-- Multiplicacion_por_cero.lean
-- Si R es un anillo y a ∈ R, entonces a.0 = 0
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 3-agosto-2023
-- ---------------------------------------------------------------------

-- ---------------------------------------------------------------------
-- Demostrar que si R es un anillo y a ∈ R, entonces
--    a * 0 = 0
-- ----------------------------------------------------------------------

-- Demostración en lenguaje natural
-- ================================

-- Basta aplicar la propiedad cancelativa a
--    a.0 + a.0 = a.0 + 0
-- que se demuestra mediante la siguiente cadena de igualdades
--    a.0 + a.0 = a.(0 + 0)    [por la distributiva]
--              = a.0          [por suma con cero]
--              = a.0 + 0      [por suma con cero]

-- Demostraciones con Lean4
-- ========================

import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic

variable {R : Type _} [Ring R]
variable (a : R)

-- 1ª demostración
-- ===============

example : a * 0 = 0 :=
by
  have h : a * 0 + a * 0 = a * 0 + 0 :=
    calc a * 0 + a * 0 = a * (0 + 0) := by rw [mul_add a 0 0]
                     _ = a * 0       := by rw [add_zero 0]
                     _ = a * 0 + 0   := by rw [add_zero (a * 0)]
  rw [add_left_cancel h]

-- 2ª demostración
-- ===============

example : a * 0 = 0 :=
by
  have h : a * 0 + a * 0 = a * 0 + 0 :=
    calc a * 0 + a * 0 = a * (0 + 0) := by rw [← mul_add]
                     _ = a * 0       := by rw [add_zero]
                     _ = a * 0 + 0   := by rw [add_zero]
  rw [add_left_cancel h]

-- 3ª demostración
-- ===============

example : a * 0 = 0 :=
by
  have h : a * 0 + a * 0 = a * 0 + 0 :=
    by rw [← mul_add, add_zero, add_zero]
  rw [add_left_cancel h]

-- 4ª demostración
-- ===============

example : a * 0 = 0 :=
by
  have : a * 0 + a * 0 = a * 0 + 0 :=
    calc a * 0 + a * 0 = a * (0 + 0) := by simp
                     _ = a * 0       := by simp
                     _ = a * 0 + 0   := by simp
  simp

-- 5ª demostración
-- ===============

example : a * 0 = 0 :=
  mul_zero a

-- 6ª demostración
-- ===============

example : a * 0 = 0 :=
by simp

-- Lemas usados
-- ============

-- variable (b c : R)
-- #check (add_left_cancel : a + b = a + c → b = c)
-- #check (add_zero a :  a + 0 = a)
-- #check (mul_add a b c :  a * (b + c) = a * b + a * c)
-- #check (mul_zero a : a * 0 = 0)