-- Desigualdad_con_rcases.lean
-- Si (∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1], entonces z ≥ 0.
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 18-enero-2024
-- ---------------------------------------------------------------------

-- ---------------------------------------------------------------------
-- Demostrar que si
--    ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1
-- entonces
--    z ≥ 0
-- ----------------------------------------------------------------------

-- Demostración en lenguaje natural
-- ================================

-- Usaremos los siguientes lemas
--    (∀ x ∈ ℝ)[x² ≥ 0]                                              (L1)
--    (∀ x, y ∈ ℝ)[x ≥ 0 → y ≥ 0 → x + y ≥ 0]                        (L2)
--    1 ≥ 0                                                          (L3)

-- Sean a y b tales que
--    z = a² + b² ∨ z = a² + b² + 1
-- Entonces, por L1, se tiene que
--    a² ≥ 0                                                         (1)
--    b² ≥ 0                                                         (2)
--
-- En el primer caso, z = a² + b² y se tiene que z ≥ 0 por el lema L2
-- aplicado a (1) y (2).
--
-- En el segundo caso, z = a² + b² y se tiene que z ≥ 0 por el lema L2
-- aplicado a (1), (2) y L3.

-- Demostraciones con Lean4
-- ========================

import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable {z : ℝ}

-- 1ª demostración
-- ===============

example
  (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
  : z ≥ 0 :=
by
  rcases h with ⟨a, b, h1⟩
  -- a b : ℝ
  -- h1 : z = a ^ 2 + b ^ 2 ∨ z = a ^ 2 + b ^ 2 + 1
  have h2 : a ^ 2 ≥ 0 := pow_two_nonneg a
  have h3 : b ^ 2 ≥ 0 := pow_two_nonneg b
  have h4 : a ^ 2 + b ^ 2 ≥ 0 := add_nonneg h2 h3
  rcases h1 with h5 | h6
  . -- h5 : z = a ^ 2 + b ^ 2
    show z ≥ 0
    calc z = a ^ 2 + b ^ 2 := h5
         _ ≥ 0             := add_nonneg h2 h3
  . -- h6 : z = a ^ 2 + b ^ 2 + 1
    show z ≥ 0
    calc z = (a ^ 2 + b ^ 2) + 1 := h6
         _ ≥ 0                   := add_nonneg h4 zero_le_one

-- 2ª demostración
-- ===============

example
  (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
  : z ≥ 0 :=
by
  rcases h with ⟨a, b, h1 | h2⟩
  . -- h1 : z = a ^ 2 + b ^ 2
    have h1a : a ^ 2 ≥ 0 := pow_two_nonneg a
    have h1b : b ^ 2 ≥ 0 := pow_two_nonneg b
    show z ≥ 0
    calc z = a ^ 2 + b ^ 2 := h1
         _ ≥ 0             := add_nonneg h1a h1b
  . -- h2 : z = a ^ 2 + b ^ 2 + 1
    have h2a : a ^ 2 ≥ 0         := pow_two_nonneg a
    have h2b : b ^ 2 ≥ 0         := pow_two_nonneg b
    have h2c : a ^ 2 + b ^ 2 ≥ 0 := add_nonneg h2a h2b
    show z ≥ 0
    calc z = (a ^ 2 + b ^ 2) + 1 := h2
         _ ≥ 0                   := add_nonneg h2c zero_le_one

-- 3ª demostración
-- ===============

example
  (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
  : z ≥ 0 :=
by
  rcases h with ⟨a, b, h1 | h2⟩
  . -- h1 : z = a ^ 2 + b ^ 2
    rw [h1]
    -- ⊢ a ^ 2 + b ^ 2 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2
      apply pow_two_nonneg
    . -- ⊢ 0 ≤ b ^ 2
      apply pow_two_nonneg
  . -- h2 : z = a ^ 2 + b ^ 2 + 1
    rw [h2]
    -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2 + b ^ 2
      apply add_nonneg
      . -- ⊢ 0 ≤ a ^ 2
        apply pow_two_nonneg
      . -- ⊢ 0 ≤ b ^ 2
        apply pow_two_nonneg
    . -- ⊢ 0 ≤ 1
      exact zero_le_one

-- 4ª demostración
-- ===============

example
  (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
  : z ≥ 0 :=
by
  rcases h with ⟨a, b, rfl | rfl⟩
  . -- ⊢ a ^ 2 + b ^ 2 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2
      apply pow_two_nonneg
    . -- ⊢ 0 ≤ b ^ 2
      apply pow_two_nonneg
  . -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2 + b ^ 2
      apply add_nonneg
      . -- ⊢ 0 ≤ a ^ 2
        apply pow_two_nonneg
      . -- ⊢ 0 ≤ b ^ 2
        apply pow_two_nonneg
    . -- ⊢ 0 ≤ 1
      exact zero_le_one

-- 5ª demostración
-- ===============

example
  (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
  : z ≥ 0 :=
by
  rcases h with ⟨a, b, rfl | rfl⟩
  . -- ⊢ a ^ 2 + b ^ 2 ≥ 0
    nlinarith
  . -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
    nlinarith

-- 6ª demostración
-- ===============

example
  (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
  : z ≥ 0 :=
by rcases h with ⟨a, b, rfl | rfl⟩ <;> nlinarith

-- Lemas usados
-- ============

-- variable (x y : ℝ)
-- #check (add_nonneg : 0 ≤ x → 0 ≤ y → 0 ≤ x + y)
-- #check (pow_two_nonneg x : 0 ≤ x ^ 2)
-- #check (zero_le_one : 0 ≤ 1)