-- Desigualdad_triangular_para_valor_absoluto.lean -- En ℝ, |x + y| ≤ |x| + |y|. -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 15-enero-2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Demostrar que -- |x + y| ≤ |x| + |y| -- ---------------------------------------------------------------------- -- Demostración en lenguaje natural -- ================================ -- Se usarán los siguientes lemas -- (∀ x ∈ ℝ)[0 ≤ x → |x| = x] (L1) -- (∀ a, b, c, d ∈ ℝ)[a ≤ b ∧ c ≤ d → a + c ≤ b + d] (L2) -- (∀ x ∈ ℝ)[x ≤ |x|] (L3) -- (∀ x ∈ ℝ)[x < 0 → |x| = -x] (L4) -- (∀ x, y ∈ ℝ)[-(x + y) = -x + -y] (L5) -- (∀ x ∈ ℝ)[-x ≤ |x|] (L6) -- -- Se demostrará por casos según x + y ≥ 0: -- -- Primer caso: Supongamos que x + y ≥ 0. Entonces, -- |x + y| = x + y [por L1] -- _ ≤ |x| + |y| [por L2 y L3] -- -- Segundo caso: Supongamos que x + y < 0. Entonces, -- |x + y| = -(x + y) [por L4] -- = -x + -y [por L5] -- ≤ |x| + |y| [por L2 y L6] -- Demostraciones con Lean4 -- ======================== import Mathlib.Data.Real.Basic import Mathlib.Tactic variable {x y : ℝ} -- 1ª demostración -- =============== example : |x + y| ≤ |x| + |y| := by rcases le_or_gt 0 (x + y) with h1 | h2 · -- h1 : 0 ≤ x + y show |x + y| ≤ |x| + |y| calc |x + y| = x + y := by exact abs_of_nonneg h1 _ ≤ |x| + |y| := add_le_add (le_abs_self x) (le_abs_self y) . -- h2 : 0 > x + y show |x + y| ≤ |x| + |y| calc |x + y| = -(x + y) := by exact abs_of_neg h2 _ = -x + -y := by exact neg_add x y _ ≤ |x| + |y| := add_le_add (neg_le_abs x) (neg_le_abs y) -- 2ª demostración -- =============== example : |x + y| ≤ |x| + |y| := by rcases le_or_gt 0 (x + y) with h1 | h2 · -- h1 : 0 ≤ x + y rw [abs_of_nonneg h1] -- ⊢ x + y ≤ |x| + |y| exact add_le_add (le_abs_self x) (le_abs_self y) . -- h2 : 0 > x + y rw [abs_of_neg h2] -- ⊢ -(x + y) ≤ |x| + |y| calc -(x + y) = -x + -y := by exact neg_add x y _ ≤ |x| + |y| := add_le_add (neg_le_abs x) (neg_le_abs y) -- 2ª demostración -- =============== example : |x + y| ≤ |x| + |y| := by rcases le_or_gt 0 (x + y) with h1 | h2 · -- h1 : 0 ≤ x + y rw [abs_of_nonneg h1] -- ⊢ x + y ≤ |x| + |y| linarith [le_abs_self x, le_abs_self y] . -- h2 : 0 > x + y rw [abs_of_neg h2] -- ⊢ -(x + y) ≤ |x| + |y| linarith [neg_le_abs x, neg_le_abs y] -- 3ª demostración -- =============== example : |x + y| ≤ |x| + |y| := abs_add x y -- Lemas usados -- ============ -- variable (a b c d : ℝ) -- #check (abs_add x y : |x + y| ≤ |x| + |y|) -- #check (abs_of_neg : x < 0 → |x| = -x) -- #check (abs_of_nonneg : 0 ≤ x → |x| = x) -- #check (add_le_add : a ≤ b → c ≤ d → a + c ≤ b + d) -- #check (le_abs_self a : a ≤ |a|) -- #check (le_or_gt x y : x ≤ y ∨ x > y) -- #check (neg_add x y : -(x + y) = -x + -y) -- #check (neg_le_abs x : -x ≤ |x|)