-- Sum_of_arithmetic_progression.lean -- Proofs of a+(a+d)+(a+2d)+···+(a+nd)=(n+1)(2a+nd)/2 -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Seville, September 7, 2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Prove that the sum of the terms of the arithmetic progression -- a + (a + d) + (a + 2 × d) + ··· + (a + n × d) -- is (n + 1) × (2 × a + n × d) / 2. -- --------------------------------------------------------------------- -- Proof in natural language -- ========================= -- Let -- s(a,d,n) = a + (a + d) + (a + 2d) + ··· + (a + nd) -- We need to prove that -- s(a,d,n) = (n + 1)(2a + nd) / 2 -- or, equivalently that -- 2s(a,d,n) = (n + 1)(2a + nd) -- We will do this by induction on n. -- -- Base case: Let n = 0. Then, -- 2s(a,d,n) = 2s(a,d,0) -- = 2·a -- = (0 + 1)(2a + 0.d) -- = (n + 1)(2a + nd) -- -- Induction step: Let n = m+1 and assume the induction hypothesis -- (IH) -- 2s(a,d,m) = (m + 1)(2a + md) -- Then, -- 2s(a,d,n) = 2s(a,d,m+1) -- = 2(s(a,d,m) + (a + (m + 1)d)) -- = 2s(a,d,m) + 2(a + (m + 1)d) -- = ((m + 1)(2a + md)) + 2(a + (m + 1)d) [by IH] -- = (m + 2)(2a + (m + 1)d) -- = (n + 1)(2a + nd) -- Proof with Lean4 -- ================ import Mathlib.Algebra.Group.Nat.Defs import Mathlib.Tactic open Nat variable (n : ℕ) variable (a d : ℝ) set_option pp.fieldNotation false def sumAP : ℝ → ℝ → ℕ → ℝ | a, _, 0 => a | a, d, n + 1 => sumAP a d n + (a + (n + 1) * d) @[simp] lemma sumAP_zero : sumAP a d 0 = a := by simp only [sumAP] @[simp] lemma sumAP_succ : sumAP a d (n + 1) = sumAP a d n + (a + (n + 1) * d) := by simp only [sumAP] -- Proof 1 -- ======= example : 2 * sumAP a d n = (n + 1) * (2 * a + n * d) := by induction n with | zero => -- ⊢ 2 * sumAP a d 0 = (↑0 + 1) * (2 * a + ↑0 * d) have h : 2 * sumAP a d 0 = (0 + 1) * (2 * a + 0 * d) := calc 2 * sumAP a d 0 = 2 * a := congrArg (2 * .) (sumAP_zero a d) _ = (0 + 1) * (2 * a + 0 * d) := by ring_nf exact_mod_cast h | succ m IH => -- m : ℕ -- IH : 2 * sumAP a d m = (↑m + 1) * (2 * a + ↑m * d) -- ⊢ 2 * sumAP a d (m + 1) = (↑(m + 1) + 1) * (2 * a + ↑(m + 1) * d) calc 2 * sumAP a d (succ m) = 2 * (sumAP a d m + (a + (m + 1) * d)) := congrArg (2 * .) (sumAP_succ m a d) _ = 2 * sumAP a d m + 2 * (a + (m + 1) * d) := by ring_nf _ = ((m + 1) * (2 * a + m * d)) + 2 * (a + (m + 1) * d) := congrArg (. + 2 * (a + (m + 1) * d)) IH _ = (m + 2) * (2 * a + (m + 1) * d) := by ring_nf _ = (succ m + 1) * (2 * a + succ m * d) := by norm_cast -- Proof 2 -- ======= example : 2 * sumAP a d n = (n + 1) * (2 * a + n * d) := by induction n with | zero => -- ⊢ 2 * sumAP a d 0 = (↑0 + 1) * (2 * a + ↑0 * d) simp | succ m IH => -- m : ℕ -- IH : 2 * sumAP a d m = (↑m + 1) * (2 * a + ↑m * d) -- ⊢ 2 * sumAP a d (m + 1) = (↑(m + 1) + 1) * (2 * a + ↑(m + 1) * d) calc 2 * sumAP a d (succ m) = 2 * (sumAP a d m + (a + (m + 1) * d)) := rfl _ = 2 * sumAP a d m + 2 * (a + (m + 1) * d) := by ring_nf _ = ((m + 1) * (2 * a + m * d)) + 2 * (a + (m + 1) * d) := congrArg (. + 2 * (a + (m + 1) * d)) IH _ = (m + 2) * (2 * a + (m + 1) * d) := by ring_nf _ = (succ m + 1) * (2 * a + succ m * d) := by norm_cast