-- Desigualdad_con_rcases.lean -- Si (∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1], entonces z ≥ 0. -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 18-enero-2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Demostrar que si -- ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1 -- entonces -- z ≥ 0 -- ---------------------------------------------------------------------- -- Demostración en lenguaje natural -- ================================ -- Usaremos los siguientes lemas -- (∀ x ∈ ℝ)[x² ≥ 0] (L1) -- (∀ x, y ∈ ℝ)[x ≥ 0 → y ≥ 0 → x + y ≥ 0] (L2) -- 1 ≥ 0 (L3) -- Sean a y b tales que -- z = a² + b² ∨ z = a² + b² + 1 -- Entonces, por L1, se tiene que -- a² ≥ 0 (1) -- b² ≥ 0 (2) -- -- En el primer caso, z = a² + b² y se tiene que z ≥ 0 por el lema L2 -- aplicado a (1) y (2). -- -- En el segundo caso, z = a² + b² y se tiene que z ≥ 0 por el lema L2 -- aplicado a (1), (2) y L3. -- Demostraciones con Lean4 -- ======================== import Mathlib.Data.Real.Basic import Mathlib.Tactic variable {z : ℝ} -- 1ª demostración -- =============== example (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1) : z ≥ 0 := by rcases h with ⟨a, b, h1⟩ -- a b : ℝ -- h1 : z = a ^ 2 + b ^ 2 ∨ z = a ^ 2 + b ^ 2 + 1 have h2 : a ^ 2 ≥ 0 := pow_two_nonneg a have h3 : b ^ 2 ≥ 0 := pow_two_nonneg b have h4 : a ^ 2 + b ^ 2 ≥ 0 := add_nonneg h2 h3 rcases h1 with h5 | h6 . -- h5 : z = a ^ 2 + b ^ 2 show z ≥ 0 calc z = a ^ 2 + b ^ 2 := h5 _ ≥ 0 := add_nonneg h2 h3 . -- h6 : z = a ^ 2 + b ^ 2 + 1 show z ≥ 0 calc z = (a ^ 2 + b ^ 2) + 1 := h6 _ ≥ 0 := add_nonneg h4 zero_le_one -- 2ª demostración -- =============== example (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1) : z ≥ 0 := by rcases h with ⟨a, b, h1 | h2⟩ . -- h1 : z = a ^ 2 + b ^ 2 have h1a : a ^ 2 ≥ 0 := pow_two_nonneg a have h1b : b ^ 2 ≥ 0 := pow_two_nonneg b show z ≥ 0 calc z = a ^ 2 + b ^ 2 := h1 _ ≥ 0 := add_nonneg h1a h1b . -- h2 : z = a ^ 2 + b ^ 2 + 1 have h2a : a ^ 2 ≥ 0 := pow_two_nonneg a have h2b : b ^ 2 ≥ 0 := pow_two_nonneg b have h2c : a ^ 2 + b ^ 2 ≥ 0 := add_nonneg h2a h2b show z ≥ 0 calc z = (a ^ 2 + b ^ 2) + 1 := h2 _ ≥ 0 := add_nonneg h2c zero_le_one -- 3ª demostración -- =============== example (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1) : z ≥ 0 := by rcases h with ⟨a, b, h1 | h2⟩ . -- h1 : z = a ^ 2 + b ^ 2 rw [h1] -- ⊢ a ^ 2 + b ^ 2 ≥ 0 apply add_nonneg . -- ⊢ 0 ≤ a ^ 2 apply pow_two_nonneg . -- ⊢ 0 ≤ b ^ 2 apply pow_two_nonneg . -- h2 : z = a ^ 2 + b ^ 2 + 1 rw [h2] -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0 apply add_nonneg . -- ⊢ 0 ≤ a ^ 2 + b ^ 2 apply add_nonneg . -- ⊢ 0 ≤ a ^ 2 apply pow_two_nonneg . -- ⊢ 0 ≤ b ^ 2 apply pow_two_nonneg . -- ⊢ 0 ≤ 1 exact zero_le_one -- 4ª demostración -- =============== example (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1) : z ≥ 0 := by rcases h with ⟨a, b, rfl | rfl⟩ . -- ⊢ a ^ 2 + b ^ 2 ≥ 0 apply add_nonneg . -- ⊢ 0 ≤ a ^ 2 apply pow_two_nonneg . -- ⊢ 0 ≤ b ^ 2 apply pow_two_nonneg . -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0 apply add_nonneg . -- ⊢ 0 ≤ a ^ 2 + b ^ 2 apply add_nonneg . -- ⊢ 0 ≤ a ^ 2 apply pow_two_nonneg . -- ⊢ 0 ≤ b ^ 2 apply pow_two_nonneg . -- ⊢ 0 ≤ 1 exact zero_le_one -- 5ª demostración -- =============== example (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1) : z ≥ 0 := by rcases h with ⟨a, b, rfl | rfl⟩ . -- ⊢ a ^ 2 + b ^ 2 ≥ 0 nlinarith . -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0 nlinarith -- 6ª demostración -- =============== example (h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1) : z ≥ 0 := by rcases h with ⟨a, b, rfl | rfl⟩ <;> nlinarith -- Lemas usados -- ============ -- variable (x y : ℝ) -- #check (add_nonneg : 0 ≤ x → 0 ≤ y → 0 ≤ x + y) -- #check (pow_two_nonneg x : 0 ≤ x ^ 2) -- #check (zero_le_one : 0 ≤ 1)