--- Título: En ℝ, -x ≤ |x| Autor: José A. Alonso --- [mathjax] Demostrar con Lean4 que en \\(ℝ\\), \\(-x ≤ |x|\\). Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic
variable {x : ℝ}
example : -x ≤ |x| :=
by sorry
Demostración en lenguaje natural
Se usarán los siguientes lemas
\\begin{align}
&(∀ x ∈ ℝ)[0 ≤ x → -x ≤ x] \\tag{L1} \\\\
&(∀ x ∈ ℝ)[0 ≤ x → |x| = x] \\tag{L2} \\\\
&(∀ x ∈ ℝ)[x ≤ x] \\tag{L3} \\\\
&(∀ x ∈ ℝ)[x < 0 → |x| = -x] \\tag{L4}
\\end{align}
Se demostrará por casos según \\(x ≥ 0\\):
Primer caso: Supongamos que \\(x ≥ 0\\). Entonces,
\\begin{align}
-x &≤ x &&\\text{[por L1]} \\\\
&= |x| &&\\text{[por L2]}
\\end{align}
Segundo caso: Supongamos que \\(x < 0\\). Entonces,
\\begin{align}
-x &≤ -x &&\\text{[por L3]} \\\\
&= |x| &&\\text{[por L4]}
\\end{align}
Demostraciones con Lean4
import Mathlib.Data.Real.Basic
variable {x : ℝ}
-- 1ª demostración
-- ===============
example : -x ≤ |x| :=
by
cases' (le_or_gt 0 x) with h1 h2
. -- h1 : 0 ≤ x
show -x ≤ |x|
calc -x ≤ x := by exact neg_le_self h1
_ = |x| := (abs_of_nonneg h1).symm
. -- h2 : 0 > x
show -x ≤ |x|
calc -x ≤ -x := by exact le_refl (-x)
_ = |x| := (abs_of_neg h2).symm
-- 2ª demostración
-- ===============
example : -x ≤ |x| :=
by
cases' (le_or_gt 0 x) with h1 h2
. -- h1 : 0 ≤ x
rw [abs_of_nonneg h1]
-- ⊢ -x ≤ x
exact neg_le_self h1
. -- h2 : 0 > x
rw [abs_of_neg h2]
-- 3ª demostración
-- ===============
example : -x ≤ |x| :=
by
rcases (le_or_gt 0 x) with h1 | h2
. -- h1 : 0 ≤ x
rw [abs_of_nonneg h1]
-- ⊢ -x ≤ x
linarith
. -- h2 : 0 > x
rw [abs_of_neg h2]
-- 4ª demostración
-- ===============
example : -x ≤ |x| :=
neg_le_abs_self x
-- Lemas usados
-- ============
-- variable (y : ℝ)
-- #check (abs_of_neg : x < 0 → |x| = -x)
-- #check (abs_of_nonneg : 0 ≤ x → |x| = x)
-- #check (le_or_gt x y : x ≤ y ∨ x > y)
-- #check (le_refl x : x ≤ x)
-- #check (neg_le_abs_self x : -x ≤ |x|)
-- #check (neg_le_self : 0 ≤ x → -x ≤ x)
Demostraciones interactivas
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
Referencias