--- title: Equivalence of definitions of the Fibonacci function date: 2024-08-29 06:00:00 UTC+02:00 category: Induction has_math: true --- [mathjax] In Lean4, the Fibonacci function can be defined as
def fibonacci : Nat → Nat
| 0 => 0
| 1 => 1
| n + 2 => fibonacci n + fibonacci (n+1)
Another more efficient definition is
def fib (n : Nat) : Nat :=
(loop n).1
where
loop : Nat → Nat × Nat
| 0 => (0, 1)
| n + 1 =>
let p := loop n
(p.2, p.1 + p.2)
Prove that both definitions are equivalent; that is,
fibonacci = fib
To do this, complete the following Lean4 theory:
open Nat
set_option pp.fieldNotation false
def fibonacci : Nat → Nat
| 0 => 0
| 1 => 1
| n + 2 => fibonacci n + fibonacci (n+1)
def fib (n : Nat) : Nat :=
(loop n).1
where
loop : Nat → Nat × Nat
| 0 => (0, 1)
| n + 1 =>
let p := loop n
(p.2, p.1 + p.2)
example : fibonacci = fib :=
by sorry
fib_suma : fib (n + 2) = fib n + fib (n + 1)
We need to prove that, for all n ∈ ℕ,
fibonacci n = fib n
We will prove this by induction on n
**Case 1**: Suppose that n = 0. Then,
fibonacci n = fibonacci 0
= 1
and
fib n = fib 0
= (loop 0).1
= (0, 1).1
= 1
Therefore,
fibonacci n = fib n
**Case 2**: Suppose that n = 1. Then,
fibonacci n = 1
and
fib 1 = (loop 1).1
= (p.2, p.1 + p.2).1
donde p = loop 0
= ((0, 1).2, (0, 1).1 + (0, 1).2).1
= (1, 0 + 1).1
= 1
Therefore,
fibonacci n = fib n
**Case 3**: Suppose that n = m + 2 and that the induction hypotheses hold,
ih1 : fibonacci n = fib n
ih2 : fibonacci (n + 1) = fib (n + 1)
Then,
fibonacci n
= fibonacci (m + 2)
= fibonacci m + fibonacci (m + 1)
= fib m + fib (m + 1) [por ih1, ih2]
= fib (m + 2) [por fib_suma]
= fib n
open Nat
set_option pp.fieldNotation false
def fibonacci : Nat → Nat
| 0 => 0
| 1 => 1
| n + 2 => fibonacci n + fibonacci (n+1)
def fib (n : Nat) : Nat :=
(loop n).1
where
loop : Nat → Nat × Nat
| 0 => (0, 1)
| n + 1 =>
let p := loop n
(p.2, p.1 + p.2)
-- Auxiliary lemma
-- ===============
theorem fib_suma (n : Nat) : fib (n + 2) = fib n + fib (n + 1) :=
by rfl
-- Proof 1
-- =======
example : fibonacci = fib :=
by
ext n
-- n : Nat
-- ⊢ fibonacci n = fib n
induction n using fibonacci.induct with
| case1 =>
-- ⊢ fibonacci 0 = fib 0
rfl
| case2 =>
-- ⊢ fibonacci 1 = fib 1
rfl
| case3 n ih1 ih2 =>
-- n : Nat
-- ih1 : fibonacci n = fib n
-- ih2 : fibonacci (n + 1) = fib (n + 1)
-- ⊢ fibonacci (succ (succ n)) = fib (succ (succ n))
rw [fib_suma]
-- ⊢ fibonacci (succ (succ n)) = fib n + fib (n + 1)
rw [fibonacci]
-- ⊢ fibonacci n + fibonacci (n + 1) = fib n + fib (n + 1)
rw [ih1]
-- ⊢ fib n + fibonacci (n + 1) = fib n + fib (n + 1)
rw [ih2]
-- Proof 2
-- =======
example : fibonacci = fib :=
by
ext n
-- n : Nat
-- ⊢ fibonacci n = fib n
induction n using fibonacci.induct with
| case1 =>
-- ⊢ fibonacci 0 = fib 0
rfl
| case2 =>
-- ⊢ fibonacci 1 = fib 1
rfl
| case3 n ih1 ih2 =>
-- n : Nat
-- ih1 : fibonacci n = fib n
-- ih2 : fibonacci (n + 1) = fib (n + 1)
-- ⊢ fibonacci (succ (succ n)) = fib (succ (succ n))
calc fibonacci (succ (succ n))
= fibonacci n + fibonacci (n + 1) := by rw [fibonacci]
_ = fib n + fib (n + 1) := by rw [ih1, ih2]
_ = fib (succ (succ n)) := by rw [fib_suma]
-- Proof 3
-- =======
example : fibonacci = fib :=
by
ext n
-- n : Nat
-- ⊢ fibonacci n = fib n
induction n using fibonacci.induct with
| case1 =>
-- ⊢ fibonacci 0 = fib 0
rfl
| case2 =>
-- ⊢ fibonacci 1 = fib 1
rfl
| case3 n ih1 ih2 =>
-- n : Nat
-- ih1 : fibonacci n = fib n
-- ih2 : fibonacci (n + 1) = fib (n + 1)
-- ⊢ fibonacci (succ (succ n)) = fib (succ (succ n))
simp [ih1, ih2, fibonacci, fib_suma]
You can interact with the previous proofs at [Lean 4 Web](https://live.lean-lang.org/#url=https://raw.githubusercontent.com/jaalonso/Calculemus2/main/src/Fibonacci.lean).
theory Fibonacci
imports Main
begin
fun fibonacci :: "nat ⇒ nat"
where
"fibonacci 0 = 0"
| "fibonacci (Suc 0) = 1"
| "fibonacci (Suc (Suc n)) = fibonacci n + fibonacci (Suc n)"
fun fibAux :: "nat => nat × nat"
where
"fibAux 0 = (0, 1)"
| "fibAux (Suc n) = (let (a, b) = fibAux n in (b, a + b))"
definition fib :: "nat ⇒ nat" where
"fib n = fst (fibAux n)"
lemma fib_suma :
"fib (Suc (Suc n)) = fib n + fib (Suc n)"
proof (induct n)
show "fib (Suc (Suc 0)) = fib 0 + fib (Suc 0)"
by (simp add: fib_def)
next
fix n
assume IH : "fib (Suc (Suc n)) = fib n + fib (Suc n)"
have "fib (Suc (Suc (Suc n))) = fst (fibAux (Suc (Suc (Suc n))))"
by (simp add: fib_def)
also have "… = snd (fibAux (Suc (Suc n)))"
by (simp add: prod.case_eq_if)
also have "… = fst (fibAux (Suc n)) + snd (fibAux (Suc n))"
by (metis fibAux.simps(2) snd_conv split_def)
also have "… = fib (Suc n) + snd (fibAux (Suc n))"
using fib_def by auto
also have "… = fib (Suc n) + fib (Suc (Suc n))"
by (simp add: fib_def prod.case_eq_if)
finally show "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
by this
qed
lemma "fibonacci n = fib n"
proof (induct n rule: fibonacci.induct)
show "fibonacci 0 = fib 0"
by (simp add: fib_def)
next
show "fibonacci (Suc 0) = fib (Suc 0)"
by (simp add: fib_def)
next
fix n
assume IH1 : "fibonacci n = fib n"
assume IH2 : "fibonacci (Suc n) = fib (Suc n)"
have "fibonacci (Suc (Suc n)) = fibonacci n + fibonacci (Suc n)"
by simp
also have "… = fib n + fib (Suc n)"
by (simp add: IH1 IH2)
also have "… = fib (Suc (Suc n))"
by (simp add: fib_suma)
finally show "fibonacci (Suc (Suc n)) = fib (Suc (Suc n))"
by this
qed
end