-- Interseccion_de_intersecciones.lean -- (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 8-marzo-2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Demostrar que -- (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) -- ---------------------------------------------------------------------- -- Demostración en lenguaje natural -- ================================ -- Tenemos que demostrar que para x se verifica -- x ∈ ⋂ i, (A i ∩ B i) ↔ x ∈ (⋂ i, A i) ∩ (⋂ i, B i) -- Lo demostramos mediante la siguiente cadena de equivalencias -- x ∈ ⋂ i, (A i ∩ B i) ↔ (∀ i)[x ∈ A i ∩ B i] -- ↔ (∀ i)[x ∈ A i ∧ x ∈ B i] -- ↔ (∀ i)[x ∈ A i] ∧ (∀ i)[x ∈ B i] -- ↔ x ∈ (⋂ i, A i) ∧ x ∈ (⋂ i, B i) -- ↔ x ∈ (⋂ i, A i) ∩ (⋂ i, B i) -- Demostraciones con Lean4 -- ======================== import Mathlib.Data.Set.Basic import Mathlib.Tactic open Set variable {α : Type} variable (A B : ℕ → Set α) -- 1ª demostración -- =============== example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) := by ext x -- x : α -- ⊢ x ∈ ⋂ (i : ℕ), A i ∩ B i ↔ x ∈ (⋂ (i : ℕ), A i) ∩ ⋂ (i : ℕ), B i calc x ∈ ⋂ i, A i ∩ B i ↔ ∀ i, x ∈ A i ∩ B i := by exact mem_iInter _ ↔ ∀ i, x ∈ A i ∧ x ∈ B i := by simp only [mem_inter_iff] _ ↔ (∀ i, x ∈ A i) ∧ (∀ i, x ∈ B i) := by exact forall_and _ ↔ x ∈ (⋂ i, A i) ∧ x ∈ (⋂ i, B i) := by simp only [mem_iInter] _ ↔ x ∈ (⋂ i, A i) ∩ ⋂ i, B i := by simp only [mem_inter_iff] -- 2ª demostración -- =============== example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) := by ext x -- x : α -- ⊢ x ∈ ⋂ (i : ℕ), A i ∩ B i ↔ x ∈ (⋂ (i : ℕ), A i) ∩ ⋂ (i : ℕ), B i simp only [mem_inter_iff, mem_iInter] -- ⊢ (∀ (i : ℕ), x ∈ A i ∧ x ∈ B i) ↔ (∀ (i : ℕ), x ∈ A i) ∧ ∀ (i : ℕ), x ∈ B i constructor . -- ⊢ (∀ (i : ℕ), x ∈ A i ∧ x ∈ B i) → (∀ (i : ℕ), x ∈ A i) ∧ ∀ (i : ℕ), x ∈ B i intro h -- h : ∀ (i : ℕ), x ∈ A i ∧ x ∈ B i -- ⊢ (∀ (i : ℕ), x ∈ A i) ∧ ∀ (i : ℕ), x ∈ B i constructor . -- ⊢ ∀ (i : ℕ), x ∈ A i intro i -- i : ℕ -- ⊢ x ∈ A i exact (h i).1 . -- ⊢ ∀ (i : ℕ), x ∈ B i intro i -- i : ℕ -- ⊢ x ∈ B i exact (h i).2 . -- ⊢ ((∀ (i : ℕ), x ∈ A i) ∧ ∀ (i : ℕ), x ∈ B i) → ∀ (i : ℕ), x ∈ A i ∧ x ∈ B i intros h i -- h : (∀ (i : ℕ), x ∈ A i) ∧ ∀ (i : ℕ), x ∈ B i -- i : ℕ -- ⊢ x ∈ A i ∧ x ∈ B i rcases h with ⟨h1, h2⟩ -- h1 : ∀ (i : ℕ), x ∈ A i -- h2 : ∀ (i : ℕ), x ∈ B i constructor . -- ⊢ x ∈ A i exact h1 i . -- ⊢ x ∈ B i exact h2 i -- 3ª demostración -- =============== example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) := by ext x -- x : α -- ⊢ x ∈ ⋂ (i : ℕ), A i ∩ B i ↔ x ∈ (⋂ (i : ℕ), A i) ∩ ⋂ (i : ℕ), B i simp only [mem_inter_iff, mem_iInter] -- ⊢ (∀ (i : ℕ), x ∈ A i ∧ x ∈ B i) ↔ (∀ (i : ℕ), x ∈ A i) ∧ ∀ (i : ℕ), x ∈ B i exact ⟨fun h ↦ ⟨fun i ↦ (h i).1, fun i ↦ (h i).2⟩, fun ⟨h1, h2⟩ i ↦ ⟨h1 i, h2 i⟩⟩ -- 4ª demostración -- =============== example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) := by ext -- x : α -- ⊢ x ∈ ⋂ (i : ℕ), A i ∩ B i ↔ x ∈ (⋂ (i : ℕ), A i) ∩ ⋂ (i : ℕ), B i simp only [mem_inter_iff, mem_iInter] -- ⊢ (∀ (i : ℕ), x ∈ A i ∧ x ∈ B i) ↔ (∀ (i : ℕ), x ∈ A i) ∧ ∀ (i : ℕ), x ∈ B i aesop -- Lemas usados -- ============ -- variable (x : α) -- variable (a b : Set α) -- variable (ι : Sort v) -- variable (s : ι → Set α) -- variable (p q : α → Prop) -- #check (forall_and : (∀ (x : α), p x ∧ q x) ↔ (∀ (x : α), p x) ∧ ∀ (x : α), q x) -- #check (mem_iInter : x ∈ ⋂ (i : ι), s i ↔ ∀ (i : ι), x ∈ s i) -- #check (mem_inter_iff x a b : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b)