-- Brahmagupta-Fibonacci_identity.lean -- Brahmagupta–Fibonacci identity. -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Seville, September 25, 2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Prove the Brahmagupta-Fibonacci identity https://is.gd/9PJ56H -- (a² + b²) * (c² + d²) = (ac - bd)² + (ad + bc)² -- --------------------------------------------------------------------- -- Proof in natural language -- ========================== -- The proof follows from the following chain of equalities: -- (a^2 + b^2)(c^2 + d^2) = a^2(c^2 + d^2) + b^2(c^2 + d^2) -- = (a^2c^2 + a^2d^2) + b^2(c^2 + d^2) -- = (a^2c^2 + a^2d^2) + (b^2c^2 + b^2d^2) -- = ((ac)^2 + (bd)^2) + ((ad)^2 + (bc)^2) -- = ((ac)^2 - 2acbd + (bd)^2) + ((ad)^2 + 2adbc + (bc)^2) -- = (ac - bd)^2 + (ad + bc)^2 -- Proofs with Lean4 -- ================= import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (a b c d : ℝ) -- Proof 1 -- ======= example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 := calc (a^2 + b^2) * (c^2 + d^2) = a^2 * (c^2 + d^2) + b^2 * (c^2 + d^2) := right_distrib (a^2) (b^2) (c^2 + d^2) _ = (a^2*c^2 + a^2*d^2) + b^2 * (c^2 + d^2) := congr_arg₂ (. + .) (left_distrib (a^2) (c^2) (d^2)) rfl _ = (a^2*c^2 + a^2*d^2) + (b^2*c^2 + b^2*d^2) := congr_arg₂ (. + .) rfl (left_distrib (b^2) (c^2) (d^2)) _ = ((a*c)^2 + (b*d)^2) + ((a*d)^2 + (b*c)^2) := by ring _ = ((a*c)^2 - 2*a*c*b*d + (b*d)^2) + ((a*d)^2 + 2*a*d*b*c + (b*c)^2) := by ring _ = (a*c - b*d)^2 + (a*d + b*c)^2 := by ring -- Proof 2 -- ======= example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 := by ring -- Used lemmas -- =========== -- variable (f : ℝ → ℝ → ℝ) -- variable (x x' y y' : ℝ) -- #check (congr_arg₂ f : x = x' → y = y' → f x y = f x' y') -- #check (left_distrib a b c : a * (b + c) = a * b + a * c) -- #check (right_distrib a b c: (a + b) * c = a * c + b * c)