn3/QarUG1zQaDVu2bGH37t3Y\n2dmxZMmS8pRcphizJKwiELpMQ+gyDSXqEs6+lNm8eTPz58/n6tWrBhvH1q9fz8iRI3n66afZv39/\ngff37NmTy5cvl4NSgUDwJCGcfSly9epVHBwccHd3Z8CAAWzbtk2+tmfPHvr168eLL77IunXr8r1f\nq9Wyfft2OnToUF6SyxwlrpQAoctUhC7TUKKuKlepqvePp0v8jJ3jWxbrvvXr13Pnzh369OlDSkoK\n58+f56WXXuLIkSPExMQwcOBAMjMzuX//PpmZmZibmwOQnJzMoEGDkCSJLl26MG7cuBK/B4FAIMhJ\nlXP2xXXUpcHGjRvZs2cPjo6OgO7bPS4ujnXr1rFw4UL69+8PwNtvv83evXvp1asXADY2NmzYsKHC\ndJclYh20aQhdpiF0GY8I45QSYWFh2Nvby44eoFu3bmzcuJGdO3fy7LPPyvbevXsXGMoRCASCsqDK\njewrivXr19O7d28DW+/evXnppZfo3LkzGo1Gtnft2pW3336b9PR0LC0ti3z25MmT5fv9/Pz48ssv\nS1d8GaK00Y0eocs0hC7TUKIusamqCiH6RyB4shGbqgQVhhLXG4PQZSpCl2koUZdw9gKBQPAEIMI4\nVQjRPwLBk40I4wgEAsETjnD2gjJFibFLELpMRegyDSXqEs5eIBAIngBKHLPPyMhg2rRpDBw4kD59\n+hASEsLatWvl8oM+Pj6Arih2UFBQHnt+iJh98RD9IxA82ZRZDVqAnTt3UrduXQAkSSIoKIiAgAAA\n5s+fj4+PD5IksWbNmjx2gUAgEJQOB65HY1/I9RKFcdLS0ggJCaFt27YAhIeH4+npiVqtRq1W4+7u\nTkRERIH2qoaLiwvffvstAKdPn8bFxYVDhw7J1xcuXEjPnj0ZMGAAU6dONbhXX8Ckf//+DBgwgD17\n9gAwb948+vfvT8+ePfHy8mLAgAEG15WOEmOXIHSZitBlGuWlS5IkNpx/SKZW4tLDpELblmhkv3Xr\nVvr27UtMTAwACQkJaDQaAgMDkSQJjUZDfHy8fJzb7uHhUZKXVxw2Njbs27ePKVOmsHr1aurVqydf\n+/fff9m7dy+7d+/O9159AZPczJ49G4A7d+4wfPjwfNsIBIKqz42oZOpUs0alUsm28Pg0vjl8l1qO\nVsSnZkAh2VeKPbJPSkoiLCyMFi1aALpvGDs7O5KSkhg+fDgjRowgMTERe3v7Au1VDTMzM3x9fTlx\n4gQ3btygYcOG8jVJkkhOTiYxMbECFZY/SswRAkKXqQhdplHaujK1EhP/DuPHY/cN7Fcf6Ubzy4/d\nIzIhrdBnFHtkHxYWRnp6OosWLSIyMhKtVkuTJk0IDw8HdM4tIiICDw8PtFptvvbCyJkiVP+TKOdI\nuSC+mLm9uG9J5t3/9S32vcOGDWPUqFFMnDjRYBTfqVMn+vfvT7du3Rg2bBgTJ07E1tZWvp4zp71K\npeLXX38t9heivr9y9584F+fivHKeX080A2wICo3kqbQbJGSoUNV4inuxKfg6pHMzTktyujUU4lZL\nZQftgQMHSElJoU+fPpw9e1ZejTN06FB8fX0BCAkJkVfj5LTnR2VdjePt7c3t27dZvXo1/fv3Z+LE\nibzxxhs888wzcpuEhAS++eYbtm7dyo4dO7C2tja4tyD0YZzCYoFK7B8l5vUGoctUhC7TKG1d685F\ncuZ+Aodvx9K5rhPXHydzLy4VgP/2qst/d90A4NNWUtmtxgFdyl49fn5++Pn55Wnj6+tbqIOvSgwb\nNqzAa3Z2dnzwwQecPXuWY8eO0aVLl3JUJhAIKiM3o1NoXcuew7dj+edGjME1Xw87o54hNlWVExkZ\nGaSnpwMQHx/P7du3jQpL5USBaYyKRImjLhC6TEXoMo3cuuJSMkhKyyzWsyRJ4tS9ePw8DZ36jG51\n2DauBXZWFrzaxrPI54jiJWVIzlnzGzduMGnSJDlsExAQQK1atYr9PIFAUDkIj0vllTUXaFvLgejk\ndN7o6EUTN9uib8ziw53XeZCQhreTtYG9Ux1HzM10PmF4Cw+Gt/Dg1KlTBT5HOPtSJHfM/ffff5eP\nGzZsWOja+MLi9QBeXl6KXVNcGE9KTLW0ELpMQ8m6nBq0oJm7LStO6FbQHL8bB8C0jZfp/5QLzjaW\njGntycztVzlxNx7/5m6MbePJo8R0qmkssbYwIy1Ty9E7cdR3sUGlUtGlrhPh8am0qumApblpgRnh\n7AUCgaCUCYs3Z83mK7jbqXmQkMa8PvWYveM6Xo5W3IlNZWvYYwCerVeNE3fjAQgKjcRMBX+GRNK4\nuoYlgxpz4Ho0rWva80m/BgDM7lG32JpEzF5Qpihx1AVCl6kIXcYjSRL/xDkA8CBr7XvbWg6426n5\nemAjud3Y1p6M/+siADvHt+RFn+r8GRIJwK3oFELCEzh8K45WNUtnT5Jw9gKBQFBKRCak8fHuG4TH\np8mTptvGtUClUvHLsGbYW+mCKRZmKoY2dzO4d0RLDwY1dWXqM7VIydDy7pYrBN+MoWu9aqWiTYRx\nBGWKkmOqQpfxCF3ZRCenExqegHc1a97ccJmf/Zuy/nykPCoH6Oaaxos+bnSs7SRPourZOb6lfLx+\njC/6dRf2Vha8/owXAA1cNLy16TIAbnbqUtEtnL1AIBCYwPKj99h9NZpGrhpSMrQM/+OcfC1oVHMc\nrS0IDg5GbWGGdzXrQp4EGrV5vvam7rYMbe5G21oOpaZbOHtBmaLE0SAIXaYidGVjZaGLfl9+lETb\nWg4cvxvHiz7VebVNDdRZ10pD14T2NUv8jJwIZy8QCARGcCcmBTMVHLkdx8LnGnLlcTJ9Gjnzx5kH\njGurrDQl+SEmaEuJCxcu0Lp1a4OsllOnTmXFihUkJyfzf//3f3Tp0oXOnTuzbt06uc2nn35KgwYN\nyMjIAHSpFgYNGlTu+ssKpe4NELpM40nXJUkSr629yKtBF3G1taSpuy2Dm1XHxtI8X0evxP4Szr6U\naNq0KaNGjeKjjz4CYN++fdy+fZtx48axZMkS3NzcOHjwIBs2bOB///sfjx/r1tmqVCqqVavG9u3b\niYyM5MaNGxX5NgSCJw5j0pCcuhcvH7fzcqiUu9mFsy9F3nzzTc6cOcP+/fuZPXs2S5YsAWD9+vVM\nmjQJAGdnZwYMGMCmTZvk+wYPHszff/9NUFAQ/v7+FaK9rBCxXtMQukzDFF3bwh6x4/JjA5skSfT5\n6Qz+v4YW6vT/DHlAyxp2/PDCU7zg41Zgu+LoKi+Esy9FzM3NWbx4MaNHj2bkyJHUrl0bgIiICLy8\nvOR2Xl5e3Lt3Tz53cnLCysqKrVu30r1793LXLRA8CSwMvsOXB2/z1cHbJKZlsv3SYzZdfARAbEoG\nFx4kkpahZdLfYby35QrXHycDcDc2hWuPk3mzoxd1nW2wLWAFjdKpchO02z2eKbpREfSNOFR0owKI\njo7GwsKCyMjsNbfG/OSbPn069+/fx8ysan3/ivXZpiF0mUZxdG2//Jh7camERiQA4OdpR6YkMX3z\nFYN2H++5zsLnGjEu6CL9GrtQ07HwZZQl1VXWVDlnXxJHXVJSU1N599132bBhA2+++SZnz57Fz88P\nDw8P7t69K2e5vH37NnXrGua4aNSoEY0aNeLMmTMVIV0gqNJ8e/guAC/6VOevcw9lRw/wTG3HrGLd\nusUVo1t5UM/Zho923+Dl389hY2nGW5288ntspaJqDSMrmE8//ZR+/frh6+vLF198wbRp08jIyGDI\nkCEsW7YMgKioKLZt28bzzz9fwWrLB6WNbvQIXaZRWXVpJYm/QiNZf/4hzdxtSc3Ijsv3a+yCq60l\nHes4Ma5tDb4Z3Jj/9qpL/6dc6VjHiW8GNwbA097K5AlZJfZXlRvZVxShoaFs376d/fv3A9CmTRs6\ndOjAokWLmDp1Km+88QZdu3ZFq9Uyc+ZMXFxcKlawQFDF0UoSH+++waFbsXwzuDENXTWEhCeQrtXS\nzL4+7VcAACAASURBVN2OXg2dDVIZuNmpaeiqkc8bumpYNLARjXLYKjPFrkG7bNkywsPDkSSJKVOm\n4ObmRmhoqFxn1t/fHx8fH4AC7QVRWWvQVjRK7B8lxi5B6DKVyqbr0K0YuS7r5/0b0KJG6WSOLKmu\nsubUqVOlX4N2woQJAJw7d46NGzfy2muvsWbNGgICAgCYP38+Pj4+SJKUr10gEAhKwr3YVA49tsD6\nbhxudmqDSk6f7L1J17pOPNfEFb9ydvRKpcRhHBsbGywsLAgPD8fT0xO1Wpehzd3dnYiICLRabb52\nDw+Pkr60oBKgxNEgCF2mUlG6LjxIpFF1DQ/iU1l//hEv+FTH08GKy4+SmLr+EmDF7u3XAPh1WDMc\nrC24EZWMhbkZH3Srg4VZxWx+UuLnWGJnv3fvXvr3709CQgIajYbAwEAkSUKj0RAfHy8f57YLZy8Q\nZHPsTixn7icwtrWnnEzrSSctU8tbmy7Tq6Ezu65EAbDhwkMmP12Ty4+S6NXQmWkdvRi75gKPktKZ\n8NdFktK1ALzbxbvCHL1SKZGzP3nyJDVq1KBmzZrcv3+fpKQkxo8fD8Dy5cuxt7dHq9Xmay+KnDEv\nfZ6JevXqlUTuE4O+v3L3X0Wc58wRogQ9+vPQ0FAmT55c7q+fnJ7JjL9P0cE5nZd7PcPeq1F8uv8W\nADUc1CRF3qFNtQyjnydJEl9vPoqPQwauDfyo5WTFpdPHKn1/RaaqWBvpCMCuK1F42WTy8XPN+en4\nfb47otuQuMK/CceOHGJ0DRULr2pkR9+uWjqWEReh0ZP391UYxZ6gvX79OsHBwYwZMwYArVbLnDlz\nCAgIQJIk5s2bx9y5cwu0F4aYoC0eSuyfyjaxV5YkpmUyZFUIAB1qO/J6h1qMWn1evj68hTv37txh\n9pD2Rj+z94+n89je6+pNr4YupGVoDX4lpGVqUZtYpFpPefXX/mvR/G/fTfl8iE91Tt2L561OXjRz\ntyMhNYNfT0fQo4EzDV01sq6Y5HTuxqbSzN1WEXlrlDhBW2xnP3XqVFxcXDAzM8Pb25tXX32Vs2fP\nsnbtWlQqFUOHDsXX1xeAkJAQeTVOTntBCGdfPET/KJvjd+KYteMaw/3cScvU4mFvxTeH7/LFgAaY\nqVRExKfx+YFb1HK0YoV/0yKfdz4igembrzD56Zp8d+QeC59vyPRNhrtA3+3iTe9GLuy7Fs0nWU50\n3RhfRW75j0pK553NV9CozVChYsmgRopw3JWJMlmNs3Tp0jw2Pz8//Pz88th9fX2LdPACQVVm5+XH\nfHHwNm52ltRysmLBgdsAfNijLr6eurBmPedMANIzix5/RSakMX3zFTp4OzLEx41u9avhZGPJq208\n+flEuNzui4O3qeVozZ9nH2CmAq0ES/69w3+61Sn192gqcSkZ/HziPuceJHIrOgUAc5Wu2pOdldgC\nVNqImaBSJCkpicmTJ9O7d2/69+/P8uXLAfj333+pX78+AwYMoFu3bixevFi+Z8KECXz33Xfy+dWr\nV3n66adJSkoqd/1lgRLzekP56krJ0PLFQZ1zD3ypGW62upVpzhoLOtV1kttp1OaM8UrmQUIaCakZ\nBT4vLUNLUFa90/900yXbc7KxBGB4Cw82jfVjuJ8768boBlhvbbrM9ahk/hrty6qXm7L3WjT341JN\neg+l3V8P4tN4a9NltoQ95lZ0Co1cNQzxqc7WcS1McvTi78t4xNdnKbJkyRJq1apl4Lz1tG/fnt9/\n/52UlBQGDBhA27Zt6dChA5999hm9evXi+eefp1atWkyfPp0FCxag0VSNXXtPOplaiYErzwKw47UW\nqFQqeZfmb8Py7jfx0mhxt1Oz71o0zzetnud6cnomgwJ1cf+Xfd2wscwbjrGyMOPVrIIaPw5twvi1\nFwGwVZtjqzanX2MXPt59ne9faFI6b9JEtJLEhL8v4u1kzeZX/bgdnYK3k7VYhVTGCGdfikiSRGxs\nbKFtrK2t6dy5M5cuXaJDhw5Uq1aNuXPnMn36dPr370+DBg3o3LlzOSkue5Q4OQulq0srSYz5UzfR\n+muWA38Qn8axO7FyvdLtWY4edCP4jWP9DLbq6+nauRO3T4UTlZz/yF7v6AEGNcv7ZZAbbydrtr/W\ngqS0TNn2oo8b4/+6SHRSOtU0lka9x5L016l7cZy6F8+IFh7suPyYGg5WpKRr+bhXPdTmZjQoQTqC\nJ+Hvq7QQzr4UeeONN3jnnXfo1q0bkyZN4uWXX87TJi4ujuDgYF566SXZ1q9fP9avX8/ixYs5ePBg\neUoWlJDEtEy+OHCLyIR0ABYcuMXwFu6MC7oot3m3izdmuSYarQsZxTpaW7A2NJKeDaoZpNX992YM\nAPP61KOdl6PRGs1UKoPQiHc13TNf/v0cO8e3NPo5ppCSocUMyNBKfH7gFlFJGawJyU77Pb5dDaO/\naASlQ5Vz9sM+b13iZ6x+/2Sx7rO1teX777/n7t27BAQEEBwcLFerOnbsGIMGDcLMzIxp06bRtKnh\naouHDx+SmZlJUlKSUfsQKgtVcellhlYiKS2T1Ewti4PvcPROHPP61GP2juvsuhIlbwACmN29Dl3q\nVTNJl2dtXyLi03g16wvDz9OOBi42/HXuIW1q2Zvk6Ivi1L04WtV0MEqXMf0lSRJhD5P+v70zj66j\nuvP8p7ZXb9N7kp72XbIt2cI2djAGYzNJAAMJOw5JCJOkGZj0kO6Z6SzDH510gD7N6T7p0+luOklP\nJp0hC0mHA43JNOAFmzWmsY3BNsiWd1nW/rQ96a213fmjpOcFA7axltj1OcfHUr2qel/de+t77/3V\nXfjWcwewHMHcWIBLysM8cGU1v2uLc3ltlEND6TPqlZwJF2L5miouOLM/V6M+n9TU1PCzn/2MlpaW\n/Ebiy5cv5ze/+c1pz3/iiScoLi7m4Ycf5tvf/ja/+tWvplOux1nQlcie1GoH+PHtLcwtCbLx/qXc\n9cS7JLIWn50f479fVXvaUM1HsaymgCfvWcgXfv0eALt6k+zqdddf/841jR926Rnzf9bM52v/1p7v\nkZwPfn9klL/c7C4+dmVdhDc7xzg4lOFPVtRQEvJx3/JqABZXhs/bd3qcORec2c8k6XQ6/2J13759\nlJaWoqofnsT9/f384Ac/YOPGjZSUlPDUU0+xdu1a7rjjjumQPOXMttbNJGery3YErx0Z4a9fdme7\nfvHScuaXBUnm7JNizo/d1sz//o9u/ufK2nMaIz6pqyig8Zu7L0EArx0epTiosrii4LyNj28oCnBp\nZZgfvN5JTVSnuTTIr3b0cktrKWVh3wfq+iD2DqTyRv/I6iZW1Ed5q2uM1rIQwSkc03+hlK/pwDP7\n88i6dev44Q9/SCgUIhAI8Pjjj3/kNQ8++CDf/OY3KSkpAeBv//Zvuf322/n0pz9NYWHhR1ztMR1k\nLYefvNnF8+1DXFkX4TvXNOZfvJ5KZYHOI9efn2U9SiaGaK5Z9NEbXJ8LqYmXtt987gD3XV7Fk7sH\n6Bs3+M61bu/h1Bm4k3Qncsiy+7eCu1jZn/37fmQJ1t93/B3AspqPDg95TB/nPIN2KvFm0J4bszF9\nZkPs0hEC2xFoJywV8Ke/3c7VC+r4wqXl7zu/bzzHU7sHWFAWYnlthAdfOIiuSjx6w5wpn+wznel1\n4vINJ/JXNzTx4oFhXj08ymdaYvzJVTX8+sWt3HvjCjpGMnzt39oBePyuVnyqxJd/28Ztl5Ry0/yS\nk5YZng5mQ/k6HbNxuQSvZe8xpYwYEmNZi4h/ZoraW11j/PnEErgA37uukZBPYX9SZf/2HiojPnRF\npmcsxzPvxQlqMkcmZnN2jGT5/qtHuaI2wl9e3/ShYZlMdz++WCGKXz/puJMzSHf2ICybxM69FMxv\nwl9TgV5aDLgvNLNdfaQOH2Pote04rTVn9HelDh9jeMsOYlcvA0liZNtuqu/6zFmlTcinIAGTrb27\nl5Tzrzv7+e6Gw/lz1u0b4o2jCRJZP9bWbp561x1Rc0VthHuf2gNAoV/lvmVV3jj5D0E4DuNtB/CV\nFqOXlyBJEnY2hzAtMsd6Sexqp/K261CCp68sheNgJdNokXN/3+G17C8gZlv62I7gM/93JyVBjZ9/\nvnXKzWB/PM2cWID2eIp//P0xJODISJavXFbJ4oowf/NyB4Np94Xkp5oKuawmwob9Q7zXl6Ku0E/n\naJZLK8N8+ROVLK4MI4RgNGsR9avIkoQQAmGY5AaGsDM5rGQaSVU48Nc/YfDlNwFo/Po9lN/8aUbf\nfo9k+2GGXt2OMTiCncmihILYqeMzo4NNtdjpDLm+Qff3xhrSR7rQK0tp/G93E2ysJXXwKD1Pr8cx\nDLJ9g8SuXka2e4D0kWOE5zcxuv1dJFVB2A5MPMpqQYhgYy12Os3Cf/gOvlgRgZoKZE1FCHFSpTWQ\nNMhZDrUTLfLOkSz3/9tevntNAyvrIzz2u10cxM+auRH+Zps7Gujh1W6Y6rc7+3ninT4euLKaOxZO\nTajpD5l0Zy+Dm9/g4A8ex4gPn/RZoLaSzLHjy1oEG6qxkmlCc+vI9sQJNzcQqK/CyRkk9x0h09lL\nrn+QhX//59TcffNpv2/o9bc4GpLP/0JoU4ln9ufGTKfPgcE0j205RjxpUBLysX8wTdSvksi6I5Ie\n/GQ94zmL8ZzNl5ZWoMoSjhBs7RxjeW2ENzsTtA+kuKElRk30g8MBgymDAl1FktzJS//rhQMMp0+e\nhHTd3CJiQY07F5ZRGFAZem07xvAoqYIoSnUFTQvqXfO2baxEEuE4KEE/aiiIEIJMZy+pg0eJb/4P\ncn1xMt39jO1qf58Wf3U5ZTdcTcmnlrPza9/FyRr5z2KfWk7lrddSfffN4DhIiuIOTXz4MY7+5EmU\ngJ+WR/4Hlbe7LTpZVcn2D/LKpbfm71F55/VElyyg/Xv/CEDp9asounwR1V+8Cb20GHMsiSRLKAE/\nPU9vYOj17SihIP6KEgY2biHxzp78vUJz60gd7CS8YA7Jvcd7O8ue/Af0shiDr27DyRkc/PtfILLZ\n/OeFyxczus0N96h11Vid3VTesZrFP3oISZbfV4GcSrYvjhEfJlBbiVboxvGFEBjxYfSyWP73U+9h\nDCcYfGUraiiAEILh3+/AMUyiS1qpuO0a1NDMzjIXQjC85W2E4+CLFZJsP0yuf4h0Rzdju9sZbz+E\nL1ZE1eduoOrOGwg21iBsh8P/9CvCLY2UXnslwhEI00KNhhl6dTvjew4SWdTM0OtvMbBxC5IkMffB\n+wk21mAlkmy780/y36+Xl6AWBEkf7UGYbvkve+GHntlfDMxE+jhCsC+e5pVDI6xti1MW1vjPSyvp\nHctRGdEJDOzlsuVX8sx7cZ54p++ka6siOp+dH+NftvXkj80vDdIeT7OyPspNC0pYUlVw0iYULx8a\n4YfP7KCi+yiBVBIJMC9ZwBfvvII6n2B8LI3T1o68Zx+Jt9sY3vI2enkJ5tg4TsZdD0YrjmIpMnIy\n47a4A35QZOxkmuovfJb00R7Sh48RmluPVhRBLy8hsrCZYEM1hZcvAgmEYSGEg6z7kCdGXDmWBQLM\nkUTexM6WE2O9djb3vrDQ2WKOJckNDHHkh0+ghALEVl7Gu3/2KNZYkkB9FZmjPae9Tvb7qPvqnQD4\nq8roSAwjP/My5bdcg5PNEd/0BukjXdT9l8+R2LWXxI42go01RBa3oJcWM/jqNlIHjhJsqCbd0Z3v\ntQBU330z420HGdvdTrilEVnXGdvdjl5egrAstOJCAjUVjO85iF5ewtjudoKNNRRduQS9PEZi5163\nB1QWI9HZja5qVN5+HXpZDGE7OIaBlUxjJ9M4pkmuf4hMdz+KX0cNBylasZSqNdcTrK9GOA7poz0E\nqsuRfccneWX7B/EVFyJrKo5pISkydiZH+nAnQ6/vIL75DexUhnRHF+boOACl164gNLeeQG0lHU6G\nlV9agxoOfaz8O5Xdf/oIPU9vwF9TQfVdn2F8zwF8JUWMvXuABY9+gyOK6Zn9xcCJ6ZOLD9P5+DP4\nSooI1JRTeNlCrPEkgdpKJOX9Q+FyA0MIIVCDAeSAjpPNIWsa6Y5u9MpSst39DL22ncHd+0mMZSj7\n0i28E6vjid1xABaWB/mjKoWWumIkRcFXHMWxLF7/xZPMi8bI9Q/RVVhCfUstWmKMFzrGyfbG2def\n5LJijap4L8F4P7qmEi+rYBdhek2JjnmtSMJh4Y7/YNlAB+mefoqsHGJeEwHLIFxUwNBLb54UIole\ndgkl/+lyQnPriS5tJXWok6Lli9Gi7mQ1O5Pjte//iHktLRRdvohgkztMMr7pDRK72gnUVVJxyzUf\n22jPhel+sdf3/15i59e+C8CCv/oG/qoyJFWldPVVJ7W0T9UlhODQ3/+cg9//KUrAT8k1V1Jx67Uk\n9x2h4ye/pXjFEso/+ym0wgL8laVEl7aS7uxlYN2rpI/2oBYEqbt3Dbm+QUa27ya2ahl2OoOvpBhz\neJSRbbspvmopkUUt79MsHIeRrbsQjuC9o4dZ3NxC978+R7YnTrCxBjUcRNg2/qpyZJ+KGinAX12G\nJMsk93fQu3YjQ69uP+me0SULKFqxlPG2AyQPdGAMjSIM86Rwi6Qo+KvKiH3ycvxV5USXLKD4qqWn\nLSez8QXtH5TZDw0NAVBcXOytc30KqVSKsZFRpJ37GVj/Oj1Pryd0yTxENoc5ksAcTqBGwgjbwU6l\nCdRVUXjZJVjjKTKdvaQ7u/MhCElT891CKRxCJFMA9M2Zx+H6ZkBw1UsvAJCNRAnaBmowgDBNrGQa\nYdno5SVYqTS+oij+6jLUUBBjZAwnm0NSVRzDQC+LoRRFkMGNK9dWICyb9JEurHSGbHyE0S07QFHI\nXfspXihv5pLFDfzp3SvyrWkAK5ki2xvHX1GK7NeRNW/cwZkihCB1qJNQY81pGwEfhZMzkPX3j8uf\n7WR7Bkge6EDx60Qvu4SuX/+7G1aqcHtxoXkNGIMjZDp7CNRWEGw4sxfnM80FY/YAyWSSRCIxu81e\nCBzTQjjHX5ohhNvFNC03fjsR60SI/HnCcT8XpoWdyoCE24WUZZAknKyBEG7sd/J8WVVxDJPMwaOM\n/OQprNJS3rrik7RVzWEkVkpQV5GBigIfRwbGuTecYnm5HyOZIbHp9xytrEfU1zB/5SJGLInaQj//\n3jbIhj19qLqPrAONhTq1RQFWzSlmYUWYooDKcMokvWsPav8AoTl1KEE/obn1SJKEsG0yXX04pkV4\nbv3HSko7nUX2+5BkmZzl4FOk2Z33Hh4zyB+k2c+PlROorUSYFpJPw05nsJJprPEURnwYSVPRS2PY\nmSxWMoUwLffzsSTWeApJU9EKwqjRMLJPwzFM7NTxe1jJFE42hy9WhHAcsr1xhGm6YY/aSre1IgSp\nI10k2w+T6ewh0dlDqLjQNe2cgREfxrFtZE1D1jVkn4YwLczEOL5YEY5pghBu+ECW0Qoj+IqjMGFW\nss+9RtI0ZFVBCQfxxQrxFUdRAn70ilL81eVueEKS0MtiWIEA//LOAP0pk4jkUFIYZM/+o7SldSRV\noSqis7gyzJeWVOAIwcuHRlhaVUDOctgzkMpvbKHKEpYjuLE5xrZjCYYzFlURtzvaVBzgv15Rha7I\nhHzKB04gOhNm6zjo1159nRVXXYWqymdceQghsEwHWZaQFfeayWszaQO/X0P6kOURHEfw7ltd7Hu3\nj5LyMKGJSUm5jImRs7Esm9GxOJcsbiYY8lE3J4Z2miWMJ7WMjWaIFgU/8gXp+WCm89GxHVJJA1WT\nsS2H1HgOAbzzzk6WXHopRSUh/IHjMXfbdrBMG9OwsSyHTMogmzFRVJmK6iiqpiBP4Ybkr7/+OqtW\nunsEy+e4FeS5MGvM/t13381vT3jXXXexcOH71/MG1+yH/+hhRDKFnc0hSRKSzzVvJRxELYwiCYdc\n/yBKKIgc0FF0HbUgiBYtQC0IYedMjMQ4uZEx7GQaNRxCCQfQCsJIwQCmpOLIKrn4MBICtaIcZAl/\nNgnJJMIwQAh8NVX4G2vx1VWz91gnzQ1zcJBA09BLCtHDAVRZ4FNAtm0kVUGOFmDbEqPDaXy6iu5X\nkRUJ23IYT2RJjuVQVBlNk7FMByTwBzQcW+A4DrYtsG0HxxbkDJtdPWN0DGboHs0gWw4VUZ1YyIeq\nysiyzMjoMKVlpVxeG5k4JqEoMrIiIcsyqiajqDLCERimA44gZ1hkTBu/LOPYzkRpAAkJ23YwDZts\nxiSdNJAVd9ihT1cJBDX8QR+O7eA4AscWpFMG6aRBLmsiyRI+XUVRJCRZorurm6qqKnJZC1VT0HwK\nCLAtB9t2jdM0bfc40LKwglCBjk9X0XQFVVXIZkws00YIyGVNsmkT07AxJx7mk342bSzj9MdNw8of\nz+UsFEXGcQShsI9AyOeuDhn1oygSRs7Gth2MrEU2a5LLWO41soTjCJjwCZ9PdY3FcvAHNIIhHz5d\nyafNZFrmshZGzkLVZFZcM5eh/qRr9hLofhWfrqKqMu/t3k8kVMJQPMlg3zhlVW6emoZNvD9JpNCP\nqirksibJsRz+gIZl2qiaQkGhH8cWCCGIFAaorI2SGM4QKQoQ7xsnlzHRfArBsI4su3kqyxKarlJT\nX0RZVYSCiH5ac/o4Zm8aNkMDSUaGUvnymBhOY+RswhEdy3TTz7ZsTNPBNCwsy023gd6xibJl4dNV\nbMvOlyPdr5FKJQn4gwz2J908lCUyKQMBaJqMqikoqow/oBEIaGSzFgM9YwSCGpW1hSiqDAJi5WFC\nYR+jw2nGEzkkCYpLQ/h0FSHANCzSKQNFcSsbw7DIZS0yKYNgyIdtOyRGMmTTJpbl5MsruM+2z6+i\naYpbRsI+dL9KLmuRzZg4tkBWJEJhHX9QQ5KOl6t00mB0OE02bTIynKYg6qcgohMtCpJK5vJlK1oc\nYCSeYumnwzNv9kIIvve97/EXf/EXADz66KM88sgjpz138+bNvP1SknRXH8HKEpAgZwj8QY100sBx\nBObk+tySu4SrJLmtLEV1H2BrwkDCET+yLJGbGP5n5NxCU1gcxOdX8QdUsmmTQMhHajxHvG8cy3Qz\nU5ZlNJ+CqrpmeeL/IGFZrnFksxa5jIltuabpPiyCYDQACKycjT1hEMKvga6iSmAZNrIqIwkQlo2Q\nJDK2wBYCC7AE5BxB2K9SGfVTVegnGNSQYcJMnIkK4njl4DjHj01WHJZp49jCHaKnyCiKhKzKx3+e\naOFMlgRZkVBVBW3CQIRwOyNGzi3wuYyFrExUKLKEP6gRKtDR/e6DYWRN7AnTAQnHcVBVtyVlGlZe\nh6zICMdB1RRMw6bz0BCjwxn3Ycq55mhZTr7CtG0HVZWJFgVRfa4+zTfx7zQ/qyceO+WcyVa4bTkk\nx7NkMxaWaZNOGdiWk893n1/DH1DdB1ZXURQ3/GZZDo7tpq+quqYynshi5KyJv9FNW0VxP9P9Krqu\nfmjL/1RGhlJk026r3zRtFEUiGNbzE6GKS0OkkwaBoIZp2gz1JycqL53hwRQDPWOMjWaIFAYIRXRK\nysOYhk1iOIPjOIwMuSay792TR0nJioSmKdi2Q7QoiG07jI9mKCkvoKgk6D4fOYvSygKiRQGS4zlG\nh9LkshaW6ZDNmOSyZr5SMg2bopKQe63lNhJkyW0M6BMmqKhuJaCqCj5dQVHd9A9HdIpKQoQK9A/s\n5cDxlj9AIORzGxsf0NuxbYfRoTR9XQmMnIXu1+g9NoptOxTGgoQjfhAwPJjCNFzfUFWFUETHsQWK\nIqH6FAIBLe8biiITKQoQDPnQfG5Zn/SibNrMNzoyEw0jw3C/1x/QUBSJTMZNp2zamHhmHRRVQvdr\nxMrCaJp7/2OHh+nrThApDBAtCqBpbsNiPJElVhamZ+DQzJt9T08Pzz77LF//+tcB+PGPf8ydd95J\nRUXF+87dvHkzXf5aZNshlzIRQuCoMnbOQtEU9LAP2REE/SqyLJMybA4NpUmmTTRAlSAlSaRNB8sR\nOAISWQu/KhPQ3PMTWQtjYq9PXXVDGoYlcIQgoCn4VRnfhBFODv1LGTZZ08F0XCPLWe7PAU2hosBH\n1rDdCTiyhICJe7oVQMSvUhzUiAU1d9x3ymQ4Y1Ib9WM7AtMRqLJEY3GAooBK0KcQ0mQCmkJRQL1o\n49TCEWdlkB7njhCCXNbiyP44RSUhFEUmkzYIhfV8j6i/J0EwrBMIagz0jjPQM0a0KIBPVyko9BMM\n+VA1hWhRAMu03d5gyIcyjaGMi5lZsVxCMpkkGAzyi1/8AiEEwWCQ8fHx05o9wOHhDI4Dsuy23FVL\nICmK22odzWHagqyVRgh355+GIj+FlQWYtmvAIc3dgk2V3VZ/1K+SsxwypkPIpxDxT8SiBWRtB02W\n8CkyiiwxnrPIWg72REVhOQIhYP97O7nqisvRJu6pKTJ+VT6nZWzPJzMdT/0wPq62qTL62ZpmM6lL\nkiT8AY0Fl75/ePOkrtqm4vyxxubzsyb9x8HLxzNn2lv2999/PwA//elPWbNmzQe27D08PDw8zp4Z\nb9lXVFTQ2+uOBBFC0NfX94Gt+g8S6+Hh4eFxbkzraJzdu3fnR+N87nOfY/HixdP11R4eHh4XNbNy\nnL2Hh4eHx/nFe0Xu4eHhcRHgmb2Hh4fHRYBn9h4XLF6E0sPjOJ7Zn4BpmliWO2NuthmFYRh5bbOJ\nbDZLJpOZaRnvY3LBPJhdeXmiltmk60Rmk64TtTiOM4NKTs9sSquPQnn44YcfnmkRs4G2tjYee+wx\nysvLKS8vn1UzVl944QVeeeUVamtrKSgomGk5eZ577jl+97vfUV5eTmnpzE+wmeSll17i7/7u7zh0\n6BCrVq2aNXn59NNPs2PHDgYHB2lq+vA9baeTZ599lvb2dgzDmFVl/5lnnmHHjh2MjIzQ0NAwa3S9\n9tprjI+PU1bmbsU4W3R9FF7LfoJwOIymaXR0dDAw4G6qPNO1diaT4Z//+Z/Zt28fd9xxB5WVqbjF\nhQAACI5JREFUlTOq50S6urp47733uPfee2ltbZ1pOQAMDw/z0EMPcfjwYb71rW/R2tpKLpebaVkI\nIdi8eTMDAwPceOONvPnmm3R0dMy0LBzHYcOGDXR1dbF06VLWr1/P22+/PdOyAHfaf3d3N6tXr2br\n1q288cYbGIbx0RdOMdu2beOll15i27Zt+aXWZ9onzpSL1uxPzaChoSFisRjFxcXs2ePu2zlTNfZk\ndzUQCBCNRlmxYgXl5eWMjIzMiJ5JTkyzgwcPsnDhQioqKujr6yMej8+Yrsn0Ki4u5qtf/Sr3338/\n4XCY3t5edH36d5s6VZckSRw8eJDm5mbKyspobm6eUeOa1CXLMt3d3SxZsoT6+nqWLVvGunXrSKfT\nH3GHqae9vZ1LL72UiooKrr/+ejo6Oujq6pppWcRiMe655x6qqqrYunUr8IfTsr/owjiGYfDLX/6S\nI0eOMD4+TnV1NeAaa09PD7FYjLGxMRRFIRqNTmtGTmrr6OggkUhQU1NDaWkpmzZtYufOnbz44ov0\n9/czPDxMfX09juNMi74T02xsbIyamhpkWWbt2rWMj4/z/PPPc+TIEXp6epg/f/60rK9+qq5kMkl1\ndTVFRUUARCIRXnnlFerq6ohEIlOu5XS6TszHsrIytmzZwq5duxgcHGR8fJyOjg5aWlqmPb06Ojry\n+ajrOmvXrqWnp4cDBw6QzWYxTZN58+ZNq66XX34ZVVWJRqMAqKrK22+/zejoKAcPHgTc3djmzZs3\nreX+VF2FhYWUlJTgOA7t7e1Eo1EKCwuxbRtZnt1t59mtbgrYtGkTqqqyfPlyXnjhBfbv348Qgq6u\nLkpLS7nyyivp6Ojg8ccfzy/vMBPa1q9fT3t7OxUVFSxfvpzKykoefPBBrrjiCt58800sy5q2wnWi\nrnXr1tHe3k5dXR2tra3s3r2bhx56iD/+4z9m+/btJJPJaasgJ3VdccUV+bycfImdyWRoamqadqM/\nUdeJ+VhXV8dNN91ENBrlG9/4BmvWrOGVV14hlUpNe3qdmI+tra088MADNDU18e1vf5sHHniAQ4cO\nYdv2tOhyHIf169fnQzWTvceysjKqq6vp7+/nK1/5CmvWrGHLli2Ypjkt5f6DdE1SUVFBVVUVbW1t\nwB9G6/6iM/u9e/dy3XXXUVNTw4oVK2hra2N4eJjGxkZeffVVfvSjH5HNZqmtrUU5hz05z6e2PXv2\nEI/HWb58ObfccguhUIiRkRFaW1tR1enbZ/VUXXv37iUej3Prrbdi2zY9PT10dnZSWlo6rSGA06XX\n4OAg4PbUDh48OCNd/9PpGhgYIBAIcODAATKZDH19fdTX12Oa5ozp2rt3L/39/VRXV3PVVVcBsHPn\nTpqamqat7MuyTGNjI3fffTeKovDWW28Bbs+spaWFY8eOMTw8TF9fH3Pnzp22+Pipunbs2AEcN/VI\nJMKSJUvYv38/Dz30ELt27ZoWXR+HCzqMMzg4yM9//nP6+/txHIeSkhLS6TRtbW10dXUxODhIOp1G\nVVVqa2sZGxtjxYoV3HzzzcybN49YLDbj2nw+H9XV1aTTaR5//HF27drFihUr8iMBZkqXoijMmTOH\nSCTC0aNHWbduHatXr2bu3LkzpiuVSuH3+/OhudHRURRFoaZm6jaLPtP08vv9NDc3Mzo6ysaNG9my\nZQs33HADjY2NM6pL1/V8+fr1r3/Nnj17WLly5ZSNrjpRF7gx8FgsRlFREdlslr1799LY2EgwGKS4\nuBjbttm6dSubNm3i2muvzeftdOvas2cPjY2N+P3+fO9x48aN9Pb2cuutt7J06dIp0XU+uWDN3rIs\nnnrqKerq6qipqeHZZ5+lubmZwsJC+vrcnXk+//nPEwgEePHFF1m1ahULFizIG/xUvtg7G20bNmxg\n5cqVaJqGEIIvfvGLU2b0Z6tr1apVVFVVMWfOHD75yU9O2Wihc0kvcEdYLViwYEo0na2u9evXs3Ll\nSlpaWmhsbOTWW2+dVemlae7+rV/4whemzOhP1bV27Vqam5sJh8PudoWqSjweJ51OU1tbC0BDQwOt\nra1cf/31H7hK7nTrkmV332JN07jtttumTNf55oIL4xw9ehQA27bp7OzkxhtvZPHixcyZM4e2tjZ8\nPh9NTU3s27cPcEfhzJ07Nz9CYSq7ieeirbm5Gdt2t2BctmzZrNE1+WJxKjnX9JrMy6qq92/CMRt0\nTZU5fNzytWTJkmnXtXv3bsbGxgA3Tr9o0SI2bdrEo48+mg/B+Xy+WaWrs7MTYMp6sVPFBbPqZUdH\nB8888wypVIqGhgZWr17Ntm3bcBwHIQTZbJZUKsXq1aupr6/n6aefJpFI0NXVxX333TelXf3Zqs3T\n5emaTbqSySRPPvkkiUSCO++8k4aGhotK11RzwZj9tm3bUFWVJUuW8MYbbzA4OEhrayvbtm2jvr6e\nq6++mueee46RkRG+/OUvu/tt5nL4/f6LVpuny9M107qef/55RkdHueeeezAMg+7u7il7jzHbdU01\nF0wYZ/ny5XziE59AlmVkWaayspKGhgZKS0vzk6QMw8h3vSRJmhajn83aPF2erpnWlcvlaGpqAtxw\nzXQY6mzVNdVcMGYPJ888jcfj+Hw+brjhBkKhEI899hhHjhxh0aJFnjZPl6fL0zUrdU0lF0wY50Te\neustysvLCQaD9Pf309raSjqdJhgMzrS0WavN0+Xp8nTNHl1TwfTNzJlGBgcH2bBhA47jcNNNNwHM\nmsybrdo8XWeHp+vs8HTNPBek2R84cICWlhZuv/32aZ1peibMVm2errPD03V2eLpmngsyjOM4zqxd\nlGi2avN0nR2errPD0zXzXJBm7+Hh4eFxMhdHlebh4eFxkeOZvYeHh8dFgGf2Hh4eHhcBntl7eHh4\nXAR4Zu/h4eFxEeCZvYeHh8dFgGf2Hh4eHhcB/x9b/BmX0pXwVAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"close_px.plot()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEQCAYAAABRDdSSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFNxJREFUeJzt3WuMXPdZx/HvbN2kRbGbYtqoASQIa3hptKiAWkNbxq3A\nChe18FQVqKiNBAmXSFVxAuXSXb/IiwasBqqGwhtuKvC0EiCBqe2s05qtUEEsShdBUywQSE0gYMHU\nUXOBZnhxzsL2sOPdnfP33M73I1nZ88x45r9PZn/79zNnZnrD4RBJ0mJbmvYCJEk3nmEvSR1g2EtS\nBxj2ktQBhr0kdYBhL0kdcGivK0TECeAs8PHMvG9H/Sbgs8D7MvODda0PrAJDYDUzL12vLkmajD3D\nHrgZeAB4TaN+N/BX2wcR0QPOAH2gB5wHLo2qt165JGnf9hzjZOY68B87axHxUuBNwB/tKB8DHs/M\nZzPzGeBKRCxfpy5JmpD97Ox3cy/wAeC2HbWjwCAizlLt4Ad1bWlE/cq4i5YkHcyBn6CNiCPAt2Xm\nxxoXXQVuBd5T/3l5XRtVlyRNyEF29r36vyeAmyPiw8AdwIsi4uPAZ6hGNtvXXc7MKxGxtFv9ene0\nvr7uG/ZI0hj6/X5vt/p+zsa5H/gu4LaIOJKZPwqcqy97O3BLZv5tfbwGPEJ11s0aQGa+sFt9Lysr\nK/u5miSptrm5OfKy3iy+6+X6+vpwHsJ+Y2ODEydOTHsZC8N+lmMvy5qXfm5ubo7c2fuiKknqAHf2\nkrQg3NlLUscZ9i1sbGxMewkLxX6WYy/LWoR+GvaS1AHO7CVpQTizl6SOM+xbWIQ53iyxn+XYy7IW\noZ+GvSR1gDN7SVoQzuwlqeMM+xYWYY43S+xnOfayrEXop2EvSR3gzF6SFoQze0nqOMO+hUWY480S\n+1mOvSxrEfpp2EtSBzizl6QF4cxekjrOsG9hEeZ4s8R+lmMvy1qEfhr2ktQBzuwlaUE4s5ekjjPs\nW1iEOd4ssZ/l2MuyFqGfh/a6QkScAM4CH8/M++rarwLfAPSAd2TmP9b1PrAKDIHVzLx0vbokaTL2\nDHvgZuAB4DXbhcy8GyAi3gDcB9wTET3gDNCn+iVwHrg0ql7we5iaEydOTHsJC8V+ltPlXj75+ed4\n6unni97m4TuO89gT14re5itvuYlXHbm56G1ez55hn5nrEfG6ERdfA56rvz4GPJ6ZzwJExJWIWKYa\nFf2/emZeab98SfpSTz39PKfPzX68PHhqebbCfg93AQ/VXx8FBhFxlmoHP6hrSyPqs/9/Yw8bGxud\n3kGVZj/LsZdqGjvsI+JOqh37Z+rSVeBW4B6qUH+4ri2NqF/Xzgfr9pMjs3a8c62zsJ55P942K+uZ\n5+Otra2ZWs8kjweDAfOk9Pc/yr7Os6/HOHdm5un6+JuAt2XmT+24zhJwGThJFfAXMvPEqPr17s/z\n7CWN67Enrs3NGOf47YeL3mar8+wj4n5gDbgzIj5Ulz8CvDoiHo2IhwAy84X6eo9QPQm7dr26JGly\nfAVtC85Fy7Kf5XS5l+7sfQWtJHWWYd9CV3dON4r9LMdeqsmwl6QOMOxbWIT3y5gl9rMce6kmw16S\nOsCwb8G5aFn2sxx7qSbDXpI6wLBvwbloWfazHHupJsNekjrAsG/BuWhZ9rMce6kmw16SOsCwb8G5\naFn2sxx7qSbDXpI6wLBvwbloWfazHHupJsNekjrAsG/BuWhZ9rMce6kmw16SOsCwb8G5aFn2sxx7\nqSbDXpI6wLBvwbloWfazHHupJsNekjrAsG/BuWhZ9rMce6kmw16SOsCwb8G5aFn2sxx7qaZDe10h\nIk4AZ4GPZ+Z9da0PrAJDYDUzL41TlyRNxp5hD9wMPAC8BiAiesAZoA/0gPPApYPWy34b0+FctCz7\nWY69VNOeY5zMXAf+Y0fpGPB4Zj6bmc8AVyJieYy6JGlC9rOzbzoKDCLiLNVOfVDXlg5Yv9J++dO1\nsbHhDqog+1mOvVTTOGF/FbgVuIcqvB+ua0sHrF/Xzgfr9pNNs3a8c62zsJ55P942K+uZ5+Otra2Z\nWs8kjweDAfOk9Pc/Sm84HO65mIh4HXBnZp6OiCXgMnCSKsgvZOaJg9avd3/r6+vDlZWVPdclSU2P\nPXGN0+dmf3Dw4Klljt9+uOhtbm5u0u/3e7tdtufMPiLuB9aAOyPiQ5n5AtUTro9QPdm6BlDX1/Zb\nlyRNzr529pM2Lzt756Jl2c9yutxLd/Zj7uwlSfPPsG+hqzunG8V+lmMv1WTYS1IHGPYt+P4jZdnP\ncuylmgx7SeoAw74F56Jl2c9y7KWaDHtJ6gDDvgXnomXZz3LspZoMe0nqAMO+BeeiZdnPcuylmgx7\nSeoAw74F56Jl2c9y7KWaDHtJ6gDDvgXnomXZz3LspZoMe0nqAMO+BeeiZdnPcuylmgx7SeoAw74F\n56Jl2c9y7KWaDHtJ6gDDvgXnomXZz3LspZoMe0nqAMO+BeeiZdnPcuylmgx7SeoAw74F56Jl2c9y\n7KWaDrX5yxHxDuBu4L+An8/MRyPiJPBeYAisZual+rp9YLVZlyTdeK3CHngX8I3ALcDHIuK1wBrQ\nB3rAeeBSRPSAM816y/ueOueiZdnPcuylmtqOcT4NnAS+hyrAjwGPZ+azmfkMcCUilq9TlyRNQNud\n/Z8BP0z1S+N3gaPAICLOUu3gB3VtaUT9Ssv7n6qNjQ13UAXZz3LspZrGDvuI+DrgOzLzrfXxo8C9\nwK3APVSh/jBwlSrsd6uPtPPBuv1k06wd71zrLKxn3o+3zcp65vl4a2trptYzyePBYMA8Kf39j9Ib\nDodjLTAijgG/kpnfGREvBv4CeA1wkWq0swRcyMwTEbEEXG7WR932+vr6cGVlZax1Seq2x564xulz\nsz80ePDUMsdvP1z0Njc3N+n3+73dLht7Zp+Zfw9cjog/pxrnvL+ex58BHqGa4a/V132h/vpL6pKk\nyWg1s8/MB4AHGrULwIVdrnuRate/MJyLlmU/y7GXavJFVZLUAYZ9C+6cyrKf5dhLNRn2ktQBhn0L\nvv9IWfazHHupJsNekjrAsG/BuWhZ9rMce6kmw16SOsCwb8G5aFn2sxx7qSbDXpI6wLBvwbloWfaz\nHHupJsNekjrAsG/BuWhZ9rMce6kmw16SOsCwb8G5aFn2sxx7qSbDXpI6wLBvwbloWfazHHupJsNe\nkjrAsG/BuWhZ9rMce6kmw16SOsCwb8G5aFn2sxx7qSbDXpI6wLBvwbloWfazHHupJsNekjrAsG/B\nuWhZ9rMce6mmQ23+ckR8JfDb9e38ZWa+OyJOAu8FhsBqZl6qr9sHVpt1SdKN1yrsgV8EfjYz/xwg\nInrAGtAHesB54FJdP9Ost7zvqXMuWpb9LMdeqmnsMU5ELAHL20FfOwY8npnPZuYzwJWIWL5OXZI0\nAW129q8AXhIRfwAcAT4A/AswiIizVDv4AXCU6pfKbvUrLe5/6jY2NtxBFWQ/y7GXamoT9leB/wTe\nUt/OJ4F3ArcC91CF+sP19ZZG1Efa+WDdfrJp1o53rnUW1jPvx9tmZT3zfLy1tTVT65nk8WAwYJ6U\n/v5H6Q2Hw7EXGREfBk5n5uci4s+ANwEXgZNUAX8hM0/UI5/Lzfqo211fXx+urKyMvS5J3fXYE9c4\nfW72hwYPnlrm+O2Hi97m5uYm/X6/t9tlbU+9/Gng1yNiA/hIPY8/AzxC9STsGkBmvlB//SV1SdJk\ntDobJzP/GTjVqF0ALuxy3YtUu/6F4Vy0LPtZjr1Uky+qkqQOMOxbcOdUlv0sx16qybCXpA4w7Fvw\n/UfKsp/l2Es1GfaS1AGGfQvORcuyn+XYSzUZ9pLUAYZ9C85Fy7Kf5dhLNRn2ktQBhn0LzkXLsp/l\n2Es1GfaS1AGGfQvORcuyn+XYSzUZ9pLUAYZ9C85Fy7Kf5dhLNRn2ktQBhn0LzkXLsp/l2Es1GfaS\n1AGGfQvORcuyn+XYSzUZ9pLUAYZ9C85Fy7Kf5dhLNRn2ktQBhn0LzkXLsp/l2Es1GfaS1AGGfQvO\nRcuyn+XYSzUdansDEXET8FngfZn5wYg4CbwXGAKrmXmpvl4fWG3WJUk3XuuwB+4G/gogInrAGtAH\nesB54FJdP9OsF7jvfXvy88/x1NPPF73Nw3cc57EnrhW9zVfechOvOnJz0ducF86Zy7GXamoV9hHx\nUuBNQAK3AMeAxzPz2fryKxGxTDUu+n/1zLzSavUH8NTTz3P63MTubmwPnlrubNhLunHa7uzvBT4A\n3FYfHwUGEXGWagc/qGtLI+qzn76amI2NDXekhdhLNY39BG1EHAG+LTM/Vpd6wFXgVuA99Z+X17VR\n9ZF2PsG0sbHR+ngwGIzxXU5Hie/X424fb21tzdR6Jnk8Tz/rUP77H6U3HA7HWmBEnALeBfwbcAfw\nIuAu4IPASapfJBcy80RELAGXm/VRt72+vj5cWVkZa12jPPbEtbkZ4xy//fC0lyHNrS7/rG9ubtLv\n93u7XTb2GCczzwHnACLi7cAtmfnpiDgDPEJ11s1afd0XImKtWZckTUaJs3HIzN/a8fUF4MIu17kI\nXCxxf1pMzpnLsZdq8kVVktQBhr1mhjvRcuylmgx7SeoAw14zw/dzKcdeqsmwl6QOMOw1M5wzl2Mv\n1WTYS1IHGPaaGc6Zy7GXajLsJakDDHvNDOfM5dhLNRn2ktQBhr1mhnPmcuylmgx7SeoAw14zwzlz\nOfZSTYa9JHWAYa+Z4Zy5HHupJsNekjrAsNfMcM5cjr1Uk2EvSR1g2GtmOGcux16qybCXpA4w7DUz\nnDOXYy/VZNhLUgcY9poZzpnLsZdqOjTuX4yIXwW+AegB78jMf4yIPrAKDIHVzLxUX3fXuiRpMsYO\n+8y8GyAi3gCcjogfB84AfapfAOeBSxHR263ect1aQM6Zy7GXaioxxrkGPA8cAx7PzGcz8xngSkQs\nX6cuSZqQsXf2O9wFPAQcBQYRcZZqBz+oa0sj6lcK3LcWyMbGhjvSQuylmlrt7CPiTqpd+2eAq8Ct\nwHvqPy+va6Pq17XzCaaNjY3Wx4PBYJxvcSpKfL8ed/t4a2trptYzyeN5+lmH8t//KL3hcDjWAiPi\nm4C3ZeZP1cdLwGXgJNUvkQuZeWJU/Xq3vb6+PlxZWRlrXaM89sQ1Tp+b/X9MPHhqmeO3H572MqS5\n1eWf9c3NTfr9fm+3y9rs7D8CvDoiHo2IhzLzBaonYh+hehJ2DaCurzXrkqTJaXM2zh271C4AF3ap\nXwQujntf6gbnzOXYSzX5oipJ6gDDXjPDnWg59lJNhr0kdYBhr5nh+7mUYy/VZNhLUgcY9poZzpnL\nsZdqMuwlqQMMe80M58zl2Es1GfaS1AGGvWaGc+Zy7KWaDHtJ6gDDXjPDOXM59lJNhr0kdYBhr5nh\nnLkce6kmw16SOqDEZ9BKRXT5Pdif/PxzPPX088VubzAY8LKXvazY7QG88pabeNWRm4vepibHsJdm\nwFNPP38DPkrv34re2oOnlg37OeYYRzOjq7t6aRIMe0nqAMNeM8Nzw6Ubx7CXpA4w7DUznNlLN45h\nL0kdMNFTLyOiD6wCQ2A1My9N8v5VTunzwsFzw6UbaWJhHxE94AzQB3rAecCwn1M35rxw8Nxw6caY\n5BjnGPB4Zj6bmc8AVyJieYL3L0mdNckxzlFgEBFnqXb2g7p2I7aHkqQdJhn2V4FbgXuowv7huiZJ\nusF6w+FwIncUEUvAZeAk1fjoQmbueq7d+vr6ZBYlSQum3+/3dqtPLOwBIuKNwHupzsY5k5kXJ3bn\nktRhEw17SdJ0+KIqSeoAw16SOsCwl6QOMOwlqQMMe0nqAD+DVlMRET+amR+a9joWQUR8+6jLMvPy\nJNei2eXOvqWIyGmvYU69ddoLWCB/DPwy8L3AncB313/unOai5llEfPeI+tsnvZZS3Nm3t+ur1bSn\nr4qIH9vtgsz84KQXM+duA76H6h1lP5eZa1NezyJ4fUT8IPCuzHwyIr4eeAj41JTXNTbDfp8i4stG\nXOS/jsbzReBp/GVZwlHgq6kei09OeS0LITPfHRHHgd+IiM9R9fgnM3Nu37jRsN+/P6F6m4ftcNr+\n2pcgj+dfMvO3pr2IBfFPwN8AnwXeGBEnqR+bmRlTXdl8+wrgJcBTwNcAXz7V1bRk2O9TZr5h2mtY\nML897QUskDumvYBFExG/A3wB+N7M/M+IuA34pYj4Qmb+yJSXNxbfG+cAIuIVwHOZ+flpr0XaKSIO\nA99CNW64CnwqM69Nd1XzKyJel5mf2KV+MjMfmcaa2nLevE8R8W7gD4E/iYjvn/Z65l1EfHTH1z8z\nzbXMu4gIqo/5/HbgVcDrgPN1XWPIzE9ExCsi4kijPpdBD4b9QfxAZr6W6oyHe6a9mAVwdMfXb5za\nKhbDTwKvz8xfyMz3Z+bPA28A7p3yuubWIm7unNnv3/MR8VKqJ74O7fiazPzCVFc2n5bqHi4BL7Kf\nrbxol9oLuJlr4wcy81sj4ibgT4GP7vUXZp1hv39fpDojp0f1g7T99RD4jimua17t7KH9bOf9wCcj\n4mPAv1OdRdKnOi9c41m4zZ1hv0+ejVOW/SzqGapw336C9u+AB4Hvm+ai5lxzc3eurs/tZsSwH1P9\nmbqvB96cmT8x5eWo214PNF/t+fvM8as9p20RNyOeenkAEfFi4E3AW+r/XgA+PM/P0E9LRNyTmQ/X\nX38L1Xu7LAH3Z+alqS5uDtWv9nwfsP1qz3fP86s9p63x+Pxm4FeoHp/3ZeajU13cmNzZ71NE/B7w\ndcAngQSOZOY7p7uqufb9wMMR0QN+lurskSWqfzob9ge3UK/2nAE7H58/x5c+Pucy7H22fv+eozrr\n4cX1f/0nUTsvqc9hvgv4aGZ+ITOfppqP6gDqV3u+lerVnj8NvA24NyJ+bborm2sL9/h0Z79PmfnD\nEXGI6jf8m4FXR8RvUo1xzk93dXNpleqFQJ8G7ob/fR7kr6e4pnn16ztf7ZmZ/wr8UP0eORrPKgv2\n+HRmP6Z6fn8/8LWZede01zNv6g/c2Pmmcv/LD9yQynNnfwCjnqCd6qLm1x8D/wCsU53mtjP4DXup\nMMN+n3yCtjg/cEOaIJ+g3T+foC3LD9yQJsiZ/QE0nqD9LuAT+ATtWCLii/zfB27Ajg+D8QM3pPIc\n4xxAZv43cBG4WJ9/+1qq4DfsD84P3JAmyJ29JHWAM3tJ6gDDXpI6wLCXpA4w7CWpAwx7SeqA/wHx\nCDSfUx1xZwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"close_px.ix[-1].plot(kind='bar')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"2011-09-12 NaN\n",
"2011-09-13 NaN\n",
"2011-09-14 NaN\n",
"2011-09-15 NaN\n",
"2011-09-16 NaN\n",
"Name: AAPL, dtype: float64"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s1 = close_px['AAPL'][-20:]\n",
"s2 = close_px['AAPL'][-25:-10]\n",
"(s1+s2).head()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"2011-09-12 379.94\n",
"2011-09-13 384.62\n",
"2011-09-14 389.30\n",
"2011-09-15 392.96\n",
"2011-09-16 400.50\n",
"Name: AAPL, dtype: float64"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s1.add(s2, fill_value=0).head()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" AAPL | \n",
" MSFT | \n",
" SPX | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2011-10-03 | \n",
" 374.60 | \n",
" 24.53 | \n",
" 1099.23 | \n",
"
\n",
" \n",
" | 2011-10-04 | \n",
" 372.50 | \n",
" 25.34 | \n",
" 1123.95 | \n",
"
\n",
" \n",
" | 2011-10-05 | \n",
" 378.25 | \n",
" 25.89 | \n",
" 1144.03 | \n",
"
\n",
" \n",
" | 2011-10-06 | \n",
" 377.37 | \n",
" 26.34 | \n",
" 1164.97 | \n",
"
\n",
" \n",
" | 2011-10-07 | \n",
" 369.80 | \n",
" 26.25 | \n",
" 1155.46 | \n",
"
\n",
" \n",
" | 2011-10-10 | \n",
" 388.81 | \n",
" 26.94 | \n",
" 1194.89 | \n",
"
\n",
" \n",
" | 2011-10-11 | \n",
" 400.29 | \n",
" 27.00 | \n",
" 1195.54 | \n",
"
\n",
" \n",
" | 2011-10-12 | \n",
" 402.19 | \n",
" 26.96 | \n",
" 1207.25 | \n",
"
\n",
" \n",
" | 2011-10-13 | \n",
" 408.43 | \n",
" 27.18 | \n",
" 1203.66 | \n",
"
\n",
" \n",
" | 2011-10-14 | \n",
" 422.00 | \n",
" 27.27 | \n",
" 1224.58 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" AAPL MSFT SPX\n",
"2011-10-03 374.60 24.53 1099.23\n",
"2011-10-04 372.50 25.34 1123.95\n",
"2011-10-05 378.25 25.89 1144.03\n",
"2011-10-06 377.37 26.34 1164.97\n",
"2011-10-07 369.80 26.25 1155.46\n",
"2011-10-10 388.81 26.94 1194.89\n",
"2011-10-11 400.29 27.00 1195.54\n",
"2011-10-12 402.19 26.96 1207.25\n",
"2011-10-13 408.43 27.18 1203.66\n",
"2011-10-14 422.00 27.27 1224.58"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = close_px.ix[-10:, ['AAPL', 'MSFT', 'SPX']]\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"AAPL 389.424\n",
"MSFT 26.370\n",
"SPX 1171.356\n",
"dtype: float64"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## apply"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"2011-10-03 499.453333\n",
"2011-10-04 507.263333\n",
"2011-10-05 516.056667\n",
"2011-10-06 522.893333\n",
"2011-10-07 517.170000\n",
"2011-10-10 536.880000\n",
"2011-10-11 540.943333\n",
"2011-10-12 545.466667\n",
"2011-10-13 546.423333\n",
"2011-10-14 557.950000\n",
"dtype: float64"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.apply(np.mean, axis=1)\n",
"#df.mean(1)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Timestamp('2007-10-09 00:00:00')"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"close_px.SPX.idxmax()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"### Dates"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" b | \n",
" a | \n",
" c | \n",
" d | \n",
"
\n",
" \n",
" \n",
" \n",
" | 2000-01-01 | \n",
" foo | \n",
" -0.025291 | \n",
" -0.148188 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2000-01-02 | \n",
" bar | \n",
" -0.906232 | \n",
" 0.513582 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2000-01-03 | \n",
" foo | \n",
" 0.367118 | \n",
" -0.523249 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2000-01-04 | \n",
" bar | \n",
" -0.660170 | \n",
" -2.313452 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2000-01-05 | \n",
" foo | \n",
" 1.204531 | \n",
" 0.129450 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2000-01-06 | \n",
" bar | \n",
" 0.284837 | \n",
" -1.768297 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" b a c d\n",
"2000-01-01 foo -0.025291 -0.148188 NaN\n",
"2000-01-02 bar -0.906232 0.513582 NaN\n",
"2000-01-03 foo 0.367118 -0.523249 NaN\n",
"2000-01-04 bar -0.660170 -2.313452 NaN\n",
"2000-01-05 foo 1.204531 0.129450 NaN\n",
"2000-01-06 bar 0.284837 -1.768297 NaN"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({'a': np.random.randn(6),\n",
" 'b': ['foo', 'bar']*3, \n",
" 'c': np.random.randn(6)},\n",
" index=pd.date_range('1/1/2000', periods=6),\n",
" columns = ['b', 'a', 'c', 'd'])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Baby names "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"names = pd.read_csv('data/baby-names2.csv')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
"
\n",
" \n",
" \n",
" \n",
" | 257995 | \n",
" 2008 | \n",
" Carleigh | \n",
" 0.000128 | \n",
" girl | \n",
" C642 | \n",
"
\n",
" \n",
" | 257996 | \n",
" 2008 | \n",
" Iyana | \n",
" 0.000128 | \n",
" girl | \n",
" I500 | \n",
"
\n",
" \n",
" | 257997 | \n",
" 2008 | \n",
" Kenley | \n",
" 0.000127 | \n",
" girl | \n",
" K540 | \n",
"
\n",
" \n",
" | 257998 | \n",
" 2008 | \n",
" Sloane | \n",
" 0.000127 | \n",
" girl | \n",
" S450 | \n",
"
\n",
" \n",
" | 257999 | \n",
" 2008 | \n",
" Elianna | \n",
" 0.000127 | \n",
" girl | \n",
" E450 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" year name prop sex soundex\n",
"257995 2008 Carleigh 0.000128 girl C642\n",
"257996 2008 Iyana 0.000128 girl I500\n",
"257997 2008 Kenley 0.000127 girl K540\n",
"257998 2008 Sloane 0.000127 girl S450\n",
"257999 2008 Elianna 0.000127 girl E450"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"names.tail()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 1880 | \n",
" John | \n",
" 0.081541 | \n",
" boy | \n",
" J500 | \n",
"
\n",
" \n",
" | 1 | \n",
" 1880 | \n",
" William | \n",
" 0.080511 | \n",
" boy | \n",
" W450 | \n",
"
\n",
" \n",
" | 2 | \n",
" 1880 | \n",
" James | \n",
" 0.050057 | \n",
" boy | \n",
" J520 | \n",
"
\n",
" \n",
" | 3 | \n",
" 1880 | \n",
" Charles | \n",
" 0.045167 | \n",
" boy | \n",
" C642 | \n",
"
\n",
" \n",
" | 4 | \n",
" 1880 | \n",
" George | \n",
" 0.043292 | \n",
" boy | \n",
" G620 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 129995 | \n",
" 1880 | \n",
" Emaline | \n",
" 0.000041 | \n",
" girl | \n",
" E545 | \n",
"
\n",
" \n",
" | 129996 | \n",
" 1880 | \n",
" Ester | \n",
" 0.000041 | \n",
" girl | \n",
" E236 | \n",
"
\n",
" \n",
" | 129997 | \n",
" 1880 | \n",
" Eulah | \n",
" 0.000041 | \n",
" girl | \n",
" E400 | \n",
"
\n",
" \n",
" | 129998 | \n",
" 1880 | \n",
" Eulalie | \n",
" 0.000041 | \n",
" girl | \n",
" E440 | \n",
"
\n",
" \n",
" | 129999 | \n",
" 1880 | \n",
" Euna | \n",
" 0.000041 | \n",
" girl | \n",
" E500 | \n",
"
\n",
" \n",
"
\n",
"
2000 rows × 5 columns
\n",
"
"
],
"text/plain": [
" year name prop sex soundex\n",
"0 1880 John 0.081541 boy J500\n",
"1 1880 William 0.080511 boy W450\n",
"2 1880 James 0.050057 boy J520\n",
"3 1880 Charles 0.045167 boy C642\n",
"4 1880 George 0.043292 boy G620\n",
"... ... ... ... ... ...\n",
"129995 1880 Emaline 0.000041 girl E545\n",
"129996 1880 Ester 0.000041 girl E236\n",
"129997 1880 Eulah 0.000041 girl E400\n",
"129998 1880 Eulalie 0.000041 girl E440\n",
"129999 1880 Euna 0.000041 girl E500\n",
"\n",
"[2000 rows x 5 columns]"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"names[names.year == 1880]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"year sex \n",
"2000 boy 1000\n",
" girl 1000\n",
"2001 boy 1000\n",
" girl 1000\n",
"2002 boy 1000\n",
" ... \n",
"2003 girl 1000\n",
"2004 boy 1000\n",
" girl 1000\n",
"2005 boy 1000\n",
" girl 1000\n",
"dtype: int64"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"names.groupby(['year', 'sex']).size().ix[2000:2005]"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"boys = names[names.sex == 'boy']\n",
"girls = names[names.sex == 'girl']"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def get_max_record(group):\n",
" return group.ix[group.prop.idxmax()]\n",
"\n",
"#boys[boys.year == 2000].prop.idxmax()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"year 1880\n",
"name John\n",
"prop 0.081541\n",
"sex boy\n",
"soundex J500\n",
"Name: 0, dtype: object"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_max_record(boys)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
"
\n",
" \n",
" | year | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | 1880 | \n",
" 1880 | \n",
" John | \n",
" 0.081541 | \n",
" boy | \n",
" J500 | \n",
"
\n",
" \n",
" | 1881 | \n",
" 1881 | \n",
" John | \n",
" 0.080975 | \n",
" boy | \n",
" J500 | \n",
"
\n",
" \n",
" | 1882 | \n",
" 1882 | \n",
" John | \n",
" 0.078314 | \n",
" boy | \n",
" J500 | \n",
"
\n",
" \n",
" | 1883 | \n",
" 1883 | \n",
" John | \n",
" 0.079066 | \n",
" boy | \n",
" J500 | \n",
"
\n",
" \n",
" | 1884 | \n",
" 1884 | \n",
" John | \n",
" 0.076476 | \n",
" boy | \n",
" J500 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 2004 | \n",
" 2004 | \n",
" Jacob | \n",
" 0.013196 | \n",
" boy | \n",
" J210 | \n",
"
\n",
" \n",
" | 2005 | \n",
" 2005 | \n",
" Jacob | \n",
" 0.012148 | \n",
" boy | \n",
" J210 | \n",
"
\n",
" \n",
" | 2006 | \n",
" 2006 | \n",
" Jacob | \n",
" 0.011331 | \n",
" boy | \n",
" J210 | \n",
"
\n",
" \n",
" | 2007 | \n",
" 2007 | \n",
" Jacob | \n",
" 0.010948 | \n",
" boy | \n",
" J210 | \n",
"
\n",
" \n",
" | 2008 | \n",
" 2008 | \n",
" Jacob | \n",
" 0.010355 | \n",
" boy | \n",
" J210 | \n",
"
\n",
" \n",
"
\n",
"
129 rows × 5 columns
\n",
"
"
],
"text/plain": [
" year name prop sex soundex\n",
"year \n",
"1880 1880 John 0.081541 boy J500\n",
"1881 1881 John 0.080975 boy J500\n",
"1882 1882 John 0.078314 boy J500\n",
"1883 1883 John 0.079066 boy J500\n",
"1884 1884 John 0.076476 boy J500\n",
"... ... ... ... ... ...\n",
"2004 2004 Jacob 0.013196 boy J210\n",
"2005 2005 Jacob 0.012148 boy J210\n",
"2006 2006 Jacob 0.011331 boy J210\n",
"2007 2007 Jacob 0.010948 boy J210\n",
"2008 2008 Jacob 0.010355 boy J210\n",
"\n",
"[129 rows x 5 columns]"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result =boys.groupby('year').apply(get_max_record)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEPCAYAAAC5sYRSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFNXZ9/HvPSIKKqiPigKKKCiKC6LCuDLug0ZwSQyi\n0bjBIyKoUUHfGIkxUaIYMSbi/gSFgLtoXKOOiguigCgwMggii+DG4IJsM/f7xymkGWbpmenp6u75\nfa6rL7qqTnXdR/Du06dOnWPujoiI5Ja8uAMQEZHUU3IXEclBSu4iIjlIyV1EJAcpuYuI5CAldxGR\nHJRUcjezQjMrNrPZZjakijJ3mFmJmU0zsy4J+web2UfRa1CqAhcRkarVmNzNLA+4EzgB6AycaWad\nKpTpCezu7h2B/sCoaH9n4ALgIKAL8Asz2y2lNRARkY0k03LvBpS4+3x3XwOMA3pXKNMbGA3g7pOA\nlmbWCtgLmOTuq9y9DHgDOC1l0YuISKWSSe5tgAUJ2wujfdWVWRTt+xg4wsy2MbPmwInAznUPV0RE\nktGkIT/c3YvNbDjwMvADMBUoa8hriohIcsl9EbBLwnbbaF/FMjtXVsbdHwQeBDCzP7NhC/9nZqZJ\nbkREasndrbL9yXTLTAY6mFk7M2sK9AEmVCgzATgHwMzygVJ3Xxptbx/9uQtwKjC2miBz5nX99dfH\nHoPq07jqpPpk9qsh6lOdGlvu7l5mZgOBlwhfBve7+ywz6x8O+z3u/pyZnWhmc4AfgfMSPuJxM9sW\nWAMMcPfvarqmiIjUT1J97u7+ArBnhX13V9geWMW5R9Y5OhERqRM9odpACgoK4g4hpXKtPpB7dVJ9\nMlu662M19duki5l5psQiIpINzAyvxw1VERHJMkruIiI5SMldRCQHKbmLiOQgJXcRkRyk5C4ikoOU\n3EVEcpCSu4hIDlJyFxHJQUruIiI5SMldRCQHKbmLiOQgJXcRkRyk5C4ikoOU3EVEcpCSu4hIDlJy\nFxHJQUkldzMrNLNiM5ttZkOqKHOHmZWY2TQz65Kw/3Iz+9jMppvZGDNrWtV13n679hUQEZGN1Zjc\nzSwPuBM4AegMnGlmnSqU6Qns7u4dgf7AqGh/a+BSoKu770dYkLtPVdc64wy44YY61kRERH6WTMu9\nG1Di7vPdfQ0wDuhdoUxvYDSAu08CWppZq+jYJsAWZtYEaA4srupC774Lf/sb/PRTLWshIiIbSCa5\ntwEWJGwvjPZVV2YR0MbdFwMjgM+jfaXu/t+qLtS2LRx4IPznP8mELiIiVWnSkB9uZlsTWvXtgOXA\nY2bW193HVlZ+2LBhbLEFXHcdbLddAQUFBQ0ZnohIVikqKqKoqCipsubu1RcwyweGuXthtD0UcHcf\nnlBmFPCau4+PtouBHsARwAnuflG0/zdAd3cfWMl13N0pLYV27WD+fNh666TqICLSKJkZ7m6VHUum\nW2Yy0MHM2kUjXfoAEyqUmQCcE10sn9D9spTQHZNvZpubmQHHALOqu9jWW8Mxx8ATT4TtVasgyS8q\nERGJ1Jjc3b0MGAi8BMwAxrn7LDPrb2b9ojLPAfPMbA5wNzAg2v8e8BgwFfgQMOCemq551lkwdiws\nXgwFBSHZL1pUp/qJiDRKNXbLpMu6bhkIo2Vat4bmzeHii2HePOjUCa66KuYgRUQySHXdMhmZ3AH+\n8Q/YdVc46SR4/XW49FKYPj2++EREMk1WJvdE5eXQvj1MmAD775/mwEREMlR9b6jGLi8v9MM//HDc\nkYiIZIesaLkDzJwJxx0Hn38Om2ySxsBERDJU1rfcAfbeG3bcEV59Ne5IREQyX9Ykd4ABA+Dyy+Gr\nr+KOREQks2VVcj//fOjdO3TPfPtt2Dd/PkydGm9cIiKZpkHnlkk1M7jxRli9Gnr0gM02C8ndHT7+\nOHTbiIhIFt1QTeQeRs60aQNHHglDh0JpKdx3XwMHKSKSQbJ+nHtNli+HPfeE55+HAw5IcWAiIhkq\nJ0bLVKdlS/jjH+Gyy0KrXkSkscuJ5A5wwQWwbBk8+2zckYiIxC9nknuTJnDJJfDvf8cdiYhI/HKi\nz32dL74IDzstXQpNm6YoMBGRDJXzfe7r7LRTmBpYi3uISGOXU8kd4JRT4Kmn4o5CRCReOdUtA/DJ\nJ3D00bBgQZhNUkQkVzWabhkI491btID33w/bZWWwdm28MYmIpFvOJXeAU08NXTNTp8KBB8Juu8EH\nH8QdlYhI+iSV3M2s0MyKzWy2mQ2poswdZlZiZtPMrEu0bw8zm2pmU6I/l5vZoFRWoDKnnAJ33QUn\nnABXXAG33QaFhTBmTENfWUQkM9TY525mecBs4BhgMTAZ6OPuxQllegID3f0kM+sOjHT3/Eo+ZyHQ\n3d0XVHKdlPS5Q1iW75Zb4JxzwggagI8+Ckn/lFNg+PAwLl5EJJvVt8+9G1Di7vPdfQ0wDuhdoUxv\nYDSAu08CWppZqwpljgU+rSyxp1peHgwZsj6xA+y7L0yeHBbZ7tkTvvmmoaMQEYlPMsm9DZCYkBdG\n+6ors6iSMr8GYn1+dNttw+Ri++0XZpNcuTLOaEREGk5aOifMbFOgFzC0unLDhg37+X1BQQEFBQUp\nj6VJExgxAubOhb/+Ff7wh5RfQkSkQRQVFVGU5FOayfS55wPD3L0w2h4KuLsPTygzCnjN3cdH28VA\nD3dfGm33Agas+4wqrpOyPvdkfP45dO0K774LHTqk7bIiIilT3z73yUAHM2tnZk2BPsCECmUmAOdE\nF8sHStcl9siZxNwlU9Euu8DVV8PAgZomWERyT43J3d3LgIHAS8AMYJy7zzKz/mbWLyrzHDDPzOYA\ndwMD1p1vZs0JN1OfaID46+Xyy8OTrJquQERyTc5NP1BbTz4Z+uAnTkz7pUVE6qVRTT9QWyefHBbZ\n/vDDuCMREUmdRp/cmzSBfv3CE60iIrmi0XfLwPpFPj77LKzHKiKSDdQtU4OddoLjj4eHHoo7EhGR\n1FByjwwYAP/8J6xeHXckIiL1p+QeOfLI0DWzzz7wzDMa+y4i2U197hW88EKYJnjLLcNImsJCOOgg\nsEp7tURE4qM+91ooLAwzR954I5SWhoU/xo6NOyoRkdpRy70GjzwC994LL78cdyQiIhuqruWu5F6D\nn36C1q1h5swN54cXEYmbumXqoVkz6N0bxo+POxIRkeQpuSehb1/1u4tIdlFyT8LRR4fZI0tK4o5E\nRCQ5Su5JaNIEfv1rGDMm7khERJKj5J6kvn1h9GhYsSLuSEREaqbRMklyh9/8BsrKQv+7HmoSkbhp\ntEwKmIXx7p9+CjffHHc0IiLVaxJ3ANmkWbOwclP37qF7pmtX2Gsv6NQp7shERDaklnsttWkDzz8f\nkvuDD0KPHjByZNxRiYhsKKk+dzMrBG4nfBnc7+7DKylzB9AT+BH4rbtPi/a3BO4D9gHKgfPdfVIl\n52d0n3tVPvsMDj0U7r47TDQmIpIu9epzN7M84E7gBKAzcKaZdapQpiewu7t3BPoDoxIOjwSec/e9\ngP2BWXWqRYbaddfQVXP++TBpEqxdG3dEIiLJdct0A0rcfb67rwHGAb0rlOkNjAaIWuUtzayVmbUA\njnD3B6Nja939u9SFnxm6d4dRo+Ckk2CzzcJ0wX/4g+aEF5H4JJPc2wALErYXRvuqK7Mo2tce+NrM\nHjSzKWZ2j5k1q0/Amer00+Hrr0PL/ZNP4Kmn4LrrlOBFJB4NPVqmCdAVuMTd3zez24GhwPWVFR42\nbNjP7wsKCigoKGjg8FLPLNx0feWVMG3BqlVw1lmw886w7bYaHy8idVdUVERRUVFSZWu8oWpm+cAw\ndy+MtocCnnhT1cxGAa+5+/houxjoER1+x913i/YfDgxx941uPWbrDdXqfPklDBwIxcXw+efQsSM8\n+mjopxcRqa/6PsQ0GehgZu3MrCnQB5hQocwE4JzoYvlAqbsvdfelwAIz2yMqdwwwsy6VyEY77BAW\n+5g+HZYtCy34/Hx48cW4IxORXFeboZAjWT8U8mYz609owd8TlbkTKCQMhTzP3adE+/cnDIXcFJgb\nHVteyTVyruVemTfegDPPDItxn3ZaeLVqFXdUIpKNtBJThvnxx7AQ9xNPwGuvwbx5YZSNiEhtKLln\nsGOPDWPk+/aNOxIRyTaaOCyDDRgAd90VdxQikmuU3GPWq1folpk+PWx//XV4GOq//403LhHJbkru\nMWvSBC66KLTeV66EU06BrbeGc86BP/8ZysvjjlBEspH63DPA4sXQuTMccwzk5cG4cfDFF3DGGeFG\n6/DhcPDBcUeZXuPHhymWe/Wq2/kPPRTObdkytXGJZBL1uWe41q3huONg0SL4179Cgm/TBoqKQoI/\n9dTwWro07kjTY8kSuOQSuPDC8MVXW0VF4ZePFlWRxkwt9wzx/fewySbQvPnGx376CS69NHThjBq1\n8XGABQugbdvcmN7g3HNhxx2haVP46KMw62ay9Vq7Fg44IHwx3HADfPhh+O8ikovUcs8CW21VeWKH\n0D1x881h6oIFCzY+PmoUtG8Pt95a+fkLFoRk98MPqYu3obz1VpiX5/e/D6+SkvCUb7L++c/wUNig\nQdCvHyRMV1Rry5eH5xEq+28ukvHcPSNeIRSpzpVXug8cuH577Vr3yy5z33NP91decd9hB/eJEzc8\nZ+ZM9112ce/cOZyfydasce/SxX3s2PX73n3XvVUr92XLaj5/6VL37bZznzEjbC9b5r799uu3k7Fk\nifvNN4c4ttjCPT/fvX179y+/rF1dRNIhypuV59SqDqT7peResy++cN9mG/fFi8Pr2GPdjz7a/dtv\nw/FnnnHfeWf3r75yLy11f/zxkBhHjw5Ja/vt3adPj7cOVSkrcz/3XPcTT3QvL9/w2Nlnu990U82f\ncdll7oMHb7hvxAj3U05JLobLLnNv2dL9vPPcX3/dfdWqsP+aa9wPP9x95crkPkckXZTcc8jgwe6F\nhe477uh+/fWhtZvoqqvct902tDp79HB//vn1x+66y/2ww0IidV//Z9zKy8MvksMOc//hh42Pf/ih\n+047uf/0U9WfUVoavvgWLNhw/4oV4UutpKT6GF55xX3XXSv/hVBW5n7aaeHLp+IXj0icqkvuuqGa\nZRYtCiNobroJjjxy4+NlZTB7NnToAJtuuuGx8nI45JAwOmfJEpg2Lawatcce61977hmGZKZrCKE7\nXHstvPQSvPpq1dc98cQwydqFF1Z+fMQImDIFxozZ+Ng114QFzatayLysDLp2DYur/PKXlZf58Uc4\n7LDwRHG/fjXXSyQdNLeM/OzTT2HChJDMunYNSWv27PWvDz4Io3OKisJolYZUVhaGPE6eHG5cbr99\n1WWLiqB/f5g5M4wqSrR2Ley+Ozz+OBx00MbnLlgA++8fFjNv0WLj43ffDWPHhmtUNyqnuBiOOCKU\n69y55vqJNDQld0laeXloIe+8M/z97/X/vK++gttuC+9794Zu3UJrfckSGDw4zHP/5JOVJ91E7mEu\n/KFDw5j/RI88Av/4B7z+etXn//rXcOih4ZqJSkuhU6fw5dKlS831eeABuP32sBh6s5xcMFKyiYZC\nStLy8sKDVC+8AA8/XPfP+eknuP76kDi/+y587gUXwDbbhKR44IEhoT/3XM2JHUKL+rrr4OKLQ3zr\npmX48ccwBPSKK6o/f/Dg8GVVVha2y8tDa71Ll/DAUzKJHeC888Jc/Ndem1x5kbio5S6V+uijsAbs\nM8+EFnNtLFsWHv3fbrvQam/ffv2xr78OybyuXT6TJ4elC/PywrMB77wTpk1+7LGNu2sSuYdfDS1a\nhCkd5s8PzxWMGFH5vYvqfP11uD8xYwbstFPd6iGSCuqWkTp57rnQUn311eT7mBctgsLCkHBHjAhJ\nONXKy8MDXU2bhpu/ybT8IfS9T5kSbjRvtVW4QVrX+AYNCr9Ahg+vuaxIQ1FylzobOxaGDIE336x5\nYe/ly8MNzQsvhKuvzo2pEKry2Weha2nuXE1OJvFRn7vUWd++4SZmfj7cd9/6PuuK3MNoluOOC18G\nuZzYIXzR9exZ9Vw/InGrzQLZt7N+geyNfoya2R1AT9YvkD012v8ZsBwoB9a4e7cqrqGWewabMiVM\nXrZqVbg5WVi44dDFxjiKZPr08N9h7lzYfPO4o5HGqF7dMmaWB8wGjgEWA5OBPu5enFCmJzDQ3U8y\ns+7ASHfPj47NBQ5092U1XEfJPcO5h77ucePC5F4dO8K++8Juu8Edd4ShiHvvHXeU6dWrV7hR+/vf\nxx2JNEb1Te75wPXu3jPaHkp45HV4QplRwGvuPj7angUUuPtSM5sHHOTu39RwHSX3LLJ6dRi5MnMm\nzJoFRx0FJ58cd1Tpt3Bh6Ht/6qnw9K9IOlWX3JskcX4bIHHS04VAxa6VimUWRfuWAg68bGZlwD3u\nfm+ygUvmato0jDY57LC4I4lX27Zwzz3h3sTUqWGJRJFMkExyr6/D3P0LM9uekORnufvEygoOS5h8\nu6CggIKCgjSEJ1I/vXvDyy+HG8rjxuX+zWSJT1FREUVFRUmVTbZbZpi7F0bbyXTLFAM93H1phc+6\nHvje3W+r5DrqlpGs9dNPYa6eP/2p6snHRFKtvkMhJwMdzKydmTUF+gATKpSZAJwTXSwfKI3625ub\n2ZbR/i2A44GP61gPkYzVrFkYKjpoEHz7bdzRiNRuKORI1g+FvNnM+hNa8PdEZe4EClk/FHKKmbUH\nniT0uzcBxrh7pcsWq+UuuWDgwDC98AMPxB2JNAZ6QlUkTb7/HvbZB+69F44/Pu5oJNfpCVWRNNlq\nK/i//4Ozzw5TNojERcldJMWOOgr+/W84/fTwsJdIHNQtI9JA3ngjjJz5739hv/3ijkZykfrcRWJy\n553w9NNhjViNf5dUU5+7SEz69w/zyD//fNyRJMc9rEm7zvffhzVmL7ssHJPsoeQu0oA23RRuuQWu\nvHLDpJmp7rorzHDZsWMY7dOuXXj69sUXw6pckj3ULSPSwNzDilFnnAH/+79xR1M19zCMc+TIMGdO\nSUmYFK1165DYr70Wpk2rfjlDSS/1uYvEbNq0MPf7jBnwP/8TdzSVmzgxrKI1a9bG9wfcwyRxAwaE\nYZ6SGZTcRTLApZfCypXhAadM9JvfwAEHwBVXVH789dfh/PND8q/rAueSWkruIhlg+fKwmMmjj8Kh\nh8YdzYa++QZ23x0+/bT6XxYnnACnnRZuFEv8NFpGJAO0bAm33goXX5x5N1dHj4Zf/KLmLqPrrgt1\nKC9PT1xSd0ruImnUpw/ssAP88Y9xR7Le2rVhuGMyrfHDDoNtttHImWyg5C6SRmbw8MMwZgw8+GDc\n0QS//30Y8nj44TWXNYPf/Q5u22hFBsk06nMXiUFxMfToERL9ccfFF8ezz4YRMB98ANtvn9w5a9eG\n/vnHH4eDDmrY+KR6uqEqkoHefDMs0XfUUWGYZK9e0KpV+q7/2WfQvTs8+WTtb/COGAHvvx8mSJP4\nKLmLZKgvv4QXXgjTE7z0Elx0EQwZEvq1E61eHR4eSuUDRCefHPrQhw6t/bnLl4enWJs3D0+07rVX\n6Kpp3z518UnNlNxFssDCheFG61NPQadOYW74vLzwpOj8+WEky7nnhrHmHTrU71rTp4dfC3PnhuRc\nF999F4ZQrloVJke75ZYwmmbgwA2/hKZODV9O3bvXL2bZmJK7SBb5/PPQZfLdd1BWFlrIu+8Oc+bA\n/feHG7HvvRf211XfvtClC1x9dcrCZvbs8Mtj9eoQ5957hwe2rr023IidOBH22CN11xMld5GcMnhw\n6LYZNqxu58+dC926hT9btEhpaJSXwz33hBE4XbrA4sXwxBNhbvvbb4d33039NRuzej/EZGaFZlZs\nZrPNbEgVZe4wsxIzm2ZmXSocyzOzKWY2ofbhi0iis86CsWPrPgXvLbeECcwaIsnm5YXPnjoVTjwx\n/MLo1An69YMjjwxTHOgBqPSoseVuZnnAbOAYYDEwGejj7sUJZXoCA939JDPrDox09/yE45cDBwIt\n3L1XFddRy10kCe6he2PsWDj44OTOWbs2TFr2zjuhm+STT5If+pgqq1eHBH/uueEpXam/6lruTZI4\nvxtQ4u7zow8bB/QGihPK9AZGA7j7JDNraWat3H2pmbUFTgT+DFQxJZGIJMss9JmPGbNxci8rgwkT\nQv/3vHmh7/6zz0I/frt2cMghYWx9uhM7hMnGHnggjO8/+eQwrbA0nGSSextgQcL2QkLCr67Momjf\nUuBvwFVAy7qHKSKJzjorJMkRI9aPTJk3L3R7rF0LRxwB++4bxs7vumt4NW8eZ8TB3nuH2TEvvjh8\nCWnpwYaTTHKvMzM7CVjq7tPMrACo9q9yWMIdooKCAgoKChoyPJGstcceoeX76qvQuXOYafLGG8MY\n+SuuCH3fmWroUOjaNXQrnXVW3NFkl6KiIoqKipIqm0yfez4wzN0Lo+2hgLv78IQyo4DX3H18tF0M\n9AAGA2cDa4FmwFbAE+5+TiXXUZ+7SC3cfjvccEN437MnXHVVGKGSDd57L/yq2HLLsErV1VeH4Z5S\nO/UaCmlmmwCfEG6ofgG8B5zp7rMSypwIXBLdUM0Hbk+8oRqV6QH8TjdURVJjxYowJ0x+flirNduU\nl8PHH8O//gVvvRVeWsKvduo1FNLdy4CBwEvADGCcu88ys/5m1i8q8xwwz8zmAHcDA1IWvYhUqnnz\n0LeejYkdQtfRfvuFoZlNm4bFuSV19BCTiMRu1qzwRTV1Kuy8c9zRZA+txCQiGW2vvcKcNAMH1v3h\nLNmQWu4ikhFWrQrTH++yS5g/p1mzuCPKfGq5i0jG22yzMLRzk03CGP6SkvBQltSNkruIZIzNNw9P\n0J5ySuiDb94cdtstjKiR2lG3jIhkrFWrwtzzffuGVauGDw9P4j78cBhhc8EF6V29KtOoW0ZEstJm\nm4X5cyZNCiNp2rcPq0eVloY5czp1grPPhpUr444086jlLiJZYc0amDw5JPt1Y/tLS0OL/sILw7w6\njY0W6xCRnPX44zByZFgQpLFRcheRnLVmTXjwqagodNM0JupzF5Gctemm8Nvfwn33xR1JZlHLXUSy\n3pw5cOihsGBBuAnbWKjlLiI5rUMH2GcfePrpuCPJHEruIpITLrkEBg0K89pPnqw5apTcRSQnnH46\nvPxyeMq1T5/wWrEi7qjioz53Eck5K1fCRReFqYSffhratIk7ooahPncRaVQ23xxGj4Zf/So89PTE\nE3FHlH5quYtITnvzzdCK32sv+Mc/oHXruCNKHbXcRaTROuIImDYNOneG7t3Duq2NgVruItJojB0L\nl18epiw4/PC4o6m/erfczazQzIrNbLaZDamizB1mVmJm08ysS7RvMzObZGZTzewjM7u+7tUQEamf\nvn3hoYfg1FNzf0x8jcndzPKAO4ETgM7AmWbWqUKZnsDu7t4R6A+MAnD3VcBR7n4A0AXoaWbdUlsF\nEZHkHX88PP88XHwx3Htv3NE0nGRa7t2AEnef7+5rgHFA7wplegOjAdx9EtDSzFpF2+tGmm4GNAHU\n9yIisTroIHj9dbj5ZvjrX+OOpmEkk9zbAAsSthdG+6ors2hdGTPLM7OpwBLgZXefXPdwRURSo2NH\nmDgRbr0VZsyIO5rUa9LQF3D3cuAAM2sBPGVme7v7zMrKDhs27Of3BQUFFBQUNHR4ItKI7bQTXHst\nXHll6KrJdEVFRRQVFSVVtsbRMmaWDwxz98Joeyjg7j48ocwo4DV3Hx9tFwM93H1phc+6DvjR3W+r\n5DoaLSMiabd6dZh07I47oLAw7mhqp76jZSYDHcysnZk1BfoAEyqUmQCcE10sHyh196Vmtp2ZtYz2\nNwOOA4rrWA8RkZRr2hRuuQV+9ztYuzbuaFKnxuTu7mXAQOAlYAYwzt1nmVl/M+sXlXkOmGdmc4C7\ngQHR6TsBr5nZNGAS8GJUVkQkY/TqBTvsAGPGxB1J6ughJhER4LHH4J574KWX4o4keVpDVUSkBitW\nhBusc+bA9tvHHU1yNLeMiEgNmjeHnj1zZwZJJXcRkcgZZ8Ajj8QdRWqoW0ZEJPLTT6Fr5pNPoFWr\nuKOpmbplRESS0KwZnHRSbnTNKLmLiCQ44wwYPz7uKOpP3TIiIglWroS2beGdd8L8M5lM3TIiIkna\nfHMYNAj+8pe4I6kftdxFRCooLYUOHeC992C33eKOpmpquYuI1MLWW8OAAXDTTXFHUndquYuIVOLb\nb0Of+5Qp0K5d3NFUTi13EZFa2nZb6N8fhg+vuWwmUstdRKQKS5bAXnvB3LmwzTZxR7MxtdxFROpg\nxx3hF7+A+++PO5LaU8tdRKQakyfDr34Fn34Km2wSdzQbUstdRKSODj44zDfzzDNxR1I7Su4iIjUY\nPDissZpNlNxFRGpw+ulhpsj33os7kuQpuYuI1GDTTeFvf4O+fWH58rijSU5Syd3MCs2s2Mxmm9mQ\nKsrcYWYlZjbNzLpE+9qa2atmNsPMPjKzQakMXkQkXc44AwoL4fzzIRvGftSY3M0sD7gTOAHoDJxp\nZp0qlOkJ7O7uHYH+wKjo0FrgCnfvDBwCXFLxXBGRbDFiBMyfDyNHxh1JzZJpuXcDStx9vruvAcYB\nvSuU6Q2MBnD3SUBLM2vl7kvcfVq0/wdgFtAmZdGLiKTRZpvBo4/Cn/8MM2fGHU31kknubYAFCdsL\n2ThBVyyzqGIZM9sV6AJMqm2QIiKZon17uOGG0D1TVhZ3NFVrko6LmNmWwGPA4KgFX6lhw4b9/L6g\noICCgoIGj01EpLb694dx48LwyMsvT991i4qKKCoqSqpsjU+omlk+MMzdC6PtoYC7+/CEMqOA19x9\nfLRdDPRw96Vm1gR4Fnje3avsqdITqiKSTUpK4JBD4M03w/wzcajvE6qTgQ5m1s7MmgJ9gAkVykwA\nzokulg+UuvvS6NgDwMzqEruISLbp2DHMGHnoodCzJzzyCJSXxx3VeknNLWNmhcBIwpfB/e5+s5n1\nJ7Tg74nK3AkUAj8Cv3X3qWZ2GPAG8BHg0etad3+hkmuo5S4iWWfFCnjyyTAOvnVrGD06LPaRDtW1\n3DVxmIg7wXDJAAAJLElEQVRICqxeDVddBf/5Dzz+OOy/f8NfUxOHiYg0sKZNw/j3P/0Jjj02tODj\npJa7iEiKzZgBp50GRx8Nt98exsc3BLXcRUTSqHPnMA/80qVw3HHwzTfpj0HJXUSkAbRoAY89FoZL\nHnIIzJmT3usruYuINJC8vDBc8sor4fDDYeLENF47fZcSEWmc+vULN1hPOw3+/e/0XFM3VEVE0uTj\nj8OC25dcEoZN1ld1N1TTMreMiIjAPvvA22/DUUeFp1mHVLo6RmoouYuIpFHr1vDaayHBm8HVVzfM\nddQtIyISg0WL4JhjQpK/7TZo1qz2n6Fx7iIiGaZNm7DgdmkpdOuW+sU/lNxFRGLSogWMHQuDB0NB\nAbz1Vuo+W90yIiIZ4MUX4eyzwzJ+ya5TpG4ZEZEMd8IJYU74X/0KXnml/p+nlruISAZ5/fWQ4F98\nEQ44oPqyarmLiGSJHj3grrvCw07z5tX9czTOXUQkw5x+OnzxReiqeeUV2Hnn2n+GkruISAYaODCs\n7nTIIfDMMzV30VSUVLeMmRWaWbGZzTazSh+YNbM7zKzEzKaZ2QEJ++83s6VmNr12oYmING5XXBEW\n+zj++DDh2Nq1yZ9bY3I3szzgTuAEoDNwppl1qlCmJ7C7u3cE+gN3JRx+MDq3USkqKoo7hJTKtfpA\n7tVJ9clsda3PL38JEybA3/8O7dvDDTfAsmU1n5dMy70bUOLu8919DTAO6F2hTG9gNIC7TwJamlmr\naHsikEQouUX/MDNfrtVJ9cls9anPIYeECceefRbmzw8rPT3ySPXnJNPn3gZYkLC9kJDwqyuzKNq3\nNInPFxGRJOy/P9x/f0j0/fpVX1ZDIUVEssyhh8KUKdWXqfEhJjPLB4a5e2G0PRRwdx+eUGYU8Jq7\nj4+2i4Ee7r402m4HPOPu+1VzHT3BJCJSS/VZrGMy0CFK0F8AfYAzK5SZAFwCjI++DErXJfaIRa9a\nBygiIrVXY7eMu5cBA4GXgBnAOHefZWb9zaxfVOY5YJ6ZzQHuBgasO9/MxgJvA3uY2edmdl4D1ENE\nRBJkzNwyIiKSOg12Q7Wyh5fMbH8ze8fMpprZe2Z2cLS/iZn9n5lNN7MZUb/+unO6Rvtnm9ntDRVv\nTaqoz35m9raZfWhmT5vZlgnHroke6pplZscn7M+I+kSxJF0nMzvWzN6P9k82s6MSzsmIOtX27yg6\nvouZfW9mVyTsy8r6JBz7ODreNNqfEfWJYqnNv7mMzgtm1tbMXo1i+8jMBkX7tzGzl8zsEzN70cxa\nJpyTvrzg7g3yAg4HugDTE/a9CBwfve9JuAkLoQ9/bPS+GTAP2CXangQcHL1/DjihoWKuQ33eAw6P\n3v8WuCF6vzcwlXBPY1dgDut/JWVEfepQp/2BHaP3nYGFCedkRJ1qU5+E448C44Ersrk+wCbAh8A+\n0fY2OfBvLqPzArAj0CV6vyXwCdAJGA5cHe0fAtwcvU9rXmiwlrtX/vBSObDuW2xrwnh4AAe2MLNN\ngObAKuA7M9sR2MrdJ0flRgOnNFTM1amiPh2j/QD/BU6P3vci3JtY6+6fASVAt0yqD9SuTu7+obsv\nid7PADY3s00zqU61/DvCzHoDcwn3ktbty9b6HA986O4fR+cuc3fPpPpEcdWmThmdF9x9ibtPi97/\nAMwC2hIe6vxXVOxfCbGlNS+ke5z75cCtZvY58Ffgmmj/Y8AKwmicz4Bb3b2U8CDUwoTzF0b7MsUM\nM+sVvT+D8BcLVT/Ulen1garr9DMz+yUwxcMTy5lep0rrE/30vxr4IxuO5MrK+gB7AJjZC1H32VXR\n/kyvD1Rdp6zJC2a2K+EXybtAK49GC0YNoh2iYmnNC+lO7hcDg919F0KifyDa3x1YS/iZsxtwZfQf\nK9OdD1xiZpOBLYDVMceTCtXWycw6AzcBNTwflzGqqs/1wN/cfUVskdVNVfVpAhxG6Mo4Ajg18b5I\nhquqTlmRF6KGwmOE3PYD4RdHolhGraR7yt9z3X0wgLs/Zmb3RfvPBF5w93LgKzN7CzgImAgkzmTc\nlvVdObFz99lEk6KZWUfgpOjQIiqPu6r9GaOaOmFmbYEngN9EPyshw+tUTX26A6eb2V8J/dNlZraS\nUL9srM9C4A13XxYdew7oCowhg+sD1dYp4/OCmTUhJPaH3P3paPdSM2vl7kujLpcvo/1pzQsN3XKv\n+PDSIjPrAWBmxxD6nAA+B46O9m8B5AOzop80y82sm5kZcA7wNPHZoD5mtn30Zx7we2BUdGgC0MfM\nmppZe6AD8F4G1geSrJOZbQ08Cwxx93fXlc/AOiVVH3c/0t13c/fdgNuBv7j7P7O1PoTBCvua2eZR\nwukBzMjA+kDNdVo3q2w25IUHgJnuPjJh3wTCjWGAc1kfW3rzQgPeSR4LLCbcBPkcOA84FHifcMf4\nHeCAqOwWwCPAx9ErceTCgcBHhC+CkQ0Vbx3rM4hwh7yYkBwSy19DuBs+i2iEUCbVp7Z1Av4f8D0w\nJfr7mwJsl0l1qu3fUcJ51+fIv7m+0f8/04GbMq0+dfg3l9F5gdANVgZMS/h/ohDYlnBj+BPCw59b\nJ5yTtrygh5hERHKQZoUUEclBSu4iIjlIyV1EJAcpuYuI5CAldxGRHKTkLiKSg5TcRURykJK7SIpE\nT1iKZAT9Y5RGycz+aGaDE7ZvNLNBZnalhYVkppnZ9QnHn7SwSMlHZnZhwv7vzexWM5tKeDxeJCMo\nuUtj9QBhDg+i+Tz6EKaW7eju3YADgIPM7PCo/HnufjBwMDDYzLaJ9m8BvOPuB7j722mtgUg10j0r\npEhGcPf5Zva1me1PmFJ2CtANOM7MphAmttoC6EiYhfAyM1u3gELbaP97hClpn0h3/CI1UXKXxuw+\nwsRVOxJa8scSJty6N7FQNJPp0UB3d19lZq8Bm0eHV7omaJIMpG4ZacyeIszidxBhytwXgfOj6WUx\ns9bRdLQtgWVRYu/Ehn3rhkgGUstdGi13XxO1wpdFre+Xo+T9TuiG53vgbOAF4H/NbAZhGtd3Ej8m\nzWGLJEVT/kqjFQ1d/AD4pbt/Gnc8IqmkbhlplMxsL8LCCC8rsUsuUstdRCQHqeUuIpKDlNxFRHKQ\nkruISA5SchcRyUFK7iIiOUjJXUQkB/1/zTUQ1jEO3EQAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#proportion of names per year -> more diversity\n",
"\n",
"result.prop.plot()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
"
\n",
" \n",
" \n",
" \n",
" | 563 | \n",
" 1880 | \n",
" Travis | \n",
" 0.000101 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 2648 | \n",
" 1882 | \n",
" Travis | \n",
" 0.000082 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 3672 | \n",
" 1883 | \n",
" Travis | \n",
" 0.000080 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 4656 | \n",
" 1884 | \n",
" Travis | \n",
" 0.000081 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 5602 | \n",
" 1885 | \n",
" Travis | \n",
" 0.000095 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 124165 | \n",
" 2004 | \n",
" Travis | \n",
" 0.001164 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 125173 | \n",
" 2005 | \n",
" Travis | \n",
" 0.001114 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 126162 | \n",
" 2006 | \n",
" Travis | \n",
" 0.001186 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 127169 | \n",
" 2007 | \n",
" Travis | \n",
" 0.001087 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 128176 | \n",
" 2008 | \n",
" Travis | \n",
" 0.001025 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
"
\n",
"
125 rows × 5 columns
\n",
"
"
],
"text/plain": [
" year name prop sex soundex\n",
"563 1880 Travis 0.000101 boy T612\n",
"2648 1882 Travis 0.000082 boy T612\n",
"3672 1883 Travis 0.000080 boy T612\n",
"4656 1884 Travis 0.000081 boy T612\n",
"5602 1885 Travis 0.000095 boy T612\n",
"... ... ... ... ... ...\n",
"124165 2004 Travis 0.001164 boy T612\n",
"125173 2005 Travis 0.001114 boy T612\n",
"126162 2006 Travis 0.001186 boy T612\n",
"127169 2007 Travis 0.001087 boy T612\n",
"128176 2008 Travis 0.001025 boy T612\n",
"\n",
"[125 rows x 5 columns]"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# it goes element=wise \n",
"\n",
"boys[boys.name == 'Travis']"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
"
\n",
" \n",
" | name | \n",
" year | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | John | \n",
" 1880 | \n",
" 0.081541 | \n",
" boy | \n",
" J500 | \n",
"
\n",
" \n",
" | William | \n",
" 1880 | \n",
" 0.080511 | \n",
" boy | \n",
" W450 | \n",
"
\n",
" \n",
" | James | \n",
" 1880 | \n",
" 0.050057 | \n",
" boy | \n",
" J520 | \n",
"
\n",
" \n",
" | Charles | \n",
" 1880 | \n",
" 0.045167 | \n",
" boy | \n",
" C642 | \n",
"
\n",
" \n",
" | George | \n",
" 1880 | \n",
" 0.043292 | \n",
" boy | \n",
" G620 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | Kolten | \n",
" 2008 | \n",
" 0.000090 | \n",
" boy | \n",
" K435 | \n",
"
\n",
" \n",
" | Damari | \n",
" 2008 | \n",
" 0.000089 | \n",
" boy | \n",
" D560 | \n",
"
\n",
" \n",
" | Hugh | \n",
" 2008 | \n",
" 0.000089 | \n",
" boy | \n",
" H200 | \n",
"
\n",
" \n",
" | Jensen | \n",
" 2008 | \n",
" 0.000089 | \n",
" boy | \n",
" J525 | \n",
"
\n",
" \n",
" | Yurem | \n",
" 2008 | \n",
" 0.000089 | \n",
" boy | \n",
" Y650 | \n",
"
\n",
" \n",
"
\n",
"
129000 rows × 3 columns
\n",
"
"
],
"text/plain": [
" prop sex soundex\n",
"name year \n",
"John 1880 0.081541 boy J500\n",
"William 1880 0.080511 boy W450\n",
"James 1880 0.050057 boy J520\n",
"Charles 1880 0.045167 boy C642\n",
"George 1880 0.043292 boy G620\n",
"... ... ... ...\n",
"Kolten 2008 0.000090 boy K435\n",
"Damari 2008 0.000089 boy D560\n",
"Hugh 2008 0.000089 boy H200\n",
"Jensen 2008 0.000089 boy J525\n",
"Yurem 2008 0.000089 boy Y650\n",
"\n",
"[129000 rows x 3 columns]"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# so it's better to do this\n",
"\n",
"idf = boys.set_index(['name', 'year'])\n",
"idf"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
"
\n",
" \n",
" | year | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | 1880 | \n",
" 0.000101 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 1882 | \n",
" 0.000082 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 1883 | \n",
" 0.000080 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 1884 | \n",
" 0.000081 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 1885 | \n",
" 0.000095 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 2004 | \n",
" 0.001164 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 2005 | \n",
" 0.001114 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 2006 | \n",
" 0.001186 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 2007 | \n",
" 0.001087 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
" | 2008 | \n",
" 0.001025 | \n",
" boy | \n",
" T612 | \n",
"
\n",
" \n",
"
\n",
"
125 rows × 3 columns
\n",
"
"
],
"text/plain": [
" prop sex soundex\n",
"year \n",
"1880 0.000101 boy T612\n",
"1882 0.000082 boy T612\n",
"1883 0.000080 boy T612\n",
"1884 0.000081 boy T612\n",
"1885 0.000095 boy T612\n",
"... ... ... ...\n",
"2004 0.001164 boy T612\n",
"2005 0.001114 boy T612\n",
"2006 0.001186 boy T612\n",
"2007 0.001087 boy T612\n",
"2008 0.001025 boy T612\n",
"\n",
"[125 rows x 3 columns]"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"idf.ix['Travis']"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEPCAYAAACukxSbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVNWd//H3F7AFQcG4ALK4sCpmxAWCS7TdEJwIOjEG\n1GhcIpmIOmYzmSQKTiaTGJNMiHvExyUxxPHngglxSUybuCAIgooNNIpAo4IioAKyNN/fH6faLpqu\nrttdVX1vVX1ez1MPVbfOqTqnu/nUqXPvPdfcHRERKQ/t4m6AiIi0HYW+iEgZUeiLiJQRhb6ISBlR\n6IuIlBGFvohIGYkU+mY2yswWmtliM7smQ5kpZlZjZvPMbGi2umY2zczmpm5LzWxu7t0REZHmdMhW\nwMzaATcBJwNvA7PN7FF3X5hWZjTQz90HmNnngNuAEc3VdfdxafVvBNbls2MiIrKzKCP94UCNuy9z\n963ANGBsozJjgXsB3P1FoKuZdY9YF+Ac4A+t7IOIiEQUJfR7ASvSHtemtkUpk7WumX0eeNfd34jY\nZhERaaVC7ci1FpQdj0b5IiJtIuucPrAS6Jv2uHdqW+MyfZooU9FcXTNrD/wbcESmNzczLQ4kItIK\n7r7TADzKSH820N/M9jezCmAcML1RmenABQBmNgJY5+6rItQ9Fah297ezNLxkbtddd13sbVCf1J9i\nv5VanwrRn0yyjvTdvc7MJgJPEj4kprp7tZlNCE/7He4+w8xON7MlwAbgoubqpr38l9HUjohIm4ky\nvYO7Pw4MarTt9kaPJ0atm/bcRdGaKSIi+aAzcttYZWVl3E3Iu1Lrk/qTfKXWp7bsjzU395MEZuZJ\nb6OISNKYGd7KHbkiIlIiFPoiImVEoS8iUkYU+iIiZUShLyJSRhT6IiJlRKEvIlJGFPoiImVEoS8i\nUkYU+iIiZUShLyJSRhT6IiJlRKEvIlJGFPoiImVEoS8iUkYU+iIiZUShLyJSRhT6IiJlRKEvIlJG\nFPoiknjV1bBqVdytKA0KfRFJvBtugFtvjbsVpSFS6JvZKDNbaGaLzeyaDGWmmFmNmc0zs6FR6prZ\nFWZWbWavmtlPc+uKiJSqjRvh+efjbkVp6JCtgJm1A24CTgbeBmab2aPuvjCtzGign7sPMLPPAbcB\nI5qra2aVwBnAZ919m5ntne/OiUhp2LgRZs6Eujpo3z7u1hS3KCP94UCNuy9z963ANGBsozJjgXsB\n3P1FoKuZdc9S99+Bn7r7tlS993PujYiUpI0b4aOPYMGCuFtS/KKEfi9gRdrj2tS2KGWaqzsQON7M\nZprZ383sqJY0XETKx8aNMGiQpnjyIev0TitZxPfe091HmNkw4AHgoKYKTpo06dP7lZWVVFZW5qGJ\nIlIsNm6EU06B556Dr3897tYkU1VVFVVVVVnLRQn9lUDftMe9U9sal+nTRJmKZurWAg8BuPtsM9tu\nZnu5+5rGDUgPfREpPxs3wqmnwje/GXdLkqvxgHjy5MlNlosyvTMb6G9m+5tZBTAOmN6ozHTgAgAz\nGwGsc/dVWeo+ApyUqjMQ2KWpwBcR2bgRjjgC1q6Fd9+NuzXFLWvou3sdMBF4ElgATHP3ajObYGaX\npcrMAJaa2RLgduAbzdVNvfRdwEFm9ipwP6kPDRGRxjZuhC5d4Oij4YUX4m5NcTN3j7sNzTIzT3ob\nRaSwdt0VPvwQbrwR1q2Dn/887hYln5nh7jvtX9UZuSKSaNu2hVtFBRxzjI7gyZVG+iKSaB99BPvt\nF/79+GPo3h0++CCM/iUzjfRFpCht3Ai77Rbud+kCAwfCyy/H26ZiptAXkURLD30IO3NnzoyvPcVO\noS8iidY49EeMyO8RPBs2wNe+Ftb1KQcKfRFJtKZCP58j/dmz4c474amn8veaSabQF5FEaxz6AwaE\nHbpvv910+c2bW/b6M2dCjx4h+MuBQl9EEq1x6JtlHu3fdRf06ROO6Y9q5ky4/nr4299g9erc25t0\nCn0RSbTGoQ9Nh/7MmfC978GQIXDzzdFe2z3UGzkSxo6F++7LT5uTTKEvIonWVOg3PoLnnXfg7LPD\nFM3NN8OvfhWmgLJZtix8c+jbFy69FKZODR8EpUyhLyKJ1lToDxsGc+fC1q3h6JuzzgpH4IwZA4cc\nAieeGO2aujNnhm8NZnDssbB9e+mv7aPQF5FEayr0u3aFAw6AOXPgS1+CwYPh2msbnv/Rj+AXvwgf\nCM2pD30IwX/ppXDLLXltfuIo9EUk0ZoKfQhTPF/6ErRrB7/9bQjteoceGkbu2eboX3yxIfQhfFv4\ny1/grbfy0vREUuiLSKJlCv3TTgtLMjzwAOyyy87Pf/7z8PrrmV9382Z45RU4Ku1CrV27huD/xS9y\nb3dSKfRFJNEyhf7ZZ4fDLJt6DqB3b6itzfy68+aFD43OnXfcftVV8Pvfl+7hmwp9EUm0TKGfTZ8+\nsGJF5ufT5/PT9ewJ55wDv/lNy9+zGCj0RSTRWhv62Ub6s2bB8OFNP/ftb4ejf6Ic9llsFPoikmit\nDf0ePWDNGtiypenna2vhwAObfq5/fxg0CF56qeXvm3QKfRFJtNaGfvv2IfgzrdGzalW4IEsmgwbB\nokUtf9+kU+iLSKK1NvSh+Xl9hb6ISALlEvq9ezcd+ps3hxO3unXLXFehLyISg1xH+k3tzF29GvbZ\nJ5zYlYlCX0QkBoWY3sk2tQPQr1+o29L1+ZMuUuib2SgzW2hmi83smgxlpphZjZnNM7Oh2eqa2XVm\nVmtmc1O3Ubl3R0RKTa7TO02N9KOEfkVFWH3zjTda995JlTX0zawdcBNwGjAEGG9mgxuVGQ30c/cB\nwATgtoh1f+nuR6Ruj+ejQyJSWgox0l+9OnvoQ5jiWby4de+dVFFG+sOBGndf5u5bgWnA2EZlxgL3\nArj7i0BXM+seoa4hIpKBewj9Tp1aVz+XkT6U5rx+lNDvBaR/VtamtkUpk63uxNR00J1m1jVyq0Wk\nLGzZAh06hFtrdO8OH3yw87x8OYd+K3+UWUUZwd8CXO/ubmY/Bn4JXNJUwUmTJn16v7KyksrKyjw0\nUUSSLpepHQgnaPXsGU7QSj/7dtUqOPLI7PUHDYJ77mn9+7elqqoqqqqqspaLEvorgb5pj3untjUu\n06eJMhWZ6rr7e2nbfws8lqkB6aEvIuUj19CHhnn9xqFfaiP9xgPiyZMnN1kuyvTObKC/me1vZhXA\nOGB6ozLTgQsAzGwEsM7dVzVX18x6pNX/N+C1CG0RkTKSj9Bval4/auh37x4uybhmTW5tSJKsI313\nrzOzicCThA+Jqe5ebWYTwtN+h7vPMLPTzWwJsAG4qLm6qZe+IXVo53bgLcJRPyIin8rnSD9d1NA3\naxjtH3NMbu1Iikhz+qnDKQc12nZ7o8cTo9ZNbb8gejNFpBzla6S/ZEnD423bYN062HvvaPVLLfR1\nRq6IJFYhRvrvvw+f+UzYyRtFMc3rR6HQF5HEKsScftSpnXoKfRGRNlKIkf6qVbDvvtHrK/RFRNpI\nPkJ/333DHH79CVotHekPGABLl0JdXW7tSAqFvogk1oYNuYd++/bh8oevvhoetzT0O3UKHxzLluXW\njqRQ6ItIYuVjpA9w8snwt7+F+1EXW0s3cGDpLLym0BeRxMpX6J9yCvz1r+F+S0f6UFrz+gp9EUms\nfIX+CSfAzJmwaVPrQl8jfRGRNpCv0O/aFT77WXj++ZYfvQMh9DXSFxEpsHyFPjRM8bR2ekcjfRGR\nAst36D/5JLz3XstH+n37hnobN+anLXFS6ItIYuUz9EeMCFM0u+8ern/bEu3bhwul19Tkpy1xUuiL\nSGLlM/QrKuD441s+tVOvVHbmKvRFJLHyGfoQpnhyCf1S2JlbqMsliojkLN+h/5WvwGGHta7uoEHw\n97/nry1x0UhfRBJr40bo3Dl/r7fPPuHs3NbQ9I6ISIHle6Sfi/qzct3jbkluFPoiklhJCv299gqX\nT3z//bhbkhuFvogkxvbt8LvfhdU1IVmhb1YaO3MV+iKSCJ98AueeCxdfDHfeGdav37IFdt017pY1\nGDQIFi6MuxW5UeiLSOw++CAcTukOTzwBU6bAxx+HUb5Z3K1rcMQRMGdO3K3IjQ7ZFJHY3XRTWOrg\nd78LIb/33vDAA8mZ2qk3bBjcd1/crciNRvoiErsFC+D006FduxD6//Ef8LOfJS/0hw6F118PU1HF\nKlLom9koM1toZovN7JoMZaaYWY2ZzTOzoVHrmtm3zGy7mX2m9d0QkWK2cCEcfHDD47PPDsGatNDf\nbbcwrz9/ftwtab2soW9m7YCbgNOAIcB4MxvcqMxooJ+7DwAmALdFqWtmvYFTgRK5+qSItFRdXVjI\nbHBaquyyC0ycGK5PmzTDhsHs2XG3ovWijPSHAzXuvszdtwLTgLGNyowF7gVw9xeBrmbWPULdXwHf\nybEPIlLE3nornCnb+Mzbyy8PUzxJUw6h3wtYkfa4NrUtSpmMdc1sDLDC3V9tYZtFpIRUV+84yq+3\n++7hiJ6kGT4cZs2KuxWtV6ijd5o9yMrMOgH/SZjayVpn0qRJn96vrKyksrIyt9aJSGJUV+84n590\nQ4bAihXw4Yewxx5xt6ZBVVUVVVVVWctFCf2VQN+0x71T2xqX6dNEmYoMdfsBBwDzzcxS2+eY2XB3\nX924AemhLyKlZeHCMHouFh06hJU658yBE0+MuzUNGg+IJ0+e3GS5KNM7s4H+Zra/mVUA44DpjcpM\nBy4AMLMRwDp3X5Wprru/5u493P0gdz+QMO1zeFOBLyKlrdhG+hDm9Yt1iifrSN/d68xsIvAk4UNi\nqrtXm9mE8LTf4e4zzOx0M1sCbAAuaq5uU29DlikhESk97sUZ+sOHw0MPxd2K1jFP+DqhZuZJb6OI\ntM6778KhhxbfypU1NWEn87IEH2xuZrj7ToNpnZErIrHJdORO0vXvD+vWhTWDio1CX0RiU4xTOxCW\nihg8OLS/2Cj0RSQ2jZdfKCaHHBLW4Sk2Cn0RiU2xjvQhtFsjfRGRFijm0NdIX0SkBVatgvXrwzr6\nxUgjfRGRDJYtg9tv33HbzTfD+eeHNfSL0QEHwHvvhSt8FZMi/XGLSDF5/HH4xjca1qH/+GO49Vb4\n1rfibVcu2rcPF0ovtmvmKvRFpOBqasLFR666KpyFe9ddUFkZjncvZsU4xaPQF5GCq6mBSZNg7VqY\nNg1++Uv47nfjblXuinFnrkJfRAqu/spYU6bARReF+fBhw+JuVe6KcaRfqPX0RUSAcDnEpUvDVM5u\nu8EVV8CYMXG3Kj8OOaT4Ql8LrolIQb31Fhx3HNTWxt2S/NuyJVxIZf162HXXuFuzIy24JiKxWLIE\nBgyIuxWFUVERpqpqauJuSXQKfREpqJqa0g19KL6duQp9ESmoUg/9YtuZq9AXkYJS6CeLQl9ECqrU\nQ3/QIFi8OO5WRKejd0SkYLZtgy5dwklZnTrF3ZrCWLcOeveGjz4KF1dJCh29IyJtbvly2Hff0g18\ngG7doHNneOeduFsSjUJfRAqm1Kd26g0cWDxTPAp9ESmYUj5GP92gQbBoUdytiEahLyIFo5F+8kQK\nfTMbZWYLzWyxmV2TocwUM6sxs3lmNjRbXTO73szmm9nLZva4mfXIvTsikiQK/eTJGvpm1g64CTgN\nGAKMN7PBjcqMBvq5+wBgAnBbhLo3uPth7n448Gfguvx0SUSSQqGfPFFG+sOBGndf5u5bgWnA2EZl\nxgL3Arj7i0BXM+veXF13T7/IWGdge049EZFEee+9cB3cYr9QShT9+oVLQm7dGndLsosS+r2AFWmP\na1PbopRptq6Z/djMlgPnAtdGb7aIJN3TT8MJJ8Auu8TdksLbdVfo1SssIZ10hVpPP9IpCu7+Q+CH\nqbn+K4BJTZWbNKlhc2VlJZWVlTk3UEQK66mn4NRT425F26mf4hk4MJ73r6qqoqqqKmu5KKG/Euib\n9rh3alvjMn2aKFMRoS7A/cAMIoS+iCSfewj9Yr7weUvFPa/feEA8efLkJstFmd6ZDfQ3s/3NrAIY\nB0xvVGY6cAGAmY0A1rn7qubqmln6TN+ZQBEtWSQizVmyJFwxa/Dg7GVLRdyhH1XWkb6715nZROBJ\nwofEVHevNrMJ4Wm/w91nmNnpZrYE2ABc1Fzd1Ev/1MwGEnbgLgO+nvfeiUgs6qd2krQWTaENGgQP\nPhh3K7LTgmsikndnnQVnnw3nnRd3S9rO8uVw9NGwsqkJ7BhkWnBNoS8iebVtG+yzDyxcCN27x92a\ntrN9e1hRdPXq8G/ctMqmiLSJl16CPn3KK/AB2rUL5yQkfQ0ehb6I5NXf/gannBJ3K+Jx8snw8MNx\nt6J5Cn0Ryav582HYsLhbEY+LL4a77w5HLiWVQl9E8mrBAjjkkLhbEY/PfjacmfvEE3G3JDOFvojk\nzZYt8Oab4fDFcnXJJTB1atytyEyhLyJ5s2QJ9O0LHTvG3ZL4jBsX9musXh13S5qm0BeRvCnnqZ16\ne+wBZ54J990Xd0uaptAXkbxZsACGDIm7FfG75BK4666wBlHSKPRFJG8U+sFxx8HGjTBvXtwt2ZlC\nX0Ty5vXXNb0DYc2h886D3/8+7pbsTMswiEhebNkCXbvC2rXlvSO3XnV1OFlrxQpo377t31/LMIhI\nQdXU6MiddAcfDD17QoTrmrQphb6I5IWO3NlZEqd4FPoikhevv66duI2NGxfW4tm0Ke6WNFDoi0he\n6Midne23Hxx1FPzpT3G3pIFCX0TyQtM7TfvCF+Dpp+NuRQOFvojkTGvuZHbkkTBnTtytaKDQF5Gc\nvfFGuHCKjtzZ2dCh4VvQli1xtyRQ6ItIzpYvhwMOiLsVydSlS/jZLFgQd0sChb6I5Gz58nCMvjQt\nSVM8Cn0Rydny5WF6R5p21FEKfREpIRrpN+/II8MF45MgUuib2SgzW2hmi83smgxlpphZjZnNM7Oh\n2eqa2Q1mVp0q///MbI/cuyMicVixQqHfnCTtzM0a+mbWDrgJOA0YAow3s8GNyowG+rn7AGACcFuE\nuk8CQ9x9KFADfD8vPRKRNqeRfvM6d4YDD0zGztwoI/3hQI27L3P3rcA0YGyjMmOBewHc/UWgq5l1\nb66uu//V3ben6s8EeufcGxFpc9u3Q22t5vSzOeqoZEzxRAn9XsCKtMe1qW1RykSpC3Ax8JcIbRGR\nhFm9OlwisFOnuFuSbEk5gqdDgV53pzWcMxY0+wGw1d3vz1Rm0qRJn96vrKyksrIyl7aJSB5paiea\nI48s7HVzq6qqqIqwjnOU0F8JpP9Ke6e2NS7Tp4kyFc3VNbOvAqcDJzXXgPTQF5FkUehHU78zd/Nm\n2HXX/L9+4wHx5MmTmywXZXpnNtDfzPY3swpgHDC9UZnpwAUAZjYCWOfuq5qra2ajgO8AY9x9c/Su\niUiSrFih+fwoOneGY46BP/wh3nZkDX13rwMmEo62WQBMc/dqM5tgZpelyswAlprZEuB24BvN1U29\n9G+ALsBTZjbXzG7Jb9dEpC1opB/dj34E//3fsG1bfG3QNXJFJCdf/GK4WMiXvhR3S4rD8cfDZZfB\n+ecX9n10jVwRKQiN9Fvm2mvDaL+uLp73V+iLSE4U+i1z8smw557w4IPxvL+md0Sk1TZtgm7dwr/t\nNISMbMYM+MEPYO5csMgHuLeMpndEJO9qa6F3bwV+S40aBRs2wPPPt/1761clIq2mhdZap107uPxy\n+M1vYnjvtn9LESkVWke/9b76VXjiCXj77bZ9X4W+iLSaduK2XteuMH483HFH276vQl9EWk2hn5vL\nL4fbb2/bdfYV+iLSasuWaXonF0OGwCGHwP0Zl5vMPx2yKSKt4g49e8Ls2Qr+XDz7LJx3HixaBB07\n5u91dcimiOTVypUh+Hvr8kc5Oe64sALnLW20+phCX0Ra5aWXwtWgCnVyUTn5yU/gpz+FdesK/14K\nfRFplZdeChcGkdwNGQJnnAE33FD491Loi0irzJkTRvqSH5Mnh8M3q6uzl82FQl9EWsy9YXpH8qN3\n77D65vnnF/YQToW+iLTY8uWwyy6w335xt6S0XHYZ9OgB//VfhXsPhb6ItJhG+YVhBlOnwm9/W7jF\n2BT6ItJiCv3C6dEjhP4554TDYvNNoS8iLabQL6wzzoArrgj/btiQ39fWGbki0iLusNde4SiT7t3j\nbk3pcoeLLw7H7j/wQNiH0hI6I1dE8mLpUujSRYFfaGZhMTb3cBz/Qw+F++k++aTlC7Yp9EWkRWbN\n0klZbaWiAh55BG66KRzHf/zx8Mor4bk1a+CUU+BHPwpTQVEnRBT6ItIif/4zjBwZdyvKy8iR4Xq6\n558fgv7KK+HYY+Hoo6GmBp57Dm6+OdprRQp9MxtlZgvNbLGZXZOhzBQzqzGzeWY2NFtdMzvbzF4z\nszozOyJac0UkTlu3htAfMybulpSf9u1hwgRYsAC2b4err4af/zxcjOWxx8KJXY8/nv11soa+mbUD\nbgJOA4YA481scKMyo4F+7j4AmADcFqHuq8BZwDPRuiwicauqgoEDoVevuFtSvvbZJ0z3TJjQsO3A\nA+HBB+HCC+HGG5uf6ukQ4T2GAzXuvgzAzKYBY4GFaWXGAvcCuPuLZtbVzLoDB2aq6+6LUtu0Rp9I\nkXj4YTjrrLhbIU059thwbYMvfxn+8Y/M5aJM7/QCVqQ9rk1ti1ImSl0RKQLbt8Ojjyr0k6xvX3jm\nmXA1rkyijPRbI6+j90mTJn16v7KyksrKyny+vIhEMHs2dOsWpnckeaqqqqiqqgKavwJXlNBfCaRf\n+rh3alvjMn2aKFMRoW5W6aEvIvF4+GE488y4WyGZNB4QT548uclyUaZ3ZgP9zWx/M6sAxgHTG5WZ\nDlwAYGYjgHXuvipiXcjzNwMRyS93zeeXiqwjfXevM7OJwJOED4mp7l5tZhPC036Hu88ws9PNbAmw\nAbiouboAZnYm8Btgb+BPZjbP3UcXopMikpt//jOcIaqTsoqf1t4RkazGjoXTT9/xMEFJtkxr7yj0\nRaRZixfDccfBW2/BbrvF3RqJSguuiUir/PrXYYSvwC8NGumLSEYffAD9+oVllHv0iLs10hIa6YtI\ni916azhMU4FfOjTSF5EmrVkDgweHI3cGD85eXpJFO3JFpEW+9a1wqb7bbou7JdIaCn0RiWzp0nAN\n3AULNLVTrDSnLyKR/fCH4WpMCvzSU6gF10SkSN17Lzz9tKZ1SpVCX0SAMH9/xRXw/PPwxBOw++5x\nt0gKQdM7IsLbb4frrW7bBi+9BP/yL3G3SApFoS9S5t58Ez7/eRg3Du65B7p0ibtFUkia3hEpYwsX\nwimnwH/+J3zjG3G3RtqCDtkUKVOffALDh8Pll2v1zFKk4/RFZAff+U44Hv///i+slS+lJVPoa3pH\nSsojj8Djj8Mxx8Dxx8P++yvQmlJVBfffD/Pn6+dTbjTSl5Lw3nvhcMO5c+FrXwtHoPzjH/DRRyH4\n+/cPa8KfeCJ06gTPPQezZsHGjaF+p04waFBYY2bYMOjZM97+FNIzz8AFF4Tj8EfrWnUlS9M7UhK2\nb4eamnAM+Wc+Ay+/DPfdBw88ABddBNdfHwK83vr1sGwZLFoUwu7pp2HzZjj2WBgxArp1C+U+/jiU\nef11ePFF6N4dTjop7OQ88cSGcsXIHWprYc4cmDIFli8PP6dzz427ZVJICn3JSV0dvPNOOJxvjz2g\nXTMH+27eDBUVuU0bfPJJmKqprYUTToChQ+Gxx2Dy5LDG+7ZtYRXIgw6Cr3wFzj8/jOjzoa4uTHs8\n/TQ89VQ4Wenoo8MRLiecEPq1dCm88kr4ZtC/f/jG8Oyz4RvGMcdAZSW0b5+f9rTGsmXwl7+Eqa5/\n/hN22SUce3/uueFn1UETuyVPoS+f2rYNZs6E2bPD6O/gg8PhenvuGZ7/4IMwgn7jDViyJJSZPRs6\ndw7h9vHHsPfeIWR79w7hVlcXRtU1NfDuu7DPPmGUfOyxIXDq6kJYVlRAx45wyCENy/U+8wxMmxZC\nfK+9wsj0kUdC0A8aFJ5fvBgOPRQmTYIvfCG8lnvbzEd/8kmY//7JT0K/1q8PbT388NCuVatCO4YN\ngyOOCO2trQ3979kT9t0XunYN3046dmz4GXbuDEOGhJ9D+reT1tq0CR56CO68MyyUNno0nHZa+KZS\nytNV0jSFfolbvx4efRQOPDDMXaeH4ebN4fl33oE//hHuvjsspHX00SGknn021D3jjDC9sWhR2N6v\nXxhJH3FEOLRvr73C69XVwerVYTRZWxumXNq3D6HWvz/07Rue++tfw1RJ/fPusGVLON3/tdfCh8Nu\nu4UPjvHjw4fImjUhZMeODX1J798ee8S703HbNpgxIwTokUc2fNv58MPwwZYe3EuWhJ/r6tXhtn59\nCPpNm0Kfd98d1q0L4fzGG9CrV/jw7dUr7IdYty5MXw0eDAMHhg/Zbt3Ce65ZA2vXht/h4MHh53vz\nzeGCJ0OHhn0aY8aED1gpXwr9mLmHedRbbgmhfNppMHIkHHBA0+U3bQphsGxZCMGRI3dcC8U9XKh6\n5kz485/hT38KUw81NSGUx4wJ92fNCjs5u3ULIfKFL8All4SRdrra2jBKPOyw8GHQFoGxdm0It/Rw\nL0dbt4bfdXV1+GDeY4/wzWDNmrCtpiZ8+1q/Pnzw7LVX+H2+8054vq4OzjsPvvlNXexEGuQU+mY2\nCvhfwrINU939Z02UmQKMBjYAX3X3ec3VNbM9gT8C+wNvAee4+/omXrfoQ3/LFrj00nD249SpMG8e\nPPlkuHXtCqefDldf3TAn/dhjofyee4YPBfcQ7qNHh9Hda6/Bq6+G0fPRR4f54/Hjw2jQHV54IcxF\nH3xwmHI44AAdlleq6r897bpr3C2RpGl16JtZO2AxcDLwNjAbGOfuC9PKjAYmuvu/mtnngF+7+4jm\n6prZz4A17n6DmV0D7Onu32vi/b2y0unbF/r0CVMH++4b/sjrR6N1dWHKoLo6BOLateGrdufOYeqg\nfpqiX7+GOeh0W7eGke7q1WF+dv78hhHyueeGHYX1890Q/qO9/TasXBna0L59COGnnw7rmFx9dcO8\n86xZ4XEGnAoMAAAIZElEQVT37vC738GsWVVUVlYC4Wv5K6+EKZc77oALLwwjuUcfDXPIxx7b8J5r\n1sCDD4av/oceGm69eiUjzKuqGvpUCtSf5Cu1PhWiP7mcnDUcqHH3ZakXmgaMBRamlRkL3Avg7i+a\nWVcz6w4c2EzdscAJqfr3AFXATqEP4YIOy5fDihUNYbxlS5irhhC6nTqFr7ajRoUR76ZNYQ51xYpw\nTPZ994VAfu+98OHRr1/48Fi4MMyr7r13COZ99w071y68MHzNvvtuuPZaGDCg4UNm0aIwt7r//uED\nY8uW8N4nnQSnngrf/z7ceGOoP28e/OAHYZ61ffsdf7nt2oU52KFD4cor4cc/Dh9eL78cpmLS7bVX\nck+V13/AZCu1/kDp9akt+xMl9HsBK9Ie1xI+CLKV6ZWlbnd3XwXg7u+a2b6ZGnDyyRFaGdEnn4S5\n8DffDDsSJ0wI89iZVhYcORLefz8cordlS/hWMWBAmGbJNMr+4hfDh8ymTeEU944ds7erZ8+wM05E\npJAKdbRuayYd2mTivmPHMCpvyQ6vvfcOt6g6dAgnComIJI67N3sDRgCPpz3+HnBNozK3AV9Oe7wQ\n6N5cXaCaMNoH6AFUZ3h/10033XTTreW3pjI1ykh/NtDfzPYH3gHGAeMblZkOXA780cxGAOvcfZWZ\nvd9M3enAV4GfARcCjzb15k3tiBARkdbJGvruXmdmE4EnaTjsstrMJoSn/Q53n2Fmp5vZEsIhmxc1\nVzf10j8DHjCzi4FlwDl5752IiOwg8SdniYhI/rT5NXLNbKqZrTKzV9K2HWZmL5jZy2Y2y8yGpbZ3\nMLO7zewVM1tgZt9Lq3NEavtiM/vftu5Hugx9+hcze97M5pvZo2bWJe2575tZjZlVm9nItO2J6FNL\n+mNmp5jZS6nts83sxLQ6RdeftOf7mtlHZvbNtG2J6E+qLS39m6t/7rXU8xWp7YnoUwv/5hKfC2bW\n28yeTrXvVTO7MrV9TzN70swWmdkTZtY1rU7b5EK2Hbn5vgHHAUOBV9K2PQGMTN0fDfw9dX88cH/q\nfidgKdA39fhFYFjq/gzgtLbuS5Y+zQKOS93/KnB96v4hwMuEqbUDgCU0fONKRJ9a2J/DgB6p+0OA\n2rQ6RdeftOf/j3DG+DeT1p9W/I7aA/OBQ1OP9yzyv7nE5wLh4JShqftdgEXAYMK09ndT268Bfpq6\n32a50OYjfXd/FljbaPN2oP4Trxuwsr440NnM2gO7AZuBD82sB7C7u89OlbsXOLOgDW9Ghj4NSG0H\n+CvwxdT9McA0d9/m7m8BNcDwJPWpJf1x9/nu/m7q/gKgo5ntUqz9ATCzscCbwIK0bYnpD7S4TyOB\n+e7+WqruWnf3JPWphf1JfC64+7ueWorG3T8mHK3Ym3BS6j2pYvekta/NcqHNQz+Dq4EbzWw5cAPw\n/dT2B4GNhCN/3gJudPd1hJO+atPq158MliQLzGxM6v45hF847HzC2koaTmRLcp8y9edTZnY2MNfd\nt1Kk/UlNIXwXmMyO55skvT+Q+Xc0EMDMHk9NxX0ntT3pfcrUn6LKBTM7gPAtZiaNTkoF6k9KbbNc\nSEro/ztwlbv3JXwA3JXa/jlgG+Gr0kHAt1M/wGJwMXC5mc0GOgNbYm5Prprtj5kNAf4HuCyGtrVG\npv5cB/zK3TfG1rLWy9SnDsCxhGmRzwNnpe97SbBM/SmaXEgNIh4k5NvHhG8p6dr8SJqkXD/nQne/\nCsDdHzSzO1PbxxNO7toOvGdmzwFHAc8CfdLq96ZhSigR3H0xcBqAmQ0A/jX11Eqabnum7YnQTH8w\ns97AQ8BXUl9NoXj78zngi2Z2A2Huu87MPiH0L7H9gWb7VAv8w93Xpp6bARwB/J4E96mZ/hRFLphZ\nB0Lg3+fu9echrTKz7h7OY+oBrE5tb7NciGukb+z41XmlmZ0AYGYnE+azAJYDJ6W2dyac4Vud+lq0\n3syGm5kBF5Dh5K42tEOfzGyf1L/tgB8SzlqGcFLaODOrMLMDgf7ArAT2KVJ/zKwb8CfCmdYz68sX\na3/c/Xh3P8jdDyIsCf4Td78lgf2B6H9zTwCfNbOOqSA6AViQwD5l68+tqaeKJRfuAl5391+nbas/\nKRV2PCm17XIhhr3a9xOWWd5M+OVdBBwDvETYe/0CcHiqbGfgAeC11C39SIojgVcJHxC/but+ROjT\nlYQ99gsJwZFe/vuEvfPVpI5aSlKfWtIf4AfAR8Dc1O9vLrB3sfanUb3rSuhv7tzU/6FXgP9JWp9a\n+DeX+FwgTKfVAfPS/l+MAj5D2Cm9iHDSare0Om2SCzo5S0SkjCRlR66IiLQBhb6ISBlR6IuIlBGF\nvohIGVHoi4iUEYW+iEgZUeiLiJQRhb5IG0idVSoSO/0hijRiZpPN7Kq0xz82syvN7NsWLvIzz8yu\nS3v+YQsXkHnVzC5N2/6Rmd1oZi8TlgoQiZ1CX2RndxHWOCG13sk4wjK+A9x9OHA4cJSZHZcqf5G7\nDwOGAVeZ2Z6p7Z2BF9z9cHd/vk17IJJBUlbZFEkMd19mZu+b2WGE5XvnAsOBU81sLmFRsM7AAMLK\njv9hZvUXtuid2j6LsPzvQ23dfpHmKPRFmnYnYdGvHoSR/ymEhcp+m14otTrsScDn3H2zmf0d6Jh6\n+hPX4laSMJreEWnaI4RVEY8iLE38BHBxailfzGy/1NK/XYG1qcAfzI5z94ZIwmikL9IEd9+aGrWv\nTY3Wn0qF+gthmp+PgPOBx4Gvm9kCwnK5L6S/TBs3WyQrLa0s0oTUIZZzgLPd/Y242yOSL5reEWnE\nzA4mXLDiKQW+lBqN9EVEyohG+iIiZUShLyJSRhT6IiJlRKEvIlJGFPoiImVEoS8iUkb+P9Dv89Xm\nUqLtAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"idf.ix['Travis'].prop.plot()"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"name\n",
"Kennard 0.000027\n",
"Danniel 0.000027\n",
"Deryl 0.000028\n",
"Grayling 0.000028\n",
"Michial 0.000028\n",
" ... \n",
"Charles 0.019521\n",
"Robert 0.029625\n",
"William 0.034182\n",
"James 0.035465\n",
"John 0.041082\n",
"Name: prop, dtype: float64"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"boys.groupby('name')['prop'].mean().sort_values()"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"result = boys.groupby('name')['prop'].describe()"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"name \n",
"Aaden count 1.000000\n",
" mean 0.000442\n",
" std NaN\n",
" min 0.000442\n",
" 25% 0.000442\n",
" ... \n",
"Abbie 50% 0.000046\n",
" 75% 0.000046\n",
" max 0.000046\n",
"Abbott count 2.000000\n",
" mean 0.000044\n",
"dtype: float64"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result[:50]"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df = boys[boys.year == 2008].sort_values(by='prop', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 126,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"128000 0.010355\n",
"128001 0.019792\n",
"128002 0.029093\n",
"128003 0.037892\n",
"128004 0.046594\n",
" ... \n",
"128995 0.795058\n",
"128996 0.795147\n",
"128997 0.795236\n",
"128998 0.795325\n",
"128999 0.795414\n",
"Name: prop, dtype: float64"
]
},
"execution_count": 126,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.prop.cumsum()"
]
},
{
"cell_type": "code",
"execution_count": 137,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"127"
]
},
"execution_count": 137,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# to get the 50%\n",
"int(df.prop.cumsum().searchsorted(0.5))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# writting the function to use in each year\n",
"\n",
"def get_quantile_count(group, quantile=0.5):\n",
" df = group.sort_values(by='prop', ascending=False)\n",
" return int(df.prop.cumsum().searchsorted(quantile))"
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"q = 0.5\n",
"boys_ct = boys.groupby('year').apply(get_quantile_count, quantile = q)\n",
"girls_ct = girls.groupby('year').apply(get_quantile_count, quantile = q)"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 165,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VVW6+PHvSwm9REBKAiGA0pQiVUoSwYLXgm0wqIjl\nei2j4jgzP8EyYEW8M47MHfE6KooigoqIzlWakIQO0iGAoaQQILTQIfX9/bFPwoH05Jyck+T9PE8e\n9lm7vYucvGedtddeW1QVY4wxFV81XwdgjDHGMyyhG2NMJWEJ3RhjKglL6MYYU0lYQjfGmErCErox\nxlQSRSZ0EaklIqtFZIOIbBGR8a7y8SKyT0TWu36Gue0zTkTiRGS7iNzozQoYY4xxSHHGoYtIXVU9\nKyLVgeXAs8DNwClVffeSbTsDM4A+QDCwCLhCbcC7McZ4VbG6XFT1rGuxFlADyEnOks/mw4GZqpqp\nqvFAHNC3jHEaY4wpQrESuohUE5ENwEFgoaquda16WkQ2isjHItLIVRYEJLntnuwqM8YY40XFbaFn\nq2pPnC6UviLSBZgCtFPVHjiJ/m/eC9MYY0xRapRkY1U9KSJRwLBL+s4/An50LScDrd3WBbvKLiIi\n1qdujDGloKr5dXcXa5RL05zuFBGpA9wA7BCRFm6b3QVsdS3/AESKSICIhAIdgDUFBFWpfsaPH+/z\nGKw+Vac+lbFOVp+ifwpTnBZ6S2CaiFTD+QCYpao/icjnItIDyAbigcddSTpWRL4GYoEM4CktKgpj\njDFlVmRCV9UtwDX5lD9YyD4TgYllC80YY0xJ2J2iHhQREeHrEDzK6uP/KludrD5lU6wbi7xyYhHr\niTHGmBISEbSAi6IlGuVijDGe1LZtWxISEnwdhl8KCQkhPj6+RPtYC90Y4zOu1qavw/BLBf3fFNZC\ntz50Y4ypJCyhG2NMJWEJ3RhjKglL6MYYk4/Q0FAWL17s6zBKxBK6McZUEpbQjTGmkrCEbowxBViz\nZg1du3alSZMmPProo6SnpwPw0UcfccUVV9C0aVPuuOMODh48CMDTTz/Nn/70p4uOMXz4cCZPngzA\npEmTCA4OpmHDhnTu3JklS5Z4NF4bh26M8Rl/HoceGhpKgwYNmDdvHnXr1uXWW29lyJAhXHfddYwY\nMYJFixbRpUsX/vjHP7Jp0yaio6NZu3Ytd955J/v27QPg6NGjuTcIHTt2jOuvv561a9fSvHlzEhMT\nycrKIjQ0NN/zl2Ycut0paozxW5Jv2iq50n5mPPPMM7Rq1QqAl156iWeeeYb9+/fz6KOP0r17dwAm\nTpxIYGAgiYmJ9OnTh0aNGvHLL78wdOhQZs6cSUREBE2bNuXEiROkp6ezdetWmjRpQps2bTxTOTfW\n5WKM8VuqnvkpreDg4NzlkJAQ9u/fz4EDBwgJCcktr1evHk2aNCE52XmOz4MPPsj06dMBmD59OqNG\njQKgffv2vPfee0yYMIHmzZtz3333ceDAgdIHlw9L6MYYU4CkpAuPR05MTCQoKIhWrVpdNMfKmTNn\nOHr0KEFBzqOTH3jgAebOncvmzZvZsWMHd9xxR+62kZGRLF26NHf+mrFjx3o0XkvoxhhTgPfff5/k\n5GSOHTvGm2++SWRkJJGRkXz22Wds3ryZtLQ0XnzxRfr375/bhRIUFETv3r0ZNWoUd999N7Vq1QLg\nt99+Y8mSJaSnpxMQEECdOnWoVs2zKdgSujHG5ENEuO+++7jxxhvp0KEDV1xxBS+99BJDhw7l9ddf\n56677iIoKIi9e/cyc+bMi/YdPXo0W7du5cEHLzwHKC0tjbFjx9KsWTNatWrF4cOHmTjRs88BslEu\nxhif8edRLmWxdOlSRo0aVeLpb93ZbIvGGONjGRkZTJ48mccee6zcz20J3RhjPGTHjh0EBgaSkpLC\nmDFjyv381uVijPGZytrl4gn5/d/EHY3jyqZXWpeLMcZUdF9t/arQ9ZbQjTGmgli8t/DpfItM6CJS\nS0RWi8gGEdkiIuNd5YEiskBEdorIfBFp5LbPOBGJE5HtInJjmWthjDFV3LmMc/y6/9dCtykyoatq\nGnCdqvYEegA3i0hfYCywSFU7AouBcQAi0gUYAXQGbgamiHhqRgZjjKmaViStoHuL7oVuU6wuF1U9\n61qshTOhlwLDgWmu8mlAzv2ttwMzVTVTVeOBOKBviSI3xhhzkcV7F3Nd2+sK3aZYCV1EqonIBuAg\nsFBV1wLNVTUFQFUPApe7Ng8Cktx2T3aVGWNMpbBs2TI6d+5c6DaefoTdkvglDAkdUug2xZo+V1Wz\ngZ4i0hCYIyJdcVrpF21W0gAnTJiQuxwREUFERERJD2GMMeVu0KBBbN++vVzOFRUVxfxF8/l15a/8\nEv9LoduWaD50VT0pIlHAMCBFRJqraoqItAAOuTZLBlq77RbsKsvDPaEbY0xlkJWVRfXq1T12vIiI\nCM4GnWXVFat4c/SbvPXGWwVuW5xRLk1zRrCISB3gBmA78APwkGuz0cBc1/IPQKSIBIhIKNABWFPa\nyhhjjK+sX7+ea665hkaNGjFixAgiIyP5y1/+QnR0NK1bX2i3hoaG8s4779C9e3fq169PVlbWRcdZ\nu3Zt7sMvWrZsmecxdUVZsncJQ9oW3t0CxetDbwksEZGNwGpgvqr+BEwCbhCRncBQ4G0AVY0FvgZi\ngZ+Ap+yWUGNMRZORkcFdd93FI488wrFjxxg5ciRz5szJXX/p4L2ZM2fy888/c/z48Twt9DFjxvDc\nc89x4sQJdu/ezYgRI0oUy+L4xVwXWvgFUShGl4uqbgGuyaf8GHB9AftMBDw7L6QxpsqRVz0z4lnH\nl7xNuWrVKrKysnj66acBuPPOO+nbt+ABe2PGjMl9XN2lAgIC2LVrF0ePHqVJkyaFHudSJ86fYOeR\nnfQNKnofe6aoMcZvlSYRe8r+/ftzn0KUw72b5VLuj6u71CeffMIrr7xCp06daNeuHX/5y1+45ZZb\nihXHqn2r6N2qNwHVA4rc1hK6Mcbko2XLlrnPCc2RlJREhw4d8t2+sPsn27dvz4wZMwCYPXs299xz\nD8eOHaNOnTpFxrEiaQUDWg8oVsw2l4sxxuTj2muvpXr16rz//vtkZWUxd+5c1qy5ML6jJJcGv/zy\nS44cOQJAo0aNEJFiP35uedJyBrYeWKxtLaEbY0w+atasyXfffcfHH39MYGAgM2bM4Lbbbst9Rqh7\nizy/1rl72bx58+jatSsNGzbkD3/4A7Nmzco9TmEyszNZk7yG/sH9ixWzzYdujPGZijYfev/+/Xny\nyScZPXq0188lImw4sIGRs0ey/ffbLyq3+dCNMaaEYmJiSElJISsri2nTprFlyxaGDRtWbudfnlj8\n7hawi6LGGFOgnTt3MmLECM6ePUu7du2YPXs2zZs3L7fzr9i3gqGhQ4u9vXW5GGN8pqJ1uZQnESHk\n7yHMe2AenZp2uqjculyMMaaCOZV+io5NOhZ7e0voxhjjpwa0HlDo+PZLWUI3xhg/NSC4eDcU5bCL\nosYYnwkJCSlRC7QqqX95fcLbhpdoH7soaowxfubo2aOETg7l6P87Ss3qNS9aZxdFjTGmAolOiGZg\nm4F5knlRLKEbY4yfWbx3cbEeaHEpS+jGGONnFu9dXOQDofNjCd0YY/zIwdMHOXD6AD1a9CjxvpbQ\njTHGjyzZu4TwkHCqVyv5g6YtoRtjjB9ZEr+kVN0tYAndGGP8yuK9i7mubdEPhM6PJXRjjPETCccT\nOJl2kq6Xdy3V/pbQjTHGT3y55Utuu/I2qknpUrPd+m+MMX4gKzuLD9d9yOwRs0t9jCI/BkQkWEQW\ni8g2EdkiIs+4yseLyD4RWe/6Gea2zzgRiROR7SJyY6mjM8aYKmLernk0r9ec3q16l/oYxWmhZwLP\nq+pGEakPrBORha5176rqu+4bi0hnYATQGQgGFonIFTZxizHGFOyDXz/gyd5PlukYRbbQVfWgqm50\nLZ8GtgNBrtX5TRAzHJipqpmqGg/EAX3LFKUxxlRi8cfjWbVvFfdedW+ZjlOinncRaQv0AFa7ip4W\nkY0i8rGINHKVBQFJbrslc+EDwBhjzCX+te5fjOo2iro165bpOMW+KOrqbvkWGKOqp0VkCvCaqqqI\nvAH8DfjPkpx8woQJucsRERFERESUZHdjjKnwVJXpm6fz8/0/57s+KiqKqKioYh2rWPOhi0gN4N/A\nz6o6OZ/1IcCPqtpNRMY6Meok17p5wHhVXX3JPtatboyp8uKOxjHk8yEkPpdYrId9eGI+9KlArHsy\nF5EWbuvvAra6ln8AIkUkQERCgQ7AmmKexxhjqpScmRU98eSmIrtcRGQgcD+wRUQ2AAq8CNwnIj2A\nbCAeeBxAVWNF5GsgFsgAnrKmuDHG5G9J/BKGdRhW9IbFYI+gM8YYH1FVmv+1OWsfW0tI45Bi7WOP\noDPGGD+07fA2GtRqUOxkXhRL6MYY4yNL9i4p1aPmCmIJ3RhjfGRx/GKuCy3dVLn5sYRujDE+kJWd\nRXR8dKnnPs+PJXRjjPGBTSmbaF6/OS0btPTYMS2hG2OMDyzYvcCj/edgCd0YY3zim9hvuLvL3R49\npiV0Y4wpZ3FH40g+mUx4SLhHj2sJ3RhjytmsbbO4p8s9VK9W3aPHtYRujDHlbObWmUReFenx41pC\nN8aYcrT10FaOnz/OgNYDPH5sS+jGGFOOZm2dxb1d76WaeD79WkI3xphyoqrM2jarzI+aK4gldGOM\nKSfTN0+nbs269GnVxyvHL/Yj6IwxxpRe0okk/rjgjywYtcAjD7PIj7XQjTHGy1SVR394lDH9xtCj\nRQ+vnccSujHGeNmH6z7kZNpJXhj0glfPY10uxhjjRarKuyvfZfpd06lRzbsp11roxhjjRbGHY0nL\nSvPahVB3ltCNMcaL5uyYwx0d7/DahVB3ltCNMcaLvt/xPXd2vrNczmUJ3RhjvCTxRCIJJxIY1GZQ\nuZzPEroxxnjJ9zu+59Yrb/X6xdAcRSZ0EQkWkcUisk1EtojIs67yQBFZICI7RWS+iDRy22eciMSJ\nyHYRudGbFTDGGH81Z8cc7uxUPt0tULwWeibwvKp2Ba4Ffi8inYCxwCJV7QgsBsYBiEgXYATQGbgZ\nmCLlcTXAGGP8yNGzR1l/YD03tLuh3M5ZZEJX1YOqutG1fBrYDgQDw4Fprs2mAXe4lm8HZqpqpqrG\nA3FAXw/HbYwxfm3uzrnc0O4G6tSsU27nLFEfuoi0BXoAq4DmqpoCTtIHLndtFgQkue2W7Cozxpgq\nY+bWmdzb1TuzKhak2D31IlIf+BYYo6qnRUQv2eTS10WaMGFC7nJERAQRERElPYQxxvidQ2cOsSZ5\nDd9Hfl/mY0VFRREVFVWsbUW16DwsIjWAfwM/q+pkV9l2IEJVU0SkBbBEVTuLyFhAVXWSa7t5wHhV\nXX3JMbU45zbGmIrmg7UfsDRxKTPunuHxY4sIqprvdcnidrlMBWJzkrnLD8BDruXRwFy38kgRCRCR\nUKADsKbEURtjTAU1a9uscu9ugWJ0uYjIQOB+YIuIbMDpWnkRmAR8LSKPAAk4I1tQ1VgR+RqIBTKA\np6wpboypKvaf2s/mlM0M6zCs3M9drC4Xr5zYulyMMZXQ5FWT2ZiykU+Hf+qV43uiy8UYY0wxzNxW\n/qNbclhCN8YYD4k7Gsee1D0MDR3qk/NbQjfGGA/5fNPn3H/1/dSsXtMn57eEbowxHpCt2Xy++XNG\ndx/tsxgsoRtjjAdExUcRWDuQ7i26+ywGS+jGGOMBn238jId6POTTGCyhG2NMGZ1KO8UPO3/gvqvv\n82kcltCNMaaMvo39lrCQMC6vd3nRG3uRJXRjjCmjGVtnMKrbKF+HYQndGGPKIuV0CmuT13LLlbf4\nOhRL6MYYUxazt8/mP674D+rWrOvrUCyhG2NMWczaNovIqyJ9HQZgCd0YY0ot+WQyW1K2cFP7m3wd\nCmAJ3RhjSu2b2G8Y3mk4tWrU8nUogCV0Y4wptZlbZxLZ1T+6W8ASujHGlMre1L3sTt3NkNAhvg4l\nlyV0Y4wphc83fU5k10ifzayYH0voxhhTQtmazbRN0xjdw3czK+bHEroxxpTQssRl1K1Zl14te/k6\nlItYQjfGmBKatnEao7uPRiTfR3v6TA1fB2CMMRXJmfQzfLfjO2KfivV1KHlYC90YY0pgzo45XBt8\nLS0btPR1KHlYQjfGmBL4ZMMnPn3MXGGKTOgi8omIpIjIZrey8SKyT0TWu36Gua0bJyJxIrJdRG70\nVuDGGFPe1h9YT9zROO7sfKevQ8lXcVronwL5TVTwrqpe4/qZByAinYERQGfgZmCK+NtVA2OMKaW/\nrfwbY/qNIaB6gK9DyVeRCV1VlwGp+azKL1EPB2aqaqaqxgNxQN8yRWiMMX4g4XgC83bN4796/Zev\nQylQWfrQnxaRjSLysYg0cpUFAUlu2yS7yowxpkKbvHoyD/d4mEa1GxW9sY+UdtjiFOA1VVUReQP4\nG/CfJT3IhAkTcpcjIiKIiIgoZTjGGOM9x88f57ONn7HpiU3lfu6oqCiioqKKta2oatEbiYQAP6pq\nt8LWichYQFV1kmvdPGC8qq7OZz8tzrmNMcaXVJUn/v0EGdkZTB0+1dfhICKoar7XJovb5SK49ZmL\nSAu3dXcBW13LPwCRIhIgIqFAB2BNyUM2xhj/8MGvH7A8aTnvDXvP16EUqcguFxGZAUQATUQkERgP\nXCciPYBsIB54HEBVY0XkayAWyACesma4MaaiWrx3Ma9Fv8byR5bTsFZDX4dTpGJ1uXjlxNblYozx\nY4fPHObqD65mxt0z/GrO88K6XCyhG2NMPh7/8XHq1Kzjd10thSV0m5zLGGMusf7AeubunMuOp3f4\nOpQSsblcjDHGjaryzM/P8MaQN2hcu7GvwykRS+jGGONmxpYZpGWm8XCPh30dSolZl4sxxricSjvF\nC4te4JvffUP1atV9HU6JWQvdGGNc3lr6FkPbDeXa1tf6OpRSsRa6McYAcUfj+Gj9R2x5couvQyk1\na6EbYwzw/ILneWHgC375JKLisha6MabKi46PZseRHcweMdvXoZSJtdCNMVXe+2vf57l+z/ntgyty\nLFhQ+Hq7U9QYU6UdOHWALlO6kPBcgl/P15KeDt26wc6dZZ9t0RhjKqVPNnzCiC4j/DqZA/zP/0Bo\naOHbWAvdGFNlZWVnETo5lB9G/kCPFj18HU6BDh6Eq6+GZcugUydroRtjTB7/F/d/BDUM8utkDvDi\ni/DQQ9CxY+Hb2SgXY0yV9f7a93my95O+DqNQ33wDixfD5s1Fb2sJ3RhTJS3cvZBdx3YxousIX4dS\noA0b4KmnYOFCaFiMLn7rcjHGVDkZWRmMmTeGv9/0d2rXqO3rcPKVkgJ33AFTpkCPYvYIWUI3xlQ5\n7699nzaN2nDblbf5OpR8pafD3Xc7/ea/+13x97NRLsaYKuXQmUN0ndKVpQ8vpVPTTr4OJw9VeOwx\nOHYMvv0Wql3S7LYnFhljjMurUa8yqtsov0zmAP/8J6xZAytW5E3mRbGEboypMhKOJzBz20x2Pr3T\n16Hka9EiePNNWLkS6tcv+f6W0I0xVcbrMa/zZO8naVq3qa9DyWPXLrj/fpg1q+g7QgtiCd0YUyXs\nOraL73d8T9wzcb4OJY+TJ+H22+HVVyEiovTHKbKHRkQ+EZEUEdnsVhYoIgtEZKeIzBeRRm7rxolI\nnIhsF5EbSx+aMcZ4zqvRr/Jsv2cJrBPo61AukpXltMwjIuCJJ8p2rOJ0uX8K3HRJ2Vhgkap2BBYD\n4wBEpAswAugM3AxMEZF8r8YaY0x5Wbx3MQt3L+S5/s/5OpQ8XnkFTp+GyZPLfqwiE7qqLgNSLyke\nDkxzLU8D7nAt3w7MVNVMVY0H4oC+ZQ/TGGNKZ/ex3YycPZKv7v7K72ZU/OormDnTub2/Zs2yH6+0\nNxZdrqopAKp6ELjcVR4EJLltl+wqM8ZUcVsPbWXaxmnsSd2DqpJ6LpUfd/7I3B1zvXbOk2knuX3m\n7YwPH891odd57TylsXo1jBkDc+dCUw9do/XURdFS3SE0YcKE3OWIiAgiynI1wBjjN1LPpVK3Zl1q\n1agFwMqklQyfOZzBIYMZ98s4MrIzOJ95nv7B/dmbupfYw7GMGzzOozFkazYPfPcAg9sM9rsJuFat\nci6CfvqpMy1uYaKiooiKiiregVW1yB8gBNjs9no70Ny13ALY7loeC7zgtt08oF8Bx1RjTOXzxaYv\nNPDtQA1+N1gnr5qs83fN12bvNNOf435WVdXs7GxNPJ6o6Znpqqq6/+R+7fTPTjphyQTNzs72WBwv\nLnpRwz4N07TMNI8d0xOWLlVt1kz1p59Kt78rd+afqwtaoRcn37bAFrfXk3ISN/AC8LZruQuwAQgA\nQoFduKYXyOeYpauNMcbvZGdn6+5ju/XBOQ9qp3920o0HNura5LV6x8w7tMFbDXTR7kWF7n/w1EG9\naspV+tgPj+nZ9LNljmfG5hna9r22euj0oTIfy1MOHVIdO1a1SRPVBQtKf5wyJXRgBrAfSAMSgYeB\nQGARsBNYADR2236cK5FvB24s5Lilr5Exxi+cTjutj/3wmAa/G6wt/tpCn/npGT2ddvqibYrb6j5x\n/oSO/Hakdn2/q25N2VqqeDKyMvSzDZ9p03ea6qaDm0p1DG945x3VwEDVJ55Q3bu3bMcqLKHb5FzG\nmFI5lXaKW2bcQtvGbXkl7BU6XNaBso5SVlU+2/gZzy94no5NOhIWEsaobqO4unnhHc05+72x9A1a\nN2zNxKETubb1tWWKxVO++AImTICoKGjduuzHK2xyLkvoxpgSO3H+BDd/eTNXX341H9z6AdXEszNx\nn8s4x+rk1Szas4hPN37K5ic206Ruk3y3PXL2CA/PfZiDpw/y7o3vMjhksEdjKYvVq+HWW51k3rWr\nZ45pCd0Y4zGbUzYT+W0k17e7nsnDJpe5VV6U5+c/T/KpZGbdMyvPuqj4KEbNGcV9V93H60NeJ6B6\ngFdjKYn9+6FPH/jf/4XbPDjtuiV0Y0yZqSpT1k5hQvQE3r3xXUZ1H1Uu5z2XcY5e/+rFX8L/QuRV\nkQBkZmfyWvRrfLz+Yz4d/ik3dbj0ZnbfUoWbb4Z+/Zz5WTzJ5kM3xpSJqvL8/Of5Ze8vLH9kOVc2\nubLczl2nZh0+v/NzbplxC+v2rwNgedJy6gfUZ/3j62lRv0W5xVJcH34IR4/Cyy+X73mthW6MKVS2\nZvPMT8+wdv9a5j8w32eTW/0c9zNbD20FoEX9Ftzf7X6P9917wu7d0L8/xMRA586eP751uRhjSkVV\n+f1Pv2dTyiZ+uu8nGtVuVPROVdjRo3DLLXDvvfCHP3jnHIUldP/7eDPG+I3JqyezPGk58+6fZ8m8\nCNHR0KMHDBzozNHiC9aHbozJ14LdC5i0fBIrH11Jg1oNfB2O38rKgtdfd/rNp051Lob6iiV0Y0we\nO4/sZNScUXzzu29o27itr8PxW/v2OQ+nqFkT1q+Hli19G491uRhjLrL98HaGfj6USddPIiwkzNfh\n+K0VK6B3bxg2DObP930yB2uhG2PcbEnZwk3Tb+Lt69/mwe4P+jocvxUTA/fcA59/7iR0f2EtdGMM\nAD/F/cQNX9zAuze9a8m8EL/84iTzr77yr2QO1kI3pspLz0pn3KJxfBP7DV//7mvrZinE/PkwahR8\n+y2E+eF/kyV0Y6qwXcd2EfltJEENg9jw+IYCJ8Ay8O9/wyOPwPffw4ABvo4mf9blYkwll5WdRWZ2\n5kVlqsr0zdO59pNreajHQ3x/7/eWzAsxZw48+qiT1P01mYO10I2pdDKyMlh3YB3R8dHEJMawPHE5\n2ZpN/+D+9Avqx67UXcQkxBBYO5BFoxbRvUV3X4fs177+Gp59Fn7+Ga65xtfRFM5u/TemgsvMzmR5\n4nJiEmKISYxh9b7VtL+sPWFtwggLCWNwyGBqVKvBssRlrN63mg6XdSAsJIx2ge28PvVtRTd9Ovz5\nz07febduvo7GYXO5GFMJpWel88WmL5i4bCINazVkaOhQwtuGM7D1QJ9NoFWZfPqpM1viwoXQpYuv\no7nAps81phI5n3meqRumMmn5JDo26cjU4VNtZIqH/etfzu38S5bAleU3U3CZWUI3poI4m3GWf637\nF/+94r/p2aIns+6ZRf/g/r4Oq9L58EOYONF5bFz79r6OpmQsoRvj59Iy0/jH6n/wt5V/Y0DrAfw4\n8keuaennV+cqqIULnQc6L18O7dr5OpqSs4RujB/beWQnkbMjCW4YzMJRC7m6+dW+DqnSiouDBx5w\nRrVUxGQOltArlKQTSaxIWkGvVr3ocFkHX4eTL1Xlt6O/sWrfKs5mnAWgQa0GDGw9kLaN29qoimJQ\nVfYe38uPO3/kjaVv8FrEazzR+wn7v/OiI0dg+HB47TUID/d1NKVXplEuIhIPnACygQxV7SsigcAs\nIASIB0ao6ol89q1Uo1wOnznMybSTBa4/k3GGlUkriU6IJv54POBcre7arCthIWG0D2zPqn2rWJq4\nlIDqAYSFhHFNy2uIPRxLdEI0MQkxnEk/Q7/gfqxMWsmwDsMY028Ml9W5DIDL611e5jmrs7KzSDyR\nSLZmX1R+PvM8q5NXE50QTdzRuAL3V5T44/HUrFaTgW0G0rhWYwCOnDvC0gSnXsENgwEIqB5A71a9\nCQ8JZ1CbQReNyigojoDqAbRu1Drfc2drNkfOHqFZ3WYVNvFlazbvrXqPv6/6O5nZmYSHhPPi4Bfp\n1txPxstVUlFRzu38Dz/sJHR/57VhiyKyB+ilqqluZZOAo6r6joi8AASq6th89q0UCT32cCxvLn2T\n//vt/wq90y6gegB9g/oS1iaMTk07ISJkZmey8eBGYhJi2JO6h35B/RgcMpj0rHRiEmJYf2A9XZp1\nITwknLCQC/udOH+C99e+zxebvyA9Kx1V5dCZQ3Ru1pmBrQfSuLaTSBvWasigNoPo2aInNavXzBNT\nzg0oMQkxRCdEszxxOQ1rNcyzbY1qNejVshdhIWFcdflVhT7HsVWDVvnOn62q7Dq2i8NnDwPOBb6V\nSSuJSYzS0DYvAAARKElEQVRh1b5VtA9sz7XB15J0MonlSctpENAgTxwnzp+gW/NuvBL2CoNDBrPp\n4Kbc2JcmLiUzO5OGtRoSFhJGWJswwtuG07FJxwqR4A+dOcTo70dz/PxxPrrtI7o261oh4q7IMjOd\nBP7RR84QRX+baKsg3kzoe4HeqnrUrWwHEK6qKSLSAohS1U757FthEnq2ZhN7ONa5cSMhhg0HN5CV\nnYWinEo7xXP9n+Ppvk/TsFZDn8WYlpnGmuQ1rNy3Mrer4/CZwyxLWsbe1L1cXu/yPPscOnOIdoHt\ncj8wBocMznc7b0vPSmf9gfWsTFpJm0ZtCowjIyuDL7d8yVtL32LfyX2EBobmJu7BbQbTqkErdqfu\nzr1DMjo+mvOZ5/nrjX/lgW4PlHu9iiNn5Mqk5ZN4uMfDvBrxar4fvsazkpLgvvugdm1nClx/mMu8\nuLzdQj8OZAEfqurHIpKqqoFu2xxT1cvy2dfvEvr+U/uJSXDutEvLSgPgwOkDLE1YSuPajZ2WX0gY\nfVr1oVaNWoDTIq1bs64vwy5S6rlUjp47mqe8ad2mua35iiQrO4uTaSeLdfPMuv3ruP+7++kf3J9/\n/sc/qR9QvxwiLNqptFN88OsHvLvyXQa0HsDLYS/byJVy8v338Pjj8Pzzzl2g1SrYjFbeTOgtVfWA\niDQDFgDPAnPdE7iIHFXVPH0RIqLjx4/PfR0REUFERESpYylMtmazJWVLbt+1u9TzqSxNWEpMYgzH\nzh1jcJvBDGg9IPcP/7I6lzG4zWCCGgZ5JTbjfWfSz/Dsz8+yLGkZM++eSc+WPX0Wy4nzJ/ifNf/D\nP1b/gyGhQ3hp8Es2cqWcnD8Pf/oT/PQTzJgB/SvIEP6oqCiioqJyX7/66qvev/VfRMYDp4H/BCLc\nulyWqGrnfLb3eAs96USS05+asDS3RXom4wyr962mWb1m+fan1g+oz4DgAYS3DadLsy6F9g+biu2r\nLV/x7LxneXnwyzzb79ly7aM+du4Y7616jylrp3DLlbcwbtA4OjXN0xNpvGTfPrj1VujY0blxqHHF\n+2KayystdBGpC1RT1dMiUg+nhf4qMBQ4pqqTvHlRVFXZk7ondwRIdEI0p9NP514Qy2lRB1QPoE+r\nPrRsUIE6yYzX7D62m5GzR9KifgumDp9K07pNPXbsrOwsNqdsZsPBDWRmZ6LqjPqJTohmy6EtRHaN\nZOygsbS/rILdfljBJSTAkCFON8uf/wwV/VqztxJ6KDAHUJzx7F+q6tsichnwNdAaSMAZtng8n/0L\nTOgZWRnsP7UfgCx1/kii46PZmLIx92LkntQ9ALkX9MJDwnNHgRhTmPSsdF5e/DJfbf2Kj277iM5N\nL/4CmZmdyYaDG4iOj2bP8T30bdWX8Lbh9AvqR52adXK3y8jKYP2B9bmNiuVJy2lRvwV9g/pSq7pz\njaVl/ZaEtw2nf3B/v7/WUhnt2gU33AB/+IMzBW5l4LezLb4e/fpFZecyzrE6eTWrk1fTuHbj3O6P\nzk0757kYGdQgyKb/NGUyf9d8nl/wPKfTT19ULghXXX4V4SHhtAtsx5rkNbmt7J4tetKrZS9ij8Tm\nDrfMuVgeFhLmk1FC5mJr1zojV2JiYO9e+O//dlrnlYXfJvSXfnnporIa1WrQu1Vvm/7T+KXT6adZ\ntW8V6/avo0uzLgxsMzD3xi7je8uXOzMkbtsGTz0FQ4dCz55Qs5KNAvXbhO5vwxaNMRWLqnOn5+uv\nO63xceNg9GioVcvXkXmPzYdujPEqVae/OibG+Vm6FFJT827XsiWEhcHAgRDo+hJ+5Iiz/bJlUL++\ns75/f6hXz1nfrJnz6LeclnZyMkRHO+eJioLsbHjpJedGocrWGi8pa6H7GVXnlmRwxs2uXu28eeMK\nnkLlItWqQffuzh9Fjx5Qo0be9dWrezZmU/WoQmysk1Rzkmu1as7EVuHhMHgwtGiRd5+EBGf7FSvg\nrHNDMw0awKBBzj6nTjnr166FjAxn/b59sGePk9STkuDECef9HRbmnKtbt6r1nrYuFz+0f7/T53fq\nlPM6NdVpoSxd6rxhwUnGvXo5b9quXYt3R1t6Oqxb5/yBbdvm/BG5E3ESfVgYdO6cdwhXkyZwyy15\nPwiMAaexMWMGvPWW816LiLiQWNu29d6QwNRUp3HTurXzvq1od3d6kiV0H1OF+PiLWzPHjztfO5u4\n7qGtXx8GDHBaKUFevCn1/Hmn9RMd7bR6LrVzJ6SkOH2RN92U9w+0YUOnRWWqlvR0Z+TIxIlOUn3l\nFWdstw0yK3+W0MtJTis7NtZJ4tnZF76WZmQ4rZicr4pduvhvKyMmBt58E7ZuzbvuxAnnGYs5dRk8\nGJp67t4c40eysmDLFli0CP7xD6dl/PLLzu/c+I4ldC/Yvt1praxb57xOT4eDB52LOT16XOjT69DB\nSX4dOlSO1kxaGvz664VvGytWOBetatcu3v7t21+46FX3kvtsMjNhwwbn2Js3Ox+I7mrUcPpRcz5M\nQkMrx/9pcW3a5LzntmwpfLuOHZ3/n7598/5eqlVz1tepk3e/zExYv/7C73bZMmje3DnWo49Cv36e\nq4spPUvoJeR+wSe/i5Hx8c6b/bnn4LbbnD+SatWcpF3VrrJnZjqjG7Kyit42O9v5IIyJufiiVw4R\nuOoqJ4H06pX3//L8eViz5kLCqV794otvtWs7SWfQoAtdWRVdzkXEb791Pkj/+Mf8u8JyZGc7CT8m\nxknOORfYc6SnO+/fnj2dnxo1LrzfV650+sHdv0k2b+7tGpqSsoReCFVYsMBp+Wzb5pSlpTmtzrCw\n/C9GNmoE997r9Hsb31CF3bsvHh536pTzjWHlSggIcJJezqifnCTVt6//j1HOyIDp0+Gdd5y6hYU5\nt68/8ED+LeuSOn3a+T/auvXCRfP27Z0Px8vsPim/ZwndJSHBabm4jy7ZuRPOnXPGsV5/vZMEatS4\nMEbWVDyZmReSvPuon+ho5xtC794XRma4j3cubznXWKKjndZ3erqTYFescL7tvfyyE2NV6lYyRauS\nCV3V6S7JudEhOtr5yh4efvFX8qZNndaPv16gNJ6V04rPGW20cSNcfbXzvshvGGe9enDttdCqlfM6\nIcEZPnf+fMHnyOn6CQlxXicnOy3inHHXOTfSLF3qNBwuvaZwxRXONwlj8lOpE/rhw84fRkxM3tEl\nNWpc+KodHu6MzrDWjnF37hysWlXwMM7UVOcDIDDQ6Qo5f94ZXlrY0M2cD43atZ33YM4Q1Zw5uBs2\nvHAjjTeHqJrKqcIn9Jw/uo0bnYtvqs4fX0yMcxfZwIFOwu7e/cLokvbtq94oCOMd7g2Ejh2L955S\ndbrzMjP9e4iqqXgqZEJXdVpNb7/tjCi56iro0+fCBa1WrZwk7j5E0BhjKrsKMTlXUhJMnepcgQen\nRX7wILz4ojNky0aUGGNM4XzaQl+4UMnKgtmznaQ9ahQEBzvr27aFO++0OUWMMcad37bQ337b+bd/\nf/jtN7uF3BhjysJv+9CNMcbkVVgL3a69G2NMJWEJ3RhjKglL6MYYU0l4LaGLyDAR2SEiv4nIC946\njzHGGIdXErqIVAP+CdwEdAVGikgnb5zLn0RFRfk6BI+y+vi/ylYnq0/ZeKuF3heIU9UEVc0AZgLD\nvXQuv2FvRv9W2eoDla9OVp+y8VZCDwKS3F7vc5UZY4zxErsoaowxlYRXbiwSkf7ABFUd5no9FlBV\nneS2jd1VZIwxpVCusy2KSHVgJzAUOACsAUaq6naPn8wYYwzgpblcVDVLRJ4GFuB063xiydwYY7zL\nZ3O5GGOM8SyPXhQVkU9EJEVENruVdReRlSKyQUTWiEgfV3kNEflMRDaLyDZXP3vOPte4yn8Tkfc8\nGWNJFFCfbiKyQkQ2ichcEanvtm6ciMSJyHYRudGtvMLVR0SuF5FfXeVrReQ6t338oj6uWEr0O3Kt\nbyMip0Tkebcyv6hTKd5zOeu2utYHuMorXH0qSE4IFpHFrvi2iMizrvJAEVkgIjtFZL6INHLbp/zy\ngqp67AcYBPQANruVzQdudC3fDCxxLY8EZriW6wB7gTau16uBPq7ln4CbPBlnGeuzBhjkWn4IeM21\n3AXYgNON1RbYxYVvQBWxPt2BFq7lrsA+t338oj4lrZPb+m+AWcDz/lanEv6OqgObgKtcrwMr+Huu\nIuSEFkAP13J9nGuFnYBJwP9zlb8AvO1aLte84NEWuqouA1IvKc4Gcj6tGgPJOZsD9VwXUOsCacBJ\nEWkBNFDVta7tPgfu8GScxVVAfa5wlQMsAu52Ld8OzFTVTFWNB+KAvhW1Pqq6SVUPupa3AbVFpKY/\n1ccVW0l+R4jIcGAPsM2tzG/qVML63AhsUtWtrn1TVVUrcH0qQk44qKobXcunge1AMM6Nk9Ncm01z\ni69c80J5jEP/A/BXEUkE3gHGucq/Bc7ijIKJB/6qqsdxbkDa57a/v92UtE1Ebnctj8D5ZULem6mS\nXWUVtT65ROQeYL06d/36e32ggDq5vtr/P+BVwH3Yl7/XqaDf0ZUAIjLP1T32Z1d5Ra1PhcoJItIW\n59vHKqC5qqaAk/SBy12blWteKI+E/iQwRlXb4CT3qa7yfkAmzleYdsCfXP9B/u4R4PcishaoB6T7\nOJ6yKrQ+ItIVmAj8lw9iK62C6jQe+LuqnvVZZKVTUH1qAANxuioGA3e6X+vwYwXVp8LkBFfj4Fuc\n3HYa59uFO5+MNimPR9CNVtUxAKr6rYh87CofCcxT1WzgsIgsB3oDy4DWbvsHc6GbxudU9TecSccQ\nkSuAW1yrksk/7oLK/UIh9UFEgoHvgFGur4vg5/WBQuvUD7hbRN7B6W/OEpHzOHX02zoVUp99QIyq\nprrW/QRcA3xJxaxPhcgJIlIDJ5l/oapzXcUpItJcVVNc3SmHXOXlmhe80UIXLv46mywi4QAiMhSn\nDwkgERjiKq8H9Ae2u76unBCRviIiwIPAXHznovqISDPXv9WAl4H/da36AYgUkQARCQU6AGsqan1E\npDHwb+AFVV2Vs70f1geKWSdVDVPVdqraDngPeEtVp/hhnYr7npsPXC0itV1JJhzYVgHr84FrVUXJ\nCVOBWFWd7Fb2A84FXoDRXIivfPOCh68AzwD241zMSAQeBgYAv+Jc6V0J9HRtWw/4Gtjq+nEfcdAL\n2IKT/Cd7MkYP1OdZnCvbO3ASgvv243CuYm/HNbKnotYHeAk4Bax3/e7WA039qT6l+R257Te+krzn\n7nP9/WwGJlbk+lSQnDAQyAI2uv1dDAMuw7nAuxPnhsrGbvuUW16wG4uMMaaSsNkWjTGmkrCEbowx\nlYQldGOMqSQsoRtjTCVhCd0YYyoJS+jGGFNJWEI3xphKwhK6MWXgutvRGL9gb0ZTZYjIqyIyxu31\nGyLyrIj8SZyHr2wUkfFu6+eI83CPLSLyn27lp0TkryKyAef2dGP8giV0U5VMxZkzA9f8GZE4U7Ve\noap9gZ5AbxEZ5Nr+YVXtA/QBxohIoKu8HrBSVXuq6opyrYExhSiP2RaN8QuqmiAiR0SkO84UreuB\nvsANIrIeZwKpesAVODP8PSciOQ8dCHaVr8GZ4vW78o7fmKJYQjdVzcc4E0S1wGmxX48zqdVH7hu5\nZggdAvRT1TQRWQLUdq0+rzYJkvFD1uViqprvcWbH640z/ex84BHXdK2ISCvX9K6NgFRXMu/ExX3l\ngjF+yFropkpR1QxXazvV1cpe6ErYK51udU4BDwDzgCdEZBvOlKgr3Q9TzmEbUyw2fa6pUlzDDNcB\n96jqbl/HY4wnWZeLqTJEpDPOwwQWWjI3lZG10I0xppKwFroxxlQSltCNMaaSsIRujDGVhCV0Y4yp\nJCyhG2NMJWEJ3RhjKon/D0vuu68O+3KpAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# people got creative choosing names in 1980's\n",
"\n",
"boys_ct.plot(label= 'boys')\n",
"girls_ct.plot(label= 'girls')\n",
"plt.legend(loc= 'best')"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python2.7/site-packages/ipykernel/__main__.py:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" from ipykernel import kernelapp as app\n"
]
},
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
" year_rank | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 1880.0 | \n",
" John | \n",
" 0.081541 | \n",
" boy | \n",
" J500 | \n",
" 1000.0 | \n",
"
\n",
" \n",
" | 1 | \n",
" 1880.0 | \n",
" William | \n",
" 0.080511 | \n",
" boy | \n",
" W450 | \n",
" 999.0 | \n",
"
\n",
" \n",
" | 2 | \n",
" 1880.0 | \n",
" James | \n",
" 0.050057 | \n",
" boy | \n",
" J520 | \n",
" 998.0 | \n",
"
\n",
" \n",
" | 3 | \n",
" 1880.0 | \n",
" Charles | \n",
" 0.045167 | \n",
" boy | \n",
" C642 | \n",
" 997.0 | \n",
"
\n",
" \n",
" | 4 | \n",
" 1880.0 | \n",
" George | \n",
" 0.043292 | \n",
" boy | \n",
" G620 | \n",
" 996.0 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 128996 | \n",
" 2008.0 | \n",
" Damari | \n",
" 0.000089 | \n",
" boy | \n",
" D560 | \n",
" 2.5 | \n",
"
\n",
" \n",
" | 128997 | \n",
" 2008.0 | \n",
" Hugh | \n",
" 0.000089 | \n",
" boy | \n",
" H200 | \n",
" 2.5 | \n",
"
\n",
" \n",
" | 128998 | \n",
" 2008.0 | \n",
" Jensen | \n",
" 0.000089 | \n",
" boy | \n",
" J525 | \n",
" 2.5 | \n",
"
\n",
" \n",
" | 128999 | \n",
" 2008.0 | \n",
" Yurem | \n",
" 0.000089 | \n",
" boy | \n",
" Y650 | \n",
" 2.5 | \n",
"
\n",
" \n",
" | year_rank | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
129001 rows × 6 columns
\n",
"
"
],
"text/plain": [
" year name prop sex soundex year_rank\n",
"0 1880.0 John 0.081541 boy J500 1000.0\n",
"1 1880.0 William 0.080511 boy W450 999.0\n",
"2 1880.0 James 0.050057 boy J520 998.0\n",
"3 1880.0 Charles 0.045167 boy C642 997.0\n",
"4 1880.0 George 0.043292 boy G620 996.0\n",
"... ... ... ... ... ... ...\n",
"128996 2008.0 Damari 0.000089 boy D560 2.5\n",
"128997 2008.0 Hugh 0.000089 boy H200 2.5\n",
"128998 2008.0 Jensen 0.000089 boy J525 2.5\n",
"128999 2008.0 Yurem 0.000089 boy Y650 2.5\n",
"year_rank NaN NaN NaN NaN NaN NaN\n",
"\n",
"[129001 rows x 6 columns]"
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grouped = boys.groupby('year')['prop']\n",
"boys['year_rank'] = grouped.transform(Series.rank)\n",
"\n",
"boys"
]
},
{
"cell_type": "code",
"execution_count": 185,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 185,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOXZ//HPxSYKKIugLAZBUAFFQUBUxMhiq7Viq+LS\nulSrVaui9ueCtg/QxypYtcvTuvRRi/rgQqGirQhCNVorApZ9UxQCAdxYDCCKSbh+f1xnmslkkkyS\nmczMmev9euWVyZkzJ/fB+J17rnOf+xZVxTnnXPZrlO4GOOecSw4PdOecCwkPdOecCwkPdOecCwkP\ndOecCwkPdOecC4mEAl1ExojI8uDrpmDbcSIyT0QWi8gCERkQtf9YEVkrIqtF5IxUNd4551y5JjXt\nICJ9gKuAAUAp8KqIvALcD4xT1ddE5Ezg18DpItIbGA30AroAc0Wkp/qAd+ecS6lEeui9gPmquldV\ny4C3gO8D+4CDgn1aA5uDx+cAz6tqqaoWAmuBQUlttXPOuUpq7KEDK4B7RKQNsBc4C1gI3ALMFpEH\nAQFODvbvDMyLev3mYJtzzrkUqrGHrqprgEnAHGAmsBgoA64DxqhqHhbuT6awnc4552ogtS1ti8iv\ngE3AvaraJmr7F6raWkTuBFRVJwXbZ2G19vkxx/GaunPO1YGqSrztiY5yaR98zwO+B0wBtojIacH2\n4VitHOBl4CIRaSYi3YAewIIqGhWqr3HjxqW9DX4+uXM+YTwnP5+av6qTSA0dYLqItAVKgOtVdaeI\nXAP8TkQaA18D1wQhvUpEpgKrovb33rhzzqVYQoGuqkPjbPsXNpQx3v73AffVr2nOOedqw+8UTaL8\n/Px0NyGp/HwyX9jOyc+nfmp9UTRpv1jEKzHOOVdLIoLW56Koc865zOeB7pxzIeGB7pxzafbll8k5\njge6c86l0cKFcOihcO+99T+WB7pzzqXJypXw3e/CQw/Bk0/Cww/X73iJ3ljknHOunlTh1Vdh504o\nLYWxYy3ML7kERoyAoUNhv/3gyitB4o5jqZ4PW3TOuQby6qtwzTVwyin283e/Cz/4Qfnzq1bBBRdA\n27YwcWL5ftGqG7boge6ccw3ktNPgJz+xHnlVysrgmWfgF7+A//ovuPrqis97oDvnXJI8/TQsWWKP\n27WDa6+17zV55x3rja9dC00SKHa/+y5cdJHt37Rp+Xa/scg555Jg/ny4/Xbo3Bm6dIHCQjjqKBuh\nsmdP9a+dNAluuy2xMAcYPBi6dYMXXki8fd5Dd865BJSUwIABFujRde+1a23b55/D7NnQokXl165c\nCcOHw/r1sP/+if/O2bPhZz+DZcugUdD99h66c87V0+9+Bx06VK5/9+wJ06fDEUfA978Pe/dab/3+\n++HUU2HIEDj7bLjpptqFOcAZZ1i5ZebMxPb3HrpzztVg9WoL53ffhR494u9TWmojVHbsgA8/tJLJ\ntddC8+bWuz7xRGjcuPa/+4UX4H/+B95+2372i6LOOVcHn34K99wDzz0Hv/41/OhH1e+/dy/88pcw\nahQMGpScNpSVQdeu8Npr0Lu3l1ycc65GqvDyy9C3LzRrZl/dutlFzNWraw5zsJuCfvWr5IU5WK9+\n9OjELo56D905l7P++EcLa4BFi2DXLrjvPhg50u7UbNQo8VEpqTR/Plx2GaxZA40aecnFOecqWL7c\ngvvnP7efO3WyUkld6typpgrdu8OLL0K/fvUMdBEZA/w4+PFxVf1dsP1G4HqgFHhFVe8Mto8Frgy2\nj1HV1+Ic0wPdOZc2l14KffrAnXemuyWJufNO+9QwcWI9Al1E+gDPAQOxgH4VuBbIA+4CzlLVUhE5\nWFW3ikgv4Nlg/y7AXKBnbHp7oDvn0qWwEE44Adatg4MOSndrErN4MZx3HqxfX3WgJ1Id6gXMV9W9\nACLyFnAeMACYqKqlAKq6Ndh/FPB8sL1QRNYCg4D59Tsd55xLjgcftDlSsiXMAY4/vuZ6fiKjXFYA\np4pIGxE5ADgLOAzoCQwVkXdF5A0ROSHYvzNQFPX6zcE255xLu88+gylTYMyYdLekdkTgwgur36fG\nHrqqrhGRScAcYDewGCgDmgJtVHWwiAwE/gJ0r00Dx48f/5/H+fn55Ofn1+blzjlXa489BuefDx07\nprsliSkoKKCgoACA3bur37fWo1xE5FdYD/wcYJKqvhlsXwsMBq4GUNWJwfZZwDhVnR9zHK+hO+ca\n1L59dqfnX/5iNfRsVO8bi0SkffA9D/gedtHzJWBYsP1IoJmqbgNeBi4UkWYi0g3oASyo91k451w9\nvf22TZ7Vv3+6W5IaiQ6Zny4ibYES4HpV3SkiTwJPishyYC9wGYCqrhKRqcCqqP29K+6cS7vJk+GK\nK+q2vFs28BuLnHMNRhXmzrXl1bYG4+KOPtqCtrYzEdbW7t1w2GF2Z+ihh6b2d6VSdSWXDLip1TkX\nVpHl1HbvtjCfMQOKimDCBJtoCmya2QsusLsgmza1fWfPhm99C1q2TF5b/vpXm8o2m8O8Jt5Dd86l\nzO9/D48/bqvZg42lvvzyikuqlZTYDTMtWljg3nOPzS64YQPcfbctqtysWf3bMmwY/PSn9ruymU+f\n65xrcJs2WYC//baVVarz9ddw7rlW2773XujXz9btvOMOKC6GOXOgVau6t2XRIjjzTNi40WZEzGYe\n6M65lFu0CP72N1uZp00bW72nb1+Iut2k1lTtjs716+GVV2yxiNoqK7PFJW64wS6IZjufD905l1Ir\nV8JZZ9kMhkceCVddZdvqO/GViN0IdPDBcNFFtoBETUpKrCce8cc/Wi3+8svr15Zs4IHunKuXdevs\nAuYDD8C0aVZiKS2FJ56oW486VuPGdmG1eXMr3TzzjPW6q3LXXba+549/bPOI//KX8Oij4R2qGM0D\n3TlXJ/v2wdSpkJ9vIfrDH9r2o46Cp56yC5zJ0qwZPP+8HfeRRyAvD3r1sq+JE8v3W7LE9lm5Etq3\nh9NPtwuhNdXww8Jr6M65WluyxHrAYIE6YkTD/W5VW4S5tBS++gouvtgWY77pJjj5ZBsVc9VVtu8X\nX8CBB9rKQ2HhF0Wdc0k1fLjVzG+5Jf1huXEjnHoqHHecBXhBQfrblEoe6M65pNmwwSa22rw5c4YA\nvv++LaT83HPlNyyFlQe6cy5p/vu/4dNP4Q9/SHdLcpPf+u+cSwpVm3flhRfS3RIXT4grTc65ZPvn\nP20SrWydSzzsPNCdcwkL+/Sz2c5r6M65hGzYYHOzrFqVPcu3hZHf+u+cqxVV2LbNvjZuhFtvtVV+\n7r7bwzyT+UVR51wF+/ZZWeXFF+0OzUaNbEjgypXhnks8DDzQnXP/oQo33giFhTY08YAD0t0iVxse\n6M65//jFL2xCq9df9zDPRgnV0EVkjIgsD75uinnuZyKyL1hEOrJtrIisFZHVInJGshvtnEu+jRtt\nVsJZs2z+E5d9auyhi0gf4CpgAFAKzBKRv6vqOhHpAowENkTt3wsYDfQCugBzRaSnD2lxLrO99BKc\nc47NPe6yUyI99F7AfFXdq6plwJvA94PnfgPcFrP/KOB5VS1V1UJgLTAoSe11zqXIjBm2DJzLXokE\n+grgVBFpIyIHAGcBh4nIOcAmVV0es39noCjq583BNudchtq+Hd57r2GnwXXJV2PJRVXXiMgkYA6w\nG1gMNAfuwsotdTY+arHB/Px88vPz63M451wdvfIKDBvmF0IzUUFBAQUFBQntW+s7RUXkV8AnwN3A\nHkCwWvlmrLRyJYCqTgz2nwWMU9X5McfxsrpzGeK886x+ngvrbma7ek+fKyLtVfVzEckDZgGDVXVn\n1PPrgf6qukNEegNTgBOxUsscoNJFUQ905zLDV1/ZDUPr1kG7dulujatJMqbPnR4MSywBro8O84Bi\nPXVUdZWITAVWRe3vye1chpo7127r9zDPfj45l3M57rrroGdPm6/FZT6fnMs5V6UPP4Q+fdLdCpcM\nHujO5biNGyEvL92tcMngJRfncpiqDVX8/HNo2TLdrXGJ8JKLcy6urVst0D3Mw8ED3bkc5uWWcPFA\ndy6HeaCHiwe6cznMAz1cPNCdy2Ee6OHige5cDvNADxcPdOdymAd6uHigO5fDPNDDxW8sci5H7d1r\na4fu2QONG6e7NS5RfmORc66STZugUycP8zDxQHcuR3m5JXw80J3LUR7o4eOB7lyO8kAPHw9053KU\nB3r4eKA7l6M80MPHA925HOWBHj4JBbqIjBGR5cHXTcG2+0VktYgsEZHpInJg1P5jRWRt8PwZqWq8\nc65uVC3QDzss3S1xyVRjoItIH+AqYABwPHC2iHQHXgP6qOrxwFpgbLB/b2A00As4E3hYROIOgnfO\npcf27dCsmd1Y5MIjkR56L2C+qu5V1TLgLeD7qjpXVfcF+7wLdAkenwM8r6qlqlqIhf2gJLfbOVcP\n3jsPp0QCfQVwqoi0EZEDgLOA2D+FK4GZwePOQFHUc5uDbc65DLFsGfTune5WuGRrUtMOqrpGRCYB\nc4DdwGKgLPK8iNwNlKjqc7X95ePHj//P4/z8fPLz82t7COdcHSxcCIP8c3NWKCgooKCgIKF9az05\nl4j8CihS1UdF5ArgamCYqu4Nnr8TUFWdFPw8CxinqvNjjuOTczmXJieeCA88AKeemu6WuNqqbnKu\nhAJdRNqr6ucikgfMAgYDJwMPAkNVdVvUvr2BKcCJWKllDtAzNr090J1Lj2++gdat4fPPoUWLdLfG\n1VZ1gV5jySUwXUTaAiXA9aq6U0T+B2gGzAkGsbyrqter6ioRmQqsitrfk9u5DLFsGfTo4WEeRj4f\nunM55pFH4L334Ikn0t0SVxc+H7pz7j8WLICBA9PdCpcKHujO5ZiFCz3Qw8pLLs7lkF274NBDYccO\nu1PUZR8vuTjnAFi0CI491sM8rDzQncshXm4JNw9053KI3yEabh7ozuWIsjL45z9h8OB0t8Slige6\nczniH/+ATp2gZ890t8Slige6czli8mS44op0t8Klkg9bdC4HFBdD167w0UfQrl26W+Pqw4ctOpfj\npk6FESM8zMPOA925HODlltzgJRfnQu6DD2DoUCgqgqZN090aV19ecnEuhz32GFx6qYd5LvAeunMh\ntn27zX2+dKkvCh0W3kN3Lkc9/DCMGuVhniu8h+5cSO3ZA926QUEB9OqV7ta4ZPEeunM56Mkn4eST\nPcxziffQnQuh0lKrnT//vM/dEjb17qGLyBgRWR583RRsayMir4nI+yIyW0QOitp/rIisFZHVInJG\nck7DOZeoWbOgY0cP81xTY6CLSB/gKmAAcDxwtogcAdwJzFXVo4DXgbHB/r2B0UAv4EzgYRGJ+27i\nnEuNyZPhRz9KdytcQ0ukh94LmK+qe1W1DHgL+D5wDvBUsM9TwLnB43OA51W1VFULgbWAz8DsXAPZ\ntg3mzIHRo9PdEtfQEgn0FcCpQYnlAOAs4DDgEFX9FEBVPwE6BPt3BoqiXr852OacawDPPQff+Q60\nbp3ulriG1qSmHVR1jYhMAuYAu4HFQFm8XWv7y8ePH/+fx/n5+eTn59f2EM65GJMnw333pbsVLlkK\nCgooKChIaN9aj3IRkV9hPfAxQL6qfioihwJvqGovEbkTUFWdFOw/CxinqvNjjuOjXJxLsuXL4ayz\noLAQGjdOd2tcKiRjlEv74Hse8D3gWeBl4Ipgl8uBl4LHLwMXiUgzEekG9AAW1Ln1zrmETZ4Ml13m\nYZ6rEuqhi8hbQFugBLhFVQtEpC0wFaunbwBGq+oXwf5jsZExJcAYVX0tzjG9h+5c4JtvoFmz+h1j\n507o3h0WLLDvLpyq66H7jUXOpdnSpTa97dKlcPjhdT/Or38NixfDs88mrWkuA3mgO5ehysrglFPg\nyy/h9NPh97+v23G+/tp65a++Cscdl9w2uszic7k4l6EefdRKLbNnw//9H3z+ed2O88wzcPzxHua5\nznvozqXJli0WwG++Cb17w09+AoccAr/8Ze2OU1YGRx8NTzxhpRsXbl5yyVAffwyHHgo+MUJuuuAC\nOOoouOce+/nDD+Gkk2DdOmjVqvrXlpbaPC3r1lmg9+sHb7zhf0u5oLpAr/HGIpc6o0ZZzTRXJlD6\nxz/gtWC8U5s2cMcduRtAf/+7XcB8+unybT16wLBh8Ic/wNix1b/+nXcs1D/80H5u1Sp3/y1dOa+h\np9G2bXWvmWabr7+2dS2bN4e2beG3v4W1a9PdqvT48ku44QZ45BHYf/+Kz91zj73Jv/hi9ceYMQO+\n/337t2zb1tcLdcZ76Gm0cyfs2JHuVjSMp5+G/v1hwgT7ec0am0DqyCPT265k27fPSh/Dh1e9z/jx\nMGQIjBxZ+bmePeGVV+Db37Ze94gRlfdRtUCfMSNpzXYh4T30NFGF4uLcCPSyMrj/frjzzvJtI0da\noIfNqlUWwu+8E//5lSvhqafgoYeqPkb//jB9OlxyidXIYy1fbt+PPbb+7XXh4oGeJl9/DSUluRHo\n06fbxd8hQ8q3DR9ua12WlqatWSmxbJnNcnjnnfamHWviRLj1VujQofJz0U49Fb77XVuoItaMGXDu\nuV4zd5V5oKdJcbF9D3ugq1qIRffOwYbnde0KCxemp12psnw5jBlj10dmzqz4XGGhbbvuusSONWQI\nvP125e2RQHculgd6muzcad/DHugLFtjq82edVfm5kSNh7tyGb1MqLVtmQwjvvddGqpRFTTT94INw\n9dVw0EFVvz5avEDfsAGKimzxZ+dieaCnSa700JcutVvbG8X5SxsxInx19GXLrLZ9zjl2UXPiRCsr\nffYZTJkCN9+c+LF69IC9e2HjxvJtM2bA2WdDEx/O4OLwQE+T4mK75Xv79nS3JLXWrLG7GOMZOtTG\nYu/a1bBtSpUdO+CLL2yCLRG7c3P2bOjbF669Fi680K4lJEqkci99yhRfWs5VzQM9TYqLrYYc9h56\ndYF+wAEwcCC89VbDtilVli+33nnk08jRR9tt/Q88YG9at91W+2NGB/rKlbB5M5xxRvLa7MLFAz1N\ndu60nlwuBzpY2eUf/2i49qRSpNwSTcSuH8yZU7c5yqMD/amn7OYsX7zCVcUDPU2Ki8Mf6F99ZfPV\ndOtW9T4DBsCSJQ3XplRavtzKK8l0/PGwfj1s3WozKl5+eXKP78LFAz1Niott6B5Y8IXR2rXWK63u\nAt4xx8CKFQ3XplRatiz5gd60KQwaZHeXdu0KvXol9/guXDzQ06S42IavtWkT3l56TeUWgI4dy0eB\nZLN9++yN6Zhjkn/sIUPg4YfhiiuSf2wXLh7oabJzpwc6WI25Tx+74JfNCgvtv2WbNsk/9pAhNiLq\nwguTf2wXLgkFuojcIiIrRGSZiEwRkWYicpyIzBORxSKyQEQGRO0/VkTWishqEfFr8nFE99DDOnQx\nkUCHcJRdUlFuiTj9dJsmIRVvFi5cagx0EekE3Aj0V9W+2AyNFwP3A+NUtR8wDvh1sH9vYDTQCzgT\neFjEZ52IVVwMBx7oPXSwQM/2Hnq8ES7J0qRJ7syZ7+on0ZJLY6CFiDQBDgA2A/uAyE3MrYNtAOcA\nz6tqqaoWAmuBQUlrcUhEeuht24Yz0Pftg/fftxV5atKnT/b30BctSl0P3blE1XgDsapuEZEHgY3A\nHuA1VZ0rIpuA2cFzAkRml+gMzIs6xOZgm4sS9hr6pk026+CBB9a8byTQVbNzBsEdO6wk8uc/p7sl\nLtfVGOgi0hoYBXQFioG/iMgPsF73GFWdISLnA08Ccabsr9r48eP/8zg/P5/8/PzavDyrhX2US6Ll\nFoD27W0loy1boHMWvvW/8AJ861te43apUVBQQEFBQUL7JjLFzwhgnapuBxCRF7He+CWqOgZAVaeJ\nyOPB/puBw6Je34XyckwF0YGea6Jr6B99lO7WJF9tAh3Ke+nZGOiTJ8O4celuhQur2M7uhMiyX3Ek\nUkPfCAwWkebBxc3hwCpgi4icBiAiw7FaOcDLwEXBSJhuQA9gQR3OI7RKSmyBi5YtvYceka0jXVav\nttkQ4y0n51xDqzHQVXUBMA1YDCzF6uV/Aq4BHhSRxcA9wc+o6ipgKhb6M4HrVeOt3VI7mzbFn1M7\nG+3cab1zkfAOW1y9uvaBno0jXSLzq/h0ti4TJPRnqKoTgNh+/r+AAXF2R1XvA+6rX9Mqevrp+Ku3\nZKPIBVEIXw99zRq4+24rI/Xvn/jr+vSB//3f1LUrFcrKbH6VsM3p7rJXVtwpqmp1yt2746/TmG0i\nF0QhXMMWH33U1sI88UQbstiuXeKv7dPHFljety917Uu2ggLo1Al69053S5wzWfFBcd48mzJ0v/1s\nIqsDDkh3i+onckEUwtNDLyyEn//c/lv17Fn710fG5BcW1m2a2XT497/tDcy5TJEVPfTJk21iopYt\nrZee7aJ76JFAz7ZPHtHtVYWf/hRuuaVuYR5xwgnw7rv1b1tDSdVkXM7VVcYH+p49MG0a/PCH4Qn0\n6Bp68+a2wk11U+hOmwYXXNAwbUuEqs0vcsYZdofk9OnWs67LijzRsm2N0ZUrrVTkXKbI+JLLjBlW\nk+3cOTyBHt1Dh/KRLlWVkp5/HmbNsuGOTZs2TBur889/2qijW2+1BYt37YJXX7UZAetj5EhbVDkb\n7hgtK7ORPF4/d5kk43vo06fDJZfY4zAHelV19K++sl7roYdWLkcUFaWujdWZOBFuvx2uv94WsXjl\nFZvitb569rQgf//9+h8r1datswVKWrVKd0ucK5fxgf7ZZ7ZUG4Qr0KPnOKku0P/xD1uG7PzzK5Yj\n5s+35dsa2tKltmRcZCm0Fi1g6NDkHFvEeunZUHbxcovLRBkf6Lt2lfeCwhLo0TV0qD7QZ8yAc8+1\noJs7t3z75MmpvZj6xBP2O2JNmmQXP/fbLzW/N/Y8M5VfEHWZKCsCvWVLexyWQI8tuVQ1Fr2sDF5+\nGUaNglNOsUWIi4tt2oCpU+35vXtT08YXX4QbbrDb2iPWroXXXoOf/CQ1vxNg2DB48027XpDJPNBd\nJsqKQM/2HnpZmYVg5KaZRGvo8+bZmpvdu9tomJNOgjfegJdesiF+bdtabz8VVqyA886zUFe10tfZ\nZ8OECYlNiVtXHTpAt26wcGHqfkdtVPUJyEsuLhNlfKDv3p39gb5pE/zpT+UX+xKtoUfKLRGRckRk\nXP6BB6Ym0Hftgs8/tzs/16613/etb8FFF9l481TLlOGLy5bZnO7jxlX8dy4pgQ8/rN1cNc41hIwO\n9NJS+OYb2H9/+zlbA339evs+L1j2I14NPXaCLlUL9FGjyreNGAF//atdED333NQF+qpVFlb77w+P\nPQZXXml3RDbUbMcjR9rImejecWmpzRHz6acN0wawT0Lf+Y6Nse/Z04aOgr3JHXZY+d+lc5kiowN9\n924L8ciY5GwO9CZNyocdJlJy+eADq5X361e+7bjjLNjOP9/GrKcq0FesKC8nDB0KCxbAb3/bcGPD\nTz/dhmtOnVq+7Q9/gMcft08KX3zRMO2YOdPezJ56Cp59Fq66yv7bef3cZaqMDvToC6KQHYH+ySfW\ns462fr0FUaSHnkigz5xp0wVHh2ijRvBf/wU332w/pyrQV66sGFgDB9rvbihNm9ong1tusfAuKoJ7\n7oG33oL8fOs1f/llatuwdat9UonM1TJ8uF1DuOsuD3SXuTI+0KNv3IgX6A3VW0vU2LF200209eut\ndLJ+vYX5rl0119BffRXOPLPy8W+4ofzuxAMPtGMlWyYE1sknwznnWIDedBPceKMtOP3QQ3DkkXD1\n1an9/a+9Zp8UoodnTpxoo3+mTvULoi4zZXSgR18QhfiBPnBg5izhtmKF1X6LiioOJ1y/3kKoXz94\n/XWrvTZuXP58165Wl430Onfvtt788OHV/76GKLmk0333WYCuWgV33mnbGjWy8svcuam9o3TmzMpv\nqG3awIMP2u9N9xuec/FkdKAn0kP/5BO7aJUJ7rrLgufww60GHrF+vQ09POkkmD27YrkFoEsXKyU8\nHqzK+vrrMGhQzcMDW7VKfqBv327/xnl5yT1uXbRpY1M/TJtWsafcooV9Uvn1r1Pze8vK7L9TvE9I\nF10EU6b4CBeXmTI+0KuroZeU2M+bNjV822K9/bbdFn/99VYSWbXKtn/1FWzbZgshDB4cP9AB7rjD\nen8lJeX185qkooceGV+dKZNjnXwyHHts5e0//amN+Nkcd/nx+nnvPZs7J96bmojNLRT9Ccu5TJHx\ngV5dDz1SP0/F/9S1NW6c3XTTvHnFQN+wwYa4NW5sgV5YGD/QBw60ssyzz1r9PN2BnunatbOx+L/5\nTfKPnegbqnOZJqFAF5FbRGSFiCwTkSki0izYfqOIrBaR5SIyMWr/sSKyNnjujLo2rqZAj1xIzIQe\n+ooV5R/Re/e2qVXByi3dutnjTp2s1xcv0MHKNbffbnXiRD7SpyLQM+GCaKJuvRWefDL5i2zPnWtz\nvTuXbWoMdBHpBNwI9FfVvtgc6heJSD7wXeBYVT0WeCDYvxcwGugFnAk8LFK3D/A1XRSNBHq6e+iq\nFipt2tjPvXqV99CjAx2sjl5VbXz4cOvNxw5XrEqqAj0beuhg1x4uuCC5Nzyp2n+7vn2Td0znGkqi\nC1w0BlqIyD7gAGALcB0wUVVLAVR1a7DvKOD5YHuhiKwFBgHza9u4RHrobdqkP9B377ZSS2SBh6OO\nslvDS0oqB/ppp5X33mOJ2GIW0dcNqpPsQFfNrh46wL332hvQpZda2aq+tgZ/xQcfXP9jOdfQauyh\nq+oW4EFgI7AZ+EJV5wJHAkNF5F0ReUNETghe0hmIXnphc7Ct1mIvijZrZqHzzTf28/btFj7pLrlE\n987BhiV26WLDKWMD/Sc/sbHUVenRwy7IJSLZgf7ZZ/bvm+jvzwTt2tlol2uusbtoVe3C8+LFdTve\nBx/YG3KmXBR2rjZq7KGLSGus190VKAb+IiI/CF7bRlUHi8hA4C9ArdZrHx/1WTk/P5/8/PwKz8f2\n0EXKe+mRKWePPtpuqf/mm/ovgVZX27dbe6JFLozGBnqjRsm76zLZgV5YaMMrsy3MfvhDuz3/5ptt\niuHly+0q4mIgAAAUY0lEQVST0Isv1v5Y779vF6edyxQFBQUUFBQktG8iJZcRwDpV3Q4gIi8CJ2O9\n8L8CqOpCESkTkXZYjzx6wFeXYFsl42sofsYGOlQO9IMPtqXAPv7YbtBJhx07Kgd6r15WWomMQU+F\nZN8p+sknNl1vthGBRx6x4YTXXWfTLBxzjPXYm9Ry1dxID925TBHb2Z0wYUKV+ybSV9wIDBaR5sHF\nzeHAKmAGMAxARI4EmqnqNuBl4EIRaSYi3YAewIK6nEjsRVGoWEePBGnnzumto1fVQ583z+ro7dql\n5vcmu4f+ySfZVW6J1rOnzaF+5ZX293DYYTaevLa8h+6yWSI19AXANGAxsBQQ4E/An4HuIrIceBa4\nLNh/FTAVC/2ZwPWqiS2UtnJlxZ+r66FD+UXRLl0yM9Bff93KLakqYbRoYTculZUl53jZHOix6ro2\n6QcfeKC77JVQNVdVJ6hqL1Xtq6qXq2pJ8HWpqh6rqgNU9c2o/e9T1R7Ba15L5Hfs2wf9+9vCChGx\nF0UhfqB37pzeC6OxF0XBavtffVWxfp5sIvaGl6yyS5gCfcSI2q9NWlYG69ZZb9+5bJQxd4p+9pld\n2Pzss/JtNfXQI0Ga7pJLvBp6q1b2sT+VgQ7JLbuEKdCHDoV//7t20y1v2ADt29tc885lo4wJ9KJg\noGNtAj265JLuHnpsoIOVXTzQ06NFCxgwwOZQT5RfEHXZLmMCPRLI0YGeyEXRTOihVxXoEybY6kKp\nlMwZF8MU6FD7OrpfEHXZrpaDulInNtBLS21O8dh1G+MFemlp+nvosTV0gBNPTP3vTlYPXdUC/ZBD\n6n+sTDFypC0blyi/IOqyXUb10A84oDzQY9cTjYgEekmJrbnZqpVNevXxxxUXFW5IVfXQG0KyAn3n\nTlv6rUWL+h8rU5xwAmzZYnPkjBgBl10Ga9ZUvf/773vJxWW3jOmhFxXB8ceXj3KJVz8HC/Rt28p7\n5yLWi2/Z0ubhaN++fu1QtdvvFyxIfPx4vIuiDSVZgR62cgvYlMVvvWVv9mAXSU891ZYDHD/err1E\n8x66y3YZ1UPv37+8h15doO/eXbnMkayhi9u22dC1JUsSf00YeuhhDHSwibtGjLCvO+6w0G7fHo47\nDm67rXzq3T177G8vXXcbO5cMGRvo8S6IggX6l1+W99AjknVhNLKcXaKBvnevDbdMV6kiWbf/hzXQ\nY7VpY2uVLl9uf2NHHWUzNi5dCkcc4SsRueyWEYG+b5+Fcb9+FXvo8aaRjfTQYwM9WUMXCwtt8qxE\nAz269JMO3kOvm06dbP6Xd96BZctg2DAvt7jslxE19K1bLZjy8hIvuSTaQ9+5s/KCEjt32rHjhXBh\nodVZaxPo6Sq3gJ1bdRf6EpVrgR7Rs6fNQb9oUfbNMulcrIzooRcVWQ+7dWsrp+zdW/tAjzefy5df\n2t2aJSUVt48YUfXETRs22IpBH31ko2hqks76OXgPPVn697dPiM5ls4wI9E2bLJAbNbILVlu31q2H\nHlty2bTJwi426D/4wII7nsJCq6v27Fl5srB4PNCdc5kiowIdoEMHK7tUd1E0MsolOkjz8sqnD4g+\nLlQM7+Ji+9qyJX5bCgvh8MNtCGUiZRcPdOdcpsi4QG/f3gK9thdFDzsMNm6seHNRvEDfuNG+R8Ym\nR1O1QO/atXaBHu8u0Ybige6ci8iIQC8qskCG8h56bUsurVrBfvuVjysGC3SRioEeeRwv0LdvtxVu\nWreuPtA/+qj8cSZcFK1voJeV2fj7Dh2S0ybnXHpkRKDHK7lUFej7728XK7dtq9wzjvTSI4qK4Nhj\nKwd6167xAz1SbgG78WTpUhtSGdvWvn3LF5VId8klGZNzbd1q/5a1Xa7NOZdZMjLQP/+86kBv1Mjm\nfNm0qXKg5+VVDPRNm+CUUyoH+kknxa+hRwd627Z2/PXrK+7z2Wd2V2FkqGAmBPquXfWbx8bLLc6F\nQ9oDXdVGoSR6URSs7LJ5c2KBPmRI5UAfPLjmHjpYLz227LJ1q33/97/te7pr6E2bQrNmtjpSXXmg\nOxcOCQW6iNwiIitEZJmITBGRZlHP/UxE9olI26htY0VkrYisFpEzqjv21q3W446sElPTRVGw7aWl\niQX6ySdb6SVSOtmwwWbh27nTbtmPFhvo8erokUBftMi+p7uHDnWro//rX/DQQ/bYA925cKgx0EWk\nE3Aj0F9V+2J3l14UPNcFGAlsiNq/FzAa6AWcCTwsUvU9eNHlFqi5hg62vXHjyoEfHeh79lgvv2tX\n2y9yB+qGDbaKUIcOFmTRYgP92GMrj0Xfts3WC4300NN9URTqFuivv26TUy1a5IHuXFgkWnJpDLQQ\nkSbAAUCkAv0b4LaYfUcBz6tqqaoWAmuBQVUduC6B3rKlhWjs20R0oG/ebDcbiViob9hgF1O3b7fw\n6tixch09NtA7doRPP624z9attnDCkiXW68/WHnpRkV1LuOYa+7fyQHcu+9UY6Kq6BXgQ2AhsBr5Q\n1bkiMgooUtXlMS/pDETf4rM52BZXXQM9Xt06OtCjjxsJ9KIiC/nGjcsXxSg/z/Ix6LFtibZtm91F\n2r69XRgtLrZhjukUG+gffACjR8N551X9mk2bbDrZVq3gz3/2QHcuDBIpubTGet1dgU5YT/1SYCww\nrj6//Jpr4IknKgZ6ZBrabduqr6HHC/SOHW2EzDffWGBFxrZHAj0yZDGyb3SgR49BjzjkkPg99Hbt\nbO6PN96wtqR7ytVIoKvCrbfadYPDDoP586t+TeTf55FH7N8rTEvPOZerEhl5PAJYp6rbAUTkReBH\nwOHA0qA+3gVYJCKDsB55XtTruwTbKvn44/F07Gh16IKCfPLz8xGx3m9kSbp4qgr0Jk0sqDdvrtxD\nX7vWSiNVBXpsuQUsKPfutREkkbVNt22Dgw+2C6tz56a/3ALlgf7738M//2k99IMOgj/+0cpMzZtX\nfk0k0Nu1g7fftgvAzrnMU1BQQEFBQUL7JhLoG4HBItIc2AsMB6ar6rDIDiKyHrtoukNEXgamiMhD\nWKmlB7Ag3oH/9rfxcX9hhw7wxRdVT2daVaBDedmlqAh697ZtXbuWh290oEf3YOMFukj5uPi84C1q\n61YL9P79YdIkW64u3Q480M5v1iw7p8ibTF6ejaPv1avi/l9+aW9Skf0GDmzY9jrnEpefb53diAkT\nJlS5byI19AXANGAxsBQQ4E+xuwXbUdVVwFRgFTATuF61dre9dOhQdf0cEgv0eDX06JJLbA09XqBD\n5bJLdMmluDhzeujPPAOPPWYjeCKOOMKW04sV+bfx+b+dC5eEbvZW1QlAlW8Lqto95uf7gPvq2qia\nAv3YY6u+kaa6QK+u5LJmTfyyQ+yF0UjJpUULK1lkQqAffzyMGwff+17F7d27Vx/ozrlwycjZOzp0\nqPqCKMDFF1f9XF6eDSmMvijapo0NMVy+vOpAf/NNuPHG+G2JBPqePXacSG3/hBPSe5doxOjR8bd3\n715xIrEID3Tnwintt/7H07599T306uTl2UXB4mI7DpSPRd++veKsjtu22R2nmzfb42OOqXy86JJL\npHceKVUMH26LYWSqqnro0bNbOufCI2N76PUJ9AULrEbeKOrtKhLo++1nPzdpYuH86afWOz/ttIr7\nR7clsuJR5IJoxA031K2NDaW6Gnrfvg3fHudcamVkoJ97bt1HXuTlWWkktqQQCfRokbJLQQFEXUSu\noEMHWLzYHkcuiGaLbt1slItqxQugmzbZuqnOuXDJyJLLgQdWHmqXqIMOstfHlhS6dq14FyiUj3Sp\nLtDjlVyyRatWdvE2ds4ar6E7F04Z2UOvr7y8yoF18cU2B0u0jh3hvfeqrp9DxYui2dZDh/KyS8eO\n5duiLxg758IjI3vo9RUv0PPybOx4tI4d4bnnqq6fQ8VAz7YeOlS+MBqZhTLbzsM5V7NQBvrNN8PZ\nZ9e8X8eONiVAVeUWsJEyW7facMXYi6LZIHboYvQslM65cAlloI8caUFWk06d7Ht1gd60qdXkt2+3\nHnq2lVxie+heP3cuvEIZ6Inq1Mnu9Kyqfh4RKbtkYw89duiiB7pz4ZXTgd6/v01qVVX9PCIy0iUb\nL4rG9tD9piLnwiunA71xY+jXr+b9Ij30bLwo2qmTlYv27LGfvYfuXHjldKAnKptLLo0a2SyS69fb\nzx7ozoWXB3oCDjnEZmssLS1fUSmbHHEELFxojz3QnQuvUN5YlGwdOsC8eRUn5somN9wAP/4xzJxp\n9XSvoTsXTt5DT0CHDrB6dfZdEI0480wbb9+/v62wFJmF0jkXLlLLxYSS94tFaruQUdq88w6ccgqc\nfjq8/nq6W+Ocy2UigqrGrRV4Dz0BHTrY92ztoTvncoMHegIigZ5tI1ycc7kloUAXkVtEZIWILBOR\nKSKyn4jcLyKrRWSJiEwXkQOj9h8rImuD589IXfMbRqtW0Ly5B7pzLrPVGOgi0gm4Eeivqn2xkTEX\nAq8BfVT1eGAtMDbYvzcwGugFnAk8LJKNY0PKiVgvvaaSS0FBQYO0p6H4+WS+sJ2Tn0/9JFpyaQy0\nEJEmwAHAFlWdq6r7guffBSKjm88BnlfVUlUtxMJ+UBLbnBYdOtTcQ/c/xswWtvOB8J2Tn0/91Bjo\nqroFeBDYCGwGvlDVuTG7XQnMDB53BoqintscbMtqQ4bUfRUl55xrCImUXFoDo4CuQCegpYhcEvX8\n3UCJqj6XslZmgN/8Bk44Id2tcM65qtU4Dl1Ezge+papXBz9fCpyoqjeIyBXA1cAwVd0bPH8noKo6\nKfh5FjBOVefHHDc7BqE751yGqWoceiK3/m8EBotIc2AvMBxYKCLfBm4DhkbCPPAyMEVEfoOVWnoA\nCxJtkHPOubqpMdBVdYGITAMWAyXAIuBPwCqgGTAnGMTyrqper6qrRGRq8HwJcH3W3BLqnHNZLG23\n/jvnnEuupN4pKiJPiMinIrIsattxIjJPRBaLyAIRGRhsbyIik4OblVYGtffIa/oH2z8Qkd8ms421\nUcX59BWRd0RkqYi8JCIto56Le0NVNp6PiIwQkfeC7QtF5PSo12TE+QRtqdV/o+D5PBHZJSK3Rm3L\niHOqw99c5LkVwfPNgu1Zdz5ZkgldROT1oH3LReSmYHsbEXlNRN4XkdkiclDUaxouF1Q1aV/AEOB4\nYFnUttnAGcHjM4E3gscXA88Gj/cH1gN5wc/zgYHB45nYRdmktrUe57MAGBI8vgL4ZfC4N1aWagIc\nDnxI+SegbDyf44BDg8d9gE1Rr8mI86ntOUU9/xfgBeDWTDunWv43agwsBY4Jfm6T5X9z2ZAJhwLH\nB49bAu8DRwOTgNuD7XcAE4PHDZoLSe2hq+rbwI6YzfuAyLtVa2xcOoBiNys1xm5W2gvsFJFDgVaq\nGizJwNPAuclsZ6KqOJ+ewXaAucB5weO4N1Rl6/mo6lJV/SR4vBJoLiJNM+l8grbV5r8RIjIKWAes\njNqWMedUy/M5A1iqqiuC1+5QVc3i88mGTPhEVZcEj3cDq7GbKkcBTwW7PRXVvgbNhYaYnOsW4AER\n2QjcTzBFADAN2AN8DBQCD6jqF9jImE1Rr99EZt2YtFJEzgkej6b8DtmqbqjK1vP5D7Ghq4tUtYTM\nPx+o4pyCj/a3AxOA6FFWmX5OVf03OhJsaHBQHrst2J6t55NVmSAih2OfPt4FDlHVT8FCHwim9GvY\nXGiIQL8OGKOqeVi4PxlsPxEoxT7CdAf+X/APlOmuBH4qIguBFsA3aW5PfVV7PiLSB7gPuCYNbaur\nqs5pHPAbVd2TtpbVTVXn0wQ4BStVnAp8L/paRwar6nyyJhOCzsE0LNt2Y58uoqVltElDLEF3uaqO\nAVDVaSLyeLD9YmCW2nwwn4vIv4ABwNtA9CJpXSgv06Sdqn4AfAtARHoC3wme2kz8dle1PSNUcz6I\nSBfgr8ClwcdFyPDzgWrP6UTgPBG5H6s3l4nI19g5Zuw5VXM+m4C3VHVH8NxMoD8whew8n6zIBLE5\nraYBz6jqS8HmT0XkEFX9NCinfBZsb9BcSEUPXaj4cXaziJwGICLDsRoS2A1Lw4LtLYDBwOrg40qx\niAwSEQEuA14ifSqcj4i0D743An4OPBo89TJwkYg0E5FuBDdUZev5iE358HfgDlV9N7J/Bp4PJHhO\nqjpUVburanfgt8C9qvpwBp5Ton9zs4FjRaR5EDKnASuz8HweCZ7Klkx4Elilqr+L2vYydoEX4HLK\n29ewuZDkK8DPAluwixkbgR8BJwPvYVd65wH9gn1bAFOBFcFX9IiDE4DlWPj/LpltTML53IRd2V6D\nBUL0/mOxq9irCUb2ZOv5AHcDu7AbyRYH3w/OpPOpy3+jqNeNC8nf3CXB/z/LgPuy+XyyJBNOAcqA\nJVH/X3wbaItd4H0fm1q8ddRrGiwX/MYi55wLCV+CzjnnQsID3TnnQsID3TnnQsID3TnnQsID3Tnn\nQsID3TnnQsID3TnnQsID3bl6CO52dC4j+B+jyxkiMkFExkT9fI+I3CQi/09s8ZUlIjIu6vkXxRb3\nWC4iP47avktEHhCRxdjt6c5lBA90l0uexObMIJg/4yJsqtaeqjoI6AcMEJEhwf4/UtWBwEBgjIi0\nCba3AOapaj9VfadBz8C5ajTEbIvOZQRV3SAiW0XkOGyK1kXAIGCkiCzCJpBqAfTEZvi7WUQiiw50\nCbYvwKZ4/WtDt9+5mnigu1zzODZB1KFYj30ENqnV/0bvFMwQOgw4UVX3isgbQPPg6a/VJ0FyGchL\nLi7XzMBmxxuATT87G7gymK4VEekUTO96ELAjCPOjqVgrF5zLQN5DdzlFVUuC3vaOoJc9JwjseVZW\nZxfwQ2AWcK2IrMSmRJ0XfZgGbrZzCfHpc11OCYYZ/hs4X1U/Snd7nEsmL7m4nCEivbDFBOZ4mLsw\n8h66c86FhPfQnXMuJDzQnXMuJDzQnXMuJDzQnXMuJDzQnXMuJDzQnXMuJP4/XdhqXCuvRPUAAAAA\nSUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# rank of the names per year\n",
"\n",
"idf = boys.set_index(['name', 'year'])\n",
"idf.ix['Jose'].year_rank.plot()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Births"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" sex | \n",
" births | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 1880 | \n",
" boy | \n",
" 118405 | \n",
"
\n",
" \n",
" | 1 | \n",
" 1881 | \n",
" boy | \n",
" 108290 | \n",
"
\n",
" \n",
" | 2 | \n",
" 1882 | \n",
" boy | \n",
" 122034 | \n",
"
\n",
" \n",
" | 3 | \n",
" 1883 | \n",
" boy | \n",
" 112487 | \n",
"
\n",
" \n",
" | 4 | \n",
" 1884 | \n",
" boy | \n",
" 122745 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 255 | \n",
" 2005 | \n",
" girl | \n",
" 2024636 | \n",
"
\n",
" \n",
" | 256 | \n",
" 2006 | \n",
" girl | \n",
" 2084511 | \n",
"
\n",
" \n",
" | 257 | \n",
" 2007 | \n",
" girl | \n",
" 2109099 | \n",
"
\n",
" \n",
" | 258 | \n",
" 2008 | \n",
" girl | \n",
" 2072756 | \n",
"
\n",
" \n",
" | 259 | \n",
" 2009 | \n",
" girl | \n",
" 2001968 | \n",
"
\n",
" \n",
"
\n",
"
260 rows × 3 columns
\n",
"
"
],
"text/plain": [
" year sex births\n",
"0 1880 boy 118405\n",
"1 1881 boy 108290\n",
"2 1882 boy 122034\n",
"3 1883 boy 112487\n",
"4 1884 boy 122745\n",
".. ... ... ...\n",
"255 2005 girl 2024636\n",
"256 2006 girl 2084511\n",
"257 2007 girl 2109099\n",
"258 2008 girl 2072756\n",
"259 2009 girl 2001968\n",
"\n",
"[260 rows x 3 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"births = pd.read_csv('data/births.csv')\n",
"births"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## merge"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
" births | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 1880 | \n",
" John | \n",
" 0.081541 | \n",
" boy | \n",
" J500 | \n",
" 118405 | \n",
"
\n",
" \n",
" | 1 | \n",
" 1880 | \n",
" William | \n",
" 0.080511 | \n",
" boy | \n",
" W450 | \n",
" 118405 | \n",
"
\n",
" \n",
" | 2 | \n",
" 1880 | \n",
" James | \n",
" 0.050057 | \n",
" boy | \n",
" J520 | \n",
" 118405 | \n",
"
\n",
" \n",
" | 3 | \n",
" 1880 | \n",
" Charles | \n",
" 0.045167 | \n",
" boy | \n",
" C642 | \n",
" 118405 | \n",
"
\n",
" \n",
" | 4 | \n",
" 1880 | \n",
" George | \n",
" 0.043292 | \n",
" boy | \n",
" G620 | \n",
" 118405 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 257995 | \n",
" 2008 | \n",
" Carleigh | \n",
" 0.000128 | \n",
" girl | \n",
" C642 | \n",
" 2072756 | \n",
"
\n",
" \n",
" | 257996 | \n",
" 2008 | \n",
" Iyana | \n",
" 0.000128 | \n",
" girl | \n",
" I500 | \n",
" 2072756 | \n",
"
\n",
" \n",
" | 257997 | \n",
" 2008 | \n",
" Kenley | \n",
" 0.000127 | \n",
" girl | \n",
" K540 | \n",
" 2072756 | \n",
"
\n",
" \n",
" | 257998 | \n",
" 2008 | \n",
" Sloane | \n",
" 0.000127 | \n",
" girl | \n",
" S450 | \n",
" 2072756 | \n",
"
\n",
" \n",
" | 257999 | \n",
" 2008 | \n",
" Elianna | \n",
" 0.000127 | \n",
" girl | \n",
" E450 | \n",
" 2072756 | \n",
"
\n",
" \n",
"
\n",
"
258000 rows × 6 columns
\n",
"
"
],
"text/plain": [
" year name prop sex soundex births\n",
"0 1880 John 0.081541 boy J500 118405\n",
"1 1880 William 0.080511 boy W450 118405\n",
"2 1880 James 0.050057 boy J520 118405\n",
"3 1880 Charles 0.045167 boy C642 118405\n",
"4 1880 George 0.043292 boy G620 118405\n",
"... ... ... ... ... ... ...\n",
"257995 2008 Carleigh 0.000128 girl C642 2072756\n",
"257996 2008 Iyana 0.000128 girl I500 2072756\n",
"257997 2008 Kenley 0.000127 girl K540 2072756\n",
"257998 2008 Sloane 0.000127 girl S450 2072756\n",
"257999 2008 Elianna 0.000127 girl E450 2072756\n",
"\n",
"[258000 rows x 6 columns]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged = pd.merge(names, births, on=['year', 'sex'])\n",
"merged"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" year | \n",
" name | \n",
" prop | \n",
" sex | \n",
" soundex | \n",
" births | \n",
" persons | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 1880 | \n",
" John | \n",
" 0.081541 | \n",
" boy | \n",
" J500 | \n",
" 118405 | \n",
" 9654.0 | \n",
"
\n",
" \n",
" | 1 | \n",
" 1880 | \n",
" William | \n",
" 0.080511 | \n",
" boy | \n",
" W450 | \n",
" 118405 | \n",
" 9532.0 | \n",
"
\n",
" \n",
" | 2 | \n",
" 1880 | \n",
" James | \n",
" 0.050057 | \n",
" boy | \n",
" J520 | \n",
" 118405 | \n",
" 5926.0 | \n",
"
\n",
" \n",
" | 3 | \n",
" 1880 | \n",
" Charles | \n",
" 0.045167 | \n",
" boy | \n",
" C642 | \n",
" 118405 | \n",
" 5347.0 | \n",
"
\n",
" \n",
" | 4 | \n",
" 1880 | \n",
" George | \n",
" 0.043292 | \n",
" boy | \n",
" G620 | \n",
" 118405 | \n",
" 5125.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" year name prop sex soundex births persons\n",
"0 1880 John 0.081541 boy J500 118405 9654.0\n",
"1 1880 William 0.080511 boy W450 118405 9532.0\n",
"2 1880 James 0.050057 boy J520 118405 5926.0\n",
"3 1880 Charles 0.045167 boy C642 118405 5347.0\n",
"4 1880 George 0.043292 boy G620 118405 5125.0"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# number of persons\n",
"\n",
"merged['persons'] = np.floor(merged.prop * merged.births)\n",
"merged.head()"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"name sex \n",
"Aaden boy 959.0\n",
"Aaliyah girl 39660.0\n",
"Aarav boy 219.0\n",
"Aaron boy 508034.0\n",
" girl 1365.0\n",
" ... \n",
"Zola girl 4847.0\n",
"Zollie boy 60.0\n",
"Zona girl 3218.0\n",
"Zora girl 4551.0\n",
"Zula girl 3578.0\n",
"Name: persons, dtype: float64"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_name_sex = merged.groupby(['name', 'sex']).persons.sum()\n",
"merged_name_sex"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"name sex \n",
"Alabama girl 3.0\n",
"Daisye girl 3.0\n",
"Crissie girl 3.0\n",
"Dollye girl 3.0\n",
"Dema girl 3.0\n",
" ... \n",
"Mary girl 4097626.0\n",
"Michael boy 4207352.0\n",
"Robert boy 4752198.0\n",
"John boy 5016124.0\n",
"James boy 5021269.0\n",
"Name: persons, dtype: float64"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merged_name_sex.sort_values()"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEPCAYAAAAeQPDsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVVX9//HXGxTxSmipeUEzIS9ZiYqWphPl3VAzlfIr\nmPatr1razVIzgezyRVPpJmZaIpqoKEqliCljYiB4AS+g0VftJ3grblImcvn8/lhrmM04lzMwM+ec\nmffz8ZjH7LP23uuss+bM+Zy19tprKSIwMzOrdN3KXQAzM7NSOGCZmVlVcMAyM7Oq4IBlZmZVwQHL\nzMyqggOWmZlVhZIClqQXJc2W9ISkGTntUklzJc2SdLukLQrHXyBpXt5/WCG9v6QnJf1V0qhCeg9J\n4/I50yT1Kewbmo9/TtKQQvrOkqbnfTdL2mB9K8PMzCpXqS2s1UBNROwdEQNy2mRgz4j4CDAPuABA\n0h7AScDuwJHAVZKUzxkNnBER/YB+kg7P6WcAiyKiLzAKuDTn1Ru4GNgP2B8YJqlXPmckcHnOa0nO\nw8zMOqlSA5YaHhsRf4qI1fnhdGCHvD0IGBcRKyPiRVIwGyBpW2DziJiZj7sBOC5vHwuMydvjgYF5\n+3BgckQsjYglpCB5RN43ELg9b48Bji/xtZiZWRUqNWAFcJ+kmZL+u5H9pwN35+3tgZcK+xbktO2B\n+YX0+TltrXMiYhWwVNKWTeUlaStgcSFgzge2K/G1mJlZFSr1us+BEfGKpPeQAtfciJgKIOm7wIqI\nuLkNy6WWDynpGDMz6yRKClgR8Ur+/Q9JE4ABwFRJpwFHUd+FB6kVtGPh8Q45ran04jkvS+oObBER\niyQtAGoanDMlIhZK6iWpW25lFfNaiyRPlmhmtg4ioqIaBi12CUraRNJmeXtT4DDgaUlHAOcBgyJi\neeGUicDgPPLvfcCuwIyIeJXU1TcgD8IYAtxVOGdo3j4ReCBv3wscmoNTb+DQnAYwJR9LPrcur3eI\niIr/GTZsWNnL0FnKWQ1ldDldzkr/qUSltLC2ASbklsoGwE0RMVnSPKAHqYsQYHpEnBURcyTdCswB\nVgBnRf2rPxu4HugJ3B0Rk3L6dcDYnOdCYDBARCyWdAnwKOk62ohIgy8AzgfG5f1P5DzMzKyTajFg\nRcQLwEcaSe/bzDk/Bn7cSPpjwF6NpC8nDYVvLK/rSUGusXLt33TJzcysM/FMFxWipqam3EUoSTWU\nsxrKCC5nW3M5Oz9Val9lW5EUnf01mpm1NUlEtQ26MDMzqwQOWGZmVhUcsMzMrCo4YJmZWVVwwDIz\ns6rggGVmZlXBAcvMzKqCA5aZmVUFBywzM6sKDlhmZlYVHLDMzKwqOGCZmVlVcMAyM7Oq4IBlZmZV\nwQHLzMyqggOWmZlVBQcsMzOrCg5YZmZWFRywzMysKjhgmZlZVXDAMjOzquCAZWZmVcEBy8zMqoID\nlpmZVQUHLDMzqwoOWGZmVhU2KOUgSS8CS4HVwIqIGCCpN3ALsBPwInBSRCzNx18AnA6sBM6NiMk5\nvT9wPdATuDsivpbTewA3APsA/wROjoj/l/cNBb4LBPDDiLghp+8MjAO2BB4DTo2IletcE2ZmJVi9\nGlatqv9p+LiUn3U5pyOfa/Xqctdy4xQRLR8kPQ/sExGLC2kjgYURcamk7wC9I+J8SXsANwH7ATsA\nfwL6RkRIegT4SkTMlHQ38NOIuFfSmcBeEXGWpJOB4yNicA6KjwL9AZECU/+IWCrpFmB8RNwmaTQw\nKyJ+1UjZo5TXaGbVadkyGDkSHn+8Yz7YAbp1g+7dW/+zruetz7nret7nPiciQuX9666t1ID1ArBv\nRCwspD0LHBIRr0naFqiNiN0knQ9ERIzMx90DDAf+DjwQEXvk9MH5/DMlTQKGRcQjkroDr0TE1sVj\n8jmj8/PcIukfwDYRsVrSAcDwiDiikbI7YJl1QhFw003wne/Apz4FJ57YcQGgK5AqL2CV1CVI6o67\nT9Iq4FcRcS0pWLwGEBGvSto6H7s9MK1w7oKcthKYX0ifn9Prznkp57VK0lJJWxbTi3lJ2gpYHBGr\nC3ltV+JrMbMq9/jj8NWvwvLlMH48fPSj5S6RdYRSA9aBEfGKpPcAkyU9RwpiRW3ZjCklqldU5Dez\n9vePf8BFF8Fdd8EPfwhf+ELXafFYiQErIl7Jv/8h6U5gAPCapG0KXYKv58MXADsWTt8hpzWVXjzn\n5dwluEVELJK0AKhpcM6UiFgoqZekbrmVVczrHYYPH75mu6amhpqamqYONbMKtHIljB4N3/8+nHIK\nPPssvOtd5S5V51JbW0ttbW25i9GsFq9hSdoE6BYR/5K0KTAZGAF8ElgUESObGHSxP6lL7z7qB11M\nB84BZgJ/BH4WEZMknQV8MA+6GAwc18igi255e5+IWJIHXdyRr2eNBmZHxNWNlN/XsMyq2JQpcM45\nsM028NOfwp57lrtEXUMlXsMqJWC9D5hA6vLbALgpIv43X2O6ldQy+jtpWPuSfM4FwBnACtYe1r4P\naw9rPzenbwSMBfYGFgKDI+LFvO806oe1/6AwrP19pGHtvYEngP+KiBWNlN8By6wK/f3vcN55MGMG\nXHEFHH88qKI+Pju3qgxY1c4By6y6/Oc/cNll8LOfpZbVeefBxhuXu1RdTyUGrFIHXZiZtasImDAB\nvvlN2HdfeOwx2GmncpfKKokDlpmV3TPPwLnnwquvwnXXwcCB5S6RVSIPCDWzslmyBL7+daipgWOP\nhVmzHKysaQ5YZtbhVq9OLanddoM334Q5c9KNwBu4z8ea4beHmXWoadPSYIoePeDuu6F//3KXyKqF\nA5aZdYhXXoHzz4f770+T1X7+8x6mbq3jLkEza1dvv52Gqe+1F7z3vTB3bpqtwsHKWsstLDNrN5Mm\npdF/ffumrsC+fctdIqtmDlhm1ub+9jf4xjdSa2rUKDj66HKXyDoDdwmaWZv517/gwgvhgAPgoIPg\n6acdrKztOGCZ2XqLgN/9Lg1Tf+klePJJ+Pa3YaONyl0y60zcJWhm62XWrHQP1Ztvwi23wIEHlrtE\n1lm5hWVm6+Sf/4Qzz4QjjoAhQ9Ks6g5W1p4csMysVVauhF/+EvbYI938O3cu/Pd/Q/fu5S6ZdXbu\nEjSzktXWplkq3v3udAPwXnuVu0TWlThgmVmLXnoJvvUtmD4dLr8cTjjBN/5ax3OXoJk16a234Ac/\ngL33ht13T91/n/2sg5WVh1tYZvYOEXDXXenm3/794dFHYeedy10q6+ocsMxsLXPnpumUFiyAa66B\nT32q3CUyS9wlaGYALF2aWlQHH5xmp5g1y8HKKosDllkXt3o1/Pa3aZaKZcvql6vfcMNyl8xsbe4S\nNOvCHnkkzVLRvTv8/vew777lLpFZ09zCMuuCXn0VvvAFOP54+MpX4OGHHays8jlgmXUhb7+d7qP6\n4AfhPe+BZ59N0yp18yeBVQF3CZp1EZMnp2tTO++cWlQf+EC5S2TWOg5YZp3c88+n0X9PP12/mKJv\n/LVq5I4As07q3/+Giy6CAQNg//3T6L9jjnGwsurlgGXWyUTAuHFpmPoLL6T7qS64wIspWvVzl6BZ\nJzJ7dppN/Y034Oab0zL1Zp1FyS0sSd0kPSFpYn78EUnTctoMSfsWjr1A0jxJcyUdVkjvL+lJSX+V\nNKqQ3kPSuHzONEl9CvuG5uOfkzSkkL6zpOl5382SHHyty1q4EM4+Gw47DD7/+TT3n4OVdTat6RI8\nF3im8HgkMCwi9gaGAZcBSNoDOAnYHTgSuEpa02s+GjgjIvoB/SQdntPPABZFRF9gFHBpzqs3cDGw\nH7A/MExSr8LzX57zWpLzMOtSVq2C0aPTYopSmgfwy1/2YorWOZUUsCTtABwFXFtIXg3UBY93AQvy\n9iBgXESsjIgXgXnAAEnbAptHxMx83A3AcXn7WGBM3h4PDMzbhwOTI2JpRCwBJgNH5H0Dgdvz9hjg\n+FJei1ln8dBDsM8+cMstcN998ItfwJZblrtUZu2n1G60K4HzqA9QAF8H7pV0OSDgYzl9e2Ba4bgF\nOW0lML+QPj+n153zEkBErJK0VNKWxfRiXpK2AhZHxOpCXtuV+FrMqtr8+fDtb8PUqfCTn8CJJ3rk\nn3UNLQYsSUcDr0XELEk1hV1nAudGxJ2SPgv8Bji0jcpVyr9fyf+iw4cPX7NdU1NDTU1N60tkVmZv\nvQVXXJF+zjwTfv1r2HTTcpfKOova2lpqa2vLXYxmldLCOhAYJOkoYGNgc0ljgWMi4lyAiBgvqa67\ncAGwY+H8HXJaU+nFc16W1B3YIiIWSVoA1DQ4Z0pELJTUS1K33Moq5vUOxYBlVm0i0sS0X/86fOhD\nMGMG7LJLuUtlnU3DL/MjRowoX2Ga0OI1rIi4MCL6RMQuwGDggYg4lRRcDgGQ9EnStSqAicDgPPLv\nfcCuwIyIeBVYKmlAHoQxBLircM7QvH0i8EDevhc4NAen3qQW3L1535R8LPncurzMOo3nnoOjjoLv\nfCcNrpgwwcHKuq71GQr+JeCnuUX0Vn5MRMyRdCswB1gBnBURkc85G7ge6AncHRGTcvp1wFhJ84CF\npMBIRCyWdAnwKBDAiDz4AuB8YFze/0TOw6xTeOMNuOQSuP56uPDCNKO616eyrk71saRzkhSd/TVa\n57F6NYwdm2amOOII+PGPYZttyl0q64okEREVNZzHN9uaVYiZM9NiihFw551pDkAzq+e5BM3K7PXX\n4YtfhGOPhf/5H5g2zcHKrDEOWGZlsmJFWu5jzz3hXe9Ks1ScdpoXUzRrirsEzcrg2WfhM5+BHXdM\nM1bstlu5S2RW+TzowqyDLVyY1qf61rfSvH+epcIqUSUOunDAMutAK1ak0X/9+8Nll5W7NGZNc8Aq\nAwcsqyRf+UpaVHHiRM+obpWtEgOWr2GZdZCrr4YHHkijAB2szFrPLSyzDjBlCgweDA8/DLvuWu7S\nmLWsEltYHkBr1s7+7//gc59LS9Y7WJmtOwcss3b0xhswaBBcfDEMHNjy8WbWNHcJmrWTVavS7BU7\n7phmWjerJu4SNOtCLrwQ/v1v+NnPyl0Ss87BowTN2sHYsTB+fFps0cuCmLUNdwmatbHp09N1qylT\n0jyBZtXIXYJmndxLL8EJJ8Bvf+tgZdbWHLDM2sibb8Jxx8HXvgZHH13u0ph1Pu4SNGsDEXDyydCz\nJ4wZ4wltrfpVYpegB12YtYFLLkndgVOmOFiZtRcHLLP1dPvtcO21aURgz57lLo1Z5+UuQbP1MGsW\nHHoo3HtvWjLErLOoxC5BD7owW0evvZZmsrjqKgcrs47ggGW2DpYvT0vcn3YanHhiuUtj1jW4S9Cs\nlSLg9NNh2TK49Vbo5q991glVYpegB12YtdKVV6ZrV1OnOliZdSQHLLNWuOce+MlP0vRLm25a7tKY\ndS0OWGYlmjsXhg6FO++EPn3KXRqzrscdGmYlWLQoTWh76aXwsY+VuzRmXVPJAUtSN0mPS5pYSPuq\npLmSnpL0v4X0CyTNy/sOK6T3l/SkpL9KGlVI7yFpXD5nmqQ+hX1D8/HPSRpSSN9Z0vS872ZJbi1a\nu1ixAk46KQ1hP+20cpfGrOtqTQvrXGBO3QNJnwA+DewVEXsBP8npuwMnAbsDRwJXSWsmqxkNnBER\n/YB+kg7P6WcAiyKiLzAKuDTn1Ru4GNgP2B8YJqlXPmckcHnOa0nOw6zNff3r0KMHjBxZ7pKYdW0l\nBSxJOwBHAdcWkv8H+N+IWAkQEf/M6ccC4yJiZUS8CMwDBkjaFtg8Imbm424AjiucMyZvjwcG5u3D\ngckRsTQilgCTgSPyvoHA7Xl7DHB8Ka/FrDV+9Su4/364+Wbo3r3cpTHr2kptYV0JnAcUb2jqBxyc\nu+WmSNonp28PvFQ4bkFO2x6YX0ifn9PWOiciVgFLJW3ZVF6StgIWR8TqQl7blfhazEpSWwsXXwy/\n/z306tXi4WbWzlq87iPpaOC1iJglqabBub0j4gBJ+wG3Abu0UblKuVmt5Bvahg8fvma7pqaGmpqa\n1pfIupTnn4fBg+F3v4Nddy13aczaX21tLbW1teUuRrNKGahwIDBI0lHAxsDmkm4gtXzuAIiImZJW\n5ZbPAqA46HeHnLYA2LGRdAr7XpbUHdgiIhZJWgDUNDhnSkQslNRLUrfcyirm9Q7FgGXWkjfeSCMC\nv/c9+OQny10as47R8Mv8iBEjyleYJrTYJRgRF0ZEn4jYBRgMPBARQ4C7yNeaJPUDekTEQmAicHIe\n+fc+YFdgRkS8SurqG5AHYdTlQT5naN4+EXggb98LHJqDU2/g0JwGMCUfSz63Li+zdbZqFZxyChx0\nEJx1VrlLY2ZF6zMU/DfAbyQ9BSwnBSAiYo6kW0kjClcAZxUm8zsbuB7oCdwdEZNy+nXAWEnzgIWk\nwEhELJZ0CfAo6frZiDz4AuB8YFze/0TOw2y9fPe78K9/wc9/7oUYzSqNJ781y8aOheHD4ZFH4N3v\nLndpzMqrEie/dcAyIwWpT386LXG/557lLo1Z+VViwPLUTNblzZ+f1rb6zW8crMwqmQOWdWlvvpmm\nXDr3XDjmmHKXxsya4y5B67Ii0r1WG20EY8Z4kIVZUSV2CXrCWOuyfvAD+Pvf04wWDlZmlc8By7qk\nO+6AX/86Dbbo2bPcpTGzUjhgWZczaxZ8+cswaRK8973lLo2ZlcqDLqxLee01OO44+OUvYZ99Wj7e\nzCqHA5Z1GcuXp+HrQ4akBRnNrLp4lKB1CRFwxhmwdCncdht081c1s2Z5lKBZmYwaBY8/Dg8/7GBl\nVq0csKzTu+ceuOwymDYNNt203KUxs3XlgGWd2rPPwtChMGEC7LRTuUtjZuvDnSPWaS1alCa0HTkS\nDjyw3KUxs/XlQRfWKa1YAUceCR/+MFx+eblLY1Z9KnHQhQOWdUpf/Sr87W/whz9A9+7lLo1Z9anE\ngOVrWNbp/OpX8Kc/wfTpDlZmnYlbWNap1NbCySfD1KnQt2+5S2NWvSqxheVBF9ZpPP98Wi7kppsc\nrMw6Iwcs6xTeeAMGDYKLLoJPfarcpTGz9uAuQat6q1bB8cenmdevvtprW5m1hUrsEvSgC6t6F12U\nWljjxztYmXVmDlhW1W68EW65BWbMgB49yl0aM2tP7hK0qvXII2kmiwcegA9+sNylMetcKrFL0IMu\nrCrNn5/WtrruOgcrs67CAcuqzptvplWDzzkntbDMrGtwl6BVlQj43Odgww3hhhs8yMKsvVRil6AH\nXVhV+eEP4YUX4MEHHazMupqSuwQldZP0uKSJDdK/KWm1pC0LaRdImidprqTDCun9JT0p6a+SRhXS\ne0gal8+ZJqlPYd/QfPxzkoYU0neWND3vu1mSg28nN2ECXHMN3Hkn9OxZ7tKYWUdrzTWsc4E5xQRJ\nOwCHAn8vpO0OnATsDhwJXCWt+S48GjgjIvoB/SQdntPPABZFRF9gFHBpzqs3cDGwH7A/MExSr3zO\nSODynNeSnId1UrNnw5e+BHfckW4QNrOup6SAlQPTUcC1DXZdCZzXIO1YYFxErIyIF4F5wABJ2wKb\nR8TMfNwNwHGFc8bk7fHAwLx9ODA5IpZGxBJgMnBE3jcQuD1vjwGOL+W1WPV5/XU49lj4xS9g333L\nXRozK5dSW1h1gWnN6AVJxwIvRcRTDY7dHnip8HhBTtsemF9In5/T1jonIlYBS3MXY6N5SdoKWBwR\nqwt5bVfia7Eqsnx5Gr5+6qlpFnYz67pavO4j6WjgtYiYJakmp20MXEDqDmwPpVxOL/mS+/Dhw9ds\n19TUUFNT0/oSWYeLgDPPhK23hhEjyl0as86ttraW2trachejWaUMVDgQGCTpKGBjYHNSd97OwOx8\nfWoH4HFJA0itoD6F83fIaQuAHRtJp7DvZUndgS0iYpGkBUBNg3OmRMRCSb0kdcutrGJe71AMWFY9\nRo2Cxx6Dhx+Gbr5j0KxdNfwyP6ICvyW2+DEQERdGRJ+I2AUYDDwQESdGxLYRsUtEvI/UJbd3RLwO\nTAROziP/3gfsCsyIiFdJXX0DcpAbAtyVn2YiMDRvnwg8kLfvBQ7Nwak3qUV3b943JR9LPrcuL+sE\n7r0XLrsMJk6EzTYrd2nMrBK01VDwIHfRRcQcSbeSRhSuAM4q3Ll7NnA90BO4OyIm5fTrgLGS5gEL\nSYGRiFgs6RLg0fwcI/LgC4DzgXF5/xM5D+sEnn02XbOaMAF22qncpTGzSuGZLqyiLF4M++8P558P\np59e7tKYdV2VONOFA5ZVjJUr4cgjYa+94Ioryl0as66tEgOWL2VbxfjGN6B7d7j00nKXxMwqkacz\nsopwzTUweTJMnw4b+F1pZo1wl6CV3YMPwkknwdSp0LdvuUtjZuAuQbN3eOEFGDw4LXXvYGVmzXHA\nsrJZtgwGDYILL4RD22vOFDPrNNwlaGWxejUcfzxsuy1cfbXXtjKrNJXYJejL21YWF10ES5bAbbc5\nWJlZaRywrMPddBOMGwczZkCPHuUujZlVC3cJWoeaMQOOOQbuvz/dIGxmlakSuwQ96MI6zIIFaW2r\na691sDKz1nPAsg7x5ptw3HHwla+kkYFmZq3lLkFrdxHw+c+naZfGjvUgC7NqUIldgh50Ye3uRz+C\n55+H2loHKzNbdw5Y1q4mTEj3Wc2YARtvXO7SmFk1c8CydvPkk/ClL8E998B731vu0phZtfOgC2sX\nr78Oxx4LP/857LtvuUtjZp2BA5a1ubffhhNOgFNOSRPbmpm1BY8StDYVAV/8IixaBLffDt38lcis\nKnmUoHV6P/0pPPooPPywg5WZtS0HLGsz994LI0emVYM326zcpTGzzsYBy9rEc8/BqafCHXfATjuV\nuzRm1hm508bW2+LF8OlPw49/DAcdVO7SmFln5UEXtl5WroSjjoI994Qrryx3acysrVTioAu3sGy9\nfPObaXDFZZeVuyRm1tn5Gpats1//GiZNgkcegQ38TjKzduYuQVsnf/4znHgiPPQQ9OtX7tKYWVtz\nl6B1Ci+8ACefDDfe6GBlZh2n5IAlqZukJyRNzI8vlTRX0ixJt0vaonDsBZLm5f2HFdL7S3pS0l8l\njSqk95A0Lp8zTVKfwr6h+fjnJA0ppO8saXred7Mkd0p1gGXL0gKMF1wAhx5a7tKYWVfSmhbWucAz\nhceTgT0j4iPAPOACAEl7ACcBuwNHAldJa1ZBGg2cERH9gH6SDs/pZwCLIqIvMAq4NOfVG7gY2A/Y\nHxgmqVc+ZyRwec5rSc7D2tHq1eleq49+FL761XKXxsy6mpIClqQdgKOAa+vSIuJPEbE6P5wO7JC3\nBwHjImJlRLxICmYDJG0LbB4RM/NxNwDH5e1jgTF5ezwwMG8fDkyOiKURsYQUJI/I+wYCt+ftMcDx\npbwWWzfLlsG3v53uufrFL7wQo5l1vFK70a4EzgN6NbH/dODmvL09MK2wb0FOWwnML6TPz+l157wE\nEBGrJC2VtGUxvZiXpK2AxYWAOR/YrsTXYiVYtAimTk2DKx58EObOTS2r8eOhR49yl87MuqIWA5ak\no4HXImKWpBpADfZ/F1gRETc3dv46KuX7u7/jt6HXXksj/h58MAWpF16AAw6Agw+GK66A/faDnj3L\nXUoz68pKaWEdCAySdBSwMbC5pBsiYoik00hdhQMLxy8Adiw83iGnNZVePOdlSd2BLSJikaQFQE2D\nc6ZExEJJvSR1y62sYl7vMHz48DXbNTU11NTUNHVolzF/fn1w+vOf4ZVX0rRKhxwC11wD/fvDhhuW\nu5Rm1lFqa2upra0tdzGa1ar7sCQdAnwzIgZJOgK4HDg4IhYWjtkDuIk0SGJ74D6gb0SEpOnAOcBM\n4I/AzyJikqSzgA9GxFmSBgPHRcTgPOjiUaA/6Xrbo8A+EbFE0i3AHRFxi6TRwOyIuLqRMnf5+7Ai\nUoupLkA9+CC88UZqPR1ySPr9oQ9B9+7lLqmZVYpKvA9rfYaC/xzoAdyXBwFOj4izImKOpFuBOcAK\n4KxCxDgbuB7oCdwdEZNy+nXAWEnzgIXAYICIWCzpElKgCmBEHnwBcD4wLu9/IudhpAD17LP1wenP\nf04j/OqC03nnwW67eb0qM6sunumiE1i9Gp56au0Atckm9QHqkEPg/e/3yD4zK10ltrAcsKrQypXw\nxBP1wWnqVHjPe+qD08c/7jWpzGz9OGCVQWcIWMuXp2Xn6wLUtGnQp099C+rjH4f3vrfcpTSzzsQB\nqwyqMWC9+WZaZr6ui2/mTPjAB9YOUFttVe5Smlln5oBVBtUQsN54A/7yl/oW1OzZadReXRffxz4G\nvZq6ZdvMrB04YJVBJQasulkk6gLU3Lmw7771LagDDoBNNy13Kc2sK3PAKoNKCFivvVZ/g27dLBIf\n/WgKTgcfDAMGwEYblbWIZmZrccAqg3IErJdeqg9ODz6YAtZBB9V38e29t2eRMLPK5oBVBu0dsCLg\n+efXvgdq2bK1Z5HYay/PImFm1cUBqwzaOmA1NotERH1wOvhg2H1336RrZtXNAasM1jdg1c0iUZwo\ndtNN155FYpddHKDMrHNxwCqD1gaslSvh8cfrg9PUqbD11mvPItGnTzsW2MysAjhglUFLAWv58nRj\nbl0X37RpsPPOa9+ku+22HVdeM7NK4IBVBg0DVt0sEnVdfDNnppnLiwFqyy3LWGAzswrggFUGkuKe\ne2KtWSQ+/OG1Z5HYYotyl9LMrLI4YJWBpKipibVmkdhkk3KXysyssjlglUElzHRhZlZtKjFgec1Z\nMzOrCg5YZmZWFRywzMysKjhgmZlZVXDAMjOzquCAZWZmVcEBy8zMqoIDlpmZVQUHLDMzqwoOWGZm\nVhUcsMzMrCo4YJmZWVUoOWBJ6ibpcUkT8+PekiZLek7SvZJ6FY69QNI8SXMlHVZI7y/pSUl/lTSq\nkN5D0rh8zjRJfQr7hubjn5M0pJC+s6Tped/NkjZYn4owM7PK1poW1rnAnMLj84E/RcQHgAeACwAk\n7QGcBOwOHAlcJaluxt/RwBkR0Q/oJ+nwnH4GsCgi+gKjgEtzXr2Bi4H9gP2BYYXAOBK4POe1JOdR\ntWpra8sOraBtAAAPTElEQVRdhJJUQzmroYzgcrY1l7PzKylgSdoBOAq4tpB8LDAmb48Bjsvbg4Bx\nEbEyIl4E5gEDJG0LbB4RM/NxNxTOKeY1HhiYtw8HJkfE0ohYAkwGjsj7BgK3F57/+FJeS6Wqljdx\nNZSzGsoILmdbczk7v1JbWFcC5wHFhaW2iYjXACLiVWDrnL498FLhuAU5bXtgfiF9fk5b65yIWAUs\nlbRlU3lJ2gpYHBGrC3ltV+JrMTOzKtRiwJJ0NPBaRMwCmlvMqy1XSSxl0bCKWljMzMzaWUQ0+wP8\nCPh/wPPAK8C/gLHAXFIrC2BbYG7ePh/4TuH8SaTrT2uOyemDgdHFY/J2d+D1wjFXF865Gjg5b78O\ndMvbBwD3NFH+8I9//OMf/7T+p6X40NE/as3y8ZIOAb4ZEYMkXQosjIiRkr4D9I6I8/Ogi5tIQWp7\n4D6gb0SEpOnAOcBM4I/AzyJikqSzgA9GxFmSBgPHRcTgPOjiUaA/qTX4KLBPRCyRdAtwR0TcImk0\nMDsiri75xZiZWVVZn6Hg/wvcKul04O+kkYFExBxJt5JGFK4Azor6qHg2cD3QE7g7Iibl9OuAsZLm\nAQtJLSsiYrGkS0iBKoARefAFpJbcuLz/iZyHmZl1Uq1qYZmZmZVLWWa6kNRTUq2SnSStlvT9wv6t\nJL0t6WflKF8uwzWSdmti3xRJ/fP2fcWbptupLK2qL0lflvRfzeR3iKTft1HZhkn6xvoeU+JzfVDS\nb9c3nwZ5NqzbN/MN8k9Lul5S9xbOHyrp5+tZhnMl9SzhuDXvu/V8vrMlfWF982nF8zWs46daOH69\n67St85L0bkn3tEWZ1uG5W1V/HU3SsjbK52ZJ72/umHJNzXQ6cHuhq/AF4OjC/hOBp1uTYUsfLK0V\nEV+KiGcbeZ6GdXYDqauzPbWqviLiVxFxYwt5Vl3TOiKeJt3WsEMbZtuwbv8WEf2BDwE7kru6Wyra\nuj55ft9+DdhkXfNYB78BvtqBz9ewjkupr7Z8f653XhHxT+BlSR9tg/K01rrUX0dqq/KMBr7T3AHl\nClinAHcVHr8JzC18ezwZuLVup6Rj8jRMjylNB/WenD5M0g2SHiJdA3tQ0ocK5z0kaa+mCpG/sVwl\naY7S9FJ/lPSZvK/Yilom6SeSngAavmF/D3xunWuiNK2trzUtGknvz63AWZIelfS+fNjmkm5Tmj5r\nbOHc70l6RGkKrasL6btIukfSzFzP/Vr5Gj4i6S9KU2x9sZDvZZKekjRb0ok5bYykQYVjbpT06fzw\nD+RrnG2kYd0CkO/xm0G+V1DSRpJ+k+vlMUk1hcP75PfLc5IuLpT7lFyXj0saLaUZXxq8ny4k3UM4\nRdL9JZR3iKQncjn2y/n1ljQh1+FflFqiUpq2bKt8jJSmPtsqIv4DvCBp33WpsHXQaB23UKfb5/fb\nc5JGFs5ZJukH+f38l7rPghY09ff5Rn7vPSnpnJw2QtK5hWN+IKkuuN8FNNlz0Y6aqr+dJP05/18/\nKumAnH6IUovsTkl/k/RjSZ/P78XZdZ8BSq3G8Tn9EeVgnM9/Ir9vH5O0aQvlk6QrlHol7iu85z6i\nNNXeLEm3S+qVP0ceK5y4a+HxQ8Cn9M5GQb2OHpYIbAi8XHi8E/AUcAxwGbADaWThENIoQoBehePP\nAC7L28NIIw575MenAlfm7b7AjBbKcgLwh7y9DbAI+Ex+PAXon7dXAycUzluzLz9+jjRKslLqaxjw\njbw9HRiUt3uQBrwcAiwG3ku6n+0vwMfyMe8qPNcNwNF5+0/A+/P2AOD+hs/VzGsYRhoY0wPYinSb\nxLbAZ4B78zFbkwbvbAMcDEzI6VsA/0f9LQwfA+5qz7rN2z1JU459MD/+BnBt3v5ALmsPYCjphvZ3\n5XOeIo1q3Q2YCHTP5/wS+K8m3k/Pl/L+ye+7X+XtjxfK+jPge3n7E8ATeft7wLl5+1DgtkJeFwJf\nb8//9Wbq+MkS6vRvwGbARsCLwPaFujsqb48ELmzh+Zv6+/QHZue0TUk9FB/O5Xssn6tcjt758XZ1\nZe+onxbqb2PqP/t2BWbm7UNIn2Vb5/qcDwzL+84BrsjbN1H/f78jMCdvTwQ+mrc3If/vNVPG1cDg\nwnuu7nNoNnBQ3h5ReN77gQ/l7R8CZxfyuhfYu6nnKkcL692kuf+KgnQv1qGkb8+3sPaNwTsqtYCe\nBL4F7FnYNzEi3s7b44GjlbpZTieNSGzOQcBtAJFm7ZjSxHErgTuayecftN9MG+tSXwBI2gzYLiIm\nAkTE2xHxVt49IyJeifQumQXsnNM/qdSafZL04bdn/ob1MeC23Cr4FSmwtMZd+fkXkgLB/qT6vzmX\n7XWgFtgvIv4M7Jq/qX2O1B1SN6vJ67RdXTdWt++X9DjwKumDoq6r9SDgxlzW50gfonWtzPsiYkmu\n29vzsZ8E9gFm5jobCNS1blex9vtJlH4jfF19PURqJffKzzc2p08Btsx/+9+SvsRB+n8oXv9ry3ps\nTmN1XKe5Or0/Iv4VEctJI453yunLI+LuvP0Y9e/b5jT8+3w8P/eEiHgrIv5N+nt8PCL+DvxT0oeB\nw4DHI2Jxzud10pe8jtRc/W0IXJv/V28jzd9aZ2ZEvJ4/G/+PNK0dpIC9c97+FPCL/P6cCGwmaRPg\nYeDK3LLsXfjfa8oq6nt4bgQOkrQFqaExNaePIX0RhTSi+wu5JXUy8LtCXs1+lpZjhvP/kL7VrCUi\nVuam4TeAPUjzC9b5OfCTiPij0r1gwwr7/l3I4z+S7iPNUXgi6QOjLbyVP9ib0pP0utrDutRXUVMf\nhMsL26uADSRtRGoJ9I+IlyUNy8/djTQV1vpc8C/Wn0jfypor6w2kD9vBwGmF9Las68bq9m8R0T8H\ny4clHRMRf2ihrA1fW93j6yPiu409bwvvp+Y0PK/JeoyI+ZJek/QJ0gTSny8c057v2aJG379NKNbp\nO96feXtFE+nNaeq919T/xrXAF0i9AL8ppHdUnRU1V39fB16NiA/lL+nFshXrb3Xh8Wrq60ykCRuK\ndQowUtIfSNfJH5Z0WET8tRVlrqvvpur3dtJn+BTg0cIXAmihjju8hRXpPqruknoUkute2OWkWTIa\nfqPYAng5bw9t4SmuI3WRzIiIpQCS9pM0ppFjHwZOyP372wA1TeTZ0rffbUjfDtvcOtZX3bn/Al6S\ndCysWcZl42aerifpzbYwf0P/bM5nGemax2fXFKBwrbCQdrbSTeCNOTY//1akLouZpD7rk5WWrnkP\n6ZvvjHz8GNJghIi1B7/0o5UDcprSXN3mluD5pK4zcllPAVC6frcjqSsY4FBJ78p1exzpffUA8FnV\nX2/tLWnH4nMUvEF6j5OPHaOmry+dnI85CFia/zYPka+t5OtA/8h/e0j/DzcCtzYIkm1Wj81poo7r\nNFenTWn0f1HScZJ+1MQ5jf19ppLekz1zD8LxuTwAd5Im2d6X1EVVp0PqrKiF+utFmn0I0iWB1g48\nm0xahQOA3KpE0i4R8UxEXEr6P90tp89tIp/u5M8K0t9zakS8ASySdGBOPxV4ML+m5aR6Hc3arX5o\noY7LNehiMqlJXicg3XQcEWMbOX4EMF7STFKTsUkR8TjpA+D6QnIf0kCFhm4n9e8+Q/pG/xiwtFim\nRrbXeixpH2B6Cc3m9dHa+ioaApwjaTbpH7Wxrry6/JaSvl0+A9xDffCA9IF4Rr6A+jRpVv6GdiPd\n+N2YJ0ldfn8Bvh8Rr0bEhJw+m3SN7LzcNVjXRTiXd76hP0GaJaWtNFq3uQx3Ahvnf7qrSB8cT5K6\n5YYWvpnOIHUpzSJdJ3o8IuYCFwGTc91Ppr47qeH76dfAJNUPuvgQ9V/QigJ4K3dZXkXq5gMYDuyT\nn+dHrP2lbiLpGs31DfI6kHTtsyMU63gD6r/tN1enRc39L9Z5P/X/uw019vd5glQnM4FpwDURMRsg\nl2EK7wzybf3eK1Vz9Xda7tLrR6G3qYGm6uxcYN88EONp4Ms5/WtKg1FmAW8D99QNpGjCv0grcjxF\n+tJfd8vNUOAnOZ8PF9IhXT9bRX1XJZK2Bt6s+wxo/JV04AXEuh9gb2BMO+W9HfBsg7SR5IvnjRy/\naf69JWkplK1b+XyjgE9Ua321cTknAhu0UV6b5L/H5oW0HqSA1+xF4GquW2Bz4JY2zG9f4MEGaR/p\nyNdcrGNS1/W4dniOG4Ct2iivbqRBQu9vkF5LYQBYZ6q/EspwNPCVNszvm6SZi4ppXwO+0Ox5Hf3C\nC4U7jTzTRhvmeSpppNFnWnHOlPzmfBo4dR2e84xqra9K/SENWHgR+GqD9F2Bg123Jb+u75Du2fto\nI/Xbp4PLchrpG/YTwIfLXTfNlHN30iCFSxukv5s82rZM5aqK+ivxtdS1drdskD60pS+jnprJzMyq\nQrmuYZmZmbWKA5aZmVUFBywzM6sKDlhmZlYVHLDMzKwqOGCZmVlVcMAya4bSEg5zlBb0fFrSJKVl\nMb4oaUZehuE25QUYJf1WacmaaUpLOxwi6bqcx28K+R6qtDzGo5JuyZOONnzucyQ9k2cX+V1O2yTn\nV7fczqdz+tckXZe398ozFZQ6h59ZVfB9WGbNkLQTacaNfSLiKUm3kNYmuifypJ2SLiFNQvpLpRWR\nN4qIzyut6TWWdOPuHEmPkqZTWkC6efKISBM2fzufc0mD514A7BwRKyRtERFvSPoh8ExE/E5ppvYZ\npJkr3iLdBD8K+C7ppuvp7V0/Zh2pHLO1m1WbFyKiblnyuiUt9pL0A9I6S5uy9iSpv8+/nyIFsjn5\n8TP53B1JM+w/LEmkZSKmNfK8s4HfSbqTNCErpCUvPi3pvPy4B2nWiueUlr1/Erjawco6Iwcss5Y1\nXOpiY9LEqYMi4mlJQ0kz0Dc8fjXvXOZhg/x7ckSc0sLzHk1aQ2gQ8F2l1bNFWvxxXiPH9wOW0THr\nXJl1OF/DMmtZY0tabAa8KmlD8hIZrTh3OnCgpPfDmutSffP2j+qWgyG1nB4kLXOyBfUtuXPWZC59\nJP/uBfyUFOC2knRCK16fWVVwwDJrWWPLy3yPdP3oIdIyKM0du9Z2RPyTNJnpzXlJkL+QlogH2IsU\nCDcAbsz7HwN+GmmNoUuADSU9mZeEqFuy4Qrg5xHxN+CLwI8lvXsdX69ZRfKgC7MKIumeiDiy3OUw\nq0QOWGZmVhXcJWhmZlXBAcvMzKqCA5aZmVUFBywzM6sKDlhmZlYVHLDMzKwqOGCZmVlV+P+bxv4D\nCZ9CSAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"top_10 = merged_name_sex.sort_values()[-5:].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### only boys"
]
},
{
"cell_type": "code",
"execution_count": 287,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"mboys = pd.merge(boys, births, on=['year', 'sex'])\n",
"mboys['persons'] = np.floor(mboys.prop * mboys.births)\n",
"persons = mboys.set_index(['year', 'name']).persons\n",
"\n",
"mgirls = pd.merge(girls, births, on=['year', 'sex'])\n",
"mgirls['persons'] = np.floor(mgirls.prop * mgirls.births)\n",
"gpersons = mgirls.set_index(['year', 'name']).persons\n"
]
},
{
"cell_type": "code",
"execution_count": 288,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"year name \n",
"1880 John 9654.0\n",
" William 9532.0\n",
" James 5926.0\n",
" Charles 5347.0\n",
" George 5125.0\n",
" ... \n",
"2008 Kolten 195.0\n",
" Damari 193.0\n",
" Hugh 193.0\n",
" Jensen 193.0\n",
" Yurem 193.0\n",
"Name: persons, dtype: float64"
]
},
"execution_count": 288,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"persons"
]
},
{
"cell_type": "code",
"execution_count": 289,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 289,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEQCAYAAABRDdSSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VOXZ8PHfTJJJMkv2fYWEnZAAioCiVEGk4AIKteDS\nx6q0tbX1fX26uCC1SDdrn/qqfaxoK25tQSuK4AqKBlf2YQkQAllnsmcy+3reP0IGQvZkZjIz3N/P\nx48595w5c1854crJde5z3zJJkiQEQRCEsCYf6Q4IgiAI/ieSvSAIwgVAJHtBEIQLgEj2giAIFwCR\n7AVBEC4AItkLgiBcACL726GsrIwNGzYwefJkbr31VgBaWlp46qmn8Hg8FBYWcvvttwOg1WrZtGkT\nMpmM5cuXU1RU1Ge7IAiCEBj9Jnun08nSpUs5fvy4t+2ll15ixYoVjBs3ztsmSRIbN25k9erVAKxb\nt46ioqJe2wVBEITA6beMM2XKFNRqtXfb4/FQX1/fJdED6HQ6MjMzUSgUKBQK0tPT0ev1vbYLgiAI\ngdPvlf352tvbcTgcPP7441itVhYuXMgll1yCyWRCqVSyYcMGJElCqVRiNBq9X5/fnpGR4Y94BEEQ\nhB4MOtlrNBpUKhX3338/Ho+H1atXM3XqVNRqNRaLhbvuuguA9evXo9Fo8Hg8PbYLgiAIgTPgZN85\nhU5ERATJycm0tbWRlJREVFQUABkZGeh0Ou++er2ejIwMPB5Pj+192b59+5CCEQRBuNDNmzevx/Z+\nk/3mzZvZv38/BoMBq9XKqlWruOWWW/jb3/6GxWJh9uzZKBQKAJYvX87atWu9o24A5HJ5j+39mT59\n+kBjEwRBEIC9e/f2+posGGe93L59e0gn+9LSUubMmTPS3fApEVNoCMeYIDzj8kdMe/fu7fXKXjxU\nJQiCcAEQV/aCIAhhQlzZC4IgXOAGPfRypJlMJgwGAzKZbKS70iuDwUB8fPxId8MnIiIiSEtLY9eu\nXaJmGgLCMSYIz7gCHVNIJfvm5mYAsrKygjrZZ2VljXQXfMZisdDQ0DDS3RAEYZhCqmZfV1cXVok0\nVIjvuyCEBlGzFwRBuMCJZC8MSGlp6Uh3wedETKEjHOMKdEwi2fvY6dOnSU5O5o033vC2ffrppyxa\ntIhRo0Zx4MCBLvvv2rWLFStW+KUv7e3t/P3vf/fLsQVBCC0i2fvYm2++ydKlS9m8ebO37YorrmDb\ntm2UlJT0+B5/3Wxua2vjhRde8Mmxwm0kBIiYQkk4xhXomESy97F33nmHdevWUV5ejtFo7PJab/fC\nDQYD99xzD/Pnz+fGG2+ktbXV+9qBAwe44YYbuO6667j99ttpaWnxvlZdXc1ll13Gb3/7W+bPn8/S\npUu9r3399dd8//vfp7q6msWLF3Pbbbd1+cy//vWvzJ8/n2uuuYb7778fu93ui/AFQQhSItn7UHl5\nOXFxcaSnp7N48WLefffdAb2vtraWX//613z00UdMnTqVJ554AuhYJezee+/lb3/7G1u2bGHZsmWs\nWbOmy3srKiqYPHkyH330EW+++aa3/ZJLLuEf//gHeXl5bN26lZdfftn72ieffMLWrVt57733eP/9\n91EoFN7P7I2omYaGcIwJwjOuQMcUUuPsB2LB8/uGfYwP7po2pPdt3ryZ6upqrrnmGmw2G4cPH+Y7\n3/lOv++bNGkSaWlpACxbtoz7778fgBMnTlBTU8MPfvADJElCkiTvDKOdCgsLueGGGwbVz+3bt/Pd\n736XyMiO03/XXXexatUqHnzwwUEdRxCE0BF2yX6oidoX3n77bbZv3+59enbOnDm0t7cTFxc34GO4\n3W6io6OBjqdX8/Pzeeutt3ze13NLSpIk9XvfQNRMQ0M4xgThGZeo2YeosrIyNBpNl2kSrrzySrZs\n2dLve/fs2UNNTQ0Ar732GldccQUAY8eOxW63884773j3Pb/u39czcdHR0bS2tuLxeLrsO3/+fP75\nz3966/Tr16/n6quvHkiYgiCEKJHsfWTz5s0sWLCgS9uCBQu6XZX/7Gc/85ZpOk2YMIHf/e53zJ8/\nH51Ox49+9COgY+GXV199lZdeeomFCxeyaNEinn/++S7v7euKPC0tjUsvvZS5c+dy0003sW9fR4lr\n7ty53HDDDSxevJgFCxbgdDq57777+oxP1ExDQzjGBOEZV6BjEtMlCP2qq6ujoqIi7P6UFpNrhY5w\njEssXiIEpXD7hwYiplASjnGJmr0gCILgcyLZCwMiaqahIRxjgvCMK+jG2ZeVlbFhwwYmT57Mrbfe\n6m13uVz87Gc/4/rrr+eaa64BQKvVsmnTJmQyGcuXL6eoqKjPdkEQBCEw+k32TqeTpUuXcvz48S7t\nH3zwAaNHj/ZuS5LExo0bWb16NQDr1q2jqKio13YhtIiaaWgIx5gg8HGdarGSplagUkT47TOCrmY/\nZcoU1Gp1lzaHw8HBgweZMWOGt02n05GZmYlCoUChUJCeno5er++1XRAEIVg9vrOSbWVNI90NnxpS\nzX7btm0sXLiwywM9JpMJpVLJhg0bePHFF1EqlRiNxl7bhdAiaqahIRxjgsDG1WJxUt5s5Zuadr9+\nTtDPZ2+xWCgrK2Pq1Kld2tVqNRaLhRUrVrBy5UrMZjMajabX9nD0hz/8gWeeeWZI73322Wex2Wy9\nvv7HP/6R8vLyQR+3vLyc3//+90PqkyBciPbUtnNxjoZjjRYsDvdId8dnBjw3TudVfFlZGU6nkyef\nfJKGhgY8Hg+TJ08mKysLnU7n3Vev15ORkYHH4+mxvT/nPnDQ+RuwoKBgcNGFkGeffZabb76ZmJiY\nHl//xS9+MaTjjhkzhl/96lfD6RoGg6HLduf5OP/8iO2R354zZ05Q9ceX2538/Xnb9lYwWuXGlZrM\nAZ0Jd7U2KOIf6HZv+n2CdvPmzezfvx+DwcDEiRNZtWqV97WdO3dis9m8o3EOHjzoHXWzbNkyiouL\n+2zvTag+QfuHP/wBtVrNj3/84y7tHo+HRx99lN27d+Nyubjzzju9s2HabDZuvPFGDhw4QFFREZGR\nkTz33HNkZ2cD8MILL/DGG29w5MgR3nrrrS4LoFitVtauXcuePXuIjIxk4sSJ/OlPf+py3Pb2dvLy\n8njttde69On3v/8933zzDc3NzWRkZLBhwwbvBGznC/bvuyD4itsj8Z1XtTx74wQ+OdmKrt3BT+fk\njnS3BqyvJ2j7vbJfsmQJS5Ys6fG1uXPndtkuLi7uMZH31n6heOmll5DL5WzduhWHw8G1117LrFmz\nyMvLIyYmhm3btjFt2jT+/e9/k5CQ0OW9d955J3feeWeP0xivWbOG+Ph43n///W6vdR53165dPZaW\n7r77bu8V/6233so777zDTTfd1GsM4nH10BCOMUHg4jrWaCFFGUWqSsGM3DhWv1/RZVZYt0ciQu6b\nleUCfa7CborjPz343rCP8d+/XeiDnpy1Y8cOqqur2bNnD9Bx1X3s2DHy8vK8+3TOV9+bnl7bsmUL\n+/fvH1KfEhIS2LVrF+Xl5VgsFurr64d0HEEIJ7tr2pmR2zEleX5CDB5JorrNTm5CNE/uqsZod7N6\n3uh+jhKcwi7Z+zpR+0JkZCS//OUvWbjQt32TyWS4XK5eyy+9sVgsXHfddSxcuJCZM2dSUFDQ5y8a\nCM/x2yKm0BGouL6paefOGR0lS5lMxsU5cXxd087nVR6O1pupNzmwuzxERw5/8oGgG2cvDE5PSXPx\n4sU89dRTmEymXt8XExNDQ0NDr8foyeLFi/ntb3874P07lZeXExUVxc9//nNKSko4ePDgoI8hCOGm\nzeqkxmBncrrK2zYjN47/aBvYcqSJdQsLGZOsZF9daA4dF8nex5577jnmz5/PvHnzmD9/PgA33XQT\nixcv5vrrr2fRokUsXrwYs9nc5X133HEHt9xyC0uXLuWVV17pdtye5q1/9NFHcbvdXH311Vx77bXc\ne++9A+pjUVEROTk5XH755fzwhz9kzpw53l80vQnH8dsiptARiLi0ejNF6SqiIs6mxWlZGlTREaxd\nUEiKSsGsvDi+qDT0cZSBE/PZE7qjccKVmM8+dIRjTBCYuF7XNtBocvCj2Tm97lNrsHH/1hO8tqII\neT9LefZHzGcvBKVwTCAiptARiLiazA5SVFF97pMdH4MyKoLyJuuwP0/U7AVBEEZAs9lJikrR736z\n8uL5oso3pZxAEsleGJBwrAWLmEJHIOJqNDtJ7efKHmB2fjxf+iDZB/3cOIIgCOGoydJ/GQdgUpqK\nRpODeqMjAL3yHZHshQEJx1qwiCl0+Dsut0eixeIiWdl/so+Qy7h2YgqPflRBi8U55M8UNfs+REdH\n09zcLMaEB5DFYiEiwn8LOAhCMGizuVArIroMu+zL9y7K5NJRCdy35Tg1ht5nqw0mIfUEbXJyMiaT\nibq6uh7HnQcLg8FAfHz8SHfDJyIiIkhLSwvLIX0iptDh77gGMhLnXDKZjFunZZCsjOK/t57gH8sn\nERs1uIsiMTdOP9RqdbeVs4JNRUUFEydOHOluCIIwQB03Z/sfiXO+b49P5ovKNj4+2cqiCSl+6Jnv\nhFQZJ1SE45WViCk0hGNM4P+4mszOQV3Zn+uGSam8faSxS3l5IKVmUbMXBEEIsMGWcc41LVuDwy2h\n1XdMgWJ1urn3reN8eqrVl10cNpHs/SAcxzqLmEJDOMYE/o+raYhlHAC5TMb151zd/+nTKqIj5az/\nqg6Hy9Pr+8Q4e0EQhAAbThkH4OqxSeyrM/LsV7U0mBz8bmEhhcmxvHm40Ye9HB6R7P0gHOumIqbQ\nEI4xQQBq9hbHgJ6e7Y1KEcGVhYnsKG9l9bzRKCLl3H1JFpsO1tNq7XksvqjZC4IgBJAkSTSanSQP\nsYzT6b8uyuQv140jTd1xnOz4GOaNSeLlvfpe3+NweXjzUANmh3tYnz0QItn7QTjWTUVMoSEcYwL/\nxtVudxMTKSdmmKtPqaMjyY7vumrcLdMy2FnRit5o77Z/aWkpH5W38K8D9dz9xlF2nW4b1uf3p99x\n9mVlZWzYsIHJkydz6623Ah0LdOh0OiRJ4p577iEtLQ0ArVbLpk2bkMlkLF++nKKioj7bBUEQRlqT\n2UHKAKZJGIq4mEgWTUhh08EG7r0st8trktQxh/5DV41CkuAvpdXo2u0sK073S1/6/VXmdDpZunRp\nl7ZVq1axZs0ali1bxltvvXWm4xIbN27k4Ycf5qGHHmLTpk19toezcKybiphCQzjGBP6Nq3GAUxsP\n1Y2TU/mkorXbPDqReVNQRkUwJUNNSZaGH87KZk+t/5Y87DfZT5kypdcnVmNjY4mK6viNqNPpyMzM\nRKFQoFAoSE9PR6/X99ouCIIQDIY7Eqc/icooripM5M1DXZf+fF3bwLIpad6pXwqSY6loGf6iKL0Z\nVpFqx44dXH311QCYTCaUSiUbNmzgxRdfRKlUYjQae20PZ+FYNxUxhYZwjAn8G1ejeXgjcQZi2ZR0\nth1rxmh3AVDWYKaqqZ3LRyd490lRRuHySMOaSbMvQ54bZ8+ePWRlZZGdnQ10zFljsVi46667AFi/\nfj0ajQaPx9Nje3/OnSSo80SHyrZWqw2q/vhiW6vVBlV/fLHdKVj6I7ZH5ufvyKka8mI9MD3Tr/HM\nysvlwfdOIrO20+iQMyvJSYRc1mX/wuRY3v50N2PU7iF/Xm8GtOD4kSNH2LNnD7fddhvQMdFXaWkp\nt99+u3cfj8fDmjVrWL16NZIk8dhjj7F27dpe2/vS24LjgiAIvvbLbeUsL07j4pw4v36O2eFm35ma\nfIRcxozcOCLlXWfvffbLGhJjo7i5ZGg3aftacLzfK/vNmzezf/9+DAYDVquVVatW8ec//5nk5GQe\nffRR8vLyuOOOO5DL5Sxfvpy1a9d6R90AvbYLgiAEg+HMizMYKkUEc84p2/SkICnWbzdp+032S5Ys\nYcmSJV3ann766R73LS4upri4eMDt4Soc5xQXMYWGcIwJ/BdX5wNV/hp62ZeeYipMjmXTwYZe3jE8\n4qEqQRAuWDUGO5roCNTRwbG0R15CDDqjHXsfE6gNlUj2fhCOV1YiptAQjjGB/+I6VG+mKGNkFkPq\nKaaoCDk58dFUtvp+qUOR7AVBuGAd0puYMkLJvjcFyUpO+mG8vUj2fhCOY51FTKEhHGMC/8V1SG+i\nKEPll2P3p7eYCpJiqWi2+PzzRLIXBOGC1Gx2YnK4yUuIGemudFGYFCuu7ENFONZNRUyhIRxjAv/E\npdWbKEpXI5fJ+t/ZD3qLqSA5llMtti7r2B7Wm/jJ5mO8slc35M8LjlvQgiAIAXaofuRKOH2Jj4kk\nNlLO81/XERMl53SrjbIGMxfnxHG8aejlHXFl7wfhWDcVMYWGcIwJ/BNXR71+5G7O9hXTD2dlEx0p\nR5KgKF3F88smclNRGlVt3efFHyhxZS8IwgXHZHehMzoYm6Ic6a706IqCRK44ry0zTkaj2YHD7UER\nMfjrdHFl7wfhWDcVMYWGcIwJfB/X4Xoz41OV3eamCaTBxhQVISddraCufWhX9yLZC4JwwTl05uZs\nqMlNiKF6iKUckez9IBzrpiKm0BCOMYHv4zreZGVC2siWcIYSU158NFVtQ3u6ViR7QRAuOJVtVkYl\nxo50Nwat48peJPugEY51UxFTaAjHmMC3cbXbXNicHr+vTtWfocSUmxBDtUEke0EQwowkSWzdeID2\nNt89UVrZZiM/Mca79msoyY2PpsZgZwBrTnUjkr0fhGPdVMQUGsItprqqNo4e0PHGy7t8dszTLcFR\nwhnKuVJHdzxw1Wge/Dq1ItkLgjBsLpeHqpPNnDzq24U3juyrY+bcAoytbmpOt/rkmJ1X9qFqqHV7\nkez9IBzrpiKm0DASMW1/+wjPPLadT98/ztaNB3D5aOENt8vD8UN6imfkcPUNU/j4naNInsGXL853\nusXGqCBI9kM9Vx11+8EPvxTJXhCEIXPYXRzaW8vdP5/LrffMJjlNTe0ArsAb6tqprzX0uc+p440k\np6mJT1QyoTiTiEg5h/bWDqhfX1QaONpg7tYuSRKnW4OjjDNUufHR3iv7ZrOTNw8N7K8pkez9INzq\npiBiChWBjqm2spX0rDiUKgUAo8amcPpEU7/v++yD4/xr/dd9lmaO7K9j0rQsAHbt2sUV14zjm89O\nDahfr2sbePSjCtqsXWvbbVYXEpAYO/IzxQz1XOUmxFDVZsPlkVi34xTPfVWLxeHu9339JvuysjIe\neOABXnnlFW+bVqvlkUceYc2aNRw6dGjI7YIghLaqihZyC5K82wNJ9g67i5rTrXx72RTeenVfjwnf\nZnVy+kQz44oyvG1Z+YlYTA5M7X3Xqz2SxMlmCzNz4/nTp1VdRq6cbrUxKjE2JEfidMo7M/zyH990\nzIo5OV2NVm/q9339/npzOp0sXbqU48ePAx1/Bm3cuJHVq1cDsG7dOoqKigbdHs5ELTg0iJiGr7qi\nhbkLx3u3M3PiaW+zYmq3oY7rqItrd9cwriiD6JiOdHP6RBNZeQmMK8pAER3J5pf3EpcQgyI6kujY\nKNSaaOw2J/ljkomJjeoSV25BEpUnm5k8LbvXPuna7WiiI7n3slz+z5bj/OdQIzdNSev47FZr0Nyc\nHeq5SlFFYXF42HmqlWeWTGBbWRN764zMzIvv8339JvspU6Zw5MgR77ZOpyMzMxOFouPPtvT0dPR6\nPR6PZ1DtGRkZ3T9MEISQYbc5aW4wkZmX4G2TR8jJK0ymsryZydOzqT7Vwvv/OYTFZGfmtwoBKD/a\nwJiJHcl31NgU7rhvDqZ2G3a7C5vFiclox9xuZ1xRerfPzO88dh/J/niTlTHJsUTKZTx45Sh++vZx\npmdrGJ0Uy+lWG4XJoVuvB5DLZFw9Non5Y5OIj4lkapaG//msqv/3DfaDTCYTSqWSDRs28OKLL6JU\nKjEajYNuD2eiFhwaREzDU3O6lcyceCIju6aRzlKO5JH4ZFsZM+cWsPeLKlxONx63h1PHGik8k+wB\nVJpo0rPjyStIZlxRBtNn53P5NeNIzz57pdoZV/6YZKpONmO2u3C4ex71U95k8U5dnBkXze3TM3iy\ntBqPJFHZGhwjcWB45+rey3KZmNax8Mq4FCVNZictlr7H3g862avVaiwWCytWrGDlypWYzWY0Gs2g\n2/tz7jeitLQ0pLa1Wm1Q9ccX21qtNqj6I7ZHfrujXp/c7fUmwylOHNVzZH9dR21cWU9UjIvDe2up\nrWxDFunm4KE9g/q8zp+/hGQlDoeDR/+9m1+9W47N5em2/+6TOuz1Z2/kJjQfo93YzjtHm6hss6E/\ndiAovn++2v7i811kK+zsr+v7IlomDeC52yNHjrBnzx5uu+02PB4Pa9asYfXq1UiSxGOPPcbatWsH\n3d6X7du3M3369P66JQhCANmsTj7cfJirrpuISh3NS09/zrzrJpKdn9ht37//+TNMRhs3/dfFZOcn\nUnOqhff+c4iC8anExEZx6bwxQ+7Hu69reafWRMrEdBxuD48uKPAu5iFJEste0fL8TRNJVJ6d+6ay\n1cp9W04QHSHjX7dMGfJnB6u3DjdS3mzhSnUz8+bN63Gffmv2mzdvZv/+/RgMBqxWK6tWrWLZsmWs\nXbsWmUzG8uXLAZDL5SxfvnzA7YIghJYGXTsnyxpp1Bm5bsVU2prNZGT3fFNw9IRUjG1W7y+C7FGJ\nKFUK9n9VxS0/mj2sfkSlqUmtaGH1/NGs23Ga3+44zSPzRyOXydCbHCgi5F0SPUB+YixLJ6dyrHHo\na7gGs2nZGjYerOfK8b3v02+yX7JkCUuWLOnSVlJSQklJSbd9i4uLKS4uHnB7uCotLQ27kR4iptDg\nz5gMLVbGFaWTmqHh1We/JGdUAhGRPVeCL18wjnNHN8pkMmbOLeDjrWWkZfZfxj3fuXHVRkWiNtuR\nSRIPXJnPfVuO89mpNuYWJFLeZGVsSs83YG+bnoHNR0/3+oIvz1VufDT91WhG/skCQRBCQluzhYQk\nJTMuH41SpfAOi+zJ+TdtAQonppE3JnnYY9z3N1kZp4mhvq6dzNwEvndRJuu/quPy0QmUN1kYk9zz\noiQymYzYqIhhfXawkslkTMvWAM297iOeoPWDcLtaBBFTqPBnTG0tFhLOJNLJ07O7jKgZqKghJtvO\nuMwON6darBSOTaa2suNhrBk5ccRGyfnsVBsnmi1Bu4j4+Xx9rm6YlNrn6yLZC4IwIG0tHVf2I2lf\nrZFJ6SpS0zW0NHbMfSOTybhteiav7NVzosnKmF7KOOFuXGrf50Ykez84d1hUuBAxhQZ/xtRZxhkJ\nnXHtqW1nenYcyakqb7IHuDhHQ2yUHBmQohzZFagGKtA/fyLZC4LQL6vFgSRB7Agu5SdJErtrjFyc\noyExpWuyl8lk3HVJNleNSQzpeW/8Sdyg9QNRCw4NIqaBa2uxkpCsHLFEOmfOHKpabbg9EvkJHU/A\nOp1ubFan90Zxcaaa4kz1iPRvKAL98yeu7AVB6Jeh2UJC0sjVwiVJ4tmvarhuUgoymQyZTEZSiorW\npu5z1gs9E8neD0QtODSImAZupG/OPrP1K9qsLpYXn50cLSlVRXNj6CZ7UbMXBCHonDvsMtCazU4+\nalRw/xV5RMrPlpESU1S0hnCyDzSR7P1A1IJDg4hp4EZyJM7Tn1dzY3Emhef9sklKVdESwmUcUbMX\nBCHotLVYiB+BZG+0u9hXZ+S7Jd3ntk86b/il0DeR7P1A1IJDg4hpYJxON1aLE0184OeBP6gzMSld\nxddfft7ttcRkFYYWCx5PvxP3BiVRsxcEIagYWqzEJcQglwd+2OUBnYmpvUycFqWIIFatoL3VGuBe\nhSaR7P1A1IJDg4hpYAwjOBJnf52RqVmaXuNKSgndur2o2QuCMGwNde0cP6T3ybFGathlq8VJk9nZ\n55qxHXV7UwB7FbpEsvcDUQsODeEcU5lWx9efnupn74FpbR6ZYZcHdCamZKiJkMt6PVdJKaF7k1bU\n7AVBGLb62nbqaw3Yba5hH2ukruz364xMzep7+oNQH34ZSCLZ+4GoBYeGcI1JkiT0NQYSU1TeOd97\n0tPy03abs1tbk95Iclrg55zZX2dialbHzdlea/apalqb/LfUoMft4c2X9vT4vRouUbMXBGFYDC1W\nFNGRjJ+SQc2plh732V16mh3vHO3S1qg3sv7xT/G4zy7d195mxe2WiA/wvDgNJgdmh5v8xL6He6rj\nonHYXdis3X9J+YLZ5OBkWSNWs3+OH0gi2ftBONeCw0m4xqSvNZCeHUfu6CSqe0j2DoeLr3dWcHS/\nDtc5a7IeO6jDZnXSoDN62+qq2sjKSwj4bJf764xMzVQjP/O5vZ0rmUxGelYc+hqDX/phNtoBMLXb\nfH7sQP/8DWuK448//pgPP/yQiIgIbr75ZoqKijh48CCvv/46MpmM5cuXU1RUBIBWq2XTpk3d2gVB\n8C19rYGM7Hgy8xJoqjfhsLtQRJ/9p679pobsUYlYzQ4qTzRRODENSZI4ptWTkRNP9akWMnLiAdBV\ndyT7QPuyysCM3PgB7ZuRG4+u2sCosSk+70dnsje220jLivP58QNpWFf2W7du5bHHHuOBBx7gX//6\nF5IksWnTJh5++GEeeughNm3aBHTUBjdu3NitPVyFay043IRrTPU17aRnxxEVFUFaZhx1VW3e190u\nD7tLTzNzbgHjp2RQptUB0Kgz4vZIXDxnVJfST11VG5kDTLq+0mZ1sq/OxBWjz/6S6etcZeYkoKtp\n6/X14TB1XtkbfH9lH1I1+7y8PLRaLbt376akpASdTkdmZiYKhQKFQkF6ejp6vb7XdkEQfEvySNTX\ntZOe3ZGgcwu6lnKO7K8jOU1FRk4844oyqChrxOl0c+yQnvFTMsgdnUTN6VY8HgmXy0Oj3uS9yg+U\nHSdbmZUXh0oxsMXJM89c2fvjJqrZaEcul2Fst/v82IE2rGQ/ceJEdu7cyd69exk9ejQmkwmlUsmG\nDRt48cUXUSqVGI3GXtvDVbjWgsNNOMb00QefEaOMQqlSAJA7OpHqio5kb7M6+XpnBTPnFgKg0kST\nnhXHqWMOrPShAAAgAElEQVSNHNPqGV+UgUoTjUodTaPeSEOdgaRUFQpF4Ba0kySJD443s2Bccpf2\nvs6VJr5jKof2Nt9Pm2A22knJ0IRFzX7IyV6v13Po0CF++tOfct9997F161ZiYmKwWCysWLGClStX\nYjab0Wg0qNXqHtv7cu43orS0NKS2tVptUPXHF9tarTao+iO2e942G9xERju825l5Cehr29j0yg7+\n/ufPGD0+ldO1h72vjy/O5MO3D2K1WEnP7qhJR8ba+XT7buqqDGTmxge0/+XNVlqMFkwnD3R5va+f\nv127dqFQutBVG3zeH5PRDhEWqiv1PjleILZ7I5OG+LePTqfj73//Ow899BAul4sHH3yQxx57jLVr\n17J69WokSfJuezwe1qxZ0629N9u3b2f69OlD6ZYgXNA+3noUpTqamXMLvG3/Xv81EhJXXTuRtMyu\nNxktZgf/+7uPuXjOKOYuHA/A0QN1HDuoRx4hp3BiKpOnZQes/09/Xk18TCS3Tc8c1Pu++uQkFrOD\nKxdPBMBhdxEZKUceMbwBh6/89QumXJzD3s8rueO+4L/Hs3fvXubNm9fja0P++ywzM5OJEyfy0EMP\nAbBo0SIUCgXLli1j7dq13lE3AHK5nOXLl3drFwTBt+pr25l9VWGXtmXfvxi5XNbj8EmlSsHMuQVM\nmno2ueaOTmL720eJjJJz+TVj/d7nTg6Xh09OtvLMkgmDfm9mbgKlH54AOu5b/Hv910y5OIeps/IG\nfAxTu42WRjN5hWdLSGajnYyceL+UcQJtWMW4G2+8kRtvvLFLW0lJCSUlJd32LS4upri4eDgfFzJK\nS0vDbqSHiCn4eTwSddWt3puznSL6ubqdc3XXhK6OiyFGGYXd6gzoNAlavYmc+BjSNYpur/V3rtKz\n42nQGXG7PZQd0NGgN9KoH9x9weOH6zl+SO9N9pJHwmyyk5ymxu3ydBvCOlyB/vkTD1UJQpgwtduI\niJQRExs17GPljk4iM8APU5U3WxmfNrRfLtExkcQnxqKraqP0wxNcetUYmhsGNxtmS4O5y9QLVosT\nhSKSyEg56riYkL+6F8neD8LparGTiCn4mdptJKf65sGfqbPyuHjOKJ8ca6DKmy2M6WU644Gcq8zc\neD548zBZeQkUz8gZdLJvbjRhNtpx2DsmjzMb7ag00UDHtAwmHw+/DKlx9oIgBI/2NpvPlg5Mz4oj\nryC5/x19qLzJyphhTKWcmROPodXC5deMQ6lWIElgMTkG/P6WRjOxyihaz8yiaTLavMleEx+DUVzZ\nC+cbyDCoUCNiCn5Ggw2jueeJz0aSewBrxFocbposTvISev5lNZBzNW5KBtevnEZCkhKZTEZymmrA\nV/c2qxOH3UVuQZK3lGM22lF7r+xjfP4UbaB//kSyF4QwYTTYUMQEfp3Yvrg9Ene+fpSdFb1PtQxQ\n0WJlVGIMEcNY5zZWqaBwYpp3OzlNPeBk39JoIilV1WWZw3PLOJr46JB/ilYkez8It1owiJhCgdFg\no3jqxJHuRhdfVRuQAU9/XkN1W+9XxuXN1j6XHxzKuRpMsm9uMJOcpiYxRXVOGefcmr3vr+xFzV4Q\nhCExGnxXs/eVbWXNrJiazn9dnMna7aewnTOl8rlONluGVa/vyaCS/Zkr+8TzruzPLeOImr3QTbjV\ngkHEFAqMBhtlx7X97zhMHkmiotlKs6XvBT0aTA6ONpi5oiCRReOTKUyO5c+fVuJ0d0/4J5qsvY7E\ngaGdq+Q0Nc0DXJ+2pcFMcqqaxBQlrU0WJEk6r4wT4/PROKJmLwjCoLldHqwWB4po/9XsrU43f/jk\nNDe/eohfvVvOXz6r6nP/9483c2VhIjGRcmQyGT+9LBer08MvtpV3+UXhcHuoMdgY7ePVsNRx0Tgd\nLqyW/kfkdF7ZxyoVRETIsJgcHWWcuI5kr1IrsJoduHv4RRUqRLL3g3CrBYOIKdiZjDZU6mguv+Jy\nv33Gvjojde12nlkyng03T+JIgxm9seerXbdH4r1jzXx7/Nnhm7FRETy6oICLsjX8ZPMxjp256q5s\ntZEZF010ZO/paCjnqmNEjpqWfq7unU43pnY7CWfKSJ2lnHPLOPIIOUq1wruYiS+Imr0gCINm9OEY\n+97sqzVyaX4CaWoFsVERzB+TxLay5h73/aamnSRlFIXn1eHlMhm3Ts/kJ5fmsOaDCmoNdsqb+y7h\nDMe5dXu3y9PjNMitTWbiE2O900okpqiorzUgk8m6TI/Q8RRt6I7IEcneD8KtFgwipmDXeXPWnzHt\nrTUyLfvs1OTXTkzhvWPNOM4rbZxqsfKX0ipumZbR67EuG5XArdMzefj9k+yrbe/35uxQ4+pM9pIk\n8d4bWl544lN2vHO0ywLlLY0dI3E6JaUoqT7V6q3Xd1LHRWP04YgcUbMXBGHQ2v08EqfJ7KDN5qLw\nnLp6bkIMo5NiKD11dknAUy1WHni3nB/MzGFWXt8rXF07MYVL8+P5pKLNr1f2TfUmvt5ZQUuTmTvv\nvwKX083f//wZp443AtDcYCI5VeV9T2KKippTLd4STidNiM+PE7glaC4g4VQL7iRiCm5Gg43EZCUX\nXeafmPbVGZmapen20NN1E1N5XdtAQXIsu04b2HKkkR/MyuHKwsQBHffOS7JI1yiYkKbqc7+hnqvk\nNBW1la00N5i45Uez0cTHsGBpEZOmtvDWq/u4buVUWhrNXR7GSkxRYbe5ul/Z+3jKBFGzFwRh0Ex+\nvrLfV2tkWlb31eVm58fTaHbw8PsnMdhc/PrqggEneuio4V8/KbXPm7PDERcfS3Kqmhtumdbl+5Mz\nOonrVkxly2v7qT7V0uXKvvNG7fnJPilFRWV5M06n2y999TeR7P0gnGrBnURMwc2fNXtJkthXZ+ox\n2UfIZTy/bCIv3zyZe2bn9HuFPlRDjUsml3HbTy4lMzeh22t5hcl8e3kxHrdE4jnJPioqAk1CTLdk\nP2ZSGkkpKj5485BPFjcXNXtBEAbNnzX76jY7kXIZWXHdFxWBjiGVgZz33pcKxqdyz0NXdVtUPSlF\nhTqua7KXyWQsvGkKLY1mvv70VCC76RMi2ftBONWCO4mYgpfL6cZhc6JSR/slpr11HSWckUzo/jxX\n8h4mX5t//STGTkrv1h6liGDJrdPZ90UldVV9T+7WH1GzFwRhUIztNlRxMciGMWNkX/bVdR1yeSFI\nTFH1ugShJj6GabPyOLJfF+BeDY9I9n4QTrXgTiKm4GVssxF3poTj65g8ksQhvYniTHX/O/tRsJ2r\nMZPSKT9SP6zafaBjGtbQy5aWFp566ik8Hg+FhYXcfvvtHDx4kNdffx2ZTMby5cspKioCQKvVsmnT\npm7tgiAMjz9nu6xqs6GJjiBZOfx1bcNJUqqKKEUE9bXtZOT0/TxBsBhWsn/ppZdYsWIF48aNAzru\n2m/atInVq1cDsG7dOoqKipAkiY0bN3ZrD1fhUgs+l4gpeBnbzyZ7X8d0SG9mcvrIXtVD8J0rmUzW\ncXV/tGHIyT5kavYej4f6+npvogfQ6XRkZmaiUChQKBSkp6ej1+t7bRcEYfiMbTbUfrqyP1xvoihj\n5JN9MBo7KY3yI/Uj3Y0BG3Kyb29vx+Fw8Pjjj/Ob3/yGr7/+GpPJhFKpZMOGDbz44osolUqMRmOv\n7eEq2OqLviBiCl7NjSbiEzumG/B1TIf0ZorS/TN2fjCC8Vxl5iRgtThpbR7YnPnnC5lx9hqNBpVK\nxf3338+DDz7Im2++SUxMDBaLhRUrVrBy5UrMZjMajQa1Wt1je1/O/UaUlpaG1LZWqw2q/vhiW6vV\nDuv9Yts/24ZWC/qaVmrrj/n8+A0mBzaXh9Pa3SMebzD+/MnkMgonpPLh1q+Coj/9kUnDuJ385JNP\nctttt5GUlMQjjzzCww8/zNq1a1m9ejWSJPHYY4+xdu1aPB4Pa9as6dbem+3btzN9+vShdksQLhi7\nPjqBzeJk3vWTfH7sj0+2srOilV9fXeDzY4eLimONfPVJBSt+MHOkuwLA3r17mTdvXo+vDesG7S23\n3MLf/vY3LBYLs2fPRqFQsGzZMtauXesddQMgl8tZvnx5t3ZBEIbO45E4tKeWpbf758LocL0pKEo4\nwSyvMJn33tDSqDeSmhHczyIMK9mnpKTwwAMPdGkrKSmhpKSk277FxcUUFxcP5+NCRmlpadCNHhgu\nEVPwqSxvQqlWkJYZ523zZUyH9Cbmz8nzybGGK1jPVWSknBmXj+bz7eXccMu0Qb030DGJh6oEIURp\nd9cw5aIcvxzbZHehMzoYk9L3oiIClMzMpa6qjUZdcA86EcneD4LxCmS4REzBxWJyUFnezISSzC7t\nPruqrzczLkVJpJ+mYBisYD5XCkUkMy4fxec7ygf1vpAZZy8IwshwOFy8+/pBJhRnEhPr2ydb9UY7\nT+2q5vGdlVwzLrn/NwgAlFySF/RX9yLZ+8FAhkGFGhFTcDCb7Gx8/htUmmiuum5it9eHE9MXlQZ+\nvPkYSkUEz980kfljk4bTVZ8K9nMVpYhg1pWF/Gv9V2z6+zd89sFxyg7oaKhr73Wxk0DHJJYlFIQQ\n4XZ5+NdzXzF+SiaXzR/T55TDB+qMfFPTzvcuyiQqov9rusN6E3/+rIp11xT6bQGScDdtVh7jitLR\n1xjQ1xg4dkhPS6MZu83J3T+fS8QAzoM/DWucvb+IcfaC0F1leROlH57glh/N7nff/37nBAa7C1VU\nBA/PG0WKqueFR6BjkfBfbivnF9/K5+KcuF73E4bm5Wc+51vfnkBugf//UuprnL0o4whCiDh5tLHL\nwti9OdVipbbdzl+XjGdmXhw/eesYunZ7j/s63R5+89EpVs3MFoneT0aPS6XieONId0Mke38I9vri\nUIiYRpYkSZSXNVA4oe9kX1payltHGlk8IZmoCDkrpmZw+ahEdpzseVWld442kRUXHVT1+Z6E0rk6\nX8H4VE4d657sAx2TSPaCEAKa6k0ApPQz3bDVDZ9WtLFoQoq3bVZeHF9XG7rt225z8dr+eu6emeXb\nzgpdZOTEYzbaaW+zjmg/RLL3g2AeEzxUIqaRdbKsgcIJqf2uA9ueNI4ZuXEknbPYyJRMNZWtNtqs\nzi77vrZfz+WjEhh1ZsbMYBZK5+p8crmMUWNTOHW8qUu7GGcvCEI3J482MKafer1HkthytJEbJqV2\naVdEyJmapWF3zdkx4LUGOx+daOG2izL80l+hq9G9lHICSSR7Pwjl+mJvREwjx2y009JoJmdU33X1\nylYbVquNiWndpziYmRvHV+eUcl74ppabpqSR6OOHsvwlVM5Vb0aNTaGqogWXy+NtEzV7QRC6qDjW\nyKixKURE9v3P9XC9mbxYd4+lnkty49lba8TlkTioM3GiycpNRf2P7BF8Q6lSkJymovZ0y4j1QSR7\nPwjl+mJvREwjp+JYIwUTUvvd73C9iSuLe557PlkVRbpawWG9iee+quX7MzJR9PPLI5iEyrnqS+HE\nNHa+e4z9X1VharcFPCbxBK0gBDHJI1Fd0cK8HqZGON/hejMrSnqvwc/Mi+epz2uIjZLzrYJEX3ZT\nGIAZc0aTmKyi/Eg9n71/nKy8BKbOymP0uFTkAZhwLnR+tYeQUK8v9kTENDIa9UaUKgXquL4XFG82\nOzE73FQe2t3rPpfkxlHVZuOHM7P7HdUTbELhXPUnIlLO+CkZLL65hB8+cCWyGCOfby/ntWe/JBAT\nGYhkLwhBrKqiZUCP2R+uNzE5XUVfOXx8qpInrh3L5Iy+x+oL/hcVFUFaThS33jMbs9FOa9PQFi0f\nDJHs/SAc6ovnEzGNjOqK5gEmezOT09V9xiSXyZgSook+FM7VYM2ZMweZTEb+mGROn2j2++eJZC8I\nQcrjkag53TqgZH9IrBcbskaNTeF0eVP/Ow6TSPZ+EA71xfOJmAKvoa4ddVwMKnV0n/tZnW6q2+yM\nTVEGfUxDFY5xdcaUV5hMzalW3OeMwfeHYY/Gcblc/OxnP+P666/nmmuu4eDBg7z++uvIZDKWL19O\nUVERAFqtlk2bNnVrFwShZ1UVzeQN4Kq+rMFCYXJsSA2lFM5SqhQkpiipq24jd7T/JqQbdrL/4IMP\nGD16NNAxM9+mTZtYvXo1AOvWraOoqAhJkti4cWO39nAVrvXFcBPsMVVVtFB8cc8Lin9RaeDfB+qZ\nlR9HvdHB5DMlnGCPaajCMa5zYxo1JoXK8ma/JvthXQo4HA4OHjzIjBkzANDpdGRmZqJQKFAoFKSn\np6PX63ttFwShZ263h7rKVnJ6+cf/z/16Ls7R0GR2srvGyEViLvqQ1nGT1r91+2El+23btrFw4ULv\nGFGTyYRSqWTDhg28+OKLKJVKjEZjr+3hKpzri+EkmGOqrzUQn6hE2cMKU0cbzLTZXKyYmsFPLs3l\n5e9OZlqWBgjumIYjHOM6N6as/ERaGk1YLQ6/fd6Qk73FYqGsrIypU6cCHSUctVqNxWJhxYoVrFy5\nErPZjEaj6bW9L+d+I0pLS0NqW6vVBlV/fLGt1WqDqj/hvv3Zjn3eUTjnv77+kyNMiTUSceapy2Do\nr/j5G972l19+TvaoJKpOtgz7eL0Z8hq0e/fuZevWrcTFxdHQ0IDH4+GHP/whzz//PKtXr0aSJB57\n7DHWrl2Lx+NhzZo13dp7I9agFS50G1/4hosuze+2DGGT2cEP/lPGhu9MQh0tZjsJJ4f21PDlxxVc\nt6KE9Oz4IR2jrzVoh/zTMn36dG9C3rlzJzabjfz8fJYtW8batWu9o24A5HI5y5cv79YuCEJ3LpcH\nXXUbOaOndnvtnaNNXFmYKBJ9GCq6KIfIyAhef3EPs75VwPRL8306rYVPfmLmzp3r/bqkpISSkpJu\n+xQXF1NcXOyLjwt6paWlYTd6QMQUOLqqNpLT1ETHdMw17/JIHGsws7fOyJajTfzlunG9vjdYYxqu\ncIyrp5gmlGSSkRPPW6/uw+V0M/NbhT77PDEwVxCCTFVFM3mFHfV6t0fi51tP8NTn1VidHtbMLyA3\noe9J0YTQlpCs5MbvXcTeL6o4ddx3q1sNuWbvT6JmL1xIjHYXyqgI7w3Xf/7tK2ZfVciosSlsPtzI\np6da+dPischDbKZKYXiqT7Ww5bX9rPzRLBKSuq8+1pO+avbiyl4QRtja7af43y9rAHA4XDTo2snK\nT6DB5OCVvTrum5MnEv0FKHd0ErOuLOStV/fhdLqHfTyR7P1gIMOgQo2IyT9arU5ONFkpPdXG8UYL\ntadbSc+KIyoqgqc/r2bJ5FTyBlG2CYaY/CEc4xpITNNm55GSpmb720e6tLc2mwc9B75I9oIwgnad\nNjAjR8Odl2Tx5K4qKk82kzM6iZf36qlrd/CdkvSR7qIwgmQyGVcvmUxdVRuH9tTgdnv47IPjvPDn\nz6gsH9y0yKJmLwgj6Jfbyrl2YgpzRsXz863l5BytozEnEZsmll9dmU9qD0/QCheeRr2Rjc9/TXyS\nkhhlFAlJSqIUEcxdOL7Lfn4ZZy8IwvAYbC6ONZp5dEEBMpmMRUo5nxvtjB+TzC0XZXlv2ApCaoaG\nBTcW0d5qZfrsfGqr2vj4naODOoYo4/jBhVpfDDUjHdPnlQYuyokjJlLOVzsrOLmnhh/ceym3z8ge\ncqIf6Zj8JRzjGmxMYyelc9Flo5DJZWTmxtPabMFiHvhcOiLZC8II+exUK1eMTmB36WkO763lu6tm\nkpoamssGCoEVESEnZ1Qi1RUtA36PSPZ+EG5P+oGIydeMdhdH6s1ckhuHdncN3142BU388B+WCsfz\nBOEZ13BjyitMpurkwG/SimQvCCPgm+p2SjI1eOwuTO020rPEfPTC4OSPSR7UiByR7P1A1BdDw0jG\ndEBnYmqWmppTrWTnJyKP8M0/xXA8TxCecQ03ppR0NQ67C0OrZUD7i2QvCCPggM7I1CwN1adavPPW\nC8JgyGQy8sckU3VyYHV7kez9QNQXQ8NIxdRgcmB2eBiVGEN1RYtP1x0Nx/ME4RmXL2LKK0zm+CE9\ntZWt1Fa29rmvSPaCEGAHdEZKMtVYzA5M7TbSMvtetU0QelMwPhWnw83Od4+x891jfe4rkr0fiPpi\naBipmA7UmSjJ9H29HsLzPEF4xuWLmFSaaL67aiYrfziLlT+c1ee+ItkLQoAd0JkoydJ0lHBEvV4I\nEJHs/UDUF0PDSMSkM9pxuj3kxkf75eZsOJ4nCM+4Ah2TSPaC4EceSWJrWRNfVxuAMyWcLM059Xox\nvl4IjCFPhPbcc8+h0+mQJIl77rmHtLQ0tFotmzZt8i4qXlRUBNBre7i6UNbLDHX+jqnV4uSPOyux\nON00W5xcNspIi9nJtGzN2Xq9jyc7C8fzBOEZV6BjGnKyX7VqFQCHDh3i7bff5s4772Tjxo2sXr0a\ngHXr1lFUVIQkST22C0I4q2q18ct3y1kwLonbp2didrj582dVfF5p4L8uzuJ4aQXZoxJHupvCBWTY\nUxzHxsYSGRmJTqcjMzMThaJj/u309HT0ej0ej6fH9oyMjOF+dNAKtysQEDENhiRJPLmrmptL0lky\nORWAuJhI1swfzYkmK9nx0Xxc2ca3vj2+nyMNXjieJwjPuAId07CT/Y4dO1i0aBEmkwmlUsmGDRuQ\nJAmlUonRaPR+fX57OCd74cL28clWrE43101M6dIuk8kYl6rE6XDTVG8iPSd+hHooXIiGdYN2z549\nZGVlkZ2djVqtxmKxsGLFClauXInZbEaj0fTaHs7EmODQ4I+YLA4367+u48eX5vQ6J72upo3UDDVR\nURE+//xwPE8QnnEFOqYhX9lXVFRw+PBhbr/9dgAyMjLQ6XRAx5+xnaUaj8fTY3t/zr150flNCZVt\nrVYbVP3xxbZWqw2q/vhiu9Nwj/f7t76i3ibnskn5VLZayYm00HpiP6T3vP8Xnx6AyLOrgQbL9yOY\nt8XP38C3ezPkNWh/8pOfkJycjFwuJy8vjzvuuIMDBw7w+uuvI5PJWLZsGcXFxQAcPHjQOxrn3Pbe\niDVoQ5fbI11Qy+ltOljPB8dbWF6cxvEmC/VGB//38jwSlVG9vueNDXuYclE244pEKVPwLb+sQfv0\n0093ayspKaGkpKRbe3Fxcb8JXggPD753kkvz47nhzI3JcPbhiWbeOtLI/1w3jlSVggXjkvt9j+SR\n0FW1sfBGMSJNCCzxUJUfXKj1xUazg2ONZl7Zp6fV4gxAr4ZnqOfJ7ZF4/WA9z39dx2+vGUOqSjHg\n9zY3moiOjUSliR7SZ/cnHH/2IDzjCnRMItkLPvNpRRuXj05gwdgknv+mrs99jzWa+fnWE1S32QLU\nO9843mTh3reO8U1NO3++dhx5iYNbSrCuqo3sfDG+Xgg8kez94EIdE7yzopW5BYncMi2DfbVGDteb\ncLg8fFVlYNfpNtyejttDxxrNPPx+BaMSY/nvrSc42mAGwOn2oNWbsDjcfo2l02DPk85o58F3y7mx\nKI3ff3sM2fGDvzqvrWwlOy9h0O8bqHD82YPwjCvkxtkLFxaDzUVslBzFedPy6o12dEYHU7M0RMpl\n3D0zi998dAq7y0NhshKXx8PzX9exYFwSbx5q5P9ensfs/Hhm5Gp45IMKijPV7K8zkqSMwuJw8+NL\nc7g0339JsTcOlwe72wNAdOTZOCVJ4q+f13DTlDTmjx365GW1lW1cPGe0T/oqCIMhkr0fhOs8HpOn\nz+THm48RHxvJQ1eNIif+bAnj04o2LhsVT+SZkTjfKkhEGRXB+FQlCbFRSJKEVm9iy9Em7r8ij5l5\nHQ8UXZIbz++/XcixRgv3zMohWRXFgTojT+6q5oPjLdw5I4vchMGVSgYT07nn6USThQffO+n9C0QR\nIWP1vNFMzlCzq9KAzujgkflDT9S1la1IkkRKmnrYfe9NOP7sQXjGFTJz4wgXFrcEj+04zYJxSaSo\nFPyfLSe4c0YWV49NIkIu45OKVu6eme3dXyaTeRN653ZxpobiHlZlKkxWUpis9G6XZGl4dukE/nO4\ngf/7zglm58XzvYsySVb1PpxxsLaWNfFqRSyReQZm5cVzutXKw++f5GdzcpkzquMvim+q2/n1R6f4\n3kWZ/HO/nl9+K5+oYSw08s1np7j4slHILqChqULwGPI4e38S4+yDz1+/qKGu3c5vFhQgl8k41WLl\nydJq9EY7s/Pj+bzSwGsrinw+xt5od/HP/fV8UWng/90wDk10x/WJzeXhoxMtGO0uLA4341NVzBl9\ntuwjSRIWpweVoutTqpIk8dJePR+fbOHWaZm8sk9PQVIMZQ0Wvj8jq1uJ5nSrlUc+qKAoQ80v5uYP\nOY6WJjP/fPZL7v7FXBQKcY0l+Edf4+xFshf61GJx8so+PXtr23nqhvHeZNupus3GRydaSFUruPa8\nuWB86X+/rOF0i43fLizE7HDzyAcVKBVyxiQriY2S89GJFgqSY7n30lwq22z845s6TrZYeXzxWMal\ndPzV4PJIPFlaxakWG2uvKSAxNgq7y8O/D9SToel9nLzV6SZSLhvWVf2Hmw8Tq1Iw5+qxQz6GIPSn\nr2QvRuP4QTiMCfZIEhv26Lj7jaMoImSsSGvtlugBchNiuGNGll8TPcCqS7KJkMMTn1Vx35bjTMlU\ns+6aQr4/I4sVUzP469IJJCmjuP3fh/njJ5V8e0Iy/31FPo98cJJagx2r082vP6yg2eLk8cVjSIyN\norS0lOhIObdflNnnA1GxURHDSvQWk4Oygzqmzcob8jEGKhx+9noSjnGFzNw4Qnh7dZ+efbVG/nfp\nBNLUCkpLT49ofyLkMh68chQPvneS6yeleqcO7hQdKedHs3JYMimVFFWUNzm321088F458TGR5CfE\ncN/led6byIGy/6sqxk/J8NuDVIIwEKKMI3TzZZWB/1dazdNLxpPUxxwvoeJ1bQN2l4eVU9ORyQJ/\nc7S2shWVJpqEJGX/OwvCMPhlbhwhPNUabDzxaRWPXl0QFokeYNmUtBH9fPHErBAMRM3eD0Kxvthi\ncdNScegAAApsSURBVPLC17X89O3jfP/iTCalq7q8Hoox9UfEFDrCMS5Rsxf8qsZgIyZSTsqZybsc\nLg+v7dez5WgTVxYm8syS8WSI2rIghB1Rs79A1BrsvLRXx95aIx5JYmqWhhk5cfz7QD2jk2K5Z3a2\n9xeAIAihSdTsL3Clp9r4S2kVS4rS+NlluUjA9vIWdla0smpmNrPzxVqoghDuRM3eD4Kpvqg32nly\nVzXrFhZy67QMlIoIVIoIrp+Uyu++PWbAiT6YYvIVEVPoCMe4xHz2gs+4PBK//7iSm4vTGJ+q6v8N\ngiCELVGzDzOSJGG0u2m2ONlW1kxtu43HrilEPgLjywVBCCxRs79A7K1t59kva2kwOUhRKcjUKPj5\n3HyR6AVBCGwZR6vV8sgjj7BmzRoOHToUyI8OqEDW4iRJ4ki9mTUfVvBkaTXfuyiTN28v5vllE1l7\nTSGJsb55MErUTENDOMYE4RlX2I6zlySJjRs3snr1agDWrVtHUVFRoD4+JEiSxJdV7TSaHeQmxJCX\nEENyD0+xGu0ujjVaOFxv5uOTrchlsGh8Mg9dNarbClKCIAgQwGSv0+nIzMxEoegYy52eno5erycj\nIyNQXfByeyROtljR6kxkaBRclBNHTOTwk6QkSRxrtBBXWILbI3Wb293lkbA43BhsLposTlotTlSK\nCFJUUbRaXWzYo8Pp9jA+VcXOijZOt1rJiovm6rFJjElW8k1NO5+fbkNvcjA2Wcn4VCW/+lY+41OV\nfp/zJdxWCQIRUygJx7jCdg1ak8mEUqlkw4YNSJKEUqnEaDT2muzfO9ZMhBzkMhlymcz7dcQ5X8uA\nZouT6jYbeqMDuVxGdISc6EgZigh5xxqikR1tAHXtDqoNNk40WUiMjWJKhoovqww8vrOSSekqVFER\nyOUyIuUdnxMp7/isiC7bnf9BpOzstsHm4uOTrQDERMppMDm4OCcOh9tDdZsdvdGO0yOhUkSgiY4k\nRRlFYmwkZqebZrMTmUzGzSVpzC1I9NbY3R6JvbVGPipvYcvRJmbkxPHTy3KZkKby+SIhgiCEt4Al\ne7VajcVi4a677gJg/fr1aDTdl6jrdEhvwiNJuCXweM78X5JweyQ8nV9LEkmxUeQlxDA7Px6PBA63\nB7vLg8MtYXd5MNndNLtceCSJzLhoZuRqKExSdlnirt3m4lC9Cbur8/gSLk/H164zn+0+Z9vh9uB2\ndmy7pY4r9phIOT+fm8+EVCW7du1i3NWX8E1NO6qoCHITosmKiyYmUj6oK/AIuYwZuXHMyI0b+jfe\nR8QaoKEhHGOC8IwrbNegzcjIQKfTAR3ljv5KOFdpmgd+cAlo76FdRkeEnVE6gUaobITK83aNOfNf\nv2Rn/uuh6mOtqWdfDSiVSmqOHyLzTLvBAIaBHDuIKZVK9u7dO9Ld8CkRU+gIx7gCHVNAx9kfPHiQ\nTZs2IZPJWLZsGcXFxYH6aEEQhAtaUD5UJQiCIPiWGKcnCIJwARDJXhAE4QIgkr0gCMIFIOLXv/71\nr0e6E6GgrKyMJ554Ar1e772x/NFHH/HCCy/wxRdfMG7cONRqNdAxLcQzzzzDJ598QmpqKmlpaX22\nj5TBxPTcc8/xzjvv8MknnzBp0iRUqo5ZNIMtJhhcXAAul4t7772XyMhIxowZAwRfXIOJqaWlhT/+\n8Y98/PHHVFdXU1JSAoR2TB9//DHr16/nk08+IS0tLWj/TfX072Sw+cBvMUnCgBw8eFD66quvpJdf\nflmSJEmy2+3Sgw8+KEmSJLW3t0tPPPGEJEmS5PF4pIcffliy2+2S3W6XHnnkkT7bR9JAYzqXVquV\nnnvuOUmSgjMmSRp8XFu3bpUef/xx6b333pMkKTjjGkxM//M//yMdO3asy/tDPab7779fcrvdktls\n9u4TjDF10mq10vr16wedD/wZkyjjDNCUKVO6XA1KkoTb7cblcqFUKmlra8PtdneZFkKhUHinheit\nfSQNNKZzxcbGEhXV8UBaMMYEg4vL4XBw8OBBZsyY4d0/GOMaaEwej4f6+nrGjRvX5f2hHBNAXl4e\nWq2W3bt3M3XqVCA4Y+oUGxtLZGTkoPOBP2MSUxwPUXR0NEuXLmXdunXExsZiNpsxm829TgvR+fVA\np4sYCb3FFBd39gneHTt2sGjRImDwU2CMlL7i2rZtGwsXLqStrc27fyjE1VtMHo8Hh8PB448/jtVq\nZeHChVxyySUhHVNcXNz/b+9uQlJZ4CiAH0tiqAhqdgVJQaC4KUokjQjpaxlR7QratKpAJCIo0m0t\nIlq0iJYVRETQskW6TDCSSgylNjVEH2iRMn04vUU03N71UvLoam/ObznMDB5kDuOM8x+YTCb4fD4o\niqI+dZrLmd6Pk0z74Dt7gmX/H1itVlitVgDA+Pg4SkpK8PDwkHYshKIoGY2LyJZ0md4FAgGUl5ej\noqICQOYjMLIpXa5kMolwOIyuri54vV513Z+SK12mVCqFoqIiuFwuKIqCqakp1NbW/uhMl5eXODo6\ngtPpBAB4PB71V0EuZvr1OJEkKaM++M6eYNln6DXNM2j7+/swGAwA/jwWQlGUjMZF/E2fZQKA09NT\nHB8fY2BgQF2W6QiMv+2zXOFwGM/Pz5ifn8fV1RUURYHZbEZ5eXnO5vosU35+PkRRRDweR1lZmXrJ\nLZe/q88yvb6+IplMAni7mZ5IJKDT6XIy07+Pk0z74Dt7gk/QftHW1hYODg5wd3cHk8mEoaEhLC4u\nQpIkCIKAkZER9Sz4T2Mhcm1cRCaZhoeHIYoi8vLyUFlZicHBQQC5lwnILNc7n88HWZbR0dEBIPdy\nZZLp5uYGS0tLSCaTaGxsVC+7/eRMm5ubCAQCAIC2tja0tLQAyL1M6Y6TYDCIjY2NL/fBd2Vi2RMR\naQD/jUNEpAEseyIiDWDZExFpAMueiEgDWPZERBrAsici0gCWPRGRBrDsiYg0gOMSSLNkWYbT6cTC\nwgL0ej1SqRRGR0cxOzsLQRCwurqKSCSCVCqF9vZ2NDc3q9uur68jEong/v4epaWlcLlc6mgCr9eL\nUCgEWZZxe3sLo9GI/v7+bMUkAsCyJw0TBAF1dXXw+/2w2WwIBAIwm80oLCzEzs4OdDodPB4PXl5e\nMD09DaPRqL5IorOzE319fQCAmZkZ+P1+2O12dd+Hh4eYnJxUh8YRZRvLnjSttbUVa2trsNls2N3d\nRXd3NwAgGAzi+voa0WgUwNvc+4uLC7Xsi4uLEQqFIEkSnp6eEIvFPuzXYrGw6CmnsOxJ06qrq5FI\nJBCNRhGLxVBTUwPgbXpkb28vGhoaftvm8fERbrcb9fX1MBqNWZ+0SPQVvEFLmudwODA3NweHw6Eu\ns1gs2N7ehizLv60vSRL0ej16enpQVVWFs7OztGN6iXIJz+xJ8+x2O1ZWVj7cgG1qakI8Hofb7UZB\nQQF0Oh0mJiYgCAIMBgNEUcTY2BhEUYTZbP7wpiuiXMQRx6R5e3t7ODk5+fBiFqL/G57Zk2adn59j\neXkZer0eLpcr2x+H6FvxzJ6ISAN4g5aISANY9kREGsCyJyLSAJY9EZEGsOyJiDSAZU9EpAH/AFsk\nTiqE2zr1AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#persons.ix[:, 'Albert'].plot(label ='Albert')\n",
"persons.ix[:, 'Alberto'].plot(label ='Alberto')\n",
"gpersons.ix[:, 'Leticia'].plot(label ='Leticia')\n",
"plt.legend(loc= 'best')"
]
},
{
"cell_type": "code",
"execution_count": 290,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | name | \n",
" Aaden | \n",
" Aarav | \n",
" Aaron | \n",
" Ab | \n",
" Abb | \n",
" Abbie | \n",
" Abbott | \n",
" Abdiel | \n",
" Abdul | \n",
" Abdullah | \n",
" Abe | \n",
" Abel | \n",
" Abelardo | \n",
" Abie | \n",
" Abner | \n",
" Abraham | \n",
" Abram | \n",
" Ace | \n",
" Acey | \n",
" Acie | \n",
" Acy | \n",
" Ada | \n",
" Adalberto | \n",
" Adam | \n",
" Adams | \n",
" Adan | \n",
" Add | \n",
" Addie | \n",
" Addison | \n",
" Adelard | \n",
" ... | \n",
" Yoshio | \n",
" Young | \n",
" Yurem | \n",
" Yusuf | \n",
" Zachariah | \n",
" Zachary | \n",
" Zachery | \n",
" Zack | \n",
" Zackary | \n",
" Zackery | \n",
" Zaid | \n",
" Zaiden | \n",
" Zain | \n",
" Zaire | \n",
" Zakary | \n",
" Zander | \n",
" Zane | \n",
" Zavier | \n",
" Zayden | \n",
" Zayne | \n",
" Zeb | \n",
" Zebulon | \n",
" Zechariah | \n",
" Zed | \n",
" Zeke | \n",
" Zenas | \n",
" Zeno | \n",
" Zigmund | \n",
" Zion | \n",
" Zollie | \n",
"
\n",
" \n",
" | year | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | 1880 | \n",
" NaN | \n",
" NaN | \n",
" 101.0 | \n",
" 4.0 | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 49.0 | \n",
" 8.0 | \n",
" NaN | \n",
" NaN | \n",
" 26.0 | \n",
" 80.0 | \n",
" 20.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 103.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 8.0 | \n",
" 18.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" 13.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 18.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 9.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 6.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | 1881 | \n",
" NaN | \n",
" NaN | \n",
" 93.0 | \n",
" 4.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 35.0 | \n",
" 12.0 | \n",
" NaN | \n",
" NaN | \n",
" 29.0 | \n",
" 85.0 | \n",
" 29.0 | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 115.0 | \n",
" NaN | \n",
" NaN | \n",
" 4.0 | \n",
" 7.0 | \n",
" 17.0 | \n",
" 4.0 | \n",
" ... | \n",
" NaN | \n",
" 8.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 25.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 9.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | 1882 | \n",
" NaN | \n",
" NaN | \n",
" 85.0 | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 50.0 | \n",
" 10.0 | \n",
" NaN | \n",
" NaN | \n",
" 31.0 | \n",
" 91.0 | \n",
" 25.0 | \n",
" 8.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 113.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" 20.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" 9.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 29.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 10.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | 1883 | \n",
" NaN | \n",
" NaN | \n",
" 104.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 42.0 | \n",
" 12.0 | \n",
" NaN | \n",
" NaN | \n",
" 26.0 | \n",
" 51.0 | \n",
" 20.0 | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 106.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 6.0 | \n",
" 20.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" 12.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 28.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 13.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 5.0 | \n",
" NaN | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | 1884 | \n",
" NaN | \n",
" NaN | \n",
" 96.0 | \n",
" NaN | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 45.0 | \n",
" 13.0 | \n",
" NaN | \n",
" NaN | \n",
" 33.0 | \n",
" 67.0 | \n",
" 28.0 | \n",
" 5.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 82.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 7.0 | \n",
" 16.0 | \n",
" 6.0 | \n",
" ... | \n",
" NaN | \n",
" 11.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 28.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 11.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 6.0 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 2004 | \n",
" NaN | \n",
" NaN | \n",
" 8378.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 191.0 | \n",
" NaN | \n",
" 791.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1982.0 | \n",
" 375.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 7465.0 | \n",
" NaN | \n",
" 1113.0 | \n",
" NaN | \n",
" NaN | \n",
" 430.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 172.0 | \n",
" 615.0 | \n",
" 13703.0 | \n",
" 615.0 | \n",
" 183.0 | \n",
" 1105.0 | \n",
" 485.0 | \n",
" 172.0 | \n",
" NaN | \n",
" 215.0 | \n",
" 172.0 | \n",
" 210.0 | \n",
" 1141.0 | \n",
" 1455.0 | \n",
" 179.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 307.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1006.0 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2005 | \n",
" NaN | \n",
" NaN | \n",
" 7785.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 205.0 | \n",
" NaN | \n",
" 853.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2035.0 | \n",
" 430.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 6821.0 | \n",
" NaN | \n",
" 1154.0 | \n",
" NaN | \n",
" NaN | \n",
" 392.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 182.0 | \n",
" 664.0 | \n",
" 12265.0 | \n",
" 624.0 | \n",
" 184.0 | \n",
" 1065.0 | \n",
" 492.0 | \n",
" NaN | \n",
" NaN | \n",
" 214.0 | \n",
" 210.0 | \n",
" 201.0 | \n",
" 910.0 | \n",
" 1430.0 | \n",
" 197.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 337.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1114.0 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2006 | \n",
" NaN | \n",
" NaN | \n",
" 8272.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 218.0 | \n",
" NaN | \n",
" 922.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2201.0 | \n",
" 415.0 | \n",
" 240.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 6765.0 | \n",
" NaN | \n",
" 1097.0 | \n",
" NaN | \n",
" NaN | \n",
" 443.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 212.0 | \n",
" 686.0 | \n",
" 10978.0 | \n",
" 524.0 | \n",
" 198.0 | \n",
" 996.0 | \n",
" 419.0 | \n",
" NaN | \n",
" NaN | \n",
" 227.0 | \n",
" 247.0 | \n",
" 220.0 | \n",
" 1077.0 | \n",
" 1405.0 | \n",
" 249.0 | \n",
" 225.0 | \n",
" 194.0 | \n",
" NaN | \n",
" NaN | \n",
" 334.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1294.0 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2007 | \n",
" NaN | \n",
" NaN | \n",
" 8893.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 225.0 | \n",
" NaN | \n",
" 938.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2136.0 | \n",
" 459.0 | \n",
" 280.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 6760.0 | \n",
" NaN | \n",
" 1079.0 | \n",
" NaN | \n",
" NaN | \n",
" 339.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" 205.0 | \n",
" 275.0 | \n",
" 633.0 | \n",
" 10179.0 | \n",
" 461.0 | \n",
" 220.0 | \n",
" 946.0 | \n",
" 414.0 | \n",
" NaN | \n",
" NaN | \n",
" 238.0 | \n",
" 267.0 | \n",
" NaN | \n",
" 1050.0 | \n",
" 1593.0 | \n",
" 256.0 | \n",
" 428.0 | \n",
" 200.0 | \n",
" NaN | \n",
" NaN | \n",
" 357.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1545.0 | \n",
" NaN | \n",
"
\n",
" \n",
" | 2008 | \n",
" 959.0 | \n",
" 219.0 | \n",
" 8496.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 199.0 | \n",
" NaN | \n",
" 210.0 | \n",
" NaN | \n",
" 863.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2132.0 | \n",
" 475.0 | \n",
" 323.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 6075.0 | \n",
" NaN | \n",
" 1110.0 | \n",
" NaN | \n",
" NaN | \n",
" 264.0 | \n",
" NaN | \n",
" ... | \n",
" NaN | \n",
" NaN | \n",
" 193.0 | \n",
" 273.0 | \n",
" 642.0 | \n",
" 9160.0 | \n",
" 392.0 | \n",
" 236.0 | \n",
" 861.0 | \n",
" 379.0 | \n",
" 219.0 | \n",
" 229.0 | \n",
" 273.0 | \n",
" 253.0 | \n",
" NaN | \n",
" 1119.0 | \n",
" 1557.0 | \n",
" 303.0 | \n",
" 561.0 | \n",
" 264.0 | \n",
" NaN | \n",
" NaN | \n",
" 364.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 1586.0 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
129 rows × 3437 columns
\n",
"
"
],
"text/plain": [
"name Aaden Aarav Aaron Ab Abb Abbie Abbott Abdiel Abdul Abdullah Abe Abel Abelardo Abie Abner Abraham Abram Ace Acey Acie Acy Ada Adalberto Adam Adams Adan Add Addie Addison Adelard ... Yoshio Young Yurem Yusuf Zachariah Zachary Zachery Zack Zackary Zackery Zaid Zaiden Zain Zaire Zakary Zander Zane Zavier Zayden Zayne Zeb Zebulon Zechariah Zed Zeke Zenas Zeno Zigmund Zion Zollie\n",
"year ... \n",
"1880 NaN NaN 101.0 4.0 NaN NaN 4.0 NaN NaN NaN 49.0 8.0 NaN NaN 26.0 80.0 20.0 NaN NaN NaN NaN NaN NaN 103.0 NaN NaN NaN 8.0 18.0 NaN ... NaN 13.0 NaN NaN NaN NaN NaN 18.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 9.0 NaN NaN NaN 6.0 NaN NaN NaN NaN NaN\n",
"1881 NaN NaN 93.0 4.0 NaN NaN NaN NaN NaN NaN 35.0 12.0 NaN NaN 29.0 85.0 29.0 NaN NaN 5.0 NaN NaN NaN 115.0 NaN NaN 4.0 7.0 17.0 4.0 ... NaN 8.0 NaN NaN NaN NaN NaN 25.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 9.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN\n",
"1882 NaN NaN 85.0 5.0 NaN NaN NaN NaN NaN NaN 50.0 10.0 NaN NaN 31.0 91.0 25.0 8.0 NaN NaN NaN NaN NaN 113.0 NaN NaN NaN 5.0 20.0 NaN ... NaN 9.0 NaN NaN NaN NaN NaN 29.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN\n",
"1883 NaN NaN 104.0 NaN NaN NaN NaN NaN NaN NaN 42.0 12.0 NaN NaN 26.0 51.0 20.0 5.0 NaN NaN NaN NaN NaN 106.0 NaN NaN NaN 6.0 20.0 NaN ... NaN 12.0 NaN NaN NaN NaN NaN 28.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13.0 NaN NaN NaN 5.0 NaN 5.0 NaN NaN NaN\n",
"1884 NaN NaN 96.0 NaN 5.0 NaN NaN NaN NaN NaN 45.0 13.0 NaN NaN 33.0 67.0 28.0 5.0 NaN NaN NaN NaN NaN 82.0 NaN NaN NaN 7.0 16.0 6.0 ... NaN 11.0 NaN NaN NaN NaN NaN 28.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 11.0 NaN NaN NaN NaN NaN NaN NaN NaN 6.0\n",
"... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n",
"2004 NaN NaN 8378.0 NaN NaN NaN NaN NaN NaN 191.0 NaN 791.0 NaN NaN NaN 1982.0 375.0 NaN NaN NaN NaN NaN NaN 7465.0 NaN 1113.0 NaN NaN 430.0 NaN ... NaN NaN NaN 172.0 615.0 13703.0 615.0 183.0 1105.0 485.0 172.0 NaN 215.0 172.0 210.0 1141.0 1455.0 179.0 NaN NaN NaN NaN 307.0 NaN NaN NaN NaN NaN 1006.0 NaN\n",
"2005 NaN NaN 7785.0 NaN NaN NaN NaN NaN NaN 205.0 NaN 853.0 NaN NaN NaN 2035.0 430.0 NaN NaN NaN NaN NaN NaN 6821.0 NaN 1154.0 NaN NaN 392.0 NaN ... NaN NaN NaN 182.0 664.0 12265.0 624.0 184.0 1065.0 492.0 NaN NaN 214.0 210.0 201.0 910.0 1430.0 197.0 NaN NaN NaN NaN 337.0 NaN NaN NaN NaN NaN 1114.0 NaN\n",
"2006 NaN NaN 8272.0 NaN NaN NaN NaN NaN NaN 218.0 NaN 922.0 NaN NaN NaN 2201.0 415.0 240.0 NaN NaN NaN NaN NaN 6765.0 NaN 1097.0 NaN NaN 443.0 NaN ... NaN NaN NaN 212.0 686.0 10978.0 524.0 198.0 996.0 419.0 NaN NaN 227.0 247.0 220.0 1077.0 1405.0 249.0 225.0 194.0 NaN NaN 334.0 NaN NaN NaN NaN NaN 1294.0 NaN\n",
"2007 NaN NaN 8893.0 NaN NaN NaN NaN NaN NaN 225.0 NaN 938.0 NaN NaN NaN 2136.0 459.0 280.0 NaN NaN NaN NaN NaN 6760.0 NaN 1079.0 NaN NaN 339.0 NaN ... NaN NaN 205.0 275.0 633.0 10179.0 461.0 220.0 946.0 414.0 NaN NaN 238.0 267.0 NaN 1050.0 1593.0 256.0 428.0 200.0 NaN NaN 357.0 NaN NaN NaN NaN NaN 1545.0 NaN\n",
"2008 959.0 219.0 8496.0 NaN NaN NaN NaN 199.0 NaN 210.0 NaN 863.0 NaN NaN NaN 2132.0 475.0 323.0 NaN NaN NaN NaN NaN 6075.0 NaN 1110.0 NaN NaN 264.0 NaN ... NaN NaN 193.0 273.0 642.0 9160.0 392.0 236.0 861.0 379.0 219.0 229.0 273.0 253.0 NaN 1119.0 1557.0 303.0 561.0 264.0 NaN NaN 364.0 NaN NaN NaN NaN NaN 1586.0 NaN\n",
"\n",
"[129 rows x 3437 columns]"
]
},
"execution_count": 290,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# unstack the column names\n",
"persons.unstack('name')"
]
},
{
"cell_type": "code",
"execution_count": 291,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"result = _"
]
},
{
"cell_type": "code",
"execution_count": 292,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 292,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEQCAYAAABWY8jCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XOWV+PHvjDRVM+pdtuSOi1wpxmAIvQUIEDvBTkIC\nIWQ3m5DwIxUwhhXO7kIIIWV5Fm+Kl1SbACF0MDYgmrEFttyLXNVl1enl3t8fsoVsS1aZcu/MnM/z\nGDSvxjPv8Z2ZM/e85RpUVVURQgiRkoxad0AIIYR2JAkIIUQKkyQghBApTJKAEEKkMEkCQgiRwiQJ\nCCFECksfzp3eeOMN1q1bh81m4/bbb6e4uJja2lrWrFmDwWBg8eLFVFZWAkStXQghRByoQ/D7/eo9\n99yjqqqqdnd3q48++qiqKIp63333qX6/X/X7/er999+vqqoatXYhhBDxMeSZgKqqhMNhQqEQdrud\nrq4uGhsbKSkpwWw2A1BUVERTUxOKokSlvbi4OFY5TwghRD8GVR16xfCHH37IK6+8gs1mo7m5mdtv\nv50PP/wQg8HA8b9+/vnno6oq7733XsTtkydPjlW8Qggh+hnWmMD8+fOZP38+AD/60Y/Izs7G4/Fw\n++23A7By5UqcTieKokSlXQghRHwMKwkcV1NTQ0VFBUVFRTQ2NgK95aLjJRxFUaLSPpi1a9eOKkgh\nhEh1l1566YDtw0oCTzzxBA0NDVitVr7zne9gNBpZvHgxVVVVfbN6gKi1n868efOGFbAQQoheNTU1\ng/5uWGMCerF27dqkSwLV1dUsXLhQ625EjcSjb8kWDyRfTLGIp6amZtAzAVksJkSMBcMKT35Yr3U3\nhBiQnAkIEWP1XX5uXbOdv32pkhybSevuiBQkZwJCaKjFHQCg7qhX454IcSpJAhqrrq7WugtRJfGc\nqtXVmwT2tWufBJLt+EDyxRTveCQJCBFjLe4g+XYT++RMQOiQjAkIEWOPvXMIowG2NrtZ+flpWndH\npCAZExBCQ63uAGeOyaSx248/pGjdHSFOIElAY1LP1LfojAkEKcu0MCbLwsEOXxR6NXrJdnwg+WKS\nMQEhkoiqqrS4AxRkmJiQZ9fF4LAQ/UkS0FgyrXQEiedk7kAYA5BhTmNCro26o57odGyUku34QPLF\nFO94JAkIEUMtriAFGWYMBgMT82wyQ0jojiQBjUk9U98ijafVHaDA0btKeGKujbp2L4qGE/KS7fhA\n8sUkYwJCJJEWV4CCjN4r52Va08kwp9HcE9C4V0J8SpKAxqSeqW+RxtPqDlLoMPfdnpA7vJKQP6Tw\nxPtHCISjO6U02Y4PJF9MMiYgRBLpPRP4dNO4iXk2dra6h/x7f/mkiWe3tbLpSE8suzeoFlcAlz+k\nyXOL+JIkoDGpZ+pb5GMCJ54JXD45l1d3t9PiGrwkdKjTxws72lgyp4j1dR0RPf/JhhvPr987zKu7\n26P63LEir7nISBIQIob6jwkAlGVZ+dyMAn7z3hEG2rFFVVV+9e5hvjS3mBtnFLDhcDfeYDieXSYY\nVtjc6OKoJxjX5xXaGNblJdetW8frr79OWloaX/ziF6msrGTLli08/fTTfZeFrKysBKC2tpY1a9ZE\n3J4qpJ6pb5HEE1ZU2j3BE8pBAF+YVci/PrOTdw92sXBc9gm/e3NfB65AmOunF5BmNDCt0M4Hh7q5\neGLOqPvR33Di2dHiwRtU6PAmRhKQ11xkhpUEXnzxRR5++GF8Ph8//elPqaqqYs2aNSxbtgyAFStW\nUFlZiaqqrF69OuJ2IZJBpzdEhjkNc/qJJ9zmNCPfXVjOf64/wNxSJxnmNAACIYXffdTAPZeMI81o\nAOCiCTmsr+vg4ok5BEIKv37vCBdOyOasMZkx6/em+m6m5NtplzOBlDCsclB5eTm1tbVs3LiR2bNn\n09jYSElJCWazGbPZTFFREU1NTVFrTyVSz9S3SOJpcQdOGA/ob1aJg7PHZJ5w2cnnd7QxKd/OjCJH\nX9v547LZ3NBDuyfIg2/sp8Ud4L/WH2TjkW4AjnqCPPh6HX/+eHjvm+HEU1Pfw2WTc2n3JMbAsLzm\nIjOsM4Fp06bx1ltvoSgKCxcuxOVyYbfbWbVqFaqqYrfb6enp6fs50vbi4uJYxy1EzLW6A6eUgvq7\nY34Z33xmBxuPdDOtMIPVm5t5+LOTTrhPhjmNeWVOvv2PXcwozODHF49jR4ubB9/Yz3XT8nlhRxuX\nTc7lma0tXDghmzFZ1oj63O0LcbjTx8JxWTxV0xjRY4nEMOSZQFNTE1u3buXOO+/ke9/7Hi+++CJW\nqxWPx8OSJUtYunQpbrcbp9OJw+GISvvp9M+S1dXVCX/75Ni07o/EE714PqzdRai7bdDff7zhfS7P\n6eaxdw7xh42NVFi8HNm26ZT7Xz+9gHPLs7jAXM/7771LZbGD+y8bzzu76vl8UQ93zC/ji7OL+OlL\ntbzzzvDi+ehwNz97/oNTfv/XNz9iZrGDXLsJtz/E+rf1dTwGun28hq6X/ug1nsEMeVGZxsZGfve7\n33HvvfcSCoW45557eOihh6iqqmLZsmWoqtp3W1EUli9fHnH7YOSiMiKRPPHBEQrsJhbNKjrt/X5R\nfYjXd7fz+y9MH7R8NJRgWOFfntnJ7eeUsaAia8j7//sbdbx/sIufXj2JuaWffvF67J1DjMuxcmNl\nIUv/spXHrp1CkXN0fRL6cbqLygxZDiopKWHatGnce++9AFxzzTWYzWYWLVpEVVVV36weAKPRyOLF\niyNuTyX9M38ykHg+1eoKMq0gY8j7fXN+GZdMzB11AgAwpRn51oIxPP7uYc4c48ScNvBJfnV1Neee\ndz4fN7i4+8IKHll/kCdumkqWNR1VVdlU383nZxYCkGsz0e4N6j4JyGsuMsMaE7jpppu46aabTmib\nPXs2s2fPPuW+s2bNYtasWRG3C5HounwhcmxDv8VspjRmlTiGvN9QzhyTSUGGmY8Od3P+SVNP+9vR\n4qbEaeayybnUtXv52VsHuWhiDlubXACMzbIAkGtPlxlCKUAWi2ksmb7BgMTTX5cvRKZ1WN+zouaS\nSTms3zf4KuOFCxey8XA3Zx+bYnrrWSWY0428e6CLskwL/3HVJAyG3umpuXZTQiQBec1FJr6vUCFS\nSJcvRHack8AF47L53w0NeAJh7MfWH5xsY303/3LuGKC3jLTs0vED3i/XZqLDmxjTRMXoyZmAxoYz\nep9IJJ5eYUWlxx//M4FMazqVRRm8d7BrwN+/ur6axu4A0wqHHqvItZsSYusIec1FRpKAEDHgCoTJ\nMKf1rfyNp4sm5gy68dw+dxpzSh2kD6NfMiaQGiQJaEzqmfo22ni6vCGy4nwWcNx5FVlsbXLR7est\n5bS4An0/d9tLhr3lRE6ClIPkNRcZGRMQIga6/NolAZspjbPHZvLnT5podQf5pKGHsKIyLsfGwU4f\nt51dOqzHyUuQgWERGTkT0JjUM/VttPF0eeM/HtDflVPyeP9gF9MLM/jjzTNY/aWZfHleMRfmeIa9\nHiHHlk6nL6TpNZGHQ15zkZEzASFioFODmUH9nTUmk1VfnHFKm+/A8Ms7pjQjdpORbl+IbNvgeyCJ\nxCZnAhqTeqa+jTaebp925aDTGWk8OXaT7ncTlddcZCQJCBEDWiwUi4XjW0eI5CVJQGNSz9S30caj\ndTloMCONJy8BponKay4ykgSEiAG9loNGKkfOBJKeJAGNST1T30a9TkCnSWCk8eTKmEDcyZiAEEmg\nU6dJYKRy7SY6dF4OEpGRJKAxqWfq22jiUVW1txw0jG2k422k8eTa0jmq83KQvOYiI0lAiCjzhRQM\ngDU98d9eiVAOEpFJ/FdpgpN6pr6NJp5OnZ4FwGjHBPR9JiCvucgM+Ur1eDw88sgjfbf379/PH/7w\nB7Zs2cLTTz/dd1nIyspKAGpra1mzZk3E7UIkqmSZGQRgNxkxGnpjSoZ1D+JUQ54J2O12li9fzvLl\ny/na177Gueeei6qqrFmzhvvuu497772XNWvWAL210NWrV0fcnkqknqlvo4lHrzODYOTxGAwGxmZb\nOdzli1GPIievuciM6JX68ssvc/XVV9PY2EhJSQlmc+9GVEVFRTQ1NaEoSlTai4uLoxmjEHHVqeE2\n0rEwNtvKoU4/M4oivw6y0J9hv1JdLhdHjx6loqKC3bt3Y7fbWbVqFaqqYrfb6enp6fs50vZUSgJS\nz9S30cSj53LQaOIpz7ZwqMMbg95Eh7zmIjPsgeE33niDSy+9FACHw4HH42HJkiUsXboUt9uN0+mM\nWvvp9D9Vqq6ulttyW3e3j5eD9NKfSG9XZNs41OnXTX/k9uhuD8agqkNvFq4oCsuXL+fBBx/EaDT2\n3V62bBmqqvLQQw9RVVUVtfbBrF27lnnz5g0ZVCKprq5Oqm8yEg88+vZBphVmcM3U/Bj1avRGE099\nl48fv7yPp26eMfSdNSCvuaHV1NT0fYk/2bDOWTds2MCZZ56J0dh74mA0Glm8eDFVVVV9s3qi2S5E\nItjR4sZogDMKTrxoe7cvrNty0GgUOy10eIN4g2FspjStuyOibFhnAnqRjGcCInH9v3/uxhdS+M0N\nZ2AwfHrh9u89v5tvnFPKjOLkGUj95t938P3PVDA53651V8QonO5MQBaLCTEKjd1+Dnf58YcUPml0\nnfC7ziScU1+ebeVQp36niYrRkySgseEM3CSSVIln7d52PjMhm8WzilizpfmE3+l5dtBoj8/YbCuH\nOvSZBFLlNRcrkgSEGCFVVXljbweXTcrlkkk51LV72XfUA0BIUfEGwzgsyVU7r8iRM4FkJUlAY8k0\nqwFSI54dLZ5jA8J2zGlGbpxRyNO1LUDvamGnJR1jvzECPRnt8SnPtnJQp0kgFV5zsSRJQIgRemNv\nO5dNyu0bDP7s1Dw+OtzNHzY2cLjTp9vN4yJRlmWh2RUgGFa07oqIMkkCGpN6pr6dHE8grPB2XQeX\nTMrpa3NY0vnl586gwxvivlf36fLawseN9viY04wUZphp6PZHuUeRS/bXXKzp99UqhA4d6vCRYzdR\n7LSc0F6aaeGuC8r58rxiXP6wRr2LreMloYocm9ZdEVEkSUBjUs/Ut5PjaXYFKHaYB71/QYaZk9aO\n6Uokx6c828KhTv2dCST7ay7WpBwkxAg0uwIUOwdPAsmsIsdG3bFZUCJ5SBLQmNQz9e3keJp7AhSd\n5kxA7yI5PmeWOfm4wUVAZ4PDyf6aizVJAkKMQLMrQNFJ4wGpIsduoiLbyuYG19B3FglDkoDGpJ6p\nbwONCSTymUCkx+e8iizeP9gVpd5ER7K/5mJNkoAQI9DcE6AoRccEAM6tyOL9Q10k0L6TYgiSBDQm\n9Ux96x+POxAmpKhkJvCWEJEen/JsKzaTkT1t+rnSWDK/5uJBkoAQw3T8LMCg0y0h4mVBeRbvHezU\nuhsiSiQJaEzqmfrWP55EHw+A6BwfvY0LJPNrLh4kCQgxTE09/oRPAtEwtTCDDm+IvW2yZiAZDGvF\ncHt7O7/61a9QFIWJEydyyy23sGXLFp5++um+y0JWVlYCUFtby5o1ayJuTxVyfVR96x9PiyvxB4Wj\ncXzSjAa+Mb+UH7+8l6Vzi7lhRoGmu6Ym82suHoaVBP7v//6PJUuWMGXKFKB3P/U1a9awbNkyAFas\nWEFlZSWqqrJ69eqI24XQo2ZXgGmFOt4TIo4un5zH9EIHj759kI1Hullx5cSUHytJVEOWgxRFobm5\nuS8BADQ2NlJSUoLZbMZsNlNUVERTU1PU2lNJMn2DgeSOp6knQGGCl4OieXzKsiw88tnJtHtCfHCo\nO2qPO1LJ/JqLhyHPBLq7uwkEAjzyyCN4vV6uuuoqsrOzsdvtrFq1ClVVsdvt9PT09P0caXtxcXE8\nYhdiRJKhHBRtaUYDX5pbzB8/buTc8kw5G0hAQ54JOJ1OMjIyuPvuu7nnnnt49tlnsVqteDwelixZ\nwtKlS3G73TidThwOR1TaT6f/HNrq6uqEv/3EE0/oqj8Sz8DxeAJhPIEQWzd+qKv+6eH4nD8ui2BY\n5fevfqBJfMfb9PDvq+d4BmNQh7H07/HHH+crX/kKubm53H///dx3331UVVWxbNkyVFXloYceoqqq\nCkVRWL58ecTtg1m7di3z5s0bMqhEUl2deoNaqqriCoRxWvS/k/nxePa3e1nx5gH+d9E0rbsUkVi9\n3t6u62BNbQu/vH5K3M8GUvE9NFI1NTVceumlA/5uWEmgra2NlStX4vF4WLBgAddccw2bN2/umx20\naNEiZs2aBcCWLVv6ZvtE0j6QZEwCqeiZrS385ZNm/vCF6WSYE2P17QeHunh+eys/vWqS1l3RJUVV\n+ebfd3LlGXlcPDGHPLtJ6y6JfiJOAnohSSBxhBWVNOOp3wgbuv3c+Y9dTM63MyXfzq1nl2rQu5F7\nfnsrB9p93LlwrNZd0a0dLW7+trmZ2iYXBRlmHr12csIk+WR3uiQgi8U0NpyaXSKprq5m45FuFv+x\n9pRVpYqq8tg7h7h5TjF3XVDOCzvbaHEFNOrp8Bw/Pk1JsnFcLF9v0wozeODyCaz+0kzSjHCgPT77\nCyXjeyieJAmIqDoaMPDw+oPccmYJj1cf4sWdbQAEwwrPbm3FH1K4cUYBhQ4z107NZ9WmRo17PDzJ\nsGVEvKQZDVRkWzncpb9LUYpT6X9kLskl04CWyx/iH0dz+NpZhVwzNZ+zx2Ry76t7+XttCy2uAKWZ\nFu69ZFxfmegLs4u4bc12drW6OUOnF+ZduHAhYUVlR7Obr55ZonV3Ihav19uYLCtHunxxea5keg+B\nDtcJCDFcT3xQz7wyJ9dMzQd6FxP9+nNn0NgToDzbiiX9xBPPDHMa/3beGJa/Vsd/XD2J8bk2Lbo9\npE313eRlmCjPtmrdlYQxJsvCm/s6tO6GGAYpB2ksEeuZqqryL8/spLnn03p+IKzw3sEuJgcOnnBf\nhyWdyfn2UxLAcReOz+Gb55bxk5f3sk+HFzGvrq7m1d3tXDklT+uuREW8Xm+9ZwLxKQcl4nvodOId\nj5wJiBFr6PZT1+5lXV07N8/uXd39SUMP43OsZKSPfPuAiyfmYjQY+OFLe5mSb6cix8pFE3KYqoN9\nejwhqKnv4f9dUK51VxJKaZaFxh7/oLPEhH7ImYDGErGeub3FTZHDzPp+p/vvHexiQUXWqOP5zIQc\n/uemqdwwowC7KY2H3txPSNF+9rI7fwrzx2YmzVTHeL3erOlGcmzpNMdh9lcivodOR64nIHRvR7OH\nz80ooNsX5mCHF0VV+eBgF+dVZEX0uPkZZuaXZ3HLmSWUZlp4c297lHo8eq/ubufKM5KjFBRvZZnx\nGxwWoydJQGOJWM/c3uKisiiDz0zIZt2+Dna1enBa0ynLskYtniWzi/nb5mYUDdcy7m3z0N7jZnaJ\nQ7M+RFs8X29jsy1xGRdIxPfQ6cg6AaFrnkCYhu4AE/NsXDwxl/V1Hbx7oJPzyiM7CzjZnFIHdnMa\n7x3Q7jKG7xzoZLozpOkFUxJZWWZ8koCIjCQBjSVaPXNXq4dJeTZMaUYm59swYOCFHW2cN643CUQr\nHoPBwM2zi/jL5ia02tlk45FublowQ5PnjpV4vt7GZsenHJRo76GhyJiA0LVtLe6+q2sZDAYunpiD\n3ZTG5Hx71J9rQUUWgbDKexpc1LzDE6ShO8D0Iu1nKCWqMVlyJpAIJAloLNHqmTua3Uzr98F4/fR8\nvv+Z8r6SSTTjMRoM/NuCMfz3+0fwBMJRe9zh2FTfw9xSBx+8925cnzfW4vl6K8gw0+0L4Q3G9tgl\n2ntoKDImIHRLUVV2trqZ3m/+frbNxLyyzJg955xSJ3NLnXHfY+ijI92cNSZ2caWCNKOB0kwL9XI2\noGuSBDSWSPXMI51+Msxp5J5mr/hYxHPH/DLW13Wwq9XN/nYvf/q4iW1Nrqg/z3FhRaWmvoezxmQm\n1PEZjnjHE4+SkByjyMiKYTFs21tOPAuIl0xrOt84p4y7/rmHPLuJ0kwLB9q9zCiOzdTNPW0esm3p\nCX9ReT2I50ZyYnSGTAL//d//TX19PWazmYsuuojPfOYzbNmype+qYosXL6ayshKA2travquERdKe\nShLl0niKqvLSzjZurCw47f1iFc+lk3KYUZRBsdNMqzvIvz23C0VVYzJ986Mj3Zx9rBSUKMdnuOId\nz5gsCzX1PTF9DjlGkRnWmcBdd91Ffn7vzpCqqrJmzRqWLVsGwIoVK6isrERVVVavXh1xu9CntXvb\nUend3kELBoOBkkwLAIUOM05LGvvbvUzMi+6sJFVV+ehwN7eelRhXPNO7skwLL+xo07ob4jSGlQT6\nz9NubGykpKQEs7n3VLmoqIimpiYURYlKe3FxcVQD1LtE+AbjCYT53UeN3H/Z+CG/eccrnjmlTj6u\n74laElBVlU8aXDxV04gvpDCjuLfslQjHZyTiHU+R0xzz/YPkGEVmyCRgtVr55S9/icPh4Ktf/Sou\nlwu73c6qVatQVRW73U5PT0/fz5G2p1oSSAR/2dzM3DJn3/oAPZhb6uTlXW0smlUUlcf7zftH2HSk\nhy/NLebiiTmy82WU5NpNuAJh/CFl0O3EhbaGPCq33XYbVVVVfPGLX+Spp57C6XTi8XhYsmQJS5cu\nxe1243Q6cTgcUWlPNXqf49ziCvDyzja+PszySLzimV3iYHuzm2BYifixdrS4efdAF7++4Qwum5x7\nQgLQ+/EZqbjPQTcYKMyI7dmAHKPIDHt2kMlkIi0tjaKiIhobe+dsq6raV8JRFCUq7UPpP2hy/B8r\nkW/X1tbqqj8n336jxcSlk8vIyzDpKp5MazpZaUFWr/2AL11x3qgfT1Hhb0fz+frZpXy84X3N4onX\nbS3iKXIW09Tj59DWjTF5/OP08O+r53gGY1CH2JjlF7/4BR0dHdhsNr7+9a9TUFDAli1b+mb1LFq0\niFmzZgFErX0wa9euZd68eae9j4gef0jhy3/dxi+um0JZlkXr7pzitxvqMaUZuSWCa/++tLONN/a0\n8+i1kzHIRnEx8dg7h5iUZ+O66aefWSZip6amhksvvXTA3w2ZBPREkkB8vbzrKO8d6KTqyolad2VA\nm45081RNE7+4fgreYJiwouKwDH/pS4cnyL88u5OfXjUx6rOMxKf+8kkT7kCY288p07orKet0SUBG\najSm13qmqqr8Y1srn5sxsm9v8YynsthBXbuXr63exqI/1nL3C3uGveNohzfID1/ey/XTC06bAPR6\nfEZLi3iKneYTrkcdbXKMIiMrhsWAapvcBMIK88r0O1hvSTfys89OxppupDTLwree3UlNfQ9nDrHn\nT4c3yA9f3MsF47P50lyZjRZrRQ4LTXG4zKQYHUkCGtPrHOcXdrTyuekFI16RG+94phR8+i3+pspC\nntnaOmASqDvqZV1dBwc7vOxs8XDttPxhjSXo9fiMlhbxFDnNNMXwTECOUWSkHCQGVNfuY1aCXVbx\nkok57D3q4VDHp3vVqKrKM1tb+NHLe0kzwOWT8/j5dZMjGkwWI5NrS8cbDMd8S2kxOpIENKbXemab\nO0BBxuC7hQ5Gy3jM6UaunZbPM9taADjU6eO+V+tYt6+Dx6+fwtfOKuWC8dmMybIO+zH1enxGS4t4\nDAYDhY7YrRWQYxQZKQeJU7gDYRQVMsxpWndlxK6dls/X1+zAEwjzcYOLmyoLWDyriHRZAayp44PD\n43JsWndFnESSgMb0WM9scwfIzzCNat681vHk2EzcPLuIsKry3YXlEScyreOJNq3iKXZYYnYmIMco\nMpIExCla3cFRlYL04guzo7OfkIieWA8Oi9GTMQGN6bGe2eYOkp8xuguq6DGeSEg80VHkiF0SkGMU\nGUkC4hTHy0FCREux00yzS641rEeSBDSmx3pmbzlodGcCeownEhJPdBTFcNWwHKPISBIQp+gtB8mZ\ngIiebGs6/pCCJyBrBfRGkoDG9FjPHO0aAdBnPJGQeKLDYDBQ5IzNDCE5RpGRJCBO0eYZ/cCwEIMp\ndppp7JFxAb2RJKAxvdUzvcEwvpBCpmV08+v1Fk+kJJ7oOaPAzrYmd9QfV45RZCQJiBMc9fSuEZAL\nrIhom1fq5OOGHq27IU4iSUBjeqtntrqD5NtHXwrSWzyRknii54zCDBq6/XT5QlF9XDlGkRn2iuFQ\nKMR3v/tdrr/+eq688kq2bNnC008/jcFgYPHixVRWVgJQW1vbd8nISNqFNmSNgIiVdKOBmcUONjf0\ncOGEHK27I44ZdhJ47bXXGD9+PNC7Pe+aNWtYtmwZACtWrKCyshJVVVm9enXE7alEb/XMtgi3jNBb\nPJGSeKJrbpmTmignAa1jijZd7h0UCATYsmULCxYswOfz0djYSElJCWZzb9mgqKiIpqYmFEWJSntx\nsVztSSut7iAV2cPfalmIkZhb6uT57a1ad0P0M6wxgZdeeomrrrqq7/qtLpcLu93OqlWr+MMf/oDd\nbqenpydq7alEb/XMSMtBeosnUhJPdI3LseINKlGdKqp1TNGmu3UCHo+HnTt3MmfOHKC3FORwOPB4\nPCxZsoSlS5fidrtxOp1RaxfaaYtgywghhmIwGJhT6uST+tT6sqdnQ5aDdu7cSTAY5PHHH6elpQVF\nUZg2bRqNjY1Ab1I4XsJRFCUq7adTXV3dVzM7njET/Xb/2LTuT0Onve9MIBniicZtiSe6t+eVTWPj\nkW6cbTt18e+RKrcHY1CP13iG4a233sLn83HllVeyefPmvtlBixYtYtasWQBs2bKlb7ZPJO0DWbt2\nLfPmzRtud8UIBUIKN/zfFl64dfaILzAvxHC1uAJ869mdrPrijIS8el0iqqmp4dJLLx3wdyNKAlpL\nxiTQ/8xGa43dfn740l6eunnGqB9DT/FEg8QTG49XHyIYVvn+Zyoifiy9xBQtsYjndElAFouJPq2y\ne6iIkzvml7G12cW7Bzq17krKkySgMT19g2mNwkIxPcUTDRJPbNhMafzgwgp++e5hOjzBiB5LLzFF\ni+wdJDTT4gpQKDODRJzMKHZw2aRcfrexQeuupDRJAhrT0xznZleAImdkSUBP8USDxBNbi2cVUn2g\ni+4I9hMpOltNAAAgAElEQVTSW0yR0t06AZE6WlwBihxyJiDiJ9tmYv7YTF7f0651V1KWJAGN6ame\n2dwToDDCJKCneKJB4om966bn88KONpRRTlTUY0yRkDEBoQlVVeVMQGhiemEGlnQDH8sqYk1IEtCY\nXuqZnb4Q5nQj9ggX7+glnmiReGLPYDBw7bQCXtjRNqz7N3T7+dvmZt4/2EVTj5933tFfTJHQ7fUE\nRHKTswChpUsn5fD7jQ0c6PAyLsc26P28wTDLX6tjYp6NzY091B31YgjbOOho4sLx2YzNsshV8UZI\nVgwLAN7e38G6vR0sv3yC1l0RKeqNPe387qMGHvnsJMqyBt7O/NG3DxJW4YfHVhqrqsqOFg/r9rXz\n3sEuPEGFibk2Fs8qZH55Vjy7r2unWzEsZwICODYoHOH0UCEicdnkXAJhhR+9vJeHrpyIyx9mT5sH\nU5qRiXk2DrR72dbs5jc3nNH3dwwGA9OLMphelMG/nTeWTm+Q2iY3P3v7EL+54YyIJzqkAhkT0Jhe\narTRKgfpJZ5okXji65qp+SyeWcR3n9/N/3xYz+FOP7ta3fzq3cOsqmnkvkvGYzOdOG7VP6Zsm4kL\nxmfz+ZkFPPLWwVHPONKSjAkITTS7AswulWs5CO19bkYB10/Pj6i2v3hmERsOdfPM1lYWzSyMYu+S\nj5wJaEwvc5xbXAGKo3AmoJd4okXi0cZIEsBAMaUZDfzgogr+trmZP33chDcYjmb3YkrWCQhNNEVh\noZgQelLitPD49VM42OHl1jXbeUNWJQ9IkoDG9FCjdflDqIDTEvkFPvQQTzRJPPp3uphKMy3cc8l4\nqq6YyKpNjby8c3hrEbQkeweJuGs+Nigs86tFspqcb+c/r57I/9U0sW6fnBH0N+Q6gb/+9a/s2rUL\no9HIN7/5TQoLC6mtre27JOTixYuprKwEiFr7YGSdQGy8f7CLl3a2UXXlRK27IkRM7W/38uOX93L3\nheWcMzZ11hFEtE7g5ptvBnovOP/cc8/xjW98g9WrV7Ns2TIAVqxYQWVlJaqqRqVdxF9Tj1/GA0RK\nGJ9rY/llE1j+eh0/v3YyY7MHXpSWSoZdDtq7dy9lZWU0NjZSUlKC2WzGbDZTVFREU1NT1NpTjR5q\ntC1RuI7AcXqIJ5okHv0baUzTizK47exSlr9eh8s/+usYxIou1wksX76czs5O/v3f/53m5mbsdjur\nVq1CVVXsdjs9PT19P0faXlxcHOuYxUmaXUGmFmZo3Q0h4ubqM/KoO+phxZsHuOeScTgtqbtkaliR\nP/jgg+zdu5df//rX3HbbbXg8Hm6//XYAVq5cidPpRFGUqLQPpbq6um8e7fGMmei3+8emxfO3uAoo\ndJiTJp5kOz4ST2xuV4YPUu82c/vTXr5+dim25h0YDL2/D4QUnnxlA20BAz+49iwyzGma9zfS24MZ\n9gZybW1tPPnkk/z4xz9m+fLlLFu2DFVVeeihh6iqqkJRlKi0n44MDMfG4j/W8j83TSXXHtlF5oVI\nRL3bUhzhqCdIebaFvAwzGw93MynfRo7NxNYmFz++eBzTEvhsOaKB4ccee4yenh7MZjO33XYbRqOR\nxYsXU1VV1TerB4hae6rpf2ajhQ5PkLCikmOLzumw1vFEm8Sjf5HGdEZBBr/83BSaewLUd/tp6gmw\nZHZR36Bx9f5Olr9Wxx3zy7hscm60uj2oeB+jId/5d9111ylts2bNYtasWTFrF/GzvcXN1EK7rBEQ\nKc1oMFCSaaEk03LK7xaOz6Y8x8rdL+yhxGlmRrFDgx7GjlxPIMX974Z6rOlGvjyvROuuCKFrGw53\n8fN3DvHL6xNvi+rTlYNkxXCK297iTuhapxDxcs7YLG6qLOSB1+sIhBStuxM1kgQ0puW87ZCisrfN\nG9Xpock2D13i0b94xrR4ZiFFDjNP1TTG7Dlk7yARN3VHvRQ7zWREeHF5IVKFwWDgzoVjeW1POzta\n3Fp3JypkTCCFPbu1hQMdPu66oFzrrgiRUN7e38EfNjby3zdOxZqu/+/SMiYgBrSjxc30IhkPEGKk\nLhyfw6Q8Gys/rNe6KxGTJKAxLWu0O1o8TI/yoHCy1ZwlHv3TKqbvnD+Wjxt6eGFHdK9RIGMCIi6O\neoJ4gmHGZJ06L1oIMTSnJZ2qKybyVE0jNfXdWndn1GRMIEVV7+/kld1HeUiuISBERLY09lC19gBV\nV0zQ7UaMMiYgTrFD1gcIERWzSpz8vwvKWfZaHc9tayWBvlcDkgQ0p1U9s8kViEkpKNlqzhKP/ukh\npgUVWTx+/RRe232Un647ENFiMhkTEHHR4QmSY5NdQ4WIltJMC7+4bgoA97yyD3cgrHGPhkeSgMa0\n2tGx3Rsi1x79C2kk2w6VEo/+6Skmc7qRn1w8jvG5vRvOtXuCI36MeMcjSSBFtcuZgBAxYTQY+NaC\nMSwcl8X3X9zD0VEkgniSJKAxLeqZ3mAYFbCbon/49VCfjSaJR//0GJPBYODL80q4bFIuP3xxZGcE\nMiYgYq7dEyLXli7XEBAixpbOLebiiTn88KW9NHb7te7OgCQJaEyLemaHN3alID3VZ6NB4tE/vcf0\n5XklfHZqHnc+v5v1+zqGvH+84xlyZPDJJ5+ksbERVVX51re+RWFhIbW1taxZs6bvspCVlZUAUWsX\nsdXuCcZkUFgIMbAbKwuZUezgp28e4OOGHv51wRjdbDw3ZC/uuOMOli9fzqJFi3j++edRVZXVq1dz\n3333ce+997JmzRqAqLWnGi3qmb0zg2JzJqDH+mwkJB79S5SYpuTb+c0NZ+ALKXznuV3sb/cOeL94\nxzPsr4M2m4309HQaGxspKSnBbO69vFpRURFNTU0oihKV9uLi4mjHKE4iawSE0EaGOY0fX1TB63va\n+eFLezm3PJPZJU5mlzooyNDmkpXD3jto5cqVXHPNNbjdbt577z0MBkPf8ujzzz8fVVWj0j558uRB\n+yB7B0XHo28fZHphBldPzde6K0KkrBZXgA8OdfFJg4stjT04LGnMKnZy9dS8qG/pEvHeQZs2baK0\ntJSysjIcDgcej4clS5awdOlS3G43Tqczau1D6X+qVF1dLbdHcbvdEyLHbtJNf+S23E7F27s/2UBu\n+y7uv2w8q788k+tyOwl3NnD/a3XsO+qJ+vMNZsgzgbq6Oqqrq7nlllsAUBSF5cuXs2zZMlRV5aGH\nHqKqqipq7aeTjGcC1dXVcZ8N8K1nd/K9C8qZkm+P+mNrEU8sSTz6l2wxPfnS+6zvdPLYdVMockan\nRHS6M4EhxwR+/vOfk5eXx4MPPkh5eTm33norixYtoqqqqm9WD4DRaGTx4sURt4vYa/cGybXJ7CAh\n9Gh6Zpj88kLufXUfv7huMg5LbN+rcj2BFBNWVK79/Sf889Y5pBtlsZgQevXLdw/T7Qtx7yXjIl7Y\nKdcTEH26/SEclnRJAELo3L/ML+NIl4+Xdx2N6fNIEtDYcAZuoqndE9tSULzjiTWJR/+SLabj8ZjT\njdxz8Xh+v7GRgx0DrymIBikMp5gOb+/MICGE/pXnWLn9nFK+/+JeZpc4mFqYwUUTssmP4poCGRNI\nMa/tPsonDT388KJxWndFCDFMDd1+tje7qW1y8f7BLr53wVjOq8ge9t+PaHaQSC4d3pCsFhYiwZRm\nWijNtHDZ5FyunOLmP9YdoKa+h9vPKYt4DyIZE9CYJmMCMSwHJWt9NlkkWzyQfDENFc/0ogyeuPEM\nevxhvvn3HXzc0BPR80kSSDHtXtlBVIhE57Ck85OLx/GtBWP42VsHefTtg3R4R3cFMxkTSDHff2EP\nX55XzJzSobfoEELonzsQ5k8fN/H6nnZunl3E52YUnDIFXNYJiD69q4VlTECIZJFhTuOO+WU8eu1k\nPjrSzV3/3M2RLt+w/74kAY3Fu57ZO0VU1gkMl8Sjf8kW02jjKc+28h9XTeTyybnc9c89vLyzbVh/\nT4rDKcQfUgiEFRzmNK27IoSIAYPBwPXTC5hT4uT+1/cRUlSum15w+r8jYwKpo7HHzw9f3MtTN8/Q\nuitCiBhr7PZz9wt7+Oa5ZTg798uYgIA9bR6Ko7Q1rRBC30oyLTx05UR+896R095PkoDG4lXPDCsq\nT9U08fmZhTF9HqnP6luyxQPJF1M045mQZ2P5ZeNPex9JAili3b4OMkxpzB+bqXVXhBBxNKPYcdrf\ny5hACgiGFb7+9A6+f2EFs0pO/4IQQiQfWSeQ4l7edZSxWVZJAEKIUwyZBHbu3MlPfvIT/vjHP/a1\n1dbWcv/997N8+XK2bt0a9fZUEut6pjsQ5s8fN3HrWSUxfZ7jpD6rb8kWDyRfTPGOZ8h1AsFgkBtv\nvJHdu3cDoKoqq1evZtmyZQCsWLGCysrKqLWL6Prr5mbOGpPJpBhcVF4IkfiGTAIzZ85k+/btfbcb\nGxspKSnBbO6dalhUVERTUxOKokSlvbi4OOpB6tnChQtj9tiNPX5e2tnGkzdNi9lznCyW8WhB4tG/\nZIsp3vGMeMWwy+XCbrezatUqVFXFbrfT09PT93Ok7amUBMKKSloMr/X72w0N3FhZSF6G7BUkhBjY\niAeGHQ4HHo+HJUuWsHTpUtxuN06nM2rtQ3n7nU/rZevfruYPr7xPWOmd4FRdXX1CPU3Ptzu9QRat\nquGxJ/43qo//zjvVNHb7eW5bK58cbqesZ29c43viiSfi+nwST2rH079NL/3RazyDGdYU0e3bt7Np\n0ya+8pWvoCgKy5cvZ9myZaiqykMPPURVVVXU2k9n7dq1PNeWxU8uHke7J8SKN/fT4w/jtKTxvYXl\nFDvNPL+9lVd2H+X8imxuObOEjGP75IQUlTRD794ax9U2udjZ4ubGysJTtl49WSCkYI7wCj79Pbu1\nhSc+qOeKQj/fv/7ciB5LUVW2Nbt5q66D9w50oaAys8jBDTMKhpwjHG3V1dVJdXou8ehfssUUi3hO\nN0V0yCTw3HPP8cknn9DV1cW0adO444472Lx5M08//TQGg4FFixYxa9YsALZs2cKaNWsibh/M2rVr\necudz9YmF93+MF+ZV8x10/JZu7eDlRvqCYZVzh+XxdVn5PPq7qN8eLiLSybmsqfNw/YWN3NLndx7\nyThspjR2t3q499V9VGRb8QTD3H1hORPzBh48rTvq5Xv/3M0t84pZNKvo9P/aw/StZ3cyt9TJ5kYX\nv77hjFE/zu5WD4+8fRADcNGEHC4Yn82YLMsJyU4IkdoiSgJ6snbtWubOncvre9oZn2tjcr8ZLy5/\niEBYPeHSiTta3HxwqIsZRRlMK8xg5YcN7D3q4Y75ZfznugPcuXAsC8qzeG1PO/+7oQGbyYgl3UiJ\n08y3zxtLocOMyx/i2//YxWen5vPyrqN8ZkIOt8wrxmAw0OUL0eYO0OUL4QspjMm0UpZlGbLOv7/d\ny72v7GPVF6fzlb9t4+FrJlOebR3Rv0W3L8Rz21r55442vrWgjIsm5MgHvxApKBxSUIH001QqkioJ\nRLJiWFVV/vJJM6s2NXL3heVcMSWv73feYJgObwhfUOHDw138Y1srP7yogn9sa6PAYeLb542lwxvk\nnlf2YTTAUXcQf1ilyGEi05qOOc3IkS4/be4A88qcfP3sUipybPT4QzxV08SuVjdVV0wk05rOkx/W\nk2Y08PWzS7n/7xuYUDGGr51VCsChDh9Wk5FCR++sqf3tXtbUtnC404fNZCTdaOBwp58ef4h5ZZn8\n24Ixuhr4lVNzfUu2eCA5YlIVFcOxL48nx6OqKl53EEVRUFVoberhwO42Du9vp6fLR8AfIi3dSGl5\nNuMm5zN9TikZTssJj3+6JJBS1xMwGAwsnVvM1WfkkXPSxdZtpjRspt7xgwl5NqYWZvAfbx6gJNPM\nfZeOAyDHZuJnn53MjhY35dlWCjJMp3z79gbDvLjzKN9/cS9zSh1sbnCxcFw2k/PtLH+9jhVXTuTN\nve08fM1kAGZmhXh+bwdfPbOEd/Z38qtjO/5lW9PJtZs40OHlhhkFXDctH1+w93oAY7IslGRaMMo3\nfyESlqqqHK5r5+MPDrFvRwvppjTsGWbUND+mcB0lY7NoPNTJ9k8acXX7SD/2+ZSTb2f85HyuuHEG\nWbl2bDYTgUCIQ3Xt1O1s5fe/qGb63FLOuXA8jsyhKwwpdSYwUp3eIOlGAw7LyHNlty/Ey7uOctYY\nJxPz7Ciqyn+tP0jdUS9Wk5Fffa53HEBVVb7x997xgXcOdLDiyomMy7Gx96iHhm4/51VkY4nigLQQ\nIjYC/hAH9rTR0thDfpGDkrFZOJxWwmGFYDCMxxXA3eOn46iHhkMd1B/oIN2UxtwFFUyfUwqouF0B\njra4OFzXTsOhTopKM5k+t5TS8uxhl3td3T4+qj7A1o1HGDshl8p5ZXT76qUcpAfBsMJDbx5g4bgs\nLp/8aSnqr5ub+Me2Nv7rmkkjHhsQQsReS0M3B/a24e7x4+r29/6/x08wEMZiSSfdnEbnUTclY7Mp\nGZNFW4uLxsNdeN0B0tKNpKcbsWWYcTgtZObYKC3PprQ8h7zCjJiN5fl9IXZvbWLrpnrOONskSUCv\nqqurWXDe+fhCSt901kSWDPXZ/iQe/Yt1TPt2tPDKM1uZPqcEZ5aVDKeFDKcFh9OCyZxOwB8iEAiT\nm5+BxRp5hT3eU0RTakxAr9KMhqRIAEIkm6019bz9yi5uumUeJWOzte5OTMiZgBAiYXlcAXq6vPh9\nIQwGA6UV2aSlRT6G5ur28c5ruzlc187nv3YWeYWJvQ27nAkIIRJGKKTgdQdwZg0+Pna0xcWGt/ez\nd3szWbl2zJY0goEw3R1epswsZtK0QkrLs7FYB58+7Xb56Wh1Y7GZcGRaCAUVWhq7aTjYyZaPDjPz\nrDF89c6FUSnx6FlyR5cAkq1GK/Hom17j8XmDHNnfzu5tzdTtbEVVVcoqcjj7gvFY7SYO17VTf7CD\n7k4v7h4/oaDC3AUV3P79C9lUs4GFC88DoLPdw64tjWx4az9N9V1k5dooK8+hrCIHR6aFpvpumo50\n0XSkE78vRG5BBn5fCI8rgMFooLDESWFJJl/61wVkD7KDQKzF+xhJEhBCxJ2qqjQ3dLN7axMHdrfR\ncdRDydhsJk0r4IIrpmC1m9heU8/rz20jHFYon5jHhKkFZOfayXBacGZaSRtg6nR2rp35F01k/kUT\nCYcVWhp7aDjYwd4dzbh7/BSVZjFpWiELL59ETl5G3wKtVCZjAkKIuOnp8lG78QjbauoxGA1MmVHE\nxGmFFJdlDfihLqJDxgSEEHGjKCpH9rfT3NBNe6ub7k4v4VDvgqmudi9nzCrm+qVzKCzNlP2udECS\ngMb0WqMdLYlH32IZj9cTYOumej758BBWq4myihyKyjKZUllEenoa6SYjeUUOzObofuzIMYqMJAEh\nxKioqorHHaDpSBfbaho4sKeNiVML+OwXZlMyNku+5ScIGRMQIsUpiorX3buvjc8XxGg0kpZmwJhm\nxHhs4LS91U1rUw9dHR687gAeV4DOdi9Go4H8IgdTZ5cwdVYJVpt+drQVn5IxASF0RlVV2ppdNB7u\npLm+G3ePn7xCBwXFTmwZJlS19z7H/0+/2xZrOrYMMza7ibR0I2lpRnzeIB1tHro6PIRCCqqi9t1f\nUVR6unx0tLnp7vBiTDOSbjKihNXeD35vEKvNhN1pxmo1oSgq4bCCoqgo4d7HycnPoKDIQcWkfOwZ\nZuwZZrJybdjsZq3/KUWEdJEEamtr+64wtnjxYiorK7XuUtxIPVPfohWPqqh0dXr7dojcs60ZgLJx\nORSVZlI+MY+jLS52bW3C7w1iMBowGACDAYOh9+fj5ZWAL4THHcDrCRAOKYTDChariZx8O9m5dtJN\naRgNBgxGjv1dA9m5diacUcC+/TuYM2c2oZDSu12J04LNbsIYhVW2WpHXXGQ0TwKqqrJ69WqWLVsG\nwIoVK1IqCYjkEQqGcXX76enyHfvjpb3NTVuzi/ZWN1abibzCDErGZvO5L8+loNgZ97p5Q+suCoqd\ncX1OoW+aJ4HGxkZKSkowm3tPK4uKimhqaqK4uFjjnsVHon+DUVWVgD+M3xfE7w1xxsTZtLe5MRoN\nBAPh3h0W/SH8vhDBQBi/r/d2KBTGaOytOZstaVhsJszmdLyewAlb9XqObdcbDivH/qgoYQWLzURu\nfga5+RlkZFqwZ5ixWNMxGnu/+WLglG/QQO+3awz9fj7+CzDwaUMgECLoD5NtH8/2jxswGHq3Mwj4\nQ/i8wb4Pe687gN8Xwu8LEvCHyMi0kpllxZFpxZltpawih9nnjCWv0HHaLQziJdFfbwNJtpjiHY/m\nScDlcmG321m1ahWqqmK32+np6UmZJBBtfXXkYzVhpV89+XiNNxgMEwz0+xP89MO674M7EAZV7f2k\nVNVjH3Qh/N4gfl8I37EPfb8/hMlkxGI19e6xYoBwUCGsqJhMaVis6ZgtaZgt6af8URWVcLi3Xt3a\n1EPAH8ZmN5HhtFBclokj04rdacFsTuurfRvTDKSlGfF6ArS3uuloc+Pu6f3Z7wueWEs/9m/w6b/N\n8f+A2vcfUFH7fj7OZO7tc1q6sffxFJV0UxomcxoWq4niskwmzyjqSz4Wqwmb3SQrUEXC0TwJOBwO\nPB4Pt99+OwArV67E6Rz8dPWpX78H9HvPqmq/n4//79M3df+5T6dMhOp//376vhGe9H4+9Rtl/8c+\nta99z6d+2if1pNs+nw+LxXLih9LxD6r+t08aKFQUte9DTen3oXe8bwaDoa+ubOhXVzYaDZjMaZjM\n6cf+3/vHfOxDz2RJx2xOw+G0YDAY+vqSX2Tq+7Cz2NKxHvu/xZJ+Qj25t5554an/GFFmtZnIycuI\n+fNIvVn/ki2mlBsTKC4uprGxEej9cBuqFDTjvGS78pZe6rMKEDj251RBIBgAVwDoHvxR7HY7NTU1\nMeifNiQe/Uu2mOIdjy7WCWzZsqVvdtCiRYuYNWuW1l0SQoiUoIskIIQQQhuJOzlYCCFExCQJCCFE\nCpMkIIQQKSztgQceeEDLDuzcuZNHH32UpqamvgHhdevWsXLlStavX09hYSGFhYWnba+treU3v/kN\n69evp6CgoK9dKwPF9MYbb/Db3/6W999/nylTpuBw9F64erC+6ymmkcTz5JNP8sILL7B+/XqmT59O\nRkZGQscDEAqF+M53vkN6ejqTJk0C9BUPjCym9vZ2Hn74YdatW8fhw4eZPXs2oK+YRhJPInwuDPS+\nGOl7P2bxqBrbsmWL+uGHH6pPPfVUX9vdd9+thsNh1e12q/fcc89p2xVFUe+77z7V7/erfr9fvf/+\n++Mew8lOjsnv9/f1t7u7W3300UdVVR2873qLabjx9FdbW6s++eSTqqomfjwvvvii+sgjj6ivvPKK\nqqr6i0dVRxbTY489pu7ateuEv6+3mEYST6J8Lqhq7/ti5cqVI37vxzIezctBM2fOPOFbF0B5eTm1\ntbVs3LiROXPmnLa9/7YTZrO5b9sJLZ0ck6qqhMNhQqEQdrudzs5OwuHwoH3XW0zDjac/m82GydS7\nTUIixxMIBNiyZQtnn3123/31Fg8MPyZFUWhubmbKlCkn/H29xTSSY5QonwvQ+75IT08f8Xs/lvFo\nvlhsINOmTeOtt95CUZQTVs4N1J4I205YLBZuvPFGVqxYgc1mw+1243a7B+378Z/1GtNg8WRmZvbd\n58033+Saa64B9H+MThfPSy+9xFVXXUVnZ2ff/fUeDwwek6IoBAIBHnnkEbxeL1dddRXnnHOO7mM6\n3TFKpM+F4++Lkb73Y/mZoLsk0NTUxNatW7nrrrsAePDBB5k5cyYdHR0Dto902wmtzJ8/n/nz5wPw\nox/9iMzMTFwu14B9VxRF9zENFM9xmzZtorS0lLKyMmDkW4NoYaB4PB4PO3fu5IYbbmD9+vV9902E\neGDgmMLhMBkZGdx9990oisKyZcuYM2dOQsQ0UDyDfV7oMZ7+74uGhoYRvfdj+ZmgmySg9u2Xo+Lx\neIDeATm32923h81A7SPddiKe1AHW4dXU1FBRUQEMvmWGoii6jGmoeADq6urYtm0bt9xyS1+bXo/R\nUPHs3LmTYDDI448/TktLC4qiMGPGDEpLS3UZDwwdU1paGnl5eXR2dpKbm9tXskvUY5Qonwsnvy9G\n+t6P5WeC5iuGn3vuOT755BO6urqYNm0ad9xxB8888wybNm0C4PLLL+eiiy4CGLRdb9tODBTTE088\nQUNDA1arle985zt935wH67ueYhpJPN/+9rfJy8vDaDRSXl7OrbfemtDxHPfWW2/h8/m48sorAX3F\nAyOLqa2tjZUrV+LxeFiwYEFf2U5PMY0knkT4XBjofbF582aefvrpYb/3YxWP5klACCGEdjSfHSSE\nEEI7kgSEECKFSRIQQogUJklACCFSmCQBIYRIYZIEhBAihUkSEEKIFCZJQAghUphuto0QQi98Ph93\n3XUXv/rVr0hPTyccDnPnnXfyyCOPYLVa+fOf/8yePXsIh8NcccUVXHjhhX1/d/Xq1ezZs4fu7m5y\ncnK4++67+7ZmWL9+Pdu3b8fn83H06FGmTp3KV77yFa3CFAKQJCDEKaxWK3PnzmXDhg2cd955bNq0\niRkzZmC323n99dcxGAw8+OCDhEIhli9fztSpU/su8HHVVVfxhS98AYCHH36YDRs2cP755/c9dm1t\nLffdd1/f5npCaE2SgBADuOyyy/jLX/7Ceeedx7p167jpppsA2Lx5M62trezduxfovd5AfX19XxJw\nOBxs376dhoYGAoEAHR0dJzzu2WefLQlA6IokASEGMGHCBNxuN3v37qWjo4PJkycDvbtwLl68mLPO\nOuuUv+P3+3nggQc488wzmTp1qi524RRiKDIwLMQgLrnkEh577DEuueSSvrazzz6bf/7zn/h8vlPu\n39DQQHp6OosWLWL8+PHs379/wK2QhdATORMQYhDnn38+f/rTn04Y+F24cCGdnZ088MADmM1mDAYD\nPx1fcxAAAAB9SURBVPnJT7BarVRUVJCXl8cPfvAD8vLymDFjxglXJBNCj2QraSEG8eGHH7Jr164T\nLpAjRLKRMwEhTnLkyBF++9vfkp6ezt133611d4SIKTkTEEKIFCYDw0IIkcIkCQghRAqTJCCEEClM\nkoAQQqQwSQJCCJHCJAkIIUQK+/9O+ygLICOMzgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"result['John'].plot()\n",
"result['Juan'].plot()"
]
},
{
"cell_type": "code",
"execution_count": 300,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEQCAYAAACwSgOGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl8G/Wd///SLeu0LdmSfNuxndixnYuQE0IJdzkDgSSl\nFGih7dJfzy20ZSm0QH+0++1u2VK6XY4lfKFAwtFQIEAOAnHinE5iO4nt+Iht2ZKtw7bue75/KHbs\nWJJ1zEgjeZ6PB48HkuZ4vz2Tec/nfbIIgiDAwMDAwDDnYadaAAYGBgYGesAYBAYGBgYGAIxBYGBg\nYGC4AGMQGBgYGBgAMAaBgYGBgeECjEFgYGBgYAAAcKk8eHt7O7Zu3YqFCxfi3nvvjbhta2srtm/f\nDhaLhY0bN6Kuro5K0RgYGBgYLoFSg+D1enHHHXegs7Mz4nYEQWDbtm144oknAADPPvssYxAYGBgY\nkgylLqP6+npIJJJZt9PpdNBoNODz+eDz+VCpVNDr9VSKxsDAwMBwCZSuEKLFZrNBJBJh69atIAgC\nIpEIVqsVarU61aIxMDAwzBloEVSWSCRwOBzYvHkztmzZArvdDqlUmmqxGBgYGOYUSVkhzNYuSa1W\nQ6fTTW6r1+tnXR3s2bOHNPkYGBgY5hLr168P+T2lBuEf//gHTp48ifHxcTidTjz88MMAgKamJggE\nAixduhQAwGazsXHjRjz99NOTWUbRMLE/A335w77z4LBZaB604rW7a8HjTF+Ubj2uwwdtI9h+b/2M\n3xhST3uLDrt3nIFSJcGmh1ekWhyGKCEIArsqrkb59zaj6rGHp/3W3Nwcdj9KDcLtt9+O22+/fcb3\nq1atmvFdQ0MDGhoaqBSH9jQ2NmLt2rWpFoM0vtrfiKNaOV64bT5GbF7s6RrFDfMVk787vX58dNYI\nqYCLtmE7lhTQ202YadcnGn3ajg9i1dXzcHBPFwiCAIvFSpJ08TEXr1EoPMZRBJxuOPqHYtqPeSVj\noIwhFxvZWVyopHxsXqzCO6eG4Q9cdB9+1mlGnUqM6+crcLh/PIWSMoTCOu6CXjuOhuXF4HDYsFnc\nqRaJIUpcg8MAmw3nQGzZmoxBoBGZ9GYDAO7ccqwolgEAFmkkkAu52HXODADwBwi81zqCuxepsLJY\nhsP9llSKGhWZdn1m0+fMiUFU16nA43OgVEth0FuTJFn8zLVrFA6nVg9ZXRWczAqBgS4cGRjH5RcM\nAovFwvdWFuL/Nuvwh33n8c+zRuRJeKjJF2OeIgsuXwDacVeKJWaYgCAItDUPom5ZIQAgTy2BcZj+\nBoEhiFOrR/ayOnhMYwi4PVHvR4s6BLKx2WwYHx+nvb/zUsbHxyGXy1NyboIgIJfLoyokjAaTw4sB\nswO1qovHW5Avxst31eCNZj3+dkiLJ6+tABA0FitKZDjUb8Fd9UJSzk8FZPinnV4/frf3PJ66tgIc\ndmrvz0j6GHRWEASgKc4GAChVUgz0mJMpXlwwMYQgrsFhZJUWQKjJh3NwGOKK4qj2yziDYDKZAAAF\nBQVpZxAKCgpSdm6CIGA2m+F2u6FQKGbfYRaOaS2oEPvBveShl8Xj4KEVhbhnkQoy4cXbb0WxHO+3\njeCu+vyEz01nzhmdODxgQZfJgfl54lSLExaD3gpNkXzy35BSLUXzwb4US8UQLU6tHjkrFiGrRANn\n/1DUBiHjXEYTD7R0MwaphsViQaFQwO0mJ3B4XGvBjUsqwv4+1RgAwJJCKc4ZHbC5faScnwrIePPs\nNNjBZgFHtal3v0TSx2SwITfv4upOmS/BqNEOvz+QDNHiJpNWB0D8+ri0emQVqZFVrIFzQBf1fhln\nEBjoQY/ZhSqFKOrthVw26tQSHLvkQdlhsOPzThPZ4qWMDqMDV1Xk4LiW3kF004gdivyLKxgenwOp\nXIhRoz2FUjFEi3NwGMJCFUQlGjj6GYPAkEK8/gD0Vjf6Tx+Pab+VJXI0XZJ++tFZIz44bSBTvLhp\nbGxM+BjnjA7cWZ+PXrMT1hSvhiLpYx6xQZE/PZ6kVEth1NuoFishyLhGdCIefXx2J/xOF/jKHGaF\nQHcUCgVefPFFAMCJEyegUChw8ODBFEtFLtpxN/IlfHBjvLtWl8pxdMAC7wW3hD9A4FC/BQNjLtg9\nfgokTS4Wlw+jTh8qcrOwUCXBiaHUu41C4fP6YRl3IfuSFZ5SJYGByTSiPS6tHlmFKrBYLGSVFDAG\ngc5kZWXhiy++AAC8/fbbqKgI72dPV/pGXSjLEcbs/8wV8VCSLcQpXfAt9PSwHUoxD/PzxDg7knpX\nRaL+6U6jA5UKEThsFi4rkuLYQGofruH0GTU5IM/JAueSViJ5aimMNK9FYGIIF9xFRcFecFnFGjgZ\nlxF9YbPZaGhowLFjx9Db24uqqqrJ36xWKx555BFs2LABK1aswDPPPDNt30ceeQT/8R//gZtvvhnX\nXHMNduzYASC4rJza/6m1tRXXXXddchQKwflRJ0pzsuLad3WZHAfOjwEADvSNYU2pHHUqMU4Pp94g\nJMo5owPz84Jv3ZcVyXBs0DJr48dUYArhLgKCLiPDML1dRgzBDKOsQhUAQKBSwGexwe+MLlmEMQgp\nYNOmTXjkkUdwww03TPteKpXimWeewfvvv499+/bhrbfemjEoaN++fXj77bexe/du3HbbbQCCbxFa\nrXayY+ybb76JBx98MDnKhKBv1IXSbGFc/s81pXI09Y0jQBA4eH4cq0uzsVAtxmkaPIgS9U93GByo\nVgYNQpFcAA6Lhb6x1BXjhdMnnEHIzhXB5fDCbqVvCwsmhnAxwwgAWGw2hIWqqN1GGVeHEA3XvXwi\n4WN8/p0lce9bVVWFn/zkJ7jpppuwa9euab9xuVx8/vnn6O/vh0AgwMjIyLRW4A899FDI4rF7770X\n77zzDh555BHs3r0bv/nNb+KWL1H6xlwozRFiMPqV6iSFciGkQi4+aTeBzQLKc4XIk/DQYXDAFyBm\n1DWkE50GBx5eEaz8ZbFYWF4kw5EBC8riXE1RhWnEjqramfUgbDYL82ry0Hl6GEtWlqRAMoZocGr1\nUH7tYmfarGI1nAM6SKrLZt13ThqERB7mZLFp06YZ3505cwbf/e538eCDD6Kurg65ublRuxQ2b96M\nW265BeXl5bj22mshEAjIFjkqPL4Ahm0eFMkFKI/Tn7u6VI6XjwzixvnBehKpgAuVhI8ekxPVedGn\nspJNIv5pk8MLtz8AjZQ/+d36yhw8t68PG+ryU2LowuljNtigyA8d25pfr8Gx/b20NQhMDOFClXLh\nxZfIWALLjMuIRuzbtw/XX389HnjgAchkMvT390dtEHJzc1FbW4unnnoK999/P7WCRmBg3AWNVJDQ\nbIM1ZdlweANYU5Y9+d1CFT3cRvHSecFdNLVgcqFaggKZALvirLP470Na9I06yRIRABDwBzBmciAn\nTBV1WZUSBr0VNgvTd4quOLX6yaAyEFtgmTEIKWbqA2LDhg2TRuHFF1/EqlWrMDIyEnLbUNx9990o\nLCzE/PnzKZN3NvpGg+4iIH5/bpUiC99fWYiaKYVRC1UStKU4sJyIf7rTeDF+MJX7lqrx95PDk6m2\n0eIPENjZYZrMyIqHUPqMjTohlgnA43FC7sPlsjGvJh+dbcNxn5dK5noMIeD1wT1iglCTN/mdqCT6\nWoQ56TJKJf39/dM+//3vf5/8f7Vajd27d4fd94UXXoh47D179uAHP/hBYgLGSIAg8KMPO/HTK0pQ\nnps1GVBOBBaLhTvqpvuwF6rFePnoYFoMaQlFr9mJqytzZny/UC1BoVyAXefMuGmBMqbjOb0B9JrJ\nXSGYRmxQ5EVucDi/Xo0jX/Zg6epSUs/NkDhuvQGCvFyweRcf7VnFmqgH5TArhAzgvffew4033ggA\nMzKXqKbL6MQ5owMvHRkEAJwfC9YgAOT6c9USPlhgQW+NvpUv2SSij9HuRb6YH/K3+5Zq8FaMq4RW\nvQ1FcgF6zfG7bkLpYx6xITc/ctO9skolTCN2WGnYrnyuxxAudRcBgKisCI5ebVTuZ8YgZAB33nkn\ndu7cieeeey7p5z6mteDmGiX0Vg+ODIxPcxmRCYvFQr1ajFaat04Ih9HugVLMC/lbrUqMshwh3m0d\nCfl7KE4P23FLjRK9o04ESKxlCPYwirxC4HDZqKzNR2dbbNO4GKjHpTdAqM6b9h1fkQ2OOCuqOAJj\nEBgS4tigBSuK5Xjo8kL896FBGO0eFMoTiyGEY1GBFCdT2O4hkj6jTi/GXaF7E/kCBCxuP3KyQhsE\nAHhkdRHeax3BUBRjKgmCQNuwDStL5ZDwORiOc9UUSh+TYXaXEQDULi7AqSMDIAL0Kqyb6zEEv90J\nrmRmrEq2sAqWts5Z92cMAkPc2D1+dJucaNBIsLJEBqWYB41MQFkK5WKNFCeHbLSs7n3pyBDeaA79\nxmx2eJEt5EYciKOWCnD3IhX+68DArPrprB6wwIJawkdFbhZ6SIwjWMddkEURAyquyAWPz0F3e/Sr\nGgbq8Ttd4IhmXj9ZfTWsbedm3Z8JKjPEzYkhK2rzxRBc6GL3wzXF6DA4Jn8n259bIOODxQIGLW4U\nyZM/WS2cPv4AgaMDFuSFcQkZ7V4owvw2lQ11+djbNYrtrSOQCbjoNTsxMO7CkMUDl8+PP369GoVy\nAdr0NtSpxGCxWCjPzUKv2TktRTdeffz+AFxOL0SS2WtYWCwWLr+yAoe/7MG8mnzaBPrnegzB73CB\nnTXz34a0rhqDb3886/7MCoEhbo5rLbisSDb5uUguxPrKXMrOx2KxsLgguEqgEx0GB2QCDrTj7pBd\nWY0OT1hjMRUum4WfXlmCg+fH0aKzQinm4bbaPPz2ugrcVpuHFw4GVw+nh+2oUwfdOuW5WehJILA8\nFYfNA5GYD3aUK7yqhSq4HF5oe0dJOT9D4vidLnBDrRDqGJcRA4UQBIFjWisuK5KG3YYKf+7iAknK\n4gjh9DncP441ZdmoUopCdmU12b1QiEJnGF1KtVKEP91ajUevKsPGBhVWlMhRki3ExgYVTA4vvuod\nC64Q1MFMoPJcYdypp5fqY7O4IJZGX+HOZrOw/MpyHP6qJ67zU8GcjyE4Q68QskoK4Lc74TFGNt6M\nQUgyVM9D+MMf/oCuri7SjhcO7bgbAYJASYI1B7GySCPFKZ2N1MyaRDk8MI4VJTLUqcVoC5EFZbB7\nw2YYRQuXzcKP1hTjxSYtzE7fZP+jIrkQBrsHTm/i8yJsVjckMRgEAKhdUgij3goDzdtizxX8Dhc4\nopm9sVgsFqQLq2A5HTmOwBiEJEP1PIRHH30UlZWVpB4zFMcuuIsi+Y6p8OfmS/iQ8Dk4f8FNEiAI\n+JOU6RJKnxGbByaHDwvyxKhTSUK26TY5EjcIQLCIbUWxHLX54skANZfNQnG2EH2jsbuNLtXHZnFD\nIovNwHO5bFTWqnD+nDHm81PBXI8hBJwucLJCG3VZfTUsrZHdRoxBSDJUzEMAgFdeeQU33XQTysrK\ncOrUqWn7nTlzBt/85jdx6623YsWKFfj449mDS7NxqN+C5cWy2TekgMUFEpzUWdFpdODh99rx1qnU\ntVE43D+O5UVScNgs1KrE6DA4ZhSYGe1eKEWJGwQA+MGaIjx61fQK4YnAcqLYY3QZTVBUlgPteSaO\nQAfCrRCA6FJPGYOQAsiehwAA3/72t/HJJ59g0aJFM85XWlqKV155BR9++CFefvnlhFtj2z1+dBjs\nWFYYPn4AUOfPXVwgxbutI3j80240aCQ4laSYQih9Dg9YsLJEDgAQ8zkolAvQZZr+cI5UlBYrfA4b\ncuH05MCKHGFcgeUZMQSrGxJZfAZh8PwoLWoSmBiCC5wQMQRgIvU0skGYk2mn/+dXnyZ8jH/9Xfwt\nIqiYhzBBqBx2sVgMrVaL48ePQ6vVYng4sTfqowMW1KslyArTAI1qlhZKsaJYhi1L1MjisvGNt0+n\nZFaCyxdAm96GX36tbPK7OlUwjjDRmI8gCJgcXijCtK0gg/LcLBzqtyR8nHhcRgAgkQkhFPFgHLEh\nTz3zJeF08yAWNGjAiXXINkPMBFcIoa+huKoMzsFhRGpMMicNQiIPc7Igex5CJN544w288847eOCB\nB7B69eqEj9nUP46VpfJZt6PKnysVcPGjtRf78SdrVsKl+vSYnCiSCyHmXzSMC1USfNE9io0Nwc8W\ntx8CLhtCCh+G1XkinB91on/MFVOQf0YMweqKOag8QVFZDrS95hkGwThsw853WyHPFaGobGZzP7KZ\n6zGESCsENo8LSVVZxP0Zk00jEpmHEImdO3fipz/9KTZs2ICensRSBH0BAse0Fqwsnt0gJIvaFM1K\n6Bt1zujbVHdh3OdEFpTR7oGCpPhBOKQCLr6xRI0/R1HlHAm7xQ1xHC4jACgqzw0ZR2g9NgAulw3d\nwFjccjFEj9/hDLtCAABZXXXE/RmDkGLInIcQbpvvf//7eOyxx3Drrbeiv78fcrkcdnt8swXa9DYU\nyARRVd4my5+7UCXGmSTMSrhUn/NjMxv5KcV8SAScyawfsjKMZuPW2jzYPH7s7Y4+uDtVH58vALfb\nB1GU9RKXMhFYnmqQfF4/zpwYwuXrKqDXjsd13FhhYgjusCsEANBsuC7i/nPSZZRKqJyHAGBa5tEE\na9euxZEjRyY//+QnP4lG1JA09Y1PBlHpwkKVBP97VJf0WQn9oy4sLZjpM19aIMPxQSvKc7OCNQhx\nPmRjgcNm4YdrivGb3T1YUSyDRBDbP2271Q2xRABWnHEYeU4W2GwWxswO5CiCXurO08NQFcqwYJEG\n7/7vsbiOyxAbwRVC+BndirXL0NfcHPZ3ZoXAEDUEQaCpfxyrojQIyfLnaqR8+AIEDHYvpee5VJ9w\nrb6XFknRPBgM8ppIKEqLlpp8MdaWZePJXb0wRfG3mKqP3eqKK8NoAhaLdSGOcHGF0nJkAA3Li5GT\nK4Lb6YXdNnsn10RhYgjhYwjRwBgEhqjpH3MhQBAoz01+Y7lIsFispM9ctnv8sHn8yJfMfPtfrAkW\nqHl8gWANQpIMAgB8f2URlhRI8Mg/2nFMG33mkc3ihkSa2HUNuo3MAACzwQaz0Y55C/LBYrOgKZYn\nzW00VyH8fgQ8PrCF8a9IGYPAEDXNg1YsK4xcnTyVZPpzgwaB2jjCVH36RoMZPewQfwuJgIvynCy0\nDdtgdJBXgxANHDYL9y7V4FdXl+F3e8/DaA8/K2GqPrYEAsoTFM9T4OxJHZ5/ahf+90+NWLKydDLV\nVF2UDd0A9QZhLscQ/C43OEJBQm5TJobAEDXNg1ZcU0VdN9NEqFVJsLd7IGnn6xtzoSTCZLhlRVIc\n11qDra8pzjIKRYNGiuo8EXrMTiijqIGwJegyAoBcpRj/8vjVYLNZ4HLZYHMuvm9qiuQ4cagvoeMz\nRCZSDUK0UG4QWltbsX37drBYLGzcuBF1dXVht/3iiy+wa9cucDgc3HPPPRG3ZUguvgCBVr0NP18X\n/WD1ZPpzK5VZ0I67cUxrwbJCKSXB5an69I06URYh539ZoQz/dWAAJocXeRQWpUWiNFuI/lEXLg+T\nIjxVH5vFjZKKyLOUo0EYZiqcukgOvdZCeeB/LscQ/I7E4gcAxS4jgiCwbds2/Nu//Rsef/xxbN++\nPeL2H3/8MZ555hn88pe/xFtvvUWlaAwxcnbEjkK5ADIhPReVfA4bv7q6DC82afHoJ13oNjlm3ykB\n+mdZIczPE2HE5oHbF4BUkJqK7pIcIfrGomtpYbfGV6UcLWKpAHwBB6MUX5e5zGw1CNFAqUHQ6XTQ\naDTg8/ng8/lQqVQzevNMpaSkBK2trTh27BgWL15MpWgMMdI8aA2ZYhmJZPtzV5bI8dKdNVheJMPz\njeS7j6bqcz5MhtEEHDYLiwskUIp5KZsmVpotRH8EgzAjhhBnlXK0qIuyoac4jjCnYwiz1CBEA6UG\nwWazQSQSYevWrXjttdcgEolgtYZvRFZTU4Mvv/wSzc3NKC8vp1I0hhg5MWjF0sLUdDeNBQ6bhZtr\nlOgddVHWFtvu8cPq9kMVIsNoKksLZVEPxqGCkgttsaOpXrZZEo8hzIamWA6dlqlYporZahCigVKD\nIJFI4HA4sHnzZmzZsgV2ux1Saei3TL1ej7a2Nvzwhz/Ej3/8Y3z88cdwuyPnLU+1no2NjWnxdhDN\ngJyuri4899xzqRBvkql/T7vHjy6jDePdp0L+Hu5zuONR/VnE50DC9uEfew+ScrxL9ekfcyGX68XB\nAwcibi82tOMHq4uSrv/E55ZjhyDgsmF0eCPq4/X44fH4cOz4YUrlMY71T7a3oEr/CZ97Kv7eqdan\n9Xjz5CyE2bYPB4sgo1lOGAKBAJ588kk88cQTIAgCzzzzDJ5++umQ2+p0Orz66qt4/PHH4fP58Ktf\n/QrPPPMM+PzQb1h79uzB0qVLZ3w/NDSEgoICUvUgk6KiIqxatQrbt2/HY489hr179+L555/H6tWr\nUy0agNB/v4N9Y/jwjBHP3Uj94B2y+P+/OI9lhVJcV60g/difdpjQorfh0RgC7Kni0U/O4e4G1bTZ\n15cyZnJg+6tH8dDP11EqS8AfwIu/+wL3/2gNpfGKuYpuxx4Mf/QFFr/0TMTtmpubsX79+pC/UbpC\nYLPZ2LhxI55++mk8++yz2Lhx4+RvTU1NaJ5SQq3RaFBTU4PHH38cTz75JG666aawxiCdiTQgx+Vy\n4aabbsLatWuxZcuWGfs+99xzuPPOO3HVVVdh06ZNs66gyKJ50Iqls8w+CEUqV2xViiycMyY+NGYq\nE/r0jTpRmuTRofESKY4woU8y3EUAwOawUVqpQG8nddPV0sFLEAuxxRBCz1OOBcpTRhoaGtDQ0DDj\n+1WrVs34bsOGDdiwYQPVIuFTdeJv4zfo45+DvGnTJtx777347ne/O613kVAoxCeffIIDBw7gL3/5\ny4z9HnroIfziF78AANx777346KOPcOedd8YtR7R0GZ1YV0F962IyqVSK0HheR8mxu0xO3Fkfu4FM\nBSXZwhkDey7FZnVDnGCVcrSUVyvR02FA/WVFSTnfXMLvcIFL9zoEOpLIw5wMIg3IiUR2djYOHDiA\nrq4uOByOhAfdRIvF7YM8xmZpQGpzwquUwaIsf4CYnD+cKGvXrkWv2YmBMReWxJhxlSpKc4RhO6BO\nXJ8xkwOyJK14yqvz8MXH7Qj4A9MK18hiLtchBEhYITCtK1LEpk2bIJNFn7XjcDhw3XXX4eDBgygv\nL0dFRQUpsxKiwer2Q5KiXPp4EfM5yBXxoB2PfbRkJN4+NYwNdfkQpMn0r5ILLqNI90p3+wjKqpRJ\nkUcsFUCeK8JQP/nZRscae2HQJWecKh3x0b0OgYE8urq6wOPx8POf/xyLFi1CS0tLUgwCQRCwuX1x\nGYRU+3OnxhEIgki4WO3DvQfQPGjF12uS8/Akg+wsHtgsFsxO34zfGhsbYbO4MGp0oLg8eS1JyquV\npMcRCILA4X09ePf1JlrMdiaLWP4NBeheh8AwO9EWLdXV1aGoqAhXXHEFvve972Ht2rXThudQhcsX\nAJfDBp+C5T3VVClFOHfBCOztHsX3P+hA32j8geYDJh5uqVFOG5mZDky0sAhF99kRlFcrkzrvuLw6\nD72dhhnfnzszjLMnh+I65pjZAQ6XDRYbaDmmTVTEtISMOoQ5GUNIJZEG5EywZs0arFmzZtp3bDYb\nL7/8MqWyhcLq9kMa5wMw1f7cSmUWDp0Yh83tw0tHBrG2LBvvtIzMmi5qsHsg5nEgmqK3we5Bl0uI\nxxfmUS026Uy0sFhySabY2rVr8e5rx1C/LLkB3oJiOSxjrgvZTcE32v5uEz5/vw0sFguVtSrwYrzn\ndP3jKCjJxsqvzcO7rx5D1UIVRCnqIUUmMfUycrom6xDiJf1e+xiSijVOdxEdqFSI0GNy4tVjOqws\nkeOnVxTjcP849NbQ6br+AIF3W0fw4Paz+P2XfdNccn87NIibFyhp28spEuFWCG6XD0N9oyivTq4L\njM1ho7pOhfe3Hkf32REYdFZ89PYp3LJlMQpLc9Aaxxv+UP8YCkqyka8JTmjb/1knBZLTm2C3UxpX\nKjOkP7YEAsqpjiHIhFxIBVzs7x3Dg5cVQCLg4qYFSmxvmelqG3V68dOPOnGobxwv3FaNIYt7Mjvn\nq55R9JqdKHf2JFsFUqhRiXFoYBwOj3/a9zs/3I/C0hzw48ggS5Rrb1+IVVdXonHXObzx4kFcfXMN\nSioUuHxdOY429sLvD8R0vKGBoEFobGzE6vWV6GzTw+kIPwsiXYi1DoGJITBQitXjhzQFDwyyuKI8\nGz9YXTT5Zr9hYR729YzC7Lg4YpIgCPzn/n7U5Ivxh69XojQnCz9fV4q/HRpEj8mJF5u0+Nd1pUiT\nxKIZVCtFWFogxdbj0+syRof9qKxVpUQmFouFqoUq3PeD1bj/R2uxYJEGAKApzkZ2rgjtp6KvIfF4\nfDAb7MjXBLP2hFk8lFUp0dEavpFmKtn5bgusJGe/AeTMQ0jTW5whWaRzDAEAHl5ROK2oLkfEw9Xz\ncvCXJi08vuBb6OfnzBixefHt5QWTE9CqlSLctECBH37Ygasrc4PzimmgT7w8vKIQ+3pG0WEITpXz\n+QKwjQKVNfkplYvFZiFHOX0Ow4p1FTj8ZU/U2ULDWgvy1BJweZzJa1S7uCAmo5IsnA4PTjcP4URT\ndMOCYo4hMAZhOgKBACaTKWk5+pkCQRAwmUwQCKYHpeJNOaUzDy4vAAvAzz4+h9N6G14+MoRH15WC\nd0km1TeWqHHPIhW+tUyTGkFJRCbk4uEVhfjP/QPwBQh0nR6GqlBOecvreCitVEAg5KL1eHSxhAl3\n0VTKqpQwjdgwnkBWGRWMDFkgz81C6zEtPJ6ZqcCJ4Hc4E3YZpa8vIAwKhQI2mw1DQ0Mp60MfL+Pj\n45DLQ0+3ohqCICCXyyGRSKZ9b3PH7zKa2q2RTmTxOHj86jJsaxnBzz4+hwcuK0CFYmYwjsdh45tL\nLxoDuuoTLVfPy8GnHSbs6x6F+egA+DJqZ1DHC4vFwvUb6vDOS0dQWqmAPEcUcfuh/jHUXHA5TVwj\nDpeN6jo+HNW8AAAgAElEQVQ12lt0WLGuIhliR8XwkAXzFuTDMubE6eYhLFlZEnH7WO45v9NN/xGa\nqUAikcx4sKUDPT09qKmpSbUY07B6/ChL4pD4ZMFisXDPIhXWlMmhoeFbMhWwWCysr8zF4XYDsvVW\n1FfRNy1TqZJi+ZXl+PTdNtz97eVghWk/QhAEdP1jWH/LzH83CxZpsOefZ+hlEAYtqFiQh6qFKnz+\nQRsWX14cVrdYof08BIbYoOPbp9XtgySNYwizUSQXRt3rKB30mY3lRTIYOgyoWVyAK9ddkWpxInLZ\n2nL4/QGcOBTe3z4+6gSbw4JUHnwznnqNikpz4Hb6YNDTp53F8JAFqgIZispywONz0ROiQG8qscUQ\n3EwdAgO1JJJ2ykA/soUcqK1OZFWQPyeCbNjsoOuoaW93WH/7QI8ZBSU5Id3DLDYL8xvUtMk2cru8\nsFvdyM2TgMViYenqUpw6Qs6oV4IgmLTTTCPVefuhsCWQdkpHfRIhE/TpaTdAKBPgjN2XFvoo8iUo\nLMvBmebQLS3OnBjCggb15OdLdSqdp4C210ypjNEyPGRBnloK9oUVaUV1HgbPjyIQIZsq2msUcHvA\n5nHB4iT28sYYBIaIWN1+SJkVQsbQelyL2qVFOErxsHsyWba6DM1NfTPSUMfMDhiHrahYED51trA0\nB8NDFvi8/rDbJIuRIQvyCy52OBZJ+BBJ+DAOJ+7SIqMGAWAMAq2go48602MIsZDu+jgdHmh7R7F2\nRTGMdi/mL7k81SJFRVF5DrhcNs53Te+QGlwdaMCdUjF46TXiC7hQ5Eug05JnADvb9Dj8ZU/MldDD\nQxaoCqe3vC8szcHg+dDzKoDo7zky3EUAYxAYIhAgCNg9fkjSuFKZ4SJdZ0ZQWqmASMTDsiIZjg5Y\nUi1SVEz4248fuBhcJgIETjcPom5Z4az7F5XlQNsb/qEbK2dODKHrzDBe+eN+7NpxGv3dpqhabQwP\nBgPKUyksy8FgX+KzIfwOZ8LDcQDGINAKuvl0nd4AhFw2uHGmxdFNn0RJd33aW3RY0BDM17+8WIad\nJ3tTLFH0LGjQYERnwYguaMQGzpvBE3CmuWCA0NeouDwX2vPkxRHGzA5ce/tC3P+jNZBIBfjqs068\n+OxefPVpR9iCWI/bB8uYE4r86enwhaU5GOwLb6yivef8TnfC4zMBxiAwRCCdO50yTMdudUOvHUfF\n/GD77suKZOh1cOBPk2EyXB4HV1xXjW0vH8Xef55F88E+1C0tjKr4tLAsB0P9YzE3zAsFESAwZnYg\nO1cEiUyIVVdX4t5/WYUHfrwW/T3msF1WR3RWKFVScC6phs9RiODzBWAZC1ZU+/0BnDzcH/OQH2aF\nkIHQzUdtdfsh4cfvLqKbPomSzvp0tulRsSBvcs6AXMiFRpaFXjO9WjtEov6yIjzw47VgsYGhvjHU\nLCqYsU2oayTM4iE7V4ThwcRdZDarG3wBd0aHWIlMiDvvX4budgMOfzmzK+7w4PgMdxEQdIcVTYkj\ntB7TYveOMzh1dCCsPqEgo48RwBgEhgjYmAyjjKG9RT/pLpqgViXGmRF6tq8Ih1gqwNe+XoN/efzq\nmPowFZXnkOI2GjM5kKMI3UojS8THXQ9chlNHBtB99mKL9UCAwKkjA6haGLqzbGFZNgb7xuDx+NC0\ntxs3bqzHgV3nYuqISsb4TIAxCLSCbj5qq8eXkEGgmz6Jkq76jI86YRqxoaxy+iAc3vgQTg+nl0GY\njXDXqKgsFwMkBJbHzA5khzEIACCVC3Hd7QvxxSft8F/optvRooMwi4fSytDFgBNxhOYDfSgqy8HC\nJYVYvLIEu3ecxv79+6OSK9i2gjEIDBSSqMuIIfW4nF7sePMElq0pmzE3uSjLjzMZZhDCUVSWg6G+\nyEVg0TBqsiM7Vxxxm7IqJXKVYjQ39SEQINC0txur11eGjXfka2QYMztwrPE81l5XBQBYcdU8jJoc\n6O/woKNVj+HByGmzTNppBkI3H3WibSvopk+ipJs+HrcP7289jqLSHKz82swGb7ddvRpOrx8muzfE\n3ulJuGsklgqQJeLDbEjMAEZyGU1l3Y3zceTLHjQf7EOWOPzqAAA4XDbUhXIsaNAgRxE0NlwuG7du\nWQx1vgbtp3R493+PYaAnvMuLjPGZQIZ2O2UgB5s7MZcRQ2rwevzo7TTg6P5eKFVSfO3rC0L3+mGx\nUJMfjCNcUZ4d4kiZhSJfDLPBBqUq/k7IY2ZnRJfRxXNJULO4APs+acfGB5fPmg1148Z6ZImmd59V\nqqRYf2stAGD/550432VEcUVuyP2DK4TEu/YyKwQaQTcfdaLjM+mmT6Kkgz7tp3T47+e+wKkjA2hY\nXoxrb18Ytr1yY2NjMLA8bEuylNQR6Rop8iUwJRBEJwgCYyZ7VAYBAFavr8SVN1SjZF7oh/hUZNlZ\nkxlgU5nQp3SeAn1dprD7MysEBsoJxhCYFUI6cebkEK69feGMjKJwLFSJ8crR0I3jMo3cfAnOdxpn\n3zAMDrsHbDYbwqzo5oMIs3i4/EpyZjEUlGTDNGKDy+kNeX6/0wW+MifEnrHBrBBoBN181Im6jOim\nT6LQXR+CIKAbGENRWXQPhrVr16I6T4wes2tyvnS6E+kaKfIlMBviXw2NmSJnGFHBhD5cHgcFJdlh\nO7cyWUYMlGNNYHwmA/Uc+aoHo6aLLpBRkwNcPgcSWfQPBiGXjdJsIc4ZHVSISCsUeWKYjfa4M42i\nDShTRUkEt5GfqUPIPOjmo7Z5Essyops+iUI3fY4f6MPZk7rJz0P9Yygojj44PKFPrUqcMfUIka4R\nX8BFlog/2SYiVkZTsEKYqk9ppQJ93WEMArNCYKAaJoZAX2wWF+xWN7rbL1bE6vrHUFASe7ZQTb4I\n7YbMXyEAwUwj00h8bqNUuIymkq+RwWHzwGaZWcHM1CFkIHTyUfsDBJxeP8QJGAQ66UMGdNJnRGdF\nUXkOxs3OyQfEUIwGYUKfaqUYHQnm59OF2a5RIplGY+bku4ym6sNms1BckRtylUBWlhFjEBhCYvf4\nIeJxoh5Az5Bchgct0BRno6xKie52AzxuH8bMDuRrZjZQm40CGR8uXwCjjswpUAtHbp4koRWCPDd1\nKwQgmH7aH8ogMHUImQedfNSJxg8AeulDBnTSZ3go2D1zXk0eus+OQDcwjnyNdEZ7ikhM6MNisVCl\nFKEjAwLLs12jeDONnA4PAoEARGL+7BuTyKX6lFUr0dNhhO+SrDBmhcBAKYmMzmSgnolxjOXVedCe\nN6O/2wRNHPGDCebnidAxB+IIEzGEcINswhGMH4ijmr9AJdm5IihVEnSdGZ72PVkxBMpzCltbW7F9\n+3awWCxs3LgRdXV1Ybc1m83485//jEAggHnz5uG+++6jWjxaQScfNRkpp3TShwzooo/D7oHb6UN2\njggsNguqQjlOHOrHDXeG/7cViqn6zM8T4aOz8Rdt0YXZrlGWiA8ulwObxQ2pPPoH6MiQBXlqaaLi\nxUwofRqWF6HlqHZa8WFwhUBzg0AQBLZt24YnnngCAPDss89GNAivv/46Nm/ejOrqairFYogCZhYC\nfRkZsiC/QDrZkmLegnwM9JjjyjCaYL5SjD8a+kEQRMrfgqkm98IqISaDoLNCVZB8gxCKqloV9v7z\n7GTWk6NfBxYL4EgSj29Q6jLS6XTQaDTg8/ng8/lQqVTQ6/Uhtw0EAhgeHp7TxoBOPuoxlw9yYWLv\nC3TShwzoos/w0PRh7ZW1+SgszYmpIA2Yro9CzIOAw4be6iFNzlQQzTWKJ44worMgL46AfaKE0ofL\n46B2SQFaj2kBAH2vbEPh5lvA5ib+fk+pQbDZbBCJRNi6dStee+01iEQiWK3WkNtaLBZ4PB78+7//\nO37729/iyJEjVIrGMAtmhxcKUXQ9WxiSy/CgBaoC+eTn7FwRNn93RcLHrZ4rcYS8mamnXo8fp08M\nhtw+ECBgHLYhX0OPFQIANCwvRlvzINxjVgxt24nSb99FynEpNQgSiQQOhwObN2/Gli1bYLfbIZWG\n/qNKpVKIxWL87Gc/w69+9St88MEH8HjS+20lVujiowYAk8OL3AQNAp30IQO66DNyIaCcKJfqEwws\np3c9QjTXqLA0G+dOD2OoPzhBzef1Y8ebzdi5vTXk2MpRox0iCR8CYfJfkMLpo8iXIDtXhJb/egeK\nK5Yjq0hNyvkoNQhqtRo6XbC0niAI6PV6qNWhBedwOFAoFBgbGwOXywWPN/sff+pyqrGxkflM4ufu\noRHoeztpIw/zOfjZ5fTCbnPjTMcJ0o/vHe6ZTD2li75UfFYVylFcw8a2Vw+jvUWHD986CYt1HDkq\nzmTR19TtDTorODwPbeSf+CyQ2GB8awfKvntPzPuHg0XEmn8VIy0tLZNZRnfddRcaGhoAAE1NTRAI\nBFi6dOnktkajES+99BIcDgdWrVqFm266Kexx9+zZM23fTKCxsZE2b6EPv3cWj11VinkJVGbSSR8y\noIM+/T0mNH5+Dlu+tzLhY12qj83twzfePo33v9mQtgWJsVwjvXYc7289joKSbNyyZTHajmkx2DeG\nm+5umLbdV592gMfnYNXVlVSIHJFI+gy8vxvHfvM/uPHQm1G35AaA5uZmrF+/PuRvlKedNjQ0TBqB\nqaxatWrGd0qlEr/85S+pFokhCpgYAj3pOj2CkjBTsxJFIuBCKeKh0+hATX7kucGZgLpIjm//7Arw\neBywOWyUVipxcG/3jEyrEZ0VS1aWpFDS0Jj3NIJ75ZXobNOjYXkxKcdkCtNoRKrfPifw+ANweAOQ\nJZhlRBd9yCLV+njcPpw5OYSGy8n5xx9Kn+vnK7DjtIGU46eCWK+RQMgDmxN8DMpzs8DhsKbNXSYI\n4kKab/IzjIDI+tjae1G6btG0jreJwhgEhhmMOnzIyeKCneH56OnG2ZNDKCrPgSw78RYF4bhpvgJH\ntRYY7HMroQMItvAomTe9xbTd6gZBEJDIEu8TRCYBnw/2nn7Mv3YJDHpryGB4PDAGgUZEE/RJBmRk\nGAH00YcsUqkPQRA4cbifVNdFKH0kAi6uqczFP9rSc5WQ6DW6tHnciM6KPI0sZcV64fRxnB+EIE8B\ngVyCqoUqnD1FziqBMQgMMzCTZBAYyEN7fhQBH4GSeQrKz3V7XR4+7TTB4fFTfi66UTJPgYEeMwL+\nYPM4gy5YFU43bB29kCwIzmuuWaTB2VPkzMVmDAKNSLWPegITSQFluuhDFqnU5+ShfixeWUzqm2o4\nfTRSAZYUSPFpZ+jpXHQm0WsklgoglQsxPGQJpsoPWuJqKU4W4fSxtfdAMr8cAFBcngu/L4CO1tBd\nIGIhIYOwe/fuhAVgoB/MCoFeeNw+9HQYsHBpYdLOefciFf5+Qo+d7caYO4OmOyXzFPjs/Tb87ff7\noNeOo6gsJ9UizcDW3gPphRUCi83CjXfVY8+HZ2C3uhM6bkIGYf/+/QmdnGE6dPG5m53krBDoog9Z\npEqfwb5RqApkpFfKRtKnWinCv3+9Cv88a8Tjn3VjzJkew3PIuEbL1pRixboKbHp4BR5+dB2lQfzZ\nCKfPVJcRAGiKs1G/vAiffdCWkAGfNa/wvvvuC7lMJQgCXm963CQMsRF0GVFeosIQJQO9ZhRTVHsQ\nifLcLPzXbfPxu73n8XmnGXcvUiVdhlQgzxFBnpPayWiRCHi8cPQNQjxveoLB6qsr8caLTfj8g9Ng\ns1mwWd1Yd+N85CqjrymZ9V99WVkZfvvb38YuNUPM0MXnTlZRGl30IYtU6TPQY8YV15HfBTgafbhs\nFhZpJOgbJSetkWrmwj1n7+5HVrEaHOH0VFgOl41btyzG6RNDkEgFsFvd6DozjMuvrJhxjHDMahCW\nL18e9cEYMgOTw4fcGErhGajD4/bBOGxLaBpaoqilfBweGE/Z+RmmY+vogWR+6Id8jlKMtddWAQBE\nEj5ajw/i8iujP/asMYRbbrkl+qMxJAQdfO5efwB2jx/yrMRdRnTQh0xSoc9g3yhUhTLweOQPK4pW\nH7WUD50lPQrV5sI9Z20PbxCmUliWg6G+UQQC0ccUmLRThmmMOn3IFjJVynRhoMeM4vLkxw+mopIK\nMGL3IDDHso3oiq2jdzLDKBJiiQBiqQAjOkvUx476NfC5554LGVx+7LHHoj4ZQ2To4P80ObxQiMlx\nF9FBHzJJhT4DvWZccT01UwSj1UfIZUPC58Dk8CJPzKdEFrKYC/fc1BqE2Sguz4W21wx1oXz2jRGD\nQbj11lunfe7o6IDLlR6BJoboMTm8TPyAJkzEDwqKUxc/mEAjFUBv9dDeIGQ6fqcbLt0IRBXRNTgs\nLs/F2RYdLlsbnQGJ2mVUW1s77b877riDMQgkQwf/J5ltr+mgD5kkW5+J+AGXgvgBEJs+Kikf+gSL\nnpJBpt9zjt4BiEoKweZF9y5fVJ6DwfOjIKKMI8QdQ3C73dBqtfHuzkBTgo3tmBoEOtB1ZiTl8YMJ\n1FI+9Nb0CCxnMh7zOHiK6FeMEpkQWSIeDMOhZ9lfStT/8qcWqBEEAR6Ph9tuuy1qwRhmhw7+T7PD\nS9pwFDroQybJ1Ke9RYeeTgPu/f7MQVJkEYs+aqkAbXobZbKQRabfcz6rDTxZbP8+i8pzoe0djaon\nU9QG4fXXX49JCIb0hKzGdgyx0dY8CLGEj9JKJYaHLNjzz7PY+OBlEEvp0YdfLeVj9zlmhZBqvOM2\ncGWxdV8tLs/FuTPDWLq6dNZtmbRTGkEH/6fZ4SOtsR0d9CETqvSxW9344qOzOLC7C//zh3344PXj\nuH5DHeVdNmPRRy3lQ8fEEJLOpfr4rDZwY14hXIgjRJE2HPUKwWaz4YMPPkBnZye4XC7q6upw8803\nQyCgxxsMAzkws5STz5mTQ6isVeHGu+phHLbBYXejpIL6uQexkC/mY9zpg8cfAJ/DvEemCp/FDp5M\nEtM+UrkQbA4L46NOZOdG7tEU9ZV9/vnnweFw8J3vfAff+ta3YLVa8cILL8QkGENkUu3/dHj8cHr9\nkCc4S3mCVOtDNlToQxAEWo9pUb8s2NpaqZIkzRjEog+HzYJCzIPBRm+3Uabfc16LFdwYDQKLxYKm\nKBv6KNqPRG0QbDYbtmzZgtLSUpSVleH++++H0WiMSTAGetNlcqIsNwscNlOlnCx0A+MIBAgU0rDn\n/qUE3Ub0NgiZjs9ij9kgAIC6WA6ddmzW7aI2CIWFhRgbu3hAo9GIoqKimAVjCE+q/Z/njA5UKclr\n+5tqfciGCn3ajgdXB6mY2RurPmqJgPapp5l+z/kstphdRgCgKZZjqH92gxC1b8BgMODxxx9HSUmw\nB3dXVxeKiorw+9//HgDTwiITOGd0YDEN58dmKh6PDx2tetz/o/Rwc6ilfAynQWA5k/FZbPGtEArl\nMOht8PsCEbeL2iDcc889MQvBEBup9n+eMzqwsSGftOOlWh+yIVufk4cGUFCSDalcSOpxoyVWfdRS\nPpr66N0GO9PvOa/FBq40doPAF3CRoxBhRB+5QC1qg1BbWxuzEAzpg8Pjx4jdi9Kc1I0LnCsQBIEj\nX/bg1FEtNj5wWarFiRqNTAA9zYPKmY7PYgNPHrtBAIJuI93AGBAhMTSm/LG2tja88cYbeOONN3D6\n9Om4hGIITyr9n10mJ8pzhOCSGFDOdH9uvOz7pB1nW3TY8t0VyIlhvCHZxB5DoH/7iky/5+J1GQHB\nucu6gchxhKgNws6dO/HWW29BrVZDrVbjzTffxKeffhqXYAz0g+yAMkNoLGNOnDkxhE0PrYBElhpX\nUbxkZ3Hh9gUHKDEkH4IgLriM4nuJUBfJoZsl9TRql9H+/fvx1FNPgc8Ptr+94oor8NRTT+GGG26I\nSziGmaTS/0lFQDnT/bnxYDbYoVRLIaRBi/FY9WGxWCiSC9A/5iKt3xXZZPI9F3B5wGKzZ8xSjhZF\nvgSOWVx+Ua8Q2Gz2pDEAAIFAADabqVjMFDqNDlQzKwTKMY3YoMiLb8lPB0pzhBgYY9repwKfNf7V\nAQCw2SyoCyO3Q4n6iV5cXIw33ngDer0eer0er7/++mQKKgM5pMr/6fD4YbB7UZpDrgsj0/258WA2\n2JFLk7frePQpyRain8YGIZPvOe+4FVx5Yqt4zSzDlqI2CA888AC4XC7+9Kc/4fnnn4dAIMADDzyQ\nkHAM9KDL5ERFrpCpUE4CJoMNijx6GIR4KM4Wom+UvgYhk/FZ7eAlsEIAgJVfmxfx96hiCB6PB0aj\nERs3bsSmTZsSEoghPKnyf3ZSFFDOZH9uvJhH7MilicsoHn1KsoUYGKevQcjkey64Qkjs3uHxI0/f\nm9UgnDx5En/961+hUCjgdDrxk5/8hHEVZRjnzU7UqtL3rTVdcDo88Pn8kMjSt0NwgUwAo90Ljy8A\nPpeJISYTn8UeV1FaLMx6Rbdt24ann34av/vd7/Dzn/8cb7/9NqUCzWVS5f802L3Il5A/PD2T/bnx\nYDYEVwep6FsUinj04bJZUEsF0I7Ts4VFJt9zPos1rj5GsTCrQeByucjPD7YzKCgogNPppFQghuRj\ntHuQJ059GmSmEzQI6b8SK8kW0DqwnKnE2+k0FmZ1GZnNZnz00UeTn41G47TPN998MzWSzUFS4f8k\nCAIGuxdKMfkrhEz258aDyWCDIp8e8QMgfn2KaZxplMn3nNcaf5VytMy6Qli3bh2cTufkf1deeeW0\nz7PR2tqKX//613jyySfR1tY26/Y+nw+PPPIIPvvss+g0YEgIu8cPNgsQzxJsYkicYEA5E1YITC1C\nKvCNxz4+M1ZmXSFs3Lgx7oMTBIFt27bhiSeeAAA8++yzqKuri7jP559/jvLy8rjPmc40NjYm/Q2H\nqtUBkBp9qCRRfeiWchqvPiXZQmw7NUyBRImTyfecz2oDT0Zte3pK0wR0Oh00Gg34fD74fD5UKhX0\nen3Y7T0eD1paWrB8+XIqxWKYgtHuhZKJH1COz+uHzeKGfJaZtulAcbYQgxY3/IHZh7YzkIeXDiuE\nRLDZbBCJRNi6dSsIgoBIJILVaoVarQ65/SeffIIbbrhh2mS2uUQq3myoDChn0psakJg+o0YH5DlZ\n4NBoQH28+gi5bORk8aC3ulGYolkO4cjkey7tVwgSiQQOhwObN2/Gli1bYLfbIZWGVsjhcKC9vR2L\nFy8GEHQ3MVAPlS4jhovQLaCcKMEWFvRMPc1UgllG1K4QKDUIarUaOp0OQPABr9frw64O2tvb4fV6\n8fzzz2PXrl348ssvodVqIx5/ao5uY2Nj2n/+61//mvTzT7iMMkUfKj8nos/J42fhcJkzRh+O3YSv\nTrbTSp+p39FFHjL1sY0YJwvTEj1+OFgExa/iLS0t2L59O1gsFu666y40NDQAAJqamiAQCLB06dIZ\n+3z55ZdwuVy4/vrrwx53z549IfdNZxobkx8Q+9WnXbh9YR4uL5aTfuxU6EMliejzz7dOYt6CfNQu\nKSBZqvhJRJ+dHSa06Kx47KoycoVKkEy+53ZXX4d1R94FLztyx9LZaG5uxvr160P+RmkMAQAaGhom\njcBUVq1aFXafdevWUSkSbUnFjWywe6EUUeMyyqR/mEBi+hj0Vqy8KnJjsWSTiD41+SK8fTJ8gkiq\nyNR7jggE4LM5Emp/HQ30iXAxpAQmy4h6vF4/LKPOjKhBmKAkWwi7xw+Dnd4jNTMFn80BjkgIFofa\neiHGINCIaHx8ZOLw+OHzByAVUHOTJVsfqolXH9OwDTlKMTg0awaXyPVhs1ioU0vQpreRKFHiZOo9\n57PYKO9jBDAGYU5jdAQzjOjSbC1TMeityNNQmy6YCurVErTq7KkWY07gS2CWciwwBoFGJNv/abR7\nKHUXZao/N1YMOivy1PQzCIlen3qNBK00WyFk6j3ntdgSnpYWDYxBmMMY7V7kUdD2mmE6I3oLLQ1C\noszLzYLB7sGY05tqUTIen8WW8LS0aGAMAo1Itv/TYPciT0TdCiFT/bmxQBAEjHobLV1GiV4fDpuF\nhSoJ2obp4zbK1HvOx6wQGKiGapcRA2Add4HDZUMsSd8paZGo14hp5zbKRLwWOxNDmGtkUqdTIHP9\nubFg0FuRp6Znywoyrk8wsEwfg5Cp95zPYqV8FgLAGIQ5DTMpjXqCBiGxylI6U60UYdDiht3jT7Uo\nGY3PYmfSTucaqYghUOkyylR/biwYdPRNOSXj+vA4bFQrRTg9TI9VQqbec15mhcBAJS5fAC5fAHIh\n5d1L5jR0TTklk3q1BK16+gSWMxGfxQ6enDEIc4pk+j9Ndg+UIh6lRWmZ6s+djU+2t+BEUx9cTi8s\n4/RtWUHW9anX0CeOkKn3nM9qm+x0SiXM6+Ec5WDfOCqV6T+9i25Yx13oaTfA5fSicdc55CrFtBqK\nQwU1+WL0mJ1w+QIQ0qw9R6YQnJbGrBDmFMnyf467fNjWMoJvLdNQep5M9edGYrBvFEVlOdhw3zLc\n/Z3LcdVNC5IgWXyQdX2EXDYqcrPQPpJ6t1Em3nMBtwf2rj6IygopPx9jEOYgbzTrcWV5Nkqy6TX+\nMBMYPD+KwrIcAICqQIaSeYoUS5Qc6tVMPQJVmJtOQFJdBkFeLuXnYgwCjUiG/1M77sIX3WZ8c2no\nyXVkkqn+3Eho+0ZRWJqTBGkSh8zrQ5e+Rpl4z418fgB51yVHL8YgzDFeParD3Q0qZGcx9Qdk43Z5\nMWZyQFWQuXUH4ViokqDD4IDXH0i1KBkFQRAY+bwR+deuScr5GINAI6j2f3r8ARzTWvD1GiWl55kg\nE/25kRjqH4O6UE67uQfhIPP6iPkcFMoEOGd0knbMeMi0e+6rv78LFosFyYKKpJwvPe5cBlLoNDhQ\nki2EmE/t1KW5inZK/GAuEqxHSL3bKJPwHzuD/OvXJm1mCWMQaATV/s9WvQ316uTlxGeiPzcSg+dH\nUVianSRpEofs60MHg5Bp91xWhzZp8QOAMQhzila9DfUaejZaS3d8vgCGhywoKJm7K4QGjQRnR+wY\nZUfU3o0AACAASURBVOYjkILbYIa9ux+5Kxcn7ZyMQaARVPo//QECZ4btqFMlzyBkmj83kj7Dg+PI\nUYohSKNWIGRfH5mQiyvLs7HjtIHU48ZCJt1zhj1NIGrKwOYnLwGEMQhzhG6TE/kSPmRp9MBKBwiC\nwPCQBUf396aVu4gq7qpX4eN2E5xepvtpoow3nwGnpjyp52QMAo2g0v/ZorehPsl9+TPNn3upPg67\nB6+/cBA73miGMl+ClV+blyLJ4oOK61MoF2CRRoJP2k2kHzsaMumes7S0Y8ntNyb1nMzr4hyhVW/D\n1yrmrn+bCtpbdMhVinHzPYvAYicnCyQduHuRCk/t6sGttUrwMryPE1UEvD7YOnohratK6nmZq0Uj\nqPJ/BggCbSlYIWSSPxeYqU/7KR0WLi1MW2NA1fWpVopQLBfgg7bkxxIy5Z6zdfZCWKTGoRPNST0v\nYxDmAH2jLkgFXCiY6WikMT7qwKjJgdLKudGrKFb+vzXF+PycGX/8qg8uH1O9HCuWUx2QNVQn/byM\nQaARVPg/Pf4APmgzoCEFc30zyZ8LTNenvUWP6oWqtG5tTeX1KZIL8efbquH1E/jRjo6kBZkz5Z6z\ntLRD3rAg6fqk793MMCvdJgd+uKMDFrcPDy6nttU1VXS3j+Cdl4/g4J4uDPaNwk+TXjlnTw2hZlF6\n/k2TRRaPg8euKoVSzMeB8+OpFietGG/tgKx+ftLPyxgEGkGm/7NNb8Mvdnbjzvp8PHlNeUqa2SWq\nDxEgsP+zTpRVKuDx+LDnn2fxl2f24r2tx9G46xx27ziDf7zRjO6zIyRJHJkJfQx6K9xOX9p0NQ1H\nMvztLBYLV1fmYF/PKOXnAjIjhhDw+WA70w1ZfXXS9WGyjDIQg92DZ/b24tF1pVhenL6dN7vaR8Dh\nsHH5uorJXi4OuwcDPWYY9Fbk5okhFPFwtLEX82rykyZXe4sOCxo0aRtMTjarS+X484EBWFw+pg4m\nCuzn+iAoyAdXmvzRq8wKgUaQ4S/0+AL47e5e3Fabl3JjkIg+BEHg0N5urPzavGmNvURiPubXq7H2\n2iosXV2KlVdVwKCzwmZxkSFyRNauXQuCINB+SocFGeAuSpZ/OovHwfIiGfafH6P8XJkQQ7C0dEBW\nHwwoMzEEhoT4S5MW+RI+Ni1SpVqUhOjtNMLvD6Byljd/Lo+DigV5OHd6OCly6QbGweGyka+RJuV8\nmcK6eTnY150ct1G6M34hoJwKGINAIxL1F+7vHcMpnRU/u6Ikae1yIxGLPh63D4e+6MZn77fhq087\n8NVnHVh51byo3DLz69ToaNMnImpUNDY2BlcHDRpa/H0TJZn+6cuLZOgxO2G0eyg9TybEECytnZA1\nBAPKydaHMQg0wZ1grvaIzYM/HxjAL64qgyiN5h0QBIHWY1q8+p/7YRy2QV0kh0DIRe3iAlTXRzfm\ns6xKmRS3EREg0N6qY7KL4oDPZWNViRxf9VLvNkpn/E43rKe7Jl1GyYaJ8NAAh8ePb7x9Gq/fszKu\n/f0BAn/Y14c76vKwID/5gahwROP/7GwbxtH9vbjtG0ugKY6vOdxUt9GSVaVxHSMaSgpqcF7eiRwl\nff7GiZBs//S6ihy8eUKPDXXUJQCkcwyBIAi0/fR3yL9+LXjyoEuSiSHMQU4P22H3+HF62B7Tfn2j\nTrxyZBD3bzsDPpeFuxvSL25w6nA/Vl9dGbcxmCAZbqOzp3SoWVRA6TkymUUFEpwfdWLc5Uu1KLSk\n+z9fg+P8IOr++MuUyUC5QWhtbcWvf/1rPPnkk2hra4u47f/8z//gN7/5DZ566imMjCQnt5wOtOpt\nEPHY2HmsPep9zo7Y8bOPzgEAnrq2HM9ePw8cmqVBzub/HDXaYRy2oXJh4oasrEoJo96G4SFLwscK\nhc/rx9mWQSxoiM6NlQ4k2z/N57CxpECKowPUXCMgPWMIBEFA+/ePoH3zQyx57TlwsgSTv2VUHQJB\nENi2bRueeOIJAMCzzz6Lurq6sNs//PDDAIC2tjbs2LEDDz30EJXi0YYWnQ23L8zDl+1DUW0/6vDi\n6T29+NmVpVhVKqdYOuo4dXQAC5cVgkvCUHouj4NrbqvFjjea8Y1/WQWxRDD7TlHisHlwcE8XxDIO\nJDIhacedi1xeIsfh/nFcU5WbalFogbnpBDqf/St8NgeW/d9/h1ClTKk8lK4QdDodNBoN+Hw++Hw+\nVCoV9PrZl/VZWVng8eZGIzaXL4BusxMb6vJh8vFm7fniDxB4du95XFeVS3tjEMn/6fP6cbp5CA3L\ni0g734IGDWoXF+DDN0/CT0JDNbfLi3072/Hqf+4HQRDY/J0rSJCSPqTC3355sQzHB63wBQhKjp9O\nMQTzwRM4+fATKP7WHVizZyuktZUztsmoGILNZoNIJMLWrVvx2muvQSQSwWq1zrrf3r17ce2111Ip\nGm04O2zHvNwsyIRcVCqycCZCHMHjC+D/fNUHPpeFby5Nj0yXgD+AgR4zCGL6A+Dc6WHka6TIUZAb\noF1zTRWyRDx88XH07rdLIQgCZ08N4X//1Ai304dv/XANrr19IaRyZnWQKAoRDwUyAU7rbakWJeWM\nHW+D5o5rUbjxRrA49MgMpNRlJJFI4HA48J3vfAcA8NJLL0EqjVzQc/z4cRQUFKCwsHDW4zc2Nk5a\n0AlfG90/r1mzBg5vACeONAEAurPmoV4jQWNjIzxDY2jVSLCsSIbGxkZonWzU1TegOk+EXV81Yfug\nAJUaBZ5YX46mgwdooU+kz6dOnoGCvwgjOgvkeSyU1wlw5ZVXYMzswBc721BYyccEZJ7/xo31+Nsf\n9sJNjODrt18FANj3xX4Mdnugzg/WEOhHhsAXsrFk2UIo8iVoPX0cBAHkyyvR3NSHsVELyusEuP6W\nusnjt7a24vvf/z5t/r6Jfk6VPpcXy/DeobOw5ntIP/7Ed3T4+8722fXVISy448aU6BMOFnHpqxuJ\nBAIBPPnkk3jiiSdAEASeeeYZPP3002G37+npQWNjI+67775Zj71nzx4sXbqUTHGTwitHBvFppxl/\n27AAuSIe/vWjc7hnkQrLi2V47dMmtPqU+OPNVdCOu/DjDzuhlgrQP+YCj8PCPYtU2FifnxZFUdrz\no3hv6xEsXzsPy9aU4ZNtp+D1+FFUnovmg3247IoyrLiygrJ+QD0dBuz58Ay+9aM1YLPZeH/rcWSJ\neCgszQFBEHC7fLBZXLCMuWAascHt8oHDYUGplmLJyhJU1uSDfUlr66kvIJlAqvTpNDjw3L7zeHVj\nLenHTqdrdODq+1D3x19AviT834EKfZqbm7F+/fqQv1FqEACgpaUF27dvB4vFwl133YWGhgYAQFNT\nEwQCwbSH+g9+8AMoFAqw2WyUlJTggQceCHvcdDAIPSYnfASBaqUIAPDRWSPeax3BZUUyDFncePKa\nctz1Rive2lIHMZ8Dh8ePTX9vw/Z76/H4p91YXSbHhrp82D1+WNw+aKTkBUqpxO8P4JU/foWrb65B\nZW0wgygQIND4eSfGR5248oZqyHNElMvxybYWCLN4cNjd8PkCuHXLErDDGCCnwwOP25cUueY6AYLA\nlr+34Y83V6NQnh73NNkEvD7srroG6898Co4oua7ISAaB8sK0hoaGSSMwlVWrVs347oUXXqBaHMpx\n+wI42DeGD88YMWzzgMNiIU/Cw/IiGXacNuA/bqlGvoSPH3/YiT/u70dJtvD/tXfn8U1V+f/HX1ma\ntkn3dEkXWmhp6cIOpcomoGzixio6iuKMfsffADMMX3X0JyM64zgj49ffLP4cYRi/M65ft1ERBUVb\nFIEie6G0tKVA9zVt06RJmuR+/yhU0a7QNjftef7lI94m5+313pPcc87noLu4slirUREb5MOf9l7A\n7nRxa2oYADqNqv0YT3Amp5KAYN/2zgBAqVQwc8HA1neffVMyLz+/l5AwHUtXT+60MwDw1Wrw1Wo6\n/fdC31EqFMyMD+b9U9X8bOowdzfHLSxnS/CJDB/wzqA7YmHaFfiquIHq5m9rsrgkiYMljTyTeY6V\nr59kZ349S0eH88rtafz3ilRuTgkjt8rME3PjiQrwRq1U8KvZcew738jYyG93Mtu7dy9jDDqyzjaw\nfkas7NYV9IQkSRz8qpgpM+PdPifcV6vhjv/IYPGqSXh5XX2H6u48fc2dee6aYCDrbANFdZY+fV9P\nOUem00X4pyR0e9ygWocwGB0tM/Hnr0twSRLpMQHEh/jycX4tWi8VC0bp+WlGNMHay6fMzk4IZnbC\n5ZupxAT6sOmGERi+9xhoXpKeBL2WESG+/Z6lP5wvrENySYxICqW8Jt/dzRk0ZSYGmwAfNfdMiuSv\n+0r5r5sSPWJcrC+Z8orwS+6+Qxho/T6G0F/cMYbgcEn89L08Vk+OZFykHx/n1VHaaGNhsp7kMO2Q\n+5+6I29t+4a0CVGkTex+lpgwtDldEus+zOe2tDDmJurd3ZwBdeSeh4latgDDzXMG/rPdOYbgySRJ\notnuxN+77T/TB6dqCNN5MTUuEIVCwQoP33Ogr5UU12OsNZM81jPWSAjupVIqWDt1GBs/PYufRi37\nhZZ9yXT6LH49eGQ00MQYwkWSJFHdbMfhktqeg5c08vMPz7DytZNs3FXEV8UNvHm8igevjem3XwKe\n8vyzIw31Fj568zhzb0tDdbEUhSfn6YjI0/eSw3X83znD+duBUp7JPHfVhe/kkKk7jmYztpo6dCO6\nX6UvxhDc5NWjlbybU43dKaH1UhKs9eKuCQamDAsgq8jIa0cruDFZT2yQvGYFyEGLxc57/32Ya2Yn\nED8qzN3NETzM+Ch/XlqawsuHyln7QT7PLEgg+gpWhVc02bB2XflFFprzi/FLHC6b1cnfJcYQgJZW\nJ6v+J5fnb07E4O9NvaWVUJ0XSjEm0C1rSyv//tcRIocFMutG92z7JwweH52u5dUjFfxmfgKJoT1f\nE3K83MRTnxejVChYnBbGbWlhst0oquTVDzAezGHsnx93y+eLMYRufJJfxxiDHzEXv5WE+4n56D3R\nUG/hvX8eJi5Bz3UDvMZAGJxuSgklyEfNYzuL+Pn0YUwf3v0+GXnVZn77xTk2Xj+CUJ0Xrx6p5M43\nTpKg1zIqTMv8pBDiguUza69tymm8u5vRoSE/huBwSbybU83t4/pvF6ee8oTnn5dUljbyxkvZjL8m\nlutvSe2wBIUn5ekJkWdgTB8RxFPz4nnpQBkv7CvBZHOwu6CeRz8p5KUDpdi/U8n2REUzT3x2ll/O\niGV8lD/ncg7xq9nDeWVlGneOj0CjUvDIJ4WUNfbv9qq90Xz6LH7JPesQxJ7KAyyzqJ7oQG9GhYn5\n6j1ltznY/sYx5tyUwsR+3LJSGLpSwnW8uHgUdRYHK17NIbPIyLwkPdXmVtZ8kM+h0iZ+90Uxv886\nx/oZsT+YoeTvrWZSTAD3To5i1cRIHttZRL2l1U1pviW5XJhyCwhIS3R3Uzo0JMcQ9p5raC8zvfdc\nA+umDWNyTEBfNm9Q+3x7LjargxuX/7AkiSD0JUmSaGl1tY8HSJLEZwX1/OtIBXMT9awYG45vD1ah\nv3q0kr3FDTw9PwG9zn17rZhOF3F09a+YeeBtt7VBjCFcJEkSrx2rYld+HTentO1MdMd4A5Oiuy7J\nPdRJktQ+1ba0uJ6CU1Xcs26am1slDAUKheKywWGFQsG8JD3zknq3kO1H4yNQAA/+O4+104YxY8TV\n7eF9pYzZxwnOGOeWz+6JQd8h7C6ox2RzoNd5cajERGGdhf93SxJ6rfx2ZJNj6V673cEbL2VjbWkl\nMiaQqrImrr8ltUeF4OSY52qIPPLXWSaFQsGPJhiYGO3PH7LO82FuDaE6L/w0KuYn6RnZixlNV8OY\nfRz9jPQeHz/Q52hQjyF8WWzkX0cqKGuykVloRELij4sSZdkZyFXWjjzCDP6suC+dkSkRXDsngcRU\nsUJb8EyXxiaWjA5nYrQ/IVovHt1ZxN7ihl6/lyRJ2J0936pVkqS2XwjXyPcXwqAdQ6hutrPm/Xye\nmhdPcrgYML4SBaeqyPokj1VrpuHtM+h/TApD1JlaC5s+O8u8xBCmDAvE4K9BpVRQ3mSjrNFGhclG\neZONWnMrTpeES4Imm4NacyutThfjovyZnxTC1LggvNWdf8e2XKjgwKL7mX1iu1vrng2JMQRJksiv\nsRDoqyZMp+EPWedZMiZMdAZXyNRo5bP3T3Hb3RNFZyAMakmhWv58SxL/+KacFw+UUmmy43RJRAV4\nExWgISrAmwlR/oTqvFArlagU4OetIlSnwUup4OvzjXx6po6/7ivluhHBzEsKYVQHxS6N2ccIzhgn\n6yKYg+ZK33WmnpcPlaNSKmhscZBm0LF8jGc92pDTM909n+QzNj2GqNgrH3yTU56+IPLI35VmCtVp\neHjW8Cv6zEvl7aub7ewuqOf3WefwUau4OTWUOQnB7bOgjAeO9fpx0UCfo0HRIZQ12tj2TTmbF41k\neLAvFrsTb7XSIzeYkYOKkgZKz9Uzb8kMdzdFEDxGuJ+GOycYWDk+giNlJrafrmXbwXKmDQ9kzsgQ\nTAeOE3vvEnc3s0seP4bgdEms336G2QnBLB7t/tXGnk6SJN7cks3oSTGMmdx9NUZBEDpXZ24ls6ie\nL4+e44ZNj2HIfIf0uCAxhtAfHvx3Hr5eSnQaFbemiSqbfeHMySrsNqfY4EYQ+oBe58WysRFMv5BL\nzvhU/vZNBe/m1nFbWhiTY/zxUslroqe8WtNLP582jBtHhfLo7OGDojKpu2vLGGvN7NmZz6wbR3W5\nIX1PuTtPXxN5wFpV2w8t6TtyPUcV731K4sLpbFmawqyEYN7OqeKO10/y3Jfn2XWmjpIGK07XDx/W\niP0QeiE5XCdmEfUBySVxNPsC+z8vZOr1I4kbGeruJgky5DC3sGfSYq7d9Q/Z1uKRo7q9h2jKOcPY\nFzahUipYOErPwlF6qkx2sksaOVJm4pUjFdSaW9FpVIRovYgP8SVR74vKNrBfdD1+DEG4ejvfzaGu\nupmFy8cSIjalFzrRcPgkBxY9QMxdtzD6j79yd3M8gsvhYN/c1YzccB+Gm2Z3eazTJWGyOaiztFJU\n18KZWgtfnm1gcow/d0+KJNLfu0/a1NUYgkc/MhKuXtHpakqLjSz/cbroDIQuNZ0sIGzuNCq3Z2I3\nNrm7OR6h9NUP0QQHErFoVrfHqpQKgny9SNBrmZekZ83UYby8IhWDvzdr3s9n464iPsmvu+ptRrsi\nOgQZGejnhdaWVj774BTzlqSh0fT900O5Ps+9UkM9j+lUAaHXTSF87lTK3vyon1p1deRyjiSXi5rd\n+yj84zZSfvuLK55VdPTgflZNiuRft6cxZ2Qwh0qbuO/tXF46UIqxpe/LeXv0GIJwdTJ35DEyJYLY\n+N5VjhSGpqaTBUQumUfgxFSOP/gEwx+4XZb7Avc3u7GJlgvlKNQqXDY7dXsPU7N7H7aKGvxSEvAb\nGUfN7n0ovNSkPfsw/qkjr/ozdRoVsxNCmJ0QQp25lTePV/KTd06THhPAaIMfYwy6PtkVTowhDCGS\nJHG+sI7iglrKzxuxmO3cs3YaGm/xvUDomuR0sjtxHrOOfYDaX8f+BT8m9t4l+MYYaCmpJHBiKv49\n3AXMkzWdPMORVQ/jFRIILgmUCoIzxhF2w1S0sVGYThfRnHeWoClj0c+Y3K/rDWrMdg6VNHGqyszR\nchPBvl7cnBrKrPjgLmsqDdp1CELPmRqt7P4wF2OtmdTxUcyYn0RkTBBeMt2IXJAXc3EpmtBgvAL8\nABjxf35E/lN/xTc2Cp/IMAr+sAXt8GiG/3QlEQuvc0sbjQdPUPXJl9TvPYS9vpEp//7/aGMj++z9\nazIPkLPmKVKf+U8Mt8zp8BhdQix0M3jcV8J0GhYmh7IwORSnS+JQaRPbT9fy94PlzE0MYVFyKNGB\nvRuIFh2CjPRH3RKHw8WxAxfIzipiwrVx3HzHeNRdfHvoS4OtVs5QzmM6WUDA6G+nmkbeej2Rt377\nLdPV6qD6072cengz3hGhBE1M6/P2dqY5v5j837xA85lzOK9JY8Jv19Nw5BRH732EjO1/Q6278r0O\nTHlnqfnsa+r2HsKUW8SEl39P8JSB2ymwp+dIpVSQERtIRmwg5U02dpyu5Rfbz5AaoWPluAhSejg9\nX3QIg0xRXjWN9S1odRpsNgfZWUWEGfxZ+UAG+nA/dzdP8FBNpwrw72LtgdJLjWHRLFx2Oyc3/J6p\nu/6BUtO/+47Yauop3LyNqh2ZxK9bxYRtv2PfNwcJzhhH0JSxNJ85R87a3zD+70+jUPbuS5DlfBln\nnnkJ4/5jRCyaRezqpYRMndj+C0nOogK8uT8jmrsnRbIrv47ffXGOEK2aSdEBjDZ03TGIMQQPJUkS\npkYr/gE+KJQKJJfE17sLyD1eQXxSGBazHcklMXFaHMNGhLi7uYKHO3THL4m9dzHh87sueChJEkfu\n+k+C0seQ8It7+6UtTquN81vfovjF14latoCE9avRBP9wT3SXzc7B5evwMYQx6tc/wzfG0G3bjQeO\nUfbmDqo/3Uvc/bcz/D9WotZd/WCtOzldEofLmsipNHOyspm7o5vFGILc1VaZCArRou5kw3Cb1UGT\nsYVGo4WSc0YKc6uwWlrReKtJHhdJY30LzU1WfvTgNej8+mYBiyBcYurmF8IlCoWC1D88xL55q1EH\n+GMtrcRcdB5JAqXGC99hkcT9eFm3N+eOSJJE1fZM8n/zAv5pI7nmoy3o4od1erzSW8Pk15+j+IXX\n2Df3XqJvX0TwNePwiYrAZbNTvesrqnftxdHUjErrg9NqwyvAj+iVixi18WdoQoN73UY5UikVTBkW\nyJRhgUDboHJnxC8EGfjmq2IOZBbhcDhITI1keFIo+nA/gkJ8OV9YR86hUsovNBAQ5EtgiC8RUQEk\npkYQFulPbVUzp4+X42h1MXN+UqcdijsM5WfunqCneWw19Xw1/Q6uz9vZ41kzFR98TvWur/BLjkeX\nEItSrcJla6XhaC5lb35E+PwZjFhzF34j43r0fuaiC5x66FlaG00kP7kO/fRJvcpkrazh3Ev/g7nw\nPNayKlAoCJs7lYj5M/A2hOG0tIBCgXZEjKw2sOmP/+fELKM+5HJJVJQ0EGbwb5+u6Wh1kpdTSavN\ngX+gD96+XjQ1tNBQZ6HV7sRX64XGxwtjjZmK0gZa7U6mzIwneVwkx7MvcOzABe5ZN41Dh78hRBfM\nuTM1HP76HMZaC5HDAhmbHsPiuyd2eLMPM/gTZhg10P8ZhCHEdKqAgLTEXt0ovz/ofInhljnEr1vF\nhW1vc/DWBwmaMpbo5QtpOllAbVY2jiYTfqPi8UuOx8cQildwIM15Zzn/j3dJ+OW9xK1eekVrH3wM\nYSQ/sabXfzfUiF8InXA5XVhbHNisrbhcEpIkca6gliP7L6BWKzGbbCSNNuAX4M3xgyVERAUQEOSL\nqcmK1dJKQJAvQXotGm8VLZZWbC2tBIfqMEQH4nS62Pd5IZZmO06ni9vvn0JQyJXPhBCE/nT2r69i\nq64j5amf9+n7Oi1WSt/cQdWOTALHpRA6OwNNaDCmvLa5/PZaI63GJlQ6LYmP3H9Fj5mEHxK/EDrh\ncknUVpkoOl1N4elq6qqaQaFAoWibrunjo8bbx6utFLQCwiMDuHnlOCKHBdHcZOXU0XJMDVZW/Did\n0Aj/Xn123Eg9JWfrCQzREtgHKwwFob8oNV6EXDu+z99XpfUh7r6lxN239LLX/VMS+vyzhJ7p9w4h\nJyeHt99+G4VCwfLlyxk9enSfHNsda0srJw+XcepoGSqVkoAgX3R+GlwuCafTRUOdharyJnT+3iQk\nhzFrYTKGmEAkJJBA7aXqck8AvwAfMq678pWZCoWC2ITLS0YM1WfUnmKo5hn+wO0D0Jq+MVTPUV/p\n1w5BkiTeeustNm7cCMDTTz/d6U2+N8deciz7Al4aFUqFApck4Wh1Yaw1U1djpvy8kfhRYcxZlIJK\nraTRaMHSbEelUqJSK0kZF0VEdAA+vv07V1oQBMFT9GuHUFFRQWRkJBqNBoCIiAgqKysxGH74LLA3\nx15SXd5Eq92JJIFCCSqVkuBQHeOGB7Ng6ejLpl9GxQb1cbq+N5i+2YDII3eDLQ8MvkwDnadfO4Tm\n5ma0Wi3//Oc/kSQJrVaLyWTq8Cbfm2Mvmbf4yh8pCYIgCJfr16I2fn5+WCwW7rjjDu68807MZjP+\n/h0Pvvbm2MFKLrXc+4rII2+DLQ8MvkyDak9lg8FARUUF0DZG0NUjoN4ce0lXK+48kVarHVSZRB55\nG2x5YPBlGug8/b4O4cSJE+0zh5YtW8bYsW2VAvfv34+3t/dlawk6O1YQBEHofx67ME0QBEHoW2JP\nZUEQBAEQHYIgCIJwkegQBEEQBABUmzZt2uTuRlySl5fHc889R2VlZfuAcmZmJlu3biUrK4vw8HDC\nw8O7fD0nJ4cXXniBrKwswsLC2l93l44y7d69m23btrF//36SkpLw82vbhamztsspU2/ybNmyhY8+\n+oisrCxSU1PR6XQenQfA4XCwdu1a1Go1I0eOBOSVB3qXqb6+nmeffZbMzExKSkoYN24cIK9Mvcnj\nCfeFjq6L3l77/ZZHkpETJ05I2dnZ0iuvvNL+2oYNGySn0ymZzWbpscce6/J1l8slPf7445LNZpNs\nNpv061//esAzfN/3M9lstvb2NjU1Sc8995wkSZ23XW6Zeprnu3JycqQtW7ZIkuT5eXbs2CFt3rxZ\n2rlzpyRJ8ssjSb3L9Pzzz0v5+fmX/b3cMvUmj6fcFySp7brYunVrr6/9/swjq0dGY8aMuezbGEBs\nbCw5OTkcOnSI8ePHd/n6d8tfaDSa9vIX7vT9TJIk4XQ6cTgcaLVaGhoacDqdnbZdbpl6mue7fH19\n8fJqqxnlyXnsdjsnTpwgPT29/Xi55YGeZ3K5XFRVVZGUlHTZ38stU2/OkafcF6DtulCr1b2+Iih0\nugAABIVJREFU9vszj+zLX6ekpLBnzx5cLtdldT06ev1Kyl8MNG9vbxYvXszTTz+Nr68vZrMZs9nc\nadsv/bNcM3WWJyDg2z1uv/jiC2688UZA/ueoqzwff/wxCxYsoKGhof14ueeBzjO5XC7sdjubN2+m\npaWFBQsWMGXKFNln6uocedJ94dJ10dtrvz/vCbLuECorKzl58iTr168H4Mknn2TMmDEYjcYOX79U\n/uInP/kJAFu3bpVl+YuMjAwyMjIAeOSRRwgICKC5ubnDtrtcLtln6ijPJYcPHyYqKoro6GgAjzhH\nHeWxWCzk5eVx2223kZWV1X6sJ+SBjjM5nU50Oh0bNmzA5XKxceNGxo8f7xGZOsrT2f1Cjnm+e12U\nl5f36trvz3uCLDsE6eJaOUmSsFgsQNtgntlsRqFQdPr6lZS/GChSB+v/jhw5Qlxc256ynbXd5XLJ\nMlN3eQDOnj3LqVOnWLVqVftrcj1H3eXJy8ujtbWVP/3pT1RXV+NyuUhLSyMqKkqWeaD7TCqVCr1e\nT0NDAyEhIe2P9Tz1HHnKfeH710Vvr/3+vCfIaqXy+++/z7Fjx2hsbCQlJYUHHniA9957j8OHDwMw\nd+5cZs2aBdDp63Irf9FRphdffJHy8nJ8fHxYu3Zt+zfqztoup0y9ybNmzRr0ej1KpZLY2FhWr17t\n0Xku2bNnD1arlfnz5wPyygO9y1RbW8vWrVuxWCxce+217Y/25JSpN3k84b7Q0XVx/Phx3nnnnR5f\n+/2VR1YdgiAIguA+spplJAiCILiP6BAEQRAEQHQIgiAIwkWiQxAEQRAA0SEIgiAIF4kOQRAEQQBE\nhyAIgiBcJDoEQRAEAZBp6QpBkAur1cr69ev5y1/+glqtxul0sm7dOjZv3oyPjw+vv/46BQUFOJ1O\n5s2bx8yZM9v/9q233qKgoICmpiaCg4PZsGFDe3mIrKwscnNzsVqt1NXVkZyczN133+2umIIAiA5B\nELrk4+PDhAkTOHjwIFOnTuXw4cOkpaWh1Wr57LPPUCgUPPnkkzgcDp544gmSk5PbNytZsGABK1as\nAODZZ5/l4MGDTJs2rf29c3JyePzxx9sL/wmCu4kOQRC6ccMNN/DGG28wdepUMjMzWbJkCQDHjx+n\npqaGwsJCoG2/hLKysvYOwc/Pj9zcXMrLy7Hb7RiNxsveNz09XXQGgqyIDkEQuhEfH4/ZbKawsBCj\n0UhiYiLQVi10+fLlTJ48+Qd/Y7PZ2LRpE5MmTSI5OVkW1UIFoTtiUFkQemDOnDk8//zzzJkzp/21\n9PR0tm/fjtVq/cHx5eXlqNVqli1bxogRIyguLu6wfLMgyIn4hSAIPTBt2jRee+21ywaNp0+fTkND\nA5s2bUKj0aBQKHj00Ufx8fEhLi4OvV7PQw89hF6vJy0t7bKd1gRBjkT5a0HogezsbPLz8y/b7EcQ\nBhvxC0EQulBaWsq2bdtQq9Vs2LDB3c0RhH4lfiEIgiAIgBhUFgRBEC4SHYIgCIIAiA5BEARBuEh0\nCIIgCAIgOgRBEAThItEhCIIgCAD8L+sSmQZZ6WVWAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#persons.ix[:, 'Yurem'].plot(label ='Alberto')\n",
"(gpersons.ix[:, 'Mary']/gpersons.ix[:, 'Mary'].max()).plot(label ='Mary')\n",
"(gpersons.ix[:, 'Maria']/gpersons.ix[:, 'Maria'].max()).plot(label ='Maria')\n",
"(gpersons.ix[:, 'Mia']/gpersons.ix[:, 'Mia'].max()).plot(label ='Mia')\n",
"plt.legend(loc= 'best')\n",
"plt.ylabel('Popul')\n",
"plt.savefig('names.pdf')"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Elections"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"parties = {'Bachmann, Michelle': 'Republican',\n",
" 'Cain, Herman': 'Republican',\n",
" 'Gingrich, Newt': 'Republican',\n",
" 'Huntsman, Jon': 'Republican',\n",
" 'Johnson, Gary Earl': 'Republican',\n",
" 'McCotter, Thaddeus G': 'Republican',\n",
" 'Obama, Barack': 'Democrat',\n",
" 'Paul, Ron': 'Republican',\n",
" 'Pawlenty, Timothy': 'Republican',\n",
" 'Perry, Rick': 'Republican',\n",
" \"Roemer, Charles E. 'Buddy' III\": 'Republican',\n",
" 'Romney, Mitt': 'Republican',\n",
" 'Santorum, Rick': 'Republican'}\n",
"months = {'JAN': 1, 'FEB': 2, 'MAR':3, 'APR': 4, 'MAY':5, 'JUN':6, \n",
" 'JUL':7, 'AUG':8, 'SEP':9, 'OCT':10, 'NOV':11, 'DEC':12}"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fec = pd.read_csv('data/P00000001-ALL.csv')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" cmte_id | \n",
" cand_id | \n",
" cand_nm | \n",
" contbr_nm | \n",
" contbr_city | \n",
" contbr_st | \n",
" contbr_zip | \n",
" contbr_employer | \n",
" contbr_occupation | \n",
" contb_receipt_amt | \n",
" contb_receipt_dt | \n",
" receipt_desc | \n",
" memo_cd | \n",
" memo_text | \n",
" form_tp | \n",
" file_num | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" C00410118 | \n",
" P20002978 | \n",
" Bachmann, Michelle | \n",
" HARVEY, WILLIAM | \n",
" MOBILE | \n",
" AL | \n",
" 3.6601e+08 | \n",
" RETIRED | \n",
" RETIRED | \n",
" 250.0 | \n",
" 20-JUN-11 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" SA17A | \n",
" 736166 | \n",
"
\n",
" \n",
" | 1 | \n",
" C00410118 | \n",
" P20002978 | \n",
" Bachmann, Michelle | \n",
" HARVEY, WILLIAM | \n",
" MOBILE | \n",
" AL | \n",
" 3.6601e+08 | \n",
" RETIRED | \n",
" RETIRED | \n",
" 50.0 | \n",
" 23-JUN-11 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" SA17A | \n",
" 736166 | \n",
"
\n",
" \n",
" | 2 | \n",
" C00410118 | \n",
" P20002978 | \n",
" Bachmann, Michelle | \n",
" SMITH, LANIER | \n",
" LANETT | \n",
" AL | \n",
" 3.68633e+08 | \n",
" INFORMATION REQUESTED | \n",
" INFORMATION REQUESTED | \n",
" 250.0 | \n",
" 05-JUL-11 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" SA17A | \n",
" 749073 | \n",
"
\n",
" \n",
" | 3 | \n",
" C00410118 | \n",
" P20002978 | \n",
" Bachmann, Michelle | \n",
" BLEVINS, DARONDA | \n",
" PIGGOTT | \n",
" AR | \n",
" 7.24548e+08 | \n",
" NONE | \n",
" RETIRED | \n",
" 250.0 | \n",
" 01-AUG-11 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" SA17A | \n",
" 749073 | \n",
"
\n",
" \n",
" | 4 | \n",
" C00410118 | \n",
" P20002978 | \n",
" Bachmann, Michelle | \n",
" WARDENBURG, HAROLD | \n",
" HOT SPRINGS NATION | \n",
" AR | \n",
" 7.19016e+08 | \n",
" NONE | \n",
" RETIRED | \n",
" 300.0 | \n",
" 20-JUN-11 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" SA17A | \n",
" 736166 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" cmte_id cand_id cand_nm contbr_nm \\\n",
"0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM \n",
"1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM \n",
"2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER \n",
"3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA \n",
"4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD \n",
"\n",
" contbr_city contbr_st contbr_zip contbr_employer \\\n",
"0 MOBILE AL 3.6601e+08 RETIRED \n",
"1 MOBILE AL 3.6601e+08 RETIRED \n",
"2 LANETT AL 3.68633e+08 INFORMATION REQUESTED \n",
"3 PIGGOTT AR 7.24548e+08 NONE \n",
"4 HOT SPRINGS NATION AR 7.19016e+08 NONE \n",
"\n",
" contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc \\\n",
"0 RETIRED 250.0 20-JUN-11 NaN \n",
"1 RETIRED 50.0 23-JUN-11 NaN \n",
"2 INFORMATION REQUESTED 250.0 05-JUL-11 NaN \n",
"3 RETIRED 250.0 01-AUG-11 NaN \n",
"4 RETIRED 300.0 20-JUN-11 NaN \n",
"\n",
" memo_cd memo_text form_tp file_num \n",
"0 NaN NaN SA17A 736166 \n",
"1 NaN NaN SA17A 736166 \n",
"2 NaN NaN SA17A 749073 \n",
"3 NaN NaN SA17A 749073 \n",
"4 NaN NaN SA17A 736166 "
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fec.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fec['party'] = fec.cand_nm.map(parties)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"cmte_id C00410118\n",
"cand_id P20002978\n",
"cand_nm Bachmann, Michelle\n",
"contbr_nm HARVEY, WILLIAM\n",
"contbr_city MOBILE\n",
" ... \n",
"memo_cd NaN\n",
"memo_text NaN\n",
"form_tp SA17A\n",
"file_num 736166\n",
"party Republican\n",
"Name: 0, dtype: object"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fec.ix[0]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Democrat 593746\n",
"Republican 407985\n",
"Name: party, dtype: int64"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# cumulatives over the parties\n",
"\n",
"fec.party.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"party\n",
"Democrat 1.335026e+08\n",
"Republican 1.652488e+08\n",
"Name: contb_receipt_amt, dtype: float64"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fec.groupby('party')['contb_receipt_amt'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'20-JUN-11'"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fec.contb_receipt_dt[0]"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#Convert dates to pythonic way\n",
"import datetime as dt\n",
"\n",
"def convert_date(val):\n",
" x = val.split('-')\n",
" return dt.datetime(int('20'+ x[2]), months[x[1]], int(x[0]))"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fec.contb_receipt_dt= fec.contb_receipt_dt.map(convert_date)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"party contb_receipt_dt\n",
"Democrat 2011-04-04 642985.12\n",
" 2011-04-05 308691.00\n",
" 2011-04-06 247542.59\n",
" 2011-04-07 252586.00\n",
" 2011-04-08 295802.00\n",
" ... \n",
"Republican 2012-04-26 507141.33\n",
" 2012-04-27 594893.56\n",
" 2012-04-28 80869.16\n",
" 2012-04-29 61421.02\n",
" 2012-04-30 787737.81\n",
"Name: contb_receipt_amt, dtype: float64"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#group donations by date\n",
"\n",
"by_date = fec.groupby(['party','contb_receipt_dt'])['contb_receipt_amt'].sum()\n",
"by_date"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFX+//HXpE0y6b1XakISQpEiRUBQBIUgYEFA11V3\n1V39qvtdy4p8EVndtWxh7bq7+AMLKEVFBUVaINQQSAghkFDSeyZlkkxm7v39wSYbIIUymTs3Oc/H\ng8eDO3Nn8s6ZzHzmnnPuuRpZlmUEQRAEoQt2SgcQBEEQbJ8oFoIgCEK3RLEQBEEQuiWKhSAIgtAt\nUSwEQRCEboliIQiCIHTLQekAPSk7O5tVq1YxZMgQFi5c2OW+27dv58cff8Te3p67776b+Ph4K6UU\nBEGwfb36yKKlpYU5c+Zc0b6bN2/mlVde4fnnn+ezzz7r4WSCIAjq0quPLBISEsjKyrrotvT0dL78\n8ks0Gg233347o0ePBiAiIoKMjAz0ej1JSUlKxBUEQbBZvbpYXEqWZdasWcPy5ctxcnJi2bJljBgx\nAgcHB2JjY9m5cyeSJDF+/HilowqCINiUPlUs6urqqKqq4k9/+hMABoOBqqoqJEkiMzOTp556CoBl\ny5aRkJCAVqtVMq4gCILN6BPFonX5Kw8PD8LCwvj973+Pi4tL2/3FxcUYDAYATCYTDQ0NaDQaRbIK\ngiDYIo2SCwn29GyljRs3kp6ejl6vJzY2lkceeYTs7Gw+//xzNBoN3t7ePPHEEwCsX7+ew4cPAzBt\n2jQmTZp03b+fIAhCb6FoscjIyKCxsZGcnJxui8Xvfvc7/vznP9PU1MSKFStYsWKFlVIKgiAIinZD\ndTRbqTNitpIgCIJyVDNmcTWzlbZt22alVIIgCL3LzTff3OHtqigWJSUlVz1bafjw4daKd01SUlJU\nMUVX5LQ8tWQVOS1LDTnT0tI6vc8mzuDubthElmUxW0kQBEFBig5wdzRbCSA1NRWtVnvR0cHVzFba\ntm2bzR9ZCIIg2Jq0tLROu6EULRY9RRQLQRCEq9dVsbCJbqi+KCUlRekIV0TktDy1ZBU5LUstOTuj\nigFuSzIajVRUVCgdA19fX4qKipSO0S1bzanVavH19VU6hiD0GX2qG8poNFJaWkpoaCh2duKgSs0q\nKyvRarW4ubkpHUUQeg3RDfUfFRUVolD0Ej4+Puj1eqVjCEKf0ec+NUWh6B00Gs1F06fV1B+slqwi\np2WpJWdnxCenIAiC0C1RLIRewdbPjG1PLVlFTstSS87OiGLRR6xatUrpCIIgqJgoFn3EJ598onSE\nHqWm/mC1ZBU5LUstOTsjioUNGz16NE888QRTp07l9ddfb7t9zZo13HfffUyYMIEPPvig7fbPPvuM\nZ555hlmzZnHHHXdgNpsBeOyxxzh9+jSzZ8/mjTfeAOD06dM8+OCDbY+dOXMmDQ0NVvrNBEFQmz53\nUp6aNDc38+qrr+Li4sKMGTO4//77CQgI4O677+a+++6jubmZqVOntq2pBVBWVsbGjRsvmvX1zjvv\nMHXqVDZt2tR2W//+/ampqaG2tpbCwkJiYmJwdXW16u9nSWrqD1ZLVpHTstSSszOiWNgwX1/ftg/w\noUOHUlBQQEBAAHv37mXLli3odDqampouesykSZM6nB7c0bmX8+fPZ/369Zw9e7bbKxUKgtC7nc+r\n7PJ+0Q1lw0pKSqipqcFsNnP06FFiYmIAeO6551ixYgX333//FT9XS0vLZQVj9uzZfP311xw9epTR\no0dbNLu1qak/WC1ZRU7LstWc+XlV/LjxON9+frTL/cSRhQ3z8PDgD3/4AydPnuSuu+7Cy8sLgDFj\nxjB9+nQSEhLabuvOpEmTmD9/PpGRkbz55psA6HQ6IiIi6NevX4/9DoIg2K7jRwrZ8d1JxkyKIXnh\nMEoqznS6r6JrQ2VnZ7Nq1SqGDBnSbTdIVVUVK1euRJIk+vXrx+LFizvdt7O1oYqKiggJCbnu3NZy\n88039/glYu+//37+8pe/4OPj06M/pyeo7fUUBFuS+nMux9MKmb1wGP5B7kDXa0MpemTR0tLCnDlz\nyMnJ6XbfTz75hHvvvZeBAwdaIZlt6MmrAe7Zs4cVK1Zw5513qrJQCIJw7U5llXLsYD4LHxuLq3vn\nl6duT9Exi4SEhCtaNVSSJEpLS/tUoQD46aefeuy5x40bx3fffcdDDz3UYz/Dmmy1P7gjaskqclqW\n0jkls8SuLSf54M87+H5dBrMWJF1xoQCVjFnU1tZiNBp5/fXXaWxsZPr06YwaNUrpWIIgCKrQUNfM\nT19n0dxkYu4DI/Hy0WHvcHXHCqooFu7u7ri6uvLMM88gSRJLliwhKSkJJyenTh+TkpLSNq+5taK3\nziYSepdLv7G1bl/6+tvKdutttpJH7duiPbve3rVzN8f3NTIwNozb5iVw4OC+btuzI4pf/CgrK4vD\nhw+zaNGiLvf729/+xqJFi/Dx8eGll17ixRdf7LRY9JYBbqFr4vUUhK5JZolNn6bj5GTPjLsSux0H\ntdmLH23cuJG1a9eSlpZ20bIVqamppKWlXbTvfffdx/vvv8+SJUsYM2ZMl0cVQt+jdH/w1VBLVpHT\nsqyZUzJLpO09y4dv7MJskpg+N+G6J8wo2g2VnJxMcnLyZbePHTv2stv8/Px4/vnnrRFLEARBtWqq\nDHy95ghaF0eSFw4jINgDjd31z6xUxZhFXzFr1iz0ej0ajYaEhARWrFiBh4eH0rGuyXfffUf//v2t\nNoNNTevuqCWryGlZPZ2ztKiWOn0TO7/PJvGGcEaOj7Lo9Hux3IeNWblyJTt27GDYsGE8/PDDSse5\nZps3byY7O1vpGILQaxmbTZQX13Ek9RyfvrePTavTOJJ6jlE3xXDDhGiLn6clioWNaZ1v8OCDD1Jb\nW8vRo0eRJImlS5cyc+ZMbr31VtauXdu2/6xZs1ixYgUjRozgq6++4o477uCZZ55pu3/nzp1Mnz6d\nGTNmcM8991BQUNB2X2NjIy+88AK33norM2fO5He/+91FWZKSkvjkk0+YNm0aEydOvOixr732GnPn\nzmXSpEncc889NDc3t9335JNPsm3bNl599VVmzpzJDz/8YPF2upRa+q1BPVlFTsuyZM7ykjrefXU7\n335xlPwz1YyeFMODT01g/oM3kDAizGI/pz3RDXWJWz46ct3PsfWhYRZIAsOGDSMrK4sjR45gZ2fH\n5s2bMRqN3H777YwZM4aIiAgAoqKiePjhh1m1ahWrV69m1KhRvPnmm1RVVfHkk0/yww8/EBQUxObN\nm/nVr37F5s2bAVi6dCmenp5s2bKl0ww5OTn8+OOPl93+8MMP89xzzwGwcOFCvv32W+bOnQtcmLn2\n+OOPM336dO644w6LtIUgCP91PK2Q4TdGMuEW652oLIrFJSz1QW8JrUcZP//8M/n5+Rw+fBiApqYm\nTp482VYs4uPjycrKIi4uDk9PTxobGwE4ePAgY8aMISgoCLhwgaPf//73NDQ04OrqyjfffEN6enqX\nGdofpbTn5eXFnj17OH36NAaDgdLSUov8ztdKLf3WoJ6sIqdlWSpnZVk9x48Uce+vrLtStCgWNuzI\nkSPcfffd/PTTTzz77LNMnz79qp9DkqTLbmvty9RoNJhMJrTaKz/lH8BgMHDHHXcwffp0Ro8eTUxM\nTIfXyxAEwbIyDhWwe0sOk2cMxsfPuhcrE2MWNurjjz/Gw8ODpKQkZsyYwcqVK6mvr7+q5xg1ahQH\nDhygsLAQuHBeS79+/dDpdMCFI40//vGPV/1Bf/r0aRwdHfnf//1fhg4dyrFjxy57DmdnZ8rLy4GO\nL7xkaWrptwb1ZBU5Let6cx47mM+BXXnMfWAEccOsfzKqOLKwMU8++SSSJJGQkMBHH30EwNy5cykt\nLWXWrFk4Ozuj0WhYu3Ytrq6uXc548Pb2ZuXKlTz44IPY2dnh4eHBO++803b/smXLePnll5k2bRrO\nzs5ER0ezcuXKtvs7e+74+HjCwsKYMGECYWFhjB8/nrKysov2mT9/Pr/5zW/YtGkTsbGxvPbaa9fT\nLILQpzU3tZDy4ynm/+IG/IPdFcmg+HIfPUEs99E3iNdT6O3MZoltX2dx4mgxCSPCmHJHbI/+PJu9\nnoUgCILQMZNJYvPnRzGZJX717CScXRwVzSPGLIReQS391qCerCKnZV1tzi1fZQCQfN8wxQsFiGIh\nCIJgcwrPVXM+r4oZdyde9XUneorohhJ6BbXMtQf1ZBU5Lau7nIYGIylbc8jNLsdskrhlzhAcHe2t\nlK57olgIgiAoTF/dyOcf7GfAkEAW/HoM7p7O2FlgpVhLUvT4Jjs7m+eff57Vq1df0f4mk4nHH3+8\ny+UphL5JLf3WoJ6sIqdldZazpsrA2o8PcMOEaKbcHount4vNFQpQ+MiipaWFOXPmkJOTc0X7b926\nlejo6B5OJQiC0PNKi2rZ+9MpCs/VMH7aAJLGRCgdqUuKHlkkJCTg5uZ2RfsajUaOHTvGDTfc0MOp\nBDVSS781qCeryGlZ7XMW59ewftVhogb4seg3N9p8oQAVzYb67rvvmD59eq9eg2jWrFncdNNN3Hbb\nbUyZMoU1a9b0+M87evRoh/ft2rWLGTNmEBUV1ek+ZrOZ3/72t5jN5p6MKQi9irHZxMbVR5g6K45h\nYyPx9HZROtIVUcUAt8FgIDs7m+TkZHbs2HFFBSMlJaWtkrf2FcbExPRoTktYuXIliYmJ1NfXM2LE\nCJKTk3F1te6CYQATJ05k4sSJzJ49u9N97O3tL1oeRCkpKSlkZGTw6KOPtm0Dl73+trL97rvvkpCQ\nYDN5Ottuvc1W8qi9Pc0mGQ/nSPZsO4G7tz0DhgTaVL7ujtAUX+4jKyuLw4cPs2jRok73SUtLY/Pm\nzXh4eFBWVoYkSTz++OOEhXV8kQ+1Lvcxa9Ysli9fztChQ8nKyuKBBx4gNTUVjUbDsmXLOHToECaT\niV/+8pfcddddAOzZs4c//vGPREZGkpOTg5eXFx999BFeXl4AREREcP78+bZ9//GPf/DZZ5+1/bxR\no0axf/9+KioqePzxx1m4cGGnmdp78sknOXXqFJmZmW3P36qgoIAXXnihbSHBBQsWtL2+WVlZvPrq\nq+j1ekpLS3nppZeYOXMmAH/605/Q6/WUl5eTm5tLv379+PDDDzttr/avZ/svB7ZOLVlFTstobjKx\nf0cuaalniB4QyPAbIwmL9rb4lewswWaX+9i4cSPp6eno9XoaGxt55JFHAEhNTUWr1bZ94A8fPrzt\n/zt37qSpqanTQnG93njh+q/q9rs/Xv1S4q2efvpp6urq6NevH+vWrcPe3p5///vfXV78qLCwkH/9\n618EBATw8ssv89Zbb/Hyyy93+PyX/oHqdDq++eYbysvLmThxIrfddhu+vr7d5vzb3/4G0JahlSRJ\n3HfffSxdupQpU6Zc9rjIyEg+/vhjnJycyMjI4Je//GVbsYALxWT16tW4uroyfPhwzp49S1RUVLd5\nbPnD4lJqySpyWsburTnU1zbxi/+ZiKe3Tuk410zRYpGcnExycvJlt48dO7bTx9x00009Gem6Pugt\n4a233uL06dP885//JDIyEuj+4kdxcXEEBAQAF1aovfTyqF1p/Rbh7+/PqFGjyMjIYNKkSdec/9Sp\nUzg7O3dYKABcXV0pKCjg8OHDFBQUXHbRpGnTprVNeggPD0ev119zFkGwBYVnq7llzhBVFwpQ0QB3\nXzJ37lzs7e359NNPAXBwcODZZ5/l66+/5uuvv2bXrl1Mmzatw8fKsoyTk9M1/Vyz2XzVF0Lq7Hk6\ns3r1ah599FHMZjM33nijxSYsqGWuPagnq8h5/ZqbWqipMhAQ7GHTOa+EKBY26rXXXmP58uXo9Xpm\nzpzZ5cWP0tLSKCgoAGDNmjVMmDCh7T4nJycMBgMABw4cuOyxGzduBC6MMxw7dozExMTryj1gwACM\nRiPffvtth/d///33PP3009x5553k5eVd188SBFsmyzKpP+cSHu1jM+s7XQ9VzIbqK9qPJ8TFxTF7\n9myWLVvGW2+9RUlJSYcXPwIYNGgQr776KidPniQ0NJQlS5a0Pc8TTzzBfffdx6BBgy47p0Wj0eDo\n6Mjs2bOprKzkjTfe6HDm1ZNPPsmIESN48803u/0d7OzsWLNmDc8//zxvv/029vb2zJ49m4cffhiA\nRx99lKeffpqgoCAmT56Mp6dn2zXBu2qP7th6v3V7askqcl6blhYzGYcKyM+rorqygbsfGgXYXs5L\ntZgvvwRze4rPhuoJap0NdS327NnD22+/3dZl1Zf0xtdTULeG+ma+/NchPL1ciB7kz8D4QFx019Yt\nbG1fZpQR01LQ6Wwo9R8bCQK23W99KbVkFTmvjmSW+ObTdKIH+DF74TCGjgq/qFDYSs7OnK1q7PJ+\n0Q2lcuPGjWPcuHFKxxCEPk2WZQ6mnEWj0TDhloE2eQ5Fd85UN0IXl/cWxULoFWy9P7g9tWQVObsn\nyzK7tuSQk1GCvb0dcxYPR9PJirG23J5mSeZ8dRN0sURVnysWkiRhZyd639ROluVevU6YoA7HjxRx\nNqeCO+8fgY+fa6eFwpbVN5v4a0o+UT4uQEOn+/WpT00/Pz8KCwuRpK5H/QXbV1VVhaenZ9u2rfcH\nt6eWrCJn1+prm9j5/Ulum5eAb4Bbt4XCFtvTaJJYsjUPN609b8wc0OW+ferIwsnJicDAQEpKSpSO\ngl6vv+jDzlbZak6tVnvFy9sLQk/YvfUUCSNCCQjxUDrKNTGaJZ7/IZcgdyeeGBeOXTfjLH1q6qwg\nCIIllBbqWf9JGg8+NQGtszq/c/815Ty1TSZevDm6rVB0tZBgn+qGEgRBuF6yJLPtmxOMm9pftYXi\nh5OVZBTX88zEyG6PKFqJYqEQW+y/7IjIaXlqySpyXkwyS/y46Thvr/gZRyd7EkZc3crXttCeRbXN\nPPf9af51qIilU2NwdbK/4seqsywKgiBY2e6tp6ipNPDAk+Nw83BWOs5VK28w8ux3p7kjzo/lt8Tg\naH91xwpizEIQBKEbBWer+eazdO7/7Th0bupYvqO9XWeqeS+1kOR4f+5KDOx0P5u9+FF2djarVq1i\nyJAhl12h7VIffPABxcXFyLLMY4891nb9BkEQhJ5UXKDn28/TmZY8RFWFoskk8dOpKvaf11NY28wf\npkQxJOjaZxAqOmbR0tLCnDlzrmjfRx55hKVLlzJv3jw2bdrUw8l6ni30X14JkdPy1JK1L+esrWlk\n++YT/PMvu1n/70PcPCuO/rHX9wXVmu2ZU2HgsQ3ZHCyoZVyUF+/MGXxdhQIUPrJISEggKyvrqh7j\n4uKCo6NjDyUSBKGvO5FexM/fnmDI8FBuv2covv5uqrkehVmSWXuslPWZ5Tw2NozJ/bwt9tyqG+D+\n+eefmTFjhtIxrpstrxPTnshpeWrJ2pdymk0Sxfk1lJfUsXfbae56aBT+QV2sqncNerI9z1U38u9D\nxZwsNxDqqeXt5EEEWLjLTFXF4vDhw4SEhBAaGtrtvikpKW0vTuvhn9gW22JbbLfflmWZjWt3UHjK\niIeXO36BbsQkOnDy9FH8g5TP1932+ZomPtx2jIxaB+6/IYyHRoWSd+wgOemlBFzj83dG8dlQWVlZ\nHD58mEWLFnW5X15eHikpKSxevLjb51TDbKj2xcyWiZyWp5asvT1ni9HM919mUF3RwOSZg4no59sD\n6f7Lku1pMJp5aWse+fompg/05fY4P/xdr/9IwmZnQ23cuJH09HT0ej2NjY088sgjAKSmpqLVai/6\nwH/rrbfw9fVl2bJlRERE8Itf/EKp2IIgqFx9bRPffnEUdw9n7nt0DA6OV35ymi04VWGgySSx5t54\nHKy00q3iRxY9QQ1HFoIgKOPU8VJ+3HicoaPDGTu5H3ZXeXKaLfj2RAUnyxt4ZmKkRZ/XZo8sBEEQ\nrKm6ooEt6zOZ+8AIgsO9lI5zzQr0TYR5WvcscvWV1F6iL89h7wlqyQnqydrbcsqSzE9fZ3HDxGhF\nCoUl27NQ30yYp9Ziz3clxJGFIAi9nmSW2LUlhxajmRvGRykd57pIsszpykaivF2s+nPFmIUgCL1a\neUkd335+FFd3LXfcOxQXnXqW7OjIibIG3tx1no/mxVr8ucWYhSAIfdLZUxV8/2UGE24dyJBhIWiu\n8NoNtuyHk5VMjLZ+N5oYs1BIb+sPVppacoJ6sqo5p8kksXVDJls3HmfG/ATih4cqXigs0Z5nqhpJ\nPacneYi/BRJdHXFkIQhCr9HSYqasqJYd32Xj5uHMA0+Mw0nbOz7mZFnmvX0FLBwehIcCV+gTYxaC\nIKieLMsc3H2W/Tty8fLREZsUzIhxUYofTVhS6jk9/zxYxHt3Dsa+h07EE2MWgiD0So0GI2VFtWQc\nKqSqooHFv70RT2+d0rEsymiWOFZcz9/35PPspMgeKxTdEWMWClFzf7AtUktOUE9WW89ZW9PIx2/u\n5oeNaXj76bjn4VE2XSiupT1PlDXw4LosVqeV8MsbQkgKsexKuFdDHFkIgqA6TY0tbFmfSdLocNCV\nMW78AKUjWZQsy2zJqeLjg0U8PSGCsZGeSkcSYxaCIKhLo8HImnf3ET3Qj0m3DVbNhYmuVGVDCx8c\nKORMVSN/mBJFpBVPvhNjFoIgqJosyzQ3maivbWL31lNED/Dj5jvilI5lUZIss3JPPttzq7ltkC9P\nzR6Esw0VQttJ0sfYen9wK5HT8tSS1RZyypLMrh9O8o/l23j/Tzv4+tN03D2cmTh9UNs+tpDzSnSV\n0yzJ/H1PPueqm/hsQTy/GhNmU4UCFD6yyM7OZtWqVQwZMoSFCxd2uW9GRgbr1q1Do9Ewf/584uPj\nrZRSEAQlNBqMbPkqk6bGFh54cjxuHtpeNRW2VYtZ4uWfztAiySy/tR8uNnptDUXHLDIyMmhsbCQn\nJ6fLYiHLMi+99BJLliwBYMWKFSxbtqzT/cWYhSCoW21NIz98lYmXjwuTZg7Gyan39ZjLssypykZW\npxWj0WhYcnO01S5k1BmbHbNISEggKyur2/2Ki4sJDg7GyenCAmCBgYGUlJQQFBTU0xEFQbCygjNV\nbFx9hPiRoUy4ZSD2Krw4UXeaTRKvbT9LblUjU/p5s2BYkOKFojuqeBXq6+vR6XSsWrWKf//73+h0\nOurq6pSOdV16Qz+rLVFLTlBPVqVy5p0sZ/iNkRdmOl1BoVBbe9Y2mViyNRcnBzs+mhfLAyNDcFJB\nQbT9hICbmxsGg4F7772XBQsW0NDQgLt71yentP8DSklJsbntjIwMm8qj9m01tWdGRoZN5bG17RMZ\n56iuK7ji/dXUnkW1zfx2XTpOjdX8/qZInOztbCpfVxQ/zyIrK4vDhw+zaNGiTveRJImlS5eyZMkS\nZFnmlVdeYfny5Z3uL8YsBEGdck+UsXntMX793KReswAgwLnqRt5OLSC3spG7EwOZnxhgk4P1Njtm\nsXHjRtLT09Hr9TQ2NvLII48AkJqailarbfvAt7OzY/78+SxfvrxtNpQgCL3L6RNl/LTpOHMfGNGr\nCsX+83re2HWeRcOD+OP0/jY/NtEZRV+R5ORkkpOTL7t97Nixl92WmJhIYmKiNWJZRUpKCuPHj1c6\nRrdETstTS1Zr5mxpMbP92xPMmJ9IaKT3VT3W1tvzh5OV/Gp0KM6lWTjYWf86FJaiijELQRB6J1OL\nmbTUc2xafYTgcC8i+vkqHcnicioMxAW6Kh3juik+ZtETxJiFIKjDT5uyqCitY8CQQBJGhvWq7ieA\nakMLv/zyBF8tSrDJMYpL2eyYhSAIfdeprFLOnCpn8W9uROvsqHQcizOaJP66J58bIz1VUSi6I7qh\nFHIlU9VsgchpeWrJ2pM5ZVkmZespps0ect2FwtbaU5JlNmSW8eiGbBztNDw5PhywvZxXSxxZCIJg\ndTmZpdjZa4js37vGKCRZ5qMDRWSU1PPk+AgSglx7xVEFiDELQRCszGSS+PitXcyYl0h4jI/ScSxG\nlmX+mpLP+Zomlk6NxstFfV1rYsxCEASbUJxfQ/axYnz9XXtdodiSU0VWWQN/u2MgOifbXDn2eogx\nC4Wopf9S5LQ8tWS1dM6jB/LZtOYITY0mJs2ItdjzKtmekizzr0NFLPz8OJ+ll/D7myI7LRRqed07\nI44sBEHocWmp5zi85yx3PTQKHz/1n3MA0GA08/befIpqjbw6vT/hXr3zehutxJiFIAg96lDKWQ7s\nzGPBo2Pw8tEpHcciDhXU8pfd57kh3INHRoX2mm4nMWYhCILVFOfXkHuijPq6ZmprmqiraWTh42Px\n8HJROtp1+/ZEBZuzK6hrNvHUhAhGhnkoHclqxJiFQtTSfylyWp5asl5LztzsMjb8vzTQaAiN9Gbk\n+CgWPDqmRwuFNdpTlmXWHStl3bFSHh8bxr/vGnLVhUItr3tnxJGFIAgWIUsyO77LZuZdiUT291M6\njsWYJZn39xdypKiO12cOIMDNSelIihBjFoIgXBdDg5GfvznB+dxKvP1cueeRUb1ioNcsyZyqMPDF\n0VLqjWaWTo3GrZetXXUpMWYhCEKPyEwrZMfmbIYMD2Hxb29E59Y7ZgRVG1pY+mMejS0SYyI9WTQ8\nSBWXPu1Jiv72GRkZvPTSSyxdupTMzMwu992+fTsvvPACS5Ys6XZfNVBL/6XIaXlqydpdzryT5eze\nksO9vxrN5JmxuHk4Y6fAhX0s3Z7VjS38/rvTDA9154O5g/nlDZa5RrZaXvfOKHZkIcsya9euZcmS\nJQCsWLGC+Pj4TvffvHkzf/7zn2lqamLFihWsWLHCWlEFQWinvKSO1J9Pk59XxZzFw/ENcFM6kkW9\nvbeAG8I9eGBkiNJRbIpixaK4uJjg4GCcnC4MFgUGBlJSUkJQUFCH+0dERJCRkYFerycpKcmaUXuE\nLV/Zqz2R0/LUkrWjnNWVDWz45DBJYyK5ZU48zjaw/pEl2/NsdSNHiur45O4hFnvOVmp53TujWLGo\nr69Hp9OxatUqZFlGp9NRV1fXabGIjY1l586dSJJ0RY3e/lKLrYd/Yltsi+1r3x7UfyhrPz5IYJQG\no10hzi6TMualAAAgAElEQVTRNpXvWrd3704ho9aBTKMXRbXN3OLXyJEDqTaTz9rbnVFsNlRRUREb\nN27koYceAuDDDz9k7ty5HRaLkpISPvvsM5566ikAli1bxnPPPYdWq+3wudUwG8rWrxvcSuS0PLVk\nbZ+zpEDPhv+XxuQZgxk8NFjhZBe7nvasaWzh9Z3nqW02sXh4MMND3bHvoXEXNbzuNjkbKigoiOLi\nYuDC+EVXXVCyLGMwGAAwmUw0NDT0ihkXgmDrTmWV8tOmLFqMJmbMT6R/XKDSka5bg9FMWmEdZfVG\nvsoo4+b+3tw/MgQHBQbn1UTR8yyOHTvGunXr0Gg0zJs3j8TERABSU1PRarUXHR2sX7+ew4cPAzBt\n2jQmTZrU6fOq4chCEGzd0QP5pGzNYfZ9wwiN9Eaj4g9TsySTr29i84kKfs6tJjbAFT9XR6b192FI\nUO8aoL8eXR1ZiJPyBEG4TMahAlK35zL3/hGqnu10rLiO9/YVcr6mCW8XR6b09+aOWD/8XPvmWdjd\n6apY9O2zTBSkljnXIqfl2XLWyrL6C0cUP54iOkGjikLRvj0lWaZQ38QPJytZsiWXP24/y4JhQXy5\nKJH/d88QfjEyRLFCYcuv+5UQZ3ALgoCpxcyuLTmczCjBL9CNOYuHc/pMhtKxulWob+ZErT2FR0vJ\nKm0gs7QenaM9g/x1TO7nzXOTo3DtJcuHK010QwlCH1dRWs83n6Xj4+fKLXcOwUWnji6aFrPE/NUZ\nDA1xJ9jdicH+riQEueHrqvy5H2plk7OhBEFQXk2VgS8+OsDEWwcSPyJUVbMMC/TN+OgcWTYtRuko\nfYIYs1CIWvovRU7Ls4Wsheeqef9PO/j3X1MYOzmGhJFhlxUKW8jZlbPVjUT7uNh8zlZqydkZcWQh\nCH1MRWk9G1cf4bZ5CUQP9FPV0UR7Z6qaiPZ2BoPSSfoGMWYhCH3MD19l4O2rY/SkfkpHuS7/83UO\nC4YFMircU+kovYaYOisIAgBVFQ2cOl5K/IgwpaNcl3PVjZTUNTMitO9cA1tpolgoRC39lyKn5SmR\ntb62iaMH8ln70QEmzRiMq3vH66q1Z6ttWmlo4ZVtZ7knKQh7O43N5ryUWnJ2RoxZCEIvZjZLHEo5\ny8FdZ4ga4MeM+YlE9PNVOtZVMxjNnK40UFbfwidpxUwf6EvyEH+lY/UpYsxCEHohWZY5d7qSn789\ngYe3C9Nmx+HprVM61jXZkVvN26kFhHpoCXR3YkyEJ5P7eSsdq1cS51kIQh8gyzLnc6vYtz2X4oIa\n3DycmTRjMP0G+6tyxlNZvZG3UwvIr2lixfR+DPRTZ7HrLUSxUIga1rYHkbMnWDJrbU0jR1LPU15S\nR1lxLc4ujoyZ1I85i4fjpL2+t7cSbVqob+bzoyWknNVjlmTuHhrIH6ZEdXkNbLW89mrJ2RlRLARB\nxdL3n6eqvJ5hYyLwC3LDw8tFlUcRlYYW3ttXQHpRPbfH+vHxvFi8XRxU+bv0VoqOWWRkZLRdz2L+\n/PnEx8d3um9VVRUrV65EkiT69evH4sWLO91XjFkIfcW3n6cTMziAuKQQpaNctcqGFr7OKmd7XjVV\nhhbmJgRwd2IgOrHwn2JscsxClmXWrl3LkiVLAFixYkWXxeKTTz7h3nvvZeDAgdaKKAg2T1/diKe3\ni9IxrlhxXTMFNc1sz61i3/laJvfzZtm0GCK8nHvscqaCZSh2nkVxcTHBwcE4OTnh5OREYGAgJSUl\nHe4rSRKlpaW9qlCoZc61yGl5lszak8XCkjmNJokXt+Ty1Nc5rMsoJdLbhX/fFcdvx4UT7eNyXYVC\nLa+9WnJ2RrEji/r6enQ6HatWrUKWZXQ6HXV1dR1eh7u2thaj0cjrr79OY2Mj06dPZ9SoUQqkFgTb\n0dJiprnJhKtb9yfYKelYcT3/PFhEoLsTa+6NF0cQKqVYsXBzc8NgMPDQQw8B8OGHH+Lu7t7hvu7u\n7ri6uvLMM88gSRJLliwhKSkJJ6fO191vP/OgtaLb2nb7rLaQp6Pt8ePH21Qetbdn+4zX+3z9oxLw\n9HZhz949NvX7rd+2h4xaB1x9gqg0tJBTqucmvxZ+M2k0dhqNzban2O56ppZiA9ySJLF06VKWLFmC\nLMu88sorLF++vNP9//a3v7Fo0SJ8fHx46aWXePHFFzstFmKAW+gLfv72BE5aB8ZPG6B0FJpMEhnF\n9ezP17Mzr4YZg3wJ8tDi4+LAIH8dXi7igkRqYJMD3HZ2dsyfP5/ly5e3zYZqlZqailarvegD/777\n7uP999/HYDAwduzYLo8q1EAtc65FTsuzRNaGumZOpBdx32NjLZTqcp3lNJokDC1mKg0tHCms41Bh\nHSfKGujn68LIUA/emTMIfyte51otr71acnZG0fMsEhMTSUxMvOz2sWMvfwP4+fnx/PPPWyOWINg0\nWZb5cdNxEkaG4eXTs2c1S7JMdaOJSkMLB/NrST2n50xVIzonezy09gwNdueOWD+W3BwtrnXdy4m1\noQRBJSSzRP6ZarLSi6gqr+fuh0fj4GC5CY2yLFNcZ6S83khWWQMZJfVklxmwt9Pg7eJAUog7YyM9\nSQhyw0EMUvdKNtkNJQjClZNlmW+/OEZVRT1RA/yYd/tIixWKotpm9p/Xs/VUFTWNJoLcnRjor2Pm\nYD9+N9EVH50YbxDE9SwUo5Y51yKn5V1L1twTZVSV17Pw0bFMum0wWudr/wA3SzIpZ2p4+tsc7vk0\ng//5Ooe8qkYeHBnCmnuH8Jc7BvLomDDkgkxVFAq1vPZqydkZcWQhCDZMlmUKz1azfXM2N8+Kw8Hx\n+sYFUs7U8N7+Avx0TsxNCGCQvw4/V0fsxBpMQjfEmIUg2KjmphYO7j7L8bRCksZEMPqmmGt6npK6\nZt7bV0hOhQFnBzv+Z3wEicFuFk4r9AZizEIQVEZf3cjajw7gH+TOPY+MuuILF5XVG9l7Tk+hvolK\nQwv5Nc1UNbYwNz6AX48Jxd/VSZxBLVwTMWahELX0X4qcltddVqPRxMb/l8awsREkLxreZaGQZZlC\nfTMbMst4YtNJHtuQTW6lgRAPLZNivHluciSfL4hnwbAggty1V1Uo1NKmIqd1iCMLQbAhdfomvv38\nKIGhHowYF9Xt/huPl/NpeimJwW78YmQIQwJdcbLgdFpBaCXGLARBYS1GM7nZZdTpmziUcpZh/xmf\n0FzBUcDybWcYH+XJ5H4+Vkgq9HZizEIQbFRxfg3ffH4UHz9XvHx03H73UMJjrvyDP6+ykUXDL1+p\nWRAsTRyvKkQt/Zcip+Vt/3k3ReerOXYwn/WfpDF55mDm/WIkU2fHXVWhaGwxU9FgJNzTuUdyqqVN\nRU7rEEcWgmBlx1MNFJw4gc7ViTmLhhMS4XVNz7M5u5KEYDcxu0mwClEsFKKW1SdFTsuqqTRgb+fE\nwsfGormOE+HO1zTxeXoJf589yILpLqaWNhU5rUN0QwmCFZ0+UUZkf9/rKhQAH+4vZMGwIEI8bPsq\neULvoWixyMjI4KWXXmLp0qVkZmZ2u7/JZOLxxx9ny5YtVkjXs9TSfylyWk6dvon9O/Owd62+rufJ\nKKnnVIWB2wf7WShZx9TQpiByWoti3VCyLLN27VqWLFkCwIoVK4iPj+/yMVu3biU6Otoa8QTBomRZ\nZsv6DIaPjcTsVHxNz5F6Ts+XGWXkVhp4YUqUOJ9CsCrFikVxcTHBwcFtV7wLDAykpKSEoKCOpwEa\njUaOHTvG2LFjaWpqsmbUHqGW/kuR0zKOHsinqdHE6JuisbPvd1WPNUky76YWcLCgll+PCSUhyA13\nbc+/dW29TVuJnNahWLGor69Hp9OxatUqZFlGp9NRV1fXabH47rvvmD59OjU1NVZOKgjXrqRAz+kT\nZRzdf557HhmNnf3VHQ00GM0s33YGBzsN784ZLK5GJyhGsWLh5uaGwWDgoYceAuDDDz/E3d29w30N\nBgPZ2dkkJyezY8cOruSk8/bXu23tK7Sl7YyMDB599FGbydPZdvt+VlvIo6b2jI8bzvpVh/EOkolO\ndMA34MJKr++++y4JCQldPr6uRUOmXRiHCmrpr23klkAjrk79rJq/9TZbac/Otq+kPW1hWy3t2RnF\nlvuQJImlS5eyZMkSZFnmlVdeYfny5R3um5aWxubNm/Hw8KCsrAxJknj88ccJCwvrcH81LPehlou3\ni5zXRl9t4IuPDnLDhGiGjYm46L7usp6rbuTFLXlM6efNLQN9CO2hk+66Y2tt2hmR03K6Wu5D0bWh\njh07xrp169BoNMybN4/ExEQAUlNT0Wq1HX7g79y5k6amJm699dZOn1cNxULovarK6/nyX4cYOSGa\n4WMjr+qxx4rreWXbGR4ZHcrUAWK9J8G6bHZtqMTExLYC0d7YsWM7fcxNN93Uk5EE4ZqZTRI/fJXB\nmZwKbrptEAkjOz7yvexxksz23GqOFtex73wtL0yOYlhox12ygqAUMfdOIWqZcy1yXhlJkvlhfQYt\nRjMP/+9NXRaK9llzKgz8ZtNJtuRU0s9Xx3tzBttMoVC6Ta+UyGkdYrkPQbhO1ZUNfL8uA0cne5IX\nDcexi+tkH8yv5dtiJ7757hRVBhP6JhMPjw5han+f6z6rWxB6kriehSBcI311IzmZJRzYmceYyf0Y\nPjbysmtQlDcYKdA3c766iYMFteTXNDEnPoAwTy3eLg5EervgIBYCFGyEzY5ZCIIaSJJMbXUjxmYT\npUW15J+pouBMFaYWifAYH+791Wh8/N1obDFTVWeipqmFI4V1HCqoI1/fRIyPCwFuTkyM9mJijDfO\n4sxrQYVEsVCIGqbRQd/MaTJJtBhNFJ6t5sTRYs6eqkDr7ICTswN+Ae6ERXsTOyaCBgd7yg0mVp+s\n5sj281Q0GPHROeLqZE9SiDuLRwQRH+h22bIcfbFNe5LIaR2iWAgCF9ZuKjpfQ/q+85zKKsPeXoN/\nkDuxQ4MZdnN/Tte1YGgxk1XawOpcPS05NYR6aPFzdSQuwJWZsVFEebuIa0sIvZYYsxD6pNqaRk4c\nLaasqJbGBiOV5Q1otQ4kjgojfkQYzi6O6JtMHMjX88H+IoYEuuLmZM8APx03hHuIpcGFXkmMWQh9\nntFoouBMNQ11zZQX13HiaBED44PoHxeAztUJT28dVWj48VQlH31/mrpmMw1GM4nBbvxhShRJIbYx\nnVUQlCKKhULU0n+pxpzGZhNF52uoKq+nvq6ZqvIG8vOqCAjxwMPLBXdPZ+5/Yhx6GXafraGstJET\nGRXUNpmYOsCH/xkfgZeLA746RxyvcuG/q81qy0ROy1JLzs6IYiGoXqPBSF21mbyT5ZzMKCYns5TA\nEA/8At1x89QyMD6IfhNjOFVrJLe2mSpDCx98n4vRJDEh2osob2cmRnuRGOyGnTjXQRA6JMYsBFVr\naTHz3qvbcXLXYqd1wMHdGafYACqazNQ2m6lvNnGy3IC/mxMJgW6Ee2nx1TkS4e1MpJezOBFOENoR\nYxZCr3X+XDWVaGgYGISbkz06J3u8zBDt44KnswMujnYM8nfF01n8qQvC9RBnBylELevE2HrOI8fL\nsPPWMduzlKXTYvjfmyJ5eHQos+L8uSnGm1HhnjZXKGy9TVuJnJallpydEcVCUC1JkjhzspzwaLGU\ntyD0NDFmIaiOJMucr2lizZbTkFPGo8+Mx8dVnPcgCNfLZscsMjIy2i5+NH/+fOLj4zvd94MPPqC4\nuBhZlnnssccICAiwYlLBFtQ0tvDxwSJ2n6nBzcmOEWcruG1uvCgUgmAFinVDybLM2rVrefHFF/nD\nH/7AunXrutz/kUceYenSpcybN49NmzZZKWXPUUv/pS3kbL040K/XZ+OudeCdmf35TbCOEH9XBsVd\n+NJgCzmvlFqyipyWpZacnVHsyKK4uJjg4GCcnJwACAwMpKSkhKCgoC4f5+LigqOjozUiCgo7WlTH\nPw8VkVfVRJS3M0tujkZ/vIQv3z6BX6Ab05KHiKmvgmAlio1Z5OTksHfvXjQaDa0Rxo0bx4ABA7p8\n3IcffsiMGTMIDQ3tdB8xZqF+OeUG/rAllyfHhTMs1B1XJ3u2fZ1FSaGe5IXDcXUXXU+CYGk2OWbh\n5uaGwWDgoYceAi4UAXf3rtffOXz4MCEhIV0WilbtT61vPfwT2+rYXr11LxuKtDw9qR/jorzYvXs3\n508aaa5z4r5Hx3Dw0H6byiu2xXZv2u6MYkcWkiSxdOlSlixZgizLvPLKKyxfvrzT/fPy8khJSWHx\n4sXdPrcajizUsk6MtXKaJZmNx8vZn68nv6aZJ8aGEmg0kX2smPO5lXj56Ji9cBguOidFc1qCWrKK\nnJalhpw2eWRhZ2fH/PnzWb58edtsqFapqalotdqLPvDfeustfH19WbZsGREREfziF79QIrbQA4pr\nm3ltx1l0jvbMjffHs66Z7Z+n4+HlTOzQYMZO7oenjw47ca0IQVCMOM9CUIRZkqlpNJFytoZ1qflM\n0JiRyuox1Dfj5aNj6uwhRPb3VTqmIPQpNnlkIfRNZknmUEEt7+4roKnZzJA6A6Mq60kcF8Xg2XF4\neLtg3wPLgguCcH3Eu1Ihaplzfb05G4xmtp2u4qMDhfx9Tz73rz3OqtQCbneCWytrSfTU8uCT4xk7\npT/efq7XXCjU0p6gnqwip2WpJWdnxJGFYFH1zSYyShqoaTKx/7ye9KI6EgN0DHB1wEOjYb6rPfnp\nRbjGBjBixiCiBviJcyUEQQXEmIVgERUNRtZnlrMlp5KBfjo8nR2Ic3XAuaSWU8eKcXF1wtHRHp8A\nV8ZNHYCXj07pyIIgXEKMWQg9oqi2mZ9OVXGmqpFjJfVMHeDDO8mD0LaYKSuqZds3J4gfHsqCX4/B\n289V6biCIFwHMWahELX0X3aUM7+miT/vOMsTm07SZJIYH+3Fv+bH8evRoZw5VMCad/eRvj+fW+YM\nYcKtA61SKNTSnqCerCKnZaklZ2fEkYVwRcrqjXxxtJS8qkYK9M0kD/Fn1Y3huDrZI8sy6fvOc/RA\nPmaTxOLf3Ii7p7PSkQVBsCAxZiF06Vx1I18cK2P/eT23D/ZjWKg7g/x1uDjat+1TWVbP2o8Pcvs9\nQwmL9EYjTp4TBFUSYxbCValtMrHheDknyxs4VdHInfH+PHpXHO7ajv9c8vOqiBrgK65YJwi9mBiz\nUIit9l+eqjDw7PenKa83MivOn4fC9NybFNRhodBXN7Jvey5H9p1XvFDYant2RC1ZRU7LUkvOzogj\nCwH47wWGPthfyF1DA5kb749GoyHl/OX7GuqN7Nl2ipPHSohLCmHkhChih4ZYP7QgCFYjxiz6MFmW\n2XNOz+q0Ys5WNxHu5cwLk6OI9nG5bN+K0jpOZ5VRp28iJ7OE2KEhjL25X6erwAqCoD5izEK4TE65\ngb/vycckyTwwMoRR4R7YdXAmdX1tU9tMpyHDQ/ENcOOeR0bjG+CmQGpBEJQiioVClFjbvrHFzOq0\nEvacq6Gu2cyjY8KY0t/7oiJRp2/iXG4lp4+Xoq9ppKqijoQREdz32FibPutaDdcKaKWWrCKnZakl\nZ2cULRYZGRmsW7eu7XoW8fHxFtlXuJgsy+w5q+fdfQUMDXFn2bQYgt212GvgVGYpGYfyqdM3Y6hv\nBiA8xpcBQwLxC3LnxMmjTJocp/BvIAiC0hQrFrIss3btWpYsWQLAihUrOi0AV7OvWljjG0Z5g5Gd\nudXsz6+lutHEU6NDsCutI2vbaQ41GCk6V42Xr45RE2Pw8XNF5+aEztXpovMkAkMm9HhOS1DTNza1\nZBU5LUstOTujWLEoLi4mODgYJ6cLA6SBgYGUlJQQFBR0Xfv2FbIsI5llWlrMGJtN//lnpsVoIru4\nnj151ZTrm+jvqWWYiwMuzSZSV6cRM8if8BgfnF0cmT43Hlc3rdK/iiAIKqBYsaivr0en07Fq1Spk\nWUan01FXV9dhAbiafVu9+0kabfO8Wv9zybbc1X3yf25su/2/222P6+q+Dp7zwv0XdmpubkbrpL3o\nZ7T9zEuf0ywjSxKYZWTpv/9HAxoHezQOdv/5Z4/ZDmqMEhG+OsaGuuHi4ojW2RF3L2dmzE9A6+zY\naZt1RC39rGrJCerJKnJallpydkaxYuHm5obBYOChhx4C4MMPP8Td3f269201+qJeqktn+djCchTW\nWIW15T//wIie41mlV/0MOp2OtLQ0C+eyPLXkBPVkFTktSy05O6NYsQgKCqK4uBi40KXSVbfS1ewL\ndDpPWBAEQbg2ip6Ud+zYsbYZTvPmzSMxMRGA1NRUtFrtRSfWdbavIAiC0PN65RncgiAIgmWJhQQF\nQRCEboliIQiCIHRLFAtBEAShW6ovFrY+5GLr+dRItKnliTYVuqPKYlFUVMRPP/1EU1MTmg5WSlWa\nree71OnTp5WO0C01taka2hPU06YFBQW8//77pKWlUVVVpXScDqkh4/Wy/7//+7//UzrE1TAYDKxZ\ns4aioiIkSSIqKkrpSBex9XztNTU18c4773Do0CHc3d0JDg5GlmWb++BQS5uqpT1BPW164MABNmzY\nQHR0NI2NjRw+fJhhw4YpHesiashoCaorFmazGRcXFxISEjh+/DiBgYG4ubnZzJvS1vO1ZzQakSSJ\n+Ph4srKy6N+/f9v6W7ZELW2qlvYE9bSpu7s7kyZNIi4uDk9PT6qqqujXrx92drbTKaKGjJZg879N\nVlYWu3btatt2dnYmKSmJ0NBQAgMD2b9/P4Bif+C2nq+95uZm8vLy2rZ1Oh1JSUlERkai0+nasipN\nLW2qlvYE9bTppTnd3NxwcLiw0ITBYKCioqJtWylqyNgTbPrIoqysjDVr1qDX63F2diYwMBBJkrCz\ns8PJyQmNRsOZM2fw9fXtdq2ovpivvaqqKt58801yc3MJCwvD09MTSZJwdnbG2dkZSZLIzs5W/Nuw\nWtpULe0J6mnTjnLCfwuY0WjEaDQSHR1NQ0ODIu2qhow9xaaLRVNTE0FBQURERJCZmcmgQYNwdHRs\nO1T28fGhqqqKzz//nJMnT5KYmGjVim7r+dqrr6/Hw8OD8PBwcnJyiIuLQ6PRIMsydnZ2eHl5UV9f\nz7Zt2zhz5gyxsbGKfMtUS5uqpT1BPW3aUU4HB4e2nBUVFZw5c4Zz586xd+9e4uPjsbe3FxmtxKaK\nxdatW9mxYwdVVVXExMSg0+kICgrC3t6ewsJCqqqqiIqKanthzp8/z5YtW4iKimLBggW4uLj06Xzt\nFRcXc/DgQSRJwsfHBxcXF/z8/NBqteTl5SFJEkFBQW1ZDQYDW7Zsoby8nIkTJ1rtWiFqaVO1tCeo\np02vNuf27dvZsWMHgYGB3HnnnVbJqYaM1mIzxeL06dPs3r2b2bNns2fPHiorKwkNDcXR0REnJyck\nSSI3N5cBAwZgZ2eHnZ0dzc3NJCUlceONN+LoeHXXaeht+drLz8/nH//4B0FBQfz00084OzsTEhKC\nVqtFq9XS1NTU9g2y9dvu+fPn8fb2ZuHChW2H1j1NLW2qlvYE9bTp1eTUaDTY2dnR0tLChAkTmDBh\nglW6d9SQ0ZpsplgcOHAAFxcXxowZQ0BAACdOnMDV1RVfX18cHBzw8/Pj1KlTfPHFF1RWVhIfH4+r\nqyuurta4LoTt52vvyJEjhIaGMnPmTIKDgzl27BgeHh54e3vj4OCAt7c3RUVF7Ny5k7KyMgYMGICv\nry9hYWEASJJklS4TtbSpWtoT1NOmV5OzqqqK+Ph4AgMD8fHxERkVolix2LBhA7m5uQD4+vqi0+k4\nfPgw9fX1ZGRk4OjoSGVlJUOGDAHg6NGj7N27l5EjR3LnnXf2+Xzt5eTkUFRUhIuLC1qtFoPBwMGD\nBwkJCeHIkSMYDAYkSSImJgaA0tJStm7diiRJTJkyBQ8Pj4uer6c+2NTSpmppT1BPm6ohpxoyKsnq\nxaKmpob33nsPs9lMREQEO3bsICIiAj8/P2prayksLOTuu+9m2LBhfPrppyQlJeHi4oLJZGLy5Mkk\nJCT06XztGY1GPvvsM3bs2IEsy+zfv5/Y2Fh8fX2prKwkMzOT0aNHk5iYyNq1axk/fjz29vbk5eUR\nFxdHcnLyZR9sPUEtbaqW9gT1tKkacqohoy2w+pQHLy8v7r333rZ+XL1ej9lsxtHRkdjYWDIzMyko\nKMDb25vw8PC2PtTw8HCR7xIODg7079+fhQsXArBx40ZKSkqIjo5mwIABFBYWEhkZiaOjIxEREdTV\n1eHr63vR2aWtUyh7klraVC3tCeppUzXkVENGW6DIPM72A36FhYUMHjwYjUZDeHg4U6ZMISUlhdzc\nXKZOnarIvG9bzwe0TdEcM2YMACaTCb1ej5ubG/b29sTFxXH69Gk+/PBDCgoKGDx4MN7e3pc9j7XO\nMrX1NlVbe4Ltt6macqoho9IUO82w9RtYeHg4wcHBwIU3bFJSEnFxcTg4OCh6uryt52vfD242m9sG\nWiVJart91qxZVFRU0NTU1DbYqiRbblM1tifYdpu2p4acasioJMUGuFvfnOnp6dTX17Nhwwa8vb3x\n8/PD3t5e8WUHbD1fe3Z2dphMJvLy8oiJieHHH3/E0dERb29vdDodHh4eyLKs+Lo/amlTW2nPK3l+\ntbSpGnKqIaOSLH5kcTV9tiUlJWzbto0hQ4YwZcoUBg0aZOk4l7k0X1dvSCXyXavm5mb27dtHWloa\nsbGxl60iqtFoeuSPvaSkhNraWvr3739Fr7uSbXo1f5tKteelP+NKqKVNlcrZW9/zVidbiNlsbvt/\nc3OznJeXd0WP27Ztm6UiXLGmpib5hx9+uKJ9lcgnSZIsy/9t0zNnznT7mOrqavnNN9+UKysrezLa\nRQ4ePCj/+te/lt977z05Pz//ih9n7TaVJKmtTWVZlhsaGrp9jBLtKcv/fc1NJpNsNpvlLVu2XJS9\nM9ZuUzW932XZ9t/zaqCRZcteIuvYsWNs2LABWZYZP348U6dO7fDbh7VmjVzq5MmTrF+/ntDQUBYs\nWDNASS4AAA8XSURBVNDp4aVS+Try4osvsnDhQgYPHtzh/ZdmbT0JrKe++bb+PIPBgMlkIiUlBQ8P\nD0aMGNHl8gZKt2lFRQWffvopsiwzZcqUTqc8Wrs9u/Laa68xdepURo4c2eH9Sreprb/fQZ3veVt0\nzd1Q8n/6bNs37jfffMPevXtZunQpdXV1vPnmm0ycOLHt1Pj2+/b0i9JRvrNnz7Jr1y6CgoJYvHhx\nl4+39h/Npe2TkpKCs7MzI0eOZMqUKej1+k4fe+kHW09nb31+nU4HQEREBFlZWQQEBDBw4MArytnT\nLm2H7du3s3PnTubNm4fRaGTHjh14enoSERHRZc6ebs9L/07NZjObN29GkiSSk5OZOHFil0twWKtN\nbf393llGW37Pq801t07rWih6vZ7y8nIAxo0bR319PbW1tfj7+xMbG8sXX3zRtr81tc9XUVEBQGho\nKIMHD8bR0ZHq6mpA+WsPt/781j9Uo9EIgJOTEz/88APnzp2joqICNzc3gItm53Skp/7gW3+uJEkY\nDAZ++umntvvi4+PR6XQUFBQgSZLibQr/bQeTyQRAUFAQ5eXlxMfHM3z4cPz8/MjMzAS6/hvo6ULR\n+ndaW1tLTU0N9vb23HDDDeTk5JCWlkZWVlbb30R3r31PsvX3+6UZbfk9r1bXPBtKlmU2bNjAp59+\nSk5ODr6+voSHh2M0Gjl48CAjR45kwIABbNy4kVGjRqHVai0c/WKSJJGeno6/vz92dnZIknRRPn9/\nfwICAoALy0vX19cTHh6u2AyHqqoqnJ2d235+ZmYmH330EWfPniUmJoaYmBicnZ0pLS1lx44dSJLE\n0KFDFcur0Wjavi3a29vz97//nQEDBrStg+Pi4sKJEyfYsWMHRUVF9O/f36pLM1+6/tKRI0fa1j8K\nDAwkPDyc4uJicnJyiI+Pp6ysDL1ez5AhQ6zappIkUVxcjLu7e9uS5l988QUbN24kOzsbe3t7Bg8e\nTHR0NDU1NezevRuTyURSUpKi33xt7f0O6nvPq90V/fVVVFTw2WefXXQh8qNHj+Lh4cHrr7/OwIED\nWb9+PQDJycmcOnWKo0eP4urqytKlS9u+FfekQ4cO8dprr7VduSwzMxN3d/e2fF999RUAkZGReHh4\ntC0vrIS9e/fy7LPPUlRUBFzo9923bx8LFizAwcGBNWvWAHDDDTcwadIk4uPjcXR0xGQyWe1bUUev\n+V//+ld27dqFnZ0d8+bNa3vN4cLZrOHh4QQFBXHrrbdabfXSsrIyvvzyS7Kzs9tuq6qqYseOHSxY\nsIDq6mref/99AObNm8eOHTv46KOP2L9/P8OHD7dKxvaysrJ4++23MZvNAJw6dYqqqiqWL1/O9OnT\nOXnyJAUFBYSEhDBq1ChGjRrV6VhVT1HD+x3U9Z7vDa7oyEKn07Fv3z4AQkJCsLOzw8/Pj5iYGDZt\n2oSzszM5OTkAxMTEEBYW1nbVrZ78dllXV8fLL79MWFgYXl5eVFdX4+DggL+/P5GRkURFRfH111+3\n5bOzsyM6OhoPDw/69+/f4Rm4PUWWZb766qu2I4bjx4/j5uZGSEgI3t7ejBgxgvz8fKqqqkhPT6df\nv374+fmh0Wjw8/MjPT2dMWPGWO1bUfvXPDg4GHt7e9zc3Pj++++ZNGkSkZGR7Ny5E7PZ3DatNCws\njPj4eKstzZyfn8/KlSvp378/N954Y9vtZ86cISMjA3d3d9LS0pg2bRrBwcG4uLhgb29Pbm4uL7zw\ngtVWB62vr+eNN94gOjqa/v37U1BQQFFREQMHDqSoqIjMzEzGjx+Pv78/qampODk5tY2l/P/27jWm\nrfKPA/i3LRRk3BRkiNzdmLOwjK3VhQgqSzZYZhYTl6AJZDEYIfGFybZsg+jglS+Mb3TgvCCJIGQ6\nlI1ogA0vM0s3EFeEEXBIiwwG21i5aGm79vz+L/j3hK6l7S62pf4+r8g5bc/znMNznnOey+/ZsGED\nUlNTvfo07K/lHVhdZT7QuH2zsLWT5ufnY2BgQGwLDAoKglarBQAUFBRg3bp1YhuwQqFAQkLCv5Vm\nUUREBMLCwvDVV1/h3LlzCA8Px/z8PMbGxmCxWDA+Pm6Xvt9//x3AUiyYqKiofz19y1ksFnR2duLY\nsWPo7u5GSkoK5ubmMDY2hoceegh6vR7j4+MoKipCZmYmTp8+LX73+vXrkMlkMBgMXknrndd8ZmYG\nRISsrCzExsbiu+++A7B0I7HdVADvdxBqtVrk5eVh165ddul+6qmnMD8/j/Pnz+Po0aNYs2YNWltb\nAQCFhYXQ6/UYHBz0WjrDw8NhNBrx3nvvoaurC7t378avv/6K2dlZpKWlISEhAT/99JOYh+XhJLy9\nypo/l3dgdZX5QOP2zcL2RPPII4+Ina3JyckICgqCIAj48ssvce7cOSiVShQVFXkjzXbS09Px559/\nQiaTITExEcHBwZiamkJiYiJCQkLQ2NiIn3/+GSqVyifps5HJZEhLS8PQ0JC4VrMgCPjnn3+QmJiI\nmZkZnDhxQmwP3rVrFyIjI2EwGDA8PIxnnnkGjz76qFfS6uya2wKopaen49tvv4VWq8XmzZuxd+9e\nr6RpJe3t7dDr9ejs7MTVq1cxNzeHpKQkxMTEYHp6Gt3d3RgeHkZ+fr74VJmUlISHH37YqzF+1q9f\nj2vXruGvv/5CXFwcBgYGIAgCMjMzERkZiV9++QXt7e1ITk7G9u3bvZauO/l7eQdWT5kPOJ5MxrBN\nCrpx4wa9//77dhOwrl69SnNzc/cx1eP+WK1WOnPmDH388cfitubmZnFizeTkpE/Tt5zZbKZvvvmG\n6urqyGQy0cLCAjU0NFBvby8REXV3d4t/+5qra67VamlhYcFXSbOj1+tJr9eTVqulqakpKisrI4PB\nQEREf//9t91kMU8mt/1brFYrdXV10SeffEIzMzP0zjvv0L59+6ivr4+IiBYWFjyaLOgN/lzeiVZX\nmQ8kHrUb2J42YmNjERsba9eZ+Pjjj3sthr8zUqkUSqUSRqMRIyMjAIAnn3wSBoMBJpMJjz32mE/T\nt1xwcDCUSiVmZ2dhMBgQHh6OxMRE/PHHHzAYDFCpVGKnqy+HSQKur3lqaqrXOjHdiY6ORnR0NFJT\nU7F27VoolUosLi4CANasWYO0tDQA3l2tzhmpVIotW7bAYDDAaDRi//79UCgU6OzsBLDUVGWbt+Jr\n/lzegdVV5gOJx0NnzWYzGhsbMTY2htzcXL9aOjA0NBQWiwVnz55FTk4O4uPjkZGRgaAgnwXVXVFU\nVBT0ej16enqQnZ2N5ORkPPHEEw43Cn8Y3ufP1/xOGo0Gn376KaKjo/H000879J/4w/m0/Z92dHTg\n+eefR05Ojl3HvD/x92u/msp8oPD4zAqCgJSUFLz66qteGxZ5N5RKJWQymTi01B9uDivZtm0b2tvb\nsbi4iJCQEISFhfk8Iqwz/n7Nl7t+/TpeeeUVrFu3ztdJcUmlUont/4D/zhpeDdd+NZX5QPDAY0Mx\n5msc44exB49LlA/5ul8i0NAdoVMYYw8Ov1kwxhhzix/BGGOMucWVBWOMMbe4smCMMeYWVxaMMcbc\n4sqC/Wf09PRgYmLCYXt1dbUY5nq1EAQBH3300V2PqNPpdLh06dJ9HbutrQ0nT56027bSuWWBgysL\n9p/R09MjRiVd7aRSKcrLy+96mPCDqCycCaRzy5zjobPMr5jNZjQ1NWFkZAQymQxJSUkoLS0V99XX\n12N8fByCICA3NxeFhYUAlhYVamlpQUpKCrRaLYxGIyorK8UYVsePH0dvby8iIiIQERGBF198EUql\nEsDSm0VGRgaGh4cxPz+P3bt3Iz8/36P01tbWIj4+Hn19fTCbzdizZw+2bdsGABgdHUVDQwOICOHh\n4XjjjTfESLeu8ikIApqamnDlyhVYrVbs2LEDeXl54jGPHz+OyclJ6HQ6fPHFF3bpKS4uxp49e6DR\naHD79m2Ul5eL6410dHTg+++/h8lkwtq1a5GVlYWXX37Zo3zW19djcHAQMTExiIyMRFxcnPhdV+eW\nBRAfBTBkzKnPPvuMmpubne5rbm6mhoYGIiIymUxUUVFB/f39RER0+fJlKisro4mJCSIiOnbsmBiF\n1KampoYuXLjg8LtVVVXU0tJCRESzs7P0+uuvexy1tKamhqqqqmhxcdFu++3bt+nAgQN069YtIiJS\nq9VUW1vrUT47OzupsbFR/J2Kigqanp52+FxJSYnDtqKiIhocHCQiokuXLtHhw4ft9v/4449UV1fn\nUd5s1Go1VVdXkyAIZLVa6d1336Wvv/7a7jMrnVsWODjqFvMrFy9eRE1NjdN9Go0Gb731FgBALpfj\nhRdegEajQWZmJoClaLi2RXji4uLuarGozZs3A1gK9LhhwwbodDps2rTJo+8WFBQgNDTUbtvk5CRu\n3ryJDz74AMDS7PLlMZZc5bOvrw83btwQI6qazWZMTEyI60m7IpfLsXHjRjFPH374ISwWy30F2Bsa\nGkJubi4kEgkkEgkUCgVMJtM9/x5bnbiyYH5FIpHAarU6DV7nrUBxKx3/bkilUsTFxeHo0aNO97vK\np0wmw969e++pKYfuaFWWSCT3Hf6Ew6cwgDu4mZ9RqVQ4ceKEw00PWHpStq3/YDKZ8MMPPyA7O9vj\n3w4ODsbc3BwAx5uqWq0GANy8eRM6nU5cB+NeJSQkwGKxoLu7W9y2/Jiu8qlSqdDW1gaj0ejyGM6+\nazKZ8NtvvwGAuHzv8pu9XC5f8RysRKFQQK1Wg4hgNBqh0WgcPuPq3LLAwG8WzK8UFxejqakJlZWV\nCA4ORnx8PMrLywEAL730Eurr61FZWQlBEPDcc89BoVB4/Nu5ubmora2FWq1GUlISXnvtNXFfUFAQ\nqqursbCwgNLSUodmpbsllUpx8OBB1NfXo62tDRKJBDk5OSgoKHCbz2effRazs7OoqqqCXC6HRCLB\nkSNHHNLk7E0rJCQEo6OjaG1thdVqxZtvvmm3PysrC6dOncLbb7+NsLAw7N+/H3K53GVetm7div7+\nfhw6dAhRUVGIiYlx+Iyrc8sCA4+GYiyAlJSUOIyQYuxB4DcLxlbw+eefQ6fT2T3B0/8Xqdq5c6df\nrnJ3L/06qzGfzPv4zYIxxphb3MHNGGPMLa4sGGOMucWVBWOMMbe4smCMMeYWVxaMMcbc+h/XX4uU\nz3Lh1gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Separate parties\n",
"\n",
"by_date.unstack('party').fillna(0).cumsum().plot()"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" contb_receipt_amt | \n",
" file_num | \n",
"
\n",
" \n",
" | cand_nm | \n",
" contbr_occupation | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" | Bachmann, Michelle | \n",
" -- | \n",
" 75.00 | \n",
" 772097 | \n",
"
\n",
" \n",
" | 100% DISABLED VETERAN | \n",
" 1869.50 | \n",
" 6807894 | \n",
"
\n",
" \n",
" | 100% DISABLED VIETNAM VETERAN | \n",
" 236.25 | \n",
" 2260398 | \n",
"
\n",
" \n",
" | A/C AND HEAT | \n",
" 250.00 | \n",
" 749016 | \n",
"
\n",
" \n",
" | ACADEMIC EMPLOYMENT SPECIALIST | \n",
" 25.00 | \n",
" 762366 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | Santorum, Rick | \n",
" WRITER/PROFESSOR | \n",
" 910.00 | \n",
" 12501040 | \n",
"
\n",
" \n",
" | X-RAY TECHNICIAN | \n",
" 2500.00 | \n",
" 771852 | \n",
"
\n",
" \n",
" | XRAY TECH | \n",
" 380.00 | \n",
" 3884634 | \n",
"
\n",
" \n",
" | YOUTH MINISTER | \n",
" 475.00 | \n",
" 2333109 | \n",
"
\n",
" \n",
" | YOUTH MINISTRY | \n",
" 250.00 | \n",
" 771852 | \n",
"
\n",
" \n",
"
\n",
"
59313 rows × 2 columns
\n",
"
"
],
"text/plain": [
" contb_receipt_amt file_num\n",
"cand_nm contbr_occupation \n",
"Bachmann, Michelle -- 75.00 772097\n",
" 100% DISABLED VETERAN 1869.50 6807894\n",
" 100% DISABLED VIETNAM VETERAN 236.25 2260398\n",
" A/C AND HEAT 250.00 749016\n",
" ACADEMIC EMPLOYMENT SPECIALIST 25.00 762366\n",
"... ... ...\n",
"Santorum, Rick WRITER/PROFESSOR 910.00 12501040\n",
" X-RAY TECHNICIAN 2500.00 771852\n",
" XRAY TECH 380.00 3884634\n",
" YOUTH MINISTER 475.00 2333109\n",
" YOUTH MINISTRY 250.00 771852\n",
"\n",
"[59313 rows x 2 columns]"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result = fec.groupby(['cand_nm', 'contbr_occupation']).sum()\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"result =result.reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda/lib/python2.7/site-packages/ipykernel/__main__.py:2: FutureWarning: by argument to sort_index is deprecated, pls use .sort_values(by=...)\n",
" from ipykernel import kernelapp as app\n"
]
},
{
"data": {
"text/plain": [
"cand_nm \n",
"Bachmann, Michelle 943 PRESIDENT\n",
" 915 PHYSICIAN\n",
" 569 HOMEMAKER\n",
" 610 INFORMATION REQUESTED\n",
" 1084 RETIRED\n",
" ... \n",
"Santorum, Rick 57975 PHYSICIAN\n",
" 57129 INFORMATION REQUESTED (BEST EFFORTS)\n",
" 57131 INFORMATION REQUESTED PER BEST EFFORTS\n",
" 57037 HOMEMAKER\n",
" 58452 RETIRED\n",
"Name: contbr_occupation, dtype: object"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def top5_donors(group):\n",
" return group.sort_index(by='contb_receipt_amt')[-5:]\n",
"result.groupby('cand_nm').apply(top5_donors)['contbr_occupation']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}