-- Sum_of_the_first_n_natural_numbers.lean -- Proofs of "0 + 1 + 2 + 3 + ··· + n = n × (n + 1)/2" -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Seville, September 5, 2024 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Prove that the sum of the natural numbers -- 0 + 1 + 2 + 3 + ··· + n -- is n × (n + 1)/2 -- --------------------------------------------------------------------- -- Natural language proof -- ====================== -- Let -- s(n) = 0 + 1 + 2 + 3 + ··· + n -- We need to prove that -- s(n) = n(n + 1)/2 -- or, equivalently, that -- 2s(n) = n(n + 1) -- We will do this by induction on n. -- -- Base Case: Let n = 0. Then, -- 2s(n) = 2s(0) -- = 2·0 -- = 0 -- = 0.(0 + 1) -- = n.(n + 1) -- -- Induction Step: Let n = m + 1 and assume the induction hypothesis -- (IH) -- 2s(m) = m(m+1) -- Then, -- 2s(n) = 2s(m+1) -- = 2(s(m) + (m+1)) -- = 2s(m) + 2(m+1) -- = m(m + 1) + 2(m + 1) [by IH] -- = (m + 2)(m + 1) -- = (m + 1)(m + 2) -- = n(n+1) -- Proofs with Lean4 -- ================= import Mathlib.Algebra.Group.Nat.Defs import Mathlib.Tactic open Nat variable (n : ℕ) set_option pp.fieldNotation false def sum : ℕ → ℕ | 0 => 0 | succ n => sum n + (n+1) @[simp] lemma sum_zero : sum 0 = 0 := rfl @[simp] lemma sum_succ : sum (n + 1) = sum n + (n+1) := rfl -- Proof 1 -- ======= example : 2 * sum n = n * (n + 1) := by induction n with | zero => -- ⊢ 2 * sum 0 = 0 * (0 + 1) calc 2 * sum 0 = 2 * 0 := congrArg (2 * .) sum_zero _ = 0 := mul_zero 2 _ = 0 * (0 + 1) := zero_mul (0 + 1) | succ n HI => -- n : ℕ -- HI : 2 * sum n = n * (n + 1) -- ⊢ 2 * sum (n + 1) = (n + 1) * (n + 1 + 1) calc 2 * sum (n + 1) = 2 * (sum n + (n + 1)) := congrArg (2 * .) (sum_succ n) _ = 2 * sum n + 2 * (n + 1) := mul_add 2 (sum n) (n + 1) _ = n * (n + 1) + 2 * (n + 1) := congrArg (. + 2 * (n + 1)) HI _ = (n + 2) * (n + 1) := (add_mul n 2 (n + 1)).symm _ = (n + 1) * (n + 2) := mul_comm (n + 2) (n + 1) -- Proof 2 -- ======= example : 2 * sum n = n * (n + 1) := by induction n with | zero => -- ⊢ 2 * sum 0 = 0 * (0 + 1) calc 2 * sum 0 = 2 * 0 := rfl _ = 0 := rfl _ = 0 * (0 + 1) := rfl | succ n HI => -- n : ℕ -- HI : 2 * sum n = n * (n + 1) -- ⊢ 2 * sum (n + 1) = (n + 1) * (n + 1 + 1) calc 2 * sum (n + 1) = 2 * (sum n + (n + 1)) := rfl _ = 2 * sum n + 2 * (n + 1) := by ring _ = n * (n + 1) + 2 * (n + 1) := by simp [HI] _ = (n + 2) * (n + 1) := by ring _ = (n + 1) * (n + 2) := by ring -- Proof 3 -- ======= example : 2 * sum n = n * (n + 1) := by induction n with | zero => -- ⊢ 2 * sum 0 = 0 * (0 + 1) rfl | succ n HI => -- n : ℕ -- HI : 2 * sum n = n * (n + 1) -- ⊢ 2 * sum (n + 1) = (n + 1) * (n + 1 + 1) calc 2 * sum (n + 1) = 2 * (sum n + (n + 1)) := rfl _ = 2 * sum n + 2 * (n + 1) := by ring _ = n * (n + 1) + 2 * (n + 1) := by simp [HI] _ = (n + 1) * (n + 2) := by ring -- Proof 4 -- ======= example : 2 * sum n = n * (n + 1) := by induction n with | zero => rfl | succ n HI => unfold sum ; linarith [HI] -- Used lemmas -- =========== -- variable (a b c : ℕ) -- #check (add_mul a b c : (a + b) * c = a * c + b * c) -- #check (mul_add a b c : a * (b + c) = a * b + a * c) -- #check (mul_comm a b : a * b = b * a) -- #check (mul_zero a : a * 0 = 0) -- #check (zero_mul a : 0 * a = 0)