-- Limits_are_less_than_or_equal_to_upper_bounds.lean -- If x is the limit of u and y is an upper bound of u, then x ≤ y. -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Seville, September 3, 2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- In Lean4, we can define that a is the limit of the sequence u by: -- def is_limit (u : ℕ → ℝ) (a : ℝ) := -- ∀ ε > 0, ∃ k, ∀ n ≥ k, |u n - a| < ε -- and that a is an upper bound of u by: -- def is_upper_bound (u : ℕ → ℝ) (a : ℝ) := -- ∀ n, u n ≤ a -- -- Prove that if x is the limit of the sequence u and y is an upper -- bound of u, then x ≤ y. -- --------------------------------------------------------------------- -- Proof in natural language -- ========================= -- Let us consider the property from the previous exercise, which states -- that for all x, y ∈ ℝ: -- (∀ ε > 0, y ≤ x + ε) → y ≤ x -- -- To prove x ≤ y, it suffices to show that: -- ∀ ε > 0, x ≤ y + ε -- -- Let ε > 0. Since x is the limit of the sequence u, there exists a k ∈ ℕ -- such that: -- ∀ n ≥ k, |u(n) - x| < ε -- In particular, we have: -- |u(k) - x| < ε -- from which it follows that -- -ε < u(k) - x -- and rearranging gives us -- x < u(k) + ε (1) -- -- Since y is an upper bound of u, it follows that: -- u(k) < y (2) -- -- Combining (1) and (2), we obtain -- x < y + ε -- which completes the proof. -- Proofs with Lean4 -- ================= import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (u : ℕ → ℝ) variable (x y : ℝ) def is_limit (u : ℕ → ℝ) (a : ℝ) := ∀ ε > 0, ∃ k, ∀ n ≥ k, |u n - a| < ε def is_upper_bound (u : ℕ → ℝ) (a : ℝ) := ∀ n, u n ≤ a -- Proof 1 -- ======= example (hx : is_limit u x) (hy : is_upper_bound u y) : x ≤ y := by apply le_of_forall_pos_le_add -- ⊢ ∀ ε > 0, x ≤ y + ε intros ε hε -- ε : ℝ -- hε : ε > 0 -- ⊢ x ≤ y + ε rcases hx ε hε with ⟨k, hk⟩ -- k : ℕ -- hk : ∀ n ≥ k, |u n - x| < ε specialize hk k (le_refl k) -- hk : |u k - x| < ε replace hk : -ε < u k - x := neg_lt_of_abs_lt hk replace hk : x < u k + ε := neg_lt_sub_iff_lt_add'.mp hk apply le_of_lt -- ⊢ x < y + ε exact lt_add_of_lt_add_right hk (hy k) -- Proof 2 -- ======= example (hx : is_limit u x) (hy : is_upper_bound u y) : x ≤ y := by apply le_of_forall_pos_le_add -- ⊢ ∀ ε > 0, x ≤ y + ε intros ε hε -- ε : ℝ -- hε : ε > 0 -- ⊢ x ≤ y + ε rcases hx ε hε with ⟨k, hk⟩ -- k : ℕ -- hk : ∀ n ≥ k, |u n - x| < ε specialize hk k (le_refl k) -- hk : |u k - x| < ε apply le_of_lt -- ⊢ x < y + ε calc x < u k + ε := neg_lt_sub_iff_lt_add'.mp (neg_lt_of_abs_lt hk) _ ≤ y + ε := add_le_add_right (hy k) ε -- Proof 3 -- ======= example (hx : is_limit u x) (hy : is_upper_bound u y) : x ≤ y := by apply le_of_forall_pos_le_add -- ⊢ ∀ ε > 0, x ≤ y + ε intros ε hε -- ε : ℝ -- hε : ε > 0 -- ⊢ x ≤ y + ε rcases hx ε hε with ⟨k, hk⟩ -- k : ℕ -- hk : ∀ n ≥ k, |u n - x| < ε specialize hk k (by linarith) rw [abs_lt] at hk -- hk : -ε < u k - x ∧ u k - x < ε linarith [hy k] -- Used lemmas -- =========== -- variable (n : ℕ) -- variable (a b c d : ℝ) -- #check (add_le_add_right : b ≤ c → ∀ (a : ℝ), b + a ≤ c + a) -- #check (le_of_forall_pos_le_add : (∀ ε > 0, y ≤ x + ε) → y ≤ x) -- #check (le_of_lt : a < b → a ≤ b) -- #check (le_refl n : n ≤ n) -- #check (lt_add_of_lt_add_right : a < b + c → b ≤ d → a < d + c) -- #check (neg_lt_of_abs_lt : |a| < b → -b < a) -- #check (neg_lt_sub_iff_lt_add' : -b < a - c ↔ c < a + b)