--- Título: En ℝ, -x ≤ |x| Autor: José A. Alonso --- [mathjax] Demostrar con Lean4 que en \\(ℝ\\), \\(-x ≤ |x|\\). Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic
variable {x : ℝ}

example : -x ≤ |x| :=
by sorry
Demostración en lenguaje natural Se usarán los siguientes lemas \\begin{align} &(∀ x ∈ ℝ)[0 ≤ x → -x ≤ x] \\tag{L1} \\\\ &(∀ x ∈ ℝ)[0 ≤ x → |x| = x] \\tag{L2} \\\\ &(∀ x ∈ ℝ)[x ≤ x] \\tag{L3} \\\\ &(∀ x ∈ ℝ)[x < 0 → |x| = -x] \\tag{L4} \\end{align} Se demostrará por casos según \\(x ≥ 0\\): Primer caso: Supongamos que \\(x ≥ 0\\). Entonces, \\begin{align} -x &≤ x &&\\text{[por L1]} \\\\ &= |x| &&\\text{[por L2]} \\end{align} Segundo caso: Supongamos que \\(x < 0\\). Entonces, \\begin{align} -x &≤ -x &&\\text{[por L3]} \\\\ &= |x| &&\\text{[por L4]} \\end{align} Demostraciones con Lean4
import Mathlib.Data.Real.Basic
variable {x : ℝ}

-- 1ª demostración
-- ===============

example : -x ≤ |x| :=
by
  cases' (le_or_gt 0 x) with h1 h2
  . -- h1 : 0 ≤ x
    show -x ≤ |x|
    calc -x ≤ x   := by exact neg_le_self h1
          _ = |x| := (abs_of_nonneg h1).symm
  . -- h2 : 0 > x
    show -x ≤ |x|
    calc -x ≤ -x  := by exact le_refl (-x)
          _ = |x| := (abs_of_neg h2).symm

-- 2ª demostración
-- ===============

example : -x ≤ |x| :=
by
  cases' (le_or_gt 0 x) with h1 h2
  . -- h1 : 0 ≤ x
    rw [abs_of_nonneg h1]
    -- ⊢ -x ≤ x
    exact neg_le_self h1
  . -- h2 : 0 > x
    rw [abs_of_neg h2]

-- 3ª demostración
-- ===============

example : -x ≤ |x| :=
by
  rcases (le_or_gt 0 x) with h1 | h2
  . -- h1 : 0 ≤ x
    rw [abs_of_nonneg h1]
    -- ⊢ -x ≤ x
    linarith
  . -- h2 : 0 > x
    rw [abs_of_neg h2]

-- 4ª demostración
-- ===============

example : -x ≤ |x| :=
  neg_le_abs_self x

-- Lemas usados
-- ============

-- variable (y : ℝ)
-- #check (abs_of_neg : x < 0 → |x| = -x)
-- #check (abs_of_nonneg : 0 ≤ x → |x| = x)
-- #check (le_or_gt x y : x ≤ y ∨ x > y)
-- #check (le_refl x : x ≤ x)
-- #check (neg_le_abs_self x : -x ≤ |x|)
-- #check (neg_le_self : 0 ≤ x → -x ≤ x)
Demostraciones interactivas Se puede interactuar con las demostraciones anteriores en Lean 4 Web. Referencias