-- Suma_divisible.lean -- Si a divide a b y a c, entonces divide a b+c. -- José A. Alonso Jiménez <https://jaalonso.github.io> -- Sevilla, 7-noviembre-2023 -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- -- Demostrar que si a es un divisor de b y de c, tambien lo es de b + c. -- ---------------------------------------------------------------------- -- Demostración en lenguaje natural -- ================================ -- Puesto que a divide a b y a c, existen d y e tales que -- b = ad (1) -- c = ae (2) -- Por tanto, -- b + c = ad + c [por (1)] -- = ad + ae [por (2)] -- = a(d + e) [por la distributiva] -- Por consiguiente, a divide a b + c. -- Demostraciones con Lean4 -- ======================== import Mathlib.Tactic variable {a b c : ℕ} -- 1ª demostración example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ (b + c) := by rcases h1 with ⟨d, beq : b = a * d⟩ rcases h2 with ⟨e, ceq: c = a * e⟩ have h1 : b + c = a * (d + e) := calc b + c = (a * d) + c := congrArg (. + c) beq _ = (a * d) + (a * e) := congrArg ((a * d) + .) ceq _ = a * (d + e) := by rw [← mul_add] show a ∣ (b + c) exact Dvd.intro (d + e) h1.symm -- 2ª demostración example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ (b + c) := by rcases h1 with ⟨d, beq : b = a * d⟩ rcases h2 with ⟨e, ceq: c = a * e⟩ have h1 : b + c = a * (d + e) := by linarith show a ∣ (b + c) exact Dvd.intro (d + e) h1.symm -- 3ª demostración example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ (b + c) := by rcases h1 with ⟨d, beq : b = a * d⟩ rcases h2 with ⟨e, ceq: c = a * e⟩ show a ∣ (b + c) exact Dvd.intro (d + e) (by linarith) -- 4ª demostración example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ (b + c) := by cases' h1 with d beq -- d : ℕ -- beq : b = a * d cases' h2 with e ceq -- e : ℕ -- ceq : c = a * e rw [ceq, beq] -- ⊢ a ∣ a * d + a * e use (d + e) -- ⊢ a * d + a * e = a * (d + e) ring -- 5ª demostración example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ (b + c) := by rcases h1 with ⟨d, rfl⟩ -- ⊢ a ∣ a * d + c rcases h2 with ⟨e, rfl⟩ -- ⊢ a ∣ a * d + a * e use (d + e) -- ⊢ a * d + a * e = a * (d + e) ring -- 6ª demostración example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ (b + c) := dvd_add h1 h2 -- Lemas usados -- ============ -- #check (Dvd.intro c : a * c = b → a ∣ b) -- #check (dvd_add : a ∣ b → a ∣ c → a ∣ (b + c)) -- #check (mul_add a b c : a * (b + c) = a * b + a * c)